
 MCHANHEAL EKCINEERNG CoLHETE OF NGINERRAT

Boston University
 College of Engineering
 110 Cummington Street
 Boston, Mass. 02215

A FINITE ELEMENT ANALYSIS OF THE EXACT NONLINEAR FORMULATION OF A LIFTING SURFACE IN STEADY INCOMPRESSIBLE FIOW, WITH THE EVALUATION OF THE CORRECT
 WAKE GEOMETRY
 by
 Emil O. Suciu

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering 1975

APPROVED BY

ABSTRACT

The problem of steady incompressible flow for lifting surfaces is considered. This problem requires the solution of an integral equation relating the values of the potential discontinuity on the lifting surface andits wake to the values of the normal derivative of the potential which are known from the boundary conditions. The lifting surface and the wake are divided into small quadrilateral (hyperboloidal) surface elements, \sum_{i}, which are described in terms of the Cartesian components of the four corner points. The values of the potential discontinuity and the normal derivative of the potential are assumed to be constant within each lifting surface element and equal to their values at the centroids of the lifting surface elements. This yields a set of linear algebraic equations.

An iteration procedure is used to obtain the wake geometry: the velocities at the corner points of the wake elements are calculated and the (originaliy straight) wake streamlines are aligned to be parallel to the velocity vector. The procedure is repeated until convergence is attained.

Numerical results are in reasonable agreement with existing ones.

FOREWORD

I would like to thank Dr. Luigi Morino for his help on many levels, Without his continuous support and encouragement, this work would have never been performed by me. I am also indebted to Profs, Daniel G. Udelson and Isaac Fried for acting as readers of this thesis.

This work was supported by NASA Langley Research Center under NASA Grant NGR 22-004-030. Dr. E, Carson Yates, Jr. is the monitor of the Grant.
TABLE OF CONTENTS
Page
SECTION•I INTRODUCTION 1
SECTION II NUMERICAL FORMULATION 15
SECTION III NUMERICAL RESULTS 28
CONCLUDING REMARKS 34
REFERENCES - 36
APPENDIX A CONVERGENCE OF SOLUTION 58
APPENDIX B CONVERGENCE OF ITERATION SCHEME 66
APPENDIX C FLOW CHART AND LIST OF THE COMPUTER 76 PROGRAM ILSAWR

See Eqs. 2.2 and 2.3

Aspect Ratio

Eq. 2.4

Lift coefficient

Lift coeefficient per unit angle of attack

Pressure coefficient

Defined by Eq. 2.1

Unit vector along x-direction

Normal to the surface at P_{h}

Number of elements along x and y directions, respectively

```
P}(x,y,z)\quad\mathrm{ Control point
```



```
\mp@subsup{\vec{P}}{k}{\prime},\mp@subsup{\vec{P}}{1}{},\mp@subsup{\vec{P}}{2}{\prime},\mp@subsup{\vec{P}}{3}{}\quad\mathrm{ See Eq: 2.14}
p Pressure
\mp@subsup{\vec{Q}}{1}{},\mp@subsup{\vec{Q}}{2}{},\mp@subsup{\vec{Q}}{3}{},\mp@subsup{\vec{Q}}{4}{}\quad\mathrm{ See Eqs. 2.16 and 2.17}
\vec{V}
\mp@subsup{\vec{v}}{h}{}
Velocity at point }\mp@subsup{\overline{P}}{h}{
* *
X, Y, Z
\overline{x}},\overline{Y},\overline{z
U 
\alpha
\beta,\gamma
Angle of Attack
See Eq. 2.20
```


SPECIAL SYMBOLS (Continued)

$\Delta \mathrm{x}_{\mathrm{w}}$	Length of wake element along x -direction
$\mathrm{u}_{\mathrm{y}} \ell$	Upper, lower
∞	At infinity

page
Figure l. Formation of the Wing - Tip Vortices. 38
Figure 2, Jifting-Surface and Wake Geometries. 39
Figure 3. Surface Geometry. 40
Figure 4. Hyperboloidal Quadrilateral Element. 41
Figure 5. Hyperboloidal Element with Definition of Vectors $Q_{1}, Q_{2}, Q_{3}, Q_{4}$. 42
Figure 6. The process of Aligning the Streamlines with the Velocity \vec{V} in a Typical Wake Surface Element. 43
Figure 7a. Converged Wake Pattern for a RectangularWing Planform of $A R=8$, with $\alpha=5^{\circ}$,Element Grid with $N X=4$, $N Y=10$, Lengthof Wake Elements $\Delta x^{\prime}=.5 c$, Plotted for10 Chord Lengths Befind the Trailing Edge.Continued on Next Page.44
Figure 7b. Continuation of Figure 7a. 45
Figure 7c. Side View of the Rolled-up Wake for the Wing of Figure 7 a , 46
Figure 7d. Top View of the Rolled-up Wake for the Wing of Figure 7a. 47
Figure 8. Effect of the angle of attack, α, on the Wake Roll-up for a Rectangular Iifting Surface of $A R=8$, Plotted at 5 Chord Lengths Behind the Trailing Edge. The Element Grid has NX $=4$, NY $=10$ and $\Delta \mathrm{x}_{\mathrm{W}}=.5 \mathrm{c}$. 48
Figure 9a. Streamline \#l of a Rectangular LiftingSurface of $A R=8$, with $N X=4$, $N Y=10$,$\Delta x_{w}=.5 c$, Plotted for Various Values ofthe Angle of Attackra.49
Figure 9b, Streamline \#10 for the Planform ofFigure 9a, Plotted for Various Values ofα :50
Figure 9c, Streamline \#ll for the Planform of Figure 9a, Plotted for Various Values of α. 51

LIST OF FIGURES (Continued)
Page
Figure 10. Wake Roll-up for a Rectangular Lifting Surface of $A R=8$, Angle of Attack $\alpha=6.25^{\circ}$, Element Grid with $N X=.5 \mathrm{c}$ and Comparison with the Results of Ref. 11.52

Figure 11. Location of the Vortex Centerline for a Rectangular Lifting Surface of $A R=8$, for $\alpha=12^{\circ}$, Element Grid with NX $=4, \mathrm{NY}=10$, $\Delta \mathrm{x}=.5 \mathrm{c}$ and Comparison with the Result of Ref. 8.53

Figure 12. Wake Roll-up for a Rectangular Lifting Surface of $A R=8$, ai $\alpha=5^{\circ}$, with $N X=4, N Y=10$, Length of Wake Elements $\Delta \mathrm{x}_{\mathrm{w}}=.5 \mathrm{c}$ and Comparison with Results of Ref. 12. Continued on next page.

