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ABSOLUTE CALIBRATION OF A HYDROGEN DISCHARGE LAMP

IN THE VACUUM ULTRAVIOLET

John E. Nealy
Langley Research Center

SUMMARY

A low-pressure hydrogen discharge lamp has been calibrated for radiant intensity in the
vacuum ultraviolet spectral region on an absolute basis and has been employed as a laboratory

.standard source in spectrograph calibrations. This calibration was accomplished through the

use of a standard photodiode detector obtained from the National Bureau of Standards
together with onsite measurements of spectral properties of optical components used. The

stability of the light source for use in the calibration of vacuum ultraviolet spectrographs and

optical systems has been investigated and found to be amenable to laboratory applications.
The lamp was studied for a range of operating parameters; the results indicate that with appro-

priate peripheral instrumentation, the light source can be used as a secondary laboratory stand-

ard source when operated under preset controlled conditions. Absolute intensity measurements
were recorded for the wavelengths 127.7, 158.0, 177.5, and 195.0 nm for a time period of

over 1 month, and the measurements were found to be repeatable to within 11 percent.

INTRODUCTION

Considerable interest in quantitative spectroscopy in the vacuum ultraviolet spectral
region («50 to 200 nm) has developed in the last few years. A growing number of applica-
tions for vacuum ultraviolet research projects is attributed primarily to the large amounts of
energy contained in this spectral region in many high-temperature phenomena. (See, for
example, ref. 1.) In addition, atomic and molecular absorption coefficients at these short
wavelengths are high. Such high coefficients can lead to important energy transfer effects,
which could determine the energy balance existing in the upper atmospheres of planets. These
effects are also significant in astrophysical problems (such as steady-state stellar structure),

high-temperature electric arcs, and regions behind bow shock waves of high-speed planetary

probes. The study of radiation behind hypervelocity shock waves in representative atmospheres

of Venus and the outer planets stimulated the calibration of a light source at the Langley

Research Center. This paper describes the calibration of such a light source.

As is well recognized, quantitative spectroscopy in this spectral region abounds in tech-

nical difficulties in such areas as controlled ultraviolet light sources, optical components,



detection apparatus, and analysis. An excellent description of many of the various problem

areas and approaches to meeting these difficulties may be found in reference 2. This refer-

ence discusses two methods for performing absolute-intensity calibrations: (1) the use of

detectors having known spectral response, and/or (2) the use of a standard source of radiation

for which the spectral intensity has been determined.

At the time that quantitative vacuum ultraviolet intensity measurements were initiated

in the arc-driven shock tube at the Langley Research Center, there were no suitable or con-

venient standard sources known to be available in the spectral range of interest. Although

the electron synchrotron (refs. 3 and 4) and arc-generated plasmas (refs. 5 and 6) have

recently been established as radiometric standard sources, they are not readily available for

laboratory applications such as shock-tube studies. On the other hand, calibrated photodiode

detectors were available and a study of the transmission of a four-channel spectrometer was

performed and reported in reference 7. This method of calibration proved to be laborious

and lacking in versatility. Therefore, a more practical and improved calibration technique

was sought.

During the past decade, a general purpose, commercially available ultraviolet light source

of a capillary discharge type has been in use for research in the Langley shock tube. Such
qualitative applications as wavelength determinations, transmission checks, and detector response

evaluations disclosed the excellent reliability and stability of this light source. Thus, the
possibility of its use as an absolute calibration source was considered, and a research investiga-
tion in the summer of 1974 was granted for such a feasibility study. Under this grant, an

initial determination of various parameters affecting the lamp operation and intensity was
made. In the continuation of this effort, solutions to various problems encountered in

the grant study were pursued and studied in more detail.

This paper presents the results of an extensive survey of the lamp stability and opera-

tion, together with its absolute calibration and use as a laboratory standard. The primary

advantage of having such a calibrated source rather than calibrated detectors is that the cali-

brated source may be employed in the determination of the absolute spectral sensitivity of

entire optical systems used in direct applications. A calibrated source eliminates the necessity

of individual calibration of each component of the detection apparatus. As stable and repeat-

able ultraviolet light sources become readily available and convenient to use, a source calibra-

tion technique such as the one described here should provide more rapid and accurate pursuit

of many quantitative vacuum ultraviolet research projects. The monitoring and readout equip-

ment associated with this light source is discussed in the appendix, prepared by William K.

