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ABSTRACT
 

A critical review of past efforts in the design and testing of
 

ride smoothing and gust alleviation systems is presented.- Design
 

trade-offs involving sensor types, choice of feedback loops, human
 

comfort and aircraft handling-qualities criteria are discussed.
 

Synthesis of a system designed to employ direct-lift and side-force
 

producing surfaces is reported. Two STOL-class aircraft and an
 

executive transport are considered. Theoretically-predicted system
 

performance is compared with hybrid simulation and flight test data.
 

Pilot opi.nion rating, pilot workload, and passenger comfort rating
 

data for the basic and augmented aircraft are included.
 

Mii
 



TABLE OF CONTENTS
 

Page
 

ABSTRACT............... . ...
............ 


LIST OF TABLES.......... ............................... ix
 

LIST OF FIGURES ........... ....................... xi
 

NOMENCLATURE.. .......................... 
 xv
 

Chapter
 

I INTRODUCTION........ .......................... I
 

1.1 	 Problem Statement....... .................. 


1.2 	 Historical Perspective ....... ............... 3
 

1.3 Research Objectives..... ................ . .... 11
 

II PROBLEM DEFINITION......................... 13
 

2.1 	 Equations of Motion............. ........ . 13
 

2.2 	 Description of Atmospheric Turbulence and
 
Calculation of Aircraft Response .............. 16
 

-2.3 Ride Smoothing System Criteria ... ........... ... 16
 

2.3.1 Passenger Comfort ...... ....... .... 16
 

2.3.2 Design Level of Turbulence ............... 17
 

2.3.3 Surface Activity................ 19
...... 


2.3.4 Handling Qualities......... ......... 19
 
2.3.5 Failure Modes ...... ................... 20
 

2.3.6 Feasibility ...... .............. ... 20
 

2.3.7 The Optimal Control Performance Index . . .. 20
 

2.4 	Selection of Sensors, Control Surfaces, and
 
Feedbacks........... ..................... 21
 

G E oT 	 v 



TABLE OF CONTENTS (Continued)
 

Chapter Page
 

III ANALYSIS AND SYNTHESIS................. ......... 25
 

3.1 	 Order of Presentation........ ................ 25
 

3.2 	 Demonstration Aircraft ...... .. ....... 25
 

3.3 	 Method of Analysis ........ ....... ..... 28
 

3.4 	Longitudinal Ride Smoothing Systems............... 28
 

3.4.1 	 The Basic JetStar--Longitudinal Case........ 28
 

3.4.2 	Baseline Longitudinal Ride Smoothing System . 33
 

3.4.3 	 Effect of Inner Loop Closures ............. 35
 

3.4.4 	Basic Multi-Loop Longitudinal Ride
 
Smoothing System..... ............... 35
 

3.4.5 	Analytic Model of Longitudinal Ride
 
Smoothing System ..... ................ 43
 

3.4.6 	Longitudinal Ride Smoothing System I.......50
 

3.4.7 	 Longitudinal Ride Smoothing System II . ... 62
 

3.5 	 Lateral Ride Smoothing Systems .... ......... ... 65
 

3.5.1 	 The Basic JetStar--Lateral Case ......... 65
...
 

3.5.2 	 Lateral Ride Smoothing System ......... 69
 

3.5.3 	Analytic Model of Lateral Ride Smoothing
 
System....... .................... ... 82
 

3.5.4 	Alternate Lateral Ride Smoothing System . . . 85
 

3.6 	Overall Effectiveness of Combined Axis Ride
 
Smoothing System ........ ................... 89
 

IV 	 SIMULATION EXPERIMENTS...... .................. ... 91
 

4.1 	 Order of Presentation........ ................ 91
 

4.2 The Simulator Facility .... 
 ................... 91
 

4.3 Digital Computer Program .. 
............... . 93
 

4.4 	Analog Circuits ....... 
 ...................... 95
 

vi
 



TABLE OF CONTENTS (Continued)
 

Chapter Page
 

IV 4.5 Hybrid Simulation Verification ......... 95
...... 


4.6 Simulation Evaluation Pilots ........ ........10
 

4.7 Handling Qualities Evaluation .............. 104
 

4.7.1 General Instructions.................. 104
 

4.7.2 Longitudinal Task .... ........... . ... 05
 

4.7.3 Lateral Task......... .............. 108
 

4.7.4 Combined Axes Task...... .............. 109
 

4.7.5 Smooth Air Evaluation, Conclusions......... Ill
 

4.7.6 Instrument Landing System Approach Task . Ill
 

4.7.7 Simulation of Straight and Level Flight . 122
 

4.8 Conclusions........ ..................... 126
 

V FLIGHT TEST PROGRAM ......... ............ .... 129
 

5.1 Planned Program....... .................. ... 129
 

5.2 Implementation of RSS Aboard the JetStar .......... 129
 

5.3 Ground Tests ....... ..................... 131
 

5.4 Data Acquisition and Reduction ... ......... ... 133
 

5.5 Summary of Flight Test Data..... ........ ... 134
 

5.6 Conclusions......... ................ ... 138
 

VI EXTENSION OF RIDE SMOOTHING SYSTEM CONCEPT TO
 
STOL AIRCRAFT .......... .............. ....... 143
 

6.-1 Selected Aircraft....... .................... 143
 

6.2 Synthes-is of Ride Smoothing Systems.............. 145
 

6.2.1 Longitudinal RSS...... ................ 145
 

6.2.2 Lateral RSS ........ ................. 153
 

6.2.3 Improvement in Passenger Comfort.......
... 159
 

vii
 



TABLE OF CONTENTS (Continued)
 

Chapter Page
 
VI 6.3 Simulator Evaluation of STOL Ride Smoothing
 

Systems...... ............ ....... . . . . .. 159
 

6.4 Conclusions.......... .................. ... 161
 

VII CONCLUSIONS AND RECOMMENDATIONS .... ........... 163
 

Appendix
 

A DEFINITION OF STABILITY DERIVATIVES ... ........... ... 165
 

A.1 	 Axis Systems ......... ..................... 165
 

A.2 	Definition of Nondimensional Stability Derivatives 166
 

A.3 	Transformation of Stability Axis Derivatives
 
to Body Axis ............... ..........166
 

A.3.1 Longitudinal Derivatives............ . . .. 166
 

A.3.2 Lateral Derivatives ... ........... .... 167
 

A.4 	Dimensional Stability Derivative Definitions ......168
 

A.4.l Longitudinal Derivatives.............. .. 168
 

A.4.2 Lateral Derivatives . ...... ..... . 169
 

B TURBULENCE FILTERS AND INPUT-OUTPUT RELATIONSHIPS . ... 173
 

C JETSTAR DATA........ ...................... .. 177
 

D FORMULATION OF TRANSFER FUNCTIONS FOR MULTI-LOOP
 
FEEDBACKCONTROL SYSTEMS...... ................ ... 181
 

E STOL DATA ......... ........................ .. 187
 

REFERENCES.............. ............................ 191
 

ViII
 



LIST OF TABLES 

Table Page 

I Longitudinal Competigg Systems...... ............. 23 

II Performance of Baseline Longitudinal RSS...... ..... 34 

III Characteristics of Longitudinal Ride Smoothing System I 60 

IV Characteristics of Longitudinal Ride Smoothing System II 67 

V Effect of Feedbacks on Roll Subsidence and Spiral Modes 74 

VI Characteristics of Lateral Ride Smoothing System ....... 80 

VII Comparison of Lateral Ride Smoothing Systems.... ..... 88 

VIII Cooper-Harper Rating Scale..... .................. 106 

IX Average Cooper-Harper Pilot Ratings, Longitudinal Task. . 107 

X Average Cooper-Harper Pilot Ratings, Lateral Task . . . 109 

XI Average Cooper-Harper Pilot Ratings, Combined Axis Task . 110 

XII Average Cooper-Harper Pilot Ratings, ILS Task .... .... 113 

XIII Simulation Results, ILS Tracking Task ... ............. 123 

XIV Ride Smoothing System Flight Test Results ............. 136 

XV Comparison of JetStar and STOL Longitudinal Ride 
Smoothing Systems .......... .......... ....... 149 

XVI Comparison of JetStar and STOL Lateral Ride 
Smoothing Systems ............ ............... 156 

XVII Average Cooper-Harper Pilot Ratings, STOL ILS 
Approach -Task.......... ....................... 160 

ix
 



LIST OF FIGURES
 

Figure Page
 

1 Open-Loop Control System ....... ........... 3
 

2 Closed-Loop Control System........ ................ 3
 

3 Passenger Satisfaction Criteria ................
. •.•.18
 

4 NASA General Purpose Airborne Simulator (GPAS). ........ 26
 

5 Schematic of NASA General Purpose Airborne Simulator. . . 27
 

6 Handling Qualities Specification for n/ ............... 30
 

7 Power Spectra of az Due to Turbulence for Basic JetStar . 31
 

8 Partitioned Power Spectra of a for Basic JetStar . . . . 32
z 

......... 33
9 Baseline Longitudinal Ride Smoothing System ... 


10 	 Root Locus for Baseline Longitudinal RSS.............
.. 36
 

6e Loop Closure.............. 37
11 	 Root Locus for 6 ..... 


12 Basic Longitudinal Ride Smoothing System ......... . 38
 

13 Root Locus for Basic Longitudinal RSS .. ......... ... 39
 

14 Performance of Basic Longitudinal RSS;
 
Ga as 	a Function of Ka and K. 4o
 

z 	 z 
15 	 Performance of Basic Longitudinal RSS;
 

aq as a Function of Ka and Ke ......... 41
 
z 

16 	 Performance of Basic Longitudinal RSS;
 
0 f as a Function of K and K
 

17 	 Performance of Basic Longitudinal RSS;
 
C as a Constrained Function of Ka and K . . . . . . .. 44
 

z 	 z 
18 	 Comparison of Digitally Calculated a with
 

Analytic Expression ... .... az . .... 48
 

19 	 Power Spectra for w Due to A ..... ............. ... 49
 
9
 

20 Root Locus of Effect on Short-Period Dynamics of Filters
 
in az+ +f Feedback Loop ................. .... 51
 

xi
 

PRECE ING PAGE BIANK NOT ifIIvF 



LIST OF FIGURES (Continued) 

Figure Page 

21 Root Locus of Effect on Short-Period Dynamics of a Lead 
'Filter in 6 +e Feedback Loop .......... ........ 53 

22 Longitudinal Ride Smoothing System I................. 54 

23 

24 

Performance of Longitudinal RSS 
aa as a Function of Ka and Ke 

z z 
Performance of Longitudinal RSS 
a as a Function of K and Ke . 

I; 

1; 

...... ..... 

.... 

55 

56 

25 Performance of Longitudinal RSS 
as as a Function of K and K. 

I; 
. .... .... 57 

26 

27 

Performance of Longitudinal RSS I; 
aa as a Constrained Function of K a and Ke .......... 

z z 
Root Locus for Longitudinal RSS I.... ............... 

58 

59 

28 Comparison of a Power Spectra for Basic and Longitudinal 
RSS I Augmented JetStar ...... .................... 61 

29 Longitudinal Ride Smoothing System II... ............ 63 

30 Bode Magnitude Plot of Notch Filter ............... 64 

31 Root Locus of Effect on Short-Period Dynamics of a Notch 
Filter in a f Feedback Loop ... .... .......Fite i z . 66 

32 Comparison of az Power Spectra for Basic and Longitudinal 
RS$ 11 Augmented JetStar.... ................. 68 

33 Power Spectra of ay Due to Turbulence for Basic JetStar 70 

34 Lateral Ride Smoothing System ....... .............. 72 

35 Dutch Roll Root Locus for Lateral RSS ... ....... ... 73 

36 Performance of Lateral RSS; 
a as a Function of K and Kr................a. ay r 75 

37 

38 

Performance of Lateral RSS; 
ar as a Function of Ka and Kr................ 

y
Performance of Lateral RSS; 
o as a Function of K and K r. . .......... 

p a Yxi)r. 

76 

77 



LIST OF FIGURES (Continued)
 

Figure 	 Page
 

39 	 Performance of Lateral RSS;
 
a66 as a Function of K and Kr ...... ... .. 78
 

sfg 	 a
 
y


40 	 Performance of Lateral RSS;
 
a. as 	a Constrained Function of K and K .... ..... 79
 

rAayy .1 	 ya 
41 	 Comparison of a 'Power Spectra for Basic and Lateral
 

-RSS Augmented Y JetStar ......... .............. 81
 

42 	 Comparison of Digitally Calculated aa with Analytic
 
Expression .... .............. y. .. ........ 86
 

43 	 Alternate Lateral Ride Smoothing System.............. 87
 

44 	 Simulation Cockpit ...... ....................... 92
 

45 	 GPAS Test Pilot's Instrumentation........... ....
.. 94
 

46 Analog Equalization Circuit Diagram;
 
az + 6f Feedback Loop..... ................... 96
 

47 Analog Equalization Circuit Diagram;
 
6 0 6 Feedback Loop .......... 97
 

.e
 
............
 

48 	 Analog Equalization Circuit Diagram;
 
r + 6r Feedback Loop ..... ...................... 98
 

49 	 Simulation Laboratory. .............. 99
 

50 	 Rower Spectra of Simulated a ............... 101
 

51 	 Power Spectra of Simulated ............... 102
 

52 	 Power Spectra of Simulated p .............. 103
 

53 	 Altitude Track; Basic JetStar in Design Turbulence
 
Field (Pilot A)............ ................... 115
 

54 	 Deviation from Localizer; Basic JetStar in Design
 
Turbulence Field (Pilot A).... .................. 116
 

55 	 Simulation Time History; JetStar in Design Turbulence
 
I.
Field (Pilot A)........ .................... . 117
 

56 	 Power Spectra of az Due to Turbulence, Simulation Data . 124
 

xiii
 



LIST OF FIGURES (Continued) 

Figure Page 

57 

58 

Power Spectra of a Due to Turbulence, Simulation Data 
y 

Airborne Analog Computer .... ................. 

. 125 

130 

59 Comparison of az 
Longitudinal RSS 

Power Spectra for Basic and 
I Augmented JetStar (Fl'ight Data) . . . 137 

6o Time History; Basic and Longitudinal RSS 
JetStar inTurbulence (Flight Data)... 

J Augmented 
............ 139 

61 Buffalo Longitudinal RSS .... .......... . . .. . .147 

62 S-11 Longitudinal RSS... ................... 148 

63 Comparison of az Power Spectra for Basic and 
Longitudinal RSS Augmented Buffalo ......... .... 151 

64 Comparison of az Power Spectra for Basic and 
Longitudinal RSS Augmented S-il ..... .......... ... 152 

65 Buffalo Lateral RSS....... ..................... 154 

66 S-11 Lateral RSS ...... ........ ........... 155 

67 Comparison of a Power Spectra for Basic and Lateral 
RSS Augmented Y Buffalo ........... ......... 157 

68 Comparison of a Power Spectra for Basic and Lateral 
RSS Augmented Y S-l................ .... 158 

69 Axis Systems ........... ................ 165 

xiv
 



NOMENCLATURE
 

a speed of sound in air
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y 

distance I and Iz from the center of gravity; 
a' = 1 r x,- lIzp z 
y x 

az normal acceleration along the Z-body axis at the center 

of gravity (positive down) 

a]
z 
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x 

from the center of gravity; a' 
z 

= a 
z 
- q

x 
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C reference wing chord 

C comfort rating (Equation 2.3.1)_ 

CL 
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steady-state lift coefficient; C 
CL0 

-

2 P VT0 

D aerodynamic drag force along total velocity vector 
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g acceleration due to gravity 

G.i transfer function of output j due to input i 

h altitude 
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q pitch rate; angular velocity about Y-axis
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CHAPTER I
 

INTRODUCTION
 

1.1 Problem Statement
 

This dissertation reports on the analysis, synthesis, and
 

experimental evaluation of a Ride Smoothing System for aircraft flying
 

in atmospheric turbulence. Both longitudinal and lateral systems were
 

investigated. Multiple design criteria, intended to satisfy the require­

ments of all components of the aircraft/pilot/passenger system, were
 

established. Three Ride Smoothing System designs, two for the
 

longitudinal and one for the lateral case, all of a multiloop feedback
 

type, were developed. Two sets of unique control surfaces, direct-lift
 

flaps and side-force generators, were used in addition to elevator
 

and rudder for the mechanization. Predicted system performance was
 

verified in a fixed-base ground simulator. The systems were also
 

mechanized aboard the National Aeronaut'ics and Space Administration
 

(NASA) General Purpose Airborne Simulator (GPAS). Limited flight tests
 

were conducted to evaluate two of the Ride Smoothing Systems.
 

Before discussing the motivation for this research, it is necessary
 

to define several concepts: Ride Smoothing System (RSS), Gust Load
 

Alleviation System (GLAS), Mode Suppression System (MSS), and Stability
 

Augmentation System (SAS). The first three systems are designed
 

primarily to attenuate aircraft response to atmospheric turbulence,
 

but differ considerably in design criteria.
 

A Ride Smoothing System can be defined as one which proposes to
 

improve passenger and flight crew comfort. It is generally designed to
 



suppress aircraft motion induced by moderate to heavy continuous 

turbulence ( = 2.1 m/sec). Attentuation is achieved by damping
9 

rigid body modes, changing their natural frequency and/or deflecting 

control surfaces to counteract transient loads. 

A Gust Load Alleviation System is designed to protect the aircraft 

structure from exceeding load limits. Transport class ai.rcraft are
 

typically stressed to + 2.5 g. At low speeds, lift loads induced by
 

large "sharp-edged" gusts (w = 15 m/sec) can exceed the design limit.
 

Such aircraft are termed "gust-critical." Significant extension of the
 

load-factor envelope or an equivalent reduction in structural weight
 

are possible if an active GLAS is incorporated.
 

A Mode Suppression System is designed to counteract turbulence­

induced flexible-body mode excitation. The design objective for a MSS
 
is usually twofold: improvement of ride qualities at the pilot station
 

and improvement of the fatigue life of the airframe.
 

Both the Gust Load Alleviation System and Mode Suppression System
 

may include the functions of a Ride Smoothing System. Successful
 

implementation of any of the three, the RSS; 
GLAS and MSS, may require
 

the addition of a Stability Augmentation System in order to restore or
 

improve the aircraft handling qualities.
 

Unfortunately, the above terms, and 
a number of variations, are
 

often used interchangeably in the literature. Similarly, the terms
 

turbulence (herein considered continuous) and gusts (discrete) have,
 

in the past, been used synonymously. This report will deal only with
 

the investigation of a Ride Smoothing System designed to operate in
 

continuous turbulence as defined above.
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1.2 Historical Perspective
 

Past Ride Smoothing System designs have used two general approaches:
 

open- and closedrloop design philosophies. The.essential difference
 

between the two can be i1llustrated by simple block diagrams:
 

TURBULENCE
 

SENSOR 
& AIRCRAFT MOTION 

FILTER DYNAMICS 

PILOT I CONTROL
 

INPUT COMMAND
 

FIGURE 1. OPEN-LOOP CONTROL SYSTEM
 

TURBULENCE
 

MOTION
AIRCRAFT 

DYNAMICS
 

CONTROL
PILOT 

COMANDINPUT 

SENSOR
 

FILTER
 

FIGURE 2. CLOSED-LOOP CONTROL SYSTEM
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The open-loop scheme (Figure 1) has one very desirable feature:
 

in principle, the aircraft dynamics remain unchanged as a result of the
 

control. Practical difficulties, however, abound. In order to optimize
 

the control law, a precise mathematical formulation of the turbulence
 

field and aircraft dynamics is required. An adequate gust angle of
 

attack sensor isdifficult to mechanize. The most popular sensor has
 

been the nose-boom mounted angle of attack vane. Unfortunately, an
 

angle of attack vane measures not only variations in the remote wind,
 

but responds to aircraft motion as well. Unless the vane measurements
 

are accurately corrected for'aircraft motion, an "aerodynamic feedback"
 

results--and the characteristic equation is modified. Finally, if the
 

overall gain of the system is high; i.e., almost total alleviation of,
 

say, normal acceleration is achieved, the pilot will be unable to
 

command a change in flight path by conventional means. With modern
 

analog circuitry, servosystems and analytic techniques, an open-loop
 

design can be implemented, but the resulting system is quite complex.
 

