Relativistic Nonlinear Plasma Waves in a Magnetic Field

C. F. Kennel and R. Pellat
RELATIVISTIC NONLINEAR PLASMA WAVES IN A MAGNETIC FIELD

C.F. Kennel*

R. Pellat

Centre de Physique Theorique de l'Ecole Polytechnique
17, rue Descartes 75230 Paris Cedex 05

Abstract. We study five relativistic plane nonlinear waves: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and finally the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an "electron-positron" plasma guides us to equations which have the form of a one-dimensional potential well. Our solutions indicate that a large-amplitude superluminous wave determines the average plasma properties, and not vice versa. For example, linearly polarized waves impose a plasma number flux equal to the relativistic addition of Nc/β and $N\vec{V}_E$, where N is the density, c the speed of light, $\beta (>1)$ the ratio of the phase speed to c and \vec{V}_E the $E \times B$ speed measured in the frame moving with speed c/β with respect to the frame in which the phase speed is measured. The implications for cosmic ray acceleration in pulsar magnetospheres are considered.

1. **Introduction**

With the discovery that a rotating magnetized neutron star energizes the electrons in the Crab nebula, a major astrophysical problem was solved, but a major new plasma physical problem posed. It is generally agreed that neutron stars rotate and have an immense magnetic field, since they must conserve both angular momentum and magnetic flux during their collapse from their pre-supernova state (Gold, 1968). Furthermore, plasma processes in the magnetic field ought to communicate rotational energy to the surrounding nebula.

Those rotating magnetized neutron stars observed as pulsars probably have misaligned magnetic dipole and rotational axes; otherwise there would be no rotationally asymmetric feature capable of producing a pulse. If such an "oblique rotator" is in vacuo, it will emit, according to Maxwell's equations, a strong magnetic dipole wave which carries off rotational energy and angular momentum (Pacini, 1968; Gunn and Ostriker, 1969).

Even this simplest model of a pulsar magnetosphere does rather well, since the estimates of the surface magnetic field based on flux conservation arguments, $B \approx 10^{11-12}$ Gauss, lead to rotational deceleration rates in rough agreement with the observed gradual lengthening of the time interval between pulses. At this point Ostriker and Gunn (1969) raised an important question. They found that a single charged particle dropped into the vacuum wave could be accelerated to extremely high energies. Could the pulsar wave accelerate cosmic rays? At the same time, Goldreich
and Julian (1969) observed that a rotating magnetized neutron star would never find itself in vacuo: Its electric field has such a large component E_{\parallel} parallel to the magnetic field near the star that field emission from the solid surface of the neutron star would be inevitable. They argued that the magnetosphere would fill up with plasma until sufficient densities would be reached that $E_{\parallel} \sim 0$, and the hydromagnetic approximation becomes a valid way to describe the magnetosphere.

The fact that the plasma density would not be negligible in pulsar magnetospheres started two new lines of research. First, relativistic versions of the solar wind were proposed (Michel, 1969). For mathematical simplicity, the dipole was assumed aligned and all time dependencies were neglected. Secondly, it became important to understand self-consistent plasma waves of relativistic amplitude. For this work, there existed the pioneering effort of Akhiezer and Polovin (1956) on electromagnetic waves which drive electrons relativistic. This work was extended for laser-plasma interactions by Kaw and Dawson (1970) and in part for pulsars by Max and Perkins (1971, 1972) and Max (1973). We will discuss in more detail a recent paper by Clemmow (1974) later.

At present, the question of whether the outer magnetospheres of pulsars are "winds" or "waves", or, as is conceivable for oblique rotators, a mixture of winds and waves, has not been resolved by a clearcut theoretical delineation between the regimes, and consequently by observation. Kennel, Schmidt and Wilcox (1973) found that when ions as well as electrons are driven
relativistic by a plane wave propagating in an unmagnetized plasma, there is an upper limit to the cosmic ray number flux which can be transported by a wave of a given amplitude, above which the wave encounters a cutoff. The plasma wave cutoff flux corresponds to the lower limit on density for which the hydromagnetic approximation is valid. Asseo, Kennel and Pellat (1975) reached a similar conclusion for the more realistic case of a spherical wave. Thus, wind and wave solutions may eventually be distinguishable observationally on the basis of density.

This paper concentrates upon extending our basic understanding of relativistic nonlinear waves. We focus on linearly polarized superluminous waves in a magnetic field. We will argue shortly that only waves with phase speeds exceeding that of light can have arbitrarily large amplitudes, and that linear polarization leads to a unique relation between the cosmic ray flux transported by the wave and the wave amplitude, whereas circular polarization does not. We include a magnetic field to gain some insight into possible wind-wave solutions. In particular, we ask how the limiting cosmic ray flux is affected by the magnetic field. While our motivation is primarily astrophysical, our work might eventually be applicable to laser-plasma interactions, since in the near future lasers will be sufficiently powerful to drive at least the electrons relativistic. Here again, the inclusion of the magnetic field might prove interesting.
2. **Basic Equations**

The fluid equations for a two-species \((j = 1, 2)\) cold collisionless plasma are

\[
\left(\frac{\gamma_j}{c} \frac{\partial}{\partial t} + \vec{U}_j \cdot \vec{v}\right)\vec{U}_j = \frac{e_j \gamma_j}{M_j c^2} \left(\vec{E} + \frac{\vec{U}_j \times \vec{B}}{\gamma_j}\right) \tag{2.1}
\]

\[
\frac{1}{c} \frac{\partial}{\partial t} (n_j \gamma_j) + \vec{v} \cdot (n_j \vec{U}_j) = 0 \tag{2.2}
\]

\[
\vec{v} \cdot \vec{E} = 4\pi \rho \tag{2.3}
\]

\[
\vec{v} \cdot \vec{B} = 0 \tag{2.4}
\]

\[
\vec{v} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \tag{2.5}
\]

\[
\vec{v} \times \vec{B} = 4\pi \vec{j} + \frac{1}{c} \frac{\partial \vec{E}}{\partial t} \tag{2.6}
\]

\[
\rho = \sum_j N_j e_j = \sum_j n_j e_j \gamma_j \tag{2.7}
\]

\[
\vec{j} = c \sum_j n_j e_j \vec{U}_j \tag{2.8}
\]

Equations (2.1)-(2.8) are written in an arbitrary reference frame which we will henceforth designate as the laboratory frame. The notation above is standard \((e_j = \text{particle charge, } M_j = \text{rest mass, } \gamma_j = \sqrt{1 + U_j}, \text{ where } U_j \text{ is the reduced momentum, and } c \text{ the speed of light})\), \(n_j\) denotes the proper density and \(N_j\) the laboratory frame density.
We now specialize (2.1) - (2.8) to a plane wave propagating in the x-direction. In addition, following Kennel et al. (1973), we change variables from (x, t) to phase $\eta = \omega(t - \frac{x}{\beta c})$, where ω is the frequency and β the normalized phase velocity.

Writing (2.1) in components, defining $\vec{U} = (U, V, W)$ and suppressing the species index where the meaning is obvious, we find

\begin{align}
\Delta \frac{dU}{d\eta} &= \gamma v_x + \Omega_z - W\Omega_y \\
\Delta \frac{dV}{d\eta} &= \gamma v_y + W\Omega_x - U\Omega_z \\
\Delta \frac{dW}{d\eta} &= \gamma v_x + U\Omega_y - V\Omega_x \\
\Delta \frac{dv}{d\eta} &= Uv_x + Vv_y + Wv_z
\end{align}

where in (2.9) we have normalized the electric and magnetic fields relativistically by defining

\begin{align}
\vec{v}_j &= \frac{e_j \vec{E}}{M_j wc} \\
\Omega &= \frac{e_j \vec{B}}{M_j wc}
\end{align}

The equation of continuity (2.2) becomes

\[\frac{d}{d\eta} (\alpha \Delta) = 0 \]

where we have defined the relativistic Landau function Δ

\[\Delta = \gamma - \frac{U}{\beta} \]
When $\Delta = 0$, a particle moves with the wave phase velocity in the x-direction. Equation (2.11) can be integrated to yield

$$n = \frac{n_0 A_0}{\Delta}$$

(2.13)

where subscript zero denotes the arbitrary phase point n_0 where all boundary conditions specifying the plasma are imposed.

