General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

BOSTON UNIVERSITY

DEPARTMENT OF AEROSPACE ENGINEERING
COLLEGE OF ENGINEERING
BOSTON, MASSACHUSETTS

(NASA-CR-146073) A NEW UNIFIED APPROACH TO ANALYZE WING-BODY-TAIL CONFIGURATIONS WITH CONTROL SURFACES IN STEADY, OSCILLATORY AND CONTROL SURFACES IN STEADY, OSCILLATORY AND FULLY UNSTEADY, SUBSONIC AND SUPERSONIC FLOWS (Boston Univ.) 30 p HC \$4.00 CSCL U1A G3/02

Unclas 08521

N76-15077

DEPARTMENT OF AEROSPACE ENGINEERING BOSTON UNIVERSITY COLLEGE OF ENGINEERING BOSTON, MASS. 02215

A NEW UNIFIED APPROACH TO

ANALYZE WING-BODY-TAIL

CONFIGURATIONS WITH CONTROL

SURFACES IN STEADY, OSCILLATORY

AND FULLY UNSTEADY, SUBSONIC

AND SUPERSONIC FLOWS

Kadin Tseng
and
Luigi Morino

Work supported by NASA Grant NGR 22-004-030 Technical Monitor: Dr. E. Carson Yates, Jr.

INTRODUCTION

A general formulation for the analysis of steady and unsteady, subsonic and supersonic potential aerodynamics for arbitrary complex geometries is presented here. The proposed paper includes the theoretical formulation, the numerical procedure and numerical results. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for an AGARD coplanar wing-tail interfering configuration in both subsonic and supersonic flows are included in the paper.

The theoretical formulation is based upon an integral equation presented in Refs. 1 and 2, which includes completely arbitrary motion. Steady and oscillatory aerodynamic flows are considered in Refs. 3 and 4 (enclosed here). A review of the problem is given in Ref. 4 and therefore is not included here.

Here a much more general formulation is considered.

First, small-amplitude, fully transient response in the time domain is considered. This yields the aerodynamic transfer function (Laplace transform of the fully unsteady operator) for frequency domain analysis (Ref. 5 enclosed here). This is particularly convenient for the linear systems analysis of the whole aircraft. The formulation briefly outlined in Ref. 5 has now been completed and implemented in the computer program SOUSSA (Ref. 6, for subsonic and supersonic).

In addition, no diaphragm is required in supersonic flow, so that the subsonic and supersonic formulations have been unified. Also the formulation has been extended to allow for the analysis of the problem of the wing-wake intersecting the tail. Additional features are described in details in the section entitled "Assessment of Method".

The new formulation, program and results will be fully described in the proposed paper.

METHOD OF SOLUTION

The method presented here is based upon a formulation developed by Morino^{1,2} For simplicity, only the incompressible steady state is briefly described here. The formulation, by making use of the Green function method applied to the equation of the velocity potential, yields an integral equation relating the unknown potential on the surface of the body to its known normalwash. By making use of the finite-element method, and by the assumption that the potential is constant within each quadrilateral element, the integral equation is approximated by a linear system of N equations relating N (unknown) values of the potential to N (known) values of normalwash at the centroids of N elements.

For the sake of generality and flexibility, in particular, for structural analysis, the normalwash is expressed in terms of the generalized coordinates and generalized velocities. From the potentials at centroids of elements, by an averaging scheme (by which the potential at a corner is approximated by the average value of potentials at the centroids of the elements in its immediate surroundings), the potentials at the nodal points are obtained and hence the potential at any point on the surface can be expressed by a finite-element interpolating formulation with bi-linear local shape functions. Finally, the pressure coefficients and generalized forces can be evaluated by a simple finite-element procedure.

NUMERICAL RESULTS

Typical numerical results obtained with SOUSSA are presented in this section. Due to space limitations, the results are only very briefly outlined.

Figures 1 and 2 are the lift and moment coefficients of a rectangular wing oscillating in pitch with Mach number ranging from 0 to 2.5. Results for the supersonic flow were obtained without the use of diaphragms and have never been presented before. The comparison against Ref. 11 is in general, in excellent agreements. Figures 3, 4 and 5 present the pressure distributions of a rectangular wing in steady subsonic and supersonic flow, and again the results are in very good agreement with the

ones of Ref. 9. Figures 6, 7 and 8 are results for a wing-body configuration in both steady and fully unsteady flow, for both subsonic and supersonic speeds.

Figures 6 and 7 are presented in order to demonstrate the capability of the present method of analyzing fully unsteady flows. Figures 9 and 10 include the results for simple wings with control surface in steady and oscillatory flows. Figure 11 presents flutter applications (in excellent agreement with the results of Ref. 17). Tables 1 through 3 are the generalized forces for an AGARD wing-tail configuration in quasi-steady and oscillatory flow in comparison with existing methods.

Further results, such as the fully unsteady aerodynamic analysis of the AGARD wing-tail configuration and other wing-body-tail configurations (with control surfaces) will be included in the proposed paper.