The closed-loop RSS is shown as a classical feedback system (Figure
 

2). As compared to the open-loop scheme, the main advantage of a feed­

back system is that no explicit knowledge of the turbulence field and
 

its effect on the aircraft response is required. Careful analysis of
 

the effect of feedback on the characteristic equation roots must,
 

however, be undertaken. The effect of high gain systems on control is,
 

of course, the same as for the open-loop case. The simplification in
 

terms of sensor requirements afforded by the closed-loop system makes
 

this approach more attractive from the practical viewpoint.
 

4 



Not surprisingly, the first attempts at providing aircraft with
 

a ride smoothing or gust alleviation capab'ility'ended in failure.
 

Phillips, in a survey article (1), describes several of these pioneering
 

efforts. Waterman, about 1930, built an airplane with wings attached to
 

the fuselage by skewed hinges. Steady lift forces were balanced by
 

pneumatic struts. Unsteady lift loads caused the wings to deflect, thus
 

reducing the local angle of attack. A modern equivalent of this
 

mechanism is found in the flexible, swept-wing aircraft. The biggest
 

drawback in Waterman's design was lack of adequate lateral control:
 

deflection of ailerons would cause deflection of the wings in opposition
 

to the desired rolling moment.
 

In 1953, results of a series of ride smoothing flight tests
 

conducted with a Lancaster bomber by the British Royal Aircraft
 

Establishment were published (2). The Lancaster system was designed
 

to operate essentially in an open-loop sense: the vertical component
 

of turbulence was sensed by a "wind incidence meter" mounted on a boom
 

ahead of the nose of the aircraft. The derived electrical analog
 

signal was then used to command symmetric aileron deflection so as to
 

reduce the anticipated lift increment. Flight data, however, indicated
 

an amplification of aircraft response. The preliminary explanation,
 

confirmed in a 1961 report (3), blamed the failure on incomplete
 

analysis: the system design had neglected the adverse effect of
 

aileron-induced pitching moment on system performance.
 

In 1950, the Douglas Aircraft Company conducted' flight tests with
 

a C-47 aircraft configured for gust alleviation. The feedback control
 

used a linkage system which caused symmetric aileron deflection as a
 
5 



function of wing bending. As with the British effort, and for the same
 

reasons, flight tests were inconclusive (1).
 

Another essentially open-loop GLAS/RSS design, also summarized by
 

Phillips (1), was developed by the Frenchman Ren4 Hi,rsch about 1938
 

and successfully flight-tested aboard a specially-fabricated light
 

aircraft during the period 1954-1967 (4.. Hi-rsch's clever mechanization
 

of both a longitudinal and lateral system is mechanically too complex
 

to fully discuss here. The many free aerodynamic surfaces,' cables,
 

bellcranks, etc., that were critical to the success of his design
 

would have to be replaced by modern sensors and servosystems if the
 

design were to be implemented aboard a larger aircraft.
 

Numerous NACA/NASA Technical Notes document the investigation of
 

a longitudinal Ride Smoothing System at the NASA Langley Research
 

Center. The first of these, published in 1951 by Phillips and Kraft (5),
 

sets forth the basic design philosophy of the open-loop system. The
 

sensing element is an angle of attack vane. Two control surfaces are
 

driven by this signal: direct lift flaps and, through fixed gearing,
 

the elevator. In order to counter the flap-induced change in downwash
 

at the tail, it was proposed that a small inboard portion of the flaps
 

be driven in opposition to the main flaps. In principle, the proposed
 

system was capable of total alleviation of turbulence-induced vertical
 

acceleration and pitching moment. Pilot control of flight path was
 

provided by connecting the control stick to both the direct lift flaps
 

and elevator. Concurrent research established the feasibility of using
 

a single angle of attack vane to provide an adequate measure of the
 

average angle of attack perturbation over the entire wing span (6).
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Subsequent analytic work and analog computer simulation indicated
 

that adequate static stability could be insured by providing a small
 

static margin at the expehse of some alleviation capability (7). Initial
 

flight tests were conducted aboard a C-45 aircraft flying at a single
 

airspeed. A reduction in acceleration of 40 to 50% at specific
 

frequencies was realized (8). Pilot opinion of longitudinal control
 

adequacy was reported favorable.
 

Results of a more complex flight test program were reported in
 

1961 by Hunter, et al. (9)(10). Additional alleviation capability had
 

been achieved by slaving the ailerons to the direct lift flaps. Another
 

modification was the ifcorporation of a negative feedback loop in the
 

flap position command circuit. The feedback was mechanized using a
 

mechanical/electrical integrator. This feature permitted longitudinal
 

trim changes and minimized phugoid mode excitation. Performance of the
 

system was improved to a maximum acceleration attenuation of 60% at the
 

short-peri6d frequency. Somewhat lower performance was recorded when
 

the command signal was generated by a c.g.-mounted normal accelerometer
 

rather than the angle of attack vane. Curiously, Hunter, et al. do not
 

discuss the effect on aircraft dynamics of changing from an essentially
 

open-loop (angle of attack vane) to.a close-loop (accelerometer) system,
 

except to state that the latter system was known to approach instability
 

at high gains.
 

Following completion of these experiments, the C-45 project was
 

terminated. In 1971, Phillips' original design received renewed
 

attention (11 - 16). Barker and Sparrow (11) explain the decade-long 

hiatus in development as being the result of the relative insensitivity
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of the 1960's generation of aircraft to atmospheric turbulence. It-was
 

the advent of Short Takb-off and Landing (STOL) aircraft that provided
 

motivation for continuation of research in Ride Smoothing Systems.
 

Several reasons can be cited for the poor ride quality anticipated
 

aboard STOL aircraft. The sensitivity of an aircraft to turbulence is,
 

to first order, inversely proportional to wing-loading (W/S). Yet, a
 

number of STOL designs rely on low wing-loading in order to achieve re­

quired short field performance. In addition, STOL aircraft are intended
 

to operate at low altitudes where atmospheric turbulence is most severe.
 

Several other investigations of open-loop RSS/GLAS have been
 

reported in the literature. One of these, a 1957 report by Tobak (17),
 

is particularly interesting in that he was the first to apply the Weiner
 

optimum filter theory to the problem of minimization of aircraft response
 

to turbulence. Tobak's analysis validated some of the classical analysis
 

results of Phillips and Kraft (5), as well as establishing the form of
 

the optimum cbmmand circuit filter. Tobak assumed that a sensor signal
 

proportional purely to fluctuations in angle of attack was available,
 

the turbulence field could be described by the Dryden model, and a
 

single control surface was available.
 

A very similar analysis, culminating in 1971 flight tests with a
 

Dassault Mirage III delta-wing fighter by the Office National d'Etudes
 

et de Recherches Aerospatiales (ONERA), was reported by Coupry (18).
 

Initial data indicated that substantial reduction in the normal
 

acceleration levels at the pilot-station was achieved.
 

A series of studies of closed-loop, longitudinal RSS Smoothing
 

System designs has been carried out by a group at the University 
of
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Osaka in Japan (19)(20). In the first of these papers, three systems
 

were postulated; all depending on feedback of normal acceleration and
 

pitch attitude, rate and acceleration to the elevator and direct lift
 

flaps of a conventional subsonic aircraft. The first system; designated
 

a "Linkage-Control System," summed all feedback signals before generating
 

.acommand signal for the two control surfaces. The second, "Noninter­

acting System," made provision for separate equalization in each feed­

back path. The last, "Split-Control System," commanded the direct lift
 

flaps in response to vertical acceleration and the elevator in response
 

to pitch rate only. Within the limits of the assumptions of the study,
 

the authors concluded that the "Split-Control System" was not only the
 

simplest, but also the most effective in reducing c.g. acceleration.
 

Stability of the aircraft system was substantially increased but the
 

short-period frequency was decreased. The authors did not comment on
 

the effect of such a shift on the handling qualities of the vehicle,
 

although the possibility of introducing an integrating circuit in the
 

feedback loops in order to improve control was postulated. The second
 

paper reported on the calculation of an optimal feedback system, and
 

showed the performance of the optimal and simplified ("Split Control")
 

systems to be equivalent.
 

A closed-loop design approach, almost identical to that of the Osaka
 

group, was adopted by Holloway, et al. of Boeing (21) for a feasibility
 

study of a STOL Ride Smoothing System. Vertical acceleration was fed
 

back to the direct lift flap through a low-pass filter and pitch rate
 

to the elevator through an integrator circuit. Well-defined operating
 

criteria were established, including the design turbulence level,
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attentuation requirement for passenger acceptance, and a handling
 

qualities specification. In addition, a lateral ride smoothing system
 

was designed based on feedback of filtered yaw rate and lateral
 

acceleration to the rudder. The same general system was adapted for
 

installation aboard a deHavilland DHC-6 Twin Otter aircraft (22).
 

Several theoretical studies based on the application of optimal
 

control theory to closed-loop Ride Smoothing Systems have also appeared
 

in the.literature. Hess (23) investigated a system that.drove the
 

elevator in response to the sum of three signals: normal acceleration,
 

pitch rate, and angle of attack. One of his major conclusions was
 

that the performance of the optimal controller was insensitive to
 

characteristics of the turbulence field; in particular, the "character­

istic gust length." In subsequent investigations, the feedforward loop
 

was eliminated because of the difficulty in mechanizing a practical
 

angle of attack sensor. The resulting system, identical in form to an
 

"acceleration autopilot," was shown to have an alleviation capability
 

nearly equivalent to the optimal controller (24)(25). A similar con­

figuration had been studied earlier by McClean (26).
 

Probably the most ambitious study of an aircraft gust alleviation
 

system designed to suppress longitudinal rigid-body response was
 

undertaken by Iliff (27). His research involved the application of
 

stochastic identification theory to a system (the aircraft) contaminated
 

by state noise (turbulence). Not only did lliff's technique successfully
 

extract almost exact values of aircraft stability derivatives, it also
 

yielded a good approximation of the root mean square turbulence intensity.
 

liff also demonstrated application of stochastic control theory to
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solving the gust alleviation problem; minimizing either vertical
 

acceleration or pitch rate. Unfortunately, no research aircraft
 

equipped with an onboard digital computer capable of performing the
 

required calculations is available to prove Iliff's concepts in flight.
 

A great deal of research effort since the early 1960's has dealt
 

with the problem of structural mode alleviation for flexible aircraft.
 

A good survey of this work is presented in a paper by Swaim (28). "
 

Solutions to this problem are generally attempted through the application
 

of linear optimal control theory. An example of this approach is
 

discussed by Smith, et al. (29). Since this dissertation does not
 

consider the effect of turbulence on non-rigid aircraft, detailed
 

review of Mode Alleviation Systems will be omitted.
 

1.3 Research Objectives
 

As mentioned previously, the ride quality aboard STOL-class aircraft
 

might be improved by the incorporation of a Ride Smoothing System. In
 

fact, several conceptual studies of STOL designs (e.g., Reference 30)
 

assumed that a Gust Alleviation and/or Ride Smoothing System would be
 

an integral part of the aircraft design. Although several flight
 

investigations of open-loop RSS performance have been conducted, no
 

closed-loop systems have been so tested. It was the ultimate purpose
 

of this research to provide such an evaluation for both a longitudinal
 

and lateral Ride Smoothing System. Furthermore, previous designs often
 

neglected to consider the effect of such systems on aircraft handling
 

qualities, both in terms of stability and control characteristics. Such
 

consideration is most important for STOL aircraft, since they will be
 

expected to maneuver extensively in the airport terminal area. An
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evaluation of the interaction of the pilot with the RSS-augmented
 

aircraft was, therefore, identified as a critical area in need of
 

investigation. The most critical flight regime for piloted flight is
 

the approach for landing. For this reason, the handling-qualities
 

evaluation was conducted with the aircraft in the approach configura­

tion. By approaching the analysis and synthesis of a Ride Smoothing
 

System from a comprehensive, systems engineering viewpoint, it was
 

hoped that not onl'y the above major objectives could be accomplished,
 

but a better understanding of inherent engineering trade-offs would be
 

achieved.
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CHAPTER II
 

PROBLEM DEFINITION
 

2.1 	 Equations of Motion
 

It is assumed that the motion of the aircraft can be adequately
 

described by standard, linearized, separable, small perturbation
 

equations of motion. In order to simplify the formulation of feedback
 

quantities obtained from aircraft sensors (e.g., accelerometers), the
 

equations are written with respect to body fixed axes. The coefficients
 

of these differential equations are in dimensional form (see Appendix
 

A). Derivations of the equations of motion can be found in any standard
 

text on airplane flight mechanics (e.g., Reference 31). Validity of
 

these expressions is subject to the following major assumptions:
 

1. 	The airframe is a rigid body;
 

2. 	 The earth is an inertial reference frame;
 

3. 	 The mass and mass distribution of the vehicle are constant;
 

4. 	 The XZ plane is a plane of symmetry;
 

5. 	 Disturbances from steady flight conditions are small;
 

6. 	 Initial conditions are straightline flight with forces
 

and moments balanced;
 

7. 	 Longitudinal forces and moments due to lateral perturbations
 

are negli'gible and vice versa;
 

8. 	 The flow is quasi-steady; and
 

9. 	 The effect of engine gyroscopics is negligible.
 

Furthermore, the airframe may be subject to forces and moments
 

caused by control surface (direct lift flap, elevator, side force
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generator and rudder) deflections.. Thrust is assumed constant. The
 

effects'of turbulence are included by assuming uniform immersion of
 

the aircraft and applying the disturbances in terms of vertical and
 

lateral velocity perturbations (w and vg) and the related angular

9 9.
 

velocity increments in pitch rate, roll rate and yaw rate (q , pg, and
 

r ) at the center of gravity through the appropriate aerodynamic
 

coefficients (32). The effect of the longitudinal turbulence, u,9 is
 

neglected.
 

In matrix form, the resulting Laplace transformed equations of
 

motion for the aircraft are:
 

Longitudinal 

( X)s * -(Xs + X) (- X + Wo)s + g cos0 uu. W w q 0 0 

-Z.s - Z * (I -Z.)s -Z (-z -Uo)s + g sin 00 w u uW q 0
 

- M.s - M * - (M s + Mw) s -Ms
 
u u w w q 

X~*f
X
6 e f
 
w ef
e f
 

Z f
Z e Zw Zq 
 w
 
9
 

M H
 

e f w q L qg j
 

q S6 (2.1.2)
 

a sw - U0q + (g sin 6o)6 (2.1.3) 

a' a - s26 (2.1.4)
z z x
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I 

Lateral
 

- ) W0 S + g cos 0o UoS - y sin 60 ­
(s - Vv Vs

vV T0 VT0s
 

s-L') - L' p/s 
-LS s(s Lp r 

- N- N s (s -N') r 

S pr 

Y6 r Y6 sfg Yv 0
0 6sfg
 

L6 ' L6 'sfg ' L L 9(2.1.5)
 
r 3s fg pI g
 

M6 N6 ' N5 Nr Np r
 

pg
 

v = VT 0 (2.1.6) 

4, = p/s +(r/s) tan a (2.1.7) 

, = (1/Cos ec0)(r/s) (2.1.8) 

ay sv + U0 r - W0 p - gcos 00) (2.1.9) 

= a a + I sr - l sp (2.] 10) 
y y x z 

The stability derivatives (X,., X etc.) are defined in Appendix A.
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2.2 	 Description of Atmospheric Turbulence and Calculation of
 

Aircraft Response
 

Atmospheric turbulence is generally random in time; being both
 

intermittent and variable in intensity. Thus, the input-output
 

relationship of aircraft response to turbulence is described in terms
 

of statistical quantities defined by random process theory. A concise
 

treatment of the important concepts of this theory as applicable-to
 

the aircraft problem can be found in an article by Pratt (33). Short
 

'patches" of turbulence are assumed to satisfy certain statistical
 

properties: stationarity, homogeneity, isotropy, ergodicity, and
 

normality in the Gaussian sense. In addition, Taylor's hypothesis is
 

assumed valid: the turbulent velocity pattern is frozen in space. Thus,
 

a relationship defined on the aircraft velocity exists between the
 

spatial and spectral frequencies of turbulence.
 

Mathematical expressions for the input-output relationship in terms
 

of statistical quantities as well as definitions of turbulence transfer
 

functions are given in Appendix B. Additional relationships, needed to
 

include the effect of closing feedback control loops, are developed
 

as required in the discussion.
 

2.3 	 Ride Smoothing System Criteria
 

2.3.1 Passenger Comfort
 

It is generally recognized that the comfort of aircraft
 

passengers is affected by numerous physical and psychological factors (34);
 

of these, the motion environment is believed to be one of the important
 

variables. Although no comprehensive criteria for predicting comfort
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is available, several mathematical models of subjective passenger
 

response to aircraft motion have been developed by Jacobson, et al. (35).
 

The simplest form, valid for motion 	dominated by vertical acceleration,
 

predicts a comfort rating:
 

C = 2 + 11.9 azrms + 7.6 a 	 (2.3".1)
 

where
 

C = 1; Very Comfortable
 

C = 2; Comfortable
 

C = 3; Neutral
 

C = 4; Uncomfortable
 

C = 5; Very Uncomfortable
 

and the acceleration levels are expressed in units of acceleration due
 

to gravity (g's). This subjective reaction to an aircraft motion
 

environment has also been correlated to passenger satisfaction with the
 

"quality" of the ride (Figure 3).
 

2.3.2 Design Level of Turbulence
 

Because all of the work discussed herein is concerned with
 

an aircraft flying in the approach flight regime, the nominal aircraft
 

operating altitude was defined as 365 meters (1000 feet). The
 

corresponding characteristic gust lengths are Lw = 305 meters (1000 ft)
 

and Lv = 442 meters (1450 ft). A value of the root-mean-square
 

vertical gust velocity corresponding to a 1% probability of exceedance
 

was 	chosen as the standard; thus, ow = 2.1 m/s (7 ft/sec) (Equation
 

9
B.8) and'av = 2.6 m/s (8.4 ft/sec) (Equation B.9). 
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2.3.3 	 Surface Activity
 

For a zero mean Gaussian process it can be shown that 99%
 

of the time a random variable can be expected to fall within + 2.6c,
 

where a is the standard deviation. In order not to violate the
 

mathematical assumption of linearity, gains of feedback control loops
 

in a Ride Smoothing System mechanization must be limited such that the
 

root-mean-square control surface deflection does not exceed approximately
 

38% of the available range.
 

2.3.4 	Handling Qualities
 

The current, industry accepted, standards for handling
 

qualities of aircraft in smooth air are contained inMilitary
 

Specification F-8785B (36). As pointed out by Barnes (37), the
 

requirements are vague on the subject of handling qualities for flight
 

in turbulence. The criteria of MIL-F-8785B can, however, be applied
 

to both the baseline and RSS augmented aircraft in order to determine
 

compatibility with minimum acceptable levels of aircraft dynamic mode
 

parameters (e.g., wn, sp, TR' etc.). For this purpose, the aircraft
 

under consideration for augmentation with a Ride Smoothing System was
 

assumed to fall in the Class II ("medium weight, low to medium
 

maneuverability") category. Level I ("clearly adequate") flying
 

qualities were sought for the category C ("terminal") flight phase.
 

In addition to the possible detrimental effect of a Ride
 

Smoothing System on the dynamics of an aircraft, the effect on control
 

power is of concern (e.g., n/a). Thus, final evaluation of handling
 

qualities must be accomplished in piloted simulation using the Cooper-


Harper criteria (38).
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2.3.5 	Failure Modes
 

Any automatic control system is subject to failure. In the
 

case of a Ride Smoothing System, it can be argued that system operation
 

is not critical to the integrity of the airframe or flight safety. For
 

non-self-monitoring mechanizations, however, unrecognized failures in
 

multi-loop feedback systems could result in significant changes in the
 

aircraft stability characteristics. Thus,, a system of this type must be
 

constrained to failure modes that do not catastrophically alter handling
 

qualities. Compatibility with this requirement is again best tested in
 

piloted simulation.
 

