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SUMMARY 

The Centaur propellant management and thermal cont ro l  techniques required 
for  zero gravity coasting were successfully demons~rated during an 
extended mission following spacecraft  separation on the TC-2 f l i g h t .  As 
par t  of the  demonstration, two successful engine s t a r t s  were accomplished. 
The f i r s t  engine s t a r t  followed a one-hour zero gravity coast ,  and the  
second engine s t a r t  followed a three-hour zero gravi ty coast.  A l l  of 
the Centaur s y s t ~ m s  performed s a t i s f a c t o r i l y ,  the design parameters f o r  
zero gravity coasting were ver i f ied ,  and no s igni f icant  problems were 
encountered. 

The f l i g h t  r e s u l t s  showed t h a t  the propellant locat ion and behavior, 
proaellant heating, and tank pressure r i s e  r a t e s  observed during the  
zero-gravity coasts were l e s s  severe than expected. Consequently, the  
majority of the  propel lants  remained a t  the  tank bottom, the  propellant 
co l lec t ion  times were very shor t ,  and more than 7 hours of coast could 
have been achieved before a tank venting was required. The tank pressuri-  
zation p r io r  t o  the  engine s t a r t s  provided boost pump Net Posi t ive Suction 
Head values well  i n  excess of the  values required. The LO tank pressuri-  
zation was accomplished by a new bubbler method t h a t  greatfy reduced the  
he1 ium us age. 



INTRODUCTION 

The Centaur space vehicle  was o r ig ina l ly  designed a s  an upper s tage  
with the  capabi l i ty  of e i t h e r  a  s ing le  burn o r  two-burn mission p ro f i l e .  
The two-burn p r o f i l e  contained an engine r e s t a r t  sequence following a  
l imited period of low gravivy o r b i t a l  coast .  The Centaur LH2 tank 
s idewal l  was uninsulated and resu l ted  i n  high sidewall  heat ing r a t e s  
t h a t  increased the  ul lage pressure  and necessi ta ted a tank vent a few 
minutes a f t e r  t he  s t a r t  of a  space coast ,  and operat ional ly  a  continuous 
venting of t he  tank t h e r e a f t e r  (Ref. 1). Conseyuently, a  continuous low 
l e v e l  of t h r u s t  was required t o  maintain the LH2 i n  a  s e t t l e d  condition 
a t  t he  t a ~ k  bottom. This t h r u s t  was provided by two 3-pound H 0  a x i a l  
t h rus t e r s .  However, the  la rge  H 0  usage r e s u l t i n g  from the  c&dinuous 
a p p l i c a t i , ~ ~  of these t h rus t e r s ,  an8 the  la rge  hydrogen boi lof f  l o s se s  
from the  s idewal l  heating,  resu l ted  i n  a  p r a c t i c a l  l i m i t  of l e s s  than 
one hour f o r  a  Centaur space coast .  

I n  order t o  increase the Centaur space coast  duration and performance, 
the  Centaur was modified t o  enable it t o  pe~*Corm a  zero grav i ty  coast .  
There were s ix  major modif i cs t ions :  

The addi t ion  of a  three-layered aluminized mylar, r ad i a t ion  
sh ie ld  t o  t he  LH tank t o  reduce the  sidewall  heat ing r a t e  
from 28,000 B T U , ~ ~ .  t o  l e s s  than 500 B T U h r .  

The incorporation of a  tank vent cont ro l  system t o  permit the  
propel lant  tanks t o  be vented only w h ~ n  required.  

The f i r i n g  of HZOZ a x i a l  t h r u s t e r s  only t o  c o l l e c t  t he  prope l lan ts  ! 

pr io r  t o  a  tcink vent or  ergine r e s t a r t .  

The addi t ion  of purges t o  maintain c e r t a i n  l i n e s  and components 
f r e e  of l i qu id .  

0 The incorporation of a  180 thermal r o l l  every 28 minutes t o  
provide unizorm heat ing cF the  vehicle  throughodt the  long 
coast .  

The rev is ion  of the  propel lant  tank pressur iza t ion  techniques 
t o  reduce pressurant consumption while s t i l l  insur ing s u f f i c i e n t  
Net Pos i t ive  Suction Head (NPSH) t o r  the  Centaur boost pumps. 



The adequacy of these modifications, and the  f l i g h t  ve r i f i ca t ion  of the  
Centaur zero gravity coast capabi l i ty ,  was t o  be demonstrated by spec ia l  
experiments and eugine s t a r t s  during an extended mission of the TC-2 
f l i g h t  following spacecraft  separation. The TC-2 f l i g h t  r e s u l t s  p r io r  
t o  spacecraft  separation are  presented i n  reference 2. 

The pert inent  data  obtained from the TC-2 extended missim is u&d herein 
t o  describe three primary area? a s  they r e l a t e  t o  and demonstrate the 
Centeur zero gravi ty coast c a p a ~ i l i t y .  These areas  are: 

1. The propellant behavior and locat ion within the tanks throughout 
the  zero gravi ty coast.  

2. The propellant tank heating r a t e s  and pressure h i s to r i e s .  

3 .  The propellant NPSH behavior and helium usages during tank 
pressurizat ion p r io r  ro an engine s t a r t .  



TC-2 Extended Mission Description 

The extended mission p r o f i l e  planned f o r  t he  TC-2 f l i g h t ,  following 
spscecraf t  separat ion comprised two major experiments. The f i r s t  
experiment was an engine r e s t a r t  following a one-hour zero g coas t ,  
And the second experiment was an engine r e s t a r t  following a three-hour 
zero g coast .  Both experiments were designed t o  demonstrate t h e  centaur  
zero g coas t ing  capab i l i t y  f o r  d i r e c t  appl icat ion t o  f , l ture missions; 
and i n  pa r t i cu l a r  synchronous orbi-t missions requir ing a long dura,tion 
zero grav i ty  coast .  Approximately 17% of t he  Centaur prope l lan ts  were 
ava i lab le  a t  spacecraf t  separat ion t o  perform t h i s  extended mission. 

The f i r s t  experiment i n  t h i s  extended mission s t a r t e d  a t  spacecraf t  
separation. The Centaur s tage  was backed away from the  spacecraf t  by 
a r e t ro th rus t  obtained from the blowdown of a helium s torage bo t t l e .  
This b o t t l e  blowdown provided an average th rus t  of 38 pounds (300 pounds 
decaying t o  one pound) f o r  a period of 18 seconds. Following the  
r e t ro th rus t  manuever and throughout the  ensuing zero grav i ty  coast ,  t he  
Centaur propel lants  were permitted t o  move f r ee ly  i n  t he  tanks.  

