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ABSTRACT

Two solutions are developed for the two dimensional

problem of bonded linearly elastic half-planes. The first

is for two bonded isotropic linearly elastic half-planes of

different elastic properties having a crack along the in-

terface as well as a perpendicular crack in one of the half-

planes which may intersect the interface crack. The appro-

priate integral equations are developed through the use of

displacement dislocations in conjunction with Mellin trans-

forms. The resulting pair of singular integral equations

is solved by obtaining the relationships between these solu-

tions and the weight functions for Chebyshev and Jacobi

polynomials. The second solution is for two bonded iso-

tropic linearly elastic half-planes of different elastic

properties having a crack along the interface, as well as a

perpendicular crack in each of the half-planes, either or

both of which may intersect the interface crack. The ap-

propriate integral equations are again developed through

the use of displacement dislocations in conjunction with

Mellin transforms. The resulting three singular integral

equations are solved by obtaining the relationships between

these solution's and the weight functions for Chebyshev and

Jacobi polynomials in a similar manner to the pair of

equations in the first solution.

For each solution, numerical results are presented for



Ill

the stress intensity factors, strain energy release rate,

stresses and displacements.

The behavior predicted by the above studies was in-

vestigated experimentally using polymers for the material

pairs. Very close agreement was found for the critical

stress intensity factor at fracture for the perpendicular

crack near the interface. Fracture along the interface

proved to be inconclusive due to difficulties in obtaining a

brittle bond. Some interesting and predictable behavior

regarding the potential for the crack to cross the interface

was observed and is discussed.
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The solution is given for two bonded isotropic lin-

early elastic half-planes of different elastic properties

having a crack along the interface as well as a perpendic-

ular crack in one of the half-planes which may intersect

the interface crack. The appropriate integral equations

are developed using displacement dislocations on the crack

surfaces.

Numerical results are presented for the stress in-

tensity factors, strain energy release rate., stresses and

displacements.
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Engineering Science, Duke University, Durham, North
Carolina, November 11, 1974. Published in the Interna-
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Introduction

In considering the fracture of composite materials due

to the presence of imperfections, one finds a common mode of

failure to be that of a crack originating in one material

then extending until it reaches a bonded interface and spread-

ing along the bond line. Other possible directions of crack

growth are for the crack to cross the bond line or to be

reflected by the interface into the original material.

An investigation of the effects of a crack in the near

vicinity of a material interface is then essential in the

fracture analysis of composite materials. In the analytical

study of this problem a specific geometry that leads to

tractable integral equations is the case of two elastic half-

planes containing a finite length crack in one of the half-

planes with the crack being perpendicular to the material

interface. Of particular interest is the behavior of the

stresses as one end of the crack approaches the interface

and either terminates, crosses into the adjacent material,

extends along the bond without crossing the interface, or

upon reaching the interface, extends into the adjacent ma-

terial and debonds along the interface. The instances of

the crack terminating at the interface or crossing the inter-

face have been investigated by Erdogan, Cook, and Biricikoglu

in [1] and [2]. The present study considers the possibility

of the crack spreading along the interface.
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The appropriate integral equations are developed through

the use of displacement dislocations in conjunction with

Mellin transforms. The resulting singular integral equations

are solved by obtaining the relationships between these solu-

tions and the weight functions for Chebyshev and Jacobi

polynomials.

Formulation

Assuming a coordinate system having the origin at the

center of the interface crack, as shown in Figure 1, it is

seen to be convenient to represent the solution in terms of

the polar variables (r, 0), as the crack surfaces, the in-

terface, and the horizontal plane of symmetry lie on constant

0 surfaces.

An effective means of formulating linear elasticity

problems having boundary conditions of this type is to make

use of Mellin transforms on the radial variable. It is

demonstrated in [1] and [2] that the use of displacement

dislocations in conjunction with Mellin transforms gives a

very simple and straightforward technique to develop the

integral equations for a large class of problems of this

general form.

The half-planes are assumed to be loaded with uniform

stresses a . a and a as shown in Figure 1, with the
o' i 2

stresses being related in such a manner as to give constant

strains in both the x and y directions at points remote

from the cracks. The following relations must then hold,



E *OJz<

a = a —— - a (v ^— - v ) for generalized plane stress
i 2 E

2 ° 2 2 1

and
(1- v2(l +

(l-v=

V2)EX

)E2

vl

1 - v
1 m

for plain
strain.

a = a -- a
2 - 2

The complete solution may be represented as

a total = o, + a,,

where <JT = stresses in the half planes without cracks and

loaded at infinity

and a = stresses in the half planes having no applied
II

loads at infinity and applied stresses on the

crack surfaces equal to the negative of those

given by a . For the loads as stated above
I

this would require normal stresses of -a and

-a on the interface and perpendicular crack

respectively.

The solution for a is developed below in terms of
II

a general system of applied tractions on the crack surfaces,

although still requiring symmetry about the y = 0 plane,

and will be restricted to the above constant normal stresses
i

only for the numerical results.

As the present study is closely related to [1] and [2],

an attempt to follow the form and notation of those investi-

gations will be made, where possible, in Border to eliminate

unnecessary duplication.



Following [1], the Mellin transforms of the stresses

and displacements are:

M [ r 2 a , ( r , 0 ) ] = S . ( s ,0) = 2 i ( s + l ) X

is0
+ B ( s +

M [ r 2 T , ( r , 0 ) ] = - s(s+

i(s+2)0 _ -i(s+2)0

is0 _ -is0

Bke

i(s+2)0 _ -i(s+2)0
+ B, e

M[r2vk(r,0)/2M.k] =

s+1 Ak.se + Bk(s+l)e

(1)

i(s+2)0 _ -i(s+2)0

where

-4v, for plane strain

(3-vk)/(l+vk) for generalized plane stress

and jj,k , vk .are the shear modulus and Poisson's ratio

respectively.

The transformed functions above are [1]

and

r krr( r ,0) =

vv(r,0) =

(2)

ff £) * $ ' \• j\.u I-i - -i - i

or J with k = l,



for region 1 and 2 respectively.

Using displacement dislocations'1 on the surfaces 9 = TJ

and Q = 7i , the boundary conditions are:

r,o) = u Q(r,o) = 0 , on 0=0 in material 2, (3)

Tir0(r,7T) = 0

• u(r,7r) = - l/2h(r)<5(r-r

, on 9 - TT in material 1

and

Tir0(r,7r/2) =

f(r)5(r-ro)

= -g(r)6(r-r )

^ interface

9 = 7T/2 .

(5)

By defining the unknown functions A, ,B, ,k .= I, 2, as

A = C
1 1

=C
2 5

. B = C
6 2 7

and on transforming the above boundary conditions , the. re-

sulting eight equations specifying the unknowns C. are

as follows:

1 Displacement dislocation as used in the present text
implies a step discontinuity in the displacement slope at
a particular point.
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sC + ( s+ l )C + 0 = 0 , (6 )
e a s

sC + (s+ 1)C - K C = 0 (7)
6 8 28

sC sin(7Ts)+ sC COS(TTS) + (s + 2)Cs

+ (s + 2)C4 COS(TTS) = 0 (8)

sC sin(7rs)+ sC COS(TTS) + (s+ 1 - K )C sin(Trs)
3

h(r
+ (s + l - K ) C COS(TTS)= ^—^ -",(9)

sC cos(7rs/2)-sC sin(7rs/2)-sC cos (Trs/2) + sC sin(7TS/2)
1 2 3 4

- s(C -C )cos(?rs/2) = 0 , (10)

sC sin(7rs/2) + sC cos (?rs/2) - ( s + 2 ) C sin(7rs/2)
1 2 3

- ( s + 2 ) C cos(7Ts/2)-[sC - (s+ 2)C ]sin(?rs/2) = 0 , (ll)

- m[sC cos(7rs/2) - sC sin (Trs/2) - (s + 1 + K )c cos(?rs/2)
1 2 1 3

+ ( s + l + K )C sin(7rs/2)]

f ( \ ^~ ^~
+ [sC - ( s + l + K )C ]cos(7TS/2)= - M'2 r° r° , ' (12)

5 2 Y • S + 1

and

- m[sC sin(Trs/2) + sC cos (775/2)- (s + 1 - K )C sin(7rs/2)
L ^ J. 3

-• (s+ 1 - K )C COs(7TS/2)]

M-2g(rn)rf1

+ [sC5-(s+l -K2)C7]sin(7rs/2)= s°+i° ', (13)

where m = LL /LL and in Equations (10) through (13) use has

been made of Equations (6) and (7) which require that C =C =0.
6 8

The remaining functions are found to be
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C '=

c =
'2

COS(TTS)
- C - +

s+1
2)h(rQ)ro

5 -sin(Trs) . 2s (s+.!)-(!+K i)sin(7rs) .. ._

s+1

[f(r )sin(W2)[(s + l)
s (s + 1) (1 + mK. ) (m + K )

g(ro)cos(W2)[

)]

s+

2s(s+ 1) (1

C = - C
^OS(TTS)

( l -m)(s+ l ) ( 2 s + 3 )

(1+ mK )

. . s+1
^h(ro)ro

+ l) (1+ it )sin(7Ts)

.(15)

(16)

s+1

c _

( s+1) (1+
[f (r0)sin(7rs/2)+ g(ro)cos(7rs/2)]

(1-m) (2s +3)h.(r )rS
O' O

2(s+ 1) (1+ K )(!+ IUK )
(17)

s+1

C = '-=-=
5 s ( s+ l) (1+ mK )sin(7Ts)

[f(r )sin(7rs/2)

-g (r )cos(7rs/2)

- )r•o;ro

2s(s +l)sin(7rs)

(s + 1)

(m+K 2 ) j• 1 . (18)



and

C =
7 ( s + l ) (m + K )sin(7rs)

f(r )sin(7rs/2)-g(r )cos(7rs/2)]

2 ( s+ 1) (m+ K )sin(7Ts)
. (19)

Substituting into the first of Equations ' (l), the transformed

stresses on the surfaces 0 = 7T/2 and Q = TT are

s + 1
u,_ (1+ nuc + m + K ) r r

Z (s,7r/2) = — 2—— f ( r ) tan(W2)
1 (1+ mK1)

js + 1
"O

- ig(ro)cot(7rs/2)+7 [g(rQ) -if (rQ) ]

( l -m) (2s+3)

2(1+ Kj >t (1+ nuc ) —1
hK ) J

i r / x- d-?n)(2s+3)
X • - 2 ( s + 2 ) +

sin(7rs/2J L (m +K2) J cos(7TS/2)

and
(20)

s+1

S (S ,TT) = *-
1 (1+mic )

[2s(m+ K2)-

[2s(m+ K 2)+(l+ mK 1 )+(m +

2 COs(7TS/2)

1

g(r ) X

sin(7TS/2) K

COt(TTs)-

2 ( m + K,
+

1 +mK ) J sin(7rs)2(1 +mic )

(21)
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where in Equation (20)
(m+ K )-(!+ mx )

(m + K )+(!+ mis, )
2 x

and in Equation (21) Z^(stir} = M[ir
2T100 (r,rQ,7r)], as

The integral equations in terms of the unknown density

functions f(r), g(r), and h(r) are given by the conditions

that

T(r)+iN(r) =
.00

O

(22)and

where N(r) and T(r) are the normal and shear stresses on

the interface and N (r) is the normal stress on the sym-

metry line.