2.3.6 	 Feasibility
 

Any system design must be implementable. Few aircraft are
 

equipped with an extensive onboard digital computing capability. Thus,
 

any system command signal processing requirement must be met with analog
 

devices. As with most engineering solutions, feasibility and reliability
 

of a Ride Smoothing System is to a great degree a function of simplicity
 

and economy of design. As a quantifiable criterion, feasibility is
 

difficult to describe--it is the art of engineering design.
 

2.3.7 	The Optimal Control Performance Index
 

The optimal control theory performance index is customarily
 

expressed as an integral of the weighted sum of squared state variables.
 

Most optimal control theory solutions to either the longitudinal Ride
 

Smoothing System or Gust Alleviation design problems have included a
 

combination of az , 6, or 6 f as the integrands in the performance
 

index. From the preceding discussion, it should be evident that not
 

all design criteria are so satisfied. Although minimization of az is
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a desirable goal, total alleviation is not an absolute prerequisite
 

for satisfactory system performance. For any gaven aircraft flying in
 

a given level of turbulence, only alevel of alleviation compatible with
 

the passenger comfort (satisfaction) criterion need be provided. Further­

more, compatibility with the handling qualities criteria, especially in
 

a system failure mode, cannot be adequately included in the classical
 

performance index formulation. Finally, optimal filters, in the case of
 

feedback of all state variables to all control surfaces, tend to be
 

overly complex for mechanization by analog devices. For a Ride Smoothing
 

System, i.e., one proposed to attenuate rigid body response to turbulence,
 

successful design to the above-mentioned criteria dictates a classical
 

(suboptimal), rather than optimal control theory, approach.
 

2.4 Selection of Sensors. Control Surfaces, and Feedbacks
 

Having, in the interests of design simplicity, chosen to l.imit the
 

number of feedback loops, the system analyst/designer is faced with the
 

task of choosing which control surfaces to use and deciding what signals
 

are needed to implement a useful feedback control law. A rational
 

approach to this problem has been proposed by Stapleford, et al (39).
 

The technique involves the identification of essential feedbacks.
 

Quoting:
 

"The essential feedbacks...derive from one or
 
both of two basic flight control system purposes:
 

* To establish and maintain certain
 
specified equiltbrium states of
 
vehicle.,motion.
 

" To remedy aircraft handling quality
 
deficiencies.
 

The establishment and maintenance of an equilibrium
 
state of motion requires an outer control loop
 
pertinent to the vehicle,motion quantity defining
 
that state." (Reference 39, page 8.) 21
 



A Ride Smoothing System essentially fits the above definition. Note
 

the implication that an inner control loop (of a multi-loop feedback
 

system) may be required to satisfy handling qualities requirements.
 

For the longitudinal Ride Smoothing System problem, i.e., the
 

reduction of a response to vertical gusts, three outer loop closures
z 

are possible (see Table I).
 

No equivalent guidelines are available for a lateral Ride Smoothing
 

System.design. Lateral autopilot functions have classically involved
 

the use of yaw dampers (r +- r feedback) or roll attitude hold devices
 

6
(4 or p + a feedback) to reduce aircraft response to turbulence. The 

recent Ride Smoothing System Feasibility Study by Gordon and Dodson (22) 

reports on the performance of a lateral system using yaw rate and c.g. 

transverse acceleration feedback to the rudder (r and a y 6 ). The 

major difficulty encountered with such a mechanization is explained by 

conflicting requirements on the rudder: significant side force cannot 

be generated without inducing large yawing moments that counter the 

aircraft's natural tendency to weather-vane into the remote wind. Thus, 

lateral acceleration in response to turbulence can successfully be 

suppressed only at a given fuselage station. Application of the 

essential feedback concept points to a solution to this dilemma: 

feedback of transverse acceleration to a pure side-force generating 

control surface (ay - 6sf). Clearly, any number of other feedback 

loops might serve to implement a Ride Smoothing System. 
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TABLE I 

LONGITUDINAL COMPETING SYSTEMS 

Feedback 
Primary Function 

Performed Equalization Requirements Practical Design Problems 

a 
Z 

e6 
es 

1. Increase Cp and wn 
sp 

I. Gain Ka 
VT 

l 
LCm6 

1. Severe gain adjustment with 
flight condition. 

S2. ~ 2 Reduce h and aR due ad z 

response to gusts 2. Lead/lag element 
desirable 

e 2. Sensor location adequate forall flight conditions, 

3. Structural mode feedback. 
4. Increase e response to 

vertical gusts. 

a- e 1. Increase sp and to 
p 

I. Gain K. c - e I. Gain adjustment with flightcondition. 

2.'Reduce h and az 
response to gusts 

2. Lead/lag element 
desirable 

2. Sensor instrumentation 

a. Determination of operating
point. 

a + 6dl 1. Reduce h and a zresponse to gusts 
1. Gain K = 

2 
m3 C CC 

F L 
d a 1f 

b. Errors due to aerodynamic 
interference. 

c. Elaborate sensor complex 
required to suppress gust 
inputs. 

I. Severe gain adjustment with flight condition. 
2. Sensor location adequate for 

2. Crossfeed af aall 

desirable to adjust 
effective 14N6 /Z 

_dlc 
6dlc I 

flight conditions. 

3. Structural mode feedback. 

4. Probable drag penalty due to 
direct lift control surface, 

(Reference 39, page 14) 



CHAPTER I I I 

ANALYSIS AND SYNTHESIS
 

3.1 Order of Presentation
 

In this section of the report, the analysis and synthesis of Ride
 

Smoothing Systems consistent with the criteria of Chapter il is presented.
 

Development of longitudinal systems is contained in Section 3.4. Lateral
 

systems are discussed in Section 3.5.
 

3.2 Demonstration Aircraft
 

To provide the flight evaluation of a closed-loop Ride Smoothing 

System, the NASA General Purpose Airborne Simulator (GPAS) was chosen. 

GPAS Is a Lockheed JetStar (C-140) light utility transport modified for 

variable stability experiments by the Cornell Aeronautical Laboratory, 

Inc. (Figures 4 and 5).
 

Two basic GPAS modes of operation are possible: model following
 

and response feedback (40). For this study, the basic Jetstar
 

was used as the model aircraft. Thus, the model-following capability 

was not required and only some elements of the response feedback system 

were used. These Included the sensor package (accelerometers, attitude 

and rate gyros) and onboard analog computer (Electronic Associates, Inc. 

PC-12). All of the fully-powered control surfaces of the aircraft
 

(elevator, direct-lift flaps, ailerons, rudder and side-force generators)
 

can be coimmanded by the response feedback system. 

The RSS design flight condition was for the aircraft in the power
 

approach configuration. As mentioned previously, because an Instrument
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landing approach is the most difficult flight phase from a pilot's
 

point of view, it is the best condition for evaluation of aircraft
 

handling qualities. Operational parameters, aircraft stability
 

derivatives, and control surface actuator dynamics for this configuration
 

and flight condition are summarized in Appendix C.
 

3.3 Method of Analysis
 

Throughout the analysis and synthesis portion of this research
 

extensive use was made of the digital computer program "CONTROL" written
 

by J. W. Edwards of NASA Flight Research Center. "CONTROL" permits
 

analysis of open- and closed-loop continuous systems by frequency response,
 

transient response, and root locus techniques. The plant is specified
 

in state variable form, but the feedback loops and equalization may be
 

specified in block diagram (frequency domain) form.
 

3.4 Longitudinal Ride Smoothing Systems
 

3.4.1 	 The Basic JetStar--Longitudinal Case 

In the power approach configuration, the longitudinal 

dynamics of the basic JetStar are characterized by the following 

parameters: 

Short Period Mode: sp = -0.9123 + J 1.3948 

sp = 0.546 (0.35) 

W = 0.266 Hz (0.11)n 
sp
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Phugoid mode: Xph = -0.00923 + j 0.1714 

Cph = 0.054 (0.04)
 

P = 36.6 sec
 

T, = 74.8 sec.
 

Control Authority (see Figure 6): = 6.22 g /rad. (2.0) 

The numbers in parenthesis refer to minimum values of the given param­

eter as specified in MIL-F-8785B (36). The basic aircraft clearly
 

meets all longitudinal handling qualities specifications. Only the
 

phugoid mode damping is marginal.
 

i At the design turbulence condition (a = 2.1 m/sec), the 
w
g
 

root-mean-square vertical acceleration was computed to be Ya = 0.1178 g.
 
z 

Throughout this report, calculation of root-mean-square values is 

accomplished by integrating the appropriate power spectra over the 

frequency range of interest: 0.01 < w < 100.0 rad/sec. The mean-square 

acceleration distribution by frequency (power spectra) is depicted in 

Figure 7. 

Although the comfort model (Equation 2.3.1) is given only in
 

terms of total a , it is known that, depending on the frequency band
 
z
 

over which oscillatory excitation occurs, the effect on human comfort
 

is quite different (34). Low frequency oscillations tend to cause
 

motion sickness. Resonance of body organs, leading to annoyance and
 

pain, is possible in the frequency range between 2 and 8 Hertz. For
 

the JetStar, a significant percentage of the total mean-square
 

acceleration is in the low frequency range. Consider the partitioned
 

power spectrum for the basic JetStar (Figure 8). The "power" in
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the lowest frequency band (phugoid peak) is approximately 38% of the
 

total. Only 9% of the total mean-square acceleration occurs at
 

frequency above I Hz; the remainder is concentrated in the short-period
 

peak.
 

3.4.2 Baseline Longitudinal Ride Smoothing System
 

Based on the concept of an essential feedback, a baseline
 

longitudinal Ride Smoothing System employing feedback of vertical.
 

acceleration to the direct-lift flaps was analyzed. In simplified
 

block diagram form:
 

TURBULENCE
 

c,,,.. ACTUATOR 'e 	 z
i
DYNAMICS 	 AIRCRAFT <"
 
DYNAMICS c
 

6f 
 -f oa
 

DYNAMICS
 

FIGURE 9. BASELINE LONGITUDINAL RIDE SMOOTHING SYSTEM
 

az 6f
 

The feedback loop has associated with it only a gain: (no
Ka 


equalization). Performance of this system at the design turbulence
 

condition is summarized in Table II.
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TABLE II 

PERFORMANCE OF BASELINE LONGITUDINAL RSS 

a 4 

z 

(radlm/sec2) 

Kaz 2z 

(rad/ft/sec2) 

aza 

(9) % Alleviation 

lf 

(0) 

n/a 

(g/rad) 

0 

0.1 

0 

0.03 

0.1178 

0.1024 

o 

13 

0 

5.6 

6.22 

3.94 

0.2 O.06 0.0938 20 10.2 2.91 

0.3 

o.4 

0.09 

0.12 

0.0892 

0.0903 

24 

23 

14.5 

19.6 

2.28 

1.88 



The locus of roots of the aircraft characteristic equation
 

for this system is presented as a function of feedback gain Ka in
 
z 

Figure 	10.
 

Several deficiencies in the simple a 6f system are
 

immediately apparent. At reasonable levels of flap activity
 

(a6f Z 100), the degree of vertical acceleration alleviation is
 

small. Both the natural frequency of the short-period mode and the
 

magnitude of the handling qualities parameter n/ are rapidly reduced 

to marginal values as Ka is increased. Phugoid damping remains low. 

Consequently, an "inner" 
z 
loop closure to augment the essentlal feedback 

is indicated.
 

3.4.3 	 Effect of Inner Loop Closure
 

A number of feedbacks will serve to increase short-period
 

frequency: 	 angle of attack to elevator (at 6 ), pitch attitude to
 

6
elevator (0+ ), or normal acceleration to elevator (a or a ' + 6 ).e 	 z e 

The first of these, a 6e, can be eliminated from consideration because
 

of the diff.iculty in providing an adequate sensor. Feedback of az *
 e
 

has a minor effect on phugoid damping and tends to increase pitch
 

response to turbulence (31)(39). The best compromise 

appears to be incorporation of the classical "pitch damper" or 0 + 6e 

feedback. The root locus for this closure is depicted in Figure 11. 

3.4.4 	Basic Multi-loop Longitudinal Ride Smoothing System
 

The basic multi-loop longitudinal Ride Smoothing System in
 

simplified block diagram form is depicted below:
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FIGURE 12. BASIC LONGITUDINAL RIDE SMOOTHING SYSTEM
 

and Ke are pure gains.
Ka 

z 

The effect on aircraft short period and phugoid dynamics is
 

presented as a function of the two feedback gains in Figure 13. Note
 

that the phugoid mode is rapidly stabilized by feedback of 0 for any
 

value of Ka Any desired value of short-period frequency can also be
 z 

attained. Some degradation in the short-period damping ratio, however,
 

results..
 

Performance of the Ride Smoothing System, in terms of percent
 

reduction in ra and q, is depicted as a function of the feedback gains
 
z 

in Figures 14 and 15. Root-mean-square direct-lift flap activity is
 

similarly presented in Figure 16. Maximum permissible root-mean-square
 

flap deflection, consistent with the constraint of Section 2.3.3, is 100.
 

No plot is presented for elevator activity since 06 < 1.20 for all
 
e 

levels of feedback gains considered and is thus well within available
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JetStar limits (-200 <6< + 160). Figure 17 was constructed by
 

superimposing the flap deflection criteria and lines of constant short­

period damping ratio ( sp) and frequency (wn ) on Figure 14. The
 
sp sp
 

resulting surface can be interpreted as a rudimentary graphical
 

representation of a RSS performance index. By referring to this plot,
 

the system designer can choose any combination of gains Ka and Ke to
 
z 

minimize aa and simultaneously satisfy a handling-qualities criterion 
z

based on short-period mode characteristics. Note that no combination
 

of feedback gains will permit a return to the free aircraft short-period
 

characteristics. The limit on permissible K as established by surface
a 
z

activity considerations is also shown.
 

In order to maximize the performance of this system, Ka
 
z 

should be chosen so as to take complete advantage of the available
 

direct-lift'flap authority. Choice of K6 is then limited to a narrow
 

band 0.4 < Ke < 0.5; the lower limit being based on system performance
 

considerations, the upper, on handling qualities criteria (Csp > 0.35).
 

A typical design point might then be chosen at Ka = 0.26 rad/m/sec2 ,
 
a
 z 

r, = 0.4 rad/rad/sec resulting in a 41% reduction inoa . 
z 

3.4.5 Analytic Model of Longitudinal Ride Smoothing System
 

Significant insight into the mechanisms underlying the
 

performance of the baseline longitudinal RSS can be gained by examining
 

a simplified analytic expression for aircraft root-mean-square vertical
 

acceleration due to turbulence. As the first step in the derivation,
 

the appropriate aircraft transfer function is required (see Appendix D).
 

Although the development is conceptually straightforward, the resulting
 

equations are extremely lengthy. Considerable simplification results
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if 	several assumptions are made:
 

I. 	Effect of pitch gust, q , on vertical acceleration,
 

az, is small as compared to the effect of vertical
 

gust, w ;
 

2. 	The dynamics of the aircraft can be approximated
 

by setting the phugoid mode frequency equal to
 

zero; and
 

3. All actuators are perfect.
 

If only the highest order terms (based on JetStar aerodynamics only) in
 

each power of the Laplace variable are retained, the transfer function
 

can be written in terms of the aircraft stability
for az due to w9 

derivatives as 

a s2(s 2 _ Mqs - KaM6) 

q 2} (3.4.1)G GwKST=KS s( 2 2~ m + 2)p~ 

sp sp
 

where the static gain, KST' is
 

Z 
KST (I - K Z ) (3.4.2) 

the 	short-period damping is given by
 

-2asp = 2 spwn -Mq -T (3.4.3)
 
sp
 

and 	the short-period natural frequency
 

n = _U-M w _ KoM 8 + KST(Mq Kaz U0 ) (3.4.4) 
nsp e z f45 



With the additional assumption that the transfer function of w9 due to
 

turbulence, A, can be approximated by a first-order filter
 

GA - (3.4.5) 

we can write
 

s -M s -KoM63 
a Iq 06e 
GAZ :ST s (s2 + 2 sp nspS + W0nsp2GA KS l ~s+~~hi~2) ' (3.4.6) 

and (from Equation B.2)
 

2 = FIGZIGa (Adw (3.4.7) 
z A 

The integration can be performed in the complex plane to yield:
 

KST (KOM6)2
 
a 
 m 2 { 0
 

nsp
n


+ r (KsM )2 (4 2 )- 2 + M 2 + 2KM2 
4sp 0 e 
 sp ns 5p q e] 

(3.4. 

where O is the lower limit for a truncated input turbulence (white noise)
 

power spectra.
 

Several comments about the deficiencies of this approximation
 

are in order. Note that the expression for asp (Equation 3.3.3) does
 

not properly account for the reduction in short-period damping with
 

increasing K. (Figure 13). A value of wo > 0 is clearly required for
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the integration to be bounded. If t0 is arbitrarily chosen.as w0 = 0.56 

rad/sec, the approximation predicts system performance in good agreement 

with the digitally-calculated results (Figure 18). 

The critical parameters affecting the acceleration
 

alleviation capability of this system are the constants outside the
 

radical: KST and W)n 2 From the definition of KST (Equation 3.4.2),
 
sp


it is clear that, for a given lift curve slope Z, the overall system
 

performance is determined by the flap effectiveness term Zf'
 

Conceptually, this conclusion is intuitively obvious. The fact that
 

system performance is improved as wP 2 is increased can be explained
n 
sp
 

by considering the exact input power spectra (Figure 19). Above the 

break frequency, ' = 0.236 rad/sec, the input power decays at the rate 

of 40 dB/decade; thus, the higher the aircraft effective short-period
 

resonant frequency, the lower the magnitude of response to turbulence.
 

Finally, the effect of changing the damping ratio of the short-period
 

mode, Csp, is contained within the second term inside the radical. At
 

=sp 0.5, this term contributes nothing to a ; for sp < 0.5, however, 
z 

the magnitude of a is increased as K is increased.
 
z I 

Note that the performance of the baseline longitudinal RSS,
 

to first order, depends only on a single dynamic derivative: Mq.
q
 

Generally, dynamic derivatives are more difficult to estimate or measure
 

than static stability derivatives. In order to be most successful, any
 

RSS design should be minimally sensitive to errors in estimation of
 

the plant parameters. Calculations, based on the simplified model,
 

showed that variations of + 25% in the magnitude of Mq resulted in less
 

than 1% change in the performance of the baseline longitudinal RSS.
 
,
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3.4.6 Longitudinal Ride Smoothing System I
 

Although the baseline longitudinal RSS provides a measure
 

of acceleration alleviation while meeting design criteria, several
 

improvements are desirable. First, the simple mechanization results
 

in narrow limits for the choice of re. Secondly, no choice of feedback
 

gain permits recovery of the basic aircraft short-period characteristics.
 

Finally, the 	pilots control of flight path, as represented by the param­

eter 	n/, is degraded.
 

The inclusion of proper equalization in the feedback paths
 

can eliminate all of these shortcomings while improving system perform­

+ For the two feedbackance. Consider first the feedback of a 6f. 


loop systems (az + af, e + 6 e), it can be shown that (see Appendix D):
 

n~U0 -Z 
n 0 w (g/rad) (3.4.9) 

If a filter of the form (washout) is included in the a + f 
w0

feedback path, the steady state n/ will be the same as for the basic
 

aircraft. A 	more rapid decrease in asp with Ka
Z 

than for a pure gain 
s +a
 

feedback, however, results. Introduction of a lag filter (s+a a < b)
 
s + b 

in series with the washout tends to offset this undesirable trend. A 

short-period root locus depicting the effect of these filters is shown 

in Figure 20. The filter parameters were chosen so as to permit the 

construction of feasible analog circuits. In the case of lag circuits, 

the ratio of a/b is customarily rest.ricted to be greater than or equal 

to 0.1 by circuit noise considerations. 
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Additional short-period damping can be provided-by incorpor­

ating a lead filter (- d > c) in the 0 6e feedback loop. In 

essence, this filter provides a pseudo-differentiation or feedback of a 

component of pitch rate at very low frequencies (Figure 21) The 

maximum ratio c/d is again limited by feasibility considerations to 

values equal to or less than 10.0. 