Equation (2.4) and the x-component of (2.5) combine to yield

$$\Omega_x = \text{constant}$$

(2.14)

The remaining two components of (2.5) are

$$\frac{d}{d\eta}(\Omega_y + \frac{v_z}{\beta}) = \frac{d}{d\eta}(n_z - \frac{v_y}{\beta}) = 0$$

(2.15)

Similarly, the y and z components of (2.6) become

$$\frac{dB_z}{\beta d\eta} = \frac{dE_y}{d\eta} = -\frac{4\pi c}{w} Y^2 \sum_j n_j e_j V_j$$

(2.16a)

$$-\beta \frac{dB_y}{d\eta} = \frac{dE_z}{d\eta} = -\frac{4\pi c}{w} Y^2 \sum_j n_j e_j W_j$$

(2.16b)

Equation (2.3) and the x-component of (2.6) yield equivalent expressions.
Equation (2.17) describes a fundamental property of relativistic electromagnetic waves. Even if the proper densities of electrons and ions are equal, there is in general an electrostatic field component E_x, which disappears only under special assumptions. In this paper, we will exploit the fact that when the ions are driven relativistic by the wave, the plasma acts like an electron-positron plasma (or like a gas of charged photons) to eliminate the electrostatic field E_x.

It is illuminating to consider the properties of equations (2.9)-(2.17) under Lorentz transformation to a frame moving in the x-direction with respect to the laboratory frame. Let us denote the normalized x-momentum vector of the transformation by $(\mathbf{\bar{U}}, \mathbf{\bar{V}})$ and transformed quantities by superscript tilde. Under transformation, the phase η becomes in this frame

$$\eta = \frac{\omega}{c} \left[c \mathcal{E}(\bar{V} - \bar{U}) + \mathcal{X}(\mathbf{\bar{U}} - \mathbf{\bar{V}}) \right]$$

while Faraday's law, equation (2.15), leads to

$$\frac{d}{d\eta} [B_z(\bar{V} - \bar{U}) + E_y(\mathbf{\bar{U}} - \mathbf{\bar{V}})] = \frac{d}{d\eta} [B_y(\mathbf{\bar{V}} - \mathbf{\bar{U}}) - E_z(\mathbf{\bar{U}} - \mathbf{\bar{V}})]$$

The other quantities transform in standard fashion. It is evident that there are two particularly convenient transformations. For subluminous waves, $\beta < 1$, we may choose $\bar{\gamma} = U/\beta$. In this frame, which moves at the wave phase velocity, the phase variable
\(\eta \) becomes the transformed space variable \(x \), and the transformed transverse components of the electric field are constant. For superluminous waves, \(\beta > 1 \), we can choose \(\eta/\beta = \bar{U} \), a frame which moves with speed \(c/\beta \). Here \(\eta \) becomes the transformed time, and all components of the magnetic field are entirely constant. We will denote quantities pertaining to the transformation to this space-independent frame characteristic of superluminous waves by subscript star, in other words:

\[
\gamma^* = \frac{\beta}{\sqrt{\beta^2 - 1}}, \quad U^* = \frac{\gamma^*}{\beta} = \frac{1}{\sqrt{\beta^2 - 1}} \tag{2.20}
\]

Our strategy will be to seek special wave polarizations which render the wave equations (2.9)–(2.17) simple to solve and to exploit the special Lorentz transformations (2.18)–(2.20) to illuminate the physics of the special solutions so obtained. The simplest polarization--circular--leads to an algebraic dispersion relation. We review this solution, already obtained by many authors, in Chapter 3. Barring an algebraic dispersion relation, the next best thing is a second-order ordinary differential equation integrable once by quadrature, so that we can exploit the analogy with the equations of classical mechanics for a particle in a potential well. Such techniques have been successful for nonlinear waves and solitons in non-relativistic plasmas, and we shall seek cases where they can be applied to nonlinear waves of relativistic amplitude. In Chapter 4 we discuss the simplest possible linearly polarized wave, an electrostatic plasma oscillation propagating parallel to an external
magnetic field. In Chapters 3 and 4, ions and electrons make equal contributions to the dispersion relations when the ions are driven relativistic by the wave. In other words, the masses of the particles are determined by the kinetic energy acquired from the wave, and we can neglect their rest masses, and more importantly, the differences between rest masses. This suggests that setting $M_i = M_e$ produces a set of equations valid in the large amplitude limit which can guide us to differential equations in potential form. Sturrock (1971) has suggested that an electron-positron plasma will in fact be injected into the wind or wave zone of a pulsar magnetosphere.

In Chapter 3 we will find that circularly polarized waves do not impose a unique mean number or energy flux on the background plasma. No unique statements concerning cosmic ray transport can be made for circularly polarized waves. Thus we concentrate upon linearly polarized waves in an electron-positron plasma containing a uniform magnetic field. In Chapter 5 we derive the equations for such a wave propagating at an arbitrary angle to the magnetic field. We then transform this laboratory frame equation to the space- and time-independent frames for the subluminous Alfvén and superluminous extraordinary modes, respectively. In Chapter 6 we study the subluminous relativistic Alfvén solitary wave. We find that it "breaks" at relatively low amplitudes, when the plasma encounters the $\Delta = 0$ Landau singularity. On the other hand, when $\beta > 1$, Δ must always be positive. Thus superluminous waves can reach arbitrarily large amplitudes without encountering a fundamental difficulty within
cold fluid theory. In Chapter 7 we specialize to the case of superluminous waves in zero-average electric or magnetic fields, first treated by Akhiezer and Polovin (1956) in the limit $M_i \rightarrow \infty$. In the limit $M_i \rightarrow M_e$ we find an exact solution valid at all amplitudes. In Chapter 8 we consider the extraordinary mode in the large amplitude limit; we find a dispersion relation independent of the particle mass, justifying a posteriori our assumption of equal masses, or better, of a charged photon gas. We will find that superluminous linearly polarized waves impose characteristic number fluxes on the background plasma in the large amplitude limit.
3. **Transverse Circularly Polarized Waves**

We choose $E_x = 0$, but E_y and E_z non-zero. We keep B_z non-zero, but require that the phase-averaged y and z magnetic field components $\langle B_y \rangle$, $\langle B_z \rangle = 0$, which implies that $B_y = -E_z/\beta$ and $B_z = E_y/\beta$. Equation (2.9) then reduces to

\[
\frac{\Delta dU}{\Delta \eta} = \frac{Vv_y + Wv_z}{\beta} = \frac{1}{\beta} \frac{dv}{d\eta} \tag{3.1a}
\]

\[
\frac{dV}{d\eta} = \Delta v_y + W\Omega_z; \quad \frac{dW}{d\eta} = \Delta v_z - V\Omega_x \tag{3.1b}
\]

where the particle species index has been suppressed. For a circularly polarized wave ($E_y = E \cos \eta$, $E_z = E \sin \eta$), γ, Δ, U, and n are constant. In addition, for each species

\[
\left(v^2 + w^2 \right)^{1/2} = \left(\frac{1}{1 + \Omega_x/\Delta} \right) \tag{3.2}
\]

where $v = \frac{eE}{Mw_c}$. Substituting (3.2) into (2.16a) leads to the dispersion relation

\[
1 = \gamma^2 \sum_j \frac{w_{pj}^2}{w(w \pm \omega_{ij}/\Delta_j)} = \gamma^2 \sum_j \frac{W_{pj}^2/\gamma_j}{w(w \pm \omega_{ij}/\Delta_j)} \tag{3.3}
\]

where $w_{pj}^2 = \frac{4n_j e^2}{M_j}$ and $W_{pj} = \gamma_j w_{pj}^2$ denote the squares of the proper and laboratory frame plasma frequencies respectively, and $w_{ij} = \frac{e_j B_x}{M_j c}$ is the signed cyclotron frequency. The \pm signs in (3.2) and (3.3) distinguish right and left circular polarizations. We are free to choose all the U_j identically zero,
whereupon (3.3) is formally identical to the dispersion relation for circularly polarized waves of non-relativistic amplitude, with the rest masses multiplied by the appropriate γ_j factors. The γ_j in turn are calculated by substituting (3.2) into $\gamma_j = \sqrt{1 + V_{\perp j}^2}$, which gives a quartic for γ_j

$$\gamma_j^2 = 1 + \gamma_j^2 \left(1 + \frac{\omega_{ij}}{\omega \gamma_j} \right)^{-2}$$ (3.4)

when $|\gamma_j| \gg 1$, $\gamma_j >> 1$, an approximate solution to (3.4) is

$$\gamma_j = |\gamma_j - \Omega \chi_j|$$ (3.5)

so that the dispersion relation (3.3) is independent of the particle rest masses.