On noting that

(r0) = g(r0) = 0 , c < rQ < «>

and

then inverting Equations (20 ) and (21 ) and substituting

into Equations (22) and (23) one has

^ micn + m+ K
s(r).1T(r) .

(1+ rmcj (m+ K
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(1+ 'K
+— /b n ( n ) 1+

2 2
+ r

2 , 2+ r

m +
+ ir

m + K
I d/n_
> 2 J

J TI + r

(l-m)(3T!2-r2)

(1+m^)
X

(24)

and

No(s) =
1
i-s

(1-m)

2(1+ m^

8s' 12s

(n+s) ^ 2 m 1+mKj n + s

/
O

+

2 , 2\-K )(5r+ s2)

I (l+m^)-

2 2
+ S

.2 2
- * Y

,+ s e=S
. (25)

Equations (24) and (25) are valid for all values of r and

in particular

N(r) - iT(r).= p(r)-iq(r) , 0 < r < c , (26)

(2?)

where p(r)^ q(r) are the applied normal and shear stresses

and
NQ(s) = p0(s) , a < s < b ,

on the interface crack and p (s) is the applied normal
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stress on the perpendicular crack. Therefore, with the

above restrictions on r and s in Equations (24) and (25),

one has the integral equations necessary for the specifica-

tion of the unknown density functions in terms of the known

applied stresses. Note, if h(t) = 0 , Equation (24) with

0 <( r <^ c is the appropriate integral equation for an in-

terface crack [3] and similarly if f(t) = g(t) = 0 with

a < s < b , Equation (25) is the integral equation for a

crack perpendicular to a bonded interface, [1, Equation

(4.7)]. Equations (24) and (25) are similar to [2, Equa-

tions (7.a,b)]. However, in the present study no difficulty

arises in letting a = 0 as was the case in [2], That is,

the second integrals in Equations (24) and (25) do not con-

tribute to the singular behavior of the density functions

as long as c ̂  0 . This is seen by noting that if a = 0 ,
Q

following [4], then h(t) = H*(t)/(t-b)P , where H*(t)

satisfies a Holder condition on the closed interval 0 <^ t

The nature of the singular stress field near the crack tips

is then the same as in the individual problems and the

effect of the two cracks is only to change the value of the

stress intensity factors. The proof of this follows from

[4, P. 75], as

f(t)+ig(t) =.«(t) = ̂ -> (28)
(t-c)*

and
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i(t). 1 - (29)

'—g- for a = 0 ,

with G(t), H(t) and H*(t) satisfying a Holder condition

on the appropriate limits. Then letting

dt = _L_ r
c G(t)-G(c) ^

G(c) ,C
27ri o (t-c)(t-z) (r-c)

+ Bounded function at r = c , (30)

and

near z = c , with z = r , one has

G(c)cot(7r£)
$(r) = - - 1 — + Bounded terms . (31)

2i(r-c)<3

Substituting into Equation (24 }3 and multiplying by (r-c)̂

with r— »-c , one finds the equation for | to be

as in

Similarly, for a > 0 , let

from which

2i(z-a)a(b-a)Psin(-7ra) 2i (b-a)a(z-b)

+ bounded terms .

Substituting into Equation (24) and multiplying successively
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Cf ft

by (z-a) , z — >• a, then (z-b) , z -* b the two equations

are cot(Tra) = 0 ,--•• •--—-•

and = 0

or, therefore, a = (3 = 1/2

If a=0, h(t)= H* ̂  and £=1/2, a= 0 in Equation (34)
(t-b)p

Making the following changes in Equations (24) and (25)

at + b a ̂ 0
= (b-a)/2/bo= (b4-a)/2, n =

bt ., a='0

ax + b , a ̂ 0
8 =

bx , a = 0 ,

0(t) =g(ct)+ if(ct), ̂ /(t)=h(r))J Po(x)=po(s), and noting that

/°f (t) [even function in t] dt = - f / [g(t)+if (t)] X
6 -c

[even function in t]dt
and

/ctg(t) [even function in t] dt = -| /°t[g(t)+if (t) ] X
o -c

[even function in t]dt,

the pair of singular integral equations are normalized as

' ̂  J1 0 (t) ̂  -

- 1 < y < l (35)
and

^+ A(t)H(t,x)dt = -/10(t)l(t,x)dt

• (36)

The functions G(t,y) , H(t,x) and l(t^x) are



G(t ,y)= -

,lrl '['2(n 2 -c 2 y 2 ) -
(1-m)

(l+nuc.J T}2+c2y2 m+K

cy [sU2-c2y2)-

H(t,x)=- l-m P. 8s

(l+nuc1) Jr]2+c2y2

—j

(37)

12s 1 rmKi-K
2 3(l-m)-j 1

(TI+S) ;

3(l-m)"j 1

l + mKJ ^

(38)

I ( t ,x)=
r) (m+K2)

r (nH-xa) (5c"t-+s2) I
is f (l+micn)+

L * c2t2+ s2 J

+ ct

where a =

r (nvnc2)(3c2t2-s2 -1
(1+mx )

L 1 c2 t2+s2 J

( l+nucx + itH-K

(1+lMCj
and

c2t2+ s2

ao if a^°

b if a = 0

(39)

It is of interest to note that the above equations may

be written in terms of only two independent combinations of

elastic constants as shown by Dundurs in [6]. The following

definitions prove convenient in the present work. Let

1+mK m + K.
k = and

then,

a
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l-m 1-k.

-1-+•
2

- K2 ^ - 1

m

kg -

m+

1+ mK^ kl
and

=
1 2.

The usefulness in making such a change is most evident

if one is able to write an asymptotic expansion for the solu-

tion in the vicinity of the crack tip. For example see

Ashbaugh [7] for an analysis of the problem considered in

[1]. A similar investigation is being undertaken for the

present problem.

Equation (35) is a singular integral equation of the

second kind, and is similar to [8, Equation (l̂ )], although

somewhat simpler due to the manner in which the unknown

function, 0(t)., appears. Following the procedure of [8],

[9], [10], and [11], it is possible to determine 0(t) in

terms of the unknown function . ̂(t) and the loads. Sub-

stituting into Equation (36), for 0(t), one then has a

singular integral equation of the first kind of the same

form as [11, Equation (̂ ..11)]. For a = 0 Equation (36) is
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an equation of the second kind as the singularity at the

origin vanishes. The solution will first^be developed for

a y 0 and then a = 0 . It should be noted that the de-

termination of 0(t) is the same in either case; that is,

the first part of the following analysis is true for all

values of a .

Referring to [8] one can write

0(y) = w(y)*(y), w(y) = (l-y)a(l+y)p , I y I < 1
and

1 1 . • . , 1 /l+7\
a = - p- - io) , p* = - o- + ia> with o) = p— lnljIT") -

Noting, as in [8], that w(y) is the weight function of the

Jacobi polynomials p
n(y) > th® solution is then written as

0(y) = w(y) Z C P (y) , (40)
n=0

with the Jacobi polynomials satisfying the orthogonality

relation [8],

J1 w(y)P (y) P (y) dy =
-i

= 0 , n ̂  m ,

(o+P+1)
•2 T(n+ g+ l)F(n+ B+ l) T / Rs _ /_
^ o 1-1 _i_ /-»j. A - i - i ^ — IT"/— i ~i oi T\ — -"v^j^jP/j n — m^u^£_HT" tz~T p T~

- 7T
~ COSh(TTO)) '

= m = 0

The displacements are then found by integrating Equa-

tions (4) and (5), from which the constant C and the con

tinuity condition of the function fy(t.} are specified.
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Integration of Equation (4) gives the opening displacement

on &'=- TT as- follows: where if a -= 0 , a is replaced by b,

u (X,TT) = - -^ /X *(t)dt + IT J1 *(t)dt . (42)
-i -i

Similarly, integrating Equation (5) and separating real and

imaginary parts gives,

Y
u (y,7r/2)- u (y,7r/2) = - elm / 0(t)dt + Im [C*] ,

, o
and (43)

i0(y,7T/2)- u 0u(y,7T/2)- u (y,7T/2)= - cRe / 0(t)dt + Re
o

i
where C* = c/ 0(t)dt .

o

It follows from the form of 0(t) that

Im [C*] = - 4f /%(t)dt , (45)

then as

or, therefore, from Equations (42), (43), and (46),

-i . -i

u (o,7T/2) = - -rf / 0(t)dt = - -5- f 'tf(t)dt . (4?)
ir 2 -i ^ -i

Now using Equation (40) and (41) the constant C is

c^ = - ^ — /%(t)dt , (48)o

where Equation (42) requires that

/ v(t)dt =0 if a ̂  0 . (49)
-i

The opening displacement, u (o,7T/2) = - u (-l,7r), is
ir 10

then given in terms of C as
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(50)

where C is seen to be imaginary from Equations (42) and

(48).

Now substitute Equation (40) into Equation (35) , and

using the relation [8, Equation (22)] and [10] with n > 0 ,

(51)
one has, for n )> 1 ,

-±jf Z Ĉ Jy) = - £- [Q(y)-P(y)] + /V(t)G(t,y)dt.(52)

-a -6 (-a'-P)
Multiplying Equation (52) by (l-y) (l+y) \(v) > then

integrating the resulting expression with respect to y

over [-1,1] for k = 0, 1, 2,..., and using the orthogonali-

ty relations , Equation (41 }, the complex constants C are

then jgiven explicitly in terms of integrals of the unknown

function (̂t), with CQ given by Equation (48), as

/T- IT
-lL 1

dy, n=l,2,...