For both the lead and lag filters, the desired break
 

frequencies were determined by inspecting a number of root locus plots.
 

The system resulting from the incorporation of these filters is depicted
 

in block diagram form in Figure 22 and designated Longitudinal Ride
 

Smoothing System I. System performance surfaces, equivalent to those
 

shown for the baseline system are presented in Figures 23 through 26.
 

The complete root locus carpet plot is given in Figure 27.
 

Based on the procedures outlined in Section 3.3.4, the system
 

design point was chosen at Ka = 3.3, K6 = 0.14. The aircraft dynamics
 
z 

and system performance parameters for this configuration at aw = 2.1
 
9
 

m/sec are summarized inTable 11.
 

Figure 28 compares the power spectral density of vertical
 

acceleration for the basic and longitudinal RSS I augmented aircraft.
 

Note that the response to turbulence is heavily attenuated at both the
 

phugoid and short-period frequencies, as well as in the range above the
 

short-period peak. A slight amplification in a narrow frequency band,
 

however, results.
 

Compared to the baseline system, Longitudinal RSS I is
 

clearly superior both in terms of acceleration alleviation capability
 

and closed-loop short-period mode characteristics. As pointed out
 
52 



I 

it'] 

LEAD LEAD 
(+ 1+s / I PURE 
l+s1_2 "T...l. GAIN 

1+-2.2 

.10 
0.12 

0.10 1.0 
0.08 - 2.0 

0.08 0.8 
.0o60 Ko 

000 

0.04. . 0.4 

1.6 
0.2 

0.02 

1.4 

I I I I I 

1.2 1.0 0.8 0.6 0.4 0.2
 

FIGURE 21. ROOT LOCUS OF EFFECT ON SHORT-PERIOD DYNAMICS OF A 
LEAD FILTER INO -+-S e FEEDBACK LOOP 

53 



epl
epilot 

L 

TURBULENCE 

6 e 6e 
G 

ec 

6 
e AIRCRAFT 

DYNAMICS 

< 
w. 
> 

z 

s + I-­

a 

(l+s/.I) s +-' 

FIGURE 22. 

(Design Point: 

LONGITUDINAL RIDE SMOOTHING SYSTEM I 

Ka = 3.3 rad/m/sec 2 , K0 0.14 0/0)
a ' 



0 

K 
z 2 

(rad/m/sec 

0.04 

oao 

0 0 

0.12 

2 

10 

20 

30 

40 

50 

4.060 

FIGURE 23. PERFORMANCE OF LONGITUDINAL RSS I;
 
C~ AS A FUNCTION OF Ka AND K
a 


z 

55 



K 0 

K az 

(rad/n/sec2 

1.0 0.08 

0.12 

20 

4t 

-40-a 

50 

5.0 

-60 

70 

FIGURE 24. PERFORMANCE OF LONGITUDINAL RSS I;
 

aq AS A FUNCTION OF Ka AND K
 
z 

56 



5.0 

20 

Kaz 

z 

(rad/m/sec2 

/ 
4.o .64.2

' . 0 8  0 .12 o.16 0 

16 

12 

0 

b 

8 

2.0 

90 
4 

0 

FIGURE 25. PERFORMANCE OF LONGITUDINAL RSS I; 
r f AS A FUNCTION OF Kaz AND K. 

57 



0 

-s = Constant 

= Constant.....msp 

0 Design Point 1.( 

Ka 2.0z 
1 

00 o 

02 
",.0.o8 

-20 

.30 

-4o 

N70 

._ 

(rad/m/sec) -50 

L60 

FIGURE 26. PERFORMANCE OF LONGITUDINAL RSS 1;
 
AS A CONSTRAINED FUNCTION OF K AND K
 

z z
 

58 



0.20 2.6 

0.16 K, 

2.2 
0.12 (0/0) 

0.08 

1.8 

O.04 

1.4 

1.0 

2.0 K 
1.0 

(rad/m/sec ) 

3.0 
0.8 

4.0-- -- - - - - - -
-Kaz 0.20 

-0.15 

-0.I0 

0.05 

" - - I I I I J I I I 

1.4 1.0 o.8 0.15 0.1 0.05 

FIGURE 27. ROOT LOCUS FOR LONGITUDINAL RSS I 

59 



TABLE III
 

CHARACTERISTICS OF LONGITUDINAL RIDE SMOOTHING SYSTEM I
 

,4 - Longitudinal 

Basic JetStar RSS I 

0.567
0.546
p 


Wn 0.266 Hz 0.356 Hz
 

sp 
 0.054 
 0.522
ph
 

53.2 sec
36.6 sec
Pph 


9.6 sec
74.8 sec
Ti 

Ca 
2ph
 

0.1178 9 0.0572 g 
z 

0.0040 g

Fax 0.0112 g 

aq 1.44 0/sec 0.70 0 /sec 

9.9 0S--


0.40
6e 


% reduction a 


ar 


51.8%
 
z 

64.6%
% reduction a a 
x 

51.3%
% reduction aq 
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previously, the presence of a washout circuit in the az - 6f feedback
 

path prevents degradation of the handling qualities parameter n/a. From
 

the pilot's point of view, the only noticeable effects of the RSS might
 

be some reduction in the speed of normal acceleration response to a stick
 

input and the slight ly greater stick deflection required to produce a
 

given change in pitch attitude. The degree of these potential handling
 

qualities problems was left to be considered in the ground-based
 

simulation phase of this research.
 

Also to be evaluated in simulation was the effect of a failure
 

of the stabilizing 0 6e feedback on the controllability of the augmented
e 

vehicle. From the root locus diagram (Figure 27), it is clear that
 

with only the acceleration feedback operational, the short-period natural
 

frequency would drop to marginal values ((n = 0.14 Hz). 
sp
 

3.4.7 Longitudinal Ride Smoothing System II
 

An alternate mechanization, designated Longitudinal RSS I,
 

is depicted in block diagram form in Figure 29. It differs from the
 

previous system only in the form of equalization in the az + 6f feedback
 

path. A Bode magnitude plot of this filter is given in Figure 30. At
 

the phugoid frequency, this circuit acts to heavily attenuate the
 

feedback signal (notch filter). For all other frequencies, the magnitude
 

response characteristics are similar to that of the lag filter used in
 

System I. The lightly damped quadratic numerator of the filter introduces
 

a pair of stable, very low-frequency roots which help delay the onset of
 

short-period instability as Ka is increased. When the inner, 0 e'
 
zloop is closed, this artificially-introduced mode as well as the phugoid
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are rapidly stabilized. The effect of the inner loop closure on the
 

short-period roots is almost identical as for System I (Figure 31).
 

In order to provide a comparison of Systems I and I, the
 

same value, K. = 3.3, was selected for the design point. By setting
 
z 

the pitch attitude feedback gain at Ke = 0.1, the short-period damping
 

ratio is made approximately equivalent to that of the basic aircraft.
 

Table IV compares the key metrics of the basic and RSS augmented
 

JetStat.
 

Although System ii appears, from Table IV, to be somewhat
 

inferior to System I in all respects, an examination of the power
 

spectral density plots shows that the alleviation capability of System
 

II is almost identical to that of System I for frequencies above the
 

phugoid peak (Figure 32). Thus, the only major difference between the
 

two mechanizations is in the handling qualities parameter n/. Since
 

handling qualities criteria were postulated as an important consider­

ation in the design of Ride Smoothing Systems, both System I and II were
 

retained for simulation experiments where pilot opinion was solicited.
 

As with System I, failure of the 6e feedback loop will cause m
 sp
 

to be reduced to a marginal value, and simulator studies were carried
 

out to evaluate the severity of this deficiency.
 

3.5 Lateral Ride Smooth'ing Systems
 

3.5.1 The Basic JetStar--Lateral Case
 

The lateral dynamics of the basic JetStar in the approach
 

configuration are characterized by the following parameters:
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TABLE IV
 

CHARACTERISTICS OF LONGITUDINAL RIDE SMOOTHING SYSTEM II
 

Basic JetStar 
Longitudinal 

RSS I 
Longitudinal 

RSS II 

sp 
0.546 0.567 0.534 

w0 
n 
sp 

ph 

0.266 Hz 

o.o54 " 

0.356 Hz 

0.522 

0.312 Hz 

0.158 

pph 36.6 sec 53.2 sec 52.9 sec 

T_2
ph 

n/a 

74.8 sec 

6.22 g/rad 

9.6 sec 

6.22 g/rad 

36.8 sec 

4.03 g/rad 

a a 0.1178 § 0.0572 g D.0607 g 

G a 
xoo 

Sf0 

0.0112 g 

--

0.0040 g 

9797 

0.00454 g 

12.20 

a5 
e 

% reduction a 
- z 

--

--

0.4 0 

51.8% 

0.4 o 

49.4% 

% reduction a -- 64.6% 59.5% 

x 
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Dutch Roll Mode: Xdr = -0.0615 ± 1 1.36 

Cdr = o.o45 (C> 0.08) 

W = 1.36 rad/sec (n > 0.4) 
nr 

Cdr ndr = 0.061 rad/sec (ga > 0.15) 

Roll Subsidence: 	 Ti = 0.87 sec (TR < 1.0).
 

Ti = 0.61 sec
'27
R
 

Spiral Mode: Ti = 418 sec (T2 > 20)
 . -f 

where the inequalities in brackets are criteria of MIL-F-8785B (36). 

Note that the Dutch Roll mode damping fails to meet these requirements. 

At the design turbulence level a = 2.65 m/sec (8.45 ft/sec),V 
g
 

a = 0.0312 g. As in the longitudinal case, the transverse acceleration
a 
y
 

power spectral densi.ty was integrated over the frequency range 0.01 < W
 

< 100.0 	rad/sec (Figure 33). 

3.5.2 	Lateral Ride Smoothing System
 

Compared to the longitudinal case, mechanization of a lateral
 

ride smoothing system is considerably easier. The essential, feedback is
 

transverse acceleration., The obvious control surface is a pure transverse
 

force control; i.e., the outer loop becomes lateral acceleration to side­

force generator deflection ay Asfg
number of inner loop closures 

are possible,,' but since the aircraft exhibits insufficient Dutch Roll 

damping, a yaw damper (r+ 6r) is the conventional solution. Also 

customary is the inclusion of a washout circuit in the r + 6r feedback 

path so that pilot commands to the rudder are not suppressed. 
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The resulting system is depicted in block diagram form in
 

Figure 34. Note that the washout time constant was chosen as w0 =1 sec.
 

Increasing To tends to increase Cdr at the expense of ZR without
 

significantly altering system alleviation performance.
 

The locus of Dutch Roll roots is plotted as a function of
 

K and KR in Figure 35. Note that the a . 8s feedback has almost
 ay R 01 y sfg 

no effect on either Wndr or Cdr' whereas r 6r increases dr while 

slightly lowering m . The effect of the two feedbacks on the rollndr
 

subsidence and spiral modes is summarized in Table V.
 

The effectiveness of the Lateral Ride Smoothing System in
 

)
terms of reduction of root-mean-square lateral acceleration (aa yaw
 

Y
 
rate (or), and roll rate (cp) is presented graphically as a function of
 

feedback gains Ka and Kr in Figures 36 through 38. Root-mean-square
 
Y
 

side-force generator activity is similarly presented in Figure 39. The
 

limit on permissible side-force generator activity, determined by
 

linearity considerations, is o6 sfg L 9 . A system performance surface,
 

with the limits o6sfg = 90, (Con)dr=0.16 superimposed, is presented as
 

Figure 40. As in the case of the Longitudinal RSS, this surface allows 

the designer to choose feedback gains that satisfy all design criteria. 

For this study, the selected design point was for Ka = -3.3 

2 2rad/m/sec (1.0 rad/ft/sec ), Kr = I rad/rad/sec. The aircraft dynamics
 

and system performance parameters for this choice of feedback gains are
 

summarized in Table VI.
 

A comparison of the power spectral density of lateral
 

acceleration in response to turbulence with the RSS on and off is
 

shown in Figure 41. Alleviation is provided over the entire range of
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TABLE V 

EFFECT OF FEEDBACKS ON ROLL SUBSIDENCE 

AND SPIRAL MODES 

\ K 
ay \ 

0 

Fixed 
>0 

Variable 
>0 

0 Fixed
0 

+ 

Variable 
>0 

+ 

+ 

Ka0 
a . 

0 

Fixed 
>0 

Variable 
>0 

Fixed 
>0 

Variable 
>0 

where ++ stabilizing effect 

- + destabilizing effect 

hlAn + nn effrct 
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TABLE VI
 

CHARACTERISTICS OF LATERAL RIDE SMOOTHING SYSTEM
 

Lateral
 
Basic JetStar RSS
 

dr 0.045 0.155
 

1.36 rad/sec 1.195 rad/sec 
n dr 

TR 0.87 sec 0.61 sec
 

Ti 0.61 sec 0.42 sec 
'2R 

T, (T 2) 418 sec (37.5) sec 

O 0.0312 g 0.0047 y 
a 

Y r 
2.3.5 /sec 1.56 °/sec 

a 
p 

5.01 °/sec 1.95 °/sec 

a6 -- - 7.8 o 

0.92 0a6 

r 

% reduction a 84.5%
a 
Y 

% reduction a Y 43.5% r 

% reduction a 61.0%
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frequencies of interest with the exception of a small resonance peak
 

at the side-force generator damped natural frequency.
 

No investigation of the effect of additional equalization
 

in the feedback loops was undertaken since the system appears highly
 

effective as mechanized. The greatest potential problem with the
 

system was expected to be achievement of the very high gain required
 

in the lateral acceleration feedback loop. If the lateral acceleromet,
 

is mounted on a structural member that can be excited by the action of
 

the side force generators, the control system may become unstable. In
 

such an event, extensive equalization or a change in sensor mounting
 

location would be required.
 

Finally, it should be noted that the degree of acceleratioi
 

alleviation obtainable at the aircraft center of gravity by use of the
 

rudder alone (yaw damper) is considerably less than when a side-force
 

generator is employed (see Figure 36).
 

3.5.3 	Analytic Model of Lateral Ride Smoothing System
 

In order to gain some insight into the effect of lateral
 

stability derivatives on the performance of the RSS, a simplified mode
 

comparable to the one developed for the longitudinal case was sought.
 

The following assumptions were made:
 

I. 	Effects of r and p on a are small as compared
 

to the effect of 0g;
 

2. 	The dynamics of the aircraft can be approximated
 

by setting the spiral mode root equal to zero;
 

3. All 	actuators are perfect;
 

4. The 	washout time constant TW0 0; 
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5. 	The transfer function of 13 due to turbulence (A)
 

can be approximated by a first-order filter I/s.
 

if only the highest order terms (based on JetStar data)
 

are retained, the transfer function of a due to A can be writtenas:
 
y 

a 	 s2(s2 L's) n
L-

GAY KST + 2
 

s(+ )( 
+2drndr 

ndr
 

where the static gain KSTI is defined as: 	 I 

VoY
 

KST' (1 + Ka0 T )6f (3.5.2)
 

y T0 sfg
 

and
 

R I/TR (3.5.3)
 

From Table V (page 74), it is clear that the value of the
 

roll subsidence root (R) is a complex function of the gains K. and Kr.
 
Y
 

The same is true of the Dutch Roll mode damping. In fact, both modes 

are, as was pointed out above, also sensitive to the choice of the 

washout filter time constantTw0 . The following expressions were 

derived for the Lateral Ride Smoothing System with tw0 = I. 

W 	 2 =L'N' -N'L' + cos 6 NI - sin 6 L (3.5.4)
ndr p r p r o 1 

2d r Yv -K N' f (3.5.5)
V83 
 r
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Y r K K V N11 . 
v 2 rT 6 6 

0 sfq r
f) + YR -L N - K N6 (I _ ­

p r r r v (I + Ka VT Ye 
y 0 sfg 

(3.5.6) 

where f was empirically chosen to be 0.375. The factor f is numerically
 

equivalent to the ratio of the numerators of the transfer 
functions Gr 

pA 
and G at the steady state (s = 0). Inclusion of this factor, then, 

essentially irorates the yaw damper effectiveness between the roll
 
2
 

subsidence and Dutch Roll modes. The expressions for , 2 drn ,
 

and R are accurate to within 22% over the range of interest.
 

Evaluation of the integral
 

a2 


SfF IGAYl Adw 	 (3.5.7) 
y 0
 

yields: 2 . _ _ KST 2 	 R(R2 _ L 2 

ay (R2 + W 2)2 _ 412rdr 	 p I
 
y ( ndr d)
 

2 drnd (nd nd 	 (3.5.8 

A number of similarities between this expression and its
 

analog for the longitudinal case (Equation 3.4.8) are apparent. The
 

critical parameters affecting the acceleration alleviation capability
 

of the Lateral RSS are the constants outside the brackets. System
 

effectiveness can be increased by:
 

I. 	Increasing Ka or, alternatively, increasing the
 
y
 

side-force generator effectiveness (Y6* ); 
'84 sfg 



2. Intreusing the damping of tnie roll subsidence mode
 

(l/1R) ; 

3. Increasing the frequency of the Dutch Roll mode (wnd).
 

Increasing Dutch Roll 
damping (Cdr) without simultaneously increasing
 

the Dutch Roll natural frequency would appear to degrade system
 

performance. Terms inside the brackets have little effect on c
 
a 

Figure 42 compares the RSS performance as calculated by
 

the simplified expression (Equation 3.5.8) tp the digitally calculated
 

results. Agreement is seen to be excellent at fairly high levels of K
 
a 

As in the case of the Longitudinal Ride Smoothing Systems,
 

failure of the stabilizing feedback loop (r 6r) can be expected to
 

degrade the handling qualities of the aircraft. The degree to which
 

this was the case was left 
to be examined in the simulation phase.
 
3.5.4 Alternate Lateral Ride Smoothim System
 

Several authors cited in Chapter I (References 21 and 22)
 

proposed the use of rudder alone to provide lateral 
ride smoothing.
 

For purposes of comparison with the performance of the system developed
 

above, a calculation was carried out for such a mechanization adapted
 

to the JetStar (Figure 43).
 

The feedback gains were set at K a -0.26 rad/m/sec 2 (0.08

ay I
 

rad/ft/sec ) and Kr = 4.0 rad/rad/sec so as 
to yield Dutch Roll dynamics
 
rA


approximately comparable to those with the baseline Lateral RSS. 
 Note 
that the r 6r feedback signal is filtered by some washout T = I sec). 

r~wo0
 
A comparison of the performance of the two systems is given in Table VII.
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TABLE VII
 

COMPARISON OF-LATERAL RIDE SMOOTHING SYSTEMS
 

Basic JetStar Baseline RSS . Rudder RSS
 

dr 0.045 0.155 0.131
 

w 1.36 rad/sec 1.195 rad/sec 0.86 red/sec

ndr 

TR 0.87 sec 0.61 sec 0.44 sec 

T, (T2)
,f 2s 

418 sec (37.5) sec 23.0 sec 

SO.0312a g 0.0047 g 0.0145 g 

a 2.35 0/sec 1.56 0/sec 0.68 0/sec 

r 

O 
P 

5.01 °/sec 1.95 °/sec 3.98 0/sec 

6 -- 7.8 0 -­

06 -- 0.92 3.12 

r 
% reduction Ga -- 84.5% 53.4% 

y 
% reductiono -- 43.5% 71.1% 

% reduction a -- 61.0% 20.6% 
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Although substantial acceleration alleviation can be
 

obtained with the single control surface Lateral RSS, several practical
 

considerations would make it difficult to mechanize the system aboard
 

the JetStar. First, operation at the design feedback gain levels places
 

severe demands on the rudder servo-actuator.. The servo in the aircraft 

would be operating at a..damping ratio 6r = 0.17 (cr = 0.24 for the 
r r 

baseline Lateral RSS). Secondly, failure of the yaw damper (r-*6 
r 

feedback .loop) would result in a marginally stable Dutch Roll oscillation.
 

Any attempt to improve the acceleration alleviation capability of the
 

system by increasing the Ka feedback gain, would, under the failure
 
y
 

condition, drive Cdr negative. These reasons alone were sufficient to
 

reject the single control Lateral RSS in favor of the baseline
 

mechanization.
 