Equation (3.3) does not necessarily describe superluminous waves, but in the limit $\omega >> \omega_{ij}/\Lambda_j$ it does so. In this limit (3.3) is also the dispersion relation for a circularly polarized wave propagating in a plasma with zero magnetic field.

It is interesting to note the differences in dispersion relation created by the change from circular to linear polarization, as shown by equation (7.7). An even more fundamental difference is that the circularly polarized wave, unlike that in equation (7.7) or the others to be studied, does not fix the mean number and energy flux. Because of this, it is difficult to make any unique and meaningful statements concerning cosmic ray transport by circularly polarized waves.
4. **Longitudinal Superluminous Relativistic Plasma Oscillations**

Here we choose $E_y = E_z = B_y = B_z = V = W = 0$ everywhere. We solve for the electrostatic potential defined by

$$E_x = -\frac{d\phi}{dx} = \frac{w}{\beta c} \frac{d\phi}{d\eta} \quad (4.1)$$

Normalizing ϕ relativistically, $\gamma_j = \frac{e_j \phi}{M_j c^2 \beta}$, the particle equations of motion reduce to

$$\Delta \frac{dU}{d\eta} = \gamma \frac{dv}{d\eta}, \quad \Delta \frac{dv}{d\eta} = \frac{dw}{d\eta} \quad (4.2)$$

for both species. We solve (4.2) for the dependence of γ upon ψ, using $\gamma = \sqrt{1 + U^2}$ and $\Delta = \gamma - U/\beta$. Omitting the species subscript

$$\gamma = \gamma^* \left\{ U^* \left(\psi + \delta_0 \right) + \sqrt{1 + \gamma^*^2 \left(\psi + \delta_0 \right)^2} \right\}$$

$$= \gamma^* \left\{ \frac{1}{\beta} (\psi + \delta_0) + \Delta \right\} \quad (4.3a)$$

$$U = \frac{\gamma^*}{\beta} \left\{ \beta (\psi + \delta_0) + \Delta \right\} \quad (4.3b)$$

$\delta_0 = U_0 - \gamma_0/\beta$, where subscript zero denotes the phase points where $\psi = 0$. One more equation relating γ and ϕ can be found by solving (4.2) for γ/Δ (or U/Δ) and inserting into Poisson's equations (or the equation for conservation of charge), equation (2.17), using the definition (4.1), and integrating once.
\[
\frac{1}{2} \left(\frac{d\tilde{\xi}}{d\eta} \right)^2 = E - \frac{B^2 c^2}{w^2} \sum_j 4\pi n_0 j A_0 m_j c^2 \gamma_j
\]

(4.4)

where \(E \) is an arbitrary constant of integration.

Equations (4.3) and (4.4), a second-order differential equation integrable once by quadrature, present a strong analogy with particle mechanics. If \((d\tilde{\xi}/d\eta)^2 \) represents the kinetic energy of a "particle", then the \(E \) represents "total energy" and the remaining term in (4.4) "potential energy". We seek periodic nonlinear solutions to (4.4); therefore we adjust \(E \) so that the "particle" bounces back and forth between zeros of \((d\tilde{\xi}/d\eta)^2 \). There must be at least two zeros for a periodic solution to exist. One zero can be fixed by choosing \(E \) properly. Let \(\hat{\tilde{\xi}} \) be the maximum positive potential in the wave. Then, if

\[
E = \frac{B^2 c^2}{w^2} \sum_j 4\pi n_0 j A_0 m_j c^2 \gamma_j; \quad \gamma_j \equiv \gamma_j(\hat{\tilde{\xi}})
\]

(4.5)

\[\frac{d\tilde{\xi}}{d\eta}(\hat{\tilde{\xi}}) = 0. \]

The other zero of \(d\tilde{\xi}/d\eta, \hat{\tilde{\xi}}' \), can only be determined from the explicit form of \(d\tilde{\xi}/d\eta \) which we deduce inserting (4.3a) into (4.4), using (4.5). In so doing we encounter the quantity

\[
\sum_j 4\pi n_0 j A_0 m_j c^2 \gamma_j = \frac{4\pi \hat{\tilde{\xi}}}{\beta} \sum_j 4\pi n_0 j A_0 m_j e_j
\]

(4.6)

which we assume vanishes.

In (4.4) we have used a mixed notation, with \(\tilde{\xi} \) on the left hand side and \(\gamma_j \) on the right, through \(\gamma_j \), equation (4.3a).
We now specialize to a two-species plasma, electrons (e) and ions (i), and write (4.4) in terms of the relativistically normalized electron potential ψ_e.

We note that $\psi_e = -R \psi_i$, where

$$R = \frac{M_i}{Z M_e}$$

and Z is the ionic charge. Thus

$$\frac{1}{2} \left(\frac{d\psi_e}{d\eta} \right)^2 = \Delta_0 \gamma^2 - \frac{\omega^2}{2} \left[R \left(1 + \gamma^2 \left(\frac{\psi_e \gamma}{R \delta_0} \right)^2 \right)^{1/2} \right. + \left[\left(1 + \gamma^2 \left(\frac{\psi_e \gamma}{\delta_0} \right)^2 \right)^{1/2} - \left[1 + \gamma^2 \left(\frac{\psi_e \gamma}{\delta_0} \right)^2 \right]^{1/2} \right] \right]$$

(4.7)

where, consistent with assumption (4.6), we choose $\delta_{0i} = \delta_{0e}$.

The dispersion relation is the condition that η changes by π when the solution passes between two zeroes of $d\psi_e/d\eta$:

$$\int_{\psi_e}^{\hat{\psi_e}} \frac{d\psi_e}{d\eta} = \pi$$

(4.8)

Equations (4.7) and (4.8), while mathematically satisfactory, are not physically complete because they involve $\omega_p \psi_0$, the proper electron plasma frequency at the point $\psi = 0$, rather than the average proper or laboratory plasma frequency. With the techniques used in this paper, it is more convenient to deduce phase averaged quantities after the dispersion relation has been derived, since the phase average $\langle f \rangle$ of any quantity $f(\psi_e)$ is clearly
We can then re-express all the initial quantities (subscript 0) in the dispersion relation in terms of phase-averaged quantities. We now turn to finding \(\hat{\psi}_e' \), which in general depends upon \(\delta_0 \). We note immediately that \(\delta_0 = 0 \) makes \(d\hat{\psi}_e/d\eta \) an even function of \(\hat{\psi}_e \) and \(\hat{\psi}_e' = -\hat{\psi}_e \). Furthermore, if \(d\hat{\psi}_e/d\eta \) is even, \(\langle \hat{\psi}_e \rangle = 0 \), which means the average plasma potential is zero.

The phase-averaged laboratory frame electron density is then

\[
\langle N_e \rangle = n_{e0}A_{00}e \left(\frac{\psi_e}{\Delta_e} \right) = n_{e0}eA_{00}y^2 \left(1 + \frac{\psi_e/\beta}{(1 + y^2 \psi_e^2)^{1/2}} \right) = n_{e0}eA_{00}y^2
\]

Similarly, \(\langle N_i \rangle = n_{i0}A_{i0}y^2 \). Thus, if we choose \(n_{i0} = n_{e0} \), charge neutrality on the average is ensured.

