Arthur 0. Korn"

Abstract

In the late 1960's several governmental agencies sponsored efforts to develop unmanned, powered balloon systems for scientific experimentation and military operations. Some of the programs resulted in hardware and limited flight tests; others, to date, have not progressed beyond the paper study stage. This paper briefly descrites the balloon system designs, materials, propulsion units and capabilities, and points out critical problem areas that require further stidy in order to achieve operationai powered balloon systems capable of long duration flight at high altitudes.

HISTORY
The early bitloons would only go up and down or float in the direction of the prevailing winds. In order to make the balloon more useful it was soon concluded that it should be "dirigible" or directable. Throughout the nineteenth century ingenious men such as Meusnier, Giffard, Tissandier, Renard and Krebs worked in this problem. They built manned airships shaped as spindles, torpedos, cifars, ctri..jbeans and even whales. Their biggest problem was the lack of a $1 i_{\text {ght }}$ weimht, efficient power plant. The steam engine, while dependable, was very heavy. In 1852, Giffard built a small engine uslng steam, but it weighed 100 1b per HP. (Todav's automobile angines welph as little as; 2 ib per HP , and airplane entines, less than 1 lb per HP .) Those early inventors experimented with feather-tided oars and screw propellers turned by hand using a crew of eight men! Enfines were bullt
*Aerospace Englneer, AFCRL, Hanscom AFB, Bedford, Manachusett;, U:A
that used coal gas or hydrogen lifting gas from the airship. In 1884, Renard built an electric motor powered from a storage battery. Real progress in powered balloons had to wait fcr the invention of the internal combustion enz: ne. In the 1890's the gascilne engire proved to be the long sousint key to the (low altitude) propulsion problem. In 1901, Santos Dumont won the 100,000 franc prize for flying across Paris to circle the Eiffel Tower and return to his starting point. In the early 1900 's Count Zeppelin started to develop big ships in Germany. The airship Clement Bayard II flew the English Channel in 1910 and made a $242-\mathrm{mile}$ trip to Loncion in 6 hours. Great progress continued throughout World War I intc the $7.930^{\prime} \mathrm{s}$. The blimp proved its usefulness during World Wars I and II. All of these alrships flew at very low altitudes.

I will not dwell on blimps and zeppelins, since they are well recalled, but vill now skip to the late 1960's when several U.S. Government agencies sponsored efforts with privatie industry to develop unmanned powered balloon systems for scientific experimentation and military operations. Some of the programs resulted in hardware and limited filght tests; others generated system designs and concepts that, to date, have not progressed beyond the paperwork stage. This paper gives an overview of these various proprams.

BACKGROUID

For many years balloon flight managers have been minimizing the horizontal displacement of free balloors by preselecting the float altitude where ihe winds are known to be near minimum, monitoring the trajectory and correcting the drift by oallasting or valving to nearby altitudes where the wind will drive the balloor in the proper direction. This treitrique is based upon the seasonal atmospheric phenomenon illustrated in Figure l. The westerly winds above easteriy winds result in a transition level where the winds are essentially zero. Just: above and below this level are bands of altitude where the winds are less thar 10 knots. It was reasoned that if some small amount of propulsion could de added to a free balloon, the stationkeeping capability and flight duratics in the minimum wind fields could be greatly enhanced. W'th some mergin in available thrust, such a powered balloon is nct limited to stationkeeping, of course, but can travel in any direction.

HIGH ALTTTUCE FLIGHTS

High Plat form I (HPI) was one of the earliest attempts at powering a balloon at hiph altitud, It was developed and flown by Goodyear Aerospace Corp. and Winzen research, Inc. In Figure 2 the system is shown being launched. The program objectives were (l) to demonstrate that it is feasible to malntaln a free balloon on station at high altitude using an electrically driven propeller; (2) to examine the accuracy and output of a simple, single-axis-oriented silicon solar array for application as the eventual primary power source. The program was limited in scope in that off-the-shelf hardware was required for all systems. This requirement necessitated using a natural-shaped balloon, wifch has an undesirably high coefricient of drag. Because of the high drag force the flight test was planned durine a period of ininimum upper atmosphere winls. The design goals were: (1) float altitude, $70,000 \mathrm{ft}$; (2) maximum alrspeed, 10 knots; (3) maximum deviation from station $\pm r 0$ miles. Flight duration was dependent on battery life. The balloon had a volume of $106,000 \mathrm{cu} \mathrm{ft}$ and was 63 ft in
diameter. A 2.75 HP motor drove a $14-\mathrm{ft}$ diameter propeller with power from 112 lbs of silver zinc batteries. The goal was to control balloon orientation and heading at an airspeed of 10 knots by remote control of a styrofoam rudder in the propeller slipstream. The wooden propeller was designed to provide 25 lb thrust at 1000 RPM. Total system weight was 555 lb of which 106 lb was balloon. HPI was launched in the early morning and ascended at nearly $1000 \mathrm{ft} / \mathrm{min}$. On its firut power cycle the motor was run for 31 minutes. Directional response to rudder commands was good with no evidence of instability, but time delay between command and rudder actuation, the rate of rudder movement, and the time required to cainulate and verify the actual heading resulted in a rather erratic flight path. During the second power cycle the rudder control was erratic. Rudder response then disappeared and recovery procedures were initiated. The direct c!urrent notor, when recovered, was severely charred and showed evidence of brusi arcing. During the first 30 minute power cycle the system did demonstrate the capability to fiy into the wind at an airspeed in excess of 1.0 knots, and to change the direction of the ilight path. The sun sensor consistently tracked the sun accurately enough to estimate the maxirium output of the solar array. The results show that an electrically uriven propeller is a feasjble method of stationkeeping a high altitude balloon.