A t  the completion of one hour zero gravi ty  coast ,  t h e  following sequence 
of events was i n i t i a t e d  t o  pos i t ion  the prope l lan ts ,  pressur ize  the  tanks,  
s t a r t  t he  boost y a p s ,  and c h i l l  down the engines and propel lant  ducts 
f o r  the  main engine r e s t a r t  #3 (MES-3): 

MES 3-420 sec. - f i r e  two 6-pound H 0 t h r u s t e r s  f o r  300 seconds 
t o  c o l l e c t  p r o p e d n $ s .  

MES -120 sec. - f i r e  two addi t iona l  6 -  pound H202 th rus t e r s ,  and 
enable tank vent i f  required. 

MES -43 sec. - pressur ize  LH2 and LO2 tank. 

M U  -28 sec.  - s t a r t  boost pumps. 

MES -17 sec.  - s t a r t  chilldown (p ixs t a r t ) .  

M E S  O sec. - main engine s t a r t  #3 .  

These cvents were t o  culminate i n  an engine s t a r t  and f i r i n g  f o r  11 
seconds. 

The s a x n d  extended mission experiment, designed t o  obtain  Centaur thermal 
control  and propel lant  management data f o r  a long duration zero gravi ty  
coast  i n  ordcr t o  demonstrate the Centaur capab i l i t y  f o r  a coast  t o  
synchronous o r b i t ,  s t a r t e d  a t  main engine cutoff  #3  (MECO-3). This zero 
gravi ty  coast  was programmed f o r  3 hours and the  prope l lan ts  were again 
permitted t o  move f r ee ly  about i n  the tanks. 



During t h i s  second coast,  the Centaur was programmed t o  perform a 180' 
r o l l  every 28 minutes, a  10-second f i r i n g  of the four H O2 a x i a l  
t h rus t e r s  every 5 0 minutes f o r  thermal conditioning of Zhese th rus t e r s ,  
and a  vent sequence a t  145 minutes in to  the coast t o  demonstrate the  
~ a n k  venting technique. A t  the end of the coast the same propellant 
co l lec t ion ,  tank vent and pressurization, and engine s t a r t  sequencing 
were used as  a f t e r  the one-hour zero gravi ty coast. Exceptions, however, 
were t h a t  the  engine chilldown time was extended t o  24 seconds and the  
tank pressurizat ion l eve l s  were reduced. A t  the end of t h i s  sequence 
the engines were t o  be s t a r t e d  and f i r ed  u n t i l  terminated by a  weight cutoff .  

Pref l ight  Predictions 

1. Propellant Behavior: 

Pr jor  t o  the  TC-2 f l i g h t ,  drop tower t e s t s  and analyses were 
performed t o  determine propellant co l lec t ion  timcs. (The col lec t ion  
time i s  defined a s  the  time t o  co l l ec t  or  posi t ion a l l  of the l iquid t o  
within 0.1 tank diameter of the high Bond Number, s t a t i c ,  interface.)  
(Refs. 3,  4).  These determinations were based on-assuming the  worst 
possible propellant locat ions,  with a l l  of the l!quid a t  t he  forward end 
of the tank p r io r  t o  col lect ion,  a s  shown i n  f i g c l r ~  1. I n  the l iqu id  
oxygen (LO2) tank the th rus t  b a r r e l  was assumed t o  be i n i t i a l l y  empty. 

The propellant behavior during col lec t ion  was shown by drop tower 
t e s t i n g  t o  be vFry turbulent,  especial ly  i n  the LH2 tank configuration. 
This turbulence resul ted i n  the generation of large bubbles a t  the tank 
bottom. A t yp ica l  example of a  complete propellant co l lec t ion  f o r  LH 
i s  shown by the simulation i n  f igure  2. The LO2 col lec t ion  t h e ,  2 

including LO2 tank th rus t  b a r r e l  f i l l i n g ,  was found by drop tower t e s t s  
t o  be s i g n i f x a n t l y  l e s s  than the LH2 c o l l w t i o n  time. For the  TC-2 
f l i g h t  conditions,  the  LO2 col lec t ion  time would be l e s s  than half as  
long a s  f o r  the LH2 col lect ion.  

The required propellant co l lec t ion  time based on LH;, conditions a s  
scaled from drop tower t e s t ing ,  a t  the  TC-2 LH2 tank l iqu id  loading and 
Bond Number of 990 (assuming two 6-pound H 0  ax ia l  t h rus t e r s  f i r i n g ) ,  
i s  110 seconds. This time increases t o  15z Seconds i f  a  one H 0 th rus t e r  
f a i l e d  condition i s  assumed. The ac tua l  times selected f o r  pr8p$llant 
co l lec t ion  fo r  the TC-2 extended mission were 180 seconds f o r  a  co l lec t ion  
p r io r  t o  a  vent sequence, and 300 seconds fo r  a  propellant co l lec t ion  
preceding an engine s t a r t  sequelice. 

During venting, two addi t iona l  6-pound H202 th rus t e r s  a re  f i r e d  t o  
increase the  accelerat ion while venting. Drop tower t e s t i n g  had shown 
(Ref. 5) t h a t  a t  t h i s  accelerat ion,  a r  the Centaur LH2 tank vent r a t e s  



f o r  s a tu r a t ed  vapor, t h e  l i qu id  bulk would not  move toward t h e  vent. 
Af t e r  t he  vent  period p r i o r  t o  an engine s t a r t ,  53 seconds was provided 
f o r  t h e  bubbles generated dur ing p rope l lan t  c o l l e c t i o n  and ven t ing  t o  
r i s e  away from the  tank bottom before t h ~  s t a r t  of tank p r e s su r i z a t i on .  
A bar  cha r t  of these  event t imes i s  shown i n  f i g u r e  3.  

A l l  of t h e  s e l ec t ed  times were we l l  i n  excess of  t h e  t imes determined 
from drop tower t e s t i n g  i n  order  t o  provide a  margin t o  cover any uncer- 
t a i n t i e s  i n  s c a l i n g  of t he  drop tower t e s t  r e s u l t s .  For f u t u r e  mission 
app l i c a t i ons  it was expected t h a t  t h e  p rope l lan t  c o l l e c t i o n  t imes,  based 
on TC-2 f l i g h t  experience,  could be g r e a t l y  reduced. 