Goad of Langley Research Center.

Work done by F. W. Paul, Research and Investigation of a Source of Vacuum Ultra-
violet Radiation for Use in the Calibration of Spectrometers (Chesapeake College; NASA
Grant NSG-1066).



SYMBOLS

A area, m

c speed of light, 299.8 Mm/s

h Planck constant, 6.626 X 10~34 J-s

1^ spectral intensity, W/cm -jum-sr

i^ signal current, A

K constant in equation (1), 6.24 X 1018

Q^ quantum efficiency

S^ radiant sensitivity, W/A

e-i optical efficiency (reflectance, transmittance, etc.)

77, energy conversion efficiency of sodium salicylate

X wavelength, nm

fl solid angle, sr

DESCRIPTION OF INSTRUMENTATION

In general, high-voltage discharges in low-pressure gases are not noted for producing
stable and reproducible radiant intensities. However, after noting the repeatability of the
hydrogen spectrum produced by a commercially available light source in the region between
100 and 200 nm, the use of that light source as a laboratory standard was considered. The

primary concern for such application was to improve the repeatability of the spectral character-

istics of the lamp. The variant parameters in the study of lamp performance were gas pres-

sure, flow rate, and operating voltage and current for the discharge. Provision was made for

accurate monitoring and readout instrumentation associated with the measurement of these

parameters and their influence on lamp output. Other long term factors are expected to

have an influence on lamp characteristics:, deterioration of electrode material and the gradual

normal attrition of lamp parts exposed to the electric discharge. In addition to the basic



lamp and its controlling and monitoring instrumentation, some other auxiliary equipment is

necessary to establish and maintain this standard source. Briefly, this equipment and its pur-

poses are: (1) a spectrally calibrated ultraviolet detector whose signals may be related to the

absolute intensity of radiation received; (2) a separate monochromator and vacuum reflectance

chamber for measuring spectrograph grating efficiency; and (3) a vacuum spectrograph (preferabl

single-surface) to be used in the final lamp calibration.

The basic lamp is of a type developed at the Air Force Cambridge Research Center by

Dr. H. Hinteregger. (See ref. 8.) A cross-section diagram is shown in figure 1. The dis-
charge takes place between an air-cooled cathode and a water-cooled anode. A water-cooled

quartz capillary separates the electrodes. The capillary has internal dimensions of 8.6 cm in
length and 0.5 cm in diameter. In order to maintain acceptable gas purity in the discharge

region, a steady flow is established by regulating valves between the gas supply and the vacuum

pump attached to the lamp. Although a number of gases or gas mixtures could be used, only

pure (99.999 percent) hydrogen was considered for this investigation. This choice was deter-

mined primarily because of the substantial radiation from the discharge in hydrogen over the
entire 100 to 200 nm range. Also, hydrogen is relatively inexpensive, readily available in high

purity grades, and appears to have no deleterious effect on optical surfaces inside the vacuum

spectrograph when the lamp is operated in a windowless mode. (Noble gases would also be
candidates for use in this type of lamp; the spectral-emission characteristics of these gases are
discussed in detail in refs. 9 and 10.)

Recent far-ultraviolet technology has provided photodiode detectors which may be used

as primary calibration devices. A general description of these detectors and a demonstration

of their use as a standard are found in reference 11. The spectral quantum efficiency of the

photodiode used in the present lamp calibration was determined at the National Bureau of

Standards (NBS) for wavelengths between 116.4 and 253.7 nm. The probable error of this

calibration is quoted to be 6 percent between 116.4 and 200 nm. Figure 2 shows the NBS-

determined quantum efficiency (X and the converted radiant sensitivity S^ of the detec-

tor as determined from the relationship

„ Khc
SX XQX

 (1)

/ 1 O\

where K is the number of electrons per sec equivalent to 1 ampere (6.24 X 10 ).

The photodiode obtained from NBS has an opaque cesium telluride cathode and a mag-

nesium fluoride window and is operated with the anode voltage at 60.0 volts relative to the
cathode. As discussed in reference 11, the quantum efficiency is uniform over practically the

entire cathode area for all wavelengths. In the present investigation, only a small portion of

the cathode area («0.1 by 0.5 cm) was irradiated.