Figure 12. Continued55

Figure 13. Nonlinear Section Pressure Coefficient at $y=0$, for a Rectangular PIanform of $A R=8$, at $\alpha=5^{\circ}$, with $N X=7, N Y=7, \Delta x_{W}=.5 c$.56

Figure 14. Potential Distribution at the Trailing Edge of a Rectangular Planform of $A R=8$, with $\alpha=5^{\circ}$, $N X=N Y=7$ and $\Delta x_{W}=.5 c$.57

Figure Ala. Influence of the Jength of the Wake Elements Δx_{w} on the Rolledup Wake for a Rectangular Wing of $A R=8$, for $\alpha=5^{\circ}$, at a Station Situated 3 Chord Lengths Behind the Trailing Edge. The Element Grid has $N X=4, N Y=10$.A-4

Figure Alb. Influence of the Length of the Wake Elements $\Delta x_{\text {w }}$ on the Rolled up Wake for the Wing of Figure Ala, at a Station Situated 6 Chord Lengths Behind the Trailing Edge.

Page

Figure Alc. Influence of the Length of the Wake Elements Δx on the Rolledup Wake for the wing of Figure Ala, plotted at a Station Situated 9 Chord Lengths Behind the Trailing Edge.

Figure A2. Influence of the Length of the Wake Elements $\Delta x_{\text {w }}$ on the Wake Rollup for a Wing of $A R=8$, with $\alpha=5^{\circ}, N X=4, N Y=10 . \quad$ Plotted are the Streamlines \#I, 10 and 11. A-7

Figure A3. Convergence Problem: Influence of NY on the Wake. Roll-up for a Rectangular Wing of $A R=8$, at $\alpha=5^{\circ}$, with $N X=4$ and $\Delta x_{w}=.5 \mathrm{c}$, Plotted at a Station Situated 10 Chord Lengths Behind the Trailing Edge.

Figure Bla. Evolution of the Rolled-up Wake Pattern Through Successive Iterations, at a Station Situated 1 Chord Lengths Behind the Trailing Edge, for a Rectangular Wing of $\mathrm{AR}=8$, at $\alpha=5^{\circ}$, with $N X=4$, $N Y=10, \Delta x_{W}=.5 \mathrm{c}$.

Figure Blb. Evolution of the Rolled-up Wake Pattern Through Successive Iterations, at a station Situated 2 Chord Lengths Behind the Trailing Edge, for the Wing Planform of Figure Bla.

Figure Blc. Evolution of the Rolled-up Wake Pattern Through Successive Iterations, at a Station Situated 5 Chord Lengths Behind the Trailing Edge, for the Wing of Figure Bla. B-5

Figure Bld. Evolution of the Rolled-up Wake Pattern Through Successive Iterations, at a Station Situated 10 Chord Lengths Behind the Trailing Edge, for the Wing of Figure Bla. B-6

IIST OF FIGURES (Con+inued)
Page
Figure B2a. Evolution of Wake Streamline\#1 Through Successive Iterationsfor the Planform of Figure Bla. B-7
Figure B2b. Evolution of Wake Streamline \#9Through Successive Iterations, forthe PIanform of Figure Bla. B-8
Figure B2c, Evolution of Wake Streamline \#10 Through Successive Iterations, for the Planform of Figure Bla.B-9
Figure B2d. Evolution of Wake Streamline \#lI Through Successive Iterations, for the Planform of Figure Bla. B-10

SECTION I

INTRODUCTION

1.1
 Definition of the Problem

This work deals with a nonlinear finite-element analysis of zero thickness wings (lifting surfaces) in steady, incompressible, inviscid, irrotational flow, including the effect of the rolled-up wake. The problem is formulated in terms of the velocity potential. This problem was considered in Ref. 1 where a zeroth order finite-element (i.e. the potential ϕ prescribed at the centroids of the surface elements) analysis was used, with a straight-vortex-line wake. The present work is an extension of Ref. I and includes the analysis of the wake roll-up as well as the nonlinearities in the evaluation of the pressure (Bernoulli's Theorem). Throughout this work, the potential is assumed to have a constant value over the surface element, equal for example with its (unknown) value at the centroid of the element (zeroth order formulation). The first item considered here is the wake roll-up. The rolled-up geometry for the wake is obtained by a process of iteration. The convergence of the iteration scheme is investigated. A second item
included here is the effect of the rolled-up wake on the pressure distribution over the lifting-surface, using the nonlinearized Bernoulli equation. The results are compared with the linearized ones.

1.2 Lifting-Surface Theory

The theoretical investigation of pressure and Iift distributions over lifting surfaces of various shapes is embodied in many works.' An excellent review of the literature in the field is given in Refs. 2 and 3, together with results for lifting surfaces in steady and oscillatory, subsonic and supersonic flows. It may be worth noting that the integral equation used here is analogous to the one used by Jones (Ref. 4) for unsteady incompressible flow. The classical approach for the numerical solutions of liftingsurface theories is by expressing the unknown in terms of a series with \mathbb{N} unknown coefficients and by imposing that the equation be satisfied at N control points. Recently, however, a new approach (often referred to as the finite-element method) has been introduced, especially in connection with complex-configurations aerodynamics. A finite-element analysis of lifting surfaces is considered for instance in Ref. 5, which presents results for the loading of a rectangular

Abstract

planar zero-thickness wing using a downwash-velocity potential formulation. Ref. I presents a general finite-element solution of a velocity potential formulation for lifting surfaces of arbitrary shapes in steady subsonic flows. This work differs from the one of Ref. 5 in that it uses hyperboloidal (i.e. warped) quadrilateral elements and is therefore applicable to any arbitrary nonplanar shape. Expressions for the velocity at any point are also obtained in Ref.' 1. These are suitable for investigating the dynamics of the wake.

