(NASA -TM-X-73072)	the lagecs system (nasa)		1.76-131
68 P 日C \$4.5C	CsCI 22E		
		G3/18	$\begin{aligned} & \text { Dnclas } \\ & \text { i4892 } \end{aligned}$

This informal documentation medium is used to provide accelerated or special release of technical information to selected users. The contents may not meet NASA formal editing and publication standards, may be revised, or may be incorporated in another publication.

THE LAGEOS SYSTEM

Joseph W. Siry
NASA Headquarters
Office of Applications

Washington, D.C. 20546

[^0]
TABES OP CONHENS

I. Introduction 1
II. The General Hacros Review 3
A. The Orbital Altitude 34
B. The Orbital Inclination 39
III. The LAGEOS Retroreflector Review 41
A. The Retroreflector 41

1. The Retroreflector Diameter 41
2. Coatings 43
3. The Dihedral Angle 43
B. The Retroreflector Array 45
4. The Recess Depth 45
5. The Satellite Diameter
And The Number of Retroreflectors 45
6. Camera Tracking 47
7. Positioning 50
C. Testing and Handling Procedures 50
IV. Further Considerations 51
A. The Orbit 51
8. The Eccentricity 51
9. The Inclination 52
10. The Altitude 53
a. Resonance Effects Associated With a Specific Altitude Region 53
b. General Considerations 53
B. The Satellite Mass 55
C. Attitude Determination 55
V. Acknowledgements 59
VI. Riferences 60

LIST OF FIGURES

Page

1. LAGEOS System Nominal Baseline Parameters 2
2. The General LAGCOS Review, October 11, 1973, Atiendance 4
3. EOPAP Objectives 5
4. Earth and Ocean Physics Application Program 6
5. Measurement Requirements Summary 7
6. Earth Dynamics Experiments 8
7. Systems Capabilities and Milestones 9
8. LAGEOS Program Objectives 10
9. LAGEOS 11
10. Orbit Selection Considerations 12
11. Planned and Possible Laser Sites 13
12. Possible Laser Sites 14
13. San Andreas Fault Experiment 15
14. LAGEDS Mission Objectives 16
15. Mission Objectives 17
16. Factors Influencing Ephemeris Accuracy 18
17. Geopotential Model Brrors 19
18. Surface Force Model Errors 20
19. Radiation Perturbations vs Orbit Altitude 21
20. Magnitudes of Perturbing Forces 22
21 Orbit Parameters 23
21. Error Budget For Range Measurements 24.
22. Satellite Parameters 25
23. LAGEOS Received Signal Levels 26
24. Spherical Segment Retroreflection Area 27
25. Time History of The Echo Signal 28
26. Reflectivity Versus Angle of Incidence 29
27. Beam Pattern at Normal Incidence 30
28. Effective Reflecting of Segments of LAGEOS 31
29. Computed Probability Distribution of Retroreflected Pulses. 32
30. Retroreflector Configuration 33
31. Estimated Orbit Perturbation Uncertainties For Certain LAGBSS Alternatives 36
32. Estimated Relative Effectiveness of Alternative LhGFOS Orbits for Earth Dynamics Measurements 37
33. The LAGFOS Retroreflector Review, October 29, 1973, Attendance 42
34. Retroreflector Ariay Gain as a Function of Dihedral Angle Offset 44
35. Effect of Recessing Cube Corners 46
36. LAGFOS Signal Strengths 48
37. LAGEOS Retroreflector Array Parameters 49
38. Resonance Effects Associated With A Specific Attitude Region 54
39. Delta Launch Vehicle Capabilities 56

The LAGEOS system is defined and its rationale is developed. This report was prepared in February 1974 and served as the basis for the LAGEOS Satellite Program development. Baseline parameter values specified then and those actually selected for the design are as follows:

	Value	
Parameter	Baseline Feb.1974	Design
Altitude (km)	5900	5900
Inclination (deg)	110	110
Eccentricity	0	0
Diameter of Satellite (cm)	60	60
Weight of Satellite (kg)	385	411
Number of Retroreflectors	440	426
Retroreflector Diameter (cm)	3.8	3.81
Diffusely Reflecting Surface (\%)	30	47
Dihedral Angle Offset (arc sec)	1.5	1.25
Recess Depth (mm)	1	1
Ratio of Moments of Inertia	1.1	1.03

The satellite weight was increased in the actual design as a result of launch vehicle modifications, which included the addition of a 4th-stage apogee-kick motor. The smaller number of retroreflectors is compensated for to a limited extent by the slightly larger retroreflector diameter. The net effect on performance is not significant. Covering the retroreflector mounting rings with aluminum, which detailed analysis of thermal and other factors showed to be feasible, increased by more than half the portion of the spherical surface area available for diffusely reflecting sunlight for Baker-Nunn camera tracking. Measurem its of a number of retroreflection patterns showed that a dihedral angle of 90° +1.25 gave an energy maximum in the aberration annulus, hence this value was used instead of a theoretical estimate which was the basis for the earlier figure for the offset. The smaller moment of inertia ratio resulted in suitable stability characteristics for the satellite, as well as a considerable simplification in the fabrication process.

I. INTRODUCTION

The IAGEOS program, centered around the first new spacecraft in the NASA Earth and Ocean Physics Applications Program (EOPAP), is entering an implementation phase as various aspects of the Phase B Definition Study get underway at the Marshall Space Flight Center. (1) A review of the LAGFOS Program's objectives and scientific and technical features is in progress. The initial aims have been to review the study entitled "Use of a Passive Stable Satellite for Earth Physics Applications" which had been conducted by the Smithsonian Astrophysical Observatory (SAO), and to consider other views related to the orbit altitude and inclination and the satellite size and mass in order to provide a basis for the specification of the LAGFOS System as a basis for the Phase B Definition Study. (2)

These processes were begun at mectings on October 11, 1973, at which these latter points were discussed in considerable detail. Aspects of the SAO Study having to do with the retroreflectors themselves were considered at a meeting or. October 29, 1973. (2) Both meetings revealed the need for further investigation of a number of specific points. Various studies have been conducted or initiated in response to the needs indicated dur:ing these meetings and in subsequent discussions. Tentative conclusions reached at these meetings and later on the basis of a number of the studies and additional discussions are described here, and the corresponding guantities are listed in Figure 1. These values

LAGPOS SYSTEM NOMINAL BASEITNE PARAMETERS

Altitude	5900 km
Inclination	110 deg
Eccentricity	0
Diameter of Satellite	60 cm
Weight of Satellite	385 kg
Number of Retroreflectors	440
Fraction of Surface	
\quad Reflecting Diffusely	0.30
Retroreflector Diameter	3.8 cm
Dihedral Angle	$90^{\circ}+1.5$
Recess Depth	0.1 cm
Ratio of Moments cf Inertia	1.1

FIGURE 1
represent judgements based on the available information. Their use enables the program to proceed.

