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LONG FLUID FILLED BAGS

SUSPEI|DEDBY LI[IEFORCES

' N.L. Mullins*

J. L. Duncan**

ABSTRACT: A previousanalysis of fluid filled storage bags is extended a

to the case of a long fluid filled cylindricalmembrane supportedby

urliformline loads. Cross-sectionalshape, stiffnessof the support

system and stress resultantsin the membrane are determined. The

applicationof the numerical results to problems _rlsing in the design

of non-rigidairships is discussed.

ItlTRODUCTION

Long fluid filled bags are used for a variety of purposes and examples v;hichhave

been studied include sausage-likestorage bags for oil (I) portable silos (2),

inflatablestructures includinglife-rafts (3), suspendedcylinders(4)anda variety

of non-rigia pressure airships,"blimps",and semi-rigiddirigibles(5).

The long filled cylinder restingon a horizontal flat base was considered by Demiray

and Levinson.(1) They obtained a solution for the stress resultantsand the shape

of the bag in repose. I_ this presentwork, their analysis is employed and extended
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_ to apply to the case in which the long bag is supported by concentrated loads applied

- Lu the membrane along lines parallel to the bag axis. It is shown that the results

__ can be summariTedby functionalrelationshipsof non-dimensionalparameters and some

_{"_,.._ numerlcr,l results are presented.

_ : " The solutionsare relevant to the design of non-rigidpressure airships. In these

/J:_ vehicles the principalfixed weight, the car, is attached to the fabric envelope by

_, I a so-called"catenary"suspensionsystem inside the envelope as shown in Fig l

_ CATENARYSUSPENSION _"r_

¢

6

IL' "_

" CAR

,' Fig I General arrangementof a non rigid pressure airship

"_,._ The envelope is maintainedat _ constant differentialinflatlonpressure by pumping

" air into the ballonets shown. The fabric is reasonablylight and woven in such a

way as to resist both direct and shear strains. The inflationpressure is sufficient

to maintain the shape of the envelope under static and aerodynamicloads. The

applicationof the numerical resultsof the two dimensionalanalysis to the case of

airshipenvelopes Is discussed.
!.

! THE AI_ALYSIS

., The membrane is assumed to be Inextensiblein all directions,to have zero flexural

_. rigidityand to be weightless. We consider a normal section of an infinitelylong

uniform bag. Under equilibriumconditions,the cross section is representedby the

:. curve.
x • x (s) x(o)- o

y - y (s) y(o) • o
(1)

where (x,y) is a set of rectangular cartesian coordinates and',; is the arc length

measured from the lowest point, the origin, in Fig 2.

: 2OO
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The stress resultantin the membrane is T, which y

is constant between loads, and the angles between

the tangent to the membrane and the horizontal TI
is O(s). For the cases to be consideredhere, the /__

hydrostaticpressure or more strictly the differ- /

ential pressure across the membrane, is p(s) which P

is taken as,

p(s) = p o+ wy (2)

where Po is the inflationpressure at the lowesti_
-: point,y = o, and w is the difference in specific

:_ weight between the fluids insideand outside the

membrane. In general w may be either positive or

_" negative and in the problems considered,it is

: constant i.e. the fluids are incompressible. Fig 2 Membrane Coordinates

; The general solution to the problem for w < 0 is given by Demiray and Levinson(I)
_ Define R as 1/27 times the perimeterof the membrane cross-section. The following

dimensionlessgrouping:will be used:

_- X , T

_,_ For conveniencein writing the followingequations define

"' k' = 4T._.ww= 4 _ (3) ,
:; p,= (po/Rw)

' For (4Tw/p==)>O, Ref (I) obtains !

: _= _L / [l+k'sin'(B/Z)]- 1} (4_ !

x T sin e !
_ "R"" 2 _ ¢(i_k2sin=(OlZ)] _-

- 41+k')E ',,'(I+-T;F

T +_1 1 E_, j(l+_ ] (5)i

S=ZT I F k
.- II _ _ ' ¢(l+k=) (6)

where FI_,p] and E[_,o] are the e111ptlc integralsof the first and second kind :_

i
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- . respectively, and = is deftned by ."
7

[Vll �„�°�stn(./Z)l' = = arc sin (7)

._: Previous work did not consider the case for w < O. It may be shown(6) that for
-I < (4Tw/po2) < O,

s. _ _x=2_T [(I-_ ,k ,_Z E ] (a)
"_. R p°R k2 k2

" R pQR
$

i For (4Tw/po2) < -1,

[,;]x T I
., -= 2 [2E , - F , ] (10)
'_, R poR k

l

.. s__=zT__1F , (Ii)
R poR k

. where ¢-arc sin [k sin(e/2)] (12)