1.3 Wake Roll-Up

The interest in the phenomenon of wake roll-up has been spurred by the introduction, a few years ago, of the widebody aircraft. Many papers have since been written about wing-tip vortices: about their formation, their effect on a trailing aircraft, their detection and their disappearance. Excellent descriptions of the phenomenon can be found in Refs. 6. and 7. A short illustration of it is also presented here. In a few words, behind every aircraft in flight, a pair of counterrotating wing \rightarrow tip vortices is formed. See Fig. 1. The diameter of the vortex core has been found by measurements to be approximately 3% of the wingspan. The strength of the vortex seems to increase as the weight of the aircraft increases. If a four-engine jet airplane flies
sufficiently high for the contrails to appear, it is observed that the exhausts from the two engines on each wing are gradually pushed towards the wing tips, thus making the wing-tip vortices visible. These vortices are quite stable; vortex life spans of more than 15 minutes have been observed, which, compared with the speed of a modern aircraft, means that the wing-tip vortices might persist for 150 miles behind the generating aircraft. The circumferential velocity of the vortex is large, of the order of 30% of the generating aircraft speed. If a small aircraft passes through the wake of a large one, structural damage may occur on the small plane; if the flight path is not sufficiently high, the disturbances induced by the wake of the large aircraft on the velocity field of the small one may lead to loss of lift for the small plane and possibly to its crash. Ref. 7 contains more descriptive and pictorial information about these undesirable occurrences.

Numerous wind tunnel and real life measurements of the wake vortices have been performed. See,for example, Refs. 8 and 9.

Theories dealing with the matter are mainly two-dimensional and generally they do not account for the viscosity effects (Ref. l0). Ref. 11 presents a three-dimensional potential method for the estimation of the wake roll-up geometry for wings with control surfaces. In addition, an "artificial" viscosity coefficient is introduced in the
equations describing the velocity field of the vortex sheet to "smoothen" out the singularities inherent in the method.

Reference 12 presents another three-dimensional potential model to obtain a rolled-up wake geometry, as well as the wing-jet interaction.

Reference 13 integrates in time a set of ordinary differential equations describing the position of the wake vortices. The finite vortex sheet of which the wake consists is approximated by a finite number of vortices. An unsatisfactory wake pattern was obtained and the paper contends that the mathematical model used fails at the wing tip.

Reference 14 presents a method for the prediction of the aerodynamic loads on thin lifting surfaces. Nonlinearities (wake deformation) are considered. The method of Reference 14 is conceptually the closest to the one presented in this work.
I. 4 Formulation of the Problem

This subsection presents the basic flow equations which will be used throughout the paper. The fluid considered here is incompressible, inviscid and irrotational. For an incompressible fluid, the continuity equation is

$$
\begin{equation*}
\vec{\nabla} \cdot \overrightarrow{\mathrm{V}}=0 \tag{1,1}
\end{equation*}
$$

where \vec{V} is the velocity vector. Because of the fact that the fluid is irrotational, or

$$
\begin{equation*}
\vec{\nabla} \times \vec{V}=0 \tag{1.2}
\end{equation*}
$$

a velocity potential Φ exists, such that

$$
\begin{equation*}
\vec{V}=\vec{V} \Phi \tag{1.3}
\end{equation*}
$$

It is convenient to introduce the perturbation velocity potential, ϕ, and define \vec{V} as

$$
\begin{equation*}
\vec{V}=U_{\infty}(\vec{I}+\vec{V} \phi) \tag{1.5}
\end{equation*}
$$

where \vec{I} is the unit vector along the x-direction. Combining now Eqs. (1.1) and (1.5) the Laplace equation for ϕ is obtained:

$$
\begin{equation*}
\nabla^{2} \phi=0 \tag{1.6}
\end{equation*}
$$

The boundary condition to be satistfied is that the flow is tangent to the surface, or

$$
\begin{equation*}
\overrightarrow{\mathrm{V}} \cdot \overrightarrow{\mathrm{n}}=0 \tag{1.7}
\end{equation*}
$$

From Eqs. (1.5) and (1.7), the boundary condition for the
perturbation potential results:

$$
\begin{equation*}
\frac{\partial \phi}{\partial n}=-\vec{i} \cdot \vec{n}=-n_{x} \tag{1.8}
\end{equation*}
$$

As it is well known, on the surfaces of the wing and of the wake the solution is discontinuous (see for instance Ref. I and 5). Also, there exists a pressure discontinuity on the surface of the wing, while the surface of the wake is determined by the fact that no pressure discontinuity exists on the wake. Therefore, in order to complete the problem, the condition for the geometry of the wake as well as the expressions for the pressure discontinuity on the wing are obtained here. This can be easily accomplished, starting from the Bernoulli theorem (for steady, incompressible, inviscid flows)

$$
\begin{equation*}
p-p_{\infty}+\frac{\rho}{2}\left(\vec{V} \cdot \vec{v}-u_{\infty}^{2}\right)=0 \tag{1.9}
\end{equation*}
$$