Studies underway will be considered at appropriate times in order to provide the basis for reviews of these choices.
II. THE GENERAL LAGBOS REVIEW

A list of those who attended the General LAGEOS Review Meeting on October 11, 1973 is attached. (Cf. Fig. 2) Other organizations whose representatives were invited included the U.S. Geological Survey, the National Science Foundation, and the National Academy of Sciences.

The meeting opened with a review of the BOPAP objectives and the program as a whole which was presented by Mr. F. Williams, Director of the Special Programs Division of the NASA Office of Applications. The attached Figures 3 and 4 were part of his presentation. (1)

A discussion of the LAGEOS Program in the context of the overall EOPAP effort was presented by Dr. J. Siry. The attached Figures 5 through 13 were discussed. $(1,2,4,5,25,26)$

Dr. George Weiffenbach presented a review of the SAO Study. Copies of this report had been sent to the attendees before the meeting. His presentation included. in particular, the attached Figures 14 through 31.(2) A brief review of other views concerning the orbital alt,itude and inclination and the satellite's size and mass was then presented by the Chairman. Dr. Siry included in this review the recomnendations made in references 3 and 4, and in discussions with a number of those who had

	THIE GHNERAL LAGEOS REVIEW OCTOBER 21, 1973 ATTMIDANCE	
NAME	ORGANIZATION	PHONE NO.
R. Spencer	NASA-MSFC	205-453-2818
E.M. Gapuschkin	SAO	617-864-7910 x495
M. R. Pearlman	SAO	617-864-7910 $\times 481$
W. Lurie	SAO	617-864-7910 $\times 485$
George Weiffenbach	SAO	617-864-7910 x286
Bernard Chovitz	NOAA/NOS	301-496-8423
James Faller	JILA/NBS	303-499-1000 x 3463
Michael Graber	NOAA/NOS	301-496-8556
Richard Anderle	NWL	703-663-8159
Donald Eckhardt	AFCRL	617-861-4550
Larry D. Beers	HQ DMA/PRA	703-254-4455
Wm. M. Kaula	UCLA	213-825-4363
F. L. Williams	NASA HQ	202-755-8458
J. P. Murphy	NASA HQ	202-755-3260
Jon Berger	UCSD	714-453-2000 x1798
J. W. Siry	NASA HQ	202-755-3837
D. E. Smith	GSFC	301-982-4555
T. S. Johnson	GSFC	301-982-4835
J. Whitcomb	JPL-Caltech	213-795-8806
I. J. Mueller	OSU	614-422-2269
D. Trask	JPL	213-354-4878
C. Scholz	LDGO	914-359-2900 $\times 373$
S. Yionoulis	APL	953-7100 $\times 3057$

figure 2

EARTH AND OCEAN PHYSICS APPLICATIONS PROGRAM (EOPAP) OBJECTIVES

DEVELOPMENT AND VALIDATION OF METHODS OF OBSERVING THE EARTH'S DYNAMICAL MOTIONS USING SPACE TECHNIQUES TO MAKE UNIQUE CONTRIBUTIONS TO THE KNOWLEDGE CF EARTHQUAKE MECHANISMS AND THE DEVELOPMENT OF EARTHQUAKE PREDICTION APPROACHES.

DEVELOPMENT AND VALIDATION OF MEANS FOR PREDICTING THE GENERAL OCEAN CIRCULATION, SURFACE CURRENTS, AND THEIR TRANSPORT OF MASS AND HEAT.
development and validation of method for synoptic monitoring and predicting Of TRANSIENT SURFACE PHENOMENA, INCLUDING THE MAGNITUDES AND GEOGRAPHICAL distributions of sea state, storm surges, swell, surface winds, etc., WITh EMPHASIS ON IDENTIFYING EXISTING AND POTENTIAL HAZARDS.

REFINEMENT OF THE GLOBAL GEOID, EXTENSION OF GEODETIC CONTROL TO INACCESSIBLE areas including the ocean floors, and improvement of knowledge of the GEOMAGNETIC FIELD FOR MAPPING AND GEOPHYSICAL APPLICATIONS.

EaRTH AND OCEAN PHYSICS APPLICATION PROGRAM

MEASUREMENT REQUIREMENTS SUMMARY

MEASUREMENT

- CRUSTAL MOTION
- POLAR MOTION, EARTH ROTATION
- SATELLITE ORBITS
- GRAVITY FIELD / GEOID
- SEA SURFACE TOPOGRAPHY
- SEA STATE / WAVE HEIGHT
- SURFACE WINDS
- MAGNETIC FIELD

ACCURACY

$1 \mathrm{~cm} /$ year
$2 \mathrm{~cm} / 0.5$ day
10 cm
10 cm
10 cm
1-3 m
2-5 m/s
2 gamma, 0.5 arc min

EARTH DYNAMICS EXPERIMENTS

FIGURE 6
(Cf. ref. 1)

FIGURE 7. Systems capabilities and milestones.
(Cf. ref. l)

LAGEOS PROGRAM OBJECTIVES

- DEMONSTRATE THE CAPABILITY FOR MAKING ACCURATE DETERMINATIONS OF THE EARTH'S CRUSTAL AND ROTATIONAL MOTIONS BY MEANS OF LASER SATELLITE TRACKING TECHNIQUES
- EMPLOY THIS CAPABILITY TO OBSERVE

```
FAULT MOTION
REGIONAL STRAIN FIELDS
TECTONIC PLATE MOTION
POLAR MOTION
EARTH ROTATION
SOLID EARTH TIDES
STATION POSITIONS
```

- MAKE APPLICATION OF THE RESULTS TO THE SOLUTION OF PROBLEMS SUCH AS THOSE ASSOCIATED WITH EARTHQUAKE MECHANISMS AND ORBIT DETERMINATION FOR OCEAN DYNAMICS SPACECRAFT