To establish the intensity of a light source by using a standard detector, the spectral
properties of all optical components used between the detector and the source must be accu-

rately determined. With the present technique, the only such measurement necessary was of

the efficiency of a single concave grating. For this purpose, a special vacuum chamber
designed by W. M. Houghton of Langley Research Center was employed. A diagram of this

reflectance chamber is shown in figure 3. In addition to the vacuum pumping system needed
to evacuate the chamber to a pressure on the order of 1 mN/m , a general purpose ultra-

violet light source providing the necessary wavelengths and a vacuum monochromator are
required. The monochromator (in this case a Seya monochromator) is used to introduce

collimated light of desired wavelengths into the chamber. Inside the chamber is a sodium

salicylate coated photomultiplier tube which may be positioned at two different locations. In

the first position, the relative intensity of the monochromatic beam is measured as it enters
the chamber. By rotation of an external handle, the photomultiplier is placed in its second

position. There the light-beam intensity is determined after it has reflected from an optical

component whose spectral reflectance is being evaluated. Provision is also made for rotating
the optical element under test externally. A window holder is located at the entrance aper-

ture of the chamber. When window transmission is to be measured, the window may be
inserted into the beam. Measurements of this type are made with the photomultiplier in its
first position. The window holder is also used for sorting spectral orders.

The grating efficiency is defined as the ratio of the detector signal resulting from reflec-
tion or dispersion to the signal of the incident monochromatic beam. Since spectral reflectance
of a mirror or grating in this wavelength range can undergo relatively sudden changes caused

by surface contamination, this measurement must be -made at regular time intervals. The
particular grating used in this study has a 1-m focal length, 1200 lines/mm, and a blaze wave-

length and angle of 120 nm and 4°8', respectively.

Figure 4 shows the results of efficiency measurements for the zero and first order of

this grating. The zero-order measurements (specular reflectance) exhibit a typical monotonic

increase in efficiency through the vacuum ultraviolet wavelength, while the first-order results

show an expected peak efficiency near the blaze wavelength. In a concurrent shock-tube

study of radiation behind strong shock waves in carbon dioxide, a carbon line (127.7 nm)

and the carbon monoxide fourth positive band system (158.0, 177.5, and 195.0 nm) were

being investigated. These particular wavelengths dictated where the lamp calibration was per-

formed. After the initial first-order grating-efficiency measurements were performed under the

grant study at closely spaced wavelength intervals, the four wavelengths mentioned earlier were

used to monitor the condition of the 1-m grating. These check points were made over

a 1-year period, and, in no instance, was any indication of grating deterioration observed.



CALIBRATION PROCEDURE

Description of Setup and Operation

The calibration of the lamp was performed with the arrangement depicted schematically

in figure 5. Gas pressure and flow rate for the lamp were carefully regulated and monitored

by transducers with the associated amplifiers and digital readout equipment. (See appendix.) A

photograph of the setup is shown in figure 6. The 1-m spectrograph is provided with a pump-

ing system capable of producing an ultimate vacuum of 0.1 mN/m . However, when the lamp

is in windowless operation, the pressure inside the spectrograph is somewhat higher as a result

of leakage of hydrogen through the entrance slit, and is maintained at about 1 mN/m . The

operating voltage for the calibrated photodetector at the exit slit is provided by a regulated

dc power supply. Since the signal currents are very small (*10 pA) and susceptible to random

noise, a picoammeter is used in conjunction with an integrating digital voltmeter and a reset

timer to record output signals. Pertinent specifications for this equipment and a detailed pro-
cedural description are presented in the appendix.

The efficiency of a concave grating has been shown to vary by 50 percent or more at
different spatial locations on the grating surface (ref. 12). To minimize this effect, a mask
obscuring most of the ruled surface was introduced into the calibration system. This mask

was placed immediately in front of the grating and its open rectangular area of 17 by 23 mm
was centered on the 56- by 96-mm ruled area. Of course, a sacrifice in f-number is made;

however, the use of a portion of the grating for which the efficiency is practically uniform

makes this sacrifice worthwhile when sufficient source intensity is available. In order to verify

that the unmasked portion of the grating had acceptable uniformity, an exposure was made on

vacuum ultraviolet sensitive film. The film was placed away from the grating focal plane in

order to record an image of the grating surface. Subsequent microdensitometer analysis indi-
cated that the variation in dispersed light intensity across the exposed portion of the grating

was less than 5 percent.