2 .  PropeXant  Tank Heatinp: 

P r e f l i g h t  thermal analyses  of t h e  p rope l lan t  tanks had est imated the  
maximum ne t  LH t ank  hea t ing  r a t e  a t  about 3000 BTU/Hr. and a  maximum ne t  2  LO2 tank heat ing r a t e  of about 2000  BTUMr. f o r  t h e  ze ro  g r av i t y  coas ts .  
The primary va r i ab l e  a f f e c t i n g  t h e  determination of t h e  t ank  hea t ing  
r a t e s ,  and t he  corresponding tank pressure  r i s e  r a t e s ,  is  t h e  p rope l lan t  
loca t ion .  The worst case  p rope i lan t  l o c a t i o m  f o r  t h e  maximum tank pressure  
r i s e  r a t e s  a r e  t h e  samc a s  shown i n  f i g u r e  1, ~ 5 t h  t h e  p rope l l an t s  forward 
and dry w a l l s  a f t .  The maximum predic ted p ressure  r i s e  r a t e s  were 3 .6  
p s i h - .  and 4 . 3  p s i h r .  f o r  t he  LH2 tank  and LO2 tank respec t ive ly .  These 
worst case  p ressure  r i s e  r a t e s  were w e l l  w i th in  t he  Centaur opera t iona l  
s u i t a b i l i t y  f o r  a  ze ro  grav:'.ty coas t ,  s i ncc  over 3 hours of 'coast  could be 
achieved before  t h e  upper tank pressure  l i m i t s  would be reached and a  tank 
vent ing sequence would be required.  The vent  sequence i n i t i a t i o n  p ressures  
(se lected t o  be conservat ive  wi th  respect  t o  t he  upper tank p ressure  l i m i t s )  
f o r  t h e  TC-2 extended mission were 2 7 . 5  p s i a  and 4 2 . 0  p s i a  f o r  t he  LH2 
tank and LO2 tank respec t ive ly .  

3 .  Tank Pressur iza t ion :  

There were t h r e e  primary concerns wi th  tank p r e s su r i z a t i on  a f t e r  a  
ze ro  g r av i t y  coas t :  

1. The tank bottom and sump a r ea  may be f i l l e d  wi th  bubbles which 
co l lapse  when t h e  tanks  a r e  pressur ized t o  l o c a l l y  inc rease  t he  
s a t u r a t i o n  temperature of t h e  p rope l lan t .  

2 .  I f  t he  LH2 i s  not  properly s e t t l e d ,  t h e  helium required t o  
p r e s su r i z e  t h e  tank may g r e a t l y  increase  due t o  u l l age  c h i l l i n g .  
I n  t he  LH2 tank a  new helium energy d i s s i p a t o r  was provided a t  
t he  pressurant  i n l e t  t o  reduce the  incoming helium flow ve loc i ty .  
Th is  new d i s s i p a t o r  was required because of t he  c l o s c r  proximity 
of t h e  l i q u i d  sur face ,  and t he  lower a cce l e r a t i on  l e v e l s  t h a t  
can e x i s t  dur ing p ressur iza t ion  of a  T i t a d c e n t a u r  LH tank. 2 



I n  the LO tank a  new method of pressurizat ion was used. In  
t h i s  rnethgd, helium is injected beneath the surface of the  LO 
through a  perforated tube (bubbler) i n  order t o  vaporize oxyg6n 
and thus grea t ly  reduce the helium required. While extensive 
ground t e s t i n g  of t h i s  method of pressurizat ion was used t o  
determine the bubbler performance (Refs. 6 t o  a) ,  there  were 
s t i l l  some uncer ta in t ies  of how the bubbler would perform under 
low gravi ty conditions, especial ly  f o r  the TC-2 f l i g h t  application. 
On TC-2 t he  LO l iquid l e v e l  a f t e r  a  propellant co l lec t ion  would 
be only 3.25 i i ches  above the  bubbler f o r  MES 4. This low l iquid  
l e v e l  above the bubbler could r e s u l t  i n  helium j e t  penetration 
i n t o  the  ul lage,  o r  bubble frothing around the tube, which would 
grea t ly  reduce the bubbler effectiveness.  

The pref l ight  predicted helium usages, based primarily on ground t e s t  
r e s u l t s  (Ref. 6)  a re  l i s t e d  i n  the following Table: 

TABLE 1 

Fl ipht  Sequence 

Pref l ight  Helium Usage Predictions 

Helium Usage - Pounds 
LH2 Tcnk LO2 Tank 

Pre-MES 2 (After a  Set t led Coast) 0.81 + .08 .0!3 2 .03 
Pre-KES 3 (After 1 Hour Zero g Coast) 2.41 + .25 .65 t .21 
Pre-MES 4 (After 3 Hour Zero g Coast) .91 5 .16 .48 2 .08 

The dispersions i n  the predicted helium usages r e s u l t  primarily from 
the dispersions with the  tank pressure increase and deadband control.  
The pressurizat ion control  system was programmed t o  provide a t  ic>as t  a  
3 p s i  tank pressure increase f o r  both tanks f o r  pre-MES 2 and pre-MES 3 
pressurizations.  This selected pressure increase was well  i n  excess of 
the boost pump NPSB requirements of C.l psid and 0.8 psid,  f o r  the LHZ 
and M pumps respectively,  i n  order t o  cover the uncer ta in t ies  associated 
with t i e  propellant sa tura t ion  temperature. 

For pre-MES 4 pressurizat ion the tank pressure increases were considerably 
reduced. The time avai lable  f o r  pressurizat ion was shortened so tha t  the  
pressurizat ion NPSH margins could be evaluated. 



TC-2 EXTENDED MISSION RESULTS 

The experiments performed during the  TC-2 extended mission were accomplished 
a s  planned. Two successful  engine r e s t a r t s  were performed and the  r e s u l t s  
of the  zero gravi ty  coast ing compared favorably with the  prcClight 
predict ions .  The spec i f i c  r e s u l t s  of the  TC-2 extended misAon a re  a s  
follows : 

1. Propellant Behavior. One Hour Zero Gravitv Coast: 

The Centaur LH2 tank had 12 liquid-vapor sensors t o  monitor t he  pos i t ion  
of t he  l i qu id  throughout the  zero grav i ty  coasts .  The loca t ion  of these 
sensors i s  shown i n  f igure  4. The sensors a r e  s imi l a r  i n  construct ion t o  
those described i n  r e f .  8. There were no l iquid-vapor sensors i n  the LO2 
tanks,  so the  loca t ion  of the  l iqu id  i n  t h i s  tank had t o  be in fe r red  from 
tank pressure behavior, p r e f l i g h t  analysis ,  and drop tower t e s t  r e s u l t s .  

The LHZ motion a t  MECO 2 may be obtained from the  LH2 liquid-vapor 
sensor ac t iva t ion  times a s  shown i n  f igure  5. The successive wet indicat ions  
a f t e r  MECO of CM251X, CM252X, CM248X, CM247X, CM319X, and Ckf2Ul-X ind ica te  
t h a t  LH had progressively flowed up the  tank wal ls  and had reached the 
tnp of $he tank a t  t he  s t a r t  of the  r e t r o t h r u s t  a t  MECO-2 + 72 seconds. 
This flow probably resu l ted  from s losh  amplif icat ion a t  MECO and the  boost 
pump deadhead r e tu rn  flow t h a t  occurs during the  boost pump sp in  down 
a f t e r  MECO (see Ref. 2).  