An entirely similar calculation for the averaged lab frame ion and electron fluxes \(\langle J^i \rangle \) and \(\langle J^e \rangle \) respectively yields

\[
\langle J^e \rangle = n_{e0}eA_{00}e \left(\frac{U}{\Delta_e} \right) = \langle n_e \rangle c/\beta = \langle J^i \rangle
\]

Therefore, the choice \(\delta_0 = 0 \) which sets the speed of the plasma equal to \(c/\beta \) at \(\psi = 0 \) ensures that the mean speed remains \(c/\beta \) for both species. Note that \(\delta_0 = 0 \) implies \(A_0y^* = 1 \), and requires \(\beta > 1 \).

In the small amplitude limit, \(|\psi_e| \ll 1 \), (4.7) reduces to a harmonic oscillator.
\[
\left(\frac{d\psi_e}{d\eta} \right)^2 = \frac{\Omega_p^2 - \omega_p^2}{\Delta_0^2 \omega_p^2} (\psi_e - \bar{\psi}_e)^2
\]
(4.12)

where \(\Omega_p = \frac{4\pi n_0 e^2}{M_i} \), and

\[
\omega = \frac{\sqrt{\omega_p^2 + \Omega_p^2}}{\Delta_0} = \gamma \sqrt{\omega_p^2 + \Omega_p^2}
\]
(4.13)

Since \(|\psi_e| \ll 1 \), the proper density \(n_0 \) equals the phase-averaged proper density \(\langle n \rangle \), and so \(\omega_p \) and \(\Omega_p \) correspond to the conventional electron and ion proper plasma frequencies. Equation (4.13) therefore represents small amplitude plasma oscillations in the proper frame. In the laboratory frame they are observed to be Doppler-shifted by the factor \(\Delta_0 \).

In the large amplitude limit \(\left| \frac{\psi_e}{\mathcal{R}} \right| \gg 1 \), the electron and ion terms in (4.7) are identical, and (4.7) reduces to

\[
\frac{1}{2} \left(\frac{d\psi_e}{d\eta} \right)^2 = \frac{W_{pe}^2}{\omega_p^2} \left(|\psi_e| - |\bar{\psi}_e| \right); \quad W_{pe} = \frac{4\pi \langle N \rangle e^2}{M_e}
\]
(4.14)

where we used (4.10). Inserting (4.14) into (4.8) and integrating leads to the dispersion relation

\[
\omega^2 = (\pi W_{pe})^2 \gamma = 4\pi^2 \langle N \rangle e^2 c^2 \beta / \gamma
\]
(4.15)

which is independent of the particles' rest masses. Note that (4.15) does not give the plasma cutoff, (since when \(\beta \to \infty, \gamma \to 0 \) for all finite wave amplitudes), which is obtained from (4.13) in the limit \(\beta \to \infty \).
\[\omega_{\text{cutoff}} = \left[\frac{4\pi}{M_1^2 + M_e^2} \right]^{\frac{1}{2}} \]

Thus the plasma cutoff frequency is always the laboratory plasma frequency, regardless of wave amplitude.

We did not begin our calculation in the space-independent frame, as did Clemmow (1974), but nonetheless we found a posteriori that choosing a plasma streaming velocity equal to \(c/\beta \) enabled us to find a particular solution for relativistic nonlinear plasma oscillations which preserved charge neutrality. A laboratory observer would find a plasma number flux \(Nc/\beta \) of each species as well as a relativistic wave. Of course, these observables could be suitably Lorentz-transformed to other reference frames.

Suppose we had not chosen \(\delta_0 = 0 \). Clearly our small amplitude dispersion relation would have been modified by the Doppler shift factor \(\Delta_0 \). But it is not nearly so evident that the large amplitude result would have changed, for expanding (4.7) assuming \[\left| \frac{\gamma_e}{R\delta_0} \right| \gg 1 \] leads to (4.14) in first approximation. Is it true then that a relativistic amplitude wave imposes upon the plasma a net speed \(c/\beta \)? The absence of detailed physically sound solutions for \(\delta_0 \neq 0 \) leaves this an interesting speculation, which we confirm more rigorously for a relativistic electromagnetic wave in Chapter 7.
5. Electromagnetic waves in a plasma with $m_i = m_e$

In Chapters 3 and 4 we showed that the electron and ion contributions to the dispersion relations for circularly polarized electromagnetic waves and longitudinal plasma oscillations become equal when the wave amplitude is relativistically large for both species. Kennel et al. (1973) found exactly the same thing for transverse electromagnetic waves. In their solution, the effective equality of ion and electron masses eliminated the electric field E_x parallel to the direction of wave propagation, which has complicated attempts at solution since the original work of Akhiezer and Polovin (1956).

Of course, it is reasonable that the particle inertia be determined by the wave amplitude, not by the rest mass in the super-relativistic limit. Furthermore, this suggests that assuming equal ion and electron masses at the outset can guide us to simple equations valid in this limit. Clemmow (1974) has pointed out that certain solutions become very simple when $m_i = m_e$, but we feel that rather than being curiosities, they represent the super-relativistic limit well.

Let us discuss first the conditions under which the electrostatic field E_x can be eliminated. Rewriting (2.17) we find

$$\frac{dE_x}{d\eta} = -\frac{4\pi c}{m} \sum_j n_0 j \Delta_0 j U_j / \Delta_j = -\frac{4\pi c \rho}{m} \sum_j n_0 j \Delta_0 j \gamma_j / \Delta_j$$

(5.1)

assuming $n_{oe} \Delta_{oe} = n_{o_i} \Delta_{o_i}$. Charge neutrality can be preserved in a two-species plasma only if $U_i = U_e$ and $\gamma_i = \gamma_e$ everywhere.
Henceforth we will make this assumption. This of course implies that \(V_i = \pm V_e \) and \(W_i = \pm W_e \). Referring to (2.16ab) we see that assuming \(V_i = -V_e \) and \(W_i = W_e \) excites the field components \((E_y, B_z)\), and assuming \(W_i = -W_e \), \(V_i = V_z \) excites \((E_z, B_y)\). Either assumption leads to a one-dimensional potential well, and the two waves have identical properties, one being spatially rotated with respect to the other. Henceforth we pick \(V_i = -V_e \), \(E_x = B_y = E_x = 0; E_y \neq 0 \) and \(B_z, B_x \neq 0 \). Then equations (2.9ad) reduce to (5.2) below, where the species index is suppressed

\[
\begin{align*}
\frac{dU}{d\eta} &= V\Omega_z/\Delta \\
\frac{dV}{d\eta} &= (\gamma v_y - U\Omega_z + W\Omega_x)/\Delta \\
\frac{dW}{d\eta} &= -V\Omega_x/\Delta \\
\frac{dy}{d\eta} &= Vv_y/\Delta
\end{align*}
\]

Finally we have, integrating (2.15) once

\[
\Omega_z - v_y/\beta = \Omega_z0 - v_y0/\beta
\]

\[
\Omega = \text{constant}
\]

Henceforth we will solve our equations in terms of ion quantities \((v_y, V_i, \text{etc})\). Then, using \(V_i = -V_e \), equation (2.15a) can be rewritten
\[\frac{d\nu}{d\eta} = \beta \frac{d\Omega_z}{d\eta} = -V(\alpha \Delta) \quad (5.5) \]

where

\[\alpha = \omega^2/(w_{p0}^2 \Delta_0 \gamma_x^2) \quad (5.6). \]

and \(w_{p0} \) is the proper plasma frequency at the reference phase denoted by subscript zero.

Combining (5.5) with (5.2a) leads to

\[U = V_0 + \alpha \beta (\Omega_{z0}^2 - \Omega_z^2)/2; \quad (5.7) \]

Combining (5.5) with (5.2d), to

\[\gamma = \gamma_0 + \gamma (V_0^2 - \nu_x^2) \quad (5.8) \]

where henceforth the \(\gamma \) subscript on the electric field will be suppressed; and finally (5.5) combined with (5.2c) gives

\[W = W_0 - \alpha (V_0^2 - \nu_y^2) \Omega_x \quad (5.9) \]

Squaring equation (5.5) gives us

\[\alpha^2 \left(\frac{d\nu}{d\eta} \right)^2 = \left(\gamma^2 - U^2 - W^2 - 1 \right)/\Delta^2 \quad (5.10) \]

which is the equation of motion we seek. In addition, we impose the condition \(V_0 = 0 \), in other words \(\gamma_0^2 - U_0^2 - W_0^2 = 1 \), which is
necessary to preserve our assumption $V_i = -V_e$.