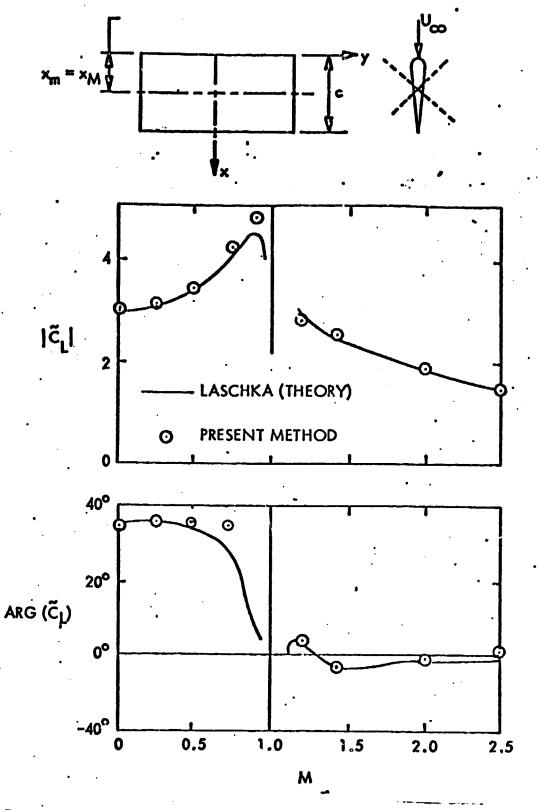
ASSESSMENT OF METHOD

An assessment of the method is briefly autlined here. In particular, unique features of the methodology (with existing methods) are stressed and progress with Ref. 4 is emphasized.

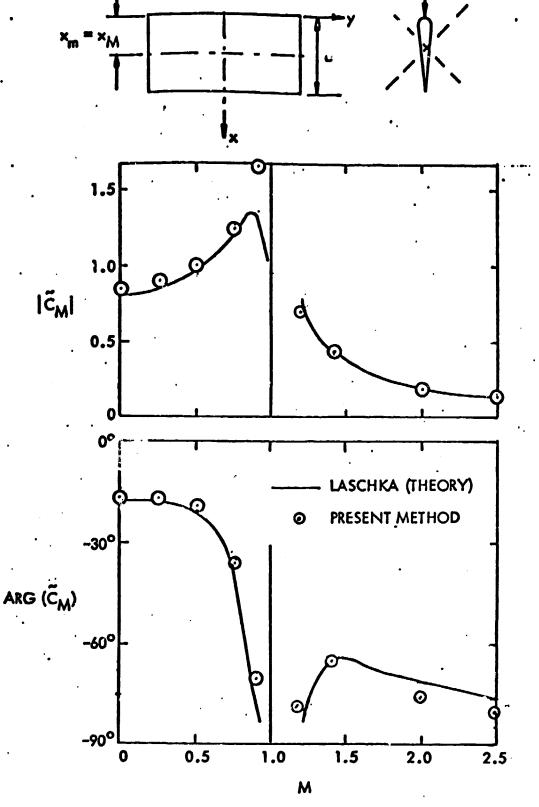
- It provides a unified approach for steady, oscillatory and fully unsteady subsonic and supersonic aerodynamic flows.
- 2. To the authors' knowledge, this is the only existing program which can handle fully unsteady (complex
 frequency) aerodynamics for complex configurations
 (e.g., wing-body-tail combination) in both subsonic
 and supersonic regimes. No other program can handle
 even oscillatory supersonic flow problems for
 complex configurations.
- 3. It can be applied to arbitrarily-complex configurations. Wing-body-tail configurations with control surface have been analyzed. (No existing results are available for comparison. However, results for a simple wing with control surface shows that the present method is in good agreement with existing ones.)
- that it is capable of analyzing influence of actual wake geometry on aircraft surfaces. In particular, it can analyze wing-tail configurations with the wake generated by the wing intercepting the tail and merging with the tail generated wake when it leaves the tail trailing edge. This feature has been added very recently to the program and improves considerably the range of applicability of the code. Results are in good agreement with existing ones.

- 5. The program is computationally extremely general, flexible, efficient and above all, accurate. The elimination of diaphragms in supersonic flow improved considerably the simplicity and efficiency of the code. (Ref. 4 requires the use of diaphragm and hence is limited to simple geometries).
- 6. In contrast to existing methods, which in many instances require extensive user's background in aerodynamics and familiarity with the specific method, the present code requires limited human itervention and is very easy to use.
- 7. The evaluation of pressure is performed using the finite-element method. (Ref. 4 used finite-difference and was limited to thin wings)
- 8. The generalized forces are evaluated for arbitrary geometry and arbitrary three dimensional mode shapes.
- 9. Another unique feature of the present method on unsteady potential flow problems in that the flutter analysis often requires the analysis on a specific geometry for a wide range of frequencies. In the present method, the frequency-dependent coefficients of the aerodynamic transfer matrix, is expressed as a combination of complex frequency-independent coefficients* with simple frequency-dependent coefficients: the advantage is that every additional frequency analysis other than the first one requires only a minimal amount of CPU time

^{*} B_{ij},C_{ij},D_{ij},F_{ij},G_{ij},Θ_{ij},S_{ij}, coefficients of Ref. 5, enclosed here


- 10. In iterative procedures (for instance for optimal design) it is generally required to predict generalized aerodynamic loads due to a variety of vibration modes. In the present method, the aerodynamic coefficient matrix is written as the product of three matrices. The first and the third (for the normalwash and for the evaluation of the generalized forces) are mode dependent but very simple, while the second one (relating pressure distribution to normalwash distribution) is mode independent. By the same reasoning as above, the CPU time required for additional modal analysis is reduced to a relatively negligible level.
- 11. Evaluation of the normalwash for complex configurations from prescribed three dimensional mode shapes (Ref. 4 was limited to thin wings with vertical displacements.) is available. Downwash due to turbulence is also included.
- 12. Applications to flutter have been considered. The results (see next section) are in good agreement with existing ones.

In conclusion, the proposed paper will emphasize the generality, flexibility, efficiency of the present method.


Last, but not least, the present method provides a unified approach to cover the whole linearized potential flow spectrum with very limited human intervention required in using the computer code SOUSSA.