Sources of Major Uncertainties

The most severe effect on stability is caused by variation in entrance slit area. The

rapidly changing transmission properties of ultraviolet windows prohibit the operation of the

lamp with a magnesium fluoride or lithium fluoride window. For lamp operation in a window-

less condition, an accurate setting of the entrance slit width between 20 and 50 nm was

required. Poor repeatability occurring with a spring-actuated adjustable slit led to the use of

a commercial fixed-slit assembly. After a period of use, microscopic examination of the fixed
slit revealed that changes were occurring to the slit geometry. Long term operation of the
lamp caused a coating of aluminum oxide within the ionization region, and aluminum particu-

late buildup was observed on the edges of the entrance slit. Scanning with an electron



microscope revealed sufficient aluminum particulates blocking the open slit area to result in a

50-percent error in measurements. In addition, the cold side or spectrometer side of the slit
revealed a large buildup of silicon particulates (presumably from the quartz capillary). These

silicon ablator products did not contribute to a change in the area of the slit opening, and
silicon particulate migration at this time is believed to extend no further into the spectrometer

than the immediate vicinity of the entrance slit. Area changes in the entrance slit are most

noticeable through changes in lamp stability or repeatability, and have been apparent only after

more than 100 hours of lamp operation with the present system. When blockage is detected,

the system is disassembled and cleaned, and the slit width is reset.

These findings concerning variation in slit geometry have led to the use of a rotary

fixed-slit assembly of four slits. By setting each slit as accurately as possible to the same

width and using one for reference purposes only, a better check on accumulated blockage of

any of the three remaining slits is obtained.

The intensity of the many-line hydrogen spectrum shows considerable variation with wave-

length. Accurate setting of the desired wavelength is essential to good repeatability. Observa-

tions on the present system show that a 0.1-nm deviation in wavelength setting at 122.7 nm

and 158 nm results in intensity measurement deviations of 4 and 8 percent, respectively. As
previously mentioned, lamp operation in a contaminated state can also result in errors as high

as 40 percent. These problem areas of a procedural nature can be avoided when their exist-
ence and nature are established.

Two other problems, which are not readily controllable, are associated with the lamp
operation; these are coating and corrosion of the electrodes. lonization between the aluminum

electrodes of the lamp causes a gradual coating of aluminum oxide on the conducting surfaces.
After approximately 200 hours of operation, it is not possible to ionize the gas because of

the dielectric effects of the coating that are evidenced over a period of time by the
steady increase of voltage required for ionization. A lamp using stainless steel electrodes is

currently being tested in an effort to alleviate this problem. Water cooling of the aluminum

anode resulted in corrosive effects over a longer time period; such corrosion led to water and

vacuum leaks. This problem is also expected to be alleviated by the change in electrode

material. Corrosion and dielectric coating problems are both relatively long term. However,

both problems can be corrected by disassembling, cleaning, and repairing of the electrodes and
capillary.

RESULTS AND DISCUSSION

Gas flow rate and, more important, gas pressure must be accurately controlled if the

lamp is to be operated repeatably. Furthermore, it is desirable to ascertain the variation of
Jamp intensity as these parameters are changed, so that evaluations of required instrumentation



accuracy and of effects of small deviations from preset values can be made. In this study,

lamp-intensity data at the wavelengths 127.7, 158.0, 177.5, and 195.0 nm have been recorded

for a range of pressures and flow rates. A map of the data points taken at these various

pressures and hydrogen flow rates is given in figure 7. The region over which the lamp oper-

ated was determined by the maximum allowable internal spectrograph pressure and the vacuum

pump-metering valve combination on the lamp. Previous vacuum spectrograph operation has

demonstrated that internal spectrograph pressure should not exceed 0.01 N/m^ while optics are

being illuminated with ultraviolet radiation. In a windowless operation, only certain pressures

are attainable at specified flow rates; these pressures and the corresponding flow rates of fig-
ure 7 apply to the present system only. .Operation of the lamp with a different spectrograph
or valving arrangement would result in a different pressure and flow-rate map. For the range
of conditions shown in figure 7, the variation of detector signal was found to have a distinct
relationship with lamp pressure; however, the signal remained essentially constant with flow rate

for values less than 15 std cnrr/min.