(53)
if • ̂(t) = 0, which corresponds to an interface crack only,

and letting P(y)= -aQ,Q(y) = 0, Equations (49) and (53) give

CQ = 0, Cn = 0, n > 2 and ^
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This is the same as [8, 'Equation (26)] except for the al-

gebraic sign" which is due to the 'difference in sigh of "$ (t) 7

i.e., see Equation (5) above and [8, Equation (4)]. One

similarly finds the stress intensity factor, as in [8], to

be

From Equation (35) for y ->• 1 and noting that the integral

on (̂t) is bounded and 0(y) = 0, |y| )> 1 then

i
Q(y)-iP(y) = T - iT = - a. -±- / 0(t) -^ (55)

ire ie0 7ri -i t-y
or as

00 .. o (ot.B) «, -i?ra (n P,}

(56)
then

^T/1*(t)^:=e (l+7)(y-l)
a(y+l)P I cnPn

-1 n=0
2a

For C1 = , c = 0, C =0 n > 2

and as f1(y) = (y-2ieu) ,

then k1 +ik2= ̂ ao(l-2io)) , (57)

which is the same as [8} Equation (31)]. Note misprint in

[8] for k£ . In general the stress intensity factors are

(a, |3)
2 C P (1) (58)
n=0
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Now substituting for </>(t), using Equations (40), (48),

and (53), into Equation (36) one has1

/1w(z)l(z,x)dz
-i -i l_ . -i

?i oo 1 1 (a'P)

+ T^= 2, .., ,\. ^ / w(»)l(«,x)Pn(») dz X

_„ -6 ' !
G(t ,y ) ( l -y ) a(l+y) P P^Cy) dyj dt = -^ PQ(x)

, i (a,p)
- - / w ( z ) l ( z , x ) P (z) dzX

L(n-l,-a,-p) -i n

/1[Q(y) -iP(y)](i-y)"a(i+y)"P Pn_!'(y? <ay -

(59)
(-a.-p)

If Q(y) = Q, P(y)= - a , and as P (y) =1 with

1k(x , t ) = H( t 3 x) - - r cosh(Tro) ) /w(z) l (z ,x )dz

/ w ( z ) l ( z , x ) P (z) dz X
'7 a - n l T C i - i l r v P ^ •• n^--y^ n=i Jj^n-l^-aj-tr

-n -ft .
G(t,y)( l -y) a(l+y)~P P . y ) dy (60)

-i

then Equation (59) is

-i -i ' M̂-j. o

/ w(z)l(z,x)Pi(z) dz (61)
-i

-ib -11 The term cosh(TTcjo)/ w(z)l(z,x)dz is only present if

a =o , if a / 0 this term is set equal to zero.



22

which is the same form as [11, Equation (4.1)] where the

right .hand side is denoted by g(x).

For a > 0 this is an equation of the first kind and the

solution follows exactly as in [11], in terms of the

Chebyshev polynomials. Let

F(t) with / V(t)dt = 0 , (62)

and further assume P (x) = - cr

Substituting into Equation (6l) and referring to [11], the

solution is

N 1 f 1

0 / w(z)l(z,xr)Px(z) dz, (63)

-iWl Trr
, J, Xr=COs(^r) ,where r=

and Z
k=l

N is chosen large enough to give sufficient accuracy in the

Gauss-Chebyshev integration formula, [12, p. 889], The

solution of Equation (63) then gives the value of the un-

known function F(t) at N points on -l<[t<(l, from

which one can now determine approximate values for C from

Equations (48) and (53) by numerically integrating the in-

tegrals containing (̂t) . The stress intensity factors
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for the ends a and b are then [1], for a )> 0

••-2m
k ( a ) = 1+K1

and k(b) = - ^ ° P(+l) . (65)

sFor a = 0 , the appropriate change of variable for i^ and

in Equations (24) and (25) is shown in [13] to be

•q = tb , s = xb and (̂t) = h(tb).

It is further suggested in [13] that the range of definition

of the function /̂(t) be extended into the interval (-1,0)

in order to use the Jacobian integration formula associated

with p!(-l/2,-l/2)(t) m

Let, following [13],

1 _ / . x 1 ~,.x (66)

from which the solution is given by the set of equations

N ,
*-• ^ i

l + K n 2a^ (a,p)
= - -pT-̂  ^ - , / w ( z ) l ( z , x ) P x ( z ) dz (67)

^1 a Vl-y2 -l

where r« 1,2, . . . ,N;.Xr = cos (^j) ; t]c=

The stress intensity factor at the end, b, is

(l) . (68)

The strain energy release rate for the interface crack

is given as [5, Equation 71], [1̂ ],

TT(!+ mK^ (m+ K2)

2 n 2 [ ( l + m K 1 ) + ( m + K 2 ) ] (ki+ k^ '
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Numerical Solution and Results

The numerical solution to Equations (62) and (63) for

a > 0 , and.Equations (67) for a = 0, has been obtained

for the particular case of aluminum-epoxy half-planes for

ease in comparing with the results presented in [1] and [2],

The results presented are for constant pressure on the crack

surfaces and no loads at infinity, or therefore the solution

previously denoted by a,.., . The pressures are chosen by

assuming solution a- to correspond to a unit vertical

stress at infinity in the aluminum and a uniform horizontal

stress giving zero horizontal strain in the aluminum. The

stresses a , a and a are then, for plane strain,
o i 2

a = , = 0.42857, a = 1.0, a = 0.26844, for aluminum-epoxy
° ~ i 1 2

(70)
and

a = Jlf- = 0.42857, a^ 0.26844, a2= 1.0, for epoxy-aluminum,
2

where E =1.0 xlO7 psi, E =4.45xl05 psi, V1 = 0.30, v =0.35.
3.J- • 3̂?» cl_L. 6]p»

With F(t) known, the constants C are computed from

Equation (49) and (53) and the solution is complete. The

displacements are then given by Equation (42), (43), (44),

(50), the stress intensity factors by Equations (58), (64),

(65), and the strain energy release rate by Equation (69).

The number of points, N, taken in Equations (63) and

(67) and the number of constants Cn , M , computed from

Equation (53) were taken sufficiently large to give less
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than one percent error in any of the above computed func-

tions. The maximum.error was determined by taking succes-

sively larger values for M and N and examining the change

in the various computed functions mentioned above. Suffi-

cient accuracy was assumed when the most slowly converging

of these functions, which in all cases was the strain energy

release rate, numerically converged to within the prescribed

degree of accuracy. For example, if a = 0, b = 1, c = I,

values of M = N = 14 were found to be sufficient. If a = 0,

b = l , c=0.1it was necessary to take M = 30 and N = 20.

Convergence was somewhat more rapid for the aluminum-epoxy

pair than for epoxy-aluminum, apparently due to the in-

creased distortion in the epoxy-aluminum.

Of particular importance in the investigation is the

potential for further extension or arrest of a crack origi-

nating in one half-plane, as the crack either crosses the

interface into the adjacent material or extends along the

interface. By assuming each possibility for extension,

computing the appropriate stress intensity factors as a

function of continued growth, and comparing either stress

intensity factors for the through crack or strain energy

release rate for the interface crack with the critical

values, one can determine if continued extension is possible

or if the crack will arrest after a specified growth. It

should be noted that for non-symmetrical loading or geometry,

possible directions for crack extension are not as restricted.
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As an illustration of this criterion, the case of a

crack crossing the interface first will be presented using

the results of [1] and [2]. The stress intensity factors

for a crack originating in material one and growing toward

and crossing the interface into material two are presented

in Figures 2 and 3. Figure 2 is for an aluminum-epoxy pair

and Figure 3 for an epoxy-aluminum pair. From Figure 2 it

is seen that after crossing the interface into region 2 the

stress intensity factor, K(a) is initially a decreasing

function of continued extension and then changes slope and

approaches the full plane solution. It then appears pos-

sible to have some extension into the epoxy and subsequent

arrest. For the epoxy-aluminum pair, Figure 3 indicates

that the crack will extend to the left rather than toward

the interface. However, if the crack does cross the inter-

face, the stress intensity factor, K(a) grows unbounded

with continued extension and arrest is not possible.

Figure 4 represents the analogous cases as above, using

the results developed in the present study, with the crack

now assumed to extend along the interface rather than cross

into the adjacent material. Until the crack tip, a, reaches

the interface and begins to extend along the bond, the

stress intensity factors, K(a) and K(b) depend only on c^

and have the same form as the left side of Figure 2 and

Figure 3- Therefore, in Figure 4, only the strain energy

release rate for the crack extending along the bond is



27

presented. Figure 4 is seen to represent the same general

behaviour as K(a) in Figure 2 and again indicates the pos-

sibility of arrest. It is of considerable interest to note

that for all material pairs investigated, -T— • -* 0 as c — »• 0
r

for — = m < 1 and ^ -»• oo as c -»• 0 for m > 1. This
M-i oc

behaviour can be anticipated from the results of [1, Table 7]

where the opening stress on the interface near the crack

tip is shown to be compressive for m <( 1 and tensile for

m > 1.

The values of K(b) corresponding to the geometry and

loads of Figure 4 are shown in Figure 5- The decrease in

K(b) with increasing half length c! as seen on the right hand

side of Figure 5 is due to the closing affect of the in-

terface crack on the 9 = -n surface. In fact, for the

epoxy-aluminum pair with the loads given the crack on & = IT

was found to partially close at c = 2.75. The closing stress

is shown in Figures 6 and 7 for aluminum- epoxy and epoxy-

aluminum respectively.

Some characteristic displacements for the crack surface

on 9 = TT are depicted in Figure 8 and Figure 9 and numerical

values for some of the significant computed functions given

in Table 1 and Table 2. The effects of increased half-length,

c on K(b) and the opening displacements are clearly seen in

these two figures and the tables, with the epoxy-aluminum

having the more noticeable change,
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PERPENDICULAR
CRACK

i i

INTERFACE
CRACK

•av2(co,Y)=o-0

Figure 1. Bonded Elastic Half-Planes with
Perpendicular Cracks.
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Adjacent Epoxy Half-Plane (from [1] and [2]).
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-5 -.4 -.3 -.2 INTERFACE .2 .3 .4 .5 .6 .7 .8 -9

Figure 3. Stress Intensity Factors for a Crack Originating
an Epoxy Half-Plane and Growing into an Adjacent
Aluminum Half-Plane (from [1] and [2]). Plain
Strain.
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cr,= 0.0

c = 0 . 0

cro=0.4285

Figure 6. Normal Stress on 0 = TT due to a
Crack on the Interface. Aluminum-
Epoxy. Plane Strain.



Fiaure 7. Normal Stress on 0 = TT due to a
Crack on the Interface. Epoxy-
Aluminum. Plane Strain.
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a

0.3333

0.111

0.0697

0.0476

0.0

0.0

0.0

'0.0

0.0

0.0

0.0

0.0

0.0

c

0.0

0.0

0.0

0.0

0.0

0.005

0.010 "

0.015

0.050

0.075

0.100

0.150

4.0

k(b)
0 -
1

0.6050

0.7522

0.7904

0.8154

0.9582*

0.9746

0.9814

0.9861

1.0025

1.0090

1.0136

1.0197

0.7073

k(a)
n
l

0.6242

0.8926

1.0210

1.1377

00*

0.0

0.0

/

0.0

0.0

0.0

0.0

0.0

0.0

k

-

-

-

-

-

0.0430

0.0483

0.0541

0.0873

0.1060

0.1224

0.1510

0.8575

k

-

-

- .