Our task is now to express γ, U, W, Δ in terms of v alone. After some algebra we arrive at the following equation for the normalized electric field $y = v/v_0$:

$$
\left(\frac{\alpha v_0}{y^*} \frac{dy}{dn} \right)^2 = \frac{(1 - y)^2 [(y - y_1)(y - y_2) - q] + (1 - y)qQ}{[q/2 + (y - y_3)(1 - y)]^2}
$$

(5.11)

where

$$
Q = 2 \left[1 - \frac{U_B z - \gamma_B W_0 B_x}{\gamma A_0 E_0 y_0} \right] = \frac{2v_0}{\Delta_0} \frac{(\vec{E} + U \times \vec{B}/\gamma)_{0y}}{E_0 y}
$$

The quantities y_1, y_2, y_3 are defined by

$$
y_3 = -1 + 2U_B (\gamma B_{z0} - U_B E_0)/E_0 = -1 + (2U_B B_z)/E_0 y_0
$$

(5.12)

$$
y_1 = y_3 + 2\gamma (B_x^2 + (\gamma B_{z0} - U_B E_0)^2/2E_0^2)^{1/2} = y_3 + 2\gamma B/E_0 y_0
$$

(5.13)

$$
y_2 = y_3 - 2\gamma B/E_0 y_0
$$

(5.14)

In the derivation of (5.11)-(5.14) the characteristic quantity $\gamma B_{z0} - U_B E_0$ appears often. It is the z-component of the magnetic field in the space-independent frame B_z, and we have so indicated in the second forms of (5.12)-(5.14). Similarly $B = (B_x^2 + B_z^2)^{1/2}$. Since the magnetic field is a constant in this frame, if $B = 0$, there will be no average electric and magnetic fields in this or any other frame. On the
other hand, choosing \(\vec{B} \neq 0 \) leads to averaged electric and magnetic fields in the laboratory frame.

If \(Y_1, Y_2, Y_3 \) define the averaged electric and magnetic fields, then the parameter \(q \) defines the strength of the wave, for

\[
q = \left(2\Delta_0 Y_\ast^2 \right)^2 \frac{4\pi n_0 M c^2}{E_0^2} \geq 0
\]

The case \(q \gg 1 \) corresponds to the small and the case \(q \ll 1 \) to the large amplitude limit. Note that \(q \) can be much larger than unity if \(Y_0 \gg 1 \) and \(\Delta_0 \gg 1 \). Then, even if \(E_0^2/4\pi n_0 M c^2 \gg 1 \), the wave makes a small perturbation on the particle trajectories; on the other hand, the large amplitude limit, \(q \ll 1 \), is one where the particle motion is determined by the wave. The value of the particle rest mass enters (5.11) only through \(q \). Thus, when \(q \ll 1 \) the rest mass will disappear entirely from the dispersion relation in leading order.

It is illuminating to consider the properties of the non-linear wave equation (5.11) - (5.14) under the special Lorentz transformations discussed briefly in Chapter 2. For the relativistic non-linear Alfvén wave, \(\beta < 1 \), we arrive at
\[-\left(\frac{B_{z0}}{\sqrt{8\pi n_0 m c^2 U_0^2 \rho_0}}\frac{db}{dx}\right)^2\]

\[\left(\frac{b+1}{2}\right)^2 \left[\left(\frac{b+1}{2}\right)^2 - \frac{8\pi n_0 m c^2 U_0^2 + E^2 - B_0^2}{B_{z0}^2}\right] - \left(\frac{b-1}{2}\right)^2 \frac{\gamma_0 (E + U \times B/\gamma)_0}{U_0 B_{z0}}\]

\[= \frac{\gamma_0 (E + U \times B/\gamma)_0}{U_0 B_{z0}} \left[\frac{4\pi n_0 m c^2 U_0^2}{B_{z0}^2} + \frac{(1 - b^2)}{4}\right]\]

(5.15)
We have written in (5.15) in physical quantities for physical clarity, and the tilde superscript denoting transformed quantities has been dropped. \(\omega_{p0} \) is the proper plasma frequency at the phase point zero, and \(b = \frac{E_z}{E_{z0}} \).

For the relativistic nonlinear extraordinary mode, we find
\[
\left(\frac{E_{y0}}{\sqrt{8\pi n_0 Mc^2}} \right)^2 \cdot \frac{1}{w_p} \frac{de}{dt} \]

\[
= \frac{(e - 1)^2}{2} \left[\frac{(e + 1)^2}{2} - \frac{8\pi n_0 Mc^2 + B_x^2 + B_z^2}{E_{y0}^2} \right] - \frac{(e - 1)^2}{2} \left[\frac{E + \vec{U} \times \vec{B}/\gamma}{E_{0y}} \right] \frac{8\pi n_0 Mc^2}{E_{y0}^2}
\]

\[
\left[\frac{4\pi n_0 Mc^2}{E_{y0}^2} + \frac{(1 - e^2)}{4} \right]
\]

(5.16)
where \(e \equiv E_x / E_y \), and the tilde or star notation denoting transformation has been suppressed.

Comparing (5.15) and (5.16), we see that for \(\beta < 1 \), the independent variable is time, the dependent variable is the magnetic field, and the electric field is constant. For \(\beta > 1 \), the independent variable is \(x \), the dependent variable the electric field, and the magnetic field is constant. The denominators in (5.15) and (5.16) are simply \(\Delta^2 \). The more profound differences between (5.15) and (5.16) stem from the differences in sign of the derivative terms, and from the fact that \(\Delta^2 \) can never be zero for a superluminous wave, while zeros are possible for a subluminous wave.

In Chapters 6 - 8 we study special solutions to equations (5.11), (5.15) and (5.16). In Chapter 6 we study the relativistic subluminous fast mode solitary wave propagating across the magnetic field. We find that it breaks, due to the \(\Delta = 0 \) singularity, at a relatively small amplitude. In Chapter 7 we specialize to the special case of a superluminous plasma wave with zero-averaged electric and magnetic fields, and in Chapter 8 we consider the relativistic nonlinear extraordinary mode.
6. **Relativistic Alfvénic Solitary Wave**

The effective potential in (5.15) has a double root at \(b = 1 \) if \((E + U x B/\gamma)_0 y = 0\). Then it may easily be shown that the integral for the wave phase becomes singular as \(b \to 1 \), the classic condition for a solitary wave (Sagdeev, 1966; Tidman and Krall, 1971). Here the amplitude passes reversibly from \(b = 1 \) at \(x \to +\infty \) to a certain maximum value \(b_{\text{max}} \), to be determined below, at \(x = 0 \) and back to \(b = 1 \) as \(x \to -\infty \). We now rewrite (5.15) for the \(B_x = 0 \) solitary wave in the standard notation used for the non-relativistic solitary wave:

\[
\frac{1}{2} \left(\frac{db}{d\lambda} \right)^2 = \frac{\gamma_\infty^2 \left[\frac{M^2 + \gamma_\infty^2 - 1}{\gamma_\infty^2 - \frac{(b+1)^2}{2}} - \frac{(b-1)^2}{2(\gamma_\infty^2(b^2 - 1))^2} \right]}{2M^2}
\]

(6.1)

where \(\gamma_\infty = \left(1 + U_\infty^2\right)^{1/2} \) is the relativistic Lorentz factor of the plasma at \(x \to \infty \), and \(\lambda \) is a normalized distance, \(\lambda = w_p \gamma \lambda / c \) where \(w_p \gamma \) is the proper plasma frequency at \(x \to \infty \). \(M \) is a relativistic Mach number:

\[
M^2 = \frac{8\pi n_0 M \gamma_\infty c^2 U_\infty^2}{B_\infty^2} = \frac{\gamma_\infty^2 c^2 U_\infty^2}{B_\infty^2} = \frac{U_\infty^2 c^2}{C_A^2}
\]

(6.2)

where \(C_A \) is the Alfvén speed at \(x \to \infty \).

