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ABSTRACT

" Two solutions are developed for the two dimensional
problem of bonded linearly elastic half-planes. The first
is for two bonded isotropic linearly elastic half-planes of
different elastic properties having a crack along the in-
terface as well as a perpendicular crack in one of the half-
planes which may intersect the ihterface crack. The appro-
priate integral equations are developed through the use of
displacement dislocations in conjunction with Mellin trans-
forms. The resulting pair of singular integral equations
is solved by obtaining the relationships between these solu-
tions and the weight functions for Chebyshev and Jacobi
polynomials., The second solution is for two bonded iso-
tropic linearly elastic half-planes of different elastic
properties having a crack along the interface, as well as a
perpendicular crack in eaéh of the half-planes, either or
both of which may intersect the interface crack. The ap-
propriate integral equations are again developed through
the use of displacement dislocations in conjunction with
Mellin transforms. The resulting three singular integral
equations are solved by obtaining the relationships between
these solutions and the weight functions for Chebyshev and
Jacobi polynomials in a similar manner to the pair of
equations in the firs£ solution,

For each solution, numerical results are presented for



iii

the stress intensity facfors, strain energy release rate,
stresses and displacements.

The behavior predicted by the above studies was in-
vestigated experimentally using polyﬁers for the material
pairs. Very close agreement was fouﬁd for the critical
stress intensity factor at fracture for the perpendicular
crack near the interface, Fracture along the interface
prdved to be inconclusive due to difficulties in obtaining a
brittle bond, Some interesting agd predictable behavior
regarding the potentiél for the é?ack to cross'the interface

was observed and is discussed.
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The solution is given for two bonded isotropic lin-
early elastic half-planes of different elastic’properties
having a crack along the interface as well as a perpendic-
ular crack in one of.the half-planes which may intersect
the interface crack. The appropriate integral equations
are'developed using displacement dislocations on the crack
surfaces,

Numerical results are presented for the stress in-

tensity factors, strain energy release rate, stresses and

displacements.
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Introduction

715 coﬂsideriﬁgﬁﬁﬁerf£ae£ﬁfe df cehpeeifewmeéefiéie due
to the presence of imperfections, one finds a common mode of
failure to be that of a crack originating in one material
then extending until it reaches a bonded interface and spread-
ing along the bond line, Other possible directions of crack
bgrowth are for the crack to cross the bond line or to be
reflected by the interface into the original.material.

An investigation of the effects of a crack in the near
‘vicinity'of a material interface is then esseﬁtial in the
fracture analysis‘of cemposite materials. In the analytical
study of this problem a.specific geometry that leads to
tractable integral eqﬁations is.the case of two elastic half-
planeS'containihg a fihite length crack in one of the half-
planes with the crack being perpendicular to the material
interface, Of particular interest is the behavior of the
stresses as one end of the.crack approaches the interface
and either terminates, crosses into the adjacent ﬁaterial,
extends along the bond without crossing the interface, or
upon reaching the interface, extends into the adjacent ma-
terial and debonds along the interface. The instances of
the crack terminating at the interface or crossing the inter-
face have been investigeted by Erdogan, Cook, and Biricikoglu
in [1] and [2]. The present study considers the possibility

of the crack spreading along the interface.



The appropriate integral equations-are developed through
the use of displacement dislocations in conjunction with
Mellin transforms. The resulting singular integral equations
are solved by obtaining the relationships between these solu-
tions and the weight functions for Chebyshev and Jacobi

polynomials,
Formulation

Assuming a coordinate system having the origin at the
'.center of the interface crack, as shown in Figure 1, it is
seen to be convenient to represent the solution in terms of
thé polar variables (r, 6), as the crack surfaces, the in-
terface, and the horizontal plang of symmetry lie on constant
6 surfaces.

An effective means of formulating linear elasticity
problems having boundary conditions of this type is to make
use of Mellin transforms on the radial variable., It is
demonstrated in [1] and [2] that the use of displacement
dislocétions in conjunction with Mellin transforms gives a
very simple and straightforward technique to develop the
integral equétions for a large class of problems of this
general form, |

‘The half-planes are assumed to be loaded with uniform
stresses Og > cl and 02 as shown in Figure 1, with the
stresses being related in such a manner as to give constant
strains in both the x and y directions at points remote

frdm the cracks. The following relations must then hold,



o =0, ;i - oo(v2 gi - vl) for generalized plane stress
and (1L- v2)E v_(1+ v_)E v
6 = g ———a L o, 2 . 2’ 1 _ t | for pléin
L 2 (1- vf)E2 (1- vl) 32 L-v, strain.

The complete solution may be represented as

o total = o, + ©

I I1

‘where o, = stresses-in the half planes without cracks and
loaded at infinity

and 0 = stresses in‘the half planes having no applied
loads at infinity and applied stresses on the
crack surfaces equal to the negative of those
given by o . For the loads as stated above

I
this would require normal stresses of =05 and
-0, on the interface and perpendicular crack

respectively,

The solution for o is developed below in terms of
a2 general system of appliid tractions on the crack surfaces,
although still requiring symmetry about the y =0 plane,
and will be restricted to the above constan£ normai stress?s
only for the numerical results,

As the present study is closely related to [1] and [2],
an attempt'té follow the form and nofation of those investi-

gations will be made, where possible, in order to eliminate

unnecessary duplication.



Following [1], the Mellin transforms of the stresses

and displacements are: o

= Zk(s,e) = 2i(s+.l) X

M[rzok(r,e)] =
is6 Ci(s+2)e _  -i(s+2)e
A se +Bk(s+-1)e -B, e s

. is _ -is6
M[rarkrr(r,e)] = - s(s+ 1)|Ae + Age

i(s+2)e _ -i(st2)e
- (s+1)(s+14)|Bye + Bye s

M{x2v, (r,8)/20, ] = ¥ (s,0) (1)

isé i(s+2)o _ -i(st+2)s

stl .
- ™ A se  + Bk(‘s+l)e +x, Bye
where B
3—4vk for plane strain
Ky = -
k (3—vk)/(l+vk) for generalized plane stress
and Hy s Yy . are the shear modulus and Poisson's ratio

respectively.

The transformed functions above are [1]

Uk(r,e) = Tkre(r,e) + irkee(r,e) s

(2)

Tkrr(r,0) = Typy (£56)

dou, (r,6 du, . (r,s)
ke (%.0) '——}EQ—(————]with k=1,2

and
v (r,0) = 2|..Lk[T+ i ST



for region 1 and 2 respectively.

I

'Using displacement dislocations? on the surfaces 6 =

and 6 = 7 , the boundary conditions are:

T,rp(¥s0) = u,(r,0) =0, on 6 =0 in material 2, (3)

Tlre(r,ﬂ) =0
o : , on 6 =7 in material 1

D

2 , = - 1/2h(r)é(r-r)

ar u19<r 7T) () ( O.» (u_)
and

Tlre(r m/2) = 1 re(r,7T/2) h

Tlee(r,ﬂ/E) Tzee(r,ﬂ/c)

3 3 interface

ST u, (r,n/2)- S5 u,, (r,m/2)= ~£(r)é (z-z ) 9= m/2 .

Lo, (e,m/2)- 2 /2)= ~g(x)s (z-r,)

dr Y1g\EoT )- dr uzé(r’ﬂ )= ~9(r)o(r-x

o
’ (5)

By defining the unknown functions A, ,B, ,

A =C +iC , B=C +iC , A =C +iC , B =C +iC
1 1 27 1 3 a2 s 8 2 7 &

k=1, 2, as

and on transforming the above boundary conditions, the re-
sulting eight equations specifying the unknowns Ci are

as follows:

1 Displacement dislocation as used in the present text

implies a step discontinuity in the displacement slope at
a particular point,



sC + (s+1)C +C =0 , (6)
[S) a8 8

Il

sC + (s+1)c -xc =0 | (7)
(5 a8 2 8

sC sin(mws)+ sC, cos(ms) + (s+2)C3 sin (ms)
+ ('s+2)C4 cos(ms) = O (8)
sC  sin(mws)+ sC_ cos(ms) + (s+ 1 - 1cl)C3 sin(ms)

s+l
h(r )n, M,

> (9)

+ (s+1-x )C cos(ms)=
14 2(s+1)

sC cos(7Ts/2)--sC2 sin(7rs/'2_)—sc3 cos (ms/2) + sC4sin('rrs/2)

- s(C5 -C7)cos(7rs/2) =0 , (10)

SC;. sin(ms/2) +sC_ cos (rs/2)-(s+ 2)C3 sin(ws/2)

~(s+2)c, cos(ms/2)-[sC_ —(s+«2)d;]sin(ﬂs/2) =0, (11)

- 'm[sCl cos (7rs/2) - sC_ sin(ms/2)-(s+ 1+ 1cl)C3 cos (ms/2)

+ (s+1 +1cl)C4 sin(ms/2)]

st+1
Lof(rg)rg

s+1 ?

+ [sC_-(s+ 1+ 1{2)C.7]vcos(7Ts/2)= - (12)
and |

- m[sCl sin('rrvs/2) +sC_ cos(ms/2)-(s +1 —1<;1)C3 sin(mws/2)
- (s+ 1_K1>C4 cos (ms/2)]

s+l

ng(ro)ro

s+1

+ [sCS—(s +1 -‘-1{2)C7]sin('zrs/2)= - o, (13)

where m = ;.J.z/p,; and in Equations (10) through (13) use has
been made of Equations (6) and (7) which require that 'C6=CB=O.

The remaining functions are found to be
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cos(ms) pl(s+ é)h(ro)rz—*-l.
- -cC + ) (14)
---2.sin(ms)  2s(s+1)(1+x_ )sin(ms) . o
: 1
ot

= [f(ro)sin('rrs/Q)[(s+l)(m+1c2)

s(s+1)(1+ mnl) (m+ nz)

- (1+mnl)]

s c;;(r.o)cos_(ﬂS/Q)[(S'*' 1)(m+1c2)+(l+ mlcl)]]

+ , (15)

uih(rd)ri+ 1 [(I—m) (s+ 1) (2s+ 3) (mxl—nz)]

2s(s+vl),(l+1cl) (1+ mxl) ¥ (?n+K2)

= s+ 1
. vcos('ns) ) “lh(ro)ro' o (16)
* sin(mws) 2(s+1)(1+ Kl)sin(ﬂs) .

s +1
» l’fl'2ro

= [f(ro)sin(ﬂs/2)+ g(rO)COS(’]TS/Q)‘]

‘(s+ 1) (1+ mkl)
. s+1
b, (1-m)(2s +3)h_(ro)ro

2(s+ 1)'(1+ nl) (1+ mnl)

s+1 '
= - u?ro r )sin{ms
- s(s+1)(1+ mKl)<m+Ké)sin(ﬂs) [f( o) (ms/2) X

(6+1)(1+mx )-(m+x_)]-g (r )cos(ns/2) X

S+ 1
uzh(ro)ro

[(s+1) (1+me )+(m+x)]] + X

2s(s +1)sin(ns)

] (25'*‘3) _ (S+l) _] | (18)
(1+ mx, ) (m+1<2)J ’



and s+ 1
c Pelo . [ £(r )sin(ms/2)-g(r )cos (us/2)
= r siniiTs - r COsS (TS
7 (s+})(m+x2)sin(ﬂs) °© 7o ]
p(rg)e

) 2(s+ l)-(m+1c2)sin(7rs) . (29)

Substituting into the first of Equations (1), the transformed

" stresses on the surfaces 6 = m/2 and 6 = 7 are

mo (14 mx + m+ K ')rcs)+ 1
2 (s,n/2) = 2 [f(ro)tan(ﬂs/Q)
1 : (1+ mx ) (m+ 1c2)

- icj(ro)cot(ﬂs/E’)-l-Y [g(ro)—if(ro)ﬂ

| ulh(ro)rz+ ' [ (1-m) (2s+3)  (mx -x_)
il2(s+1)- - ]
2(1+ x,) | ‘

(1+ mxl) (m+x2)

_ « - - _[2(S+ 2)‘_' (1_m)(25-¥—3) . (mxl—xz)] 1 ]
——) 3

sin(ws/2 (L+mx ) (m +x,) J cos (ms/2)
' - (20)
and W fs+l |
= (s, = - 20 r
l( ™) (1+ mKl)(m_+1c2) [f( o) X
[2s(m+ x,)-(1+ mx, —3i r
[ k)= ( +‘ . )+ (m+ Ka)] cos(rer2) + g oi-*—)i
C[2s(m+ x )+ (1+ mg, )+ (m+ x_) ] 1 + 2y (xo )%
27 sin(ws/2) (1 +K1)
, (mx, -x) (1-m) (2s+ 1) (2s + 3) 1
COt(’ITS)—[ + :l s
2(m+x,) 2(1+mx ) sin(ms)

(21)
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where in Equation (20)
:”(mﬂiéz)f(l+imxl)

_ (m-+x2)+(l+ mg )
and in Equation (21) Zl(S,ﬂ) =.M[ir21199(r,ro,ﬂ)]: as

T (r:ro:ﬂ) =0 .