ORBIT SELECTION CONSIDERATIONS

ORBIT PROPERTY	a	i
PERTURBATION MINIMIZATION		
GRAVITATIONAL	LARGE	
RADIATION PRESSURE	SMALL	
TRACKABILITY		
RANGE	SMALL	
ANGULAR RATES	LARGE	
TRACKING COVERAGE		
AROUND ORBIT FOR PERTURBATION SENSING	LARGE	$60^{\circ}-90^{\circ}$
AT MAXIMUM LATITUDES FOR POLAR		
MOTION SENSING	LARGE	$70^{\circ}-90^{\circ}$
AROUND STATIONS FOR POSITIONING	LARGE	$70^{\circ}-90^{\circ}$

PREEXISTING SITES

FIXED
GSFC, MD MT. HOPKINS, ARIZONA NATAL, BRAZIL AREQUIPA, PERU JOHANNESBURG, SOUTH AFRICA

MOBILE

QUINCY, CALIF. SAN DIEGO, CALIF. WALLOPS STATION, VA BERMUDA
GRAND TURK CAPE KENNEDY
UTAH
MEXICO
CANAL ZONE

FIXED
ORORRAL VALIEY, AUSTRALIA FORT RESOLUTION, CANADA SAO PAUIO, BRAZIL
KASHIMA, JAPAN
MADRID, SPAIN

MOBILE
ADDIS ABABA, ETHIOPIA NAINI TAL, INDIA
MAUI OR KAUAI, HAWAII
UPPSAALA, SWEDEN
TAHITI
BAN'GKOK, THAILAND
FAIRBANKS, ALASKA

FIGURE 11
(Cf. ref. 27)

FIGURE 12
(Cf'. ref. 27)

LAGEOS MISSION OBJECTIVES

- USEFUL LIFE IN ORBIT 20 YEARS
- STATION POSITION ACCURACY. 2 CM
- POLE POSITION ACCURACY 2 CM
- UT-1 (SHORT TERM). 2 CM

Figure 14
(Cf. ref. 2)

MISSION OBJECTIVES CAN BE SATISFIID WITH

- RANGE ACCURACY (PER PASS) 2 CM
- EPHEMERIS ACCURACY. 5 CM

FIGURE 15
(Cf. ref. 2)

FACTORS INFLUENCING EPHEVERIS ACCURACY

- ACCURACY OF RANGE MEASUREMENTS
- NUMBER OF TRACKING STATIONS AND GEOGRAPHIC DISTRIBUTION
- GEOPOTENTIAL MODEL ERRORS
- SURFACE FORCE MODEL ERRORS

ATMOSPHERIC DRAG DIRECT SOLAR RADIATION PRESSURE EARTHSHINE RADIATION PRESSURE MICROMETEORITES

GEOPOTENIAL MODEL ERRORS

- RESONANT HARMONICS

CAN BE AVOIDED BY CHOICE OF PERIOD

- CURRENT GEOPOTENTIAL MODEL ERRORS

FOR GEOS-2 ~5 M

- EXPECTED GEOPOTENTIAL MODEL ERRORS TO MEET EOPAP REQUIREMENTS:

SEASAT REQUIREMENT 10 CM
FIGURE 17
(Cf. ref. 2)

SURFACE FORCE MODEL ERRORS

DRAG
$\left.\begin{array}{l}\text { MICROMETEORITES }\end{array}\right\}$ NEGLIGIbLE
$\left.\begin{array}{l}\text { DIRECT SOLAR RADIATION } \\ \text { EARTHSHINE }\end{array}\right\}$ MUST BE CORRECTED

FIGURE 18
(cf. ref. 2)

RADIATION PERTURBATIOIS VS ORBIT ALTITIDE

\ldots	MEAN MOTION (REV/SID. DAY)	$\begin{aligned} & \text { ORBIT } \\ & \text { ALTITUDE } \end{aligned}$	PAYLOAD WEIGHT	RELATIVE perturbation	
				$\begin{aligned} & \text { DIRECT } \\ & \text { SOLAR } \end{aligned}$	EARTH SHINE
	8.55	3720 KM	680 KG	1.0	1.0
	7.55	4600	600	2.9	1.9
	6.55	5690	500	9.3	3.8
	5.55	7100	440	33	7.9
	4.55	9000	390		14.8
	3.55	11,800	320	600	32
	FIGURE 19 (cf. ref. 2)				

MAGNITUDES OF PERTURBING FORCES
 $N A=4000 \mathrm{KG} / \mathrm{M}^{2}$
 ORBIT ALTITUE $=3700 \mathrm{KM}$

	FORCE	ACCELERATION
DIRECT SOLAR	0.084 DYNE	$120 \times 10^{-9} \mathrm{CM} / \mathrm{SEC}$
EARTHSHINE	VARIABLE UP TO ~0.02	UP TO 30
UNBALANCED SATELLITE THERMAL RADIATION	0.01	12
DRAG	10^{-5} TO 4×10^{-4}	0.01 T0.0.4
MICROMETEORITE IMPACTS	2.4×10^{-6}	0.004
	FIGURE 20 (cf. ref. 2)	

ORBIT PARANETERS

PERIOD	166 ± 2 MIN
INCLINATION	$90^{\circ} \pm 1^{\circ}$
ECCENTRICITY	0.020 ± 0.015
NOMINAL ALTITUDE	3700 KM
	$(2000 \mathrm{NM})$

ERROR BUDGET FOR RANGE MEASUREMENTS

- TROPOSPHERE

$$
15 \text { MM }
$$

- LASER

SE DETECTION														
RANGE COUNTER 5 MM														
CALIBRATION, CABLES,														
MECHANICAL, ETC. 5 MM														
EPOCH SYNCH .														
- SATELLITE . 5 MM														
RSS . 20 MM														

SATELIIT PARAMETERS

```
```

RADIUS

```
```

RADIUS
22 CM
22 CM
MASS
MASS
M/A
M/A
SURFACE
SURFACE
615 KG (1350 LB.)
615 KG (1350 LB.)
4000 KG/M}\mp@subsup{}{}{2
4000 KG/M}\mp@subsup{}{}{2
DIFFUSE ALUMINUM

```
                                    DIFFUSE ALUMINUM
```