Figure 8 shows detector output as a function of internal lamp pressure, and at each

pressure the vertical bar shows the range of signals recorded for all flow rates sampled at that
pressure. The detector used to obtain the results of figure 8 was an end-on photomultiplier

tube with sodium salicylate phosphor and was operated at 800 volts dc. At each wavelength

for which these observations were made, the lamp intensity was relatively insensitive to pressure

variations around a value of 133 N/m , hence, this pressure has been chosen as a standard

operating condition of the lamp together with a flow rate of 5 std cm^/min. (These condi-

tions are easily obtained with the present valve, pump, and entrance slit combination.)

The current-regulated dc power supply for the discharge lamp was used to determine how

the lamp intensity was affected by changes in discharge current. The power supply exhibited

more than adequate stability characteristics. (That is, no noticeable current shift for lamp
operation times up to 1 hour was observed.) Photomultiplier output is plotted as a function

of discharge lamp current in figure 9. It can be seen that relative intensity varies only

about 0.16 percent per mA over a range of currents between 125 and 240 mA. Thus, the

current is easily controlled and is a negligible factor in establishing overall lamp performance
as a standard source. The normal preset operating current for the present lamp calibrations

was chosen to be 160 mA. This value (slightly lower than median) provided adequate intensity
and was believed to be less taxing on the long term operation of the lamp than a higher

current.

Upon the establishment of the desired operating parameters for the light source and the

determination of the appropriate grating efficiency, absolute calibration of the lamp was per-

formed. With the instrumentation setup shown in figure 5, the signals of the NBS photodiode

were recorded for the four wavelengths previously mentioned. Individual intensity measurements

were made over 100-second time intervals, and the averaged signal currents in picoamperes were

8



determined for each wavelength. These results, summarized in table I, were obtained on vari-
ous days over a total period of about ly months. The currents recorded in table I were
measured under the established "normal" operating conditions:

Lamp internal pressure, N/m2 133.3 ± 0.6
Hydrogen flow rate, cm^/min 5.00 ± 0.05
Discharge current, mA 160 ± 2
Photodiode voltage, V 60.00 ± 0.05
Spectrograph entrance slit 38 nm by 0.503 mm
Spectrograph exit band pass, nm 0.83 (exit slit width, 1 mm)

The deviations shown for these quantities are indicative of the maximum observed drift in pre-
set values occurring during a single set of measurements, normally a period of about 1/2 hour.

The absolute spectral intensity of the light source 1^ may be determined from the
calibrated photodiode signal currents i\ using the relation

T -
X (AX)e^AH (2)

In equation (2), e^ is the efficiency of the intermediate optical system (in this case a grat-
ing), A is the frontal area of the emitting source (spectrograph entrance slit), fi is the
solid angle subtended by the optical system, and AX is the exit wavelength band pass over
which the spectrum is observed. For all the calibration, the following quantities were invariant:

AX = 0.83 ± 0.01 nm

A = 0.000195 ± 0.000010 cm2

n = 0.000391 ± 0.000015 sr

With S^ and e^ determined from figures 2 and 4, respectively, the conversion from
measured signals to normal intensities.yields:

x,
Mm

127.7
158.0
177.5
195.0

!X>
W/cm -jum-sr

0.863 ± 0.117
1.086 ± 0.146
0.0659 ± 0.0078
0.495 ± 0.0071



The uncertainties for 1^ given in the preceding table represent the root mean square (rms)

error obtained from uncertainties of each of the quantities in equation (2). The total uncer-

tainties for each of the four wavelengths are all under 16 percent.

In addition to these measurements at the four wavelengths of interest, a scan of the

spectrum from 100 to 200 nm is presented in figure 10. The scan was performed with the

basic setup of figure 5, with the exception of a sodium salicylate photomultiplier tube used
in place of the photodiode and a strip chart recorder for final readout. Accompanying the
scan, which represents direct output current of the photomultiplier, is a photograph of the

spectrum of the discharge in hydrogen. A special vacuum ultraviolet sensitive film of the low

gelatin type was used in making the exposure.