If there exists a surface of discontinuity, then, indicating for simplicity with "upper" and "lower" the two sides of the surfaces, one obtains, from Eq. (1.9)

$$
\begin{equation*}
p_{u}-p_{\ell}+\frac{\rho}{2}\left(\vec{v}_{u} \cdot \overrightarrow{\mathrm{v}}_{u}-\overrightarrow{\mathrm{v}}_{\ell} \cdot \overrightarrow{\mathrm{V}}_{\ell}\right)=0 \tag{1.10}
\end{equation*}
$$

or

$$
\begin{equation*}
p_{u}-p_{\ell}+\frac{\rho}{2}\left(\vec{v}_{u}+\overrightarrow{\mathrm{v}}_{\ell}\right) \cdot\left(\overrightarrow{\mathrm{v}}_{u}-\overrightarrow{\mathrm{v}}_{\ell}\right)=\dot{0} \tag{1.11}
\end{equation*}
$$

Indicating with $\overrightarrow{\mathrm{V}}_{\mathrm{a}}$ the velocity of the point on the surface of discontinuity

$$
\begin{equation*}
\vec{V}_{a}=\frac{\overrightarrow{\mathrm{V}}_{u}+\overrightarrow{\mathrm{V}}_{\ell}}{2} \tag{1.12}
\end{equation*}
$$

(average between the upper and the lower surface) and with

$$
\begin{equation*}
\Delta \overrightarrow{\mathrm{V}}=\overrightarrow{\mathrm{V}}_{\mathrm{u}}-\overrightarrow{\mathrm{V}}_{\ell} \tag{1.13}
\end{equation*}
$$

the velocity discontinuity, Eq. (1.11) may be rewritten as

$$
\begin{equation*}
\Delta p=p_{u}-p_{\ell}=-\rho \vec{V}_{a} \cdot \Delta \vec{V} \tag{1.14}
\end{equation*}
$$

This is the desired expression for the pressure discontinuity. Using Eq. (1.5), Eq. (1.14) may be rewritten as

$$
\begin{equation*}
\Delta \mathrm{p}=-\rho \mathrm{U}_{\infty}^{2}\left(\overrightarrow{\mathrm{i}}+\vec{\nabla} \phi_{\mathrm{a}}\right) \cdot \vec{\nabla}(\Delta \phi) \tag{1.15}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta \mathrm{e}_{\mathrm{p}}=\frac{\Delta \mathrm{p}}{\frac{1}{2} \rho \mathrm{U}_{\infty}^{2}}=-2\left(\overrightarrow{\mathrm{I}}+\vec{\nabla} \phi{ }_{\mathrm{a}}\right) \cdot \overrightarrow{\vec{\nabla}}(\Delta \phi) \tag{1.16}
\end{equation*}
$$

which gives the exact (nonlinear) expression for the pressure distribution on the wing.

Equation (1.14) may also be used to obtain the condition for the geometry of the wake. For, the condition that no pressure discontinuity exists on the wake yields

$$
\begin{equation*}
\overrightarrow{\mathrm{V}}_{a} \cdot \Delta \overrightarrow{\mathrm{~V}}=0 \tag{1.17}
\end{equation*}
$$

It may be noted that if Eq. (1.17) is satisfied, then the no-pressure-discontinuity condition is automatically satisfied. Equation (1.17) may be interpreted as saying that the velocity discontinuity on the wake is normal to the velocity of the wake. Also, Eq. (1.17) may be rewritten as

$$
\begin{equation*}
\left(\vec{v}_{a} \cdot \vec{\nabla}\right) \quad \Delta \phi=0 \tag{1.18}
\end{equation*}
$$

i.e. that

$$
\begin{equation*}
\Delta \phi=\text { constant along a streamline } \tag{1.19}
\end{equation*}
$$

Therefore, the geometry of the wake may be obtained from the streamlines emanating from the trailing edge which have the property of being tangent to $\overrightarrow{\mathrm{V}}$. Equation (1.I7) (and hence
the condition of no-pressure-discontinuity) is then satisfied by imposing that $\Delta \phi$ be constant along a streamline (Eq. (1.19)). It may be worth mentioning that Eq. (1.17) is equivalent to saying that the vortex lines coincide with the streamlines since a surface of velocity discontinuity (with continuous normal component) is equivalent to a layer of vortices with vortex lines parallel to the lines of constant $\Delta \phi$ (which, in turn, are normal to the directions of $\Delta \vec{V}) *$.

It is worth noting that the above formulation is exact, in the sense that no small-perturbation hypothesis has been used. In order to assess the relevance of using the exact formulation, the results obtained with such a formulation will be compared with the ones obtained from a small-perturbation formulation. If the small-perturbation hypothesis

$$
\begin{equation*}
|\vec{\nabla} \phi|=0(\varepsilon) \ll 1 \tag{1.20}
\end{equation*}
$$

is invoked, Eq. (1.5) yields

$$
\begin{equation*}
\mathrm{V}=\mathrm{U}_{\infty} \overrightarrow{\mathbf{I}}+0(\varepsilon .) \tag{1.21}
\end{equation*}
$$

and therefore Eq. (1.16) may be rewritten as.

[^0]\[

$$
\begin{equation*}
\Delta c_{p} \simeq-2 \dot{\vec{i}} \cdot \vec{\nabla}(\Delta \phi)+0(\varepsilon) \tag{1.22}
\end{equation*}
$$

\]

while the wake may be assumed to be composed of straight vortex lines emanating from the trailing edge. A more convenient expression for Δc_{p} is

$$
\begin{equation*}
\Delta \mathrm{c}_{\mathrm{P}}=-2 \frac{\partial}{\partial s} \Delta \phi+0(\varepsilon) \tag{1.23}
\end{equation*}
$$

where s is the arc length along the lifting surface in the planes $y=$ constant.