A t  the  s t a r t  of the  r e t ro th rus t  period the  two bottom sensors CM255X 
and CM256X went dry, and the  sensor CM242X a t  the  top  center  of the tank 
went wet, ind ica t ing  t h a t  the  r e t r o t h r u s t  had resu l ted  i n  producing rapid 
flow away from the tank wal l s  and i n t o  a column flow up the  cen te r  ax i s  of 
t he  tank. This type of behavior and flow pa t t e rn  has been observed i n  drop 
tower t e s t s  (unpublished) f o r  high Bond Number reor ien ta t ion .  An example 
of t h i s  behavior is  shown i n  the drop tower t e s t  photo i n  f igure  68. After  
t he  column flow impacted the  top of t he  tank it apparently rec i rcu la ted  
back down along the wal l s  t o  the  tank bottom. Sensor CM242X remained ve t  
f o r  only about 120 seconds, then it went dry f o r  the  remainder of the  zero 
grav i ty  coast .  Sensors CM255X ano CM256X returned t o  a so l id  wet indicat ion 
within 120 seconds a f t e r  the  s t a r t  of the r e t ro th rus t .  Even with the 
extremely high negative Bond Numbers (greater  than 20,000) provided by 
t h e  r e t r o t h r u s t  t he  majority of the  LH2 s t i l l  wound up a t  the  tank bottom 
a s  a r e s u l t  of the  recirculat ion.  

I n  the  LO2 tank, the LO th rus t  b a r r e l  was completely covered a t  MECO 2. 
The r e t r o t h r u s t  was s u f f i c i a n t  t o  dra in  about 2077 of the t h rus t  ba r r e l  
volume (assuming t h a t  the  bottom holes of the  t h r u s t  b a r r e l  were i n s t an t ly  
exposed), and t o  flow most of the  !.iquid around the  th rus t  b a r r e l  toward 
the  top of t he  tank. An example of the  assumed LO2 behavior during r e t ro th rus t  



is shown i n  the drop tower t e s t  photo i n  f i gu re  6B (unpubl bled). ?.Fter 
the  r e t r o t h r u s t  period the  prope l lan ts  f loa ted  f r ee ly  f o r  .&out 31!:;. 
seconds u n t i l  the  s t a r t  of the  propel lant  co l l ec t ion  f o r  the  t h i r d  engine 
s t a r t  sequence. During t h i s  time the  LH2 and LO2 schieved a steady s t a t e  
l oca t ion  i n  the  tanks. 

A schematic of the  probable loca t ion  of the  LH a t  t he  s t a r t  of the  
propel lant  co l l ec t ion  is shown i n  f igure  7. This $igure presents  a  
folded view of the  liquid-vapor sensor loca t ions  t o  show t h e i r  respect ive 
dis tances  from t h e  tank wall .  The liquid-vapor sensor act ivat5ons a t  t h i s  
time a r e  shown a s  pa r t  of f i gu re  8. Since sensor CM242X is  dry, and 
CM2Ul.X is wet, the  ac tua l  i n t e r f ace  a t  t he  top of the tank must be located 
somewhere between the  two sensors. The maximum quant i ty  of LH i n  t h i s  
locat ion,  wh3le maintaining the  required spher ica l  shaped integface,  i s  
about 70 f t .  . A t  t h e  bottom of t he  tank, sensors CM251X, CM252X, CM253X, 
and CM254X were o s c i l l a t i n g  between wet and dry thus  ind ica t ing  t h a t  the 
liquid-vapor in te r face  was c lose  t o  these sensors. The crevice a t  the  
tank bottom apparently r e t a i n s  the  l i qu id  i n  a  la rge  f i l l e t  shape. 
Unpublished drop tower t e s t  da ta  have shown t h a t  t h i s  crevice r e t a i n s  a  
small quant i ty  of l i qu id ,  even under small  negative accelerat ions .  

The s t a b i l i t y  c r i t e r i a  f o r  t h i s  a t t r a c t i o n  is not f u l l y  understood. 
Since the Bond Number is near  zero a t  t h i s  time the  in te r face  must be 
spher ica l .  The minimum amount of LH2 i n  the cgevice t o  produce a  spher ica l  
f i l l e t  t o  contact  the  sensors i s  about 170 f t .  . It i s  a l s o  reasonable 
t o  assume t h a t  a  small f i l l e t  of  L,HZ c l ings  t o  the  forward s lo sh  b a f f l e  
a s  shown i n  f igure  7. The maximum amount of LH$ i n  t h i s  locat ion,  
assuming a  spher ica l  i n t e r f ace  is about 10  f t ,  . The th ree  l i q u i d  
loca t ions  shown i n  f igure  7  account f o r  nearly a l l  of t he  l i qu id  present 
i n  the  tank. The LH2 l i q u i d  loca t ion  configuration shown i n  f i gu re  7 i s  
considerably d i f f e r en t  t h a t  the  worst case loca t ions  {f igure  1) assumed 
i n  determining the  propel lant  co l l ec t ion  t i m e .  

I n  t he  LO2 tank the  probable l i qu td  loca t ion  p r i o r  t o  co l l ec t ion  is  
shown i n  f igure  9. The LO2 t h a t  flowed forward during the  r e t r o t h r u s t  
must seek the  minimum tank radius ,  along the tank wal l ,  i n  the absence 
of drag forces.  This configurat ion i s  based on analysss in  Ref. gland, 
i s  cons is ten t  with t he  tank h e a t h g  r a t e s  and pressure  r i s e  r a t e s  observed 
f3ee propel lant  heat ing sect ion) .  Note t h a t  a  small f i l l e t  of LO2 i s  
assumed t o  remain a t  the  top  of t he  tank t o  cover the  LO2 tank standpipe 
entrance. 

A spher ica l  bubble i s  shown ins ide  the t h rus t  bar re l .  However, 
depending on how mudl l i q u i d  drained out of t he  b a r r e l  during r e t ro th rus t ,  
an e l l i p t i c a l  bubble could ex i s t .  A large f i l l e t  of LO2 is reta ined i n  
the  crevice between the tank and the  th rus t  b a r r e l  i n  much the same manner 
a s  maintained i n  t he  LH tank crevice.  Here again, fo r  the LO . 
configuration,  t h ~  liqu!?d loca t ions  a r e  considerably l e s s  sevege than the  
worst case loca t iov  , shown i n  f igure  1, f o r  the  p re f l i gh t  analyses. 