CUBE COPNERS
TOTAL NUMBER 240
CIRCULAR FRONT FACE 3.65 CM DIA.
DIHEDRAL ANGLE $\quad 90^{\circ}+1.75 \pm 0.5$ ARCSEC
HIGH PURITY FUSED SILICA
NO REFLECTIVE COATINGS
NO ANTI-REFLECTION COATINGS

```

\section*{LAGEOS RECEIVED SIGNAL IEVELS FOR "GOOD" SEEING, 0.5 ARCMIN RADIUS, 1.5 J}
\begin{tabular}{ccc} 
& EL ANGLE & S (PHOTONS)
\end{tabular} N (ELECTRONS)


Figure 25
The shaded area is the spherical segment where the "active" cube corners are located when \(\phi_{c}\) is the cube-zorner cutoff angle. (Cf. ref. 2)


Time history of the echo signal.
figure 26
(Cf. ref. 2)


Reflectivity versus angle of incidence for an uncoated fused-silica cube corner with a circular aperture 3.65 cm in diameter and dihedral angles of \(90^{\circ}+1.75\) arcsec. The reflectivities are for a beam angle \(\theta\) of \(36-\mu \mathrm{rad}\), corresponding to a typical value of velocity aberration for the LAGEOS orbit. The reflectivity is the average for all azimuthal angles (taken around the normal to the front face).

FIGURE 27
(Cf. ref. 2)


Beam patterm at normal incidence for an uncoated cube comer with a circular aperture 3.65 can in dimmeter. Dihedm angle is 8.5 prad ( 1.57 arcsec) from \(90^{\circ}\). Beam angles nre given in micrortidians. Warelenyth is 6943 A (ruby laser).

FIGURE 28
(Cf. ret. 2)



Computed probability distribution of the intensity of LAGEOS retroreflected pulses. The histogram is normalized so that the intensity of an incoherent pulse is unity on the horizontal scale.

FIGURE 30
(Cf. ref. 2)


Figure 31
(Cf. ref. 2)
indicated an interest in these aspects of the program. Key points which were made by the various groups are summarized in the following paragraphs and indicated in Figure 10.

\section*{A. The Orbital Altitude}

Dr. Weiffenbach, in his complete analysis of the LAGEOS system, pointed out that uncertainties associated with the geopotential and radiation pressure effects were the principal model errors influencing ephemeris accuracy. He listed a number of possible choices for the orbital altitude, each of wnich had good characteristics from the standpoint of gravitational resonance perturbations. The solar radiation pressure effects increased with increasing altitude since the area was increased and the mass decreased in accordance with the constraints described in the SAO Report. (2) It was pointed out in this study that the gravitational perturbation effects decrease with increasing altitude, and that the lowest altitude in the table of Figure 19 is a good choice when the accurate geopotential model to be provided by the EOPAP CRAVSAT mission is available. De. J. Faller, Chairman of the Lunar Ranging Experiment (LURE) Team had suggested that a LAGEOS in a somewhat higher orbit of 6000 km altitude could be tracked more easily by certain lunar laser stations than one in a 3700 kilometer altitude orbit. He also indicated that the higher orbit would be advant, eous due to its smaller gravitational perturbations.(3)

This latter thought had been echoed by Dr.F.Vonbun who also made the point that an orbit having a higher altitude ( \(6000-10,000 \mathrm{~km}\) ) and/or a lower
inclination \(\left(60^{\circ}-30^{\circ}\right)\) would permit increased tracking coverage, and hence would improve the ability to model perturbations and determine polar motion. Such a choice чould, fnr example, make possible the observation of LAGSOS at its maximum declination from middle latitude stations, and thus facilitate pole motion monitoring by means of the approach used by Dr. D. E. Smith. (4)

The aiscussion then procedded along the lines indicate in Figures 32 and 33, which are similar to tables which were developed at the board during the corrse of the meeting. Figure 32 deals with estimates of the relative effects of uncertainties associaied with gravitational and radiation pressure perturbations as functions of the orbital altitude and the time. Figure 33 reflected an attempt to estimate the relative utility of several possible combinations of the orbital altitude and inclination from the standpoint of the principal LAGBOS Program objectives. Professor Kaula called attention to the importance of the determination of crustal motions over scales ranging up to a length of the order of a thousand kilometers.

In Figure 32, the first row and the first two entries in each of the first two columns reflect material in references 1 and 2. The satellite weights listed reflect data provided by the Delta Project Office and material elsewhere in the present discussion. (22) The radiation pressure perturbation estimates were based on the material in reference 2 corresponding to the first row. They were obtained from Table 2 of reference 2 and Pigure 19 of this discussion by interpolation and by replacing

\section*{ESTTIMATED ORBIT PERTURBATION UNCERTAINTIES} FOR CERTAIN LAGEOS ALTERRATIVES


FIGURE 32

Estimated Relative Effectiveness of Alternative LAGEOS Orbits for Earth Dynamics Measurements
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & Compone & & & & \\
\hline & Altitude
(km) & \[
\begin{gathered}
\text { Inclination } \\
\text { (dea) }
\end{gathered}
\] & \[
\begin{aligned}
& 200- \\
& 1000 \mathrm{~km}
\end{aligned}
\] & 5000 km & Polar Motion & Earth Rotation & Reference Station Positions \\
\hline & 3700 & 90 & A & B & B & c & A \\
\hline & 6378 & 90 & A & A & A & B & A \\
\hline \(\stackrel{\sim}{\sim}\) & 3700 & 70 & \(\wedge\) & B & A & c & A \\
\hline & 6378 & 70 & A & A & A & B & A \\
\hline
\end{tabular}
the satellite weight and diameter assumptions of that reference with those listed in Columns 2 and 3.

The last two columns are rough estimates based partly on findings in reference 2. The gravitational perturbation uncertainty estimate of 5 centimeters in the \(1980^{\prime} \mathrm{s}\) is based on the EOPAP GRAVSAT goal, as that report points out. The 50 centimeter estimate reflects considerations presented there, as well as a further general discussion which took place during the meeting. The factor of two between the estimated gravitational perturbation uncertainties for the 3720 ant 6378 km orbit altitudes was derived from results of calculations based on Kaula's theory. Among the quantities computed was the root mean square vaiue of the amplitudes of non-resonant perturbation components corresponding to the terms in the \(1, m . p\), and \(q\), sequences which were calculated on the basis of the simple assumption that the uncertainties of the geopotential coefficients were constant through degree and order fifteen, and vanishingly small otherwise. The corresponding uncertainties for the 5900 km altitude orbit could be expected to be perhaps ten percent larger than those for the 6378 km altitude case.