The scan of figure 10 is directly related to the spectral intensity of the lamp since it

was made under conditions identical to those of the photodiode calibrations. This relation may

be determined provided knowledge of the spectral behavior of the sodium salicylate coating is

available. Unfortunately, many conflicting measurements of the absolute quantum efficiency of

this phosphor have been published. (See, for example, ref. 13.) The salicylate coating for the

photomultiplier employed here was prepared in-house according to a procedure similar to that
9outlined in reference 14. An area of 2 cmz directly in front of the photocathode of the tube

was masked on the glass envelope prior to deposition. Application of the deposit was made

with an artist's air brush using 23 N/cirr of high purity nitrogen at a distance of 80

to 100 centimeters. The tube was sprayed with the salicylate and absolute methyl alcohol

solution for 30 minutes, then weighed on a balance. Deposits on each tube ranged from 2.5

to 4 mg/cm^ (5 to 8 mg total weight). Individual coatings were viewed under magnification
to examine uniformity.

The absolute quantum efficiency as determined in reference 15 is 0.94 < Q^ < 1.0

for 121.6 < X < 253.7 nm. For simplicity, a constant value of 0.95 was used for Q^ in
subsequent calculations over the 100- to 200-nm wavelength range. Since the fluorescent radia-
tion of sodium salicylate is centered at a wavelength of 425 nm, the energy conversion effi-

ciency is

\ = QX 425 O)

Thus, if the coated photomultiplier signal i-^ is divided by the product of T?^ and the

grating efficiency e^, spectral scans like that of figure 10 may be converted into plots of

source relative intensity since

10



Since the first-order grating efficiency of figure 4(a) is a well-behaved function of wavelength,

a polynomial fit was applied to the data of this figure:

ex - 1.946 X 1(T10 X4 + 5.111 X 1(T7 X3 - 2.997 X 1(T4 X2

+ 0.05177X - 2.616 (X in nm) (5)

As a further step, the proportionality factor of equation (4) may be estimated from the mono-

chromatic calibration results, and an absolute scale may be applied to the complete spectrum.
Figure 11 shows the results of this procedure, in which equations (3), (4), and (5) were

applied to digital data for the i^ obtained from the scan of figure 10. The ordinate scale

was determined from the photodiode calibration for the absolute intensity value obtained

at 158 nm. Of course, there are a number of uncertainties inherent in this analysis, and an
estimate of the degree of uncertainty in the curve of figure 11 is indicated at several wave-
lengths. The higher discrepancies between figure 11 and the photodiode results at the longer

wavelengths quite probably arise primarily from the low signal levels as they appear on the
linear scale of the scan (see fig. 10) and from the resultant difficulty in conversion to digital

data.

The calibrated lamp was used to determine the response of a 0.5-m four-channel poly-

chromator. This instrument, which was used in a shock-tube study, has three optical surfaces:
collimating mirror, plane grating, and focusing mirror. A mask over the collimating mirror set

the solid angle of the polychromator at the same value as that used in the lamp calibration.

Four coated photomultipliers were placed behind a series of focal plane slits to define the

desired wavelengths and band passes. A diagram showing the lamp as used on this spectro-

graph is given in figure 12. With this arrangement, each channel is calibrated for its response

to a given irradiance at the spectrograph entrance slit. After several such measurements, the

lamp was replaced on the 1-m spectrograph and its output was again checked with the NBS
photodiode. The scatter occurring in the measurements made on the 0.5-m spectrograph was

within the probable-error percentages found for the lamp calibrations (less than 12 percent).

The present procedure has thus established a satisfactory confidence .level for shock-tube inten-

sity measurements made with the polychromator. It should be noted that the lamp has been

used on one particular spectrograph, and its application to other optical systems would neces-
sarily require independent validation.

CONCLUDING REMARKS

A commercially available, low-pressure hydrogen discharge lamp has been calibrated for

radiant intensity in the vacuum ultraviolet spectral region on an absolute basis. This calibration

11



has been accomplished through the use of a standard photodiode detector obtained from
National Bureau of Standards together with onsite measurements of the spectral properties of
a concave grating. The adequate stability of this light source for use in the calibration of

ultraviolet spectrographs and optical systems has been demonstrated. The effects of pressure,

gas flow rate, and electrode current on the output intensity of the lamp have been investigated

in detail. From the calibration results, it is concluded that with appropriate vacuum spectro-

scopic equipment, detectors, and monitoring instrumentation, the light source can be used as

a convenient secondary laboratory standard. Among the advantages of having a reliable stand-

ard source is that the spectral response of entire optical systems may be readily determined,

often with geometrical arrangements identical to those for which radiometry studies are to be

carried out. This procedure eliminates the necessity for time-consuming individual component

calibrations with the associated cumulative uncertainties. The lamp investigation has been

observed to be spectrally stable under preset operating conditions. Intensity measurements

whose total error is- estimated to be within 16 percent were recorded for the wavelengths 127.7

158.0, 177.5, and 195.0 nm during a time period of over 1 month.