-

-

0.1916

0.1979

0.1820

0.1181

0.0971

0.0829

0.0640

-0.1111

STRAIN
ENERGY
RELEASE
RATE
X 107

-

-

-

-

-

2.3902

2.5726

2.2361

1.3379.

1.2808

1.3558

1.6680

46.3612

STRAIN
ENERGY
RELEASE
RATF
X 107

(a=b=0)

-

-

-

-

-

0.0580

0.1159

0.1739

0.5797

0/8696

1.159̂

1.7391

46.3770

*From [1].

Table 1. Numerical Value for Stress Intensity Factor and
Strain Energy Release Rate for Intersecting
Cracks. Aluminum-Epoxy. Plane Strain, b = l.
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: ̂  - - - - - - a

0.3333

0.1111

0.0697

0.0476

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.005

0.010

0.015

0.050

0.075

0.100

0.150

2.7

k(b)
a
i

0.5551

0.6109

0.6172

0.6200

0.6241*

0.6245

0.6251

0.6258

0.6328

0.6387

0.6448

0.6577

0.3101

kfa)
ai

0.5397

0.5224

0.4895

0.4605

0.0*

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

k

-

-

-

-

-

0.1192

0.1262

0.1338

0.1571

0.1656

0.1725

0.1842

0.7023

k

-

-

-

-

.

0.3747

0.2801

0.2035

0.0561

0.0559

0.0658

0.0804

0.1000

STRAIN
ENERGY
RELEASE
RATE
X 107

-

-

-

-

-

9.5856

5.8517

3.6775

1.7252

1.8959

2.1136

2.5062

31.2066

STRAIN
ENERGY
RELEASE
RATE
X 107

(a=b=0)

-

-

-

-

-

0.0580

0.1159

0.1739

0.5797

0.8696

1.159̂

1.7391

31.3040

*From [1].

Table 2. Numerical Values for Stress Intensity Factors and
Strain Energy Release Rate for Intersecting Cracks.
Epoxy-Aluminum. Plane Strain, b= 1.
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The problem considered in this paper is a direct con-

tinuation of the preceeding study to include the case of

the crack crossing the interface as well as debonding

along the interface. The notation of the preceeding paper,

refered to as Part I, will be used throughout and citations

from Part I will be made directly by equation or reference

number which are followed sequentially in the present

study.
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- . . ..--,- . . - Formulation ......

Assuming a coordinate system having the .origin at the

center of the interface crack, as shown in Figure 10, .it

is seen to be convenient to represent the solution in terms

of the polar variables (r,0), as the crack surfaces, the

interface, and the horizontal plane of symmetry lie on con-

stant 0 surfaces. The cases of intersecting cracks (a or

a* equal to zero, separately or simultaneously) and non-

intersecting cracks (a and a* not equal to zero) are con-

sidered.

Following Part I, the Mellin transforms of the stresses

and displacement are:

M[r2o, (r,0)J = Sv(s,0) = 2i(s+l) X

f is0 i(s+2)0 _ -i(s+2)0 ]
I Akse + Bk(s+l)e - Bke J

is0 1

J

i(s+2)0 _ -i(s+2)0
Bke + Bke

M = Vk(s,0)

is0 i(s+2)0 _ -i(s+2)0
+ Bk(s+l)e + KkBke



where K., =

plane strain

(3-v, )/(i+v, ) for generalized plane stressk k

and |JL, , v, are the shear modulus and Poisson's ratio

respectively. The transformed functions above are

= Tkrr (r,0)

, ,
v(r,e) = + with k = 1,2

for region 1 and 2 respectively.

Using displacement dislocations on the surfaces 9 = 0 ,

0 = TT , 8 = 7T/2 , the boundary conditions are:

T2r0(r,0) = 0

Tir(r,?r) = 0

= - |h(r)6(r-ro)

, on 0 = 0 in material 2

(7D

on 0 = TT in material 1

(72)
and

T (r,7T/2) ='ire

U 1 ( r ,7 r /2) -10

f ( r )6( r - r o )

g(r)6 (r-rQ)

interface
e = 7T/2

(73)
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where the second of Equations (71) is the only change from

Part I. On transforming the above boundary conditions, the

resulting eight equations specifying the unknowns C1. are

as follows:

sC' + (s+l)C» + C' = 0 , , (74)
e ^ a a s+1 u '

l-Uh*(r )r
sc; + (s+l)c- - V. = - g(s° J (75)

sC'sin(7rs)+sC'cos(7Ts)+(s+2)C'sin(7rs)+(s+2)C«cos(7rs)=0 , (76)
X • ' 2 3 4

sC< sin(7rs)+sC'cos(7Ts)+(s+l-K )G'sin(7rs)+(s+l-K )C«COS(TTS)
x 2 13 1 4

sC«cos (Trs/2)-sC» sin (7TS/2)-sC' cos (vrs/2)+sC'sin (Trs/2)
1 2 3 4

- s(C t-C t)cos(7TS/2)+s(c '-C')sin(7rs/2)=0, (78)
5 7 6 8

sC tsin(7rs/2)+sC lcos(7rs/2)-(s+2)C'sin(7rs/2)-(s+2)c'cos(7rs/2)
1 2 3 4

- [sC'-(s+2)c']sin(7TS/2)-{sC I-(s+2)C']cos(7rs/2)=0, (79)
5 V 6 8

-m[ sc'cos (-7TS/2) -sC' sin (?rs/2) - (s+l+K ) C' cos (?rs/2)
1 2 13

+ (s+l+K i)C lsin(7TS/2)]+[sC l-(s+l+K2)c']cos(7TS/2)

f / )r
s+1

-[sC'-(s+l+K )C']sin(7rs/2) = - —-—-rr—— , (80)
6 28 s~r -1- '

-mf sC' sin (?rs/2)+sC' cos (7rs/2) - (s+l-K )C' sin (?rs/2)
1 2 13

- (s+l-K )C* cos (7TS/2)]+[sC'- (s+l-K )c' ] sin (irs/2)
1 4 r 5 2 /

H g(r )rs+1

+ [sC -(s+l-K )C]cos(7rs/2)= - 2 ? . (81)
O 2 B ' O I ^

The functions C1. are given by c! = C. + C* where the C.
i i l l i
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are listed in (14) to (19) and C* is the change in C^ due to

the crack on 0 - 0. The C* are given below„as . ._. , .
i

C* = - c* cosfos) (82)
1 2 sin(TTs)

s+l^'(.0)»0 - fgL.ggn (83)
2 - 2 (s+l)s 1 1+mKi m+K / v 'x ' V. z J

(84)
4 Sin(7TSj

C* - . ' ° ° (851
4 - 2(s+l)(l+mx ) ^ D;

2 o o \y
CJ = " 2(s+l)sin(7Ts)s(l+K ) ^

,-iru^ (s+l)(2s+3)(l-m)
- (s+2)cos(7rs) (86)m+ K

s+l
p,Jr*(r )r (s+2)

C* - ^7 £r-2 r7—r (8?)
e ~ 2(s+l) (1+K ) (s) v°' '

2

. S+l

r* — . 9 ° V
7 ~ 2(s+l)sin(7rsj (m+K ) (1+K_) ^

2 2

r ^
<(2s+3) (1-m) - (m+K,,)cos(7rs)> (88)
I J

s+l

J- (89)

The integral equations in terms of the unknown density

functions f(r), g(r), h(r), and h*(r) are given by the

conditions that
00

T(r)+iN(r) = / [f ir& (r ,rQ,7T/2) + it ^QQ (r,rQ,TT/2) ]drQ , (90)
O
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N*(r)=/T20e(r,ro,0)dro . (92)
o

Equations (90) and (9!) are exactly as (22) and (23), and

(92) is due to the presence of the crack on 8 = 0 . N(r)

and T(r) are the normal and shear stresses on the inter-

face. and N (r), N*(r) are the normal stresses on theo o

symmetry line in materials 1 and 2 respectively.

On noting as in Part I that

f(ro) = g(r0) = 0, c < rQ < »

h(ro) = 0, 0 < ro < a, b < ro < co

h*(ro)= Q, 0 < ro < a*, b* < rQ < »

and following the same procedure of Part I leads to the

three integral equations

1

+ A(t)Q*(t,y)dt, -1 <y< 1, (93)
-i

l+K

" o" p(x)~ f 4(t)J*(t,x)dt-/ 0(t)i(t,x)dt,-i<x<i,

dt + /

- /%> (t)l*(t,x)dt, -1 <x<l, (95)
-i



specifying 0(t), #(t) and £(t). In the following equations,

if a,a* = 0 then aQjaJ is replaced by b,b* respectively,

H*( t f x) = -•£-
m f 8s 12s

m
K,

^- 3d-

C(1+K2)

+ ct

-is (1+ -f) _2
S

-2 ,
K2\ vm

Z> o _2
C2t2+ S

_2(itH-K2) 2(l+mK1.

(_ l+mK1

J*(t,x) =
7T

( l + K j

2 f >

G*(t ,y) = -
%

-1T1

K

_2, 2 2
T] +c y

cy

2(fi2-c2y2)-

(1

,„..„., ,-i)(3na-cV
2(f)-c2y2)-

m

s +



with ^(tjx)and H(t,x) given in Part I and a*= (b*-a*)/2,

b* = (b*+a*)/2,

, if a* 7^0 /^ajx+b*- , if-̂ a* f-0 --

i = I
, if a*= 0 , |̂ b*x , if a*= 0 .

Note that the above integral equations could be written down

immediately by superposition, noting the solutions in [2]

and Part I. That is, to obtain Equation (93) from (35)

a term must be added to account for the normal and shear

7T "*stress on 0 = -% due to a crack on 0 = 0. But whether or

not the crack is on 0 = 0 or 0 = TT is a matter of nomen-

clature, and the terms corresponding to 0=0 may be ob-

tained from the terms corresponding to 0 = TT by careful

inspection. To obtain (g4) from (36) the effect of the

crack on 0=0 must be accounted for, and its effect is

given in [2]. The third integral equation is given 'in [2]

with the added term given by Part I to account for the

effect of the interface crack on the symmetry line.