1r@
The ‘integral equations in terms of the unknown density

functions £(r), g(r), and h(r) are given by the conditions

that
T(x)+iN(r) = g“ [Tlre(r,ro,ﬂ/2)+i1199(r,ro,ﬂ/Q)]d#o

and (22)

N_(r) = gwrlee(r,ro,w)dro o (23)

where N(r) and T(r) are thé normal and shear stresses on
the interface and No(r) is the normal stress on the sym-
metry line.

On noting that

£(r)) = g(r,) =0, c<r, <=
and
h(ro) =0 3 0 < rO < a, b < rO < oo 3

then inverting Equations (20) and (21) and substituting

into Equations (22) and (23) one has
mo[1+ mx, + m+ x,]

r)-iT(r) = -Lc i 2L
N()-in(x) = S [- & Freemsen &

o



(1-m) (n® - 3x%)
o+ 2 g f h('ﬂ){ [[E(T\ -r ) T 1wk ] Xf -

8s” ___12s ' 1 mg, =X, N 3(1-m) 1 a
(n+;s)s (n+_s)2 e mtx, 1+ mk, | n+s N

' 2u :
+ Z X

.ﬂ(l+-mnl)(m+-K2)

I [—sf(e) [(l+m1cl)+ (mﬂc'ai(%;'s )]

o E + s ’
o Tmtxy)(38%-s%)7 '
+ £g(e) [<1+mnl>- AL ]] £ (25)
‘ o E + s £ + S

Equations (24) and (25) are valid for all values of r and
in particular

N(r) - iT(r) = p(r)-ia(z) , 0<xr<c ,  (26)
and

No(s) = po(s) , a<s<b, - (27)

where p(r), g(r) are the applied normal and shear stresses

on the interface crack and po(s) is the applied normal
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stress on the perpendicular crack; Therefore, with the
__above restrictions on r and s in Equations (24) and (25),
one has the-integrél eqﬁations necessary for the specifica-
tion of the unknown density functionsin terms of the known
applied stresses. Note, if h(t) =0 , Equation (24) with
0 { r { ¢ is the appropriate integral equation for an in-
terface crack [3] and similarly if £(t) = g(t) = O with
a < s.< b, Equaﬁion (25) is the integral equation for a
crack perpendicular to a boﬁded interface, [1l, Equation
(4.7)]. Equations (24) and (25) are similar to [2, Equa-
tions (7.a,b)]. However,-in the present study no difficulty
arises in letting a = 0 as was the case in [2]. That is,
the second integralé in Equations (24) and (25) do not con-
tribute to the singular behavior of the density functions
as long as ¢ # 0 . This is.seen by noting that if a=0 s

g

following [4], then h(t) = H*(t)/(t-b)" , where H (t)

satisfies a HOlder condition on the closed interval 0 { t <{b.:
The nature of the singular stress field near the crack tips
is then the same as in the individual problems and the
- effect of the two cracks is only to change the value of the
stress intensity factors. The proof of this follows from
[4, p. 75], as | _
£(t)+ig(e) = o(r) = LEL (28)

and
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H(t)
(t-a) 1P (t-p)P

—Eii;l for a=0 |,
(t-b)P

for a » 0

h(t) = (29)

with G(t), H(t) and H*(t) satisfying a HOlder condition

on the appropriate limits. Then letting

1 .o G(t) 1 c 6(t)-g(c)
*2) =z T =] (6-0)6 (t-2) de
G(c) fc dt _ G(c)ei7rg
2ml 5 (t-c)8(t-z)  (r-c)fsin(me)
+ Bounded function at r = ¢ , (30)
and
near z = ¢ , with 2z = r , one has
G(c)cot(mE)
o(r) = - 7— + Bounded terms . (31)
2i(r-c)*®

Substituting into Equation (24), and multiplying by (r-c)g

with r—c , one finds the equation for £ to be
1, 1 . (1l+y .
£ = 5+ 5 ln(ry as in [5] . (32)

Similarly, for a > 0 , let

_ l' b H(t)
2T 3 (t-a)%(t-b)P(t-z)

, (33)

from which
H(a)e H(b)

h(z)= -
(= 2i(z—a)a(b—a)ﬁsin(ﬂa) 2i(b-a)a(z—b)asin(ﬂ6)‘

+ bounded terms . (34)

Substituting into Equation (24) and multiplying successively
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a
by (z-a) , z — a, then (z—b)B » 2= Db the two equations.

..are . .. ,,Acot('n_a) = O ’,
and cot(mB) = O
or, therefore, a=p=1/2

If a=0, h(t)= HY tB- and B=1/2, a=0 in Equation (34).
(t-b)

Making the following changes in Equations (24k) and (25):

| at+b a#o

£=ct, r=cy, ao=(b-a)/2,“bo= (bta)/2, n = © o’
’ . bt 9 a=90 5

ax+b , a#0
. _ o™" %o P(y) =pley), Q(y)=alcy),
' bx 3 a=0 i}

$(t) =g(et)+ if(ct), y(t)=h(n), Po(x)==po(s), and noting that

[C£(t) [even function in t] dt = - -21 [9(£)+if (£)] X
o) . ' -C
[even function in t]dt
and
c
[Ctg(t) [even function in t] dt = % S e[g(e)+if(t)] X
o) . =C

[even function in t]dt,

the pair of singular integral equations are normalized as

ERRIOE= vo(y)= - & [0(y)-ip(r)1+ | w(t>e< y)at,
o | ~1<y <1 (35)

= u(e) 24 f “y(e)H (e, x)at = - "8 (£)1(t,x)at
- 1+ x

21,

. B,(x), -1<x< 1. (36)

The functions G(t,y), H(t,x) and I(t,x) are
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G(t:Y)= - = X

a, m(l+ x,)

f o ’ .
{in [2(n2 - c2y2)- (1-m) (”2'3°2Y2)} 1 e
(1+mx, ) n+c?y? mx

L 2
1- 2_.2.,2 -
+ oy rg(nz_c )~ (1-m) (3n%-c®y 7] 1 |y -x ) 1
i (l+mKl) q2+c2y2 m+x2_] n2+c2y2
(37)
I Z:rl' lem [: 8523 i 1252] +[m1cl—1<2+3(l—m)] 1 ,
l_1+mK1 (n+s)”  (n+s) mry  lbmed T
(38)
' _ m(1l+x, ) (mtx,) (5c®t%+s®
I(t_’x)z > is [(l+m1cl)+ - )J
2ﬂ(l+mnl)(m+K2) . cfti+ s®
(mtx,) (3c®t2-s® _
+ ot [(1+m1c ) - — ] : (39)
1 c2¢2 4 g2 c2t2+ g2
(l+mnl+m+1c2)‘ a_ if a#0
B : _ O
where a = (Ltmx ) (m+x,) and at= b if a=0

It is of interest to note that the above equations may

be written in terms of only two independent combinations of

elastic constants as shown by Dundurs in [6]. The following

definitions ‘prove convenient in the present work. Let
l+mxl m+x,

Ty, k, = T7%,

then,
By - kik,

a (1+x,) B (k + k2)(kl+k2 -1)
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l-m l—k2
_ _ E = >
l+—mxi— - kiw - S — -
mx, - x, k;-1
m+ X, - k2 ’

and
k, -k,

V= kK +k,
The usefulness in making such a change is most evident
if one is able to write an asymptotié expansion for the solu-
tion in the vicinity of the crack tip. For example see
Ashbaugh [7] for an.aﬁalysis of the problem considered in
[1]. A similar investigation isAbeing undertaken for the
present problem..

Equation (35) is a singular integral equation of the
second kind, and is similar to [8, Equation (14)], aithough
somewhat simpler due to the manner in which the unknown
function, ¢(t), appears. Following the procedure of [8];
[9], [10], and [11], it is possible to determine ¢(t) in
terms of the'ugknown function. ¥ (t) and the loads. Sub-
stituting into Equation (36), for ¢(t), one then has a
singﬁlar integréi equation of the first kind of the same

form as [1l, Equation (4.11)]. For a = O Equation (36) is
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an equation of the second kind as the singularity at the

origin vanishes. The solution will first-be developed for -

a >0 and then a = 0 . It should be noted that the de- .
termination of ¢(t) is the same in either case; that is,
the first part of the following anaiysis is true for all
values of a.

Referring to [8] one can write

o(y) = wix)ely), w(y) = (1-v)%*(1y)P , |y 1 <1

and 1
1 . 1 . s 1+Y
a=-5-io, p=-5+io with o= ln(ij) .

Noting, as in [8], that w(y) is the weight function of the
a,B
Jacobi polynomials Pn(y) , the solution is then written as

)

o] 0‘:5 )
¢(y) = w(y) = c B (y) , | (40)
n=0 '

with the Jacobi polynomials satisfying the orthogonality

relation [8],
(@,8) (a,B)

S, () ey

(=0, n#mn

2 I'(n+ta+1)l(n+ B+ 1)
= (en+a+B+1l)niT(n+a+ p+1) ~ L(n,a,B), n=m#0 ,

4_ (a+B+1)

iy
=m, n-=m=230 . (41)

The displacements are then found by integrating Equa-

.

" tions (%) and (5), from which the constant 'Co and the con-

tinuity condition of the function ¢(t) are specified.
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Integration of Equation (4) gives the opening displacement

—on - 9”='ﬂ'*as*foilOWST“where'if'aw=o;:ad'i5’replaCed'by’b;'” o

o 8 X 8 1
ule(x,ﬂ) = -5 [ yt)at + 5= [ y(r)at . (42)

=1 -1
Similarly, integrating Equation (5) and separating real and

imaginary parts gives,

u (y,m/2)- uéf(y,ﬂ/2)= - cIm £¥ ¢(t)dt + Im [C*]
and | (¥3)
u o (y,m/2)- u_,(y,m/2)= - cRe gy ¢(t)dt + Re [C*]
where C* = cfl¢(t)dt A (44)
’ O

It follows from the form of ¢(t) that

m 0] = - 4 Se()ae (15)

then as
ulr(o,ﬂ/E)— uzr(o,ﬂ/2)= ulr(o,ﬂ/E):=— ule(-l,ﬂ) ,  (46)

or, therefore, from Equations (42), (43), and (46),
2)=- & [Ta(t)at = - & [y(v)a (¥7)
ulr(o,ﬂ/ = B) —l¢ = ) _l%” . 7

Now using Equation (40) and (41) the constant c, is

ib cosh(mw) 1

C. = - [ w(t)at , - (8)

(o] : e

where Equation (42) requires that
. _
Jy(t)dt =0 if a #0 . (49)
-1 i : _

The opening displacement, ulr(q,ﬂ/2)=:— ule(-l,ﬂ), is

then given in terms of Co as
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ime

ulr(o,ﬂ/2) =

where C, is seen to be imaginary from Equations (42) and
(48).
Now substitute Eguation (40) into Equation (35), and

using the relation [8, Equation (22)] and [10] with n > O ,

. 1 (G‘:B) ’ (-G"JB) A/ 2 (—G,—ﬁ)
N OENC = W (y) = R () L lyI<e
| (51)
one has, for n > 1 ,
Nl (-a,-B) 1 1
—5i 2 CuPua(v) = - G [ey)-P(¥)]+ [ w(t)e(t,y)dt. (52)
n=1 1 -1