3.6 Overall Effectiveness of Combined Axis Ride Smoothing System
 

The prototype Longitudinal and Lateral Ride Smoothing Systems
 

synthesized in the preceding sections meet, with the possible exception
 

of failure mode and structural resonance (feasibility) criteria, all
 

the conditions for a successful design as set forth in Chapter II. The
 

command signals that are required are readily available from typical
 

aircraft instruments. The equalization circuits are all easily mechanized
 

on an analog computer. Minimal handling qualities specifications are
 

satisfied.
 

But what of the passenger and his comfort? For locations at or
 

near the center of gravity, under the design turbulence conditions, the
 

comfort model (Equation 2.3.1) predicts:
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1. For the basic JetStar: C 3.6;
 

2. For Longitudinal RSS I and Lateral RSS: C Z 2.7;
 

3. For Longitudinal RSS II and Lateral RSS: C 2.8;
 

or approximately a 1-point increase in the comfort rating with the RSS
 

operating. More important, the overall level of passenger satisfaction
 

can be expected to increase from 63.5% to -85% (Figure 3). In
 

the case of the model aircraft, the Jetstar, only the relatively small
 

size of direct-lift flaps prevent an even more substantial improvement
 

in ride quality.
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CHAPTER IV 

SIMULATION EXPERIMENTS
 

4.1 Order of Presentation
 

This section of the report deals with the ground-based simulation
 

of the dynamics and evaluation of handling qualities of the basic and
 

RSS augmented JetStar. A brief description of the experimental
 

facility, simulation mechanization, and operational verification is
 

presented. A summary of the evaluation pilot's experience is followed
 

by a detailed description of the evaluation tasks. Results of the
 

handling qualities evaluations in smooth air are presented In terms of
 

subjective pilot opinion. Both subjective and objective measures of
 

handling qualities are presented for evaluations conducted in simulated
 

turbulence.
 

4.2 The Simulator Facility
 

The ground facility used in this study was the NASA Flight Research
 

Center fixed-based, six-degree-of-freedom, hybrid computer controlled
 

transport aircraft simulator. The aircraft equations of motion were
 

mechanized on a Xerox Model 9300 digital computer and the Ride SmQothing
 

Systems were programmed on an Electronics Associates, Inc. Model 231 R-V
 

analog computer.
 

The simulation cockpit, shown in Figure 44, contained the following
 

instruments (from left to right):
 

Top row: Sideslip (a)meter,
 

Angle of attack (a)meter,
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Second row: Clock, 

Airspeed indicator, 

Flight director (Collins FD-108G) 

Altimeter, 

Instantaneous vertical speed indicator, 

Two engine power level meters, 

Bottom row: Horizontal situation indicator (Collins 331-6A) 

Normal acceleration meter. 

This instrument panel mockup is almost identical to that provided 

the command pilot in the GPAS (Figure 45). 

Both the yoke and the rudder pedals were provided with a feel
 

system that permitted adjustment of apparent linear control force,
 

breakout force, friction, and damping (41). A four-way trim button on
 

the yoke allowed adjustment of pitch and roll trim. Rudder trim was
 

controlled by a console-mounted switch. Although four throttle levers
 

were mechanized, an asymmetric thrust condition could not be simulated.
 

Selected cockpit control characteristics, gains, and trim rates were
 

chosen by one of the pilots to be representative of the JetStar.
 

4.3 Digital Computer Program
 

The real-time digital computer program was based on the six-degree­

of-freedom routine (SIM II) of Myers and Evans (42). This program
 

solved the aircraft equations of motion (including the control surface
 

actuator dynamics) as well as generating the turbulence quantities ag,
 

3g, and pg In real time. The cockpit display signals were calculated
 

digitally with a repetition rate of 25 calculions per second.
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The basic program was modified to calculate statistical properties
 

of 20 channels of data and to store the sampled time history of any one
 

variable of interest. The variables consisted of angular rigid body
 

rates (p, q, r) inertial orientation angles ($,8,44, aerodynamic angles
 

(C,),total velocity (V), control surface deflections (1a, 
6e, 

6
r , 

6f, 6sf), power setting, vertical and lateral acceleration (az , a ) 

and turbulence intensity (at, a 1 p ). The mean, variance, probability 

distribution, and probability histogram of these quantities were
 

calculated in real time. Power spectral density of the stored variable
 

time 	history could be calculated following a simulation run.
 

4.4 	Analog Circuits
 

The analog computer provided the interface between the digitally­

computed motion quantities and cockpit displays. Cockpit control
 

commands were summed with signals generated by the simulated Ride
 

Smoothing Systems before being transmitted to the digital computer.
 

Schematics of the Ride Smoothing System analog mechanization are
 

given In Figure 46 through 48.
 

In addition to digital data, 16 channels of analog data could be
 

recorded. Variables monitored varied with the simulation task assigned
 

the pilots, but were generally chosen to provide a check on systems during
 

a run. During simulation of an Instrument Landing System (LS) approach
 

task, glideslope and local izer tracking were monitored on dual X-Y
 

plotters. The analog computer and recorders are shown in Figure 49.
 

4.5 	Hybrid Simulation Verification
 

Qualitative verification of the accuracy of the hybrid simulation
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FIGURE 49. SIMULATION LABORATORY
 



of JetStar dynamics was performed by applying inputs to the control
 

surfaces and observing the time history of aircraft response. Frequency
 

and damping of the longitudinal oscillatory modes compared favorably
 

with calculated values. A 25% increase in the value of N r' was required
 

to approximately achieve the numerically-calculated frequency and
 

damping of the Dutch Roll mode. Also, pilot A evaluated the simulation 

and reported the simulated aircraft dynamics to be generally representa­

tive of the JetStar in the approach configuration. 

Power spectral densities were calculated for the turbulence fields 

a , 8 , and p . These spectra (Figure 50 through 52) are reasonable 

approximations to the Dryden spectra asymptotes shown. 

Feedback loop filters (lead, lag, and notch) compared well in 

amplitude and phase characteristics over the frequency range of interest 

with digitally-calculated values. Washout circuits were verified by 

measuring the decay time for step inputs. 

4.6 Simulation Evaluation Pilots
 

Five pilots participated in the simulation experiments. Pilots A,
 

B, and C are professional research pilots with 9000, 6500, and 12,000
 

hours of flight time, respectively. Pilots A and B have logged
 

considerable time in the JetStar. Pilot D has more than 10,500 hours
 

of airline transport experience, and Pilot E is a military aviator with
 

total experience of 3500 hours as well as approximately 100 hours in
 

simulator handling-qualities evaluation time.
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4.7 Handling Qualities Evaluation
 

4.7.1 General Instructions
 

Four problems were flown by all five pilots in the handling­

qualities evaluation of the basic and RSS augmented JetStar: a longitu­

dinal axis task, lateral axis task, combined axes task, and an Instru­

ment Landing System (ILS) approach task. General instructions to the
 

pilot were as follows: "The simulated aircraft is to be assumed a
 

transport type and should be flown in a manner consistent with airline
 

operational procedures, i.e., passenger comfort considerations are
 

paramount. Load factor, bank angle, etc., are to be kept small; tight
 

control, however, should be maintained." For all problems, the aircraft
 

was in the landing approach configuration: gear down and flaps at the
 

approach setting.
 

Initial conditions for all problems were:
 

Altitude 610 meters (2000 feet)
 

Indicated airspeed 260 kilometers/hr (140 knots)
 

Angle of attack 11 degrees
 

Displayed pitch attitude 7 degrees
 

Heading 0 degrees
 

Power setting for level
 

flight 48%.
 

For the ILS task, the following additional information was provided:
 

Field elevation 0 meters (0 feet)
 

Runway heading 0 degrees
 

Runway length 3050 meters (10,000 feet)
 

Runway width 92 meters (300 feet)
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Initial distance to 15.2 kilometers
 
threshold (8.25 nautical'miles)
 

Initial offset from 0.61 kilometers
 
runway centerline (0.33 nautical miles)
 

Time to threshold 3:45 minutes
 

Glideslope 3 degrees
 

Required rate of sink 213 m/min (700 ft/min)
 

Required power setting 32%
 

Breakout altitude 61 meters (200 feet)
 

Pilots evaluated handling qualities on the basis of the'Cooper-Harper
 

Rating Scale (38) depicted in Table VIII.
 

4.7.2 Longitudinal Task
 

The longitudinal axis task, repeated five times, was a timed,
 

smooth air problem defined as follows: End Time
 

I. 	 Stabilize aircraft at initial conditions. 0:30
 

2. 	 Climb to 3000 feet in 60 seconds. 1:30
 

3. 	 Stabilize aircraft at 3000 feet and hold
 
altitude for 30 seconds. 2:00
 

4. 	 Descend to 2000 feet in 60 seconds. 3:00
 

5. Stabilize aircraft at 2000 feet. 3:30 

Throughout the manuever heading and airspeed were to be held constant. 

One run each was made for the basic JetStar, the two longitudinal RSSs 

engaged, and each longitudinal RSS with the stabilizing (e + 6e) feed­

back loop open to simulate a system failure condition. Failure was 

initiated approximately 60 seconds after problem initiation. Pilots 

were not informed of the configuration they per":ftYf.g., InI addition,4 er9C 

to Cooper-Harper ratings, pilot commentstwere sblicited on: 
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TABLE VII I 

COOPER-HARPER RATING SCALE 

' OEOUCY FR SJLECTED TASK 
RKOUIRED OPERATION 
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Ifighly desirable desired pocioormonce 

GO~d 

Negligible deficenc-es 
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mmal riot compensotlon 

desired pettownronce 

a fOClOrfor 

required IV* 
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Yes ut:ovmnNo 

enoe 

L Ifon11nle 
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deficienc,ie$ pilot comtpensation 

Moderately ObjeCtiOnOble Adequate pedrtonio(ice requ re$ 

dei•n e considerable pilotVr
Obe ioa l but Adqute peromnreu s exn 

tolerable deficiencies pilot compensation 

sv 

pilot 

s ar 

wldkoad? 

D f e cie s 

impf(dvemenm 

Yesrelolrn 

--

SAdequate 
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If 
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0 orollob ll ? mandatory Mojo rdefc encles • opera ion 
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1. 	 Ease of establishing trim conditions;
 

2. 	 Ease of initiating desi'red climb and descent gradients;
 

3. 	 Ease of maintaining airspeed; and
 

4. 	 Presence of undesirable pitch or rate of climb/sink
 
excursions.
 

A summary of pilot ratings for this task is presented in
 

Table IX, below.
 

TABLE IX
 

AVERAGE COOPER-HARPER PILOT RATINGS, LONGITUDINAL TASK 

(Smooth Air) 
Standard 

Case Rating Deviation 

1 Basic JetStar 2.4 0.33 

2 Longitudinal RSS I 2.5 0.45 

3 'Longitudinal RSS I 2.1 0.20 

4 Longitudinal RSS I (8+ e loop failed) 2.3 0.24 

5 Longitudinal RSS I (6 + 6e loop failed) 2.7 0.3-

Generally, the pilots found no significant differences between the
 

first three configurations and reported no problems in performing the
 

assigned task. Surprisingly, Longitudinal RSS II,with a value of n/,
 

lower than that of the basic aircraft and RSS I configuration, -was
 

rated equally good. Since the.configurations were-not presented in the
 

same 	order for each pilot, the "learning curve" phenomenon was not a
 

factor in the average ratings. Although numerically the simulated
 

failure conditions were not significantly penalized, all pilots
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indicated that a higher work load had resulted due to slight pitch
 

excursions. One pilot reported a tendency toward pilot-induced
 

oscillations (PIo) 'inpitch response and accurately identified the
 

source of the problem as an excessively low short-period mode
 

frequency.
 

4.7.3 Lateral Task
 

The lateral evaluation task, repeated three times, was a
 

timed problem flown in smooth air and defined as follows:' End Time
 

1. 	Stabilize aircraft at initial 0:30
 

2. 	 Execute 90-degree right turn in 60 seconds. 1:30
 

3. 	 Stabilize aircraft on new heading and hold
 
for 30 seconds. 2:00
 

4. 	 Execute 90-degree left turn in 60 seconds. 3:00
 

5. Stabilize aircraft at initial conditions. 3:30
 

Airspeed and altitude were to be held constant for the basic JetStar,
 

the Lateral RSS engaged, and a simulated failure of the RSS yaw damper
 

occurring approximately 60 seconds into the problem. Pilots were asked
 

to comment on the following:
 

1. 	 Use of rudder in order to coordinate the turns;
 

2. 	 Ease of turn coordination;
 

3. 	 Ease of initiating and maintaining desired turn rate;
 

4. 	 Presence of undesirable Dutch Roll characteristics; and
 

5. 	 Ease of maintaining heading.
 

A summary of the subjective pilot evaluations is given in
 

Table X, below.
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TABLE X
 

AVERAGE COOPER-HARPER PILOT RATINGS, LATERAL TASK
 

Case 

(Smooth Air) 

Rating 
Standard 
Deviation 

I Basic JetStar 3.1 0.77 

2 Lateral RSS 2.5 0.45
 

3 Lateral RSS (r 6r loop failed) 3.0 0.35
 

An examination of the root locus for the Lateral RSS (Figure 35, page
 

72) indicates that the Dutch Roll characteristics of the aircraft with­

the yaw damper (r - 'r) failed are almost identical to those of the
 

basic JetStar. Thus it is not surprising that the pilot ratings for
 

the two cases are almost identical. Not all of the pilots attempted
 

to coordinate their turns by use of rudder. All, however, agreed that
 

the turns were essentially coordinated with the RSS engaged. Only one
 

pilot, using the rudder, reported that coordinated turns could be
 

maintained even with the yaw damper failed. All five evaluation'pilots
 

recognized the improved Dutch Roll characteristics with the RSS engaged
 

and reported improved turn-entry and heading-hold characteristics.
 

4.7.4 Combined Axes Task
 

The combined axes task, repeated three times, was a timed
 

climbing/descending turn in smooth air defined as follows: End Time
 

1. 	Stabilize aircraft at initial conditions. 0:30
 

2. 	 Descend to 1000 feet while turning right
 
90 degrees in 1 minute. 1:30
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End Time
 

3. 	Stabilize on new heading and altitude and
 
hold for 30 seconds. 2:00
 

4. 	 Climb to 2000 feet while turning left 90
 
degrees in I minute. 3:00
 

5. Stabilize aircraft at initial conditions. 3:30
 

Airspeed was to be held constant. The runs were for the basic JetStar
 

configuration and for the Longitudinal Systems I and IIwith the Lateral
 

RSS engaged. Pilots were asked to give an overall Cooper-Harper rating
 

for the task and make any comments regarding handling qualities as
 

appropriate. The evaluation results are summarized in Table XI.
 

TABLE XI
 

AVERAGE COOPER-HARPER RATINGS, COMBINED,AXES TASK
 

(Smooth Air)
 

Standard
 
Case Rating Deviation
 

1 Basic Jetstar 3.1 0.71
 

2 Longitudinal RSS I and Lateral RSS 2.5 0.45
 

3 Longitudinal RSS II and Lateral RSS 2.9 0.57
 

In verbal comments, three pilots remarked on the obvious increase in
 

workload due to the more difficult task, but none found any particular
 

difficulty with the Longitudinal RSS I plus Lateral RSS configuration.
 

There was no agreement among the pilots about the cause of the reported
 

relative degradation of handling qual'ities of the Longitudinal RSS II
 

plus Lateral RSS configuration. Although the lateral/directional
 

characteristics for the aircraft were identical for Cases 2 and 3, two
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pilots reported control of heading to be more difficult. Two other
 

pilots found pitch control to be somewhat too sensitive. One pilot
 

preferred the configuration of Case 3 to that of Case 2. According
 

to the average pilot opinion ratings, the basic JetStar would appear
 

to possess the poorest handling qualities of the three simulated
 

configurations. Three pilots reported control of vertical speed and
 

pitch attitude as more difficult, one pilot noticed a slightly annoying
 

Dutch Roll oscillation, but one pilot felt the basic JetStar to be
 

slightly superior to the RSS-augmented configurations.
 

4.7.5 	 Smooth Air Evaluations, Conclusions
 

Examination of the results of the first three evaluations
 

leads to the conclusion that the incorporation of the Ride Smoothing
 

Systems makes little difference in the handling qualities of the JetStar
 

for manuevering flight in smooth air. For the lateral axis control task
 

some improvement in Dutch Roll characteristics was detected by the
 

pilots. During the combined axes task, a subtle improvement in pitch
 

characteristics with the RSS engaged resulted in the augmented aircraft
 

configurations being rated better than the basic aircraft. The numer­

ical differences in ratings, however, are so slight that statistically
 

they are insignificant. More important is the conclusion that even
 

with the stabilizing loops (8 6e' r 6r) failed for the RSS-augmented
 

cases, the average pilot opinion rating is approximately three (3).
 

According to the Cooper-Harper scale, a rating of three (3) represents
 

an aircraft with satisfactory handling qualities requiring no improvement.
 

4.7.6 	 Instrument Landing System Approach Task
 

The final simulation evaluation task was an Instrument
 
Ill
 



Landing System approach problem. The pilots were asked to capture and
 

track the localizer and glideslope to a 61 meter (200 foot) breakout
 

altitude. A total of four runs were made by each pilot. The first
 

run was with the basic JetStar configuration in smooth air. During
 

the next three runs (basic JetStar, Longitudinal RSS I plus Lateral RSS,
 

Longitudinal RSS II plus Lateral RSS) simulated turbulence was 

introduced with components scaled to a vertical gust field ofcrw = 1.2 
g
 

meters/sec (4 ft/sec). The simulation turbulence level was chosen below
 

the design condition after a preliminary evaluation at aw = 2.1 m/s
 
9 

(7 ft/sec) resulted in a pilot opini'on rating of seven (7) for the basic
 

JetStar. Ratings of seven (7) or greater imply a workload level that
 

precludes the pilot from devoting attention to detailed evaluation of
 

handling qualities.
 

Pilots were requested to comment on the following specific
 

handling qualities considerations:
 

1. Ability to maintain desired airspeed and attitude;
 

2. Ability to acquire and track the glideslope;
 

3. Tendency to PIO in pitch/airspeed;
 

4. Adequacy of roll control;
 

5. Precision of heading control;
 

6. Ability to acquire and track the localizer; and
 

7. Tendency to PIO in roll/heading.
 

In addition, a separate Cooper-Harper rating was recorded for the
 

longitudinal and lateral control aspects of the task. The subjective
 

evaluations are summarized in Table XII.
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TABLE XII
 

AVERAGE COOPER-HARPER PILOT RATINGS, ILS TASK
 

Longitudinal Lateral
 

'Standard Standard
 
Case Rating Deviation Rating Deviation
 

Smooth Air
 

I Basic JetStar 3.2 0.3 2.6 0.4
 

Turbulent Air 

2 Basic JetStar 4.3 0.9 5.5 1.4 

3 Longitudinal RSS I + 
Lateral RSS 2.8 0.9 3.1 1.7 

4 Longitudinal RSS II + 
Lateral RSS 2.9 0.7 3.6 2.3 

Whereas no significant effect on handling qualities in
 

smooth air could be attributed to the incorporation of a Ride Smoothing
 

System, the effect of such systems for flight in turbulence is beneficial.
 

Although the standard deviations of Pilot Opinion Ratings are large,
 

ratings by individual pilots were all improved when the RSSs were
 

engaged. Note especially that at the simulated turbulence level the
 

longitudinal handling qualities of the aircraft with a RSS in turbulence
 

are rated equivalent to those of the basic aircraft in smooth air. The
 

improvement in the lateral axis is not quite as great.
 