The High Platform II program (HPII) began in early 1969. This effort was conducted by Raven Industries. The statement of work called for the development of a unique airship having a capability of operating for very extended durations at an altitude of $70,000 \mathrm{ft}$. The flight system is shown in Figure 3. A completely sealed superpressure balloon was required to provide a duration capability of greater than 6 months. Desired speed capability was 20 knots. The motor-propeller assembly was powered by solar cells. A $3 / 1$ fineness ratio, ciass C hull confieuration was used on HPII because of its greatly reduced coefficient of drag compared with HPI. The envelope was constructed of a bi-laminate of 1.0 mll and 0.35 mll Mylar S and was 81 ft in length. Control surfaces on the hull included one vertical, stationary in, one rudder, two hnri-uital stabilizers and two elevators. Rudder and elevators were servo motor controlled. The lighteried molded foam propeller, 10 't in diameter, was designed to operate at 360 RPM with an efiiciency of 78\%. Propulsion motor characteristics were: 0.25 brake HP at 8200 RPM with an input of 24 VDC ; predicted efficiensy, 72%. A belt speed reducer dropped the rotor speed to the desired 260 RPM of the propeller. The power supply was a 300 watt $C d S$ solar array of 13 panels. CdS cells were chosen over silicon because of their greater flexibility and lighter weight. The gondola supported the mechanical components of the propulsion system and an anemometer was suspended tereatr the gondola. The alrship eross welght was 136 lb.

In May, 1970, the airship was test flown. The tow balloon launch technique was used to better control the very fragile system. When the motor was turned on, the airship immediately swung into the selected heading. The syster rose in altitude, indicative of a positive anmle of attack and forward speed which provided the alrship with some aerodynamic lift. After 76 minutes the motor was turned off. Reflected lieht falling on the solar cell array prevented further acquisition of accurate heading data. The experimenters conciuded that the alropeed was 10 knots rather than 17 knots, and that the reduction in speed was due to too low a desien value for drap coefficient ($C_{d}=0.11$ rather than the deslen value, $C_{d}=0.045$, which was vased upon wind tunnel data), and mismatch between the solar cell array and propulision
system. They further concluded that a high altitude aliship having a superpressure envelope to obtain extremely long duration filght, and thin film solar cells for power can be designed, constructed, successfully launched and remotely controlled.

POBAL (Powered Balloon) was an unclassified program started in 1969 by AFCRL with Goodyear Aerospace Corp, under contract to study feasibility of stationkeeping by remote control of a powered balloon at r.igh altitudes. Both streamlined and natural shaped balloon ccifigurations were considered, with reciprocating engines, turbines and eiectric motors as candidates for propulsion, and fuel cells, solar cells and batteries for electric power sources. As a rasult of this study an inexpensive system was designed for flight demonstration. The system built and floun by Arckl, Figure 4, was larger, heavier and more powerful than High Platform I. For reasons of economy, the balloon, parachute system, rigging hardware and control system were off-the-shelf items currently used for conventional ballooning. A 711,000 cu ft, double wall polypthylene balloon was used on POBAL to carry nearly 4000 pounds to $60,000 \mathrm{ft}$ altitude. An 8 HP DC electric motor drove a $35-\mathrm{ft}$ diameter, $F H-1100$ ielicopter rotor (through a gear reducer) at 200 RPM. Based on $\mathrm{C}_{\mathrm{d}}=0.19$, design speed capability was 15 knots, and duration, 8 hours - the ilfe avallabie from the residual, F-105 fighter starter batteries. (Nearly 2000 pounds of the payload were comprised of these batteries). Thrust direction was controlled by a rudder in the slip stream of the propeller. After the mission the balloon was expended and the gondola recovered by parachute.