. -a » ..B ( -a, =P )
Multiplying Equation (52) by (1l-y) (+y) = P (y) , then

integrating the resulting expression with respect to vy

over [-1,1] for k=0, 1, 2,..., and usingbthe orthogonali~
ty relations, Equation (41), the complex constants c, are
then given explicitly in terms of integrals of the unknown

function y¢(t), with C_ given by Equation (48), as

21 o1 1 1
C= / [‘ oo [R(Y)-ir(y)] +/ y(t)e(t,y)atX
l_y2 L(n_l: -a, -5) -t al 4 -t ]
- o (-o;=B)
(l-Y) @ (1+Y) 6 Pn—l(Y) dY: n= 1:2:---

(53)

if - y(t) = 0, which corresponds to an interface crack only,
and letting P(y)= —OO,Q(Y) = 0, Equations (49) and (53) give

c, =0, C, =0, n > 2 and 5

C. = ——— . 4
SO C B

-~ Toosh(ma) o GO
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This is the same as [8, Equation (26)] except for the al-
- -gebraic sign-which is due to the-difference in sign of ¢(t); -
i.e., see Equation (5) above and [8, Equation (4)]. One

similarly finds the stress intensity factor, as in [8], to

be
. s -q -B .
k +ik, = lln;_VQS (y-1) (y+l) [T100 T 17, p0]
y—l1

. oLt . .
From Equation (35) for y = 1 and noting that the integral

on 1 (t) is bounded and ¢(y) = 0, |yl> 1 then

P _ . 1 _dt
0(y)-iP(y) Tovo " Yoo T T % md £1¢(t) toy (55)
or as
. (G,B) oo —ima (
a B _ G':B)
»(t)= nfocn(l'.t) (+e)7Ry(8) = 2 Cne (£-1)%(e1Pp_(t)
(56)
then
1 T —ima 0 (‘1,5) '
arl o) Eyme D) S ocp )
200
For C, = —— , Co =0, C =0 n.Z 2
a, V132
o (G:B)
Tigg+ iTirg = %1 V197 (y-1)%(y+1)P C,P, (v)
@,6) |
and as P, (y) = §'(Y‘2iw) s
then k, +ik2==szo(l—2iw) 5 (57)

which is the same as [8, Equation (31)]. Note misprint in

[8] for k_, . 1In general the stress intensity factors are
(@,B) |
[eo] 2
k, +ik,=a, Je /1=y = c P (1) (58)

n=0
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Now substituting for ¢(t), using Eguations (40), (48),

and (53), into Equation (36) one has®
' 1 1
x J v(e) 2= {lw(t)[g(t,x)- {5% cosh (mw) {lw(z)I(z,x)dz
2i 0 1 L (GJB)

4-:25555 nil R — {lw(z)I(z,x)Pn(z) dz X

1 _ _ (-G,—B) 1+x,
{lG(t,y)(l-y) %(1y) P P._.(y) dy] dt = ;= Py (x)

i L e ) e
a V12 = L(n-1,-0,-8) -2 o

+

1 ' -a -B —a:'B)
[ 1e(y) -ik(y)](1-y) "(1+y) ™" B, (y) ay
(59)
If Q(y) = 0, P(y)= - o, , and as pC()E;L-S—:B:)L with
K(x,t) = H(t,x)- {%%-cosh(ﬂw){lw(z)x(z,x)dz
i g : Pa(e)z(z,07, (5) a2 X
+ —== w(z zZ,X z z X
VI3 n=1 L(n-1,-a,-B) -1 n
1 _ _ (—G,—ﬁ)
[ 6lt,y) (1-9) ()P 2 () ay (60)
then Equation (59) is
l+x
= w(t) <t/ w( Jk(x,t)dt = 2 P (x)
20, 1 * a,B)
- [ w(z)1(z,x)P_ (z) Az (61)

1

-1 1
éj) cosh(nw) [ w(z)I(z,x)dz is only present if
-1

a =0, if a#0 this term is set equal to zero.

The term
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which is the same form as [11, Equation (4.1)] where the
right .hand side is denoted by = g(x).

For a » O this is an eqguation of the first kind and the
solution follows exactly as in [11], in terms of the

Chebyshev polynomials. Let

1 1
v(t) = F(t) with [ ¢(t)dat = 0 , (62)
V1-t2 -1
and further assume Po(x) = -0,

Substituting into Equation (61) and referring to [11], the

solution is

N : l+x
2 %F(tk)[t -x +7Tk(xr’tk)]= -—2——_1-01
k=1 r My
%o )1l xR (5] (63)
- — [ w(2)I(z,x_)P_(z) dz, 3
aN1-Z -1 ot
where r = 1,2,...,N—1,tk=cos[g}g;ll W], xr=cos(% ,
Non
and % x F(t) =0 .

k=1

N is chosen large enough to give sufficient accuracy in the
Gauss-Chebyshev integration formula, [12, p. 889]. The
solution of Equation (63) then gives the value of the un-
known function F(t) at N points on - 1< t< 1, from
which one can now determine approximate values for Cn from
Equations (48) and (53) by numerically integrating the in-

tegrals containing ¢ (t) . The stress intensity factors
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for the ends a and b are then [1], for a > O

K(a) = =220 p(a) / (6)
2. Ma_
and k(b) = --4;%—;—9 F(+1) (65)

For a = 0 , the appropriate change of variable for n and s

in Equations (24) and (25) is shown in [13] to be

n=+thb, s=xb and ¢(t) = h(tb).

It is further suggested in [13] that the range of definition
of the function y(t) be ektended into the interval (-1,0)
in order to use the Jacobian integration formula associated
with pé’l/g’"l/g)(t)

Let, following [13],

y(t) = ==— F(t) =
1-t 1-t

F(t) (66)

from which the solution is given by the set of equations

S ahr Fle | (5, » )
2 F(t — + 7k(x t
]¢12Mi k e~ X r’ k}
l1+x 20 (G:B)
1 o 1
= - g, - ——— ["w(z)I(z,x )P (z) dz  (67)
2u1 1 alfij;g - L S}
_ i . _ (2k—1)m
where r=1,2,.,.,NX_ = cos(2N+l) Pt cos[- INT D t].
The stress intensity factor at the end, b, is
2unNb
‘ k(b) = - 17 %, F(1) . (68)

The strain energy release rate for the interface crack
is given as [5, Equation 71}, [14],
du m(l+ mx ) (m+x,)

oc ~ 2, [ (14 mxy )+ (m+ x,) ]

(k2+ x2) . (69)
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Numerical Solution and Results

| The numerical solution to Equations (62) and (63) for

a > 0 , and Equations (67) for a = 0, has been obtained

for the particular case of aluminum-epoxy half-planes for
ease in comparing with the results presented in [1] and [2].
The results presented are for constant pressure on the crack
surfaces and no loads at infinity, or therefore the solution

previously denoted by o The pressures are chosen by

IT°

assuming solution o to correspond to a unit vertical

I
stress at infinity in the aluminum and a uniform horizontal

stress giving zero horizontal strain in the aluminum, The

stresses Oy > ol and 02 are then, for plane strain,

v
1
0 = =, = 0.42857, o = 1.0, o = 0.26844, for aluminum-epoxy
(70)
and v
2
0y= -y, = 0.42857, o,= 0.26844, o,= 1.0, for epoxy-aluminum,

= 7 i - S i = -
where Eal.:l.OxlO psi, Eep74'45XIO psi, valTo'SO’ Vep."o'35'

With F(t) known, the constants Cn are computed from
Equation (49) and (53) and the solution is complete. The
displacements are then given by Equation (42), (43), (4%),
(50), the stress intensity factors by Equations (58), (64),
(65), and the strain energy release rate by Equation (69).

The number of points, N, taken in Equations (63) and
(67) and the number of constants C, » M, computed from

Equation (53) were taken sufficiently large to give less



25
than one percent error in any of the above computed func-
tions. The maximum error was determined by taking succes-
sively larger values for M and N and examining the change
in the various computed functions mentioned above., Suffi-
cient accuracy was assumed when the most slowly converging
of these functions, which in all cases was the strain energy
release rate, numerically converged to within the prescribed
degree of accuracy. For example, if a = O, B =1, ¢ =1,
values of M = N = 14 were found to bé sufficient. If a = O,
b=1, ¢ = 0.1 it was necessary to take M = 30 and N = 20.
Convergence was somewhat more rapid for the aluminum-epoxy
pair than for epoxy-aluminum, apparently due to the in-
creased distortion in the epoxy-aluminum,

Of particular importance in the investigation is the
potential for further extension or arrest of a crack origi-
nating in one half-plane, as the crack either crosses thé
interface into the adjacent material or extends along the
interface. By assuming each possibility for extension,
computing the appropriate stress intensity factors as a
function of continued growth, and comparing either stress
intensity factors for the through crack or strain energy
release rate for the interface crack with the critical
values, one can determine if continued extension is possible
or if the crack will arrest after a specified growth, It
should be noted that for non-symmetrical loading or geometry,

possible directions for crack extension are not as restricted.
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As an illustration of this criterion, the case of a
~crack crossing the interface first will be presented using
the results of [1] and [2]. The stress intensity factors
for a crack originating in material one and growing toward
and crossing the interface into material two are preéented
in Figures 2 and 3, Figure 2 is for an aluminum-epoxy pair
and Figure 3 for an epoxy-aluminum pair. From Figure 2 it
is seen that after crossing the interface into region 2 the
stress intensity factor, K(a) is initially a decreasing
function of continued extension and then changes slope and
approaches the full plane solution. It then appears pos-
sible to have some extension into the epoxy and4subsequent
arrest, For the epoxy-aluminum pair, Figure 3 indicates
that the crack will extend to the left rather than toward
the interface. However, if the crack does cross the inter-
face, the stress intensity factor, K(a) grows unbounded
with continued extension and arrest is not possible.

Figure 4 represents the analogous cases as above, using
the results developed in the present study, with the crack
now assumed to extend along the interface rather than cross
into the édjacent material. Until the crack tip, a, reaches
the interface and begins to extend along the bond, the“
stress intensity factors, K(a} and K(b) depend only on o,
and have the same form as the left side of Figure 2 and
Figure 3. Therefore, in Figure 4, only the strain energy

release rate for the crack extending along the bond is
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presented. Figure 4 is seen to represent the same general
~_behaviour as K(a) in Figure 2 and again indicates the pos-
sibility of arrest, It is of considerable interest to note

oU

that for all material pairs investigated, gz-ﬁ-O as ¢ —+ 0
T N

for E: =m< 1 and gg-*'w as c¢—=0 for m ) 1. This
behaviour can be anticipated from the results of [1, Table 7]
where the opening stress on the interface near the crack

tip is shown to be compressive for m < 1 and tensile for

m 2 1,

The values of K(b) corresponding to the geometry and
loads of Figure 4 are shown in Figure 5. The decrease in
K(b) with increasing half length ¢ as seen on the right hand
side of Figure 5 is due to the closing affect of the in-
terface crack on the 6 = m surface., In fact, for the
epoxy-aluminum pair with.the loads given the crack on 6 = 7
was found to partially close at ¢ = 2.75. The closing stress
is shown in Figures 6 and 7 for aluminum-epoxy and epoxy-
aluminum respectively.