If \(\gamma_\infty \to 1 \), then \(M^2 = \left(V_x / C_A\right)^2 \), the usual non-relativistic Mach number. When \(C_A^2 / C^2 \) is of order unity or greater, the small amplitude dispersion relation for hydromagnetic waves propagating
perpendicular to the magnetic field yields

\[(\frac{V_{ph}}{c})^2 = \frac{C_A^2 C^2}{1 + C_A^2/C^2}\]

(6.3)

where \(V_{ph}\) denotes the phase velocity. It is convenient to define an effective Lorentz factor \(\gamma_p\), based upon the phase velocity \(V_{ph}\):

\[\gamma_p = \left(1 - \frac{V_{ph}^2}{C^2}\right)^{-1} = 1 + \frac{C_A^2}{C^2}\]

(6.4)

In the super-relativistic limit, \(\gamma_\infty^2 \gg 1\), \(V_\infty^2 \gamma_\infty^2\) and \(\gamma_p^2 \sim \gamma_\infty^2 / C_A^2\), so that \(M^2 \sim \gamma_\infty^2 / \gamma_p^2\). Thus, \(M\) in this limit measures the ratio of the particle to wave Lorentz factors.

In the non-relativistic limit, \(\gamma_\infty \sim 1\) and \(C_A^2 / C^2 \ll 1\), (6.1) reduces to the standard form for solitary waves in a relativistic plasma (Sagdeev, 1966; Tidman and Krall, 1971). In fact, the relativistic form (6.1) is identical to the non-relativistic form, so that we need not dwell overlong on the properties of relativistic solitary waves.

A nonlinear solution is possible \((db/dx)^2 > 0\), if \(M^2 > 1\), since \(b \geq 1\). The amplitude rises from \(b = 1\) at \(x = +\infty\) to a maximum \(b_{\text{max}}\) at \(x = 0\) and then returns to \(b = 1\) at \(x = -\infty\), where

\[b_{\text{max}} = 2 \left[\frac{M^2 + \gamma_\infty^2 - 1}{\gamma_\infty^2}\right]^{\frac{1}{2}} - 1\]

(6.5)

is found from the condition \(\frac{db}{dx} = 0\).
The solution is well-behaved so long as the singularity in the denominator of (6.1) is avoided. The denominator is simply \(\left(U(x)/U_\infty \right) \), so the singularity corresponds to \(U \to 0 \) and \(n \to \infty \), the equivalent in this case of the condition \(\Delta \to 0 \). Choosing \(\mathbf{b} = \mathbf{b}_{\text{max}} \), we can solve for the Mach number which sets \(U = 0 \)

\[
M_*^2 = 2 \left(1 + \gamma_\infty \right) \tag{6.6}
\]

Evidently, (6.6) defines the maximum Mach number permissible. When \(\gamma_\infty \to 1 \), (6.6) yields \(M_* = 2 \), the usual result, whereas in the relativistic limit, \(M_* = \sqrt{2\gamma_\infty} \gg 2 \).

We can solve for \(\mathbf{b}_{\text{max}}^* \), the largest possible magnetic field amplitude, based on the limit \(M = M_* \)

\[
\mathbf{b}_{\text{max}}^* = \frac{\gamma_\infty + 2}{\gamma_\infty} \tag{6.7}
\]

Equation (6.7) reduces to \(\mathbf{b}_{\text{max}}^* = 3 \) when \(\gamma_\infty = 1 \), the usual result. While the relativistic limit permits an apparently much larger range of permissible Mach numbers

\[
1 < M < \sqrt{2 \gamma_*} \tag{6.8}
\]

than the non-relativistic limit, this whole range corresponds to solitary waves of very small maximum amplitudes:

\[
1 < \mathbf{b}_{\text{max}}^* < 1 + 2/\gamma_\infty \tag{6.9}
\]
Thus, it may be that fast waves propagating perpendicular to the magnetic field are restricted to low amplitudes in the relativistic limit $C^2_{A}/c^2 >> 1$. Since when $\beta < 1$, it seems likely that the $\Delta = 0$ conditions can be satisfied for many nonlinear waves, it appears that superluminous waves may be the only ones that can have the large amplitudes required by pulsar theory.
7. Transverse Superluminous Waves with Zero Average Field

In this chapter we study the special case of zero background magnetic field, $B = 0$. Then, in (5.11) - (5.14) $y_1 = y_2 = y_3 = 1$ and (5.11) reduces to

$$\left(\frac{\alpha v_o}{\gamma} \frac{dv}{dn} \right)^2 = \frac{(1 - y^2)[(1 - y^2) + q]}{\left[\frac{q}{2} + (1 - y^2)^2 \right]^2} \tag{7.1}$$

There can be no average electric or magnetic field, since the right hand side of (7.1) is even in y. The dispersion relation corresponding to (7.1) is

$$1 = \frac{2}{\pi} \frac{\alpha v_o}{\gamma} \int_0^1 \frac{K(K')^2 / 2K^2 + 1 - y^2)}{(1 - y^2)(1 - K^2y^2)^{1/2}} \tag{7.2}$$

$$= \left(\frac{2\alpha v_o}{\pi \gamma} \right) \left[\frac{2E(K) - K'F(K)}{2K} \right]$$

where $K^2 = \frac{1}{1+q}$, $K'^2 = \frac{q}{1+q}$, $K'^2 K^2$, and $F(K)$ and $E(K)$ are complete elliptic integrals of the first and second kind.

While mathematically complete, (7.2) is physically incomplete, because α involves n_0 and not the averaged laboratory density $\langle N \rangle$. To get $\langle N \rangle$ we compute the moment $\langle y/\Delta \rangle$, since

$$\langle N \rangle = n_0 \Delta_0 \langle \frac{\gamma}{\Delta} \rangle = n_0 \Delta_0 \gamma^2 \left[\frac{1 + (\frac{\gamma_0}{\Delta_0} - 1)K'^2 F}{2E - K'^2 F} \right] \tag{7.3}$$

So that our final form of the dispersion relation is
In addition, we compute the flux of each species

\[J_x = \beta n_0 A_0 \langle U/A \rangle = \frac{\langle N \rangle_c}{\beta} \left[1 + \frac{U_0}{U_0 A_0 \gamma^*} \right] \]

(7.5)

Exactly as for electrostatic plasma oscillations, the choice \(U_0 = \gamma_0/\beta \) is a special one, for then \(A_0 \gamma^* = \gamma_0 \) and \(\langle \gamma/A \rangle = \gamma^* \) independent of wave amplitude \(q \). Similarly, \(J_x = \langle Nc/\beta \rangle \) independent of \(q \). But with (7.3)-(7.5) we can study other choices of \(U_0 \) and \(\gamma_0 \) rigorously.

First, we touch briefly upon the small amplitude limit \(K^2 \rightarrow 0, K^'2 \rightarrow 1 \). Here we have \(\langle \gamma/A \rangle = \gamma_0/A_0 \) and \(\langle U/A \rangle = \langle U_0/A_0 \rangle \), as expected. The dispersion relation is

\[\gamma^* = \frac{w^2}{w_p^0} \]

(7.6)

which is invariant to choice of plasma streaming velocity, or, equivalently, frame of reference. In the small amplitude limit, the wave has the form of a sine function.

In the large amplitude limit, \(K^2 \rightarrow 1, K^'2 \rightarrow 0 \), we find, using standard expansions for \(F \) and \(E \) and keeping the first two significant terms.
\[
1 = \frac{2}{\pi} \frac{\nu_0^2}{\gamma^* \nu_p^2} \left[1 + \left(\frac{\gamma_0}{2 \Delta_0 \gamma^*} - 1 \right) \frac{K^{'2}}{2 \ln K'} \right]
\]

(7.7)

\[
\langle N \rangle = n_0 \Delta_0 \nu_p^2 \left[1 + \left(\frac{\gamma_0}{2 \Delta_0 \gamma^*} - 1 \right) \frac{K^{'2}}{2 \ln K'} \right]
\]

(7.8)

\[
J_x = \frac{\langle NC \rangle}{8} \left[1 + \left(\frac{U_D}{U_0^* \Delta_0 \nu_p} - 1 \right) \frac{K^{'2}}{2 \ln K'} \right]
\]

(7.9)

In the limit \(K^{'2} \to 0 \) (7.7) corresponds exactly to the dispersion relation obtained by Kennel et al. (1973). This wave is not a sine wave but a "sawtooth"; \(\frac{dE_y}{d\eta} \) is virtually constant between \(\eta = 0 \) and \(\eta = \pi \) and then abruptly changes sign. In addition, we see from (7.8) - (7.9) that for sufficiently large amplitude, small \(K^{'2} \), the choice of initial conditions \((\Delta_0, \gamma_0, U_0) \) simply does not matter. When its amplitude is sufficiently large, the wave determines the mean properties of the plasma, and not vice versa. The most significant conclusion is that the wave imposes upon the plasma a flux of energetic particles \(\langle Nc/\beta \rangle \).