- Morino, L. "Unsteady Compressible Potential Flow around Lifting Bodies Having Arbitrary Shapes and Motions", Beston University, College of Engineering, Dept. of Aerospace Engineering, TR-72-01, June 1972. Superseded by "A General Theory of Unsteady Compressible Potential Aerodynamics", NASA CR-2464. December 1974
- Morino, L. "Unsteady Compressible Potential Flow Around Lifting Bodies - General Theory". AIAA Paper No. 73-196, January 1973.
- 3. Morino, L. and Kuo, C.C. "Subsonic Potential Aerodynamics for Complex Configurations: A General Theory". AIAA J., Val. 12, No. 2, February 1974, pp. 191-197.
- 4. Morino, L., Chen, L.T. and Suciu, E.O. "Steady and Oscillatory, Subsonic and Supersonic Aerodynamics Around Complex Configurations" AIAA J., Vol. 13, No. 3, March 1975, pp. 368-374
- 5. Morino, L. "Subsonic and Supersonic Indicial Aerodynamics and Aerodynamic Transfer Function for Complex Configurations" Boston University, ENG-TN-74-01, September 1974.
- 6. Tseng, K.D., Chen, L.T. and Morino, L. "SOUSSA: Steady,Oscillatory and Unsteady, Subscnic and Supersonic Aerodynamics for Aerospace Complex Transportation System; A User's Manual" Boston University, ENG-TR-75-03
- 7. Laschka, B. "Zur Theorie der Harmonisch Schwingenden Tragenden Flache bei Unterschallenstromung", Zeitschrift fur Flugwissenschaften, 11 (1963), Heft 7, pp. 265-292.
- 8. Labrujire, T.E., Loeve, W. and Sloff, J.W. "An Approximate method for the Calculation of the Pressure Distribution on Wing-Body Combinations at Subcritical Speeds", AGARD Specialist Meeting on Aerodynamic Interference, Silver Springs, Md., Sept. 1970, AGARD Conf. Proc. No. 71
- 9. Lessing, H.C., Troutman, J.C. and Menees, G.P. "Experimental Determination of the Pressure Distribution on a Rectangular Wing Oscillating in the First Bending Mode for Mach numbers From 0.24 to 1.30", NASA-TN-D-344, 1960.

- 10. Tijdeman, H. and Zwaan, K.J. "Unsteady Aerodynamics For Wings with Control Surfaces" No. 12, AGARD Symposium on Unsteady Aerodynamics for Aeroelastic Analyses of Interfering Surfaces, AGARD-CP-60-71, 1970
- 11. Huttsell, L.J., Pollock, S.J. "Unsteady Aerodynamic Loads for the AGARD Interfering Lifting Surfaces!" AFFDL paper, 1974.
- 12. Rodden, W.P., Giesing, J.P. and Kalman, T.P. "New Developments and Applications of the Subsonic Doublet-Lattice Method for Nonplanar Configurations" Paper No. 4, AGARD Symposium on Unsteady Aerodynamics for Aeroelastic Analyses of Interfacing Surfaces, AGARD-CP-SO-71, 1970.
- 13. Schmid, H. and Bechen, J. "Contribution to the AGARD Program on Unsteady Aerodynamics for Interfering Lifting Surfaces." MBB Paper, 1973.
- 14. Mykytow, W.J., Olsen, J.J. and Pollock, S.J. "Application of AFFDL Unsteady Cord Prediction Methods to Interfering Surfaces", Paper No. 7, AGARD Symposium in Unsteady Aerodynamics for Aeroelastic Analyses of Interfacing Surfaces, AGARD-CP-80-71, 1970.
- 15. Davies, D.E. "Applications of Unsteady Airforce Calculation Methods to AGARD Interfering Surfaces!" AGARD-CP-80-71, 1970.
- 16. Pollock, S.J. and Huttsell, L.J. "Applications of three Unsteady Aerodynamic Land Prediction Methods" AFFDL TR-73-147, May 1974.
- 17. Appa, K. "Integrated Potential Formulation of Unsteady Supersonic Aerodynamics for I reacting Wings" NASA CR-132547, Oct. 1974.
- 18. Appa, K. and Jones, W.P. "Integrated Potential Formulation of Unsteady Aerodynamics for Interacting Wings" AIAA paper No. 75-762.
- 19. Hammond A.D. and Keffer, B.M. "The effect at high subsonic speeds of a flap-type aileron on the chordwise pressure distribution near mid-semispan of a tapered 35° swept back wing of aspect ratio 4 having NACA 65A006 airfoil section", NACA RM L53C23.
- 20. Bisplinghoff, R.L. Ashley, H. and Halfman, R.L. "Aeroelasticity", Addison-Wesley, Reading, Mass., 1955
- 21. Davies, D.E. "Calculation of Generalized Airforces on Two Parallel Lifting Surfaces Oscillating Harmonically in Subsonic Flow, RAE Technical Report 72180, 1973.

Lift Coefficient, C., Versus M, for Rectangular Wing Oscillating in Pitch, With AR=2, \tau=0.001, k=1, N =7, N =7, N =20, L / C=2. Comparison with results of reference 11.

Moment Coefficient, C., Versus M, for Rectangular Wing Oscillating in Pitch, for AR=2, t=0.001, k=1, N, =7, N, =7, N, =20, L, Comparison with results of reference 11.