Some characteristic displacements for the crack surface
on 6 = ﬁ are depicted in Figure 8 and Figure 9 and numerical
values for some of the significant éomputed functions given
in Table 1 and Table 2.-_The effects of increasedAhalf—length,
c on K(b) and the opening displacements are clearly seen in

these two figures and the tables, with the epoxy-aluminum

having the more noticeable change,
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Figure 1. Bonded Elastic Half-Planes with
Perpendicular Cracks.
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Figure 2. Stress Intensity Factors For a Crack Originating
in an Aluminum Half-Plane and Growing into an

Adjacent Epoxy Half-Plane (from [1] and [2]).
Plane Strain. :
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Figure 3. Stress Intensity Factors for a Crack Originating
an Epoxy Half-Plane and Growing into an Adjacent
Aluminum Half-Plane (from [1] and [2]). Plain
Strain. :
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Figure 6. Normal Stress on 6 = m due to a

Crack on the Interface., Aluminum-
Epoxy. Plane Strain.
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Figure 7. Normal Stress on 6 = T due to a
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STRAIN STRAIN‘
. ENERGY ENERGY
a c k(b) k(a) K X RELEASE | RELEASE
- - S ¢ N o - ey - — o -} RATE- - | RATE - --
* 1 X 107 X 107
(a=b=0)
0.3333 | 0.0 0.6050 .62k2 - - - -
0.111 0.0 0.7522 .8926 - - - -
0.0697 | 0.0 0.7904 | 1.0210 - - - -
0.0476 | 0.0 0.8154 1377 - - - -
0.0 0.0 0.9582% ook - - - -
0.0 0.005 0.9746 .0 .0430 0.1916 | 2.3902 | 0.0580
0.0 0.010 0.9814 .0 .0483 0.1979 | 2.5726 | 0.1159
0.0 0.015 0.9861 " .0 L0541 0.1820 | 2.2361 | 0.1739
0.0 0.050 1.0025 .0 .0873 | 0.1181 | 1.3379 | 0.5797
0.0 0.075 1.0090 .0 .1060 0.0971 | 1.2808 | 0.8696
0.0 0.100 1.0136 .0 L1224 0.0829 | 1.3558 | 1.1504
0.0 0.150 1.0197 .0 .1510 0.0640 | 1.6680 | 1.7391
0.0 4,0 0.7073 .0 .8575 | -0.1111 | 46.3612 |46.3770
*From [1]..
Table 1. Numerical Value for Stress Intensity Factor and

Strain Energy Release Rate for Intersecting
Plane Strain, b=1,

Cracks.

Aluminum-Epoxy.
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STRAIN |STRAIN
ENERGY |ENERGY
a e | K@ | k() | k- Kk RELEASE | RELEASE
6] o RATE RATE
1 1 X 107 X 107
(a=b=0)
0.3333 0.0 0.5551 . 5397 - - - -
0.1111 | 0.0 0.6109 | 0.5221 - - - -
0.0697 | 0.0 0.6172 .4895 - - - -
0.0476 | 0.0 0. 6200 L4605 - - - -
0.0 0.0 0.6241%| 0,0% - - - -
0.0 0.005 | 0.6245 .0 .1192 3747 | 9.5856 | 0.0580
0.0 0.010 0.6251 .0 L1262 .2801 5.8517 | 0.1159
0.0 0.015 0.6258 .0 .1338 .2035 3.6775 | 0.1739
0.0 0.050 0.6328 .0 .1571 .0561 1.7252 | 0.5797
0.0 0.075 0.6387 .0 .1656 .0559 1.8959 | 0.8696
0.0 0.100 0.6448 .0 .1725 .0658 2.1136 | 1.1594
0.0 0.150 0.6577 .0 .1842 , 0804 2.5062 | 1.7391
0.0 2.7 0.3101 .0 .7023 .1000 | 31.2066 | 31.3040
*From [1].
Table 2. Numerical Values for Stress Intensity Factors and

Epoxy-Aluminum,

Strain Energy Release Rate for Intersecting Cracks.
Plane Strain, b= 1.
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el i ... .Formulation . S -

Assuming a coordinate éystem having the .origin at the
center of the interface crack, as shown in Figure 10, it
is seen to be convenient to represent the solution in terms
of the polar variables (r,9), as the créck surfaces, the
interface, and the horizontal plane of symmetry lie on con-
stant 6 surfaces. The cases of intersecting cracks (a or
a¥* equai to zero, separately or simultaneously) and non-
intersecting cracks (a and a* not equal to zero) are con-
sidered,

-Following Part I, the Mellin transforms of the stresses

and displacement are:

M[r20,(r,0)] = 2, (s,6) = 2i(s+1) X

is6 - i(s+t2)e  _ -i(s+2)6
[Akse + By (s+l)e - Bye ]

: . - is8 -is6
bl[r2Tkrr(r,9)] = - s(s+l) [VAke -+ Xke ]

2

i(s+2)e - _ -i(s+2)6
- (s+1) (s+4) [-Bke + Bye ]

g [ravk(r,e)/2uk;] = Vk(S,e)

ise i(s+t2)6 _ -i(s+2)p
= -(s+1)/uy | Byse + By (s+l)e + x Be

3
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3-4Vk for plane strain

&Héiéﬁaﬁkaéf
(3-v)/(1+v,) for generalized plane stress

and My s Vi are the shear modulus and Poisson'!s ratio

respectively. The transformed functions above are [1]},

Gk‘(r:e) = Tkre(r’e) + iTkGQ(r’e) s

Trrr (£6) = Tyepp (£,6)

and _ Bukr(r,e) . Buke(r,e)
.vk(r,e) = Eu'k T+ iy with k = 1,2

for region 1 and 2 respectively.
Using displacement dislocations on the surfaces 8 = 0 ,

@ =m,6 = n/2 , the boundary conditions are:

T2re(r’o) =0

3 “,on 6 = O in material 2
l .

S uae(r,o)z -5 h*(r)é (r-r_) (71)

3 L ,0n é = 77 in material 1
dr Ule(r:ﬂ')= -3 h(r)é(r"ro) (72)
and :
’ 3
Tlre<r,ﬂ/2) = Tare(r,ﬂ/Q)
Tlee(r,ﬂ/E) = Tgee(r,ﬂ/E)
. interf?ce
’ ’ 9 = T 2
g%-Ulr(r,ﬂ/E)— j% U, (x,m/2)= ~£(r)d (r-r)
Dy (r,m/2)- X U (r,n/2)= ' A
dr 19'\"? dr “2p\tsT/e)= —g(r)é(r—ro)) (73)
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where the second of Equations (71) is the only change from
‘Part I, On transforming the above boundary conditions, the
resulting eight equations specifying the unknowns C; are

as follows:

sC! + (stl)C! + C! =0, e orl (74)
. , 7 W H ry ro' : ,
sCl + (stl)cy -x.Cl = - 5(s+ 1) (75)

sClsin(ﬂ$)+sC;c65(ﬂs)+(s+2)C;sin(ws)+(s+2)C;cos(ws)=o , (76)

sCiSin(ﬂS)+SC;COS(ﬂS)+(S+l—Ki)C£sin(ﬂS)+(S+1-K1)C;COS(WS)

s+1
B (x)rg

2(s+ 1) ’ (77)

| sClcos(ﬂs/2)—SC;sin(ﬂs/2)—sCécos(ﬂs/2)+sCLsin(ws/2)

- s(C;—C;)éos(ws/2)+s(cé-cé)sin(ﬂs/2)=(), (78)
Scisin(ﬂs/2)+scécos(ﬂs/2)-(s+2)césin(ﬂs/2)—(s+2)C;¢os(ﬂs/2)

- [sCé-(s+2)C;]sin(ﬂs/2}{scé-(s+2)C;]cos(ﬂs/2)=0, (79)

—m[sC'cos(ﬂs/2)—scésin(ﬂs/2)-(s+l+xl)0;cos(ﬂs/2)
1 :

+ (s{l+nl)C;sin(ﬂs/2)]+tsCé-(s+l+x2)C;]cos(ns/2)

s+1
wof(r,)rg

s+1 ?

—[sCé-(s+l+K2)C;]sin(ﬂs/2)=— (80)

_m[sC'sin(ws/2)+sC;cos(ws/2)-(s+l—Kl)C;sin(ws/2)
1 _

- (s+l—Kl)C;COS(ﬂS/2)]+[SC;—(s+l-K2)C;]Sin(ﬂS/2)

s+1
kg (r,)rg

s+1 *

+[sCs—(s+l-x2)C8]cos(ﬂs/2)=- (81)

The functions Ci ‘are given by C; = C; + C: where the C;
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are listed in (14) to (19) and Cz is the change in C; due to

- the crack on-6-=-0, . The C* are given below.as . . . .

functions

2

_ *.cosfﬂs; ’ : 80
2 sin(ms, (82)

s+1

h* : s+1 2s+3
Mo (rg)ro _ (83)
2(s+l)s ltmxy  mx
c sgéfﬂﬁ} | o (8)
4 S1INn(TS _
é+1
p,ah*(ro)r°

2(s+1) (1+mxl')' | (85)

uah*(ro)ros+l

2(s+1)sin(ﬁs)S(L+x2) X

X=X, (s+1) (2s+3) (1-m)
14—mxl ‘ m+-x2

- (s+2)cos(ms) (86)

N s+1
w h (ro)ro (s+2)

2(s+1) (T+x_) (s) | (87)
| s+1 -

h* (x)x X
Z(st1)sin(ns) (mtx_) (T1x,)

_ {(gs+3)(l—m) - (mi-xz)cos('zrs)} (88)

s+l
uah*(ro)r

2(s+1)rEI§;7 | (89)

The integral equations in terms of the unknown density

£(r), g(r), h(r), and h*(r) are given by the

conditions that

T(r)+iN(r)=£ [T

©

1re(r’ro’”/2)+ iTlee(r,ro,vr/Q)]dro ,  (90)
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-No(r)=£2lé9(r’ro’ﬂ)dro 2 . - (91)

Né(r):iweée(r,ro,o)dro . (92)

Equations (90) and (9l) are exactly as (22) and (23), and
(92) is due to the presence of the crack on 9§ = 0 . N(r)
and T(r) are the normal and shear stresses on the inter-
face, and No(r), N;(r) are the normal stresseé on the
symmetry line in materials 1 and 2 respectively.

On noting as in Part I that

£(rg) = 9lrg) = 0, e { r, < =

—O:O<ro<a:b<ro<°°

=2
i
1

B*(rg)= 0, 0 < 1y < a*, b x g =

and following the same procedure of Part I leads to the
three integral equations

1 dat 1 . 1

= [ ¢(t) === - v (y)=~-7=[Q(y)-iP(y) ]+ [ v(t)G(t,y)dt
T 4 t-y al 1

+ [ e(e)en(e,y)at, 1 <y< 1, (93)

Loy B8 17 y(e)E(E,x)at

o, t-x
1+x, 1 1 (&%)
= 2, Po(x)— { E(t)a*(t,x)at - ¢(t)I(t,x)dt,-1{x<1,
1 1 l+ 1
—%r—{l ifi) at + {lg(t)H*(t,x)dt = 2;:2 Pg(x)-£l¢/(t)J(t,x)dt

_ [Te (8)T*(e,x)dt, -1 (x<1, (95)

-1



b

specifying ¢(t), w(t) and £(t). In the following equations,

if a,a* = 0 then ao,ag is replaced byA b,b* respectively,

N .
»* —— 2 =
H*(tx)“-—ac lm[8§ _ 125]
F} = . - =\ =+5)%
em 1+%2- (7+8) (7+8)
Ko
_2 1
X 3(1-=
+ [ lm + xm] i§
I = J
m —
1+ -
. 1 +2, =2
" c(l+x,) = xa) (Z+x,) (5P%+ 87)
I (t,x) = 2(1+mx, ) (mbx ) -i8 (14 m/* cZt®+ s
1 2
s [ %y RGeS
m C2t'2+ §2 C2t2+ 52

I (t,x) =iﬂ9- [:3(1+K2) _ (l+x2):] 1

2(mtx,)  2(l4mx,) ] nt+8

s [l+1c2 _ l+1c2:] 5
J.+m1cl. K, ( - 2

-

n+8)
a¥ 3(1+x, ) (1+x,) 1
Tex) = T[T - 50| S
2('n-1+ 1{1) 2(1+ —HI—) nts
1+ X, 1+x ] s
+ x= -
2 1 - 2 s
1+ <5+K1)J (7+s)
~
% uZag (l_ —- - 2 2
G*(t,y) s (=) \-if] R(R%-c®y®) X
(r+ )
K — 1
1 T (1- %) (35°-c
— 22T 1 + ey | [2(F-c®y®)- Kz X
ey mte ! (1+ )
| ]
1 . m kK 1
T-]2+c2_Y2 'I]!.T + x n+c<y



.48
with £ (t,x)and H(t,x) given in Part I and ag:z(b*—a*)/E,

b¥ = (b*+a*)/2,

L o wpa YK iE %L . foa* ¥ if . g¥A o
aot+bO ;- If a¥#-0 a¥x+b¥ , if-a A0 . . .