These relative values for the ephemeris uncertainties are, to a certain extent, indicative of the corresponding relative values of the uncertainties in determining other derived quantities of interest such as components of station position and intersite vectors, and the polar motion. This tends to be the case when the dynamic method is used. Ephemeris uncertainties associated with gravitational perturbations have, in fact, been found to be aning the principal contributors to the uncertainties in the determination
of intersite vector components in the San Andreas Fault Experiment (SAFB) analysis which emoloys data from laser ground tracking sites. (5) Geometrical approaches can involve a larger number oi lasers. \((6,7)\) It was, accordingly, thought that these latter methods would be appropriate for consideration in a somewhat later phase of the program.

In Figure 33 the symbols A, B, and C, denote successively decreasing relative utilities, The differences among the various cases were not considered to be large enough to be conclusive. The IAGSOS orbital altitude may be selected so as to attempt to minimize the perturbation uncertainties and maximize its usefulness in its early years when LAGEOS will be the key element in the satellite laser tracking system for measuring crustal motion, polar motion and earth rotation, and the critical laser - VLBI intercomparisons will occur. An intermediate altitude in Figure 19, which was presented in reference 2, is appropriate in this case. (Cf. also, for example, Figure 32.) Dr. Weiffenbacn recommended, according?y, that the 5690 km altitude be chosen, tentatively, and that more detailed calculations be made to confirm the initial estimates of the payload capability of the Delta launch vehicle.

\section*{B. The Orbital Inclination}

Accurate station position determination is strongest when the satellite is observed in all directions around the slte, hence the inclination should hermally be somewhat greater than the highest latitude at which tracking systems are located.

It appeared that a \(70^{\circ}\) inclination would meet this requirement and, at the same time, permit tracking of the LAGEOS satellite over much of its orbit from middle latitude stations, thus enhancing the ability to model gravitational perturbation terms. Hence, it appeared that an inclination in the neigliborhood of, say, \(70^{\circ}\), would offer some advantages of the type indicated in Figure 10.

It was considered, tentatively, then, that an orbital altitude of 5690 km and an.inclination of \(70^{\circ}\) would be useful candidates for consideration for LAGEOS. It was also concluded that detailed studies would be conducted to determine more accurately the payload capability of the Delta launch vehicle for this case, and for other inclinations between \(60^{\circ}\) and \(90^{\circ}\). T..e altitudes of 4700 and 3720 km would be looked at, too, to provide contingency planring information in case, e.g., the payload capabilities for the 5690 km altitude proved to be inadequate. At the same time, interested groups, including those at UCLA, OSU, SAO, Goddard, and NWL, would give further consideration to one or more of the various factors affecting the orbit selection including those associated with the uses of the data to improve understanding of earthquake mechanisms, crusial motions and polar motions, as well as those having to do with the abilit; to determine these motions, such as geometrical coverage and uncertainties due to gravitational and radiation pressure perturbations, instrumental characteristics, etc. The location of the laser tracking stations was not considered in detail. The possible new sites seen in Figures 11 and 12 are tentative and indicative of general concepts, but have not been finally selected. It was pointed out, however, that a coverage gap exists in the southern
part of the Western Hemisphere, and that the location of a laser at a place such as Comodoro Rivadavia, a former Baker-Nunn camera site, would strengthen the solutions. An Antarctic location would add even more, provided a site with reasonable weather conditions can be found.

\section*{III. THE LAGEOS RETHOREFLECTOR REVIEW}

\section*{A. The Retroreflector}

Matters relating to the retroflectors including the number, diameter, shape, dihedral angle offset, recess, coatings, etc., were considered at a meeting on October 29, 1973, held at NASA Headquarters and attended by those listed in the attached Figure 34. The following approaches and rationale were developed at this meeting and in subsequent discussions. In a number of cases they reflect the views and results presented in the SAO Study, as the reference citations indicate. (2)

\section*{1. The Retroreflector Diameter}

The optical antenna gain of the retroreflectors increases with the diameter hence, from this standpoint, it is advantageous to select the largest practical retroreflector face diameter. The Apollo retroreflectors had the largest face diameter used in space, i.e., 3.8 cm . Diameters significantly larger than this will probabiy begin to encounter problems associated with the manufacture of the raw material of suitable quality. Accordingly, it was concluded that the retroreflector diameter should be 3.8 cm .

THE L, GFOS RETROREFLECTOR REVIEW OCTOBER 29, 1973 ATTENDANCE
\begin{tabular}{|c|c|c|}
\hline MAME & ORGANIZATION & PHONE NO. \\
\hline J. Siry & NASA Hq. & 755-3837 \\
\hline T. Hoffman & SAO & 617-864-7910 x492 \\
\hline Geo. Weiffenbach & SAO & 617-864-7910 x286 \\
\hline J. L. Randall & NASA-MSFC & 205-453-3770 \\
\hline P. 0. Minott & NASA-SSFC & \\
\hline Henry Plotkin & NASA-GSFC & 301-982-6171 \\
\hline David Arnold & SAO & 617-864-7910 x481 \\
\hline J. Faller & JIIA-NBS & 303-499-1000 x 3463 \\
\hline
\end{tabular}

FIGURE 34

\section*{2. Coatings}

The use of retroreflectors without reflective coatings provides performance which is within about \(20 \%\) of that which is obtainable through the use of such a coating. (2) This gain is considered to be insufficient to offset the risk associated with the possibility that the coating on some of the retroreflectors may deteriorate over the years. Such a partial deterioration would spread the pulse in unpredictible ways and decrease the accuracy. Accordingly it was tentatively concluded that no reflective coatings would be used.

For similar reasons, it was concluded that no anti-reflective coatings would be used. (Cf., again, reference 2.)

\section*{3. The Dihedral Angle}

The selection of a dihedral angle offset was based on the data in Figure 35 which were supplied by the SAO. (8)