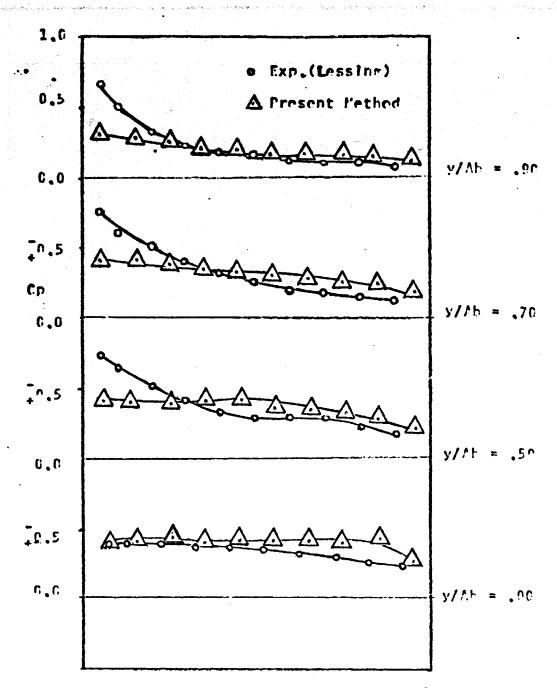


Fig. 3 lifting pressures; l' = 1.30, d = 5

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

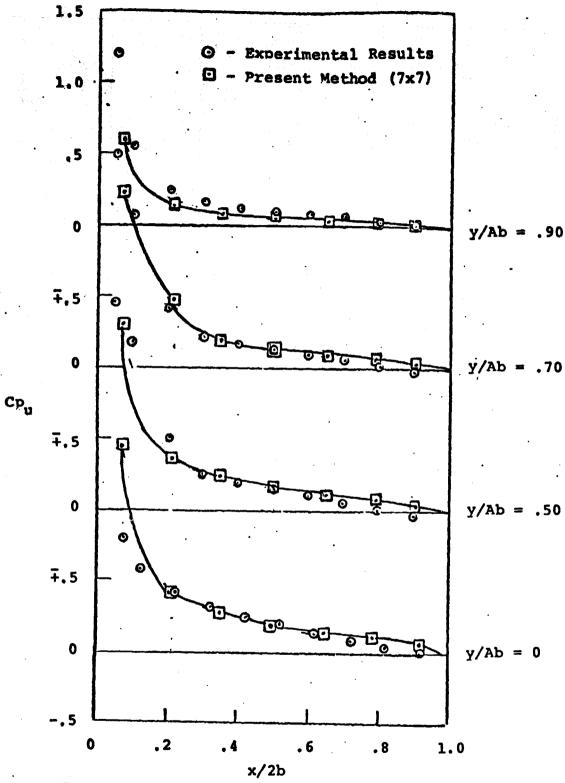


Fig. 4 Lifting pressures; M = 0.70, $\alpha = 5^{\circ}$

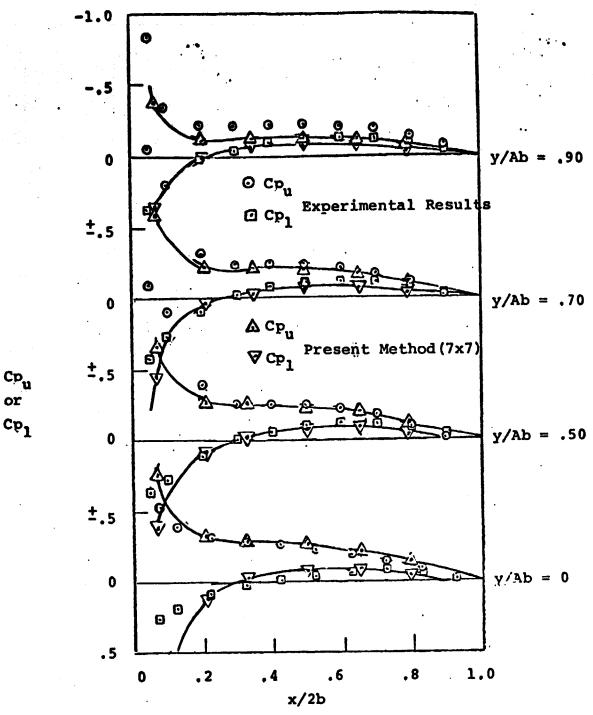
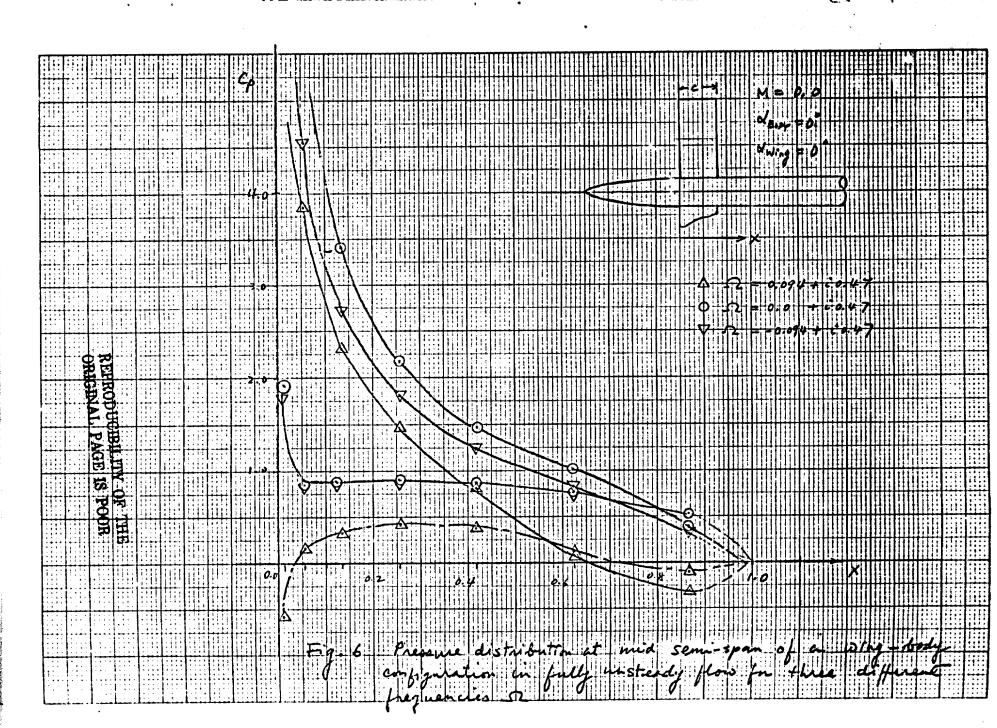
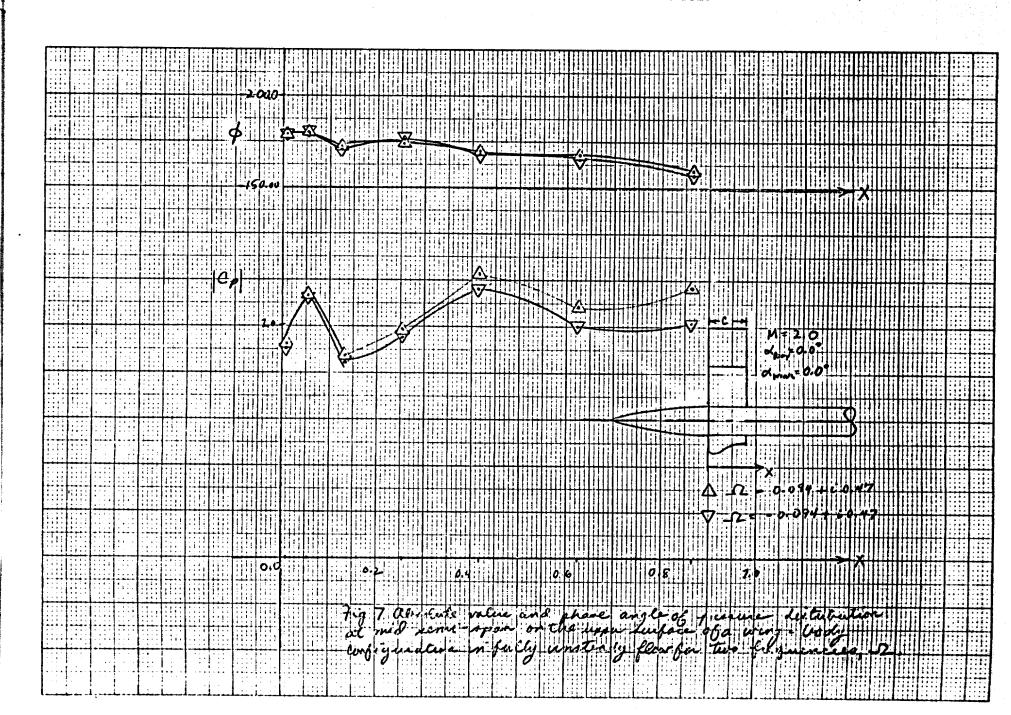
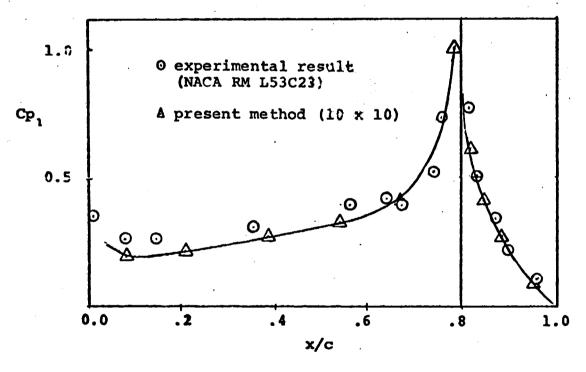





Fig. 5 Pressures on upper and lower surfaces M = 0.70, $\alpha = 5^{\circ}$

Chordwise pressure distribution over a 35° swept wing, at the 46-percent-semispan station. $\alpha = 0$ ° $\delta = -15$ °, M = 0.6.

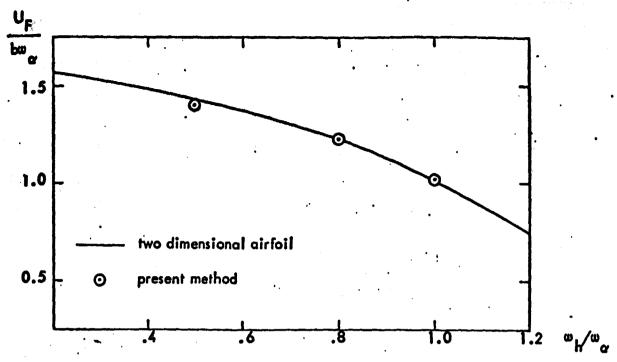


Figure 12%. Flutter speed as a function of ω_h/ω_α for a rectangular wing with AR = 16, M = 0, τ = 0.1%, μ = 5, X_α = 0.2, Γ_α = 0.5, and NX = 8, NY = 10. Results are compared with exact solution given by two dimensional airfoil theory (Ref.20) (X_{EA} = -0.2C).