S
I
ni
Il

b*t  , if a*=0 , b*x , if a*=0 .

Note that the above integral equations could be written down
immediately by superposition, noting the solutions in [2]
and Part I, That is, to obtain Equation (93) from (35)
a term must be added to account for the normal and shear
stress on 6 = % due to a crack on 6 = O. But whether or
not the crack is on 6 = 0 or 6 =7 1is a matter of nomen-
clature, and the terms corresponding to 6 = 0 may be ob-
tained from the terms corresponding to 8 =m Dby careful
inspection. To obtain (94) from (36) the effect of the
crack on 8 = 0 must bevaccounted for, and itsveffect is
given in [2]. The third integral equation is given 'in [2]
with the added term given by Part I to account for the
effect of the interface crack on the‘symmetry line,

The solution for ¢(t) from (93), follows directly

from Part I, and the ,Cn are given by

“n =&_2 L(n_l’l_a,_a {l[%[o(y)—ip(y)H {1 p(t)e(t,y)at
1 (—0‘:—6)
- [e(e)er(ey)a | o) asy) Pe, ()ay (96)

where the Co term is determined as in Part I, and is given
by the following:

if a* #0, a#0 C

1l
O

o

» ' i l )
if a*#0,a=0 C,=- leOf:;‘L”“l [ w(t)at
-1
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TR - 1
1f ax-0, a0 c = AbRfeoshlmal fTe(ryae o o -
-1

3 i
1f a*-0,a=0 c_ = --i2cosh(mo) %,

o cm (t)dt

-1

t-cosh (me) % (¢)ae

+
-1

The displacements are then found by integrating (71),
(72), (73), from which the constant C, has been found,
and the continuity condition of the functions < (t) and
€ (t) are specified. Integration of (71) gives the opening

displacement on §=.0, where if a*= 0, a¥, is replaced by b*,.

a* a*
up(0) = B [T E(ae =2 [ g (var (97)
- -1

¢ may now be substituted into (94) and (95), and letting

»Q(Y) =0, P(y) = - o, » one has
1+
% {iw(t) ﬁ%%.+_[i y(t)k(x,t)dt = eii P (x)
- .
s L el e e
and (98)
1 1
L1 e & v Seox tnt)ar = = 2o
20 1 (':5 1
- gzyigig [lW(Z)I*(Z,X)Pl?Z))dz - [1 ¥ (£)R(x,t)dt
where (99)
R*(x,t): J*(t,x)+ ib*CZ;P(Ww) {iw(z)I(z,x)dz
, _2i ; . 1 1 (a,B)
N/T:y_é 1 L(n-1,-a,-B) {IW(Z)I(Z,X)Pn(Z) az X

("O,, _6)

’{iG*(#,y)(l-y)_a(l+y)_BPn_l(Y)dy ;
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R(x,t) = J(t,x) - 2osh(me) (*, . y1e(4, x)az

CTr —1
el g Pule)Fe,mm () oz X
z w(z Z2,x)P_(2 z
" e TR LT .
[ e(t,y) (1-y) T (1+y) TR _ (y) @y

-1

ib¥*cosh(w 1
k*(t,x) = H*¥(t,x) + o (1) [ w(z)1¥(z,x)dz=
-1

' i « (G,B)
+\/—2'—l-zn§1 BT, w0y J V()T (ax)2,(2) e X
l--y ) ("OL,"B)

[e*(t,y) (1-y) " (1+y) Pr__. (v)ay ,

and k(t,x) is given in Part I,

Equations (98) and (99) may be solved in a similar fashon
to (61) following Part I with the only change being
rather than having one unknown funqtion F(tk) to be solved
for at k discrete points, two unknown functions may be
assumed F(tk), F*(tj), whose solutions are obtained from

2N simultaneous equations that are, in general, not sepa-

;able.
1
For a>0 let ¢(t) = —=— F(t) with [ y(t)dt = 0.
° ? Vit
For a=0 let p(t) = —I— F(t) = —2— F(¢t)
Ni-t N1-tZ
1
For a*> 0 let ¢(t) = —E— F*(t) with [ £(£)dt = O
— wi I
For a*¥=0 let £(t) = L. F*¥(t) = 1 E*(t) .

1-t A1-t2
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Then for example when a > O , a* > 0 Equations (97) and

- (98) may be written as

z )[ - ( J T Loee (e )R (0t
L2 T F(t ) | +rk(x_,t + 3 = ty > S
ke1 N k tk X r’’k —. N r
- o )tz x e (3 4
= - —=§ - —— w(z)I(z,x )P (z z ,
dp'l 1 dl l.—y -1 r 1
N -
with Z N F(tk) =0 |, (100)
k=1
and
2 Le(e)r(,t) + 3 Ler(e) [ (x,,t,)
5 = P(t )R(x_,t,.) + = < F¥(t [_ + mk*(x_,t
N k 'k ko1 N k| fox, r’k
1+K2 200 fl ( ) *( ’) (?:?)
= - - w(t)I*(z,x_)P (z) dz ,
2u, =2 <1~G:;§ 1 ’r
N s
. — ¥* —
with kil 5 F (tk) =0 (101)

where r = 1,2,...,N-1 , tk = r

and the upper limit in the first and second sum appearing

= cos [-@%M] , X = cos(ﬂN];-)

in Equations (100) and (101) has been chosen to be identical
for convenience.

Had a been equal to zero and a* been chosen greater

than zero, Equations (100) and (101) would appear as follows,[13]:

1z\:I ———— F(t, ) [ L rk(x_,t )] + ?: L F*¥(t.)R*¥(x_,t.)

K1 2N + 1 k t %, r’’k 5-1 N J r’ 7]
14K, 20, 1 (@,B)

= o, -——— [ w(z)I(z,x )P (z) dz (102)

—
Aivl-yE =1



N N -
__._.____l < JLEg *
P T lﬂFr(tkr)R(xr,itk)+ = 5F (tj) [t = -+ Tk (xr,tj)]
k=1 j=1 3 X,
1+K2 20'0 1 ( ) ( _ ) (?:?)
= g - ——— [ w(t)1*(z,x_)P (z) dz ,
Pz 2 g I7 - o
N
with . 3 N F¥(t.) = O (103)
: ]
J=1
T 2k-1)m
where = 1,2,...,N, x_ =+ cos (), t, = cos [&—2—]
= nr 2i-1)m
r=1,2,...,N-1, X,. = cos(jg) R tj = COS i_%ﬁ,l_]

and again the upper limit sums on ty and tj have been
assumed equal for convenience.

The stress intensity factors for a > O are given by Equa-
tions (64%) and (65), and for a = 0 by Equation (68).

For a* > 0
ng/ag :
k(a*)= —gg— F*(-1) - (104)
2

2 ax
(5%)mm 28 1) (105)

and for a* =AO

21 A b*

2

k(b*)= - F*(+1) . (106)

The strain energy release rate is given by Equation (69).



_Numerical Solution and Results

JThéﬁﬁﬁméfiégi'561ufi6ﬁ“£deqﬁé£16ns'(98f’aﬁd*(99)'ha§”“’
been obtained for the particular case of aluminum-epoxy
half-planes er ease in comparing.with the results presented
in Part I, As in Part I, the results presented are for
plane strain and constant pressure on the crack surfaces
- with no loads at infinity.

Of particular importance in the investigation is the

" potential for further extension or arrest of a crack origi-
nating in ohe half-plane, as the crack reaches the inter-
face. In Part I, the instances_of-a crack reaching the
"interface and either spreading along the bond or crossing
(without spreading aleng thevinterface) was considered,

It is seen in Figure 11, that extension of the crack into
theeadjacent epoxy half-plane decreases the tendency for
interface crack growth compared with the_resﬁlts of Figure 4,
and for larger values of helf—length c, the strain energy
release rate is.less than for the no-interference interface
crack,

Table 3 gives some numerical values of the stress in-
tensiﬁy factors, strain energy release rate, and displace-
ments for the problem of Figure 11. As the crack extends
into the epoxy half-plane, kl initially decreases and k2

changes sign as the direction of shear changes,
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Figure 12 depicts the change in strain energy release

‘rate for different locations of a unit length perpendicular

crack, and, as suggested by Figure 4 of Part I, the geometry
havinQ the most potential for failure is for the crack to
interéect the inferface from therlower modulus side without
crossing, |

It seems reasonable to conclude frbm the results of
Part I and the present study, that the most critical state
for continuédiérack growth occurs when a perpendicular crack
intersects the interface érack but does not cross, Further,
for a cfack approaching an.undamaged interface from the
higher,m@duiué;side, interface damage is much less likely
.£han continued ex#ension into the adjacent material., If
the crack originates in‘the’lower, or eqpal modulus half-
plane, fhe’potential for extension, either.along the inter-
face or crossing the inﬁefface, exists and depends on the
rélatiﬁe bond strehgth and fracture properties of the half-
planes. The combination of interface:growth and extension

1 into the highér modulus side appears unlikely,
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G

Moy K MKz
c
> Gy (0 Y)=To
I a | a*
| b b*
\l_/ﬁ,f-——\rf
| .

Figure 10. Bonded Elastic Half-Planes with an
Interface Crack and Two Perpendicular

Cracks,
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AN EXPERIMENTAL INVESTIGATION OF

--BONDED - ELASTIC HALF-PLANES WITH AN..INTERFACE CRACK . . .

AND A PERPENDICULAR INTERSECTING CRACK

By

James G, Goree
Associate Professor of Mechanics and
Mechanical Engineering

James O, Feemster, Jr,
Graduate Assistant M.S. Candidate in
Mechanical Engineering
In this study, the nature of crack growth near a bonded
interface between two linearly elastic half-planes is in-
vestigated experimentally. The accuracy of some specific
analytical solutions previously developed is demonstrated,
Material pairs of Plexiglas-Buterate and Plexiglas-
Plexiglas were used with the interface bond formed by
using ethylene dichloride., An initial perpendicular crack
in the Plexiglas and/or an interface crack was developed
by fatiguing the specimen until the desired configuration
was reached. The static stress field necessary to initiate
fracture was monitored with a network of strain gages in
the vicinity of the crack or cracks and the behavior compared
with the corresponding analytical solution,
The stress required to initiate fracture in the per-
pendicular crack as the near tip approaches the interface

is shown to be in close agreement with the corresponding
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analytical solution. The nature of the interface bond and
the fracture tbughpess of the Buterate were_ both such that
quantitative results could not be obtained as to the effect
of the intersecting crack on the interface, the interface
crack, or the perpendicular crack in the Buterate., However,
some important observations can be made as to the behavior
of these phenomena. When the perpendicular crack is formed
in the higher modulus material, the crack tip has a tendency
to extend into the adjacent half-plane and to leave the
interface undamaged. In the Plexiglas-Plexiglas material
\pairs, the crack may either cross into the adjacent material.
or extend along the interface, depending upon the relative
strength of the interface bénd as compared to the fracture
toughness of the two materials. In no instances did the

crack extend along the interface and into the adjacent

half-plane simultaneously.
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INTRODUCTION

The purpose of this study was to investigate experi-
mentally the -nature of crack growth near a bonded interface
between two linearly elastic half-planes and to demonstrate
the accuracy of some specific analytical solutions developed
for geometries amenable to experimental studies, It was
assumed that crack propagation in the experimental work
corresponded to brittle fracture, according to the classic
Griffith crack criteria [1], [2].%

In the existing analytical solutions appropriate to the
present work, the specific geometry considered was the case
of two bonded elastic half-planes containing a finite length
crack in one material, with the crack being perpendicular
to the material interface as shown in Figure 13, The be-
havior of the stresses, stress intensity factors, and
strain enefgy release rates were investigated, therefore
indicating the potential for continued crack growth. Solu-
tions for the crack terminating at the interface or cros-
sing into the adjacent material have been'presented by
Erdogan, Cook, and Biricikoglu in [3], [4#]. The instance
of one end of the crack approaching the interface and
debonding along the interface or debonding and crossing into
the adjacent plane has been investigated by Goree and

Venezia in [5], [6].