During the  propel lant  co l l ec t ion  peiliod, two 6-pound H 0 a x i a l  
t h rus t e r s  a r e  f i r e d  providing a  Bond Number of 990 and 2416 $n the  LH2 
tank and LO2 tank respect ively.  A s  shown by the  sensor ac t iva t ion  
sequence i n  f i gu re  8, the  LH was col lected i n  about 40 secor~ds, and 
the  l i qu id  motion was reduce8 t o  low l e v e l  s lo sh  ( l e s s  than 10-inch 
s lo sh  amplitude, below sensors  CM251X and CM252X) i:- about 140 seconds. 

A l l  of the  LH during co l l ec t ion  apparently did not flow down the  
tank walls. A s  igdicated by the  ac t iva t ion  of sensor (M242X i n  the  tank 
cen te r  which went wet f o r  8  seconds, a col~unn flow i s  evident down the  
tank center l ine .  This type of flow during a  co l l ec t ion  was a l s o  obs2rved 
i n  some drop tower t e s t s  (Ref. 3). Because of t h i s  column flow, and the 
small  quant i ty  of l i q u i d  a t  t he  top  of the  tank, the  co l l ec t ion  time was 
only 40 seconds i n  comparison with the  300 seconds provided f o r  co l lec t ion ,  
and the 110 seconds determined f o r  the  worst case. The addi t iona l  time 
allowed f o r  co l lec t ion ,  however, did r e s u l t  i n  reducing LH s losh,  and the  
l iquid-vapor i n t e r f ace  l eve l ,  by providing t i m p  f o r  t h e  bugbles generated 
during co l l ec t ion  t o  r i s e  out of t he  l i q u i d  bulk. 

From 140 seconds a f t e r  co l lec t ion ,  th ru  MES 3, only very low l e v e l  
s lo sh  was indicated by the per iodic  ac t ivar ions  of sensors CM25u" and 
CM253X located about 1 inch below thc  s ta t ic?  l i q u i d  surface.  e  were 
no s igns  of splashing, o r  excessive s losh,  Puring the  tank - r i za t ion  
and engine s t a r t  sequences. (There was no tank venting a t  :art of 
the  24-pound t h r u s t  period s ince the  tank pressures  were no . ~ h  enough 
t o  i n i t i a t e  a vent.) The engine s t a r t  (MES 3) t h a t  terminat .. . t h i s  one-hour 
zero gravi ty  coast  was c m p l e t e l y  normal, and it was the  f i r s t  successful  
engine r e s t a r t  f o r  a cryogenic s tage a f t e r  a  zero grav i ty  coast .  

2. Propellant Behavior. Three Hour Zero Gravity Coast: 

The LH2 1iquj.d-vapor sensor ac t iva t ions  a f t e r  MECO 3 are shown i n  
f igure  10. A s  a f t e r  MECO 2, some l i qu id  movcs rapidly up the  tank wall 
a s  shown by the  successive w ~ t  ind ica t ion  of CM253X, CM254X, CM251X, 
CP1247X and CM248X. Since sensors CM319X and CM320X indicated wet a t  
about 8 seconds a f t e r  MECO 3 ,  there  may have been some LH2 splashing, 
possibly a s  a  r e s u l t  of the  LH boost pump sp in  down. The uppermost 
sensor, CM241X, did not indica$e wct u n t i l  1500 seconds a f t e r  WECC 3. 
Since there  was no r e t r o t h r u s t  a f t e r  MECO 3, there  was no negative 
acce le ra t ion  t o  quickly re loca te  l a rge  amounts of LH2 t o  the forward 
end of the  tank a s  occurred a f t e r  MECO 2. 

I n  t he  LO2 tank, t he  i n i t i a l  l i qu id  l e v e l  a t  MECO 3 was about one-inch 
below t h ~  top of the  t h rus t  bar re l .  This condition would r e s u l t  i n  some 
vapor being trapped i n  the bar re l .  



For 8560 seconds a f t e r  MECO 3 the  prope l lan ts  were permitted t o  
f l o a t  f r ee ly  except f o r  two 10-second periods when 4 H 0 a x i a l  
t h rus t e r s  were f i r e d  ?o r  warming (at  MECO 3 + 30C0 s e c 8 d s  and 
MECO 3 + 6000 seconds). During these warming f i r i n g s  t he re  were 
ind ica t ions  of l i qu id  m o t i o ~  along the tank wal is ,  primarily with  
ac t iva t ions  from CM319X an1 2M320X. 

. . 
The probable LH configurat ion a t  MECO 3 + 8560 secoqds i s  shown 

i n  f igure  11. The $onfiguration i s  very s imi la r  t o  the configuration 
shown f o r  the  one hour zero gravi ty  coast  except t h a t  the  osc i l l a2 ing  
wet-dry indicat ions  of sensor CM24lX ind ica tes  t h a t  a rnuch smaller 
quant i ty  of LH2 is a t  the  t op  of the  tank. The amount of LH2 i n  the 
tank crevice i s  a l s o  assumed t o  be the  came s ince the  behavior of the  
bottom sensors was s imilar .  

The LO2 configuration i s  assumed t o  b~ very s imi la r  t o  the configura- 
t i o n  shown i n  f igure  9 except fo r  sbout 1~ ,.t. l e s s  LO2 along the  
tank sidewall. 

A t  8560 seconds the MECO 3, two 6-pound H20Z t h r u s t e r s  were f i r e d  
f o r  180 seconds t o  c o l l e c t  the  propel lants  f o r  a tank. vent demonstration. 
This th rus t ing  provided Bond Numbers of 1075 and 2660 fo r  the  LH tank 
and LO2 tank respect ively.  A s  shown by the  sensor ac t iva t ion  daga presented 
i n  f igure  12, the  LH was again c o l l ~ c t e d  i n  about 40 seconds, and again 
some flow was indicaged down thp tank cen te r l i ne  by sensor CM242X. 

Following the  co l lec t ion ,  the  LH2 an2 LO tanks were enabled t o  2 - vent f o r  40 seconds. The LH2 remained i n  a s t a b l e ,  low l e v e l  s losh  
mode, throughout the  vent period, and the re  was no ind ica t ion  of LH 
splashing or  :orward kulk motion. The LO tank was a l so  vented a t  e h i s  
time, and no l i qu id  entrainment was i n d i c i t t d  by the  LO vent system 2 instrumentation. The propel lant  co l l ec t ion  and vent sequence demon- 
s t r a t i o n  was successful  wi th  no apparent anomalies. 