It is straightforward but complicated to compute the particle energy flux, which involves \(\langle \frac{U_v}{\Delta} \rangle \). We shall not write the results here, but simply state that as Kennel et al. (1973) noticed, the electromagnetic and particle energy fluxes are equipartitioned in the limit \(q >> 1 \).

The energy flux \(F \) equals the particle energy flux \(F_p \) plus the Poynting flux \(F_{em} \), and both equal \(cE_y^2/12\pi\beta \), so that \(F = cE_y^2/6\pi\beta \). We may then rewrite the \(q >> 1 \) dispersion relation in terms of
the particle number flux J and the total energy flux F, a form useful to pulsar physics

$$\gamma_* = \frac{B}{\sqrt{B^2 - 1}} = \frac{3}{\pi \nu_0} \frac{F}{JMc^2}$$ \hspace{1cm} (7.10)

It is evident that (7.10) is independent of the value of the particle mass, consistent with our assumption of a charged photon gas in the $q \ll 1$ limit.

All the results of this chapter apply equally well to the relativistic nonlinear ordinary mode propagating perpendicular to the magnetic field, with E_z and $\langle B_y \rangle$ non-zero.
8. **Transverse Waves with Non-Zero Average Electric and Magnetic Fields**

Here we pass immediately to the $q \to 0$ large amplitude limit of the full set of nonlinear equations (5.11) - (5.14). Our first task is to classify the zeros of the denominator and numerator of (5.11). The zeros of the denominator correspond to points where $\Delta = 0$ and therefore where the proper density would be infinite. Of the four zeros of the numerator, two must be chosen to specify the maximum and minimum electric field so that the singularity at $\Delta = 0$ is avoided. Having chosen a pair of zeroes of the numerator, we then integrate (5.11) approximately to produce a dispersion relation. Then we compute mean values of the plasma parameters of interest and re-express our results in terms of them.

\[\Delta = 0 \text{ at the points given by (8.1) below} \]

\[y = \frac{1 + y_3}{2} \pm \sqrt{\left(1 - \frac{y_3^2}{2}\right) + q/8} \] \hspace{1cm} (8.1)

Since $q > 0$, (8.1) indicates that one zero of Δ occurs for $y > 1$ and the other for $y < y_3$.

While (8.1) is valid for arbitrary values of q, we solve for the four zeros of the numerator only in the limit $q \to 0$, keeping corrections to order q; the four zeros are given by (8.2ad) below

\[y = 1 \] \hspace{1cm} (8.2a)
\[y = 1 + qQ/(1 - y_1)(1 - y_2) \] \hspace{1cm} (8.2b)

\[y = y_1 + q(1 - y_1 + Q)/(1 - y_1)(y_1 - y_2) \] \hspace{1cm} (8.2c)

\[y = y_2 - q(1 - y_2 + Q)/(1 - y_2)(y_1 - y_2) \] \hspace{1cm} (8.2d)

where \(Q \) is defined following (5.11).

Of the four roots (8.2ad) we must choose two which lie between the two roots of \(\Delta = 0 \) given by (8.1). It is clear, from equations (5.15) and (5.16), that \(y_1 > y_3 \) if \(B/Ey_0 > 0 \) and \(y_2 > y_3 \) if \(B/Ey_0 > 0 \). Henceforth we will only consider the case \(y_1 > y_3 \), since the case \(y_2 > y_3 \) can be treated by exact analogy.

A consistent choice is to take the smaller of (8.2ab) and the larger of (8.2cd), which when \(B/Ey_0 > 0 \) is (8.2c), so that the electric field oscillates between the approximate limits \(y_1 < y < 1 \).

If \(y_1 = -1 \) we recover the case treated in Chapter 7. All other values of \(y_1 \) correspond to non-zero mean fields. If \(y_1 < 0 \) the electric field oscillates between a positive maximum and a negative minimum; if \(y_1 = 0 \), the electric field oscillates between a positive maximum and zero minimum and the mean electric field is positive. As \(y_1 \to 1 \), the amplitude of the electric field oscillation approaches zero, whereas the mean electric field approaches \(Ey_0 \). \(y_1 \to 1 \) corresponds to small amplitude waves.

When \(y_1 > 1 \), no oscillations are possible, since \((dy/d\eta)^2 < 0 \) for \(1 < y < y \).

Assuming \(W_0 = 0 \), it is easy to show for superluminous waves that the condition \(y_1 \leq 1 \) also requires \(|Ey_0/Bz_0| > 1 \), whereas
Q = 0 requires $|E_0/B_0| > 1$ when $W_0 = 0$. Since we may then assume $Q
eq 0$, even though when $q << 1$ the phase integral may very nearly be singular near $y = 1$, we are certain that it is never truly singular. Only periodic nonlinear waves are possible.

In the limit $q \to 0$, therefore, we make no significant error in approximating (5.11) by

$$
\left(\frac{\alpha \nu_0}{\gamma^* \delta} \right)^2 \sim (y - y_1)(y - y_2)/(y - y_3)^2 \quad (8.3)
$$

and the dispersion relation by

$$
\left(\frac{\alpha \nu_0}{\gamma^* \pi} \right)^2 \int_1 \frac{(y - y_3)dy}{(y - y_1)(y - y_2)} = 1 \quad (8.4)
$$

Equations (8.3) and (8.4) have solutions which are independent of the rest mass

$$
\eta = \pi \left\{ \left[(y - y_3)^2 - (y_1 - y_3)^2 \right] / \left[(1 - y_3)^2 - (y_1 - y_3)^2 \right] \right\} \quad (8.5)
$$

and

$$
\left(\frac{\alpha \nu_0}{\gamma^* \pi} \right)^2 \frac{(1 - y_3)^2 - (y_1 - y_3)^2}{(y_1 - y_3)^2} = 1 \quad (8.6)
$$

The formal solution (8.5) - (8.6) indicates that both oscillatory and mean properties of the plasma are determined solely by the choice of minimum and maximum electric field amplitudes, together with the magnetic field, in the space-independent frame and the plasma properties $(n_0, u_0, \gamma_0, W_0)$ at $y = 1$. However, it is more illuminating physically to describe the plasma and its wave in terms of the mean laboratory frame density, electric
and magnetic field, and velocity.

Let us compute first the mean laboratory frame plasma density \(\langle N \rangle \)

\[
\langle N \rangle = n_0 \Delta \gamma_1^2 \left(1 + \frac{\gamma_0^* B(r)}{\gamma_0^* B} \right) \tag{8.7}
\]

where we have used the definitions (5.12)-(5.14), defined the ratio of roots \(r \)

\[
r \equiv \frac{1 - \gamma_2}{\gamma_1 - \gamma_3} = \frac{Ey_0 - U_0 B_z}{\gamma_0^* B} = \frac{E_0}{B} \tag{8.8}
\]

and the function \(G(r) \) which emerges from the integration of \(\gamma/\Delta \)

\[
G(r) = \frac{\sinh^{-1} \sqrt{r^2 - 1}}{\sqrt{r^2 - 1}} \tag{8.9}
\]

We note that the condition \(\gamma_1 \leq 1 \) ensures that \(r \geq 1 \). When \(\gamma_1 = -1 \), \(G(r) \to 0 \), and (8.7) reduces to the result (7.9) in the limit \(K'^2 \to 0 \).