1.5 Method of Solution

In Ref. l, it is shown that the distribution of the perturbation aerodynamic potential around a body of arbitrary shape is given by the following integral expression:

$$
\begin{equation*}
4 \pi \mathrm{E} \phi=-\oiint_{\Sigma \sum_{0}}\left[\frac{\partial \phi}{\partial n} \frac{1}{r}-\phi \frac{\partial}{\partial n}\left(\frac{1}{r}\right)\right] d \Sigma \tag{1.24}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\mathrm{E}=0 & \text { inside } \Sigma_{0} \\
\mathrm{E}=1 / 2 & \text { on } \Sigma_{0} \\
\mathrm{E}=1 & \text { outside } \Sigma_{0}
\end{array}
$$

Σ_{0} is a surface surrounding the body and its wake, and \vec{n} is the normal to the surface.

If the distance between the upper and lower sides of the body surface goes to zero (zero-thickness body), one obtains a lifting surface formulation:

$$
\begin{equation*}
\phi=\iint D \frac{\partial}{\partial n_{u}}\left(\frac{I}{r}\right) d \Sigma \tag{1.25}
\end{equation*}
$$

where Σ extends over the lifting surface and its wake,

$$
\begin{equation*}
\mathrm{D}=\frac{\phi_{\mathrm{u}}-\phi_{\ell}}{4 \pi} \tag{1.26}
\end{equation*}
$$

and the subscripts u and ℓ stand for upper and lower surfaces, respectively. Equation (1.25) shows that the potential can be represented by a doublet distribution on the body and on the wake. The value of D is constant along sireamlines of the wake and equal to the value at the trailing edge of the wing (Eq. 1.19).

The boundary condition, Eq. (1.8), must be satisfied. Using Eq. (1.25), the following integral equation results:

$$
\begin{equation*}
\frac{\partial \phi}{\partial n_{0}}=\iint_{\Sigma} \frac{\partial}{\partial n_{0}}\left[D \frac{\partial}{\partial n}\left(\frac{l}{r}\right)\right] d \Sigma \tag{1.27}
\end{equation*}
$$

where $\partial \phi / \partial n_{o}$ (the subscript zero denotes the control point)
is known and given by E. (1.8).
The surface of the wake is assumed to be known (say from independent calculations).

The numerical solution of Eq. (1.27) will be analyzed in detail in this work.

After Eq. (1.27) has been solved for D, the velocity at any point, P, in the field, may be obtained as:

$$
\begin{equation*}
\vec{V}_{P}=\vec{\nabla} \iint_{\Sigma} D \frac{\partial}{\partial n_{u}}\left(\frac{l}{r}\right) d \Sigma \tag{1.28}
\end{equation*}
$$

From \vec{V}_{p}, the pressure, as well as a new geometry for the wake is obtained.

1.6 Outline of the Work

In Ref. I, the numerical formulation for the integral equation describing the distribution of the perturbation aerodynamic potential over a lifting surface has been obtained. Expressions for the velocity vector, \vec{V}, at any point in the field have also been obtained. In Section II of this work, a summary of Ref. l is presented. A description of the iteration scheme used for obtaining a rolled-up wake geometry, as well as the calculation of the nonlinear pressure coefficient are added.

Section III presents results obtained with the lifting surface formulation of Ref. 1 , shown in comparison with
existing theoretical and experimental results.
The convergence of the solution is illustrated in Appendix•A. In Appendix B, the convergence of the iteration scheme is presented. A flow chart and list of the computer program implementing the theoretical formulation is contained in Appendix C.

NUMERICAL FORMULATION

2.1 Introduction

This section presents the numerical formulation used here, including the wake roll-up iteration procedure and the calculation of the pressure coefficient, using the linearized Bernoulli Equation, as well as the nonlinearized one. This formulation is an extension of the one of Ref. 1, where wake roll-up is not included. For completeness, the formulation of Ref. l is summarized here.

As mentioned in the previous section, the finite-element formulation yields the distribution of the doublet strength at the centroids of the lifting surface elements. Once this is known, the velocity at any point in the field, in particular at the corner points of the wake elements may be obtained. These may be used to obtain the geometry of the wake.

In Subsection 2.2, the gradient of Eq. (1.25) is expressed in terms of the values of D at the centroids of the elements; the boundary condition, Eq. (1.8) is satisfied at the centroids of the elements (control points). In Subsection 2.3, a new type of surface element, the hyperboloidal quadrilateral element, first introduced in Ref. 16., is briefly presented, to-
gether with the vector expressions for the velocity induced by an element at a control point. In Subsection 2.4, the iteration scheme used for obtaining the rolled-up wake pattern is presented. The element grid used.for performing the numerical calculations is described in Subsection 2.5. In Subsection 2.6, the finite-difference procedure for calculating the pressure coefficient in terms of the planform geometry is indicated.

2.2 Discretization

The lifting surface and its wake are divided into small surface elements. See Fig. 2. Assume that the value of D is constant within each element, say it is equal to D (unknown) at the centroid of the element σ_{k}. Then Eq., (1.27) reduces to:

$$
\begin{equation*}
\frac{\partial \phi}{\partial n_{o}}=\sum_{k=1}^{N+L} D_{k} \iint_{\sigma_{k}} \frac{\partial^{2}}{\partial n \partial n_{o}}\left(\frac{1}{r}\right) d \sigma_{k} \tag{2.1}
\end{equation*}
$$

where N is the number of surface elements on the wing and L is the number of elements on the wake. Note that D is constant along streamlines of the wake and equal to its value at the trailing edge or approximately equal to D at the centroids of the wing elements in contact with the trailing edge. If we impose that the boundary condition, Eq. (1.8)
is satisfied at the centroids $P_{0}=P_{h}$ of the wing surface elements σ_{h}, the following system of linear algebraic equations is obtained:

$$
\begin{equation*}
\left[\mathrm{A}_{\mathrm{hk}}\right]\left\{\mathrm{D}_{\mathrm{k}}\right\}=\left\{\mathrm{B}_{\mathrm{h}}\right\} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{h k}=\left[\iint_{\sigma_{k}} \frac{\partial^{2}}{\partial n \partial n_{o}}\left(\frac{I}{r}\right) d \sigma_{k}\right]_{P_{o}=P_{h}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{h}=\left.\left(\frac{\partial \phi}{\partial n}\right)\right|_{P_{0}}=P_{h} \tag{2.4}
\end{equation*}
$$