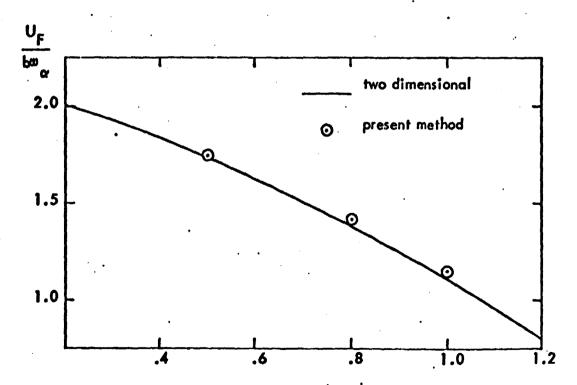


Figure 1/b Flutter speed as a function of w_H/w_{α} , for a rectangular wing with AR = 16, M = 0, τ = 0.1%, μ = 10, X_{α} = 0.2, r_{α} = 0.5 and NX = 8, NY = 10. Results are compared with exact solution given by two dimensional airfoil theory (Ref. 20)(X_{EA} = -0.2C).

TABLE 1

GENERALIZED LEROUNAMIC COTTEVIENT FOR AGAND WING -

TAIL INTEFFERENCE M= 3.0 62/L = 0.0

GENERALIZED	CAUSED BA	, .	k≈	0.0	k = 1.5		METHOD.	
FORTE IN	presure in	i, j	a:	Q";;	Q'ii	Q'ii		
WING THIST	WING THIST	1,1	- 0,0226	-	0.0966	0.1486	11	
•	,		- 0, 0 209	-	0.10 02	0.1463	17	
	·		e. c 357		0.1059	0.1-146	18	
			0.0189	0.1220	0.1066	0.1345	Pres.	
Dine Bending	wing Twist	2,1	e. 3035 ⁻	-	0.3846	0.0190	11	
			0.3010	-	Ö.3740	0.0390	17	
			0.2661	-	0.2710	0.12.07	18	
			0.2739	0.1082	0. 323%	0.0765	PRES.	
				,	 .			
TAIL COLL	WING TWIST	3,1	-0.2152		- 6.0394	0.0764	11	
•	·	'	0.2137		0.0463	0.0696	17	
			-0.2660		-0.1200	0.0351	r\$	
	,		0.22.26	- 0.1020	i . 14 33	-0.0612	PRES.	
TAIL PIRE	WING THIST	4,1	- 0.1550	-	- 0.0147	0.0554	11	
			0.1515	_	0.0171		17	
			-0.2170	_	- 0.1316	,	18	
			- 0.0006			-0.0612	PRES.	
WING TWIST	WING BENDING	12	0,0		- 0.0700	0. 03cy	11	
V			0.0		- 0.0720		17	
			0.0	_	- 0. 0244	0.080/	12	
			0.0	0.012/	- 0. 0648			
Miller D. Bernand	WINE FERRING	2 2	0.0	_	- 0.0759	5.2343	11	
Marine Contract			0.0	-	,	0.2335	17	
		1	0.0	-	4	C. 2360	18	
			0.0	C. 1794		0.2040	PRES.	
TAIL PELL	was stable	3.2	0.0	_	- 0. 1531	0.0230	,,	
1		Ι΄.	6.0		0, 1477	0.0160	17	
		1	0.6	-	- 0.1146	-0.06/1	13	
1		1	0.0	0.1642	0.1701	0.0670	PRES.	

NO. IN HETMOD-COLUMN IN FOR "REF NO" THE FOR "PRESENT METHOD"

TABLE 1 (CONT.)

GENERALIZED ARRODY NAMIC CORFFICENT FOR AGARD WING-

THE INTERFERENCE M=3.0 . LTL = 0.0 (CONT.)

GENZA	RALIZZD	CAUSE	D BY	, .	k a	. C. O	k =	1.5	+
FOR	T IN	præssur	7 (N	ì,j	Q'ci	Œ"¿;	Q'ci	(ê 'o'	METHOD
TAIL	PITCH	MNG	Egndns	4,2	0. O 0. O		-0.1033 0.0488	0.0197	17
				·	0.0	0.0198	-0.0930 0.0216	- 0.0857	18 Pres.
wiNé	TWIET	TAIC	ROLL	1,3	5, 0 6, 6 6, 6	- 0.0	6.0 6.0 0.0	û. 0 û. 0 6 . û	11 BRES
WING	eading	TA!L	ROLL	2,3	ψ. 0 ο. ο ο. ο	- - 0.0	0. 0 0. 0 0. 0	0. 0 0. 0 0. 0	li Iŝ Pres.
TAU.	foi L	TAIL	ROLL	3,3	C. C O. C C. C	- - 0, 234?	0.0168 0.0700 0.0127	0.7560 0.317/ 0.2283	!! 18 PRES.
Tail	рстон	THL	ROLL	<i>₫</i> , B	c. o o. o o. o	- - 0. 1704	0.0050 0.0365 0.0009	i e	11 18 PRES.
13 no	n Toust	TALL	PITCH	1,4	0. 0 0. 0 0. 0	- 0.0	0.0 0.0 0.0	0.0 0.0 0.0	II I & Pres.
N/ Né	Benthus	TFIL	PITCH	2, 4	8. U 0. 0 0. 0	- - 0.0	0. 0 0. 0 0. 0	0.0 0.0 0.0	ii IB PKES.
TAL	. Poii	TAIC	Pi7CH	3.9	0.4533		i	0.1632 0.2163 0.1518	11 18 PKES.