1 References for this section of the report are listed
seperately from those of Parts I and II, See page 89
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SELECTION OF TEST MATERIALS

It was desirable to select materials with sufficiently
- low iracture toughness so as to allow fracture initiation
at net stresses well below the elastic limits of the two
materials, Polymers were chosen as test materials instead
of metals, because the load levels needed to initiate frac-
ture would be low, and polymers could be chemically bonded
easily.

After investigating all of the commercially available
polymers to use for experiments, a material pair of Plexi-
glas and Buterate was finally chosen. These materials have
a common solvent, ethylene dichloride, thus allowing them
to be edge-bonded to produce the desired type of interface.
Plexiglas was found to be the most suitable of the materials
available, as it behaves elastically at relatively low
stesses, and brittle fracture can be initiated easily. It
was desirable to find anothér polymer which was dissolved
by the same solvent as Plexiglas, which had a different
value of Young'!s modulus, and was not fracture tough.
Buterate and Polycarbonate were the only readily available
choices, even though they did not mee£ all of these re-
guirements, Although they were the only other polymers

available that use the same solvent as Plexiglas, both
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materiélskwere extremely fracture tough. Buterate was chosen
instead of Polycarbonate, because a larger modulus. ratio
could be achieved with the Plexiglas-Buterate material pair.
Because of the resistance of Buterate to fracture, it was
used as the right half-plane in all of the experiments in-
volving Plexiglas-Buterate material pairs. Providing that
fracture was initiated in the Plexiglas, the fracture tough-
ness of Buterate did not affect the outcome of the experi—
mental work, However, ffacture along the bonded interface
was influenced by the toughness of the Buterate,

Another consideration in the choice of materials was
the thickness of each test specimen, It was decided to
use 1/8 in, (.3175 cm) thick sheets of Plexiglas and
Buterate, as this thickness would bé small enough to ap-
proximate the desired state of plane stress, while being
thick enough to provide sufficient surface area to give a

satisfactory interface bond between the two materials.
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 EXPERIMENTAL PROCEDURE

All experimental work was conducted on an Instrdn Model
109 dynamic testing machine as shown in Figure 14, With the
aid of a network of strain gages placed on each test speci-—
men, the stresses exerted by the machine could be monitored.
Of considerable importance was the ability to obtain a stress
field near the cracks which closely approximated the uniform
sfress field assumed in the analytical solution. Therefore,
it was desirable to make each test specimen as large as
possible within the limits imposed by the size of the test-
ing machine, in order to minimize the effects due to the
machine grips. Each material pair tested was 12 in. (30.48
cm) in height and 15 in., (38.10 cm) in width.

In order to calculate the stress in each test specimen,
it was necessary to determine experimentally the value of
Young's modulus E and Poisson's ratio v for each material.

The following values were found:

5.07 X 10° psi (é.498 X 106 ﬁg)

E1= EPlexiglas =
V" Vplexiglas ~ 0.366 ,
kN
— - 5 . =)
Wplexiglas = 1.856 X 10° psi <1.28O X 10 m%)

= : 5 psi e kN
>~ Epyterate = 2-58 % 107 psi <1-78O x 10 m%) , and

kN

. _ B . - kN
2~ YButerate " 0‘37’“‘Buterate"9'416xlo P51<%.4963K10 %).

3
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In the analytical solutions [5], [6], the material
half-planes were assumed to be loaded with uniform stresses

o] cl, and _02 as shown in Figure 13, with the strains

o’
being related in such a manner as to give constant strains
in both the X and Y directions at points remote from
the cracks. The following relations between the stresses

must then hold:

E E

1 1 l)
o =0, F " 9% \Y, E, " v, (

for generalized plane stress, and

1 vl
=) o[ hee]

for plane strain.

In order to achieve uniform strain in the Y~-direction
across the specimen shown in Figure 13, the resultant load
must act at a distance d from the material interface, as
shown in Figure 15, This distance d for a specified
ﬁateriai pair can be computed by first finding the rela-
tionship between the stresses ol and o, and then by
summing moments about the material interface., By refer-
ring to Figure 15 for a specimen of thickness t, resultant
loads are ‘

R =0, tw , and (3)

R = g¢ tw . ' (4)
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Summing moments about the interface of the specimen,

lei - Réwzri - N - T - = - == = = - I =

Rd = 5 - ~5 =, where (5)
R =R 4+ R .

1 2 (6)

Substituting Eguation (6) into Equation (5) gives the fol-

lowing relation for d:

2 2
lel 02W2

2(olwl4-02w2) . ' (7)

d

As an example, the distance d for a material pair of

Plexiglas-Buterate in the state of plane stress with

w = 6 in. (15.24 cm),

6 in. (15.24 cm),

S
1

o = 1,0, and

o, =0.b0 R

will be calculated,.
Using the experimentally determined values of E and v for

Plexiglas and Buterate, o, is given by Equation (1) as
o, = 0.6007 o

and Equation (7) then yields

- 5 R
O,W; = O,W,

2(olwl+-02w27

0.748 in. (1.899 cm) .
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If the resultant R of the load is placed this distance from
the interface in the higher modulus side of the material —
pair, uniform strain across the specimen in the-Y—direction
will result.

In the adaptation of the analytical problem to experi-
mental work, it was found that this distance 4 could be
approximated as zero, due to the manner in which each
specimen was constrained during loading, and uniform strain
parallel to the interface would still be obtained. Figure 16
shows the method of gripping each specimen for testing. The
grips were‘fabricated from eight steel bars 3/8 in. (.952cm)
X 1 in. (2.540 em) X 12 in. (30.480 cm), which were bolted
tightly on.each test specimen, two on opposite sides of
each of the four edges of the specimen, Underneath each
steel grip was placed a strip of Plexiglas 1/8 in. (.317cm)
X 1 1/2 in. (3.810 cm) X 12 in. (30.480 cm), in order to
reinforce each test specimen and to distribute the load
more evenly,

By considering the actual method of loading each
specimen, the value of d, as shown in Figure 16, will
again be calculated. Using the same Plexiglas-Buterate

material pair in plane stress with

6 in. (15.24% cm),

€
i

w_ = 6 in. (15.2% cm),
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O = 0.5 ol s

- the -value-of -d. calculated will be shown to be negligible. =
For the purpose of computing this distance, the resultant R
is shown in Figure 16 to be placed a distance d from the
interface in the higher modulus material. It should be
noted here that the stress field near the grips is not uni-
form, However, in order to obtain an approximate value for
the distance d , which accounts for the presence of the
lateral steel grips, the strains parallel to the interface
will be taken as equal in all three materials aﬁd given by
the average strain in either the Plexiglas or the Buterate,
as computed from the uniform stress fields oo,ol, or 60,02.

Therefore,

€Plexiglas = €Buterate ~ “Steel -

The relationship between the stresses ol and 02 in the

Plexiglas and Buterate was found previously to be

o = 0.6007 o
2 1

The value of the three strains can be found as follows:

l —
©Buterate ~ E, (62- vzgo) = €plexiglas ~ €steel

where

e}
Il

2.58 X 10° psi<1.78o X 10° %—9 , and
m

v, = 0.37 .



| 69
Then,

_ -6 . . -6 cm
.,%Bgt?réte = 2.632 X 10 “o_ in/in(2.682 x 10 @ on) -

The approximate tensile stress in each of the four lateral

steel grips can now be found:

s - €Steel ESteel = 8Q.46c;
where

-6 . -6 cm
€Steel = 2,682 X 10 o, in/in(2.682 X 10 o, cm),and

= 6 1si s kN
ESteel = 30 X 10° psi <%.O7O X 10 m%) .

The resultant R in Figure 16 is now found to be

R=6 o t+ 6 ot + oo, (1) (3/8).

Summing moments about the interface of the specimen,

RAd=60ct-6o0 t .
: 1 2
Then,
60}1— 6o2t

d = 60 t+60_t+1.50, - 0.004 in. (0.010 cm) .

Since this value of offset is then effectively zero
within the accuracy of the tests, the resultant load under
actual test conditions was placed along the centerline of
each specimen., During testing, the condition of uniform
strain across the specimen parallel to the interface was

verified with the use of strain gages.

For each specimen tested, it was desired to establish
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a specified ratio between the stress ¢ and the lateral
1

stress Oy - This objective was achieved with the use of

eight allen head screws thféaded into the side grips as

shown in Figure 16, By tightening these screws against

the topland bottom grips, the side grips could be forced
outward, thus creating a lateral stress on the specimen.
It should be noted that high values of Oy » such as

g = 1;5(%_, could be easily achieved with this method.

o]

In order to establish the desired values of Ol and Oy >
the strain in the X and Y directions was carefully moni-
tored by a network of strain gages, as is shown in Figure 16,
Strain gages having 350 ohm resistance were used; because
the problem of gage "drifting" associated with heating
could be eliminated. Gages having 120 ohm resistance, and
therefore larger current, had a tendency to store heat,
because the polymers'that were used as test materials were
not good thermal conductors. In the initial ‘tests, twenty.
strain gages were placed on each test specimen in order to
investigate the stress state in the vicinity of the cracks,
The information gathered in these initial tests suggested
that the gage placement as shown in Figure 16 was both
economical and practical, and that the stress state moni-
tored in the vicinity of the cracks was uniform to within
four percent,

In order to achieve satisfactory correlation between

the analytical solutions and the experimental results, it
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was necessary to form the cracks by fatigue to a desired
“lIength in each test specimen. "With the use of the Instron -
Model 109 dynamic testing machine, the mean load, amplitude,
and frequency of loading could be specified, thus enabling
the operator to fatigue the test crack to any desired
length,

Before the tests on the bonded material pairs were
conducted, the critical stress intensity factor Kc for
Plexiglas was determined. In order to find this value K.,
five test specimens>were made and tested, as shown in
Figure 17. In each case, a 5/32 in. (0.397 cm) hole was
drilled in the specimen, and a notch was made with a
surgical scalpel on each side of the hole perpendicular
to the direction of loading. A crack was first fatigued
to a desired length, and then loaded statically to de-
termine the critical stress 01 at fracture. Strain
gages were used to accurately monitor this stress, The
value of Kc was then determined from the following rela-
tionship:

Kc=ol~/7€ s

where
6.= stress at which the crack propagated, and

2 = half-length of the initial crack .