The first flight was in September, 1972. All systems functioned for the first 43 minutes of power. The propulsion motor was then allowed to cool for 11 minutes and then another powered cycle was initiated. Various headings were commanded into the autopllot system during these powered cycles. The system also was flown via manual control of right and left rudder. Arter four power "on" cycles (3 houre of flipht time) control of azimuth heading was no longer possible. It was then confirmed that the rudder had broken free of the payload. Subsequent examination of the failed rudder support tube indicated improper heat treatinent after welding. The system did, however, attain alr speeds in exness of 11 knots and demonstrated that the concept 13 feasible. It is felt tha: the destgn speed of 15 knots was not attalned because of one or a cumbination of both of the following: (1) too low a desien value for drae coefficient for the round balloon or (2) the propeller was not producing the calculated thrust.

LOW ALTITUDE FLIGHTS

Sllent Joe I is shown in Flgure 5. The balloon was a 5500 cu ft, Clase C hull with a $3 / 1$ fineness ratio developed by the Sheldahl Co. Desien speed was 12 to 15 knots. The first version used two 3 HP McCulloch chain sari engines for propulsion. Steering was accomplished by varylm: the speed of either outboard-mcunted englne. Problems were encountered in syrchzonization of the motor throttles and the gasoline enelnes were replaced with electric motors. This second version of eilent voe I used two 2.5 HP electric motors powered by NICd batteries fir a planned flifeht duration of two hours. Silent Joe 1 was successrully flown on several accasions in Southeast Asia. It had well controlled performance at fllght speeds of 10 to 12 knots.

Silent Joe II followed Joe I. Its configuration is ohown in fieure 6. This prozram was conducted by Goodyear herospace Corp. and used the $150,000 \mathrm{cu}$ ft Goodyear Mayflower tilmp as the hull. The hull da:
modified to add a propulsion unit in the stern. The nropeller was driven by a hydraulic motor, pressure for which was generated from a unit in the forward end of the hull. The propulsion unit had a servocontrolled pitch and yaw gimbal system for vectoring the propeller thrust in order to achieve flight-path control. Nine flights of Silenc Joe II were conducted in 1968 and 1969.

Micro Blimp was a low altitude airship program accomplished by Raven Industries. The hull was Class Chape with a $3 / 1$ fineness ratio. The system is shown prior to launch in Figure 7. Hull volume was 2750 cu ft, and length, 37 ft . Propulsive power was provided by a sternmounted, 4 HP Wanke 2 engine driving an 8 -ft diameter, molded polyurethane, three-bladed propeller Directional control was obtalned by gimbaling the engine-propeller assembly. Heading and pitch stability were maintained by an autopilot. Maximum cruise altitude was 5000 feet MSL and cruise speed, 30 knots. Maximum radio-controlled range was 5 miles with a control accuracy of 1500 ft . Endurance was 10 hours with a full load of fuel. Payload capacity was 20 to 50 pounds depending upnn the amount of fuel carried. Many successful flights were made with the Micro Blimp. Its major problem was propaller breakage, but this was solved with propellor stiffeners.

STUDIES

Several programs generated system designs and concepts that, to ciate, have not progressed beyond the paperworik stage.

High Platform III, by Raven Industries, required the design of a solarpowered aerostat and the definition of a development prorrarn for a prototype system. The alrship designed under the profram has a volume of $600,000 \mathrm{cu} \mathrm{ft}$. Envelope leneth is 309 feet and diameter, 62 feet. Tho airship is desipned to be a constant altitude aystem and as such 1.3 superpressured. Nylon film is used for the hull. Fins are pressurlzed by a small air-compresisor. Propulsion and control are accompliahed by rear-mounted, fimbaled propeller powered by an electric notor. The power supply is a solar array. The system is desiened to be capable of maintalning alropeed of 15 knots continuovely for 4 month.s. Flight altitude is 85,000 reet. Payload capacity is 10 pounds.

Several assumptions were made throughout the design study:
(a) A high strentith nylon fllm will be suritciently developed for superpressure balloons.
(b) The coefficient of drag of the airohip $1: 0.048$.
(c) Pulse charging techniques can be developed to increatm thm life of the battery.
(d) Cd S then fllm solar cells of characteristlo. equal \because ar better than the cells used on High Platform II wlll twavallatir.

 in Figure 8.

preliminary design for a system was completed. Primary emphasis was placed on superpressure alrships capabl? of flyinf for durations up to several months at altitudes ranging from $60,000 \mathrm{ft}$ to $85,000 \mathrm{ft}$ with speeds up to 30 knots. The malor effort on HASKV was devoted to parametric analysis and trade-off studies of the many sustem component; and concepts. Much valuable information was thus cenerated and reported upon in the HASKV Final Report. Using tils information a system was designei thar is similar to that proposed in the Hiph Platform III Study. The major differences concern the construction of the ballovn envelope and the use of the power cycle. The final HASKV design was for a vehicle capable of supporting a 200 ib piyload at an altitude of 70,000 feet for a four-month duration. It is to be solar powered, to operate at $30-k n o t$ airspeed during the day and 10 knots during the night. This program was sompleted in 1973.