Langley Research Center
National Aeronautics and Space Administration

Hampton, Va. 23665
December 9, 1975
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APPENDIX

OPERATING PROCEDURE AND LISTING OF INSTRUMENTATION

William K. Goad
Langley Research Center

Operating Procedure

The appendix discusses operating procedures and instrumentation used in a recent study

of the discharge lamp. Systematic procedures were employed to determine the absolute inten-

sity and stability of the lamp and its behavior for variations in gas flow rate, pressure, and
power input.

At the beginning of the calibration procedure two steps were established: a decontami-

nation period and a burn-in period. The decontamination period is defined as the pumping

time needed to establish the system leak rate at less than 1.3 N/m^ per hour. During this

time, impurities are effectively removed from the system before the lamp is turned on. A
period of 12 hours of evacuation was usually required when the system was initially at

atmospheric pressure. For a previously decontaminated and sealed system, only 2 hours of

preliminary pumping were needed. This evacuation period is a precautionary measure since a
pronounced deterioration of the optical surfaces with time occurs with a contaminated system.

Burning the lamp for two or three 30-minute intervals (referred to here as the burning-in
period) before recording data resulted in improved repeatability. The need for the burning-in

period was observed while evaluating lamp stability. When the lamp was first turned on, its
intensity was consistently low if the system had been out of operation for more than 1 week.
After such an idle period, lamp intensities about 40 percent below normal were observed for
the wavelength range under investigation. This effect is attributed to impurities migrating to

the wall of the water-cooled capillary. Visual observation served as a helpful guide in deter-
mining the time required for the burning-in process. Initiating the discharge first results in a

light pink glow in the capillary with bands or striations along the discharge column. As the

lamp stabilizes, the glow tends toward a more reddish color, and the column becomes more
uniform.

The lamp-operating procedure which proves most effective when the system is initially at

atmospheric pressure follows.

Performance of grating-efficiency measurements.- This step requires installation of the grat-

ing in the reflectance chamber and mounting of the ultraviolet light source at the entrance slit

of the Seya spectrograph. Evacuation of the system to about 0.001 N/m and readout instru-
mentation checks are than performed. The light source is turned on, and primary and reflected

13
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beam signals are recorded for desired wavelengths as set on the spectrograph. ' Normally, at

least one repetition of these measurements is made.

Preparation of primary system.- The calibrated grating (step 1) is installed in the 1-m

spectrograph, and the calibration lamp is mounted at the spectrograph entrance slit. The cali-
brated photodiode is mounted at the exit aperture and the system is evacuated for about

12 hours to an ultimate pressure of 100 juN/m , after which lamp and spectrograph leak rates
are checked.

Initial lamp startup.- The monitoring and readout instrumentation is checked, and the

discharge lamp is purged with hydrogen for about 15 minutes at a flow rate between 10
and 20 std cirr/min. The normal operating flow rate and internal lamp pressure are then set
by valve adjustments at the hydrogen supply and at the lamp inlet.

Recording of data.- After the lamp has been on for about 20 minutes, time-integrated

signal currents are recorded for desired wavelengths as set on the spectrograph. Repetitions

of the measurements at various intervals over a 2- or 3-day period are made to determine

data scatter.

Description of Instrumentation and Specifications

In setting up the complete system, in addition to intensity calibrations on the lamp, con-
sideration was given to adaptation of the lamp for use in the laboratory as a calibration tool.

Regulated power supplies for the detectors and highly stable electrometers capable of measur-

ing currents over a range of 1 pA to 10 juA with linear analog outputs were used. An accu-
rate integrating digital voltmeter (DVM) which measured voltage from the electrometer was .

used in the time integrated mode over an interval of 100 seconds. This technique of time

integration of low level currents is similar to that employed by the National Bureau of
Standards to calibrate photodetectors. Onsite calibration instruments for such sensitive elec-
trometers and voltmeters were obtained and used periodically to improve the confidence level

of the final measurements. In general, the instrumentation performed well and no major

corrections were necessary.