TABLE I (COUT)

GENERALIZED AEROLYNAMIC CLEFFICIENT FOR AGARD WING TAIL INTERFERENCE M= 3.0 42/L = 0.0 (40NT.)

eneralized	eauced by	; ;	k≎		$k = \ell$		Method
	fressure in	6,1		<u>a":</u>	Q'a:	•	
ALL PITCH	TAIL POTCH	4,4	0.2882	-		0 2588	11
			0.2873		0.3162	_ 1	()
٠	. !		0.3018	0.1962	0.2577	0.1910	PRES
						•	
ING TWIST	WING THIST	1+3,	0.2472	0.3/25	0.2630	0. 3016	PRES.
US TAIL ROLL	AND THE ROLL	1+3	Ç, = · , ·	•			
HNG CSOSTILLIG	WING THAT	2+4	A 2830	02218	0.3571	6. 2646	PRES.
	AND THE RILL		0.2030	0, 32, 0			
,					;		
WING TWIST	wing Desiding	1+3	0 4 2 2 3	1 22 118	0 6244	0.2694	PRES.
ND TALL COL	AND THE FITG	12-4	U. T 553	U, 22 4 8	0,000		
THE ROLL				,			
Links Transpire	NINE BENEVIE	2+4	20.0	. 47	0 27.3	0.4414	PKES.
Mina Pinaw	MAD THE FITTE	2+4	0.50'8	0.4057	5. 4/27	0.47/7	1/152.
NO CALL FLO	The state of the						
		1					
			k I				
		-					
					DE THE		
			DEPRO	DUCIBILITY	d POOR		
			ORIGI	DUCIBILITY NAL PAGE I			
	1		1				
			1				1 .
						į	

GENERALLERD LEROS (NAME) COEFFICIENT FOR AGMS WING.

TAIL INTERTERMITE ME E.O DE/L = 0.6

G ENERALIZED	CHOSED EA	: :	F ≈	0.0 •	k =	1.5	******
FORCE IN	PRESSURE 14		Q.	రు "ౖ;	Q';	Q :-	In E रिलंट वृ
FINT BUILT	wing Thist	1,1			0.0913	0. 1467	11
				•	0.1059	0.146	18
					0.1172	0.1718	PKES.
					,		ki
WHICKE F. ENDING	hing thist	2,1			0. 39 37	0. 09 95	.
	·				0. 17/2	0. 1207	, 3
					0.3397	0.0324	Pres.
						·	
TAIL POLL	miss Tuet	3,1	•		3.1753	0, 0550	()
		3	1		- 0,0132	0:/024	.13
,	•,				- 0, 1566	. 0.0315	PRES.
							İ
TAIL PITCH	wind thist	4,1			0.0856	0.0541	,,
					-0.000	0.0317	:3
	•				- 4. 6375	-0,0400	PRES
WING TWIST	WAR ERRORS	1,2			-0.0746	0.030/	11
					- 0.0254	3.380/	٠ ن
					-0.0438	0.0596	PRES.
						•	
YMS SENDING	MAN BERBA	2,2			- 6.6720	0.2347	11
					0.0167	0.2-64	/ ;
			•			2. 3218	PRES
TAIL ROLL	17/104 PEMOLING	3 -			-0.0291	0.0015	
1		l			-0.0715	1	
					6.0359		
TAIL PITCH	WAS ENDAS	4.3			- 0.0401	3.0095	
					- 0.0600		
] 1		l	1		0.033/	-0.0666	İ
[,				
[[Į
			<u> </u>				

TARCE 2 (CONT.)

GRAVERALISED ARKODYNAMIC COSTFICIENT FOR LEAFER WING-

Gens	17 L. W.		;	k &	0.0	k =	1.5	+
TOPIC.	611	erszect in	١,)	G':	19.	6.71	K_{ij}	11 ह्यान हो।
MING	たがらて	TAIL POPL	1,3	•	•	0,0	20	' /
						c.n	0.0	13
	·					c, o	0,6	PRES.
WHOS	PENN. S	TAIL FILL	2,3			¢,0	ε, ο	17
	'	1				ti. n	0.0	12
						<i>0.</i> 0	$\cap c$	Pees
TALL	ROLL	TAIL ROLL	3, 3			0.0165	6.2622	۱.,
		:	:	:	<u>:</u>	0:0700		ş
					e e	0.0409	l i	PRES
					i	·	·	•
TAK	PCTCH	TAIL ROLL	43			0.0572	2. 1864	11
	•					0.0335	ं, ३३०₹	1.9
	•					0.0013	ნ .ეუ#ც	PRES
in' Ari	This :	THE POTE	i,4			2.5	0.0	11
W.//S		<i>p p</i>	/ , -			0.0 0.0	2.0 2.0	12
						2.0	υ, ο	PRES.
						٠, ٠	ي. د د	JACA.
lv 'N⊈	240%	TAIL PORCH	2,4			0.0	<i>5</i> . 0	•
	;					0. C	5. C	<u>;</u>
	: :	·				6.0	C. 0	P.C.ES.
TALL	Eo. z	TME PITCH	3.4			0.4517	0.72.52	
			- ,				0.2112	,
							0,7374	
TEIL	PITCH	TA'S FOCA	غدإلا		:	0.2765	2. = 2 ¹ 27	, i
						0.3122	. 2.10	
					!	3. 1737		Pacs.
							i :	-
						<u>-</u>		
I								