The solution for </>(t) from (93) j follows directly

from Part I, and the ,C are given by

*(t)G(t,y)dt
L(n-l,-a,-p -iLai

+ /1e(t)G*(tJy)dt] (i-y)"
a(l+y)"PPn_1(y)dy (96)

-i J

where the C term is determined as in Part I, and is given

by the following:

if a* ̂  0, a ̂  0 CQ = 0

if a* ^ 0, a = 0 Crt = - ibcoah(TTW) f1
' •* ri _/

C7T



If a* = 0, a ̂  0 C = ca^n /
1
|(t)dt

-1

If a* = 0, a = 0 C = -O C7T ^

ib*cosh(TTCD) r1*^*.^*-
CTT _^ ^

The displacements are then found by integrating (71},

(72), (73), from which the constant C has been found,

and the continuity condition of the functions (̂t) and

£ (t) are specified. Integration of (71) gives the opening

displacement on 9 = .0, where if a* = 0, a* is replaced by b*,.

upfl(x,6) ̂  ̂ f /x 4(t)dt^-^/1 | (t)dt (97)
0 -i -i

0 may now be substituted into (9̂ ) and (95), and letting

Q(y) = 0, P(y) = - aQ , one has

i d i I+K-L
71 ^i -i ^1

ar
and (98)
1 1 ^14- 1 1+K^

71 ll - " _1
,

w(z)l*(z,x)P (z) dz -1 -1
where

R*(x,t)= J*(t,x)+ ib*cosn(7rcD) /w(z)l(ZjX)dz

(99)

)̂Kz,x)Pn(z) dz



R(x,t)-= J(t,x) -
-1

w(z)I*(z,x)Pn(z) dz X

1

-1
dv

k*(t,x) = H*(t,

2i "

-1

(ot,B)

1-7
2 n=

/ G*(t,y).(l-y)"a(l+y)'pPn.1(y)dy ,
-1

and k(t,x) is given in Part I.

Equations (98) and (99) may be solved in a similar fashon

to (6l) following Part I with the only change being

rather than having one unknown function F(ti,) to t»e solved

for at k discrete points, two unknown functions may be

assumed F(t, ), F*(t.), whose solutions are obtained from
K J

2N simultaneous equations that are, in general, not sepa-

rable.
-i i

For a > 0 let (̂t) = F(t) with / ̂ (t)dt = 0 .
-i

For

For

For

a = 0 let

a*> 0 let

= 0 let

p(t) = F(t)

l -F*(t) with / = 0
« T_

F*(t) =
T-t2

P*(t) .
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Then for example when a > 0 , a* > 0 Equations (97) and

(98) may be written as

N 1 I" 1 1N!
k= 1 *- k r -J K= i

/1w(z)l(z,xr)P (z) dz ,
•"1 OC

N
with 2 --L F(tk) = 0 , (100)

and.

A ^F(tk)R(xr,tk) + J. i

2a
a -
2 _. fa vi

. ,
/ w(t)l*(z,x )P (z)

T 1-i

N

with S N ̂(^ = ° (101)

f (2k-l)-
where r = 1,2,..: ,N-1 , t = cos 2N ' r•],,
and the upper limit in the first and second sum appearing

in Equations (100) and (101) has been chosen to be identical

for convenience.

Had a been equal to zero and a* been chosen greater

than zero, Equations (100) and (101) would appear as follows, [13]

.

-i

(a,p)
w(z)l.(z,x )P (z) dz (102)r i
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N , r _ • i

- - £̂ <l̂ l { JL-- - JX J- J-w i -•

k=i 3=1

I+K 2a

N
with S 5 F*(t.) = 0 (103)

• Trr \ I
where r = 1,2,... ,N, *r = cos (2I^_1) , tk = cos '4^+"

;. = cosr = 1,2,...,N-1, xr = cos(Z^1) ,

and again the upper limit sums on t, and t. have been

assumed equal for convenience.

The stress intensity factors for a y 0 are given by Equa

tions (6̂ ) and (65), and for a = 0 by Equation (68).

For a* > 0
2p, A/a*"

k(a*)=

(105)
2

and for a* = 0

^
k(b*) = - K F*(+l) . (106)

2

The strain energy release rate is given by Equation (69).



.Numerical Solution and Results

The numerical solution to Equations (98)̂  and (99) has

been obtained for the particular case of aluminum-epoxy

half-planes for ease in comparing with the results presented

in Part I. As in Part 1, the results presented are for

plane strain and constant pressure on the crack surfaces

with no loads at infinity.

Of particular importance in the investigation is the

potential for further extension or arrest of a crack origi-

nating in one half-plane, as the crack reaches the inter-

face. In Part I, the instances of a crack reaching the

interface and either spreading along the bond or crossing

(without spreading along the interface) was considered.

It is seen in Figure 11, that extension of the crack into

the adjacent epoxy half-plane decreases the tendency for

interface crack growth compared with the results of Figure 4,

and for larger values of half-length c, the strain energy

release rate is less than for the no-interference interface

crack.

Table 3 gives some numerical values of the stress in-

tensity factors, strain energy release rate, and displace-

ments for the problem of Figure 11. As the crack extends

into the epoxy half-plane, k initially decreases and k

changes sign as the direction of shear changes.



Figure 12 depicts the change in strain energy release

rate for different locations of a unit length perpendicular

crack, and, as suggested by Figure 4 of Part I, the geometry

having the most potential for failure is for the crack to

intersect the interface from the lower modulus side without

crossing.

It seems reasonable to conclude from the results of

Part I and the present study, that the most critical state

for continued crack growth occurs when a perpendicular crack

intersects the interface crack but does not cross. Further,

for a crack approaching an undamaged interface from the

higher modulus side, interface damage is much less likely

than continued extension into the adjacent material. If

the crack originates in the lower, or equal modulus half-

plane, the potential for extension, either along the inter-

face or crossing the interface, exists and depends on the

relative bond strength and fracture properties of the half-

planes. The combination of interface growth and extension

into the higher modulus side appears unlikely.
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ajy(x,oo) =

crr crx
2(co,y)=o-0

Figure 10. Bonded Elastic Half-Planes with an
Interface Crack and Two Perpendicular
Cracks.
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AN EXPERIMENTAL INVESTIGATION OF

^BONDED ELASTIC HALF ̂PLANES WITH-AN .INTERFACE- CRACK

AND A PERPENDICULAR INTERSECTING CRACK

By

James G. Goree
Associate Professor of Mechanics and

Mechanical Engineering

James O. Feemster, Jr.
Graduate Assistant M.S. Candidate in

Mechanical Engineering

In this study, the nature of crack growth near a bonded

interface between two linearly elastic half-planes is in-

vestigated experimentally. The accuracy of some specific

analytical solutions previously developed is demonstrated.

Material pairs of Plexiglas-Buterate and Plexiglas-

Plexiglas were used with the interface bond formed by

using ethylene dichloride. An initial perpendicular crack

in the Plexiglas and/or an interface crack was developed

by fatiguing the specimen until the desired configuration

was reached. The static stress field necessary to initiate

fracture was monitored with a network of strain gages in

the vicinity of the crack or cracks and the behavior compared

with the corresponding analytical solution.

The stress required to initiate fracture in the per-

pendicular crack as the near tip approaches the interface

is shown to be in close agreement with the corresponding
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analytical solution. The na'ture of the interface bond and

the fracture toughness of. the .Buterate .were., both such that

quantitative results could not be obtained as to the effect

of the intersecting crack on the interface, the interface

crack, or the perpendicular crack in the Buterate. However,

some important observations can be made as to the behavior

of these phenomena. When the perpendicular crack is formed

in the higher modulus material, the crack tip has a tendency

to extend into the adjacent half-plane and to leave the

interface undamaged. In the Plexiglas-Plexiglas material

pairs, the crack may either cross into the adjacent material,

or extend along the interface, depending upon the relative

strength of the interface bond as compared to the fracture

toughness of the two materials. In no instances did the

crack extend along the interface and into the adjacent

half-plane simultaneously.
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INTRODUCTION

The purpose of this study was to investigate experi-

mentally the nature of crack growth near a bonded interface

between two linearly elastic half-planes and to demonstrate

the accuracy of some specific analytical solutions developed

for geometries amenable to experimental studies. It was

assumed that crack propagation in the experimental work

corresponded to brittle fracture, according to the classic

Griffith crack criteria [1], [2].1

In the existing analytical solutions appropriate to the

present work, the specific geometry considered was the case

of two bonded elastic half-planes containing a finite length

crack in one material, with the crack being perpendicular

to the material interface as shown in Figure 13. The be-

havior of the stresses, stress intensity factors, and

strain energy release rates were investigated, therefore

indicating the potential for continued crack growth. Solu-

tions for the crack terminating at the interface or cros-

sing into the adjacent material have been presented by

Erdogan, Cook, and Biricikoglu in [3], [4]. The instance

of one end of the crack approaching the interface and

debonding along the interface or debonding and crossing into

the adjacent plane has been investigated by Goree and

Venezia in [53* [6].

1 References for this section of the report are listed
seperately from those of Parts I and II. See page 89
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SELECTION OF TEST MATERIALS

It was desirable to select materials with sufficiently

low fracture toughness so as to allow fracture initiation

at net stresses well below the elastic limits of the two

materials. Polymers were chosen as test materials instead

of metals., because the load levels needed to initiate frac-

ture would be low, and polymers could be chemically bonded

easily.

After investigating all of the commercially available

polymers to use for experiments, a material pair of Plexi-

glas and Buterate was finally chosen. These materials have

a common solvent, ethylene dichloride, thus allowing them

to be edge-bonded to produce the desired type of interface.

Plexiglas was found to be the most suitable of the materials

available, as it behaves elastically at relatively low

stesses, and brittle fracture can be initiated easily. It

was desirable to find another polymer which was dissolved

by the same solvent as Plexiglas, which had a different

value of Young's modulus, and was not fracture tough.

Buterate and Polycarbonate were the only readily available

choices, even though they did not meet all of these re-

quirements. Although they were the only other polymers

available that use the same solvent as Plexiglas, both
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materials were extremely fracture tough. Buterate was chosen

instead of Polycarbonate, because a larger modulus ratio

could be achieved with the Plexiglas-Buterate material pair.

Because of the resistance of Buterate to fracture, it was

used as the right half-plane in all of the experiments in-

volving Plexiglas-Buterate material pairs. Providing that

fracture was initiated in the Plexiglas, the fracture tough-

ness of Buterate did not affect the outcome of the experi-

mental work. However, fracture along the bonded interface

was influenced by the toughness of the Buterate.

Another consideration in the choice of materials was

the thickness of each test specimen. It was decided to

use 1/8 in. (.3175 cm) thick sheets of Plexiglas and

Buterate, as this thickness would be small enough to ap-

proximate the desired state of plane stress, while being

thick enough to provide sufficient surface area to give a

satisfactory interface bond between the two materials.



EXPERIMENTAL PROCEDURE

All experimental work was conducted on an Instron Model

109 dynamic testing machine as shown in Figure 14„ With the

aid of a network of strain gages placed on each test speci--

men, the stresses exerted by the machine could be monitored.

Of considerable importance was the ability to obtain a stress

field near the cracks which closely approximated the uniform

stress field assumed in the analytical solution. Therefore,

it was desirable to make each test specimen as large as

possible within the limits imposed by the size of the test-

ing machine, in order to minimize the effects due to the

machine grips. Each material pair tested was 12 in. (30.48

cm) in height and 15 in. (38.10 cm) in width.