Verbal comments by the pilots generally indicated few
 

problems with longitudinal axis control for the RSS-augmented configur­

ations. With the basic aircraft, however, all pilots reported some
 

tendency toward PIO in pitch. Itwas in the lateral-directional task
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that a tendency of the aircraft 
to "wander" in heading and oscillate in
 

roll angle was observed. For the RSS-augmented cases, such oscillation
 

was characterized by three of the pilots as typical of flight-in
 

turbulence. When the RSSs were disengaged, however, these.motions were
 

reported to yesult in serious difficulties in holding desired heading
 

and maintaining the localizer. In all cases, the pilots indicated that
 

the level of turbulence appeared moderate to heavy for the approach
 

with the basic JetStar. When the Ride Smoothing Systems were engaged,
 

the level of turbulence was judged to be from very light to light to
 

moderate.
 

Perhaps the best summary of the effect on handling qualities
 

of a Ride Smoothing System for the JetStar was given by Pilot A. After
 

having flown a simulated approach in the unaugmented aircraft with a
 

turbulence level of ow = 2.1 m/s (7 ft/sec), he compared the experience
 
9
 

to the previous run where Longitudinal RSS I and the Lateral RSS had
 

been engaged:
 

"General comment: [compared to the previous run]
 
this is an awful condition to fly--laterally,
 
directionally, and in pitch. Could not maintain
 
airspeed. Had to keep adding power because [the
 
aircraft] was sashaying around so much. Attitude:
 

I was just herding it around the best I could...
 
Could not hold heading because of the [large] roll
 
excursions... Looked like the ship didn't have
 

much stability.... Definite tendency to PIO... Roll
 
control was very poor due to adverse yaw. Initial
 
roll response was low... [Apparent] level of
 
turbulence compared to the previous run--almost
 
double."
 

Despite these comments, the pilot's tracking error was small
 

(Figure 53 and 54). The differences in workload, however, are apparent
 

in the strip-chart recordings (Figure 55a-e) of aileron activity
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(Channel 8 ) and pilot inputs to the elevator (Channel 4 ). Note also
 

that the pitch attitude trace (Channel 5 ) was considerably smoother
 

when the RSS was engaged. Vertical acceleration at the aircraft center
 

of gravity is displayed on Channel 1. With the RSS operating, the
 

sharp acceleration spikes were suppressed. The effectiveness of the
 

Lateral RSS is displayed in Channel 3, the transverse acceleration at
 

the aircraft center of gravity. With the system engaged, the lateral
 

acceleration was reduced to very small amplitude.
 

'Digitally-calculated data for these two runs are summarized
 

in Table XIII. The calculated root-mean-square turbulence levels for
 

both runs were as follows: aw = 1.89 m/s (6.21 ft/sec), a = 1.32°,g g 

= 2.23 /sec.
Pg 

= 

Despite the fact that the measured quantities include 

manuevering loads, the agreement between theoretically-calculated param­

eters and their experimental values is reasonably good. Only the
 

measured performance of the Longitudinal RSS isconsiderably inferior
 

to the predicted value. Several additional runs were made to investigate
 

the reason for this discrepancy.
 

4.7.7 	Simulation of Straight and Level Flight
 

Several data runs were made for a straight and level flight
 

condition. Pilot control was "loose." At this condition, a 32.5% 

reduction "inc and a 80.5% reduction in a were measured whena 
 a
 
z 	 y
Longitudinal RSS I and the Lateral RSS were engaged. Power spectral
 

density plots for these experiments are shown in Figure 56 and 57. Note
 

that the power spectral density for the basic aircraft does not show the
 

sharp peak at the phugoid frequency that was predicted by the theoretical
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. TABLE XIII
 

SIMULATION RESULTS, ILS TRACKING TASK
 

Longitudinal RSS I + 
Basic Aircraft Lateral RSS 

Experimental Calculated Experimental Calculated 

aq 1.00 0/sec 1.28 0/sec 0.48 0/sec 0.62 0/sec 

ap 5.07 0/sec 3.32 0/sec 2.68 0/sec 1.29 0/sec 

Cr 1.59 0/sec 1.56 0/sec 1.27 0/sec 1.04 0/sec 

a 1.60 o 1.34 0 -­

as 2.20 0 1.87 0­

" 4.870 -- 4.69 0 -­

a6 0.84 0 -- 0.44 0 0.35 0 

a'Sf -- 10.59 0 8.8 o 

a6r'Sr 0.80 0.61 o 

a6sfg -- 7.59 0 5.18 0 

6a 2.980 - 2.40 0 --

Ca 0.0963 9 o.1o4 g 0.0634 g 0.0508 g 
z 

aa 0.0273 g 0.0207 g 0.0061 g 0.0031 g 
y 

Comfort Rating 3.4 3.4 2.8 2.6 

% reduction a a 33.2 % 51.8% 
z 

% reduction a a 77.7 % 84.5 % 
y 

% reduction Uq 52.0 % 51.3 % 

% reduction ap 47.2% 61.0 % 

% reduction a 20.2% 43.5 % 
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calculations (see Figure 28, page 60). In Section 3.4.1 it was shown
 

that a considerable amount of energy is associated with this peak.
 

Thus it can be concluded that the apparent loss of longitudinal system
 

effectiveness is the result of calculation errors at low frequencies in
 

the simulation data. At higher frequencies, the shapes of the power
 

spectral density plots closely match the theoretically calculated curves.
 

4.8 Conclusions
 

The ground-based simulation program had, as its primary objective,
 

the evaluation of the effect of the synthesized Ride Smoothing Systems
 

on the handling qualities of the JetStar. It is concluded that, for
 

manuevering flight in smooth air, the incorporation of these systems
 

yields a slight improvement in pilot opinion ratings. Under the
 

postulated system failure conditions, handling qualities are not
 

catastrophically degraded. Thus, the Ride Smoothing Systems meet two
 

of the most important design criteria set forth in Section 2.3:
 

maintenance of adequate handling qualities and insensitivity to system
 

failure.
 

For precision instrument flight in turbulence, incorporation of a
 

RSS significantly improves the handling qualities of the basic aircraft
 

by reducing pilot workload. Parenthetically, it should be noted that
 

when subject to a severe turbulence environment, the handling qualities
 

of a reasonably "well-behaved" aircraft such as the JetStar may
 

deteriorate to unacceptable levels. Thus, the handling qualities
 

qriteria of MIL-F-8785B (36) appear to be inadequate.
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Finally, the simulator experiments provided a measure of confidence
 

in the performance estimates for the ride quality improvement provided
 

by Ride Smoothing Systems and, based on the anticipated improvement in
 

comfort rating, justification for flight test experiments.
 



CHAPTER V 

FLIGHT TEST PROGRAM
 

5.1 	 Planned Program
 

JetStar flight tests of the Ride Smoothing Systems were planned to
 

be conducted in three phases. 
 First, a series of developmental flights
 

during which feedback gains were to be increased incrementally to their
 

nominal levels were to be flown. 
A rudimentary handling-qualities
 

evaluation and acquisition of baseline system performance data was 
to 

be accomplished. When a reasonable level of confidence in system 

operation had been achieved, Phase II, a repetition of the ground-based 

simulation flight, was to be performed. The final flight test phase 

was to obtain subjective evaluations of RSS performance. 

Following a GPAS system failure unrelated to the RSS operation, 

the JetStar was grounded. Consequently, only two test flights were 

made and only some of the objectives of Phase I were accomplished. 

Results of these very limited experiments are discussed below. 

5.2 	 Implementation of RSS Aboard the JetStar
 

Implementation of the Longitudinal and Lateral Ride Smoothing
 

Systems aboard the JetStar was a straightforward extension of the
 

ground-based simulator mechanization. The feedback equalization
 

circuits wired on the airborne PC-12 analog computer were identical
 

to those used on the simulator (Figure 46 through 48, page 96ff). The 

airborne analog computer is shown in Figure 58. 

System-driving signals were obtained from standard GPAS instru­

mentation. Yaw rate and pitch attitude gyro outputs were input 	to 129
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the PC-12 patchboard directly from GPAS signal-conditioning circuits.
 

Upon engagement of the GPAS mode, the pitch attitude signal was
 

automatically nulled by the Response Feedback System circuitry. The
 

vertical and lateral acceleration signals for operation of the Ride
 

Smoothing Systems were provided by a pair of accelerometers bolted to
 

th&-cabin floor slightly ahead of the nominal aircraft center of
 

gravity. Outputs of these accelerometers were input directly to the
 

PC-12 board, bypassing the GPAS signal-conditioning circuits, requiring
 

the normal accelerometer signal to be nulled manually prior to RSS
 

engagement.
 

Ride Smoothing System commands to the elevator and rudder were
 

summed with pilot commands from the aircraft left seat controls. RSS
 

commands to the direct-lift flaps and side-force generators were
 

applied directly to the surface servos.
 

5.3 	 Ground Tests
 

As with the ground-based simulation, performance of the airborne
 

analog circuits was verified by observing the frequency and magnitude
 

response of the RSS filters to sinusoidal inputs. Response of the
 

PC-12 computer circuits was comparable to those of the ground-based
 

analog computer. Proper phasing of the command signals was verified
 

by pressurizing the GPAS system, tilting individual sensors, and
 

observing the deflection of the appropriate control surface.
 

Prior to the implementation of the Ride Smmothing Systems, feed­

back of acceleration to the direct-force surfaces had never been
 

attempted aboard the JetStar. Several experiments were, therefore,
 

conducted to determine the stability (structural coupling) of these
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feedback loops. With the GPAS system pressurized, the acceleration
 

feedback gains were slowly increased to their nominal values and the
 

surface position transducer signals monitored on a strip-chart recorder.
 

In the case of the direct lift-flaps, no instability was detected. The
 

flaps would, however, respond to movement by personnel about the air­

craft cabin. Thus, although the accelerometer-mounting was adequate
 

for the Phase I investigation, ultimately a more suitable accelerometer
 

location would have had to have been found. Increasing the lateral
 

acceleration feedback gain above approximately 20% of the nominal value
 

resulted in limit cycling of the side-force generators. This phenomenon
 

was attributed to significant free play in the side-force generator
 

linkages. The feedback gain of this loop was, therefore, set well
 

below nominal during the flight test program. Although the linkages
 

were readjusted, the flight program was terminated before another
 

ground resonance test could be accomplished.
 

A final pre-flight operational test of the airborne RSS consisted
 

of operating the system in a closed-loop sense. The aircraft equations
 

of motion were solved on three slaved Electronics Associates, Inc.
 

(two Model TR 58 and a TR 10) analog computers. Calculated motion
 

parameters were fed to left-seat cockpit displays and the airborne
 

PC-12 analog computer. Pilot control inputs and RSS system commands
 

were fed to the appropriate control surfaces of the aircraft. Surface
 

position transducer outputs were fed back to the auxiliary ground
 

computers to complete the closure. Hydraulic pressure for the control
 

surfaces was supplied by a ground system. Signals proportional to
 

components of actual atmospheric turbulence that had been recorded on
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analog tape were used to perturb the calculated angle-of-attack and
 

sideslips signals in the ground analog computers. The aircraft was
 

thqs made a part of a ground-based simulator. Selected system param­

eters were monitored on strip-chart recorders during, the simulation
 

runs. Since operation of the GPAS in this ground mode adds to utiliza­

tion time of aircraft ,hydraulic components, the experiment was conducted
 

only long enough to qualitatively verify proper operation of the RSS.
 

5.4 	 Data Acquisition and Reduction
 

Acquisition of JetStar flight-test data was by means of a Pulse
 

Code Modulation (PCM) System. Some 80 channels of data were available
 

for analysis. All of the data presented below were sampled at a rate
 

of 40 samples per second. Power spectral analysis of selected data
 

channels was performed using the same digital computer program (PSDQR)
 

employed in the ground-based simulation studies.
 

Calculation of the statistical properties of the true vertical
 

gust field (w ) was accomplished by correcting the nose-boom-mounted
 

gust vanesignal (av) for aircraft motion:
 

Wg = 	Cos [VT0 v - VT0' + Pxq ] + f Az dt (5.4.1)
 

wheie Zx is the distance from the aircraft center of gravity,to the 

gust vane, and A z is the vertical acceleration of the aircraft center 

of gravity with respect to inertial space. The value of A2 was 

deLermined from the aircraft center of gravity ac.celerometer outpuLs 
Nx, 	Ny, and Nz (in g's) by:
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Az g {N sin e + sin @ cos O(Ny + sin j cos 0)
x 


+ cos 4fcos e(N - cos cos 6)1 (5.4.2) 

Several channels of data were monitored on strip-chart recorors
 

during the flight tests. In addition to providing a qualitative
 

indication of system performance in real time, the time code on the
 

strip-chart recordings provided identification of data segments for
 

digital analysis.
 

5.5 Summary of Flight Test Data
 

Two flight tests of the Ride Smoothing Systems, #349 and #350,
 

were conducted on 5 June and II June 1974, respectively. The aicraft
 

was flown in the approach configuration. During Flight #349, the
 

Lateral RSS and Longitudinal RSS I were engaged. Acceleration feed­

back gains for these systems were increased incrementally from 5% of
 

their nominal values to 45% of nominal for the Longitudinal RSS and
 

15% of nominal for the Lateral RSS. A rudimentary examination of the
 

aircraft handling qualities in smooth air for this configuration
 

(flight path angle changes, "S' turns) was accomplished. The command
 

pilot reported no objectionable aircraft characteristics. The aircraft
 

was then flown in light to moderate natural turbulence for approximately
 

10 minutes with the Lateral and Longitudinal RSS I systems engaged.
 

Heading was then reversed, and the same geographical area traversed
 

with the systems shut down.
 

During Flight #350, the Longitudinal RSS I was operated at nominal
 

design feedback gains in turbulent air for approximately 3 minutes before
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a GPAS system anomaly resulted in system shut down. Approximately three
 

minutes of turbulence data for the basic JetStar was recorded immediately
 

following RSS disengagement.
 

Results of these experiments are summarized in Table XIV . Experi­

mental values have been adjusted by multiplying by the ratic; of the 

design turbulence level of ow 2.1 m/sec (7 ft/sec) to the measured 

9 cw9 . The numbers in parenthesis are theoretically-predicted values.
 

The agreement between theoretical and measured acceleration levels
 

for the baseline case is quite good. The theoretical calculation,
 

however, significantly overestimates aircraft response in pitch rate
 

and yaw rate. The measured performance of Longitudinal RSS I, in
 

terms of percent reduction ina and a at the design feedback gain
a q

z 

levels, is in excellent agreement with predicted performance. The
 

acceleration alleviation provided by the Lateral RSS, however, is
 

significantly below the expected level, while the reduction in r is
 
r 

very close to the predicted value. Had the acceleration feedback loop 

been open, the yaw damper (r+ 6r feedback) alone would have provided 

a 38.3% reduction inaa and a 29.0% reduction inar' Thus, it appears 
y 

that the side-force generators provided no benefit at the very low level
 

of K realized in the tests.
 a 
y

A comparative power spectral density plot (PSD) of the output of the
 

center of gravity normal accelerometer is shown in Figure 59 for the
 

baseline and Longitudinal RSS I nominal gain cases. This plot differs
 

from previously-presented PSD's in that the individual curves have been
 

normalized by their respective mean-square values. Since the areas
 

under both curves are thus identical, the plot displays only relative
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TABLE XIV 

RIDE SMOOTHING SYSTEM FLIGHT TEST RESULTS 

Flight #349 

baseline 

Longitudinal RSS I 

Flight #349 

K = 1.4 rad/ni/sec 2 
az .(0.43 rad/ft/sec 

Ke = 0.030/0 

Flight #350 

K = 3.3 rad/m/sec2 2 
az (1.0 rad/ft/sec 
Ke = 0.14O/o 

aa 
aq 

a6f 

0.1047 (0.1178) g. 

0.933 (1.440) °/sec 

0.0788 (0.0794) g . 

0.599 (1.12) 0 /sec 

5.31 (5.95) 0 

0.0518 (0.0572) g 

0.402.(0.700) °/sec 

7.70'(9.96) 0 

% reduction aa 
z 

% reduction aq -

" 24.7 (32.6) % 

35.8 (22.3) % 

50.5 (51.8) % 

56.9 (51.3) % 

Lateral RSS 

Flight #349 

Baseline 

Flight #349 

Ka = 0.5 rad/m/sec 2 

y (0.15 rad/ft/sec 
Kr = 1.0 0/°/sec 

aa 

or 

0.0307 (0.0350) 9 

1.32 (2.35) °/sec 

0.0206 (0.0158) 9 

0.88 (1.65) 0/sec 

a 

% reduction aa 

--. 

"" 

2.14 (2.67) °/sec 

32.9 (54.9) % 

% reduction ary 33.0 .(30.0) % 
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RSS effectiveness at particular frequencies. The greatest acceleration 

alleviation can be seen to occur from frequencies somewhat below the short 

period peak to I Hertz. This conclusion is in clear agreement with the 

theoretical calculations (see Figure 28, page 60). The "spikes" in 

the experimental curves at approximately 3 to 4 Hertz are attributable 

to resonance of the accelerometer mounting plate. -

A qualitative impression of the effectiveness of Longitudinal RSS I
 

can be gained by referring to Figure 60. These strip-chart records
 

are taken from Flight #350. The traces on the-left side of the figures
 

are for the time segment with the Longitudinal RSS I operating (13:44
 

to 13:45:40 hr) and those on the right for the baseline case (13:48 to
 

13:49:40 hr).
 

The S vane output was chosen as representative of the turbulence
 

level since aircraft motion in the lateral axis is essentially unaffected
 

by the Longitudinal RSS. Note that the magnitude of the turbulence
 

field is approximately equivalent for both time segments. Excursions in
 

vertical acceleration (az), however, were substantially reduced when the
 

RSS was engaged.
 

5.6 Conclusions
 

Although the limi'ted amount of available flight data makes
 

categorical statements impossible, the data permit some tentative
 

conclusions. First, the theoretical calculations of aircraft root-mean­

square acceleration response to turbulence ,agree reasonably well with
 

experimental values for both the Longitudinal RSS augmented and
 

unaugmented configurations. Such agreement is most important since
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a is the dominant term in the evaluation of passenger comfort.
a
 
z
 

Secondly, the theoretical prediction of lateral acceleration is also in
 

good agreement with experiment for the baseiine case. The failure of
 

the experimentally-observed value of aa to fall to th& theoretically­

y
 
predicted level with the Lateral RSS engaged can probably be attributed
 

to the low acceleration feedback gain level necessitated by mechanical
 

difficulties. Finally, it would appear that mechanization of Longitu­

dinal Ride Smooihing System I is feasible and that its, incorporation
 

would provide substantial improvement in passenger comfort. Had human 

subjects been on board the aircraft, the comfort model predicts that 

the .percentage satisfied would have increased from 66.8% (C = 3.5) for 

the.basic JetStar case to 84.5% (C = 2.8) when the RSSs.were engaged. 
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CHAPTER VI
 

EXTENSION OF RIDE SMOOTHING SYSTEM CONCEPT
 

TO STOL AIRCRAFT
 

6.1 Selected Aircraft
 

The success achieved in synthes-izing ride smoothing systems for
 

the JetStar prompted a brief theoretical and simulation investigation
 

of the applicability of these systems to two radically different
 

The first of
STOL-class aircraft of the same size as the JetStar. 


these was the deHavilland of Canada DHC-5 Buffalo. The Buffalo relies
 

on low-wing loading (W/S 1676 N/m2 = 35 lb/ft2 ) to achieve short­

field performance, but is otherwise similar in configuration to
 

The other a-ircraft selected for this' investiga­conventional aircraft. 


tion was,,a conceptual design extensively studied at the NASA Langley
 

and-Flight Research Centers and designated LRC S-Il. The wing Ioading
 

of this aircraft is equivalent to typical modern jet transports (W/S
 

3830 N/m2 = 80 lb/ft2). S-il short-field performance is achieved
 

through the operation-of an externally-blown jet flap (43). As in the
 

JetStar investigation, the selected design condition-was the power
 

approach in moderate to heavy turbulence (aw = 2.1 m/sec).
 
w
g
 

The mechanization of a Longitudinal RSS for the STOL aircraft made'
 

use of the,elevator and wing-trailing edge flaps. In the-case of the
 

Buffalo, aerodynamic data were available only for the entire flap
 

system. Thus, although these flaps are-considerably more effective
 

at the design condition than those on the JetStar, the entire surface
 

had to be assumed as the direct-lift control. The S-Il configuration
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has a more sophisticated system of wing-mounted control surfaces.
 