The LH b ~ h a v i o r  a f t e r  the  cornant' vent t h rus t ing  i s  a l s o  shown 
i n  f igure  $2. Again, the successive wet ind ica t ions  of CM252X, CE!247X, 
CM248X and CM251X show t h a t  LH2 is moving slowly up the tank walls.  
The movement, however, i s  much slower than the movement obszrved a f t e r  
MECO 2 and HECO 3 which was affected by the engine shutdown and boost 
pump spin down disturbances. Surpr is ingly,  sensor CM241X a t  the  top 
of the tallk goes so l id ly  wet a t  140 secocds a f t w  th rus t  t e r m i n ~ t i o n  

. and remains wet f o r  the  remainder of t he  coast .  This w s t  indicat ion,  
although r e a l ,  seems t o  be anomalous since no intermediate sensor 
ac t iva t ion  was observed. A reasoilable explanation of t h i s  wet indicat ion 
i s  t h a t  during the  vent period globules of LH were entrained by the 2 drag of t he  venring vapor breaking from the l l qu id  surface a s  a r e s u l t  
of the bulk boi l ing.  These globules continued t o  migrate, due t o  t . ~ e i r  
own i n e r t i a ,  t o  the  top of t he  tank a f t e r  the  simultaneous vent and 
th rus t  termination, and apparently managed t o  miss sensor CE1242~ along 



the  way. This type of behavior +r ing venting was previously observed 
by a TV camera during the  second vent sequence of t he  SIVB AS203 f l i g h t ,  
a s  reported qn re f .  1" However, f o r  t h i s  explanation t o  hold, approxi- 
mately 9 f t .  of LH would have had t o  be entrained i n  t h e  vent flow. 2 

After  the  command vent t h e  prope l lan ts  again f l oa t ed  f r ee ly  f o r  t h e  
next 1590 secunds. The prope l lan ts  appeared t o  assume t h e  same 
configuration a s  p r i o r  t o  the  commanded vent. 

The LH2 liquid-vapor sensor ac t iva t ions  p r i o r  t o  and during the  
pre-MFS 4 propel lant  co l l ec t ion  period a r e  shown i n  f i gu re  13. The 
LH2 flow during c c l l e c t i o n  was very s imi la r  t o  t he  flow observed during 
the two previous propel lant  co l l ec t ion  p e r i ~ d s .  Both wal l  flow and 
cen te r l ine  flow were observed, and the co l l ec t ion  time was about 37 
seconds, wel l  wi thin t he  300-second time period provided. Low l e v e l  
s losh was indicated throughout the subsequent tank venting, tank 
pressur:zation, and main engine s t a r t  sequence. The ergine s t a r t  (MES 4) 
t h a t  followed t h i s  3-hour zero grav i ty  coast  was s u c c e s s ~ u l  and normal. 

Throughout the  e n t i r e  one-hour and three-hour zero grav i ty  coasts ,  
the  majority of the  propel lants  were re ta ined a t  t he  tank bottom and 
sump areas.  The LH2 tank crevice,  and LO2 tank t h r u s t  b a r r e l  and 
crevice,  appear t o  a c t  a s  propel lant  a c q u x i t i o n  devices i n  ma'mtaining 
l i q u i d  a t  the  proper tank loca t ions  f o r  an engine s t a r t  attempt. It is 
believed t h a t  t h i s  behavior is  normal f o r  a Centaur zero gravi ty  coast  
where no l a rge  d r a g  forces  a r e  ac t ing  on the vehicle  f o r  long perious of 
t ime . 
3. Propellant Heating and Tank Pressure Rise Rates: 

During both the one-hour and three-hour zero grav i ty  coasts ,  t h e  
Centaur vehicle was sxposed t o  f u l l  broadside heat ing from theosun. 

T p  longi tudinal  cone angle with respect  t o  t h e  sun was between 95 and 75 
throughout most of coast  time. These cone angles produced maximum 
space heating f o r  the  LH;, tank, and near maximum heat ing f o r  the  LO tank. 2 

The LO2 and LH2 tank pressure h i s t o r i e s  during the one-hour zero 
gravi ty  coast  a r e  presented i n  f igure  1 4 .  The tank pressure increase,  
from XECO 2 + 100 seconds t o  the  s t a r t  of tank pressur iza t ion  a t  MECO 2 + 
3180 seconds was only 1.3 p s i  f o r  the  LH2 tank and 1.6 p s i  f o r  the  LO2 
tank. The one-hour coast  was accomplished without t he  need t o  vent 
t he  tanks. A t  the  observed average tmk pressure r i s e  r a t e s  of 0.026 
p s i h i n .  fo r  the  LH2 tank, and 0.031 p s i h i n .  f o r  the  LO tank, a tank 
vent sequence would not have been i n i t i a t e d  u n t i l  more taan  7 hours 
a f t e r  MECO 2. These tank pressure r i s e  r a t e s  were much l e s s  than the  
worst case p re f l i gh t  predicted r a t e s ,  primarily a s  a r e s u l t  of the  l e s s  
severe propellant loca t ions  i n  t h e  tanks which prevented s ign i f i can t  
heat ing d i r ec t ly  t o  the  tank ul lage.  



The sharp increase i n  tank pressure t h a t  occurred a t  MECO 2 is 
primarily due t o  the  of energy from the  propellant a t  engine 
shutdown. A t  main engine th rus t  termination head pressure i s  l o s t ,  
and propellant is  vaporized a s  it attempts t o  come in to  equilibrium 
with the  ul lage pressure. This post-MECO pressure behavior has a l s o  
been observed during s e t t l e d  coasts  (Ref. 21, 

i 

A t  the s t a r t  c f  the propellant co l lec t ion  period f o r  the  programed 
vent sequence there is a small decrease i n  the LH tank pr t ssure  (0.1 psi)  
and LO2 tank pressure (0.2 psi)  which indica tes  tAat some s l i g h t  super- 
heat had acc-mulated i n  the ullage during the coast.  For a l l  p r a c t i c a l  5 

puposes ,  it can-be assumed t h a t  the l iqu id  absorbed a l l  of the  incoming 
heat t o  the tanks during the coast. 

Part  of the observed tank pressure r i s e  during the coast resulted 
from the  e f f e c t s  of the  zero gravi ty helium purges t h a t  discharge in to  
the tanks. I n  the LH2 tank, the e f f ec t  o i  t he  0.048 porud/hr. helium 
purge in to  the l iquid  a t  the top oT the tank, t h ru  the energy d iss ipa tor ,  
contributed about 0.06 p s i h r .  t o  the pressure r i s e  ra te .  This cont r i -  
bution can be considered negligible.  I n  the  LO2 tank, however, t he  e f f e c t  
of the  helium purge can be s igni f icant  i f  the purge bubbles th ru  l iquid .  
For the  LO2 l iqu id  locat ions shown i n  f igure  9 ,  the 0.0422 poundfir. 
purgz through the standpipe, and the 0.0134 poundhr.  purge through the  
bubbler can bubble i n t o  l iquid .  This bubbling w i l l  vaporize oxygen, a s  
it does during LO2 tank pressurizat ion,  and can contr ibute  a s  much a s  
1.2 p s i h r .  t o  the  tank pressure r i s e  ra te .  This contr ibut ion is about 
7% of the average pressure r i s e  r a t e  observed during the one-hour coast. 
I f  only the p a r t i a l  pressure of the  helium purge is taken i n t o  account, 
the  r e su l t ing  pressure r i s e  contribution reduces from 1 . 2  t o  0.1 p s i h r .  