The offset of 1.5 gives good performance over the entire range emcompassed by the uncertainity, i.e., \(1.5 \pm 0.5\). It also has a markedly smaller gradient in the \(30-40\) microradian interval than the zero offset, for example. Hence it will probably also be less sensitive to degradation in performance due to non-nominal conditions associated with, say, material quality, thermal effects, etc.

The 1.5 arc second offset also gives better performance than the zero offset design, for example, for lasers operating at half the ruby wavelength of 6943 A. The 1.5 arc second offset was, accordingly, tentatively chosen.

\section*{RETROREFLECTOR ARRAY CAIN}

AS A FUNCTION OF
DIHEDRAL ANGIE OFFSET
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{DIFIRDRAL} & Average \\
\hline Angle Offset & Velocity & Gain \\
\hline Relative To \(90^{\circ}\) & Aberration & Fungtion \\
\hline (ARC SEC) & (Microradians) & (10) \\
\hline \multicolumn{3}{|c|}{RUBY WAVELENGTH ( 6943 A)} \\
\hline \multirow[t]{2}{*}{2.00} & 30 & 5.05 \\
\hline & 40 & 4.78 \\
\hline \multirow[t]{2}{*}{1.75} & 30 & 6.23 \\
\hline & 40 & 5.39 \\
\hline \multirow[t]{2}{*}{1.50} & 30 & 7.33 \\
\hline & 40 & 5.85 \\
\hline \multirow[t]{2}{*}{1.25} & 30 & 8.26 \\
\hline & 40 & 6.11 \\
\hline \multirow[t]{2}{*}{1.00} & 30 & 8.97 \\
\hline & 40 & 6.21 \\
\hline \multirow[t]{2}{*}{0.00} & 30 & 9.92 \\
\hline & 40 & 6.04 \\
\hline \multicolumn{3}{|c|}{HALF RUBY WAVELENGTH ( \(\frac{1}{2} \times 6943{ }^{\circ}\) )} \\
\hline \multirow[t]{2}{*}{1.50} & 30 & 12.11 \\
\hline & 40 & 10.82 \\
\hline \multirow[t]{2}{*}{1.25} & 30 & 14.45 \\
\hline & 40 & 8.82 \\
\hline \multirow[t]{2}{*}{1.0} & 30 & 14.20 \\
\hline & 40 & 6.03 \\
\hline \multirow[t]{2}{*}{0.00} & 30 & 4.81 \\
\hline & 40 & 1.97 \\
\hline \multicolumn{3}{|l|}{Assumptions: 240 retroreflectors,} \\
\hline \multicolumn{3}{|l|}{Diameter 1. 437 , uncoated, not recessed;} \\
\hline Satellite diame & & \\
\hline
\end{tabular}

FIGURE 35
(Cf. ref. 8)

\section*{B. The Retroreflector Array}

\section*{1. The Recess Depth}

The depth of recess has an effect on both the amplitude and the shape of the return pulse. These effects are indicated in Figure 36, data for which were generated by the SAO. (11). It was concluded that, from these standpoints, a minimal depth is preferred.

A recess depth of 0.1 cm appears to be desirable from the standpoint of handling ease, etc. and will not significantly affect the return pulse strength or shape.

A greater depth may be advantageous from the standpoint of the thermal effects. The quantitative aspects of the thermal effects of varying the depth are not yet known but will be evaluated in the Phase B Definition Study. The depth of 0.1 cm is, accordingly, tentatively selected as the nominal value.

\section*{2. The Satellite Diameter and The Number of Retroreflectors}

It was considered that the SAO and Goddard lasers conld track effectively down to a threshhold value of four photoelectrons. It was tstimated, tentatively, that a satellite having a diameter in the \(50-60 \mathrm{~cm}\) range could contain an array having enough retroreflectors to permit laser tracking to an elevation angle in the neighborhood of \(10^{\circ}\) to \(15^{\circ}\), and that the \(30 \%\) or more of the spherical surface which would remain to reflect as diffuse aluminum would permit adequate tracking by the Baker-Nunn cameras.

Radiation pressure perturbations of the path of such a satellite in an orbit in the neighborhood of 5700 km altitude were also tentatively


FIGURE 36
(cf. ref. 11)
estimated to be acceptable, particularly during the critical early years of its lifetime when they are expected to be dominated by gravitational perturbations. (cf., e.g., Figure 32.)

It is seen from the Figure 37 and the data of ref. 12 that the :our photoelectron threshold corresponds to an elevation angle between \(10^{\circ}\) and \(15^{\circ}\) for a 1.5 joule lases and a LAGEOS satellite at 5590 km altitude having an array containing 360 to 504 retroreflectors. Allowing a factor of two for effects of thermal distortion of the retroreflectors, a four photoelectron threshhold will allow tracking to about a \(15^{\circ}\) elevation angle for a satellite at 5900 km altitude having an array containing 440 cubes, which is near the center of the range covered by the second and third columns of Figure 37.

Tentative estimates indicated that a. sphere diameter of about 60 cm would be consistent with this range for the number of retroreflectors. Studies conducted by the Marshall Space Flight Center have indicated that a sphere diameter of 60 cm would provide room for approximately 440 retroreflectors, where the diameter of the retroreflector, per se, is 3.8 cm and the diameter of the mounting apparatus is \(4.76 \mathrm{~cm} .(13,24)\)

Some of the results of these studies are presented in Figure 38. Others appear in reference 13. It is seen that a 4.13 cm mounting diameter corresponds to 524 to 546 retroreflectors for a 60 cm diameter, the variation being a function of the array configuration.

\section*{3. Camera Tracking}

All of these cases leave at least \(30 \%\) of the spherical surface area available for diffuse reflection of sunlight to Eaker-Nunn cameras. (13)

\section*{LAGEOS Signal Strengths \\ in Photoelectrons}
\begin{tabular}{lccc} 
Elevation Angle & \multicolumn{3}{c}{ No. of Retroreflectors } \\
(degrees) & 360 & 504 & \(67 ?\) \\
10 & 2 & 3 & 4 \\
15 & 7 & 9 & 13 \\
20 & 13 & 19 & 25 \\
25 & 22 & 31 & 41 \\
Iageos Altitude: & 5690 km & & \\
Laser output: & 1.5 joules & &
\end{tabular}

Additional assumptions specified in ref. 12, which is the source of these values.

\section*{LAGEOS Retroreflector Array}

\section*{Parameters}
\begin{tabular}{ccccc}
\begin{tabular}{l} 
Sphere \\
Diameter \\
\((\mathrm{cm})\)
\end{tabular} & \begin{tabular}{c} 
Mounting \\
Diameter \\
\((\mathrm{cm})\)
\end{tabular} & & \begin{tabular}{l} 
Placement \\
Concept
\end{tabular} & \begin{tabular}{l} 
Number of \\
Retroreflectors
\end{tabular}
\end{tabular} \begin{tabular}{l} 
Surface Fraction \\
55
\end{tabular}

FIGURE 38
(Cf. Ref. 13, 24)

The ability of the Baker-Nunn cameras to track such a target is presented in the SAO discussion of reference 14 .
4. rocitioning.

Experience indicates that nurmal manufacturing practice can achieve tolerances of about 0.015 cm . It was concluded that this level is adequate for the eccentricity or the center of mass relative to the center of figure. It was aiso concludnd that the variation of the retroreflector apex from the nominal position should be no more than 0.025 cm in the radial direction and the radial direction and 0.0375 cm in the transverse direction, and thai the variation of the actual surface from the best fit spherical surface should be no more than 0.025 cm .

\section*{C. Testing and Handling Procedures}