We now compute the average laboratory frame electric and magnetic field components, again using the definitions (5.11)-(5.14):

\[
\langle E_y \rangle = U_0 B_z + \gamma_0^* B G(r) \tag{8.10}
\]

\[
\langle B \rangle = \gamma_0^* B_z + U_0 B G(r) \tag{8.11}
\]

Equations (8.10) and (8.11) lead to an immediate interpretation
of the function G. If we choose

$$G = \langle E_y \rangle / \langle B \rangle$$ \hspace{1cm} (8.12)

Equations (8.10) and (8.11) reduce to the Lorentz transformation of the mean electric and magnetic fields between the laboratory and space-independent frames. We also note that if we choose $B = 0$ in the space-independent frame, $\langle B \rangle = 0$ in the laboratory frame, as it should be, since for $B \to 0$, $r \to 1$ and $G \to 0$. Similarly $\langle E_y \rangle = 0$ when $B = 0$.

Finally it is illuminating to compute the mean laboratory frame flux vector \vec{J}, which involves $\langle \frac{\nabla W}{\Delta} \rangle$, using (8.7) - (8.12)

$$\vec{J} = \langle N \rangle \left[\frac{\epsilon \hat{e}_x + \vec{V}_E}{(1 + V_{Ex}/cB)} \right]$$ \hspace{1cm} (8.13)

where

$$\vec{V}_E = \frac{c \langle E \rangle \times \vec{B}}{B^2}$$ \hspace{1cm} (8.14)

is the mean $\vec{E} \times \vec{B}$ plasma drift measured in the space-independent frame. Equation (8.13) is a generalization of our previous results, where there were no mean fields. A superstrong wave imposes upon the plasma a mean drift which is the relativistic addition of the characteristic velocity $c/\beta e_x$ and the mean $\vec{E} \times \vec{B}$ drift in the space-independent frame.

Using (5.15) - (5.16) and (8.7) - (8.14), we rewrite partially in terms of mean quantities
\[
\left[\frac{v_x \tilde{n}}{\nu_0 \sqrt{r^2 - 1}} + \frac{U_x \tilde{n}}{\nu_0} \sinh^{-1} \frac{1}{\sqrt{r^2 - 1}} \right] = \frac{\pi}{2} \frac{W^2}{\nu_0^2 v_x} \tag{8.15}
\]

where
\[
\tilde{n} = \frac{e}{M \nu_0} \sqrt{B_x^2 + B_z^2} \quad \text{and} \quad \tilde{n}_z = e B_z M \nu_0.
\]

When $B \to 0$, the left hand side of (8.15) reduces to unity and (8.15) therefore reduces to (7.8) in the limit $K^2 \to 0$.

In general, (8.15) is a complicated transcendental dispersion relation for β, especially since \tilde{n}, \tilde{n}_z and r contain β. One simple result can be retrieved from (8.15) however; the cutoff frequency at which $\beta \to \infty$. Holding all other quantities finite while letting β approach infinity leads to

\[
\left(\frac{\pi}{2} \frac{W^2}{\nu_0^2 v_x} \right)^2 = 1 - \frac{W^2}{\omega_c^2 / \nu_0^2} \tag{8.16}
\]

where $\omega_c = \frac{e}{M \nu_0} \left(B_x^2 + \langle B_z \rangle^2 \right)^{\frac{1}{2}}$ is the cyclotron frequency based upon the average laboratory frame magnetic field. In addition, $\langle E_y \rangle \to 0$ as $\beta \to \infty$. A strong magnetic field lowers the cutoff density for a wave of given laboratory frame frequency ω.

9. **Summary and Discussion**

When the wave energy density greatly exceeds the rest mass energy density, electrons and ions behave alike, since their inertia is determined not by their rest masses, but by the kinetic energy they acquire from the wave itself. In other words, if we can neglect the rest mass energy relative to the kinetic, it seems reasonable also to neglect differences in rest mass energy between species. In the two cases where we can easily calculate with different ion and electron masses, namely electrostatic plasma oscillations and circularly polarized electromagnetic waves, the dispersion relation does become independent of rest mass in the limit of large amplitudes. This suggests than an "electron-positron" plasma may be a convenient model to describe super-relativistic plasma waves.

In an electron-positron plasma, the classic problem posed by Akhiezer and Polovin (1956) has a simple complete solution in terms of elliptic functions. Beyond assuming \(M_i = M_e \), no other approximations need be made. In this case, the simplification stems from the elimination of the electrostatic electric field component parallel to the direction of wave propagation. The existence of a simple solution ought to facilitate other investigations, such as that of the stability of super-relativistic waves, or the inclusion of radiation reaction in the equations of motion.

When non-zero average electric and magnetic fields are added to the Akhiezer-Polovin (1956) problem, the electron-positron
model enables us to show that the super-relativistic extraordinary mode satisfies a second-order ordinary differential equation with a first integral in potential form, a fact which would only have emerged after a complex limiting process if we had started with unequal ion and electron masses and a multidimensional potential.

From the various investigations reported in this paper we have been able to abstract several apparently general conclusions. First, it seems that only $\beta > 1$, superluminous, waves can attain arbitrarily large amplitudes, at least within the present cold two-fluid theory. Subluminous waves, with $\beta < 1$, can encounter a density singularity at finite amplitude. An example of such a case—an Alfvénic soliton propagating perpendicular to the magnetic field—was discussed in Chapter 6. Secondly, just as a transformation to the time-independent frame $U = \gamma \beta$ is useful in treating subluminous waves, the transformation to the space-independent frame $U = \gamma / \beta$ is useful for superluminous waves, as Clemmow (1974) has recently emphasized. Indeed the averaged electric and magnetic fields naturally expressed themselves in this frame in our treatment of the super-relativistic extraordinary mode.

Finally, when the wave amplitude is truly large, $q << 1$, the wave determines the average properties of the plasma, and not vice versa. This conclusion is most forcefully expressed by our computations of the laboratory frame particle fluxes associated with linearly polarized waves. There, we found that the particle flux is uniquely determined by the wave in the
large amplitude limit. In general the flux is the relativistic addition of the characteristic flux Nc/β associated with the space-independent frame and the flux associated with the average $\mathbf{E} \times \mathbf{B}$ drift measured in that frame.

As far as pulsar magnetospheres and cosmic ray acceleration are concerned, we have reached the following speculative conclusions. First, only superluminous plasma waves are likely to have the large amplitudes suggested in the original pulsar theories. Second, associated with each superluminous linearly polarized mode is a characteristic cosmic ray number and energy flux. Third, our results do not vitiate the conclusion that, due to the $\beta \to \infty$ cutoff, the wave solution is restricted to relatively low plasma densities, or equivalently to a small flux of high energy cosmic rays (Kennel et al., 1973; Asseo et al., 1975). Thus the only way a pulsar can deliver a larger number flux to its nebula is through a radial outflow "wind" solution. Finally, since the addition of an average magnetic field lowers the cutoff density, it may not be terribly realistic to think of a mixed "wind-wave" solution, at least involving the extraordinary mode.

Acknowledgements. It is a pleasure to acknowledge the help of Estelle Asseo, who, in addition to joining many conversations, worked actively with us to produce the solution presented in Chapter 6. C.F. Kennel acknowledges the gracious hospitality of the Centre de Physique Théorique, Ecole Polytechnique, where he was a visitor during 1974-1975. This work was supported
by NASA grant NGL 05-007-190 and by the Alfred P. Sloan Foundation.
References

"Cyclotron Echoes from Doppler Effects", A.Y. Wong (March 1968).

"Ion Acoustic Instabilities Due to Ions Streaming Across Magnetic Field," P.J. Barrett, R.J. Taylor (March 1971).

"Abstracts presented at the American Physical Society Division of Plasma Physics Annual Meeting, Monterey, November 13-16, 1972".

"Abstracts presented at the Philadelphia Meeting of the American Physical Society, Division of Plasma Physics, October 31 - November 3, 1973".

PPG-188 "Is Jupiter's Magnetosphere Like a Pulsar's or Earth's?" C.F. Kennel and F.V. Coroniti, September 1974. Ibid.

PPG-220 "Unstable High Frequency Electrostatic Modes Induced by a Loss Cone Distribution of Electrons", Burton D. Fried and David E. Baldwin. May 1975.