The tank pressure h i s t o r i e s  during the 3-hour zero gravi ty coast a re  
presented i n  f i g ~ r e  15. The tank pressure increase, from MECO 3 + 100 
seconds t o  the s t a r t  of the propellant co l lec t ion  f o r  the  command vent a t  
MECO 3 + 8560 seconds, was 2.5 p s i  for  the  LH2 tank and 2.0 p s i  f o r  the  
LO2 tank. The periodic thermal r o l l  maneuvers and H 0 a x i a l  t h rus t e r  
warming f i r ings ,  which occurred during Lhe coast serge8 t o  depress the 
tank prcssure r i s e  r a t e  by mixing the l iqu id  and ullage, o r  by spreading 
the  l iquid  out t o  provide large surface areas  f o r  cooling the  ullage 
by conduction. The r o l l  maneuvers and th rus t e r  f i r i n g s  reduced the 
accumulated superheat a s  shown by the s l i g h t  pressure dips or level ings 
i n  f igure 15. The r e su l t ing  overa l l  pressure r i s e  i n  the  LH2 tank was 
very close t o  the r i s e  expected f o r  themod-marnic equilibrium conditions. 
The LH2 sa tura t ion  pressure corresponding t o  the  temperature indicated 
by the sump temperature probe (CP32T) followed the  ul lage pressure very 
closely.  The net LH tank heating r a t e ,  as  calculated by assuming 
thermodynamic equilif;rium conditions i n  the tank with a l l  of heat input 
going in to  the l iquid ,  was determined t o  be 1970 BTU/fir. 



I n  the  LO2 tank pa r t  of the  pressure r i s e  is produced by the  helium 
purges and, a s  a r e s u l t ,  the  sa tura t ion  pressure of the  l iquid  bulk is 
d i f f i c u l t  t o  determine. A maximum conservative estimate of the  LO2 tank 
heating r a t e  can be calculated by assuming t h a t  none of the  purges 
passes through l iquid ,  and t h a t  the e n t i r e  tank pressure r i s e  r e s u l t s  
from the  propellant sa tura t ion  pressure increase. Based on t h i s  
assumption, the LO2 tank ne t  heating r a t e  i s  1670 BTUMr. 

The net heating r a t e s  t o  e i t h e r  propel lant  tank a r e  qu i t e  low, and 
within the p re f l igh t  predictions.  These net  heating r a t e s  include the  
heating across the  common bulkhead. The low LH2 tank heating r a t e  did 
ver i fy  tha t  the new LIi tank sidewall, 3 layer,  rad ia t ion  shield had 
perfgmsd sat i8factor i&.  (The outer sh ie ld  temperatures varied from 
+lo0 F t o  -200 F a s  the  sun cycled from one s ide of the vehicle t o  the  
other.) 

4. Vehicle Thermal Roll: 

The 180°, 90-second, thermal r o l l  maneuver performed every 28 minutes 
throughout the 3-hour zero gravi ty coast was generally sa t i s f ac to ry  i n  
providing uniform heating of the Centaur propel lant  t a n k ~ , ~ a n d  forward and 
a f t  components. However, a s  a r e s u l t  of t h i s  selected 180 r o l l ,  and 
since the vehicle was moving radial11 out from the  ear th,  the  same 
components would a r r ive  a t  the  same pos i t ion  with respect t o  the  sun, 
a f t e r  every other r o l l .  Consequently, c e r t a i  components continually 
increased i n  temperature during the coast.  An example of t h i s  temperature 
behavior i s  shown i n  f igure  16, f o r  the  Centaur S band t ransmit ter .  A s  
shown i n  t h i s  f igure,  the t ransmit ter  tempgrature had cyc l ica l ly  increased 
t o  near i t s  upper temperature l i m i t  of 176 F by MECO 4. I n  order t o  avoid 
t h i s  type of temperature behavior f o r  fu ture  missions, a d i f f e ren t  thermal 
r o l l  is re~a~imended. Ei ther  a continuous slow r o l l ,  o r  a r o l l  t h a t  
indexes a t  an angle t o  avoid frequent, exact,  r epe t i t i on  of the  sun view 
angle, would be sa t i s fac tory .  

5. Tank Pressurization: 

The LH2 and LO2 tank pressure h i s to r i e s ,  together with the  propellant 
sa tura t ion  pressure h i s to r i e s ,  during the  tank pressurizat ions p r i o r  t o  
M E S  2,  M E S  3, and M E S  4 a re  shown i n  f igures  17, 18, and 19. The 
propellant sa tura t ion  data were obtained from the boost pump i n l e t  
temperature probes located i n  the  tank sumps. A schematic of the probe 
locat ions with respect t o  the boost pumps is shown i n  f igure  20. 

The pert inent  data  from the  3 pressurizat ions a re  summarized i n  the 
following table.  The NPSH l i s t e d  is  the difference between the  tank 
ul lage pressure and the propellant sa tura t ion  pressure as  obtained from 
the f igures .  



TABLE 2 

TC-2 Pre-MES Tank Pressar iza t ion  Data 
I .  

Tank Press. Helium NPSH a t  NPSH a t  NPSH a t  Tank 
i s  Press. Increase,  Required B/P S t ~ r t  P r e s t a r t  Engine S t a r t  Ullgge, 
! - Tank Phase PSID Pounds PSID PSID --- PSID Ft .  

LH2 M E S  2 3.3 0.76 1.8 2.8 3.4 314 

LO2 MES 2 4.0 0.14 0.3 3.2 2.9 8 7  
- 

LH2 HES 3 3.2 2.10 0,7 3.5 3.9 1112 

LO2 MES 3 3.5 0.57 0.5 2.7 2.3 315 

LH2 MES 4 1 .3  1.10 0.0 1.0 1.4 1149 

LO2 MES 4 2.9 0.56 0.0 1.7 2.3 325 

The tank pressur iza t ion  p r i o r  t o  MES 2 followed a  22-minute s e t t l e d  
propel lant  coast .  P r io r  t o  boost pump s t a r t ,  the  propel lant  s a tu ra t ion  
pressure  i n  the  sump i n i t i a l l y  increases  a t  the  same r a t e  a s  t h e  tank 
u l l age  pressure  ( f igure  17). This increase i n  s a tu ra t ion  pressure  is 
a t t r i b u t e d  t o  bubble col lapse and condensation within the  sump volume, and 
i s  t y p i c a l  of the  behavior observed during previous s e t t l e d  coast  missions. 
The vapor is generated during coast  by space heating r o  t he  sumps and 
propel lant  feed l i ne .  I n  t he  LO2 tank the  s a tu ra t ion  temperature begins 
t o  f a l l  immediately a t   boos^ p n p  s t a r t ,  but i n  t he  LH tank t h e r e  is 
c h a r a c t e r i s t i c a l l y  ahout a  four-second delay because o* the  temperature 
probe locat ion.  