These include spoilers, flaperons, symmetrically-deflecting ailerons,
 

and a "direct-drag".fiap'system.- Al'though the direct-drag f'laps have
 

an effective lift to drag ratio of only (L/D)f 1.36, their lift
 

capability is equivalent to that of the JetStar system. Therefore,
 

only the "direct-drag" flapswere mechanized in the RSS design.
 

. The lateral axis RSS. for the STOL :aircraft was ini-tially mech­

anized in -the' same.wa.y as- that. for the JetStar, i.e.,,using, the: rudder 

and si'de-force generators,.- The-hypothetical side-force generators 

were scaled -to produce the.same lateral accelteratin, per unit deflec­

tion at the design velocity,as those on the. JetStar. The projected
 

area for-each-of two surfaceswas 4.9 m 2 .(53 2 2 2ft2) and 8.0 m ,(86 ft.) 

for the Buffa:io.and- S--1l, as compared to -1.3 m2 04 ft ) fqr, the Jet-

Star.. The postulated.STOL side-force generators are quite large;, for 

the S-1I, the area is.1.4 times that of the ai-rcraft's vert-ical tail ..
 

Incorporation of suchcontrols str.ictly for.imprqvement of-ride
 

qualities would be hard-to justify. One cah,-however, envision
 

additiohal, uses of larges5ide-force, generators, e.g.,, improvement of
 

crosswind landing,capability. ,Furthermore, some reduction in s'ize
 

might be possible if the surfaces are .immersed -inthe propeller slip 1 ,
 

stream or jet efflux. Such tradeoffs, however, were not evaluated.
 

Dimensional stabili-ty der-ivatives and aircraft parameters cfor the,
 

Buffalo and.S,11 power approach conditions are summarized 'inAppendix
 

E. The.Buf-falo -parameters-were taken from the NASA Ames Research
 

CenterSTOLAND program documentation; the;S-l data, from-NASA Flight,
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Research Center sources. Actuator characteristics for the control
 

surfaces were assumed identical to those of the, JetStar.
 

6.2 Synthesis of Ride Smodthinq"Systems
 

6:2.1 Longitudinal RSS
 

Whereas the basic JetStar longitudinal dyhamics and control
 

characteristics in the approach configuration (Wih the excepfi6n of
 

Zph) clearly meet the handling qualities requirements of MI'L-F-8785B (36),
 

those of the Buffalo and S-I do'not. Thus, a direct adaptation of the
 

Longitudinal RSS'deeloped previously was not possible. In particular,
 

the handling'qualities-,parameter n/ is marginal in the 'case of the
 

Buffal'o (n/ = 2:9 g/rad) and inadequate for the S-11-(n/ = 1.57 g/rad).
 

Incorporation of Longi'tudinal RSS H! would have further degraded thi's
 

metric. Therefore, the applicability only of Longitudinal RSS I to
 

the STOL configurations was stud'ied.
 

The effect of the equalized essential feedback (a +f
z 


through ciscaded'washout and, lag f1lters) on the dynamic modes of both
 

STOL ai-craft was substantially'different from the s'hort-period and
 

phugoid-rodt location changes observed for the JetStar. First,'for the
 

range of acceleration feedback gains considered, the phugoid root
 

remained essentia'lly statibnary.' Secondly, the short-period root locus
 

tended toward the imaginary axis (reduction in Csp) at an almost
 
constant 4 evel of'damped natural frequency (md) These vaiations,
 

however,'were also small. Consequently, the stabilizing feedback-loop
 

requirements were different than for the JetStar RSS. 
 In the case of
 

the Buffalo, no increase, in short-period frequency was required, and
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short-period damping was recovered by feedback of pitch rate to the 

elevator (q 6e) through a lag filter. 

The short-period damped natural frequency d ) for the 
sp
 

basic S-li was calculated to be only a factor of two higher than that
 

of the phugoid (see Table XV, below). Under these conditions, con­

siderable coupling between vertical velocity (angle of attack) and
 

pitch attitude perturbations occurs at the phugoid frequency; modal
 

0
ratio: u:a:O = 2.4 ft/sec:O.70 :1 . (At the short-period frequency:
 

u:c:0 = 0.2 ft/sec:l.7 0 :10 .) Consequently, both pitch attitude and
 

pitch rate were fed.back to the elevator (e,q t 6e) to increase the
 

short-period frequency and damping and to achieve a greater separation
 

of the modes. Lead and lag filters were incorporated in the 6 and q
 

loops, respectively.
 

Block diagrams of the Longitudinal Ride Smoothing Systems
 

for the Buffalo and S-Il are shown in Figures 61 and 62. Table XV
 

compares the dynamic characteristics and Longi.tudinal RSS performance
 

parameters at the design condition for the JetStar and the two STOL
 

aircraft.
 

The numerical data of Table XV indicate a number of
 

similarities between the RSS augmented aircraft. The vertical
 

acceleration levels (underlined terms) for flight in the standard
 

(a = 2.1 m/sec) turbulence field for the three augmented aircraft 
w
 
9
 

are essentially the same. From the pilot's viewpoint, the dynamics 

of the augmented aircraft., as expressed in terms of the parameters 

(time to half amplitude of the short-period mode, Ti , inverse cycles
2
 
sp
 

to the 1/10 amplitude i/Cl/i0, and phugoid time to half amplitude,
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TABLE XV
 

COMPARISON OF JETSTAR AND STOL LONGITUDINAL RIDE SMOOTHING SYSTEMS
 

Basic RSS-Augmented Basic RSS-Augmented Basic RSS-Augmented 

JetStar JetStar Buffalo Buffalo S-li S-1I 

sp 0.546 0.567 0.628 0.725 0.826 0.698 

0.266 Hz 0.356 Hz 6.282 Hz 0.310 Hz 0.136 Hz 0.262 Hz 

sp 
TL2 0.76 sec 0.55 sec 0.62 sec 0.49 sec 0.98 sec 0.60 sec 
sp 

1/C/ 10  2.21 2.35 2.81' 3.77 5.41 3.46 

;ph 0.054 0.522 0.102 0.249 .O.OO5 0.371 

P h 36.6 sec 53.2 sec 20.0 sec 22.8 sec 26.9 sec 31.6 sec 

Tph (T2ph 
p p 

74.8 sec 
0.1178 g 

9.6 sec 
'0.0572 g 

21'.4 sec 
0.1073 y 

10.0 sec 
0.0622 g 

(658) sec 
0.805 9 

8.7 sec 
0.0561 g 

a 
z 

a 0.0112 g 0.0040 g 0.0318 g 0.0251 g 0.270 g 0.0209 g 

a 1.44 0/sec 0.70 /sec 2.28 /sec 1.33 /sec 10.8./sec 0.70 /sec 

a--6f 9.9 0.-- 2.6 0 2.40 

C6 -- 0.4 0 1,2 ° -- 0.90 

%reduction' -- 51.8% -- 42.8% -- 93.0% 
z 

% reduction a -- 64.6% -- '34.1% -- 92.2% 

x 
% reduction aq -- 51.3% -- 41.5% -- 93.5% 



T, ) are equivalent. In the landing approach, passenger comfort and
 
2ph
 

previously-considered handling qualities criteria (with the exception
 

of the aforementioned STOL deficiency in -n/a) can, therefore, be met
 

equally well for the three aircraft by the incorporation of a Ride
 

Smoothing System.
 

Several differences between the STOL aircraft and the
 

JetStar, should be noted, however. First, even with the RSS engaged,
 

the root-mean-square longitudinal acceleration (cr ) is significantly 
x
 

larger for the STOL aircraft than for the JetStar. Also, the values
 

of the stability derivative Zu* are much greater. *Theseobservations
 

suggest that the effect df the longitudinal component of turbulence
 

(u ) on the STOL aircraft acceleration response might be important and 

should be included in a more complete analysis. Second, the degree 

of flap activity (af) required to.-achieve an equivalent level of a 
z

for the STOL aircraft is only one-fourth that required for the JetStar.
 

Part of the reason for this difference is, of course, the much lower
 

approach speed of the Buffalo and[S-ll. Finally, because of the
 

unstable phugoid mode of the basic S-l, the values calculat@d for
 

aa , a , and aq are very large. Almost all (99,7%) of the total 
z X 

calculated mean-square vertical acceleration occurs in the frequency
 

band below 0.05 Hz. In practice, low-frequency mbtion is easily
 

suppressed by the pilot; the significance of the calculated root-mean­

square values for this case is, therefore, debatable. A comparison of
 

the a power spectra for the three aircraft, however, indicates that
 
z
 

the RSS effect at higher frequencies is quite similar (Figures 28, 63,
 

and 64).
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6.2.2 	 Lateral RSS
 

As in the longitudinal case, closure of the essential
 

Lateral RSS feedback loop (ay 6sfg) had a negligible effect on the
 

character'istic modes of the'STOL aircraft. 
The previously-employed
 

stabilizing loop, r 6 r, however, was still desirable. Both the,
 

basic 	Buffalo and S-11 have an unstable spiral'mode (see Table XVI).
 

In addition, damping of the Dutch Roll-modeof the'basic SZI1 is well
 

below 	the level specified in MIL-F-8785o The incorporation of-an
 

unequalized yaw damper tends to alleviate both of these undesirable
 

characteristics. A washout was not incorporated in the r 6
+ loop
r

since 	it was found to radically reduce both Dutch Roll damping and'
 

frequency. A third feedback loop, roll rate to aileron-(p-* 6a) was
, 


added 	to the S-il RSS-mechanization in order to increase roll 
damping.
 

Block 	diagrams of the Lateral Ride Smoothing Systems for
 

the Buffalo and S-il are shown in Figures 65 and 66. Table XVI
 

compares the dynamic characteristics and'Lateral RSS performance
 

parameters for the detStar and the two STOL aircraft.
 

Comparative power spectral density plots for the lateral
 

acceleration of the Buffalo and S-1l 
 in the baseline and RSS-augmented
 

configurations are given in Figure 67 and 68. 
 In the case of the
 

Buffalo; the RSS completely suppresses the Dutch Roll response peak in
 

addition to reducing the acceleration level across the entire frequency
 

band. In,the case of the S-li aircraft, the effect of the p- 6a
 

feedback is clearly evident as a sharp dip at the maximum roll gust
 
(p ) input frequency. Although the Dutch Roll resonance is still
 

apparent, the magnitude of response is sharply reduced. 
At higher
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TABLE XVI
 

COMPARISON OF JETSTAR AND STOL LATERAL RIDE SMOOTHING SYSTEMS
 

Basic 
JetStar 

RSS-Augmented 
JetStar 

Basic 
Buffalo 

RSS-Augmented 
Buffalo 

Basic 
S-1i 

RSS-Augmented 
S-1i 

r o.o45 0.155 0.266 0.710 0.003 0.403 

w nr 
1.36 rad/s 1.20 rad/s 0.89 rad/s 0.83 rad/s 1.01 rad/s 0.67 rad/s 

TR 0.87 sec 0.61 sec 0.66 sec 0.70 sec 1.37 sec 1.18 sec 

T 
2a 

aY 

s(T 418 sec 
0.0312 s 

(37.5) sec 
0.0047 s 

(20.7) sec 

0.0214 g 

11.7 sec 

0.0060 g 

(5.4) sec 

0.0330 g 

14.3 sec 

0.0054 g 

r 2.35 °/sec 1.56 O/sec 1.62'°/sec 1.46 °/sec 2.39 /sec 2.44 °/sec 

-- 7.80 -- 11.20 -- 9.30 

a sf _ 0.92 -- 1.47 ° 
-- 490 

%reduction ca -- 84.5% -- 72.0% -- 83.6% 

% reduction Cr -- 43.5% -- 9-- -2% 
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frequencies, a uniform reduction in acceleration response to turbulence
 

was achieved. As with the.Longitudinal RSS, the root-mean-square
 

acceleration response for all three,aircraft with the Lateral"RSS
 

engaged was reduced to comparable levels.
 

Although effective in suppressing the Dutch Roll mode, the
 

yaw damper fails to provide any alleviation of.a for the Buffalo, and
r 


actually increases 0 r for the S-il. The yaw rate, response of both
 

ai.rcraft remains dominated by a.low-frequency heading,-instability
 

which is unaffected ,by the RSS.
 

6.2.3 	 Improvement in Passenger Comfort
 

The improvement in passenger comfort resulting from the
 

incorporation of a Ride Smoothing System aboard the STOL aircraft
 

operating in the design turbulence environment is evident from predicted
 

comfort ratings:
 

Buffalo S-lI 

Comfort % of Passengers Comfort % of Passengers 
Rating Satisfied Rating Satisfied 

Basic 3.4 69%- 5.0 25% 

RSS Augmented 2.8 84% 2.7 86% 

6.3 Simulator Evaluation of STOL'Ride'Smoothing System
 

The simulator handling qualities evaluation of the RSS-augmented
 

STOL aircraft was carrired out in the same facility as used for the Jet-


Star evaluation. Only the ILS problem was flown by the five evaluation
 

'pilots. Three runs were made for each of the aircraft: 'basic and RSS:­

augmented configuration in smooth air and RSS-augmented configuration 'in
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moderate turbulence (cs 1.2 m/sec). No evaluat-ion'was made of the
w 


g
 
basic configurations in turbulence since a preliminary run with the
 

S-11 resulted in a Pilot Opinion Rating of 10 (uncontrollable).
 

The simulated glideslope angle was increased from 30 to 70 to
 

better simulate a typical STOL approach. The only noticeable effect
 

of the steeper approach angle was to increase the pilot lead required
 

to fly the simulated Buffalo, i.e., upon intercepting the glideslope,
 

power had to be reduced to idle and a rapid pitch-over accomplished.
 

Several of the pilots penalized the Buffalo because.of this power/drag
 

characteristic.
 

Results of the STOL handling qualities evaluation are summarized
 

in Table XVII.
 

TABLE XVII
 

AVERAGE COOPER-HARPER PILOT RATINGS
 

STOL ILS APPROACH TASK
 

Longitudinal Lateral
 

Standard Standard
 
Rating Deviation Rating Deviation
 

Basic Buffalo 3.2 0.68 4.9 0.81
 

RSS-Augmented Buffalo 2.9" 0.66 5.0 1.45
 

RSS-Augmented Buffalo
 
in Turbulence 3.3 0.83 5.3- 1.15 

Basic S-11 * * 8.5 0.74 

RSS-Augmented S-11 3.0 0.00 4.7 1.54 

RSS-Augmented S-11
 
in Turbulence 3.25 0.43 5.9 1.24
 

160 *No rating; task dominated by lateral problem.
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In light of the aforementioned deficiencies of the STOL configura­

tions with respect to the control parameter n/,'it is somewhat sur"
 

prising that none of the evaluation pilots reported serious longitudinal
 

handling qualities'problems. One pilot did report a sllght tendency
 

toward PIO in pitch at the S-1l phugoid frequency.
 

The 	simulated lateral characteristics of bbth aircraft, even with
 

the RSS engaged, however, were clearly unsatisfactory for the ILS
 

tracking task. Three pilots stated that the basic S-ll.could be
 

landed only if a visual reference were available. Inadequate heading
 

control and high adverse yaw were cited as the major deficiencies of
 

this aircraft. Several pilots suggested incorporation-of a heading/roll
 

attitude command autopilot and aileron rudder interconnect. Heading
 

precision was also cited as the major directional control problem with
 

the Buffalo. Whether this characteristic is in fact representative of
 

the operational aircraft-would have to be established in a more exten­

sive 	investigation.
 

6.4 	Conclusions
 

Although, incorporation of a Ride Smoothing System aboard the
 

selected STOL aircraft would provide substantial improvementsin ri'de
 

quality, the simple systems investigated failed to meet the qualitative
 

handling qualities criteria in terms of pilot opinion rating as set
 

forth in Section 2.3. As was pointed out by the evaluation pilots, a
 

number of elements normally associated with stability augmentation
 

systems (SAS) would have to be incorporated inorder to provide
 

adequate handl-ing qualities. Such an integration should not be
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difficult. Recall that for both the Buffalo and S-l1, the closure of
 

the essential feedback loops..(a z + 6f, ay 6sfg) had neg-ligible effect 

on aircraft dynamics. Reference 44 reports a Stability Augmentation 

System developed-for the S-li in the landing approach flight phase. An 

obvious extension of the present research would be an investigation of 

the compatibility of the proposed Ride Smoothi-ng System with the SAS­

augmented S-il.
 

162 



CHAPTER VII
 

CONCLUSIONS AND RECOMMENDATIONS
 

The research reported herein is unique in the sense that the
 

problem of analyzing, synthesizing and evaluating aircraft Ride
 

Smoothing Systems was, for the first time, approached from a
 

comprehensive viewpoint. The multiple criteria that were established,
 

both subjective and objective, precluded the application of optimal
 

control theory. Nevertheless, both Longitudinal and Lateral RSSs were
 

successfully developed and were shown to be applicable to STOL aircraft,
 

suggesting that the solution to the RSS problem is generic.
 

A significant amount of new information was generated. In
 

particular, the feasibility of employing side force generators to
 

attenuate rigid aircraft response to turbulence was demonstrated
 

theoretically and in simulation. Such systems were shown to be more
 

effective than systems using rudder control alone. Extensive fixed­

based simulator experiments provided subjective, qualitative and
 

quantitative data that indicate the improvement in turbulent flight
 

handling qualities made possible by the incorporation of a Ride
 

Smoothing System. The simple analytic models developed for the
 

baseline Ride Smoothing Systems allow significant insight into the
 

effect of individual aerodynamic parameters on the performance of
 

these systems. The constrained "performance index" contours
 

generated by these models, together with the "comfort model," permit
 

a rational approach to the choice of feedback gains. The limited
 

flight data that were generated generally support the theoretical
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predictions of RSS performance. Finally, the data presented herein
 

are sufficiently complete to permit independent evaluation and
 

interpretation, thus contributing to the overall data base on Ride
 

Smoothing System characteristics.
 

As with any broad scope research project, the results of this
 

study suggest as many questions as may have been answered. Different
 

forms of equalization for the various prototypeRSS feedback loops
 

should be examined. For comparison purposes, it would be interesting
 

to develop optimal control laws for both the longitudinal and lateral
 

axis control problem. The effectiveness of the proposed RSS should
 

be examined at fuselage locations other than the center of gravity.
 

The gain scheduling that would be required for system operation over
 

the entire flight regime should be established. The interfacing of
 

the RSS and SAS for the STOL configurations should be undertaken.
 

Extension of the simplified analytic models to the STOL configurations
 

should be attempted. Finally, additional flight testing of the pro­

posed RSS would be most desirable.
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APPENDIX A
 

DEFINITION OF STAB-ILITY DERIVATIVES (45)
 

A.] Axis Systems
 
XBU0,P.
 

XS VT0 

REFERENCE
 

Zr
 

ZB' W-0'r
 
9
 

FIGURE 69. AXIS SYSTEMS
 

XB' YB' Z - The Body Axis System consists of a right-handed, orthogonal 

axes whose origin is fixed at the nominal aircraft center of 

gravity. Its orientation remains fixed with respect to the 

aircraft,, the XB and Z axes being in -the plane of' symmetry. 

The exact alignment of XB is arbitrary. hereif it Vs taken
 

along the body cenzerline reference.
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XS, YS, ZS - The Stability Axis System is that particular body axis
 

system for which the XS. axis is coincident with the
 

projection of the total steady-state velocity vector (Vo)
 

on the aircraft's plane of symmetry. Its orientation
 

remains 	fixed with respect to the aircraft.
 

A.2 Definition oflNondimensional Stability Derivatives
 

Nondimensional stability derivatives are defined with respect to
 

body fixed stability axes in standard NASA form (e.g., (46)).
 