The value of KC for the Plexiglas used in the exXperimental

work was found to be

K. = 530 psi+/in. (5828 %ﬂ% Jem ) .
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After determining the value of KC for Plexiglas, tests
- were then conducted on the Plexiglas-Buterate and Plexiglas-
Plexiglas material pairs. First,‘the materials were edge-
bonded to form an interface, and reinforced around the four
edges with eight Plexiglas strips 1/8 in. (0.317 cm) X 1 1/2
in. (3.810 em) X 12 in. (30.480 cm). 1In each case a hole
1/4% in., (0.635 cm) in diameter was drilled in the left half-
plane a specified distance from the interface, A scalpel
was again used to make a notch‘in one side of the hole
nearest the bonded interface, as shown in Figure 16. The
notch was made on one side only in order to keep the crack
from propagating to the left under the fatigue load. If an
interface crack in the test specimen was desired, a 1/32 in.
(0.079 cm) wide slot was milled a desired distance along

the interface, énd a scalpel was uséd to put a notch at

each end of the slot. At this time, the network of strain
gages was placed on the specimen., The specimen was then
secured in the testing machine, and turned perpendicular to
the usual axis of loading, and an interface crack was fa-
tiqued, In allvof the tests performed, a fully satisfac-
tory interface crack was never achieved, as the solvent

used in bonding the materials changed the material propef—
ties slightly, thus making them more fracture tough. How-
ever, a more satisfactory interface crack was obtained in
the Plexiglas-Plexiglas material pairs than in the Plexi-

glas-Buterate combination.
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The test specimen was next placed in its normal loading

position, as is shown in Figure 16, and was fatigued under

a specified load and frequency until the end of thé cfaék
perpendicular to the interface had propagated to within a
desired distance of the interface., It Was then loaded
statically under a specified ratio of Go/ol , which was
monitored by the network of strain gages previously de-
scribed, to determine the stress at which the end of the
crack started to grow toward the interface, The effect
of the crack upon reaching the interface or the ihterface
crack was then observed., It should be noted that the
presence of the drilled hole at the left end of the crack
did affect the 6utcome of the experimental results for

short cracks, as is shown in the following section. .
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. EXPERIMENTAL RESULTS AND CONCLUSIONS |
In Figure 18, a comparison of the analytical and ex-
perimental results in Plexiglas-Buterate material pairs is
shown by curves 1 and 2 respectively. The critical stress,
which is the stress required to initiate fracture, is plot-
ted versus the distance of the crack tip from the inter-
face. According to the results of [3] through [6], the
critical stress approaches zero as the crack tip nears‘fhe
interface, and approaches infinity as the crack length be-
comes zero. Curve 3 of Figure 18 gives the critical stress
required for a comparable length érack in a full-plane of
Plexiglas. The critical stress for the full-plane problem
approaches infinity as 4 approaches zero, as is shown

from the following relationship:

O = K/ Nt

where o, = critical stress
KC = critical stress intensity factor, and
£ = half-length of the crack

The experimental results agree closely with the
analytical results in the region a = 0.05 in. (0.127 cm)
to a = 0.4 in, (1.016 cm). However, in the region where

the crack tip is in the vicinity of the drilled hole, the
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stress concentration associated with the presence of the
hole reduces the critical stress ol, as shown in curve 2
of Figure 18.7 The proBlém of determining the stresses and
stress inténsity factors for symmetric cracks ema;ating
from a circular hole in a full plané was considered by
Newman in ([7]. The results given in TABLE 1 of [7] are
reproduced in Table 4 of the present study. Note the
column corresponding to F in TABLE I of [7] should read
A=20 rathef than A = 1. Similarly, the column for Fl
should read A = 1. These changes have been made in Table 4
of this investigation, The present one-sided crack seems
to be influenced by the presence of the hole more strongly
than the symmetric crack does. However, the trend is the
same,

In Figure 18, curves 1 and 3 agree within 5 percent
of each other until the crack tip is within approximately
0.2 in. (0.508 cm) of the material interface. The crack
tip is then affected by the presence of the Buterate in
the right half-plane, as is shown in curve 1, and reduces
the critical stress required for fracture.

Because of the inability to produce a brittle in-
terface, no quantitative results were obtained for the
behavior of an interface crack or the effect of the per-
pendicular crack on initiating fracture along the bond.
However, some important observations were made as to the

influence of the modulus ratio of the materials in both
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Plexiglas-Buterate and Plexiglas-Plexiglas material pairs.
In the Plexiglas-Buterate combination, an interface
crack could not be formed as a result of a perpendicular
crack intersecting the interface. According to the analy-
tical solution [3], a material pair with the intersecting
crack in the more rigid material actually has compressive
stresses induced on the interface in the vicinity of the
crack tip. When the perpendicular crack tip reached the
interface, arrest occurred in all experiments, regardless
of whether the test specimen was under a static load or a
fatigue load at the time of intersection. By continued
fatigue loading, the crack could always be forced to cross
into.the Buterate, as shown in Figures 19 and 20 , and af-
ter a crack growth of approximately 0.1 in. (0.2540 cm),
brittle fracture would occur. As discussed in [3], the
order of the stress singularity for the cleavage stress of
the intersecting crack is larger than one-half, providing
that the crack originates in the higher modulus material,
and it is assumed that this large opening stress was suf-
ficient to develop the fatigue crack in the Buterate. It
is of considerable interest that a_fatigge crack could be
produced, and that brittle fracture would occur in the
Buterate in this manner. In a full plane of Buterate with
an initial configuration as shown in Figure 17, fatique
loading in the identical load and frequency range would

not generate a crack, After fatiguing for 200,000 cycles



at a load of 1400 + 200 1bs. and a frequency of 15 hz.,
the crack téggiinrthgrfp;lfplane of Buterate became highly
distorted, and multiple irregular cracks were formed, as
shown in Figure 21 , none of which lead to fracture. With
a large lateral load, the interface in Plexiglas-Buterate
material péirs could be made to fail in tension, as it was
weaker than either of the two materials., In one experi-
mental run, a crack originated on the interface due to a
flaw in the‘bond approximately two inches from the inter-
secting crack tip. As the lateral load was increased,
this crack behaved similarly to a brittle fracture, and

it propagated along the interface until the intersecting
crack tip was reached, at which time it stopped, leaving
the bottom half of the interface still intact.

Unlike the Plexiglas-Buterate pair, a crack could be
initiated along the interface in the vicinity of the in-
tersecting crack tip in the Plexiglas-Plexiglas material
combination, depending upon the lateral stress, Oq and on
the intersecting crack length. As in the Plexiglas-
Buterate material pair, the interface always stopped the
intersecting crack. Both the lateral stress, Oy > and
the intersecting crack length were significant in pro-
ducing interface failure. However, the nature of the in-
terface bond was such that consistent results could not
be obtained, With large values of the lateral stress,

such as Oy = 1.0 S, the interface would first arrest
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the intersecting crack tip, but under continued fatigue
loading the interface would fail, providing that the in-
tersecting crack length was 0.8 in. (2.0320 cm) or less.
For intersecting cracks longer than this value, the crack
tip would cross the interface, resulting in fracture of
the test specimen,

In conclusion, for material pairs having uz/ul 1,
compressive stresses exist on the interface in the vicinity
of the intersecting crack, In this case, the strength of
the interface bond is relatively unimportant, because
failure is more likely to occur in the form of the inter-
secting crack crossing the interface into material 2. How-
ever, according to the analytical solution [3], [4], when
ug/ul > 1 , the interface is subjected to tensile stresses,
giving rise to both interface fracture or fracture through
the interface into material 2 as possible modes of failure.
The type of failure which occurs is then dependent on the
strength of the interface bond as compared to the strengths
of the two materials being used. In none of the experi-
ments involving Plexiglas-Plexiglas half-planes did simul-
taneous crack extension occur along the interface and
across the interface, This is in agreement with the

analytical results discussed in [6].



Figure 13.

H1 Y

PERPENDICULAR/

CRACK
ol

Y

INTERFACE
CRACK

79

U;Z(O,Y )= Oo

Bonded Elastic Half-Planes with Perpendicular
Cracks.



80

Figure 14, Instron Model 109 Dynamic Testing Machine,
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Figure 21.

Irregular Crack Formation in a Full-Plane of
Buterate Following Continued Fatigue Loading.



Table 4,

Cracks Emanating from a Circular Hole
in an Infinite Plate Subjected to
Biaxial Stress from [7].

K=SVrT-FgF

oN = 120
a/R F(A=-1) F (A=0) Fo(x=1)
1.01 0.4325 0.3256 0.2188
1.02 .5971 L4514 .3058
1.04 .7981 . 6082 L4183
1.06 .9250 L7104 L1958
1.08 1.0135 L7843 .5551
1.10 1.0775 .8400 . 6025
1.15 1.1746 .9322 . 6808
1.20 1.2208 .9851 .Thol
1.25 1.2405 1.0168 .7929
1.30 1.2457 1.0358 .8259
1.40 1.2350 1.0536 .8723
1.50 1.2134 1.0582 .9029
1.60 1.1899 1,0571 L9242
1.80 1.1476 1.0495 .9513
2.00 1.1149 1.0409 .9670
2.20 1.0904 1.0336 .0768
2.50 1.0649 1.0252 .9855
3.00 1.0395 1.0161 .0927
4,00 1.0178 1.0077 .9976
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APPENDIX A
ON THE TRANSFORM SOLUTION

1. The Mellin Transform and its use for the Plane Problem
of Linear Elasticity

Following [1] and [14], the plane problem of linear

elasticity may be formulated as follows:

2
to + iTgg = 0(r,0)= - & (%%g + 12X, @)

dr? ’
1 3% 1
Ter = 32 Saé + ;'%% s (A 1.2)

o8 dr?

(A 1.3)
where | is the shear modulus, v is the Poisson's ratio,
and

- T (1) 10x,.1 9%x
VEx =0, V3 = 0, ar( v%<_ r 3rT2% 392
(A 1.4)

The Mellin transform of a function £(r), defined and suit-

ably regular on (0, ), and its inverse are defined by

F(s) = M{£(r)] = [ £(r)c5 *ar , (A 1.5)
5 |
() =5 [T s, (1)

where ¢ 1is such that r- f(r) is absolutely integrable



on (0, »). The transform of derivatives is given by
o -
I A flr) s~un g _ ()P E%%i§l F(s), (A 1.7)
n s
o - dr
provided
m—
Stm-r d £ 5 o r— (0, ), m=1,...,n .
m-—21
dr
(A 1.8)

The regularity conditions (A 1.8) provide the criterion for
the choice of c
Taking the Mellin transform and solving (A 1.4) from

(A 1.1)-(A 1.3) we obtain

56 i(s+2)e _ ~i(s+2)6
M[r20(r,0)] = Z(s,0)=2i (s+1)|asei%04B(st1)e “Be ]

(A 1.9)

M{r27, (x,0)]=-s(s+1) (2el®041Re™150) L (s+1) (s44) X

i(st2)e _ -i(s+2)6
[Be + Be ] s (A 1,10)

. , i(s+2)e _ -i(st+2)6
M[E_%é£4gli=v(8,9)=-éﬁlléselse+B(S+l)e +txBe

P
(A 1.11)
where x = 3 - 4v for plane strain x = (3-v)/(1+v) for
generalized plane stress, and the "integration constants"
A and B are complex and are determined from the boundary
conditions specified along the wedge boundaries, 6 = con-
stant. After A and B have been determined, it is necessary
to invert (A 1.9) through (A 1.11) to determine the stresses
as a function of r and 6. The next section deals with |
the evaluation of particular integrals applicable to the

problem in question.



2. Some Particular Inverse Mellin Transforms

Given b

the Mellin inverses used in inverting (A 1.9) through

(A 1,11). The details of a few of the integrals will be

elow, for reference,

included for completeness,

1 ctie

ctim

c-iw

Consider now the evaluation of (A 2.2) and (A 2.4)

r  ~S-2
;;) ds = roé(r—ro)

-s-2
—1 (rL) ds
sin(mws/2) o

-s-2
—l___. (r_) ds
cos(ms/2) o

-s-2
—i—. (.ri) ds
sin(mws/2) o

-s=2
_S (.].:r_) ds
cos(ms/2) ~o
sin(ns/2) (J;)_s_gds

r

cos(ms/2) o

cos (n1s/2) (JL)_S—gd
. r S
sin(mws/2) o

ct+ic
-+ g x

c-io» sin(ws/2) o

3o

3 1=

3o
HlH

22
rO

2__>2
m(rg-r")

is a listing of some of

(a

(a

A-3



A-L
applying the residue theorem and closing the contour to the

left as shown, noting the zeros of sin (ms/2) are at s=+ 2n,

iy
- A A x
+1 42 +3
1) 2n=-2 00 m-1 2m 00 2n
2 2 n, r
I1-2 3 (-1)“(—;’— == 3 (-1) (5 =-% 2 (1)
T n=1 o m=0 o} n=0 o}
or2
= —-7—2]_- ——;-'——-2- =-—-—-—2—9—£" as given by (A 2.2).
l+(%§) ﬂ(ro+r )

For r > r, , the contour is closed to the right and gives

the same result,.

cfiw ~s-2
1 ] r
o J (=) ds, r
c

For (A 2.4) let I = - -
-i®» sin(ms/2) To

again applying the residue theorem and closing the contour

to the left.