After  boost pump s t a r t ,  cool l i q u i d  is drawin i n  from the  tank bulk 
by the  boost pump deadhead operation,  which r e s u l t s  i n  a  decrease of t he  
sump l iqu id  sa tu ra t ion  temperature. By t h e  time of p r e s t a r t ,  t he  propel lant  
s a tu ra t ion  pressures a r e  wel l  below the  tank pressures,  t hus  r e s u l t i n g  i n  
boost pump NPSH values wel l  i n  excess of t he  minimum requirements. 

For the  pre-MES 3 and MES-4 tank pressur iza t ions ,  a f t e r  t he  zero 
grav i ty  coasts ,  t he re  was concern t h a t  the  quant i ty  of vapor i n  t h e  sump, 
a s  a  r e s u l t  of propel lant  movement, may be s ign i f i can t ly  g rea t e r  than 
the t y p i c a l  vapor volume (about 18%) e x i s t i n g  a f t e r  a  s e t t l e d  propel lant  coas t  

, .  I n  addi t ion,  t he re  was concern t h a t  t he  bulk i t s e l f  may contain  vapor 
bubbles a s  a ~ e s u l t  of tank heating,  o r  f-om turbulence during propel lant  
co l lec t ion ,  o r  from bubble generation during the  venting of sa tura ted  vapor. 
These l a rge  quan t i t i e s  of vapor could col lapse and increase the  bulk 
propel lant  s a tu ra t ion  l e v e l s  t o  g rea t ly  a f f e c t  the  boost pump NPSH conditions.  



The behavior of the propt? lan t  sa tura t ion  pressures during the pre-MES 
3 and MES-4 tank p r e s s u r i z a t i o ~ s  was remarkably s imi lar  t o  the  pre-MES-2 

I sa tura t ion  pressure behavior. The sa tura t ion  pressure increased p r i o r  t o  
boost pump s t a r t  a t  the  same r a t e  a s  the  tank pressure ( f igures  18  and 19), 

1 .  and a f t e r  boost pump s t a r t  the  sa tura t ion  pressure decayed i n  the  same 
i 
i 

manner a s  observed during the pre-MES-2 pressurizat ion.  The r e su l t ing  

i . . NPSH values from p r e s t a r t  through MES, f o r  the  pre-MES-3 and MES-LI 
pressurizat ions,  were still wel l  above the  minimum boost pump values 

1 required. For the pre-MES-4 pressurizat ion it should be noted t h a t  t he  
! tank pressurizat ion leve ls  were s igni f icant ly  reduced. 
I 
I The s i m i l a r i t i e s  i n  the  sa tura t ion  pressure behavior compared t o  a 

s e t t l e d  coast condition resul ted from the  sumps remaining f i l l e d  with 
l iqu id  throughout the  e n t i r e  zero gravi ty coast periods. I n  addition, the 
l i q u i d  surrounding the  sump areas  was apparently bubble f r ee  a s  a r e s u l t  
of providing a d e q u a t ~  propellant co l lec t ion  and bubble r i s e  times. Based 
on the  TC-2 f l i g h t  r e su l t s ,  it is apparent t h a t  a s igni f icant  tank pressur i -  
zat ion reduction, from the normal 3.0 psid level ,  can be achieved and 
u t  i l i zcd .  

The helium usages f o r  the  tank pressurizat ions a r e  a l s o  l i s t e d  i n  
Table 2. These usages a re  very close t o  the expected usages presented i n  
Table 1. The new method of pressurizat ion i n  the  LO tank through the  
bubbler proved t a  be very r e l i ab le ,  control lable ,  an8 predictable.  The 
~ u b b l e r  pressurizat ion reduced the  LO2 tank helium usages by a fac tor  
of 4 i n  comparison with d i r e c t  ul lage pressurizat ion,  even f o r  the  
pre-MES-4 pressurizat ion where the  Ma l e v e l  was only 3.25 inches above 
the  bubbler. The LH2 tank helium usages and tank pressurizat ion r i s e  r a t e s  
indicate  t h a t  no l iquid  splashirlg was generated by the  helium flow through 
the  new helium energy d iss ipa tor ,  even f o r  the  pre-MES-2 pressurizat ion 
where the l iquid  l eve l  was within 6 f e e t  of the d iss ipa tor  ex i t .  



CONCLUSIONS 

The r e s u l t s  of the TC-Z extended mission showed t h a t  the propellant 
loca t ion  and behavior, propellant heating, and tank pressure r i s e  r a t e s  
f o r  Centaur zero gravi ty coasting were l e s s  severe than expected. Most 
of the  propel lants  remained a t  the  tank bottoms, r e s d t k i g  i n  propellant 
co l l ec t ion  times much shor te r  than the  worst case p re f l igh t  predictions.  
Most of the  tank heating was absorbed by the  l iquid ,  r e su l t ing  i n  tank 
pressure r i s e  r a t e s  much lower than the  maximum predicted r i s e  ra tes .  
A s igni f icant  port ion of the  LO2 tank pressure r i s e  was produced by the 
tank zero gravity purges. More than 7 hours of zero gravi ty coasting 
could haw been achieved before a tank venting was required. 

The tank pressurizat ion p r i o r  t o  the  engine s t a r t s  provided NPSH values 
well  i n  excess of the  values required. The helium usages f o r  the 
pressurizat ions were i n  good agreement with the p re f l igh t  predictions.  
The LO2 tank pressurizar ion was successfully accomplished hy helium 
injection through a bubbler t h a t  great ly  reduced the  helium usage. 

A l l  of the Centaur systems and design parameters required f o r  zero gravi ty 
coasting, were ver i f ied ,  and no s ign i f i can t  problems were encountered. 
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Figure 5 Liquid  Rydrosn Behavior at  H&CO 2 





Figure 7 Liquid Hydrogen Location Prior t o  
Propellant Se t t l ing  for MES 3 
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Figure 9 Liquid Oxygen Location Prior to 
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Figure 11 Liquid Hydrogen Location Prior t o  Propellant 
Sett l ing for the Command Vent 
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