A.3 Transformation of Stability Axis Derivatives to Body Axis
 

A.3.l 	 Longitudinal Derivatives
 

CN = CL Cos a0 + CD sin a0
 

CX = CD cos 0 - L sin a0
 

C C Cs 0 CL sin aO + C sin a0 + C CsO 

Ca Co L 0 Da D 0cN a CL cos aCn 	 Cos
 

CN CL. cosct0
 
a.a
 

CN =0 L cos 0
 
q q
 

C C 	 cosaO + sinas
 

CNM = CLM 
 + CDM 0
 

C =C Cosca sin a
O +
 
N L 0 D 0
S6
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C
XaU 

= CD cosa
Dai 0 

-C 
D 

sin a'
0 
- C' ya sin a0 - C

L 
cos a

0 

CX. 

a 

CXq 

= -CL. sin a0 
a 

-CLq sin a0 

L 0 

C
XM 

=C 
M 

Cos 
0 
-0

L 
sin a

0LM0 

CX6 
C0 Cos 0 -0 sin aL0 

Cm Cm ,CM.'Cm 
q' 

C 
MM 

C - unchanged 

A.3.2 Lateral 

(C1 )B 

Derivatives 

= Cos a0 -C s.in a0 

(CI)B 

p 
= C1 

p 
cos2 a0 (CI 

r 
+ C ) 

p 
sin 0 cos a0 + Cn n 

r 
2 S0 

(C)1 
r 
B = I 

r 
cos2 a0 (C 

r 
- CI ) sin a0 

p 
cos a0 C 

p 
sin a0 

(C ) 
6(Cl ) 

C 

=c 6 
cos 

c 
O - sin aO 

(Cn )B = n costO + C1 sin aO 

(Cn)B =C n 
p p 

Cs2 a " (Cn 
r 

-CI 
p 

sin 0 cos 0a- C 
r 

sin 2 a0 
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a
(C)B =n cos2 a + (C, + C ) sina cos a + C sin 2 

nrB nr 0 11 np0 	 0- 1p0
r 	 r r p p
 

(Cn)B = Cn6 Cosa 0 + Cl1 sin U 0
 

C , C - unchangedy y 

A.4 Dimensional Stability Derivative Definitions
 

A.4.1 	 Longitudinal Derivatives
 

U V cos a0
o ~ 

W0 = sin a0.
 
o 0 0
 

pSUo0 - C + wo 
u 	 m 2 X x 2 Cx )
 

X* =X + T cos
 

X 	 psu -C -2 (Cx 2 X Jw 2m La 0 


pS VT 02
 

X6 = 
 2m CX6 

Zu = -SUoM("- N - CN+ WO N')C 

0 


u m 2 Nm N 2U0 N. 

*=Z z 	- T sin 0
 

w
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Y 

a 
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&T 

A.4.2 Lateral Derivatives 

pSVT0 

V 2m Y 

PSVT 2 

Y6 = 2m Cy6 
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pSVT 
b
 
L= ( 2--)
 

x I 

pSVT b
2 

L = 4(1) 
'x 

c1 
p 

pSVT b2 

Lr = (41 0 C 
x r 

L6 

pSV 2b 
( -2--0 -) 

x 6 

pSVT 2b 
NS = ( 2- ) Cn 

pSV T b
2 

Np = 41 Cn 
z p
 

pSV b2
 

Nr = ) n4---r
 
z r 

pSV T 2
 

2-1 Cn6
z " 

L = (L5 + Iz N/I)G 

Lp (Lp xz p x)G
 

Lr ' = (Lr + Ixz Nr/Ix)G 

L6= (L6 + Ixz N6/Ix)G
 

Ls/Iz)G
N' =(N 8 + z 
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=
Np' (Np + Ix LpIz)G 

Np (Np xz p z) 

Nr (Nr + xz Lr/z)G
 

N6= (N6 + Ixz L6/Iz)G
 

-
=
where G 2
I
 
1 xx
 
I I
 
x z
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APPENDIX B
 

TURBULENCE FILTERS AND INPUT-OUTPUT RELATIONSHIPS
 

Under the assumptions on the statistilcal properties of turbulence
 

cited in Section 2.1, it has been shown 
(47) that the power spectral
 

density of any aircraft system output quanti-ty of interest, 0(w), can
 

be re'lated to the input power spectral density y.(m) through IG(W)12
 ,
 

the square of the modulus of the appropriate transfer function
 

)G ( ) (2w (B.1) 

at a given unit sinusoidal frequency w. The root-mean-square value of
 

the output, a, is then given by the integral of the output power spectral
 

density taken over all spectral frequencies:
 

o = [ 0() d() . (B.2) 

The root-mean-square value, identical to the variance for a proces 
with
 

zero mean, is one of the most useful quantities in describ'ing the
 

magnitude of response. The average frequency of exceeding a peak
 

response level can 
also be related to the power spectral density.
 

Formulations for the power spectral density of the components of
 

atmospheric turbulence are given in Reference 32. 
 Two forms are
 

generally used-- the Dryden and Von Karman. 
Although the Von Karman
 

description has been shown to more closely match actual measured
 

spectra, the Dryden form has the advantage of being spectrally
 

PflECEDI PAGE BLAiK NOT fltM 
173 



Thus, the transfer function, expressed in Laplace notation,
factorable. 


For this reason, an
for filtering a white-noise input is available. 


approximation to the Dryden form is used in this ,study. The turbulence
 

follows:
transfer 	functions are defined as 


wL 	 L
 

GA aw rVT L 2
 
0 (I + w s)
 

VI s 	 TO 

(T.4)( 4b 	 s)oGg A=~G(g.A 	 s)(B4 

"V
-T'0 
___L 

V 0CTI n7 2\.-. 	 (B.5)
 
00 (1 + - s) 

T0
 

r Bg.

G9 -_G +9 's 	 (B.6) 
A A
 

pg(7 -/08TL w 'U 

w 1/3
 

G 9 _\/L-- T +I4b ls(B.7)
 
A wLT .~ 4b~
 

where
 

Lw, L 	 are the characteristic gust lengths for vertical and
 

lateral turbulence fields, respectively,
 

b 	 is the reference wing span of the aircraft, and
 

VT 	 is the total steady-state velocity of the aircraft.
 

$rJIi.. ?I( ''' Jvs.;-.! :;1 .j 'I , til I. r[itk, 
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Note that the expressions for q, r, p9 are strictly valid only for
 

very low frequencies. For clear air turbulence, at altitudes above
 

533.meters (1750 feet), Lv and L are taken equal to 533 meters (1750 

feet). For lower altitudes, the suggested values are Lw = h meters and 

Lv = 36.2 hIl/3 meters. The probability of exceeding a given aw once 

turbulence has been encountered is given by 

2 
) =ep(2 c2( exp W (B.8) 

where c = 0.7 m/sec (2.3 ft/sec).
 

Finally, the following similarity relationship is given in Reference
 

32:
 

v2 o2 
L 2 (B.9) 

v w 
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APPENDIX C 

JETSTAR DATA 

S = 50.4 m2 

JetStar Power Approach Configuration 

(542.,5 ft
2) 

= 3.3 m (10.9 ft)­

b = 16.4 m (53.75 ft) 

VT = 72.1 m/sec (236.7 ft/sec) 

h = 305 m (1000 ft) 

W 

I 

x2 
IY 
I 

z 

I xz 

W/S 

= 142300 N (32,000 Ib) 

= 84900 kg-m
2 (62400 slug-ft

2 

2 
= 272000 kg-m 2 (200000 slug-ft2 

=204000 kg-rn (150000 slug-ft ) 

= 750 kg-m
2 (550 slug-ft

2 

= 2824 N/m2 (59.0 lb/ft 2) 

Dimensional Stability Derivatives 

60 

00 

= 

= 

110 

110 

(XB axis aligned with fuselage reference,.line) 

CLo = 0.88 

X * 
U 

X w 

X. 

= -0.0058 I/sec 

= 0.1040 I/sec 

= 0.0 

X 

X6 

= 0.0 m/sec (0.0 ft/sec) 

= 1.0298 m/sec2/rad (3.3787 ft/sec2/rad) 

e 

~f 
= 0.3877 m/sec2/rad (1.2719 ft/sec2/rad) 
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Z * = -0.0991 1/sec 
u 

Z = -0.9192 1/secw 

Z- =0.0
 
w 

Z = 0.0 m/sec (0.0 ft/sec)
 
q
 

Z = -5.2981 m/sec2/rad (-17.3823 ft/sec2/rad)
 
e22
 

2a = -1.9944 m/sec2/rad (-6.5434 ft/sec2/rad)-

S6f
 

= 0.0062 I/m-sec (0.0019 1/ft-sec)
M * 

u 

M = -0.0266 I/m-sec (-0.0081 I/ft-sec) 

M. = 0.0 I/m (0.0 1/ft)w 

Mq = -0.9180 I/sec
 

2
 
= -2.5798 I/sec


M6e 

2
1/sec
= -0.1131
M 


y = -0.1226 I/sec

V 

y * = -0.0061 I/sec
 
6a
 

y * = 0.0473 I/sec
a
 r
 

y * = 0.0167 1/sec
 

sfg 2
 
L ' = -4.0765 I/sec
 

L ' = -0.9763 1/sec.
P
 

L r = 0.3842 I/sec
 
r
 

L ' 1/sec 2
 
= 1.3736 


L6 r = 0.6888 1/sec 
2
 

I/sec
2
 

= 0.2681
L 

5fg 2
 

= 0.8736 ]/sec
N 


N ' = -0.1655 1/sec
 
p
 
N ' = -0.1617 I/sec
 

r
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N6 0.0932 I/sec2
 
a
 

= -0.6051 l/sec2
 N6 r 

= 0.0493 l/sec2 N6 

s fy
 

Surface Actuator Dynamics
 

G e = , 1
 

6e (1+ S/lO0)2
 

1G6dlf

6dlf (I+ S/40)2
c 

1
G a 

6a (I + S/50)2


C 

S2
6r 	 I1 _
2
rc 	 227
(I + 2(0.25) S + )
 

2727
 

G	6sfg = 1
 

6sfgc (1+ S/30)2
 

Maximum Deflections and Rates for Force Control Surfaces 

Direct Lift Flaps: 6max = 27;max 52/sec 

Side Force Generators: 6max = 240; 6 = ± 370/sec 

1max 
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APPENDIX D
 

FORMULATION OF TRANSFER FUNCTIONS FOR
 

MULTI-LOOP FEEDBACK CONTROL SYSTEMS
 

The theoretical framework for expanding the transfer function
 

formulation to include multi-loop control feedback loops is presented
 

by McRuer et a]. For negative feedback systems, the rules are as
 

follows:
 

.1. The effective numerator is equal to:
 

a. 	The open loop numerator;
 

b. 	Plus the sum of all the feedback transfer
 

functions, each one multiplied by the appropriate
 

coupling numerator;
 

2. 	 The effective denominator is equal to:
 

a. 	The open-loop denominator;
 

b. 	Plus the sum of all the feedback transfer
 

functions, each one multiplied by the appropriate
 

numerator;­

c. 	Plus the sum of all the feedback transfer
 

functions taken two at a time, each pair
 

multiplied by the appropriate coupling
 

numerator. (Reference 48, page 95-.)
 

' 
Thus, for two loops closed (e.g., q, - 61, q2 + 62) the effective 

transfer function for output q, due to input of 6. is written as: 
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q, 6~ q~q1 62 q~ 
+ G I + G 2 Nq N6 


Gq i q 62 a I qD.N) ( 
N6q1 +C 6..N 6 6 N6 6q(D 1 

"1 1 2 q 12l
1 2 


where A is the open-loop characteristic denominator. Numerators of
 
9i
 

the form N6j are formed by simply applying Cramer's rule to the air­

craft equations of motion written in the Laplace variable s (i.e.,
 
replacing the column corresponding to q, by the input vector 6.).
 

qiqJ
 
Coupling numerators of the form N are formed by computing the
 

determinant of the matrix of the aircraft equations of motion with the
 

two columns corresponding to qi and q. replaced by the control vectors
 

corresponding to 6j and 6k simultaneously. If 6 6k or q. = q the
 

determinant is defined as zero.
 

For the Longitudinal Ride Smoothing System, with unequalized
 

feedbacks a - 6f, a0 6e, the transfer function of interest is: 

a azG
 
a N z w K Nw6
6
 

Gw a a e (D.2)

SA-K N 2z-K N KeN
+K a O
 
1 Kaz f Kaz 6 e az 6f6
e
 

where K > 0 and Ka > 0.
 

z
 

For the Lateral Ride Smoothing System, with unequalized feedbacks
 

a + 6sfg' r + 6 r' the transfer function of interest is: 

a a r 
N Y - K Ny 

Gayg r 1 q6r(D3 
+K a a r ' (D3) 

2 2 r Ka r N6Y
2 ay N6Sfg r 6r 
 y sfg r
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where K > 0 and K > 0. 
a r 

a .a a 
Expressions for , NZg N f N,e A N Y,sfg NrNr can be found in 

Reference 46. 

For the JetStar aerodynamics, the following coupling numerators
 

were derived:
 

6
a

NzNw6 S2{M- zw Mw
w
 
ge e e
 

+ s{M 6 (X z* - xj!z 
e u -. w 

+ x6 (MWu*z -HZ ) 

+ 2Xa 
e

(Mu*ZX - M ZX (.4 
,e
 

+fe6 (Xu" *X) (D.)
 

aO
 

6 +s{M. (XZ 
ee
- X Z
 

feef u , u
 

+ X (M.z M -Z -)
6 f 6e u ul 6e-

Z (Mu*X - M.XX*)} " 

6f u e, e u­

3
 
0N 6 s V NV6 'y - N 'y * 
g r VTo r v 1 r) 

+ syN NL")- Lp',N + Y' - L 'N I1 
v'6 p p.0r r r, p p
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3
as {N 'YN *}

Nsfg~r T0 (Sr 6sfg- 6sfg (r­

2 '- 'N ')
+ s VT {Y6 *(L 'N 


0 r. sfg sfg P
 

' - Lp'N6 r')}
+ y sfg*(L6 r'N 


* s VTo sin 00{Yv(L6sfgN r - L6rN6sg1
 

0 'sfg r r ssf
 

+ Y *(L eN6 sN' - L Nr) L '' 
r sfg
 

sI)
+ y6 s* 0(LN6rI 'N- LNN6 r 

+ 6 ( 6 N' - L8 N 'N) 

srfg 0 {Y(LrNs rsf 
6 'N6 ' - L'6 'rIN6 


.')
 

+ Y6rf*(L 8 6 ' - L6 s 'N') 

+ y6sg*QL6 r'N I - L8 IN6 ')} (D.7) 

The handling qualities parameter n/a is defined as the steady­

state normal acceleration change per unit change in angle of attack
 

for an incremental elevator deflection at constant speed (36). This
 

factor, written in terms of the dimensional stability derivatives
 

defined previously, is expressed as:
 
I
 

.a
 
uo fl 6 (s) 

n (g/rad) (D.8) 

g N6 (s)
 
e
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evaluated at s E 0 (45). The notation N implies that the short-period
 

approximation is used to evaluate the above transfer functions. From
 

the rules given, it follows that:
 

a a
 
^z 
 ^z
 

N6 =N 6 , (D.9) 
e e 

-wI w 6f w az

N6e=N 6 aGaz Ne~fN 6 e6f (D.10)
N(e =Ne ­

where
 

z 9 sin 6o(Mw 6 - M6 z)Ne (D.ll)
" 
 e 
 W
 

^w
 

N = -g sin 80 M6 (D.12) 
e e 

a
 

ef sin fe MZef (D.13)
 

Thus,
 

ge e (g/rad) (D.14) 

M6e 
 az f e r /
 

For the JetStar
 

MwZ6 << M6 Zw , and (D.15) 
e e 

(D.16)
M6 6 << M6 Z6 

fe Mef
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APPENDIX E 

STOL DATA 

Power Approach Configuration 

Buffalo S-11 

S = 87.8 m2 (945 ft ) 55.7 m2 (600 ft2 

c = 3.1 m (10.3 ft) 3.0 m (9.8 ft) 

b = 29.3 m (96.0 ft) 20.2 m (66.2 ft) 

V 0 = 38.6 m/sec (126.5 ft/sec) 36.0 m/sec (118.2 ft/sec) 

h = 305 m (1000 ft) 305 m (1000 ft) 

W = 145400 N (32683 Ib) 213500 N (48000 Ib) 

Ix = 375800 kg-m 2 (276300 slug-ft2) 289000 kg-m2 (213000 slug-ft2) 

Iy = 303400 kg-m (223100 slug-ft2) 315000 kg-m2 (232500 slug-ft2) 

Iz = 625500 kg-m 2 (459900 slug-ft 2) 546000 kg-m 2 (402500 slug-ft2) 

I =410k-2
4xzio kg-n 

2 
(29500 slug-ft 2) 

2 
42200 kg-m 

2 
(31150 slug-ft 

WS = 1656 N/mr (34.6 lb/ft2) 3833 N/m2 (80 lb/ft 2 

Dimensional Stability Derivatives 

(XB axis aligned with fuselage reference line) 

Buffalo . S-1l­

aO = -2.40 4.90 

80 = -2.40 4.90 

CLo = 1.85 . 4.79 

u, = -0.0859 I/sec -0.0200 1/sec 

Xw = 0.1396 1/sec 0.0935 I/sec 

xW = -0.00035 0.0 

Xq = 0.0 m/sec (0.0 ft/sec) 0.0 m/sec (0.0 ft/sec) 
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Buffalo S-11 

X6 
e 

0.0 m/sec2/rad 
(0.0 ft/sec2/rad) 

0.8869 m/sec2/rad 

(2.9098 ft/sec2/rad). 

X 
f 

= -2.2855 m/sec2/rad 

(-7.4985 ft/sec2/rad) 

-1.8745 m/sec2/rad 

(6.1500 ft/sec2/rad) 

Z * U = -0.5503 I/sec. -0.5055 I/sec 

ZW = -0.8216 1/sec -0.4829 I/sec 

Z.w = -0.0083 0.0 

Z = -1.7774 m/sec (-5.8313 ft/sec) 0,0 m/sec (0.0 ft/sec) 

Z 
6e 

= -3.0533 m/sec2/ad , 

(-10.0175 ft/sec2/rad) 
-10.5619 m/sec2/rad. 
(-34.6519 ft/sec /rad) 

f 
= -5.7892 m/sec

2/rad 
(-18.9935 ft/sec2/rad) 

-2.5452 m/sec2/rad 

(-8.3504 f-t/sec 2 rady 

M * 
u 

= 0.0023 1/m-sec
(0.00069 I/ft-sec) 

0.00062 1/m-sec
(0.90019 1/ft-sec) 

Mw -0,.0539 l/m-sec
(-0.61644 1/ft-se) 

-0.0073 I/m-sec
(-0.002238 I/ft-sec) 

,M = -0.0055 I/m (-0.00i678 I/ft) b.o 1/m (0.0 I/ft) 

M 

M6 

= -1.3817 I/sec-

-2.0152 I/sec2 

" -­0.9014 1/sec 

-1:4203 I/sec 2 

M6 -0.02612 I/sec
2 

'f 
Y = -0.1577 I/sec

v 

Y6* = 0.000194 1/sec 
a 

Y6 * = 0.0570 I/sec 
r 

Y6fg = 0.03133 I/sec 
'sfg22 

L = -0.7881 ec 

0.0276 I/sc2 

-0.1600 I/sec 

-0.00551 I/sec 

0..0349 I/sec 

0.,03354 I/sec 

-0.9411 1/sec 

188 

P 

Lr 

= 

= 

-1.4553 

1.1771 

1/sec 

1/sec 

-0.3533 1/sec 

0.6986 I/sec 



L6 = 

L = 

L 6 = 
6sfg22 

N = 

Buffalo 

0.3138 /sec 2 

0.2776 1/sec
2 

0.0 1/sec2 

0.4590 I/sec2 

S-I 

0.7476 /sec 2 

0.2116 i/sec 2 

0.0 1/sec 2 

0.6372 1/sec 

N ' 
p 

Nr 

N63 ' 

N6 

N6 

= 

= 

= 

= 

= 

-0.1988 I/sec 

-0.2985 I/sec 

0.0133 I/sec2 

-0.6527 I/sec
2 

0.0 I/sec2 

-0.1389 I/sec 

-0.0957 I/sec 

0.1583 l/se 2 

-0.3647 I/sec
2 

0.0 1/sec 2 

8fg 
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