In order to calculate the stress in each test specimen,

it was necessary to determine experimentally the value of

Young's modulus E and Poisson's ratio v for each material.

The following values were found:

X 106 ^E = £_,., . , = 5.07 X 105 psi (3.i Plexiglas ^ ' \

V VPlexiglas
/ \

•Plexiglas = ̂ ^ * 105 psi (l.280 X 10* ^

V EButerate = 2.58 -X 105 psi (l.780 X 106 g) , and

= 0.37^Buterate-9.4l6xio4
Psi(6.496xio5 *f\.

x s

V
2~ VButerate
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In the analytical solutions [5], [6], the material

half -planes were assumed to be loaded with uniform stresses

a . a , and a as shown in Figure 13 , with the strains
O i 2

being related in such a manner as to give constant strains

in both the X and Y directions at points remote from

the cracks. The following relations between the stresses

must then hold:

-

for generalized plane stress,, and

E
- a

Vl

(2)

for plane strain.

In order to achieve uniform strain in the Y-direction

across the specimen shown in Figure 13, the resultant load

must act at a distance d from the material interface^ as

shown in Figure 15. This distance d for a specified

material pair can be computed by first finding the rela-

tionship between the stresses a and a , and then by

summing moments about the material interface. By refer-

ring to Figure 15 for a specimen of thickness t, resultant

loads are

R = a tw , and (3)

R = a tw . ' (4)
2 2 2
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Summing moments about the interface of the specimen,

Riwi R w - . - - - . , - , . _ . . -
Rd = —-— T̂ -2- , where (5)

R = RI + R2 . (6)

Substituting Equation (6) into Equation (5) gives the fol-

lowing relation for d :

d = 2(a w + a w } '
1 1 2 2

As an example , the distance d for a material pair of

Plexiglas-Buterate in the state of plane stress with

w = 6 in. (15.24 cm),

w = 6 in. (15.24 cm),,

a =1.0, and

ao = 0.5 0i ,

will be calculated.

Using the experimentally determined values of E and v for

Plexiglas and Buterate, a is given by Equation (l) as
2

cr = 0.6007 a ,
2 1

and Equation (7) then yields

d = 2(aw +aw ) = °-7^8 in. (1.899 cm) .
J- J. (Z- 2
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If,the resultant R of the load is placed this distance from

the interface in the higher modulus side of ther material - - - - - -

pair., uniform strain across the specimen in the Y-direction

will result.

In the adaptation of the analytical problem to experi-

mental work,, it was found that this distance d could be

approximated as zero,, due to the manner in which each

specimen was constrained during loading,, and uniform strain

parallel to the interface would still be obtained. Figure 16

shows the method of gripping each specimen for testing. The

grips were fabricated from eight steel bars 3/8 in. (,952cm)

X 1 in. (2.540 cm) X 12 in. (30.480 cm), which were bolted

tightly on each test specimen, two on opposite sides of

each of the four edges of the specimen. Underneath each

steel grip was placed a strip of Plexiglas 1/8 in. (.31?cm)

X 1 1/2 in. (3.810 cm) X 12 in. (30.480 cm), in order to

reinforce each test specimen and to distribute the load

more evenly.

By considering the actual method of loading each

specimen, the value of d, as shown in Figure 16, will

again be calculated. Using the same Plexiglas-Buterate

material pair in plane stress with

wx = 6 in. (15-24 cm),

w2 = 6 in. (15.24 cm),

oi = 1.0 , and



68

aQ = 0.5 a ,

the value^ of d calculated will be shown to be negligible..

For the purpose of computing this distance, the resultant R

is shown in Figure 16 to be placed a distance d from the

interface in the higher modulus material. It should be

noted here that the stress field near the grips is not uni-

form. However, in order to obtain an approximate value for

the distance d , which accounts for the presence of the

lateral steel grips, the strains parallel to the interface

will be taken as equal in all three materials and given by

the average strain in either the Plexiglas or the Buterate,

as computed from the uniform stress fields a .a , or a .a .

Therefore^

£Plexiglas ~ £Buterate £Steel '

The relationship between the stresses a and a in the

Plexiglas and Buterate was found previously to be

a = 0.6007 a
2 1

The value of the three strains can be found as follows:

1_ / _ v
£Buterate ~ E2 °̂'2 20' ~ £Plexiglas Steel

where

E = 2.58 X 105 psi(l.780 X 106 ̂ f) , and
2 \ m/

v2 = 0.37 .
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Then,

...... ̂ Buterate = 2'2 X ^z i n i n 2 . 2 X 1C

The approximate tensile stress in each of the four lateral

steel grips can now be found:

where

°s = £Steel ESteel

£Steel = 2-682 x 10 6 a in/in(2.682 X

ESteel = 30 X 10s psi (2.070 X 10s

The resultant R in Figure 16 is now found to be

R = 6 a t + 6 a t + 4 0 ( l ) (3/8).
1 2 s

Summing moments about the interface of the specimen ,

R d = 6 a t - 6 a t .
1 2

Then,,

6a t - 6a2t
d = 60 t + 6a t+l.5a =

1 2 S

Since this value of offset is then effectively zero

within the accuracy of the tests, the resultant load under

actual test conditions was placed along the centerline of

each specimen. During testing, the condition of uniform

strain across the specimen parallel to the interface was

verified with the use of strain gages.

For each specimen tested, it was desired to establish
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a specified ratio between the stress a and the lateral
i

stress a . This objective was achieved with the use of

eight alien head screws threaded into the side grips as

shown in Figure 16. By tightening these screws against

the top and bottom grips,, the side grips could be forced

outward, thus creating a lateral stress on the specimen.

It should be noted that high values of a . such aso '

a = 1.5cr , could be easily achieved with this method.

In order to establish the desired values of a and a .i o '

the strain in the X and Y directions was carefully moni-

tored by a network of strain gages, as is shown in Figure 16.

Strain gages having 350 ohm resistance were used, because

the problem of gage "drifting" associated with heating

could be eliminated. Gages having 120 ohm resistance, and

therefore larger current, had a tendency to store heat,

because the polymers that were used as test materials were

not good thermal conductors. In the initial 'tests, twenty

strain gages were placed on each test specimen in order to

investigate the stress state in the vicinity of the cracks.

The information gathered in these initial tests suggested

that the gage placement as shown in Figure 16 was both

economical and practical, and that the stress state moni-

tored in the vicinity of the cracks was uniform to within

four percent.

In order to achieve satisfactory correlation between

the analytical solutions and the experimental results, it
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was necessary to form the cracks by fatigue to a desired

length in each test specimen. With the use of the Instron;

Model 109 dynamic testing machine, the mean load, amplitude,

and frequency of loading could be specified, thus enabling

the operator to fatigue the test crack to any desired

length.

Before the tests on the bonded material pairs were

conducted, the critical stfress intensity factor K for

Plexiglas was determined. In order to find this value K ,

five test specimens were made and tested, as shown in

Figure 17. In each case, a 5/32 in. (0.397 cm) hole was

drilled in the specimen, and a notch was made with a

surgical scalpel on each side o-f the hole perpendicular

to the direction of loading. A crack was first fatigued

to a desired length, and then loaded statically to de-

termine the critical stress a at fracture. Strain
i

gages were used to accurately monitor this stress. The

value of K was then determined from the following rela-

tionship:

where

a = stress at which the crack propagated, and

-t = half-length of the initial crack .

The value of K for the Plexiglas used in the experimental

work was found to be

Kc = 530 psi VTn~. (5828 m
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After determining the value of K for Plexiglas, tests

were then conducted on the Plexiglas-Buterate^ and Plexiglas-

Plexiglas material pairs. First, the materials were edge-

bonded to form an interface, and reinforced around the four

edges with eight Plexiglas strips 1/8 in. (0.317 cm) X 1 1/2

in. (3.810 cm) X 12 in. (30.480 cm). In each case a hole

1/4 in. (0.635 cm) in diameter was drilled in the left half-

plane a specified distance from the interface. A scalpel

was again used to make a notch in one side of the hole

nearest the bonded interface,.as shown in Figure 16. The

notch was made on one side only in order to keep the crack

from propagating to the left under the fatigue load. If an

interface crack in the test specimen was desired, a 1/32 in.

(0.079 cm) wide slot was milled a desired distance along

the interface, and a scalpel was used to put a notch at

each end of the slot. At this time, the network of strain

gages was placed on the specimen. The specimen was then

secured in the testing machine, and turned perpendicular to

the usual axis of loading, and an interface crack was fa-

tiqued. In all*of the tests performed, a fully satisfac-

tory interface crack was never achieved, as the solvent

used in bonding the materials changed the material proper-

ties slightly, thus making them more fracture tough. How-

ever, a more satisfactory interface crack was obtained in

the Plexiglas-Plexiglas material pairs than in the Plexi-

glas-Buterate combination.
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The test specimen was next placed in its normal loading

position, as is shown in Figure 16, and was fatigued under

a specified load and frequency until the end of the crack

perpendicular to the interface had propagated to within a

desired distance of the interface. It was then loaded

statically under a specified ratio of a /o^ , which was

monitored by the network of strain gages previously de-

scribed, to determine the stress at which the end of the

crack started to grow toward the interface. The effect

of the crack upon reaching the interface or the interface

crack was then observed. It should be noted that the

presence of the drilled hole at the left end of the crack

did affect the outcome of the experimental results for

short cracks, as is shown in the following section.



EXPERIMENTAL RESULTS AND CONCLUSIONS

In Figure 18, a comparison of the analytical and ex-

perimental results in Plexiglas-Buterate material pairs is

shown by curves 1 and 2 respectively. The critical stress,

which is the stress required to initiate fracture, is plot-

ted versus the distance of the crack tip from the inter-

face. According to the results of [3] through [6], the

critical stress approaches zero as the crack tip nears the

interface, and approaches infinity as the crack length be-

comes zero. Curve 3 of Figure 18 gives the critical stress

required for a comparable length crack in a full-plane of

Plexiglas. The critical stress for the full-plane problem

approaches infinity as -t approaches zero, as is shown

from the following relationship:

ac = Kc/ VT

where a = critical stressc

K = critical stress intensity factor, and

t = half-length of the crack .

The experimental results agree closely with the

analytical results in the region a = 0.05 in. (0.127 cm)

to a = 0.4 in. (1.016 cm). However,, in the region where

the crack tip is in the vicinity of the drilled hole, the
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stress concentration associated with the presence of the

hole reduces the critical stress a , as shown in curve 2

of Figure 18. The problem of determining the stresses and

stress intensity factors for symmetric cracks emanating

from a circular hole in a full plane was considered by

Newman in [7]. The results given in TABLE 1 of [7] are

reproduced in Table 4 of the present study. Note the

column corresponding to F in TABLE I of [7] should read

A = 0 rather than A = 1. Similarly^ the column for F

should read A = 1. These changes have been made in Table Jj-

of this investigation. The present one-sided crack seems

to be influenced by the presence of the hole more strongly

than the symmetric crack does. However, the trend is the

same.