In addition, according to Eq. (1.28),

$$
\begin{equation*}
\overrightarrow{\mathrm{V}}_{\mathrm{h}}=\sum \mathrm{D}_{\mathrm{k}} \overrightarrow{\mathrm{~V}}_{\mathrm{hk}} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\overrightarrow{\mathrm{V}}_{\mathrm{hk}}=\left[\vec{\nabla} \iint_{\sigma_{k}} \frac{\partial}{\partial \mathrm{n}}\left(\frac{1}{r}\right) d \sigma_{k}\right]_{P_{O}}=P_{h} \tag{2:6}
\end{equation*}
$$

Note that, by definition,

$$
\begin{equation*}
A_{h k} \equiv \overrightarrow{\mathrm{n}}_{\mathrm{h}} \cdot \overrightarrow{\mathrm{~V}}_{\mathrm{hk}} \tag{2.7}
\end{equation*}
$$

2.3 Hyperboloidal Quadrilateral Element

In order to evaluate Eqs. (2.3) and (2.6), a typical quadrilateral surface element is approximated by a portion of a hyperboloidal paraboloid passing through the four corner points. This type of surface element is called the hyperboloidal quadrilateral element, introduced in Ref. 16 and briefly described here.

The geometry of a surface element is described in vector form as:

$$
\begin{equation*}
\overrightarrow{\mathrm{P}}=\overrightarrow{\mathrm{P}}\left(\xi^{1}, \xi^{2}\right) \tag{2.8}
\end{equation*}
$$

where ξ^{1} and ξ^{2} are the generalized curvilinear coordinates on the surface elements with the base vectors

$$
\begin{align*}
& \vec{a}_{1}=\frac{\partial \overrightarrow{\mathrm{P}}}{\partial \xi^{1}} \tag{2.9}\\
& \vec{a}_{2}=\frac{\partial \overrightarrow{\vec{P}}}{\partial \xi^{2}}
\end{align*}
$$

The unit normal to the surface is.

$$
\begin{equation*}
\vec{n}=\frac{\vec{a}_{1} \times \vec{a}_{2}}{\left|\vec{a}_{1} \times \vec{a}_{2}\right|} \tag{2.10}
\end{equation*}
$$

The surface element is (see Fig. 3)

$$
\begin{equation*}
d \sigma=\left|\vec{a}_{1} d \xi^{I} \times \vec{a}_{2} d \xi^{2}\right|=\left|\vec{a}_{1} \times \vec{a}_{2}\right| d \xi^{1} d \xi^{2} \tag{2.11}
\end{equation*}
$$

The hyperboloidal element approximating the real surface element is described by the expression (see Fig. 4):

$$
\overrightarrow{\mathrm{P}}=[1, \quad \xi, \quad \eta, \quad \xi \eta]\left\{\begin{array}{c}
\overrightarrow{\mathrm{P}}_{k} \tag{2.12}\\
\overrightarrow{\mathrm{P}}_{1} \\
\overrightarrow{\mathrm{P}}_{2} \\
\overrightarrow{\mathrm{P}}_{3}
\end{array}\right\}
$$

with

$$
\begin{align*}
& -1 \leq \xi \leq 1 \\
& -1 \leq n \leq 1 \tag{2.13}
\end{align*}
$$

where $\overrightarrow{\mathrm{P}}_{\mathrm{k}}$ represents the centroid of the element σ_{k}. The coordinates of the corners of the element are related to $\overrightarrow{\mathrm{P}}_{\mathrm{k}^{\prime}}, \overrightarrow{\mathrm{P}}_{\mathrm{I}}$, \vec{P}_{2} and \vec{P}_{3} as

$$
\left\{\begin{array}{l}
\vec{P}_{++} \tag{2.14}\\
\vec{P}_{+-} \\
\vec{P}_{-+} \\
\vec{P}_{--}
\end{array}\right\}=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] \quad\left\{\begin{array}{l}
\vec{P}_{k} \\
\vec{P}_{1} \\
\vec{P}_{2} \\
\vec{P}_{3}
\end{array}\right\}
$$

The vectors $\vec{P}_{k}, \vec{P}_{1}, \vec{P}_{2}$, and \vec{P}_{3} are given by

$$
\left\{\begin{array}{c}
\vec{P}_{k} \tag{2.15}\\
\overrightarrow{\mathrm{P}}_{1} \\
\overrightarrow{\mathrm{P}}_{2} \\
\overrightarrow{\mathrm{P}}_{3}
\end{array}\right\}=\frac{1}{4}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] \quad\left\{\begin{array}{l}
\vec{P}_{++} \\
\overrightarrow{\mathrm{P}}_{+-} \\
\vec{P}_{-+} \\
\vec{P}_{--}
\end{array}\right\}
$$

Combining Eqs. (2.6) and (2.12), one obtains for $\overline{\mathrm{V}}_{\mathrm{hk}}$: (See Ref. 1)