It was also considered that criteria associated with thermal ioading effects would be specified in terms of the far-field pattern. In particular, it was considered that, in terms of the far-field pattern, the return average signal intensity at the appropriate velocity aberration angle when the cube is thermally loaded to correspond to the worst case expected in orbit will not be reduced by more thar a factor of two from the corresponding value obtained during ve isothermal test. It was concluded that edge sharpness or edge roll should be such that the energy return will be at least \(80 \%\) of that from a retroreflector which has zero roll, but otherwise is a real object. This might be determined by means of a pin hole test or an interferometry test. It was considered that the crjteria and procedures for testing the GFOS-C and Timation retroreflectors which are set forth in references 9 and 10
will, in mary cases, be applicable to the LAGFOS retroreflectors as well.

It was considered thai the use of Twyman-Green interferograms and farfield diffraction patterns would be appropriate. In particular, it was concluded that each retroreillector should be tested in a Twyman-Green interferometer at 6328A to demonstrate that:
1) The peak-to-valley wavefront deviation from the best fitting plane wave, in a least squares sense, is less than \(\lambda / 4\) over sach of the six sectors of the aperture, and
2) that the dihedral angle meets the specifications. The far field diffraction patterns will alsc be used to determine that they possess suitable symmetry, and that the dihedral angles meet the specifications in गther respects.

It was considered that practices corresponding to those used for a class 100,000 clean room would be adequate.
IV. FURTHER CONSIDERATIONS

Further consideration was given to factors affecting the selection of the orbit and the satellite's mass, and the possibility of determining the satellite's at titude. The following sections deal with these topies.
A. The Orbit
1. The Eccentricity

A circular orbit has useful symmetry properties and appears to pose no particular difficulties. Accordingly, it is selected.

\section*{2. The Inclination}

An orbit inclination of \(70^{\circ}\) is large enough to permit trarking on all sides of all stations, and it is small enough to be visible at its maximum northerly latitude from stations used for fault motion studies such as those at Quincy and San Diego, California. For example the corresponding elevation angles at these two sites for this case are about \(32^{\circ} \& 22^{\circ}\), respectively. Lasers at these sites could thus observe with favorable geometry in loth the fault motion and polar motion programs. Retrograde orbits afford roughly one more tracking pass each day than prograde orbits for the middle latitude locations were ground tracking stations are orten placed for other reasons such as those associated with fault motion studies. (5,25) Better time resolution for polar motion ana earth rotation stadies can, accordingly, be obtained with such a retrograde orbit at \(110^{\circ}\) inclination. This factor outweights any disadvantage which may ultimately be associated with the fact that the longperiod solar radiation pressure perturbaticn has a longer period, and hence a larger amplitude, for the retrograde orbit than it does for the prograde orbit, the two periods being about 580 and 290 days, respectively. This difference has no practical significance until orbits are determined for data spans exceeding about 290 days, however, this is not expected to pose a practical problem in the early years of the LAGBOS orbit. The longer period and corresponding larger amplitude of the solar radiation pressure perturbation associated with the retrograde orbit may actually turn out to be an advantage, since it may make the determination of the amplitude easier. Accordingly, the \(110^{\circ}\) inclination was considered to be the most suitable.

\section*{3. The Altitude}

\section*{a. Resonance Effects Associated With a Specific Alさitude Region}

The best altitude in the neighborhood of 5690 km from the standpoint of resonance effects is 5900 km . It is seen from Figure 39 that this is a good choice for the case in which the uncertainty in the semi-major axis due to launch vehicle performance variations is no unore than the 60 km or so expected from the Delta launch vehicle. The altitude of 5900 was, accordingly, selected as the appropriate choice in this altitude range. (2l)

\section*{b. General Considerations}

Two types of considerations arise an connection with the selection of the LAGFOS orbit. The first has to do with the program objectives, and the second with the ability to meet these objectives.

The measurement objectives of the LAGEOS program include the determination of fault motion, pole motion, plate moition, and reference station positions. The relative importance of certain of these in terms of their petential contribution to the meeting of the goal of achieving a better understanding of earthquake mecharisns is treated by Professor Kaula and Dr . Bender in references 16-18. The effect of different choices of the LAGEOS orbit altitude upon the ability to meet one or more of these objectives has been analyzed by R. J. Anderle, and Professor Mueller and Kaula in references 19,20 , and 26. In references 16 and 17, Profe: or Kaula treats a number of factors relating to the objectives, and points out the fundamental importance of measuring crustal motion at scales up to the order of a thousand kilometers. In reference 26 he gives results of a study of factors relating to the orbital altitude.


Dr. Bender also considers the objectives and calls attention to the value of measuring the relative motions of the tectonic plates in the large, too. (18)
R. Anderle analyzed the effect of different choices of the orbital altitude and inclination on the ability to recover polar motion and presented results in reference 19.

Professor Mueller and his collegues have studied the effect of the choice of the orbital altitude on the ability to determine positions of points on the earth's surface. The results are presented in reference 20.

None of the findings obtained up to now is inconsistent with the tentative selections of Sections II and IV and Figure 1. Studies of these types are continuing.

\section*{B. The Satellite Mass}

The Delta launch vehicle has a gross payload capability of about 430 kg for this orbit.(22) It is tentatively estimated that ninety percent of this, i.e., about \(385 \mathrm{~kg} .\), will be available for the LAGEOS satellite, per se. The radiation pressure perturbations associated with this combination of values for the orbital altitude and satellite diameter and mass, i.e., \(5900 \mathrm{~km}, 60 \mathrm{~cm}\), and 385 kg , respectively, were considered to be consistent with philosophy underlying the tentative selection of Section II above. (Cf., e.g., Figure 32.) (Cf. Fig. 40 and ref. 22 provided by the Delta Project.)