In Figure 18, curves 1 and 3 agree within 5 percent

of each other until the crack tip is within approximately

0.2 in. (0.508 cm) of the material.interface. The crack

tip is then affected by the presence of the Buterate in

the right half-plane, as is shown in curve 1, and reduces

the critical stress required for fracture.

Because of the inability to produce a brittle in-

terface,, no quantitative results were obtained for the

behavior of an interface crack or the effect of the per-

pendicular crack on initiating fracture along the bond.

However, some important observations were made as to the

influence of the modulus ratio of the materials in both
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Plexiglas-Buterate and Plexiglas-Plexiglas material pairs.

In the Plexiglas-Buterate combination, an interface

crack could not be formed as a result of a perpendicular

crack intersecting the interface. According to the analy-

tical solution [3], a material pair with the intersecting

crack in the more rigid material actually has compressive

stresses induced on the interface in the vicinity of the

crack tip. When the perpendicular crack tip reached the

interface,, arrest occurred in all experiments,, regardless

of whether the test specimen was under a static load or a

fatigue load at the time of intersection. By continued

fatigue loading, the crack could always be forced to cross

into the Buterate, as shown in Figures 19 and 20 , and af-

ter a crack growth of approximately 0.1 in. (0.2540 cm), '

brittle fracture would occur. As discussed in [3], the

order of the stress singularity for the cleavage stress of

the intersecting crack is larger than one-half, providing

that the crack originates in the higher modulus material,

and it is assumed that this large opening stress was suf-

ficient to develop the fatigue crack in the Buterate. It

is of considerable interest that a fatigue crack could be

produced, and that brittle fracture would occur in the

Buterate in this manner. In a full plane of Buterate with

an initial configuration as shown in Figure 17, fatique

loading in the identical load and frequency range would

not generate a crack. After fatiguing for 200,000 cycles
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at a load of 1400 + 200 Ibs. and a frequency of 15 hz.,

the crack tips in the full-plane of Buterate became highly

distorted, and multiple irregular cracks were formed, as

shown in Figure 21 , none of which lead to fracture. With

a large lateral load, the interface in Plexiglas-Buterate

material pairs could be made to fail in tension, as it was

weaker than either of the two materials. In one experi-

mental run, a crack originated on the interface due to a

flaw in the bond approximately two inches from the inter-

secting crack tip. As the lateral load was increased,

this crack behaved similarly to a brittle fracture, and

it propagated along the interface until the intersecting

crack tip was reached, at which time it stopped, leaving

the bottom half of the interface still intact.

Unlike the Plexiglas-Buterate pair, a crack could be

initiated along the interface in the vicinity of the in-

tersecting crack tip in the Plexiglas-Plexiglas material

combination, depending upon the lateral stress, 0 and on

the intersecting crack length. As in the Plexiglas-

Buterate material pair, the interface always stopped the

intersecting crack. Both the lateral stress, o_ , and

the intersecting crack length were significant in pro-

ducing interface failure. However, the nature of the in-

terface bond was such that consistent results could not

be obtained. With large values of the lateral stress,

such as a = 1.0 a , the interface would first arrest
o i '
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the intersecting crack tip, but under continued fatigue

loading the interface would fail,, providing that the in-

tersecting crack length was 0.8 in. (2.0320 cm) or less.

For intersecting cracks longer than this value,, the crack

tip would cross the interface, resulting in fracture of

the test specimen.

In conclusion, for material pairs having |_i /|_i <( 1 ,

compressive stresses exist on the interface in the vicinity

of the intersecting crack. In this case, the strength of

the interface bond is relatively unimportant, because

failure is more likely to occur in the form of the inter-

secting crack crossing the interface into material 2. How-

ever, according to the analytical solution [3], [̂ ]> when

u, /LL y 1 , the interface is subjected to tensile stresses,
2 1 —

giving rise to both interface fracture or fracture through

the interface into material 2 as possible modes of failure.

The type of failure which occurs is then dependent on the

strength of the interface bond as compared to the strengths

of the two materials being used. In none of the experi-

ments involving Plexiglas-Plexiglas half-planes did simul-

taneous crack extension occur along the interface and

across the interface. This is in agreement with the

analytical results discussed in [6].
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(X,«)=<r2
*•

PERPENDICULAR
CRACK

INTERFACE
CRACK

Figure 13. Bonded Elastic Half-Planes with Perpendicular
Cracks.
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Figure Instron Model 109 Dynamic Testing Machine.
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Figure 15. Theoretical Resultant Load Placement for a
Plexiglas-Buterate Material Pair.
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1 ANALYTICAL SOLUTION (5)

2 EXPERIMENTAL RESULTS
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Figure 18. Comparison of Analytical and Experimental
Values of Critical Stress for Plexiglas-
Buterate Material Pairs, b = 0.8 in.
(2.0320 cm), d=0.25 in. (0.6350 cm), Plane
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Figure 21. Irregular Crack Formation in a Full-Plane of
Buterate Following Continued Fatigue Loading.



Table 4. Cracks Emanating from a Circular Hole
in an Infinite Plate Subjected to
Biaxial Stress from [7],

K = S v Tta F

2N = 120

a/R

1.01
1.02
1.04
1.06
1.08
1.10
1.15
1.20
1.25
1.30
1.40
1.50
1.60
1.80
2.00
2.20
2.50
3.00
4.00

I

P(A--l)

0.4325

.5971

.7981

.9250
1.0135
1.0775
1.1746
1.2208
1.2405
1.2457
1.2350
1.2134
1.1899
1.1476
1.1149
1.0904
1.0649
1.0395
1.0178

r0(x-o)

0.3256

.4514

.6082

.7104

.7843

.8400

.9322

.9851
1.0168
1.0358
1.0536
1.0582
1.0571
1.0495
1.0409
1.0336
1.0252
1.0161
1.0077

1
F (A.= l) !

0.2188
.3058
.4183
.4958
-5551
.6025
.6898
.7494
.7929
.8259
.8723
.9029
.9242
.9513
.9670
.9768
.9855 :
.9927 ;
.9976
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APPENDIX A

ON THE TRANSFORM SOLUTION

1. The Mellin Transform and its use for the Plane Problem
of Linear Elasticity

Following [1] and [14], the plane problem of linear

elasticity may be formulated as follows:

T + IT - a(r a)- — I — ̂ H + i ° * ( A l i ir0 90 ~ °\r>'=1)- ^r lr P^flJ + -1 -N_2 * (A -1-.-1-;

rr

(A 1.3)
where (j, is the shear modulus, V is the Poisson' s ratio,

and

(A 1.4)

The Mellin transform of a function f(r), defined and suit-

ably regular on (0, °° ), and its inverse are defined by

o
F(s) = M[f(r)] = /°°f(r)rs-1dr , (A 1.5)

"S ds , (A 1.6)
C-oo

where c is such that r°~1f(r) is absolutely integrable
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on (0, oo). The transform of derivatives is given by

J „ *• r ar = \,-j.j „/ \ c \*} , (,«• ±. i j
o drn v '

provided

^s+m-i ^ Q as r -*• (0} °°] 3 m= l} . . . ,n
drm

(A 1.8)

The regularity conditions (A 1.8) provide the criterion for

the choice of c .

Taking the Mellin transform and solving (A 1.4) from

(A 1.1)-(A 1.3) we obtain

i(s+2)0 _ -iT iafl i(s+2J0 _ -1(8+2)0-1
M[r2cr(r,0)] = 2(sje)=2i(s+l)Ase

lsy+B(s+l)e -Be

(A 1.9)

M[r2Trr(r,0)]=-s(s+l) (Ae
is0+Ae"ise) -(s+l) (s+4) X

[" i(s+2)0 _ -i(s+2)el
Be + Be I ,(A 1.10)

(A 1.11)

where K = 3 - 4v for plane strain K = (3-v)/(l+v) for

generalized plane stress, and the "integration constants"

A and B are complex and are determined from the boundary

conditions specified along the wedge boundaries, 0 = con-

stant. After A and B have been determined, it is necessary

to invert (A 1.9) through (A l.ll) to determine the stresses

as a function of r and 6. The next section deals with

the evaluation of particular integrals applicable to the

problem in question.
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2. Some Particular Inverse Mellin Transforms

Given below, for reference, is a listing of some of

the Mellin inverses used in inverting (A 1.9) through

(A l.ll). The details of a few of the integrals will be

included for completeness.

•L c+i°° r -s-2

^ ; .< <^> ds= ro6<-r0)27ri

TT T J2rri

2TTi

-1

sin(irs/2) ro

-s-2

-s-2

2 ro
77

2r r

c-i°° cos (773/2) ro

27ri c_loc

1 ^
2-ni J

c_±oo

-^ c+i

sin (773/2) o ^ (r2+r2)

°° s / r \ ~S~2 2 r

cos (773/2) ro ^ ro

-3rj+r.ra -

/ 2 2\2

00 sin (773/2) / r v - s - 2
n
 2rro 1

27T1 cos(7rs/2) ro 7T

sin(7rs/2) ro

Consider now the evaluation of (A 2.2) and (A 2.4)

(A 2.1)

(A 2.2)

(A 2.3)

(A 2.

(A 2.5)

(A 2.6)

(A 2.7)

-s-2

sin(,s/2)



applying the residue theorem and closing the contour to the

left as shown, noting the zeros of sin (773/2) are at s=+ 2

x
+ 1 +2 +3

7T >n(f-;
o

2.
7T

2n-2 m+1 ..2m

m=0 n=0

as given by (A 2.2)

For r )> r ^ the contour is closed to the right and gives

the same result.

For (A 2.4) let I = -^
-s-2

<*„
c-i°° sin (7:3/2) ro

again applying the residue theorem and closing the contour

to the left.
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( - ) 2 = - f Zro Trn=0

71 m=0

noting that
00

and differentiating both sides with respect to (~) gives
o

oo n •»- 2n—1 ,-,

n=l

X 2(n+l)(-l)M"±(̂ )
n=0 °

Or- oo
•̂*- v

r
 z

o n=0

oo 2n
2 (m-i)(-i)n(f-)
n=0 ro

['** ]

4 r

and I = - — - - as given by (A 2.4) .
2

For r y rQ the contour is closed to the right and again

gives the same result.
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A similar approach gives

•i c+i°° , -s-2 r
fr± £_ iM ^fe" ^ dS = ̂ r^T (A2.8)

_c+i°° D / r s ~ S T " 2 2r
0
 + r-r

\ ( ) ds = — /
C-l°° O O

c+ioo



APPENDIX B

ON THE METHOD AND ACCURACY OF THE NUMERICAL SOLUTION

1. The Method of Numerical Integration

The numerical integration was performed using four

basic integration Gaussian-type formula [12, p. 887-890]

f1 f (*) , „ ^ w f (v } X - COS(2J-1)7T _ 7T /J • • ax 2 2, w.t^x. ) x. _ 2 , WA - (B l.l.
/"••*' ^ • v J_ J. . JL. £_1* J- IX

2
2n+l

(B 1.2)

(B 1.3)

{ f(x)dx s ̂ 2 w-.ffX

where

of

and Pn is the n^ order Legendre Polynomial.