> For both of these cases,

Y = P_._o{/ [l.k2stn2(e/2)] _ 1} (13)
' R Rw

" Boundar_Conditions

Demtray and Levtnsonconsidered the case of the bag resting on a flat surface. In

this work, we consider the membraneacted uponby loads uniformly distributed on a

line which is perpendicular to the (x,y) plane. In the first case, we consider a

central11ne loadas shownin Fig 3. The perimeterof themembranehas a total

length2_R _md themembraneis filled_ith a buoyantfluid. The loadintensityis

Q perunit length. TakingQ/R2was the dimensionlessloadper unitaxiallengthof

bag and settingthisequalto th_ buoyancyforceper unit lengthwe obtain

Q . _" dA
_', )A _- (14)

The equllibrlumequationat tl_e pointof appllcatlonof the forcei.e.at sir = e Is

_F(QIR ,)n]e, arc stn(q/ZT) , arc sin U T/poR)(p°/Rw) (15)

in terns of the abovedimensionless groups.

2O2
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Equations(6),(7)and(15)may be solvedsimultaneouslyon a digitalcomputerby "_

an tterattve process. -_+---- -x,

Q

Y F

u ,

f

Fig 3 Central SuspensionCase Fig 4 Twin SuspensionCase

In the secondcase, we consider two equal line loads symmetrically disposed about

i the centreline as shownin Fig 4. The force intensity F arises ph)stcally from a

; sat of tnextenstble cables which pass through sliding seals at the bottom of the

membraneand anchor to a rigid frame of width 2e. for convenience it is assumed

that if the membranewere circular, the lower anchor point would be in the plane

y = O; under equilibrium conditions with tim membranedeformed the anchor point has

,t fallen a distance h. The angle of inclination of the suspensioncables in the

/: undeformedstate is designated by y. In Fig 4, variables with the subscript 1 refer
"t

to the lower portion of the membranebelow the point of application of the load;
: variables with the subscript 2 refer to the upper section. For the upper section

axis Y2 is directed downwardsas sho_ and w is nownegative. The differential

pressure at Y2 " 0 is po - wY.

The boundary conditions arising from continuity of the membraneare

Xlc /R - x2c /R , ylc /R + yzc /R - Y/R
(16)

Sic /R + s2c /R-

The equilibrium equation at the point C yields the further condition

" (Xlc /R)-(e/R) -(T2/poR)cos e_c - (Tl/p,R)cos elc
(17)

(ylc /R)+(h/R) (T2/PoR)stn Bzc - (Tl/poR)sin BIC )

where e/R is the dimensionless cab frame width and h/R t_ the dimensionless l#
suspension deflection.

?
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+ Ii, NUMERICALRESULTS '

Central Support Case t:

-* Membraneshapesand stress resultants were obtained for typical conditions which

_ + ' '+" mightapplyto a smallnon-rlgidairship,i.e.diameter= 40 ft, inflationpressure
.+

++_ in the range5 to 15 Ibf/ft2 and w = 0.0696Ibf/ft3 which is the 11ftof pure

> hell_nat 0% (thisis a conservativevalue,0.0625lbf/ft3 oftenbeingtakenfor

airshipcalculations(5)). The resultsare presente,l withdimenszonsfor convenience.
l+_ Fig 5 showsthe deflectedshapesand TableI the stressresultantsand deflections

of the suspensionpointfromthe positionfor a circ_qarmembrane. i

:. __] Table I I

_,,.._..-- po(Ibf/ft2) T(lbf/ft2) h(ft) q(Ibf/ft) I
,- 5 112.3 5.233 85.6 I _

10 212.9 2.727 86.6 I
+ 15 313.3 1.831 87.0

_.- UN_rL[CT(D

"* _/'-_ • 5 IDe/_*; TED

30

" i;-, ]Q

,, + / ]
•,+ / ]i++ i_

k a' _ " W) N
_ZON?A/. (]_TANC£, • (I rO_ZI_TAL []6TAI_(, •

Fig 5 Cross-sectional Shapes Fig 6 Cross-sectional Shape
for various Inflation pressures for an Inflatlonpressure of
for the central suspensioncase 10 lbf/ft 2 for twin suspension

TwoSupport Case

This ca_e, show_ in F_g4, is the more usual situation tn atrshtps and is considered

further. Results were obtaiaed for the particular geometry _ - 15° and e/R - 0.2.