$$
\begin{aligned}
& \dot{\vec{V}}_{\mathrm{hk}}=\left[\vec{\nabla} \iint_{\sigma_{k}} \frac{\partial}{\partial \mathrm{n}}\left(\frac{1}{\bar{r}}\right) d \sigma_{\mathrm{k}}\right]_{\mathrm{P}=\mathrm{P}_{\mathrm{h}}}=
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\vec{\phi}_{1} \times \vec{\phi}_{2}}{\left|\vec{\phi}_{1} \times \vec{\phi}_{2}\right|^{2}}\left[\frac{\vec{\phi}_{1} \cdot \vec{\alpha}_{1}-\vec{\phi}_{1} \cdot \vec{\phi}_{2}}{\left|\vec{\phi}_{1}\right|}+\frac{\vec{\phi}_{2} \cdot \vec{\phi}_{2}-\vec{\phi}_{1} \cdot \vec{\phi}_{2}}{\left|\vec{\phi}_{2}\right|}\right]+ \\
& \frac{\vec{\phi}_{2} \times \vec{\phi}_{3}}{\left|\vec{\phi}_{2} \times \vec{\phi}_{3}\right|^{2}}\left[\frac{\vec{\phi}_{2} \cdot \overrightarrow{\underline{Q}}_{2}-\vec{\phi}_{2} \cdot \overrightarrow{\underline{\phi}}_{3}}{\left|\vec{\phi}_{2}\right|}+\frac{\vec{\phi}_{3} \cdot \overrightarrow{\underline{\phi}}_{3}-\vec{\phi}_{2} \cdot \vec{\phi}_{3}}{\left|\vec{\phi}_{3}\right|}\right]+
\end{aligned}
$$

where (see fig. 5):

$$
\begin{align*}
& \vec{Q}_{1}=\vec{P}_{++}-\vec{P}_{h} \\
& \vec{Q}_{2}=\vec{P}_{++}-\vec{P}_{h} \tag{2.17}\\
& \vec{Q}_{3}=\vec{P}_{--}-\vec{P}_{h} \\
& \vec{Q}_{4}=\vec{P}_{+-}-\vec{P}_{h}
\end{align*}
$$

2.4 Iteration Scheme for Wake Roll-up

As mentioned in Section I, the wake is initially assumed to consist of straight vortex lines starting at the trailing edge of the wing. It was also found that these vortex lines should be tangent to the velocity vector \vec{V}, and this provides the condition for obtaining the rolled-up wake geometry. The following iteration scheme is used for aligning the initially straight-wake streamlines with the velocity vector: compute the doublet strength distribution at the centroids of the elements,. with the wake influencing only the $A_{h k}$ terms of the elements, in contact with the trailing edge. Then compute the velocities in the x, y and z directions on the wake, at the corners of the surface elements. Align'segments
of the wake streamlines with the velocity vector evaluated at the upstream segment extremity. (See for example Fig. 6, where the position of the point $\overrightarrow{\mathrm{P}}_{\mathrm{pm}}$ is changed according to the velocity at the point \vec{P}_{mm} on a typical wake surface element). The position of the point $\overrightarrow{\mathbb{P}}_{\mathrm{pm}}$ is changed as follows:

$$
\begin{equation*}
\vec{P}_{\mathrm{pm}}=\vec{P}_{\mathrm{mm}}+\Delta \vec{P} \tag{2.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \vec{P}=\vec{V}|\Delta \vec{P}| /|\vec{V}| \tag{2.19}
\end{equation*}
$$

and $|\Delta \vec{P}|$ is the original distance between the points \vec{P}_{pm} and $\overrightarrow{\mathrm{P}}_{\mathrm{mm}}$. The doublet strength distribution is calculated again (notice a very small change, due to the new wake geometry), then the wake velocities and geometry are reevaluated. The process repeats itself until the difference between successive wake geometries becomes sufficiently small, thus indicating the convergence of the scheme (or the fact.that the streamlines are indeed tangent to the velocity vector). The iteration scheme described here is not the best possible one. A number of improvements are suggested in Appendices A and B.

2.5 Element Grid

The pressure coefficient for the wing is computed by using the finite-difference method. In order to properly illustrate the scheme, a description of the element grid is in order.

Let $c(y)$ be the chord and b that span of the wing, \bar{x} and \bar{y} the Cartesian coordinates for the wing at zero degrees angle of attack (see Fig. 2). Let

$$
\begin{align*}
& \gamma=\frac{\bar{x} \cdot-x_{L \cdot E \cdot}(\bar{y})}{c(\bar{y})} \\
& \beta=\frac{2 \bar{y}}{\mathrm{~J}} \tag{2.20}
\end{align*}
$$

Then the parametric form of the wing planform equation is:

$$
\begin{align*}
& \bar{x}=c \gamma+x_{\mathrm{L} \cdot \mathrm{E}} \\
& \overline{\mathrm{y}}=\frac{b}{2} \beta \\
& \overline{\mathrm{z}}=0 \text { for a flat lifting surface } \tag{2.21}
\end{align*}
$$

If, in addition, the wing is at an angle of attack, α, different from zero, the geometry may be rewritten as:

$$
\begin{aligned}
& \mathrm{x}=\overline{\mathrm{x}} \cos \alpha \\
& \mathrm{y}=\overline{\mathrm{y}}
\end{aligned}
$$

$$
\begin{equation*}
\dot{z}=-\bar{x} \sin \alpha \tag{2.22}
\end{equation*}
$$

Since the potential (doublet strength) varies faster near the leading edges and tips of the wing, it was found convenient to use smaller boxes in these regions and larger ones elsewhere. See also Ref. 15. This is accomplished by the following transformation:

$$
\begin{align*}
& \gamma=\psi^{2} \\
& \beta=1-(1-\theta)^{2} \tag{2.23}
\end{align*}
$$

The boxes have constant sizes in the plane ψ and θ, given by :

$$
\begin{align*}
& \psi=1 / \mathrm{NX} \\
& \theta=1 / \mathrm{NY} \tag{2.24}
\end{align*}
$$

where NX and NY are the numbers of boxes along the x direction and along the semispan, respectively.

2.6 Pressure Coefficient

As shown in Subsection 1.4, the linearized pressure coefficient Δc_{p} is given by

$$
\begin{equation*}
\Delta c_{p}=-2 \frac{\partial}{\partial s}(\Delta \phi)+0(\varepsilon) \tag{2.25}
\end{equation*}
$$

where s is the arclength on the wing on the planes $y=$ constant. As mentioned before, by solving Eq. (2.2), the potential distribution is obtained at the centroids of the wing elements. By interpolation, a continuous distribution can be obtained.