Wherever possible advantage was taken of the fact that the

discrete values of F(tk), given by (63) of (67) , were at

the collocation points of (B l.l) or (B 1.2) respectively

if n was chosen equal to N. However, in the integrals

specifying the displacements it was necessary to use integra-

tion formula whose limits were not, in general, -1 to 1.
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For these integrals the discrete values of F(tk) were

fitted by least squares analysis to a continuous function

in the form of a Ktn order polynomial and an integration

formula of the form (B 1.4) was utilized.

2. The Accuracy of the Numerical Solution

The accuracy of the computer solution was determined

in part by to what degree it could reproduce known solutions

or how well it reduced to special cases whose solutions were

known exactly. For instance, the special case of a unit

crack in a full plane could be modeled one of three ways:

either by taking c = 0, v = v , E =E , a =1, b = 2; or.

c = 1/2 , a - 0 , b = 0 , v = v , E =E ;or lastly, it
1 2 1 2

could be approximated by taking c = 0 , a large, and b = a +1.

The numerical solution was correct to five significant fig-

ures for all special cases and was exact to the number of

places carried, (usually four), for the known solutions of

a crack approaching a bonded interface given by [2], While

these checks provide a measure of the accuracy, they are

also necessary for the correctness of the computer solution.

The terms that necessarily go out in checking the

special cases are the additive terms that provide for the

new solution. To make sure that these terms were programed

correctly, the computer solution of the integral equations

was approached two ways, and the programs, independently

written, were checked until agreement was reached.
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The method that was not chosen for inclusion in the text was

an iterative solution obtained as follows: As a first

approximation it was assumed that C , given by Equation

was the only non zero C . Knowing the C , the

right side of Equation (36) was completely defined and a

set of F(t, ) could be determined. Based on this set of

F's, a new approximation to the C could be found from

Equation (53). The right side of Equation (36) was again

modified and a new set of F's determined. The procedure was

continued until no significant change was determined in

either the F's or the C . The accuracy of the complete

solution was then determined by noting to what extent these

two solutions agreed. For example, if M = 14, N = 14,

a - 0, b= 1, c = 1, the iterative solution converged

after four iterations, giving k(b) = .9513, i~ = 1.117X10"",

whereas, the computer program, discused in Appendix C, gives

k(b) = .9511, |§= 1.H6 X 10~6 .



APPENDIX C

COMPUTER PROGRAMS

1 Introduction to the Computer Programs

Two computer programs were written to obtain numerical

results to the solutions presented in Chapters I. and II .

These will be referred to as PROGRAM 100 and PROGRAM 200

respectively. Adequate comments have been provided for the

reader familiar with Chapters I . and II to follow the logic

of the programs. Wherever possible, these comments refer

directly to equations in the text. Given below are two

definitions that may prove helpful in the reading of the

computer programs. The first is a fundamental integral
(a,P)

containing P (t) which was indexed to limit the use of the

recursion formula used to generate the Jacobi polynomials.

! (S,P)

PLSTAR(N,KX) ̂  / w(t)P (t) l(t,x, )dt . (C 1.2)
n K

The second integral contains P (y). It is related to

the C and is given as part of Equation (53). Its defini-

tion follows from

KQUAD i i -,, * ioi
2 F(TJ)PMSTAR(N,J) ̂  / / ^' G(t,y) ̂.̂ (ŷ ) X

where P(t) is given by Equation (63) and KQUAD is
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numerical constant the choice of which is discussed in the

section that follows.

2. On the Choice of Constants Related to the Numerical

Integration

Certain constants have been fixed in programs 100 and

200. The choice of these constants was governed by how a

variation in the parameter effected the most sensitive

output variable in trial runs using Aluminum-Epoxy material

pairs. The constants along with their definitions are

listed below for reference.

KQUAD - Upper limit in numerical integration formula

used in integrating Equations (53) and (60).

Fixed in program at value of 200.

NTERMS - Number of terms in polynomial curve fit used

in numerical integration formula (B 1.4).

in program at value of 10.

NODE - Number of nodal points used in evaluation of

displacement integrals that were complete

and could be evaluated using integration

formula (B l.l) or (B 1.2). Fixed in

program at value of 100.
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PROGRAM 100

Purpose

The solution is given for two bonded isotropic linearly

elastic half-planes of different elastic properties having

a crack along the interface as well as a perpendicular

crack in one of the half-planes which may intersect the in-

terface crack. A constant pressure is assumed on the crack

surfaces, and no loads at infinity. For convenience, the

inplane crack will be assumed to be in material one for all

cases. The geometry is shown below.

NU1, El

B

NU2, E2
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DESCRIPTION OF PARAMETERS

NSETS

A

B

C

NU1

El

NU2

E2

SIGMAO

SIGMA1

NHALF

N

M

STRAIN

INPUT

DATA CARD

No.l

No. 2

No. 3

No. 4

No. 5

Number of data sets to be read, a data set

consists of cards No. 2 to No. 5., as described

in INPUT.

Distance of near crack tip from interface.

Distance of far crack tip from interface.

Half length of interface crack

Poisson1s ratio, material one.

Young's modulus, material one.

Poisson1s ratio, material two.

Young's modulus, material two.

Opening pressure on interface crack.

Opening pressure on inplane crack.

Number of half planes present.

Number of terms taken in Equation (63)

and (6?) (11 < N < 28).

Number of C generated by Equation (53)

(1 < M < 50).

If strain set equal to 1, solution is for

plane strain. If strain set equal to 2,

solution is for generalized plane stress.

PARAMETERS

NSETS

A, B, C

El, NU1, E2, NU2

SIGMAO, SIGMA1

N, M, STRAIN, NHALF

FORMAT

12

3(IPE14.7)

4(IPE14.7)

2(IPE14.7)

4(12)
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OUTPUT

Numerical results are obtained for the stress intensity

factors, strain energy release rate, stresses and displace-

ments.

Comments

In test programs using Aluminum-Epoxy and Epoxy-

Aluminum material pairs, the output was examined using

successively larger values of M and N to determine when the

numerical solution was sufficiently conditioned to give

less than 1 percent variation in the most slowly converging

output parameter.

It was found that the strain energy release rate con-

verged most slowly in all cases and that K(b) converged

most rapidly in all cases. Values that gave less than 1

percent variation in output a t A = 0, B= 1, C = 1, were

M = N = 14, I f A = 0, B= I, C = 0.1, it was necessary to

take M = 30 and N = 20. The value of N = 26 was found to

be large enough in all cases. If C is decreased below 0.1,

it was necessary to take larger values of M to obtain

accuracies of one percent in the strain energy release rate.

PROGRAM 100 will solve the following problems illustrated

below. Note A and C may not equal zero at the same time.

Time required on the Clemson University IBM 370/158 computer

was about two minuets for N=M=l4 and fifteen minuets for

N=26,
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C=0, NHALF=2

A ̂  0 , B ̂ 0 , 0 , NHALF=2

, NHALF=2

A = 0, B^O, C= 0,
E2, NU2 any nonzero con-

stant

A ̂ Q, B^O, C=0, NHALF=1,
E2, NU2 any nonzero con-

stant
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4. PROGRAM 200

Purpose

The solution is given for two bonded isotropic elastic

half-planes of different elastic properties having a crack

along the interface as well as a perpendicular crack in

both of the half-planes, either of which may intersect the

interface crack. A constant pressure is assumed on the

crack surfaces and no loads at infinity. The geometry of

the problem is shown below.

NU1, El

B

NU2, E2

BSTAR

AS TAR
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DESCRIPTION OF PARAMETERS

NSETS

B

C

AS TAR

BSTAR

NU1

El

NU2

E2

SIGMAO

SIGMA1

SIGMA2

N

M

STRAIN

Number of data sets to be read. A data

set consists of cards No.2 to No.5, as

described in INPUT.

Distance of near crack tip from interface

in material one.

Distance of far crack tip from the inter-

face in material one.

Half length of interface crack.

Distance of near crack tip from inter-

face in material two.

Distance of far crack tip from interface

in material two.

Poisson's ratio, material one.

Young's modulus, material one.

Poisson's ratio, material two.

Young's modulus, material two.

Opening pressure on interface crack.

Opening pressure on inplane crack in

material one.

Opening pressure on inplane crack in

material two.

Number of terms taken in Equations (100)

to (103) (11 < N < 28).

Number of C generated by Equation (96)

(1 < M < 50).

STRAIN =1 implies plane strain,

STRAIN= 2 implies generalized plane stress,
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INPUT

DATA CARD PARAMETERS FORMAT

Np.l NSETS 12

NO.2 A, B, C, ASTAR, BSTAR 5(lPEl4.7)

No.3 El, NU1, E2, NU2 4(lPEl4.7)

No.4 SIGMAO, SIGMAI 3(lPEl4.7)

No.5 N, M, STRAIN 3(12)

OUTPUT

Numerical results are obtained for the stress intensity

factors, strain energy rate, stresses and displacements.

Comments

In test programs using Aluminum-Epoxy and Epoxy-

Aluminum material pairs, the output was examined using suc-

cessively larger values of M and N to determine when the

numerical solution was sufficiently conditioned to give

less than 1 percent variation in the most slowly converging

output parameter. It was found that the strain energy

release rate converged most slowly in all cases. K(B) and

K(BSTAR) were the most rapidly convergent output parameters

in all cases. Values that gave less than one percent

variation in output at A = 0, B= 1, C= 1, ASTAR=0, BSTAR=1,

were M = 14, N - 14. For N=M=l4 the computer time was about

four minuets and N=26, M=48 required twenty five minuets,

(necessary for C < 0.1).
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PROGRAM 200 will solve the following problems illus-

trated below. Note, if C = 0, A or ASTAR may not equal zero.

C = 0, A ̂ Q, B^O, ASTAR 7̂ 0,
BSTAR 7̂ 0., SIGMAO = 0

A^O, B^O, C^O, ASTAR
BSTAR ̂  0

A=0, B^O, C^O, ASTAR
BSTAR ̂  0

A ̂ 0, B^O, C^O, ASTAR =0,
BSTAR ̂  0

A=0, B^O, C^O, ASTAR =0,
BSTAR ̂ 0