Ftg 6 sho_s the deflected shapefor a membraneof nominal diameter 40 ft andan

Inflation pressure po - 10 ]hf/ft 2. Fig 7 showsthe non-dimensional deflection h/R

versus the non-dimensional pressure parameter po/l_. Fig 8 showsthe non-dtr_nstonal

membranestresses T/poR versus po/l_.

l
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INTERNAL_SURE FA,_IMb'T_, _/_ _ERNAL m£_IJ_E i_Ai_r1'ER, _/_

Fig 7 Suspension Deflection, Fig 8 Stress Resulatants, T/poR r
h/R, versus po/Rw for the case versus po/l_ for the case shown tn
shown tn Ftg 4; e/R-0.2, y-15 ° Ftg 4; e/R-0.2, y-15 °

THE DYN_IC CASE

He consider the case tn which the bag and the atr surrounding it are subject to a

verttcal acceleration ng upwards. If we assume that the differential pressure at

y - 0 ts Po as before, tt may eastly be shown that for the dynamic case, the

differential pressure at any othe_ potnt ts

p' - po+ (n+l),y (18)

The buoyancy force per unit length will be

_'_ Q' - w(n+l) _A dA (19)

We consider that the suspension ts attached to a mass which under static conditions

gives rlse to a vertical force per unit lengthQ-W/AdA (from equation 14). Under

dynamic conditionsthe vertical componentof the suspensionforce will now be Q(l+n)

and clearly this Is equal to Q'. Thus the dynamic case may be obtained from the

preceedlng results by replacingthe relative specificweight w by w' where

w° - (l+n)w {20)

DISCUSSION

TI;e analysis provides membrane shapes and stress resultants for the two-dimensional

problem of the fluid ftlled bag and these can be applled to both the static and

dynamic cases.

In a non-rigid atrsiltp, the inflation pressure po must be sufficient to mat,tatn the

shape of the structure under both static and dynamic loads. As an example, _e

consider an airship designed for a 75 mph maximumspeed. Allowing for a frontal

2O5
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" : gust of 15 mph, the maximumstagnation pressure at the nose Weuld be 22 lbf/ft 2.
"' Usually the nose contains a stiffening structure, which pemtts lower inflation

pressures of, for example, 60% of the stagnation pressure or 13 lbf/ft 2 tn thts case.

_. For a helium filled bag of 40 ft diameter, the non-dimensional pressure parameter
_, would have the value of 9.3. From Ftgs 7 and 8, we obtain values for the verttcal
t

deflection of 8.4 inches and for the stress resultants of TI" 270 lbf/ft and

_ _ Tz" 292 lbf/ft. The stress resultant due to pressure only, t.e. poRts 260 lbf/ft
so the effect of the suspension on the envelope stresses ts quite small.

In the design of airships, tt Is customary to consider the effect of a transverse "
I

gust of about 30 ft/sec (7). A vertical gust of this magnitude could give rtse to

, accelerations tn excess of lg. In the example chosen, the parameter po/Rw would

,.._- be halved for an upward acceleration of lg and the deflection would be 16.6 inches ,
t.e. approxtmtely doubled.

There are important differences, however, between the problem fomulated and the

real case of an airship. These are:-

1. The analysis ts for a two dimensional system. Airships wtl1 have

a fineness ratio (overall length to maximumdiameter) of between

3 and 5, thus curvature tn the axial plane wlll significantly diminish

"' the stress resultants and probably increase the overall stiffness.

_: 2. It ts not possible to arrange the suspension system in such a way

_: that the suspension force F tn Ftg 4 exactly balances the buoyancy

at that section. Consequently bending moments arise In the axial

plane and the assoclated shear forces are transmttte_ through the

membrane. These wtll glve rtse to deformations of the section which

differ from those tn the two-dimensional case.

3. It ts customary to have a

secondary suspension system

tn the form of a skirt or

fairing between the cab and

the envelope as shown tn the

schematic diagram tn Fig 9.

Thts wtll be considerably

stiffer than the upper sus-

pension system so that under

dynamic loadtng the addi-

tional loads wtll be trams- Ftg g Schematic Illustration

ferred to the envelope by shoving the skirt location

3O6
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the skirt rather than by the cables.

4. Below the cetltng altttude of the atrshtp, not a11 of the envelope

ts ftlled wtth helium. Up to 10_ of the internal volume can be taken

up by air tn ballonets as shown tn Ft9 1. These serve to maintain

the Inflation press_tre and allow for expansion of heltum at higher J

altitudes t.e. on ascending atr ts bled off from the ballonets and

thts prevents loss of heltum. These ballonets may have a significant

effect on the. deformed shape at a sectton.

5. The dynamtc case assumes that the _urroundtng flutd has the same
l

acceleration as the bag. Thts is not truly representative of the

situation in a verttcal gust where there wtll be an aerodynamic

pressu_'e distribution on tP_ section due to the relative transverse r

veloctty of the surrounding atr. Thts proble,, as well as the effect

of the pressure distribution due to forward veloctty are outside

the scope of thts work.

Other factors gtve rise to stress distributions and deformations in airship

envelopes whtch have not been considered here. These tncl_de instantaneous and

creep strains tn the fabric, t,lproper rigging and the effects of the empennage.

]t ts considered, however, that the analysts and numerical results presenLed wt]l

assist th_ designer tn the preliminary investigation of envelope and suspension

performance tn non-rigid airships.
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