The AFCRL POBAL-S design effort with Raven Industries resulted in an alrship very similar to the HASKV vehicle. The major difference lies In the system used to power the electric propulsion motor. You will recall that tize HASKV airship is solar cell powered; POBAL-S obtains electric energy from a $\mathrm{H}_{2} \mathrm{O}_{2}$ fucl cell. The fuel cell was selected so that more electric power, 500 watts, can be made quallable on a conlinuous basis to the user's payload. Duration is 7 days rather than 4 months for the solar-powered HASKV. Obviously, the two systems are designed for different operational missions. POEAL-S $1: s$ shown in Flgure 9. To summarize the capabilities of AFCRL': POBAL-S: it flies at a $70,000 \mathrm{ft}$ altitude; has a payload capacity of 200 lb ; continuous power of 500 watts for operation of the payload; speed capability of 16 knots continuously for a 7 -day duration. The final report and drawings for the fabrication of a POBAL-S airship are due to be completed in the fail of 1974.

The U. S. Navy (NRL, NOL) HASPA (high Altitude Superpressure Powered Alrship) is the largest active program in hign altitude powered Lallooning. HASPA is listed as a "study" only vecause the contract award for its development was still being nepotiated at this writinf. The geal is to carry a useful payload of 2001 k at 70,000 feet for durations exceedine nne month. MASEA is to have a continusus eperd capability of 15 knots, with maximum, shorter duration capability ar 25 knots. Four fllpht tests are planned: (l) an unpowered flypht to evaluate the launch technique and the interrity of the superpressured hull; (2) a battery powered fllght to evaluate the fropulalon ey:itm; (3) a fuel-cell evaluation fllsht; and (4) an all-up, lons-duration, solar-ceil powered flight. The propram will take piace over the next three years. The HASPA vehicle is shown in firure 10.

SUMMARY

In the past six years mach useful work ha: been accompllithed without a meat expendture of sunds. Several povernmental apericles have a. ar involved with all of the major balloon compantes. Tat it:al ra:ult ha: not bewn out:itaciry, but, considering the very luw fundm: amt mannlne budnet, and the magntude of the protion, yory pond propro. has been made tuward achlevine operatlonal, lons-durat lon, nifla-

design. More bas 2 work is required to predict accurately the propeller performance in the 60,000 to $85,000 \mathrm{ft}$ altitude levels. Propellers have not normally been used at those altitudes; conventional procedures for scaling from ground level data are not adequate. We also must make use of the modern analytical tools for accurately determining the dyramic stresses in the structure and their distribution over the airship surface. If the pressurized hull volume to support a usefully heavy payload is to be kept within manageable limits without sacrificing structural reliability, then the allowable weight, strength and elastic properties of the materials are critical design parameters. It is hoped that future high altitude powered balloon programs will benefit from the experience reported herein.

REFFDENCES:

1. Allen, H., (1943) The Story of the Airship (Non-Rigid), The Lakeside Press, Akron, Ohio.
2. Gocdyear Aerospace Corp., (1968) Report BB-2304, High Altitude Fowered Balloon Test Program.
3. Raven Industries, Inc., (1970), Report R-0870025, High Platform II.
4. Raven Industries, Inc., (1971), Report 0871005, High Platform III, Design Study.
5. Reven Industries, Inc., (1973), Report 0373003, Study of High Altitude Station Keeping Vehicles.
6. Korr, A., Leclaire, R., lst Lt, USAF, Rice, C., (1973), Report AFCRL-TR-73-0424, LDF Powered Balloon Program.
7. Raven Industries, Inc., (1971), Report 1271010, Micro Siimp Final Report.

FIGURES:

Fiqure 1 - Minimum Wind Field Phenomenon

Figure 2 - High Platform I at Launch
(Above).
Figure 3 - High Platform II During
Test (Above-right).
Figure 4 - Pobal Undergcing Hangar
Tests (Right).

ORIGINAL. PAGE IS POOR

Figure 5 - Silent Joe I (Above).
Figure 6-Silent Joe II in Flight
(Above-right).
Figure 7 - Micro Blimp at Launch
(Right).

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