2n-2 %
n 2
=25 (-an)(-1)(F) = - 22 2(m1) (-1
n=1 (o] =0
o m 2m
=+ 2 2 (ml)(-1) (F)
m=0 o
noting that
o n 2n 1
2 (1) () = -
n=0 o l+(}-0_

. r .
and differentiating both sides with respect to (;—) gives

o]
Y
2(+)
- o]

0 n _E_Qn-—l
nil (=2) en'(ro) - [1 + (& )2]

2

r
O

r

nEOE (n+1) (-1) (}; = - [l+ (}r_-_)z:]z

2n :
(v ]

S (pt]) ((1D)NUE) = o
n=0 o [ro+r_]

4

r
@)

as given by (A 2.4%)

3 =

and I

It

2 22.
(rd+r )

For r > ry the contour is closed to the right and again

gives the same result.
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A similar approach gives

A S-S g o (r2.8)
: - —_ ds = A2,
omi Cjw sin(ms r, w(rd+r5
. ' 2
1 fon b K -2 2ro+ror

Il

-s
S X _
2mi £-iw sin (178 ) (ro) ds ﬂiro+r52 (A2.9)

1 fc+im cos (Ts (lL)—s—st ~ L (a2. 10)
2mi oo sin(ms ry . ﬂZrd—rS . .



APPENDIX B
ON THE METHOD AND ACCURACY OF THE NUMERICAL SOLUTION

1. The Method of Numerical Inteqration

The numerical integration was performed using four

basic integration Gaussian-type formula [12, p. 887-890]

T f(x o cos(2i-1)mw yis
[ ——l~i-dx x 2 wif(xi), X, = Ty » Wy = o (B 1.1)
-1 1-X i=1
1 i n B 0i-1 2 (1+x, )
[ £\ 9% = Eiflwif(xi)’ x; = cos(ZTlm , wi= —p5 0
(B 1.2)
= o s im T .2
[lf(x)ﬂdl_x2 ziflwiL(xi), x; = cos(;;I), w; =7 sin®(x,)
(B 1.3)
fb b-a o b-a bta
L f(x)dx = Ti§lwif(xi),xi= (S y; + 55,
where
. 2
y; = ith zero of Pn(x), w, = 5 - (B 1.4)

2 t
(1-y3) (B! (%,)]
and Pn is the nth order Legendre Polynomial,

Wherever possible advantage was taken of the fact that the
discrete values of F(tk), given by (63) of (67), were at

the collocation points of (B 1.1) or (B 1.2) respectively

if n was chosen equal to N, However, in the integrals
specifying the displacementé it was necessary to use integra-

tion formula whose limits were not, in general, -1 to 1,



For these integrals the discrete values of F(tk) were
fitted by least squares analysis to a continuous function
in the form of a KM order polynomial and an integration

formula of the form (B 1.4) was utilized.

2. The Accuracy of the Numerical Solution

The accuracy of the computer solution was determined
in part by to what degree it could reproduce known solutions
or how well it reduced to special cases whose solutions were
known exactly. For instance, the special case of a unit
crack in a full plane could be modeled one of three ways:
either by taking ¢ = O, vl = v2 R El = E2 , a=1, b= 2; or.
c=12,a=0, b=20, v =v,,E =E_;or lastly, it
could be approximated by takiﬁg ¢ =0, a large, and b = a +1,
The numerical solution was correct to five significant fig-
ures for all special cases and was exact to the number of
places carried, (usually four), for the known solutions of
a crack approaching a bonded interface given by [2]. While
these checks provide a measure of the accuracy, they are
also necessary for the correctness of the computer solution.
The terms that necessarily go out in checking the
special cases are the additive terms that provide for the
new solution. To make sure that these terms were programed
correctly, the computer solution of the integral equations

was approached two ways, and the programs, independently

written, were checked until agreement was reached.
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The method that was not chosen for inclusion in the text was
an iterative solution obtained as follows: As a first
approximatioh it was assumed that Cl , given by Equation
(54), was the only non zero Cn .  Knowing the Cn , the
right side of Equation (36) was completely defined and a

set of F(t could be determined. Based on this set of

X)
F's, a new approximation to the Cn could be found from
Equation (53). The right side of Equation (36) was again
modified and a new set of F's determined. The procedure was
continued until no significant change was determined in
either the F's or the ¢, - The accuracy of the complete
solution was then determined by noting to what extent these
two solutions agreed. For example, if M= 14, N = 14,
a=0, b=1, ¢ =1, the iterative solution converged

_6
after four iterations, giving k(b) = .9513, %g 1.117%X10° ,

i

whereas, the computer program, discused in Appendix C, gives

k(b) = .9511, g—g= 1.116 x 107° .



APPENDIX C
COMPUTER PROGRAMS

1 Introduction to the Computer Programs

Two computer programs were written to obtain numerical
results to the solutions presented in Chapters I. and II ..
These will be referred to as PROGRAM 100 and PROGRAM 200
respectively. Adequate comments have been provided for the
reader familiar with Chapters I.. and II to follow the logic
of the programs. Wherever possible, these comments refer
directly to equations in the text. Given below are two
definitions that may prove helpful in the reading of the
computer programs, The first is a fundamental integral
containing Pn%%§ which was indexed to limit the use of the

recursion formula used to generate the Jacobi polynomials,

1 (a,p) .
PLSTAR(N,Kx) 8 [ w(t)Pn(t) I(t,x,)dt . (c 1.2)

(a,p)

The second integral contains Pn—l(Y)' It is related to

the c, and is given as part of Equation (53). Its defini-

tion follows from

KQUAD 11 i
A F(t) 1-y
jzl F(TJ) PMSTAR(N,J) A {lf_l — c(t,y) “/—_l-y2(1+y) X
(-G,-B)

P _,(y)dydt (c 1.2)

where F(t) is given by Equation (63) and KQUAD is a
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numerical constant the choice of which is discussed in the

section that follows.

2. Oon the Choice of Constants Related to the Numerical

Integration

_Certain constants have been fixed in programs 100 and
200. The choice of these constants was governed by how a
variation in the parameter effected the most sensitive
output variable in trial runs using Aluminum-Epoxy material
pairs. The constants along with their definitions are

listed below for reference.

KQUAD - Upper limit in numerical integration formula
used in integrating Equations (53) and (60).

Fixed in program at value of ‘200.

NTERMS - Number of terms in polynomial curve fit used
in numerical integration formula (B 1.4).

in program at value of 10,

NODE - Number 6f nodal points used in evaluation of
displacement integrals that were complete
and could be evaluated using integration
formula (B 1.1) or (B 1.2), Fixed in

program at value of 100.



3 PROGRAM 100

Purpose

The solution is given for two bonded isotropic linearly
elastic half-planes of different elastic properties having
a crack along the interface as well as a perpendicular
crack in one of the half-planes which may intersect the in-
terface crack. A constant pressure is assumed on the crack
surfaces, and no loads at infinity. For convenience, the
inplane crack will be assumed to be in material one for all

cases. The geometry is shown below,

NU1, E1 | NU2, E2
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DESCRIPTION OF PARAMETERS

NSETS

E2
SIGMAO
SIGMAl

NHALF

STRAIN

INPUT
DATA CARD

No.1
No.2
No.3
No. 4
No.5

Number of data sets to be read, a data set
consists of cards No.2 to No.5, as described
in INPUT,

Distance of near crack tip from interface.
Distance of far crack tip from interface.
Half length of interface crack

Poisson's ratio, material one.

Young's modulus, material one.

Poisson's ratio, material two.

Young'!s modulus, material two.

Opening pressure on interface crack.
Opening pressure on inplane crack,

Number of half planes present.

Number of terms taken in Equation (63)
and (67) (11 { N £ 28).

Number of C_ = generated by Equation (53)
(1 < m< 50).

If strain set equal to 1, solution is for

plane strain, If strain set equal to 2,

solution is for generalized plane stress.

PARAMETERS : FORMAT
NSETS I2
A, B, C 3(IPEL4.T)
El, NUl, E2, NU2 4 (IPE14.7)
SIGMAO, SIGMAl 2(IPE14.7)
N, M, STRAIN, NHALF 4(12)



OUTPUT

Numerical results are obtained for the stress intensity
factors, strain energy release rate, stresses and displace-

ments,

Comments

In test programs using Aluminum-Epoxy and Epoxy-
Aluminum material pairs, the output was examined using
éuccessively larger values of M and N to determine when the
numerical solution was sufficiently conditioned to give
less than 1 percent variation in the most slowly converginé
output parameter.

It was found that the strain energy release rate con-
verged most slowly in all cases and that K(b) converged
most rapidly in all cases. Values that gave less than 1
percent variation in output at A= 0, B=1, C = 1, wefe
M=N=14, IfA =0, B=1, C= 0.1, it was necessary to
take M = 30 and N = 20. The value of N = 26 was found to
be large enough in all cases. If C is decreased below 0.1,
it was necessary to take larger values of M to obtain
accuracies of one percent in the strain energy release rate.
PROGRAM 100 will solve the following problems illustrated
below, Note A and C may not equal zero at the same time.
Time required on the Clemson University IBM 370/158 computer
was about two minuets for N=M=1l4 and fifteen minuets for

N=26, M=48 .
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A#0, B#0, C=0, NHALF=2

A#0, B#0, C#0, NHALF=2

A=0, B#0, C#0, NHALF=2

A=0, B#0, C= 0, NHALF=1,
E2, NU2 any nonzero con-
stant

A#0, B#0, C=0, NHALF=1,
E2, NU2 any nonzero con-
stant



c-7

4.  PROGRAM 200

Purpose

The solution is given for two bonded isotropic elastic
half-planes of different elastic properties having a crack
along the interface as well as a perpendicular crack in
both of the half-planes, either of which may intersect the
interface crack, A constant pressure is assumed on the
crack surfaces and no loads at infinity. The geometry of

the problem is shown below.

NUl, El | Nu2, E2

B BSTAR

A ASTARI
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DESCRIPTION OF PARAMETERS

NSETS Number of data sets to be read. A data
set consists of cards No.2 to No.5, as
described in INPUT,.

A Distance of near crack tip from interface

in material one.

B Distance of far crack tip from the inter-

face in material one,
C Half length of interface crack.

ASTAR Distance of near crack tip from inter-

face in material two.

BSTAR Distance of far crack tip from interface

in material two.

NU1 Poisson's ratio, material one.
El Young's modulus, material one,
NU2 Poisson's ratio, material two.
EZ2 Young's modulus, material two.
SIGMAO Opening pressure on interface crack.
SIGMAL Opening pressure on inplane crack in

material one,

SIGMAZ2 Opening pressure on inplane crack in

material two.

N Number of terms taken in Equations (100)
to (103) (11 { N < 28),

M Number of C_ generated by Equation (96)
(1 < M < 50).
STRAIN STRAIN=1 implies plane strain,

STRAIN= 2 implies generalized plane stress,



INPUT
DATA CARD PARAMETERS FORMAT
No.1 NSETS » ' 12
No.?2 A, B, C, ASTAR, BSTAR 5(1PE14.7)
No.3 El, NUl, E2, NU2 4 (1PE14.7)
No. 4 SIGMAQ, SIGMAI 3(1PE14.7)
No.5 N, M, STRAIN 3(12)
OUTPUT

Numerical results are obtained for the stress intensity

factors, strain energy rate, stresses and displacements.

Comments

In test programs using Aluminum-Epoxy and Epoxy-
Aluminum material pairs, the output was examined using suc-
cessively larger values of M and N to determine when the
numerical solution was sufficiently conditioned to give
less than 1 percent variation in the most slowly converging
output parameter. It was found that the strain energy
release rate converged most slowly in all cases. K(B) and
K(BSTAR) were the most rapidly convergent output paraﬁeters
in all cases., Values that gave less than one percent
variation in output at A = 0, B= 1, C = 1, ASTAR=0, BSTAR=1,

were M = 14, N = 14, For N=M=1ll4 the computer time was about
four minuets and N=26, M=48 required twenty five minuets,

(necessary for ¢ ( 0.1).
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PROGRAM 200 will solve the following problems illus-

trated below, Note, if C = 0, A or ASTAR may not equal zero.

—_— | — C=0, A #0, B#0, ASTAR #0,
BSTAR #0, SIGMAO =0

A #0, B #0, c#o ASTAR #0,
BSTAR;éo

#0, C#0, ASTAR#0,
0

A#0, B#0, C#0, ASTAR =0,
BSTAR #0

A=0, B#0, C#0, ASTAR =0,
BSTAR #0