\section*{C. Attitude Determination}

The ability to determine the attitude of the LAGEOS satellite could be valuable in the case of any marked variation in the actual performance of

the different zonal regions of the retroreflector array in nrbit, particularly in the early months of its orbital lifetime when its capabilities are being determined. Attitude determination ability can be achieved by two relatively simple design steps, neither of which should have any significant adverse effect on the basic capability of the satellite. The first is to choose a design for which the moment of inertia about the axis for which this moment is greatest is larger than the moments of inertia about the other two principal axes by a factor of at least 1.05 . A ratio of about 1.1 appears to be suitable as a design goal. The moments about the other two axes would be designed to be equal. The axis about which the satellite has the maximum moment of inertia could be chosen as the spin axis at the point of injection into orbit. Attitude colld be determined by means of reflection from two symmetrically placed rows of mirrors or flats, each at the same angular distance from the satellite's equator, i.e., the plane normal to the axis about which the noment of inertia is a maximum. These rows will be at an optimal angle from the equator, e. g., at an angle of the order of \(30^{\circ}\), say. The "row" would consist of at least one flat, and as many more as would be practical. The flats would be located in regions where, for one reasori or another, the space between adjacent retroreflectors is relatively large. The portion of the spherical surfiace in these regions would be replaced by inscribed plane circies made as large as practical. These flats would be specularly reflecting.

Variation of the spacing of the flats in each row would permit determination of the third component of the attitude, namely, the phase of
rotation. This general approach has already actually been used in orbit in the case of the Telstar satellite to provide the capability for determining the spin axis direction. (23) Knowledge of the attitude will permit the determination of any variation in retroreflector array performance with position on the satellite.

\section*{V. ACKNOWLEDGEMENT}

The foregoing sections reflect the efforts of many groups and individuals, as the references indicate. In particular, the key material provided by Dr. George Weiffenbach and his colleagues at the Smithsonian Astrophysical Observatory: inciu ing E. M. Gaposchkin M. Pearlman, and D. Arnold, has furnished the basis for a conside.able amount of the discussion and the resulting body of conclusions which are reported upon here. Appreciation is also expressed for a number of additional valuable contributions including those made by W. M. Kaula, J. E. Faller, I. I. Mueller, R. J. Anderle, B. Chovitz, S. Yionoulis, D. Eckhardt, W. Melbourne, D. Trask, J. Whitcomb, C. Scholz, J. Berger, F. Vonbun, H. Plotkin, D. Smith, T. Johnson, P. Minott, D. Bowden, J. Randall, L. McNair, F. Williams, R. Spencer, and J. Murphy.

\section*{REFERENCES}
1. NASA Earth and Ocean Physics Applications Program Plan, September, 1972
2. Weiffenbach, G.C., "Use of a Possible Stable Satellite For Earth-Physics Applications," Smithsonian Institution Astrophysical Observatory, April, 1.773.
3. Faller, James E., Letter to Dr. John E. Naugle, Associate Administrator For Space Science, NASA, May 22, 1973.
4. Vonbun, F. O., "Laser Geodynamic Satellite (LAGBOS)", Memorandum to Mr. F. Williams, Director, Special Programs Division, Office of Applications, NASA, September 27, 1973.
5. Smith, D. E., Private Communication.
6. Escobal, P. R., Ong, K. M., Von Roos, O. H., Shumate, M. S., Jaffe, R. M., Fliegel, H. F., and Muller, P. M., "3-D Multilateration: A Precision Geodetic Measurement System," JPL Technical Memorandum \(3 . \because\) March 15, 1973.
7. Muller, . M., Private Communication.
8. Weiffenbach, G. C., and Arnold, D., Private Communication.
9. Plotkin, H., and Minott, P. O., furnished the Specifications for Fabrication of GBOS-C Cube Corners.
10. Minott, P. O., and Plotkin, H., furnished the Specifications for Fabrication of Timation IIT Cube Corners.
11. Weiffenbach, G. C., and Arnold, D., Private Communication.
12. Pearlman, M. R., and Arnold, D. A., "Lageos Signal Strengths," Memorandum For the Record, January 2, 1974.
13. Moore, J., "A Procedure for Placement of Corner Cube Retroreflectors (CCR) on the Laser Geodynamic Satellite (LAGEOS)", Marshall Space Flight Ce er, S\&E-AERO-MX, January 1974.
14. Arnold, D., "Baker Nunn Tracking of LAGEOS", Memorandum For the Record, January 16, 1973, and Pearlmarı, M. R., Letter to R. Spencer, January 24, 1974.
15. Vonbun, F. O., Private Communication.
16. Kaula, William M., Letter to Joseph W. Siry, November 9, 1973.
17. Kaula, William M., Letter to Peter L. Bender, February 1, 1974.
18. Bender, Peter L., Letter to William M. Kaula, January 3, 1974.
19. Anderle, R. J. "LAGBOS Launch Conditions", January 10, 1974.
20. Mueller, Ivan I., Letter to Joseph W. Siry, January 25, 1974, enclosing "The Altitude of LAGFOS", preprinted from "Basic Research and Data Analysis For The National Geodetic Satellite Program anci For the Narth and Ocean. Physics Applications Program". Semi-annual Status Report, Department of Geodetic Science, The Ohio State University Research Foundation, January 1974.
21. Gaposchkin, E. M., "LAGEOS Orbit Specifications", Memorandum For The Record", December 10, 1973.
22. Schindler, W. R., "Delta Performance Estimates", Letter to Marshall Space Flight Center, December 14, 1973.
23. Courtney-Pratt, J. S., Hett, J. H., and McLaughlin, J. W., "Optical Measurements on Telstar Satellite to Determine The Orientation of the Spin Axis and the Spin Rate", Cf. the Bell System Technical Journal Vol. XLII, Number 4, Part 2, pp. 1477, 1478, and 1504, July 1963.
24. Moore, John E., "Placement of Corner Cube Retroreflectors on LAGEOS Satellite", Letter to Lewis McNair, George C. Marshall Space Flight Center, February 14, 1974.
25. Squires, R. K. and Cooley, J. L., "Interim Repurt on LAGEOS Mission Analyses" GSFC Report No. X-591-74-25, December 1973
26. Kaula, William M., Letter to Joseph W. Siry, March 15, 1974.
27. Milwitzky, B., "New Laser Trackine Sites for LAGミOS Support," Memorandum to R. Stephens, June 27, 1073.```


[^0]:    *For whle by the Nationel Technical Intormetion Service, Springfield, Virginio 22161