TAYLE 3

GENERALIZED RECTYLIMATE CONFFICIENT FOR AGARD WING-

THE INTERFERENCE H = 0.8 42/L = 0.6

624	ERALIZZ	CAUSED BY	l -			· · · · · · · · · · · · · · · · · · ·		
FORCE		PRESORE IN	i,j		0.0	k = .		METHOD
			-	0'13	R";;	R'cj	(k";;	
WING	TIVIST	WING TWIST	1,1	- 0.0871	0.1726	•	_	11
				- 0.0733	1		· ·	12
l				-0.0600	0.0679	- 0.1593	0.1335	PRES
14/14/2	Boya Gr. 7.1	high of Traces	 					
1000	DETVIXIVE	wing thist	2,1	0.26//	_ '	,	1	11
				2. 2776	1			12
				0, 3275	6.3607	0.1955	0.3684	PRES
TAIL	ROLL	WING THIST	3, /					
100.0	Kore	141746: (1413)	3, 1	- 6,0619		-0.0615	· 1	11
				1	0,0347		1	12.
	٠	·		- 0.055G	- 0.0025	-0.0487	0.0163	PRES
TALL	FITTE	WING TWIST	À, !		·1 002C	6 3 5 5 5 5		:
	• (5)	With the second	,	- 0.0206 - 0.0718		-0.0033	0.0103	<i>j. 1</i>
				-0.0154	1 1	-0.0406	0.07%	12.
				0.0754	- 0.0006	- 0. 0 / 5 /	0,0030	PRES
No Min	TW57	wing bending	; ¬	6.0	-0.0515	-04370	0.007	
,.		TO CONTRACT OF THE STATE OF THE	, , _	0.0		-0 1252	-0.0507 -0.0387	i I
				0.0		- 0.1163	- 1	PRES
					0,0282	2.7765	-0.25//	1,463
W166	BER BORG	nens feading	ر <u>د</u>	0.0	0 12/12	- 0.3478	0.5783	
			-/-	0,0		-0. 3303	, i	11
				0.0		-0.3317		12- PRES
		,		<u> </u>			0. 2 50%	- 10
TALL	ROLL	wing benting	3.7	0.0	-0.0345	-0.0221	-0 1177	11
			,		-0.0430		-	12.
				0.0	-0.0356	S	i	PRES
				. •				(1, 4,
TAIL	FITCH	WING ESTERNA	4 2	<i>z. o</i>	- 5.0138	-0.019,	-0.0049	,,
			, -		-0,0459			12
					- 0. 010a		1	FRES
				·		ا ا واسم میں بال	AND I	
	ļ	İ			REPRODUC	DAGE IS R	OOR	
					-ORIGINAL	PAGE IS P	JUR	

TABLE 3 (CONT.)

GENTRALIZED ABRODUNAMIC COEFFICIENT FOR AGARD KING
THE INTERFERENCE M = 0.8 $\Delta Z/L = 0.6$ (CONT.)

GENERALIZED	CAUSED BY	, .	ka	0.0	K =	1.5	
	pressure in	i,j	Qi;	Q'ii		Q"ii	METH OD
WING TWIST	TAIL POLL	1,3	•			-0.0031	11
					1	-0.0004	
				,	- 0,0005	-0.0018	PRES
wing beading	TAIL ROLL	2, 3			-0.0026	- 0.0052	t)
		Ť			-0.0015	- 0.0006	12
					-0.00 33	-0.0036	PRES
	٠					, *	
TAIL ROLL	TAIC ROLL	3, 3	•		- 0.3156	0.4215	11
					- 0. 2974	0,4322	12
					-0.3639	ר ד 38 .0	PRES
		4 -					
TAIL PITCH	TAIL ROLL	4,3			1	0.1825	11
					_ '	0.4945	
				٠.	-0.2762	0.1454	PRES
hus TueT	TAIL FITCH	1 0			- 027	-6 C2//	11
10/136 /10/3/	West Error	1.4			- 0. 00 29	-0.0016	12
						-0.0012	FKES
					- 0.002,	J. 00. ±	1,403
WING BENS W	TAIL PITCH	2,4			-0.0156	2.00/2	11
		Í			1 :	0.0007	12
					1	3.0002	PRES
			•				·
TAIL ROLL	TAIL PITCH	3,4			0. 5328	0.7713	11
					0,3276	1.0701	12
					0.3416	0.7766	PRES
TAIL PITCH	TALL FITCH	4,4			l I	0.6442	1
			: :		8 1	1.6090	
1					-0.129	0.5351	FRES
					. !		į

TABLE 3 CHT.

GENERALIZED AFFODYNAMIC COEFFICIENT FOR MEMORY WING.

<u> </u>							
GENERAUZED	caused by	;	K &	0.0	k =		METHOD +
FORCE IN	PRESSURE IN	ر, ۲	('):	10"22	@';;\.	Q"iì	1(50.5)
WING TWIST	NING TWIST	1+3,	-0.1473	0.5193	- 0. 57/3	0.6274	2/
AND TAIL ROLL	AND TAIL POLL	1+3	-0.1156	0.4254	- 0.5661	0.5346	PRES
WING BEADING	WING TWEF	2+4	0.3404	C. 5308	- 0, 1262	0.5739	21
AND THE POTE	MUD TAIL ROL.	1+3	6.2117	0.4770	-0.1358	c. 5225	PRES
							·
WING THIST	NING BEHAVING	1+2,	0.6402	0.6181	ని. కేకక్ర	0.7190	2/
AND THE ROLL	AND THE PITCH	2 +4.	0.6357	0.6475	0.2332	0.73.43	PRES
				_	_		
HING BENDING	wing bending	2+4	0.16 19	0.7565	- 0.4568	0.8729	21
AND TALL PITO	AND THE POTCH	2+2	0.1694	0:6266	- 0.5094	0-7317	PRES
•	·	·	ŕ			*	•
			,				
				,			
	•		·				
	·						
			<u> </u>		‡ *		
			1				
				OF THE			
	_	CPROI	UCIBILITY AL PAGE IS	POOR	}		
	7	RIGIN	AL PAGE				
			,			1	
						1	