The calibrated photodiode used in the lamp-intensity calibrations is extremely delicate
and requires careful handling. Best results were obtained when the photodiode was mounted

in a specially constructed holder and not removed. The photomultiplier detectors used in

radiant-sensitivity calibrations and in the reflectance chamber were held in place by commer-
cially available mounts.

Table II provides a detailed listing of the instruments used in this investigation. The

applications and pertinent specifications are also included.

14
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TABLE II.- INSTRUMENTATION AND PERTINENT SPECIFICATIONS

FOR LAMP CALIBRATION SYSTEM

Instrument Function Critical specifications

Monochromator Measurement of absolute

intensity of lamp

1-m concave grating, 1200 lines/mm,

120-nm blaze wavelength, 4°8'

blaze angle, Mgp2 coated,
0.83-nm/mm dispersion

Monochromator Monochromatic light source
for reflectance chamber

grating-efficiency measure-

ments

1/2-m Seya type, 600 lines/mm
concave grating, blaze wavelength
80 nm, blaze angle 2°35', MgF2

coated, 3.4-nm/mm dispersion

Electronic photo-

detector readout

system

Reflectance chamber out-

put measurements

Power supply: -500 to -2500 V dc,

0 to 1 mA, 0.05-percent stability

(1 day)
Electrometer: 10~3 to 10~n

ampere, 1-percent accuracy on

all ranges, 0.5-percent stability

(1 day)
Strip chart recorder: -0.5 mV

to 10.5 mV dc

Vacuum ultraviolet

light source

Calibrated for absolute

intensity in present

study

1000 watts continuous 8000 watts
intermittent (other specifications

described in text)

Power supply dc supply for calibrated
vacuum ultraviolet

light source

200 to 2000 V dc, 100 to 500 mA,

. current regulation 0.25 percent for

normal changes in lamp operating

conditions

Pumping system Reflectance chamber
evacuation

Mechanical pump: 2.36 liter/s

Diffusion pump: 85 liter/s
Cold trap: 0.8 liter capacity

Ultimate vacuum: 10 N/m

2.36 liters/sec pumping speedMechanical pump Calibration lamp

evacuation

Liquid flowmeter Calibration lamp water

flow regulation

0 to 1100 cm /min, 5-percent

accuracy

18



TABLE II.- Concluded

Instrument Function Critical specifications

Gas flowmeter Hydrogen flow-rate measure-
ment for lamp calibration

Calibrated for hydrogen, 0 to 5 V dc
output, 1-percent accuracy,
0.5-percent repeatability,
0 to 50 cirr/min

Pressure meter Gas pressure measurement

in lamp calibration
7.5 to 7500 N/m2, 0 to 5 V dc

output, 0.03-percent accuracy,

0.01-percent linearity,
0.01-percent stability (1 day)

Electrometer Current measurement, cali-

brated photodiode output

10 1 to 0.3 ampere, 2-percent

accuracy, noise level 3 X 10

ampere, 0 to 5 V dc output,

drift 1 mV (24 hr)

Picoampere current

source
Electrometer calibration

check
10 to 10 ampere output,

1-percent accuracy, 0.15-percent

stability (1 month)

Integrating digital
voltmeter

Electrometer output

measurements

0.1 to 1000 V full scale, 0.01-percent

accuracy (1 digit), stability
.0.006 percent (6 month)

Digital voltmeters Gas flow-rate meter and
pressure meter output

measurements

0.1 to 1000 V dc
0.05-percent accuracy (1 digit),
0.01-percent linearity
0.05-percent stability (3 month)

dc power supply Power for calibrated

photodiode

0 to 320 V dc, 1.5 amperes max.,
load regulation 0.01-percent, ripple

0.5 mV rms, stability 0.05 percent

dc power supply High-voltage supply for
sodium salicylate coated

photomultiplier

500 to 6010 V dc, 0 to 20 mA,

0.01-percent regulation to full load,

ripple 5 mV rms, stability

0.005 percent (1 hr)

Strip chart recorder Photomultiplier output on

1-m monochromator

(used for spectrum

scans)

5 mV to 100 V dc full scale, accu-
racy 0.2 percent full scale, stability

0.1 percent full scale
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To pump High-voltage connection

Spectrograph
entrance slit

Aluminum cathode
( air cooled )

Quartz capillary
(water cooled)

Spectrograph
housing

Aluminum anode
(water cooled)

IH, gas supply

Figure 1.- Diagram of lamp configuration as attached to Spectrograph.
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