The wings used here for the numerical examples are all rectangular flat surfaces, for which $s=\bar{x}$. The derivative of the potential in Eq. (2.25) can be written as:

$$
\begin{equation*}
\frac{\partial(\Delta \phi)}{\partial \bar{x}}=\frac{\partial(\Delta \phi)}{\partial \psi} \quad \frac{\partial \psi}{\partial \gamma} \quad \frac{\partial \gamma}{\partial \bar{x}} \tag{2.26}
\end{equation*}
$$

At any point \bar{x}_{i}, on an element borderline along the semispan, the derivative of the potential, by finite - differences, is:

$$
\begin{equation*}
\frac{\partial \Delta \phi}{\partial \bar{x}_{i}}=\frac{1}{c} \frac{\Delta \phi_{i+1 / 2}-\Delta \phi_{i-1 / 2}}{\psi_{i+1 / 2}-\psi_{i-1 / 2}} \cdot \frac{1}{2 \sqrt{\psi_{i}}} \tag{2.27}
\end{equation*}
$$

where $i \pm 1 / 2$ represents adjacent element centroids on planes $y=$ constant.

The non-linearized pressure coefficient is given by Eq. (1.16), reproduced here:

$$
\begin{equation*}
\Delta c_{p}=-2\left(\vec{i}+\vec{\nabla} \phi_{a}\right) \cdot \vec{\nabla}(\Delta \phi)=2 \vec{V} \cdot \vec{\nabla}(\Delta \phi) \tag{2.28}
\end{equation*}
$$

Denote by \vec{i}, \vec{j} and \vec{k} the unit vectors along the x, y, z coor-
dinates and by $\vec{i}_{w^{\prime}} \exists_{J_{\mathrm{J}}}, \vec{k}_{w}$ the unit vectors along the \bar{x}, \bar{y}, \bar{z} coordinates. One can express the velocity \vec{v} in terms of the wing coordinates and in terms of the x, y, y coordinates as:

$$
\begin{align*}
\vec{v} & =v_{1} \vec{i}_{w}+v_{2} \vec{j}_{w}+v_{3} \vec{k}_{w} \\
& =v_{x} \vec{i}+v_{y} \vec{j}+v_{z} \vec{k} \tag{2:29}
\end{align*}
$$

and

$$
\begin{equation*}
\vec{\nabla}(\Delta \phi)=\frac{\partial(\Delta \phi)}{\partial \bar{x}} \vec{i}_{w}+\frac{\partial(\Delta \phi)}{\partial \bar{Y}} \vec{j}_{w} \tag{2.30}
\end{equation*}
$$

Therefore, combining Eqs. (2.28), (2.29) and (2.30), the pressure coefficient becomes:

$$
\begin{equation*}
\Delta c_{p}=2 v_{1} \frac{\partial(\Delta \phi)}{\partial \bar{x}}+2 v_{2} \frac{\partial(\Delta \phi)}{\partial \bar{Y}} \tag{2.31}
\end{equation*}
$$

On the plane $y=0$, a simpler expression may be obtained, since, for the symmetric cases considered here

$$
\begin{equation*}
\frac{\partial(\Delta \phi)}{\partial \overline{\mathrm{y}}}=0 \tag{2:32}
\end{equation*}
$$

Therefore, on $y=0$

$$
\begin{equation*}
\Delta c_{p}=2 v_{1} \frac{\partial(\Delta \phi)}{\partial \bar{x}} \tag{2.33}
\end{equation*}
$$

where V_{1} is given by

$$
\begin{equation*}
V_{1}=\vec{V} \cdot \vec{i}_{w}=V_{x} \cos \alpha-V_{z} \sin \alpha \tag{2.34}
\end{equation*}
$$

with

$$
\begin{align*}
& \mathrm{v}_{\mathrm{x}}=I+\frac{\partial \phi_{\mathrm{a}}}{\partial \mathrm{x}} \\
& \dot{\mathrm{~V}}_{\mathrm{z}}=\frac{\partial \phi_{\mathrm{a}}}{\partial z} \tag{2.35}
\end{align*}
$$

$\frac{\partial \phi_{a}}{\partial x}$ and $\frac{\partial \phi_{a}}{\partial z}$ are obtained from Eq. (2.5).

Finally,

$$
\left.\Delta c_{p}\right|_{y=0}=2\left[\left(1+\frac{\partial \phi_{a}}{\partial x}\right) \cos \alpha-\frac{\partial \phi_{a}}{\partial z} \sin \alpha\right] \frac{\partial(\Delta \phi)}{\partial \bar{x}}
$$

where $\frac{\partial(\Delta \phi)}{\partial \bar{x}}$ is computed according to Eqs. (2.26) and (2.27).

SECTION III

NUMERICAL RESULTS

3.1 Introduction

As mentioned in the beginning of Sections I and $I I$, this work is an extension of Ref. 1. The zeroth order formulation described in Section II was implemented into a computer code, ILSAWR (acronym from Incompressible Iifting Surface Aerodynamics with Wake Roll-up). ILSAWR performs the iteration routine described in Subsection 2.4. The way the program is set up, the wake geometry is automatically generated, with each row of elements along the x-direction having equal lengths. The Kutta condition is satisfied by imposing that the first row of wake elements is tangent to the wing. The iteration scheme is performed for the rest of the rows only.

All numerical results presented here were obtained for rectangular planar lifting surfaces and all the.graphs show results only for the semispan of the wings.

3.2 Parametric Analysis of the Effect of the Angle of Attack

A parametric analysis of the effect of the angle of attack on the wake roll-up is presented here. The case considered is a rectangular wing of aspect ratio $A R=8$. This
value was chosen because of existing results of Ref. Il (see Section 3.3). Results are presented for three values of the angle of attack: $\alpha=5^{\circ}, 10^{\circ}$ and 15°. The case $\alpha=5^{\circ}$ is presented in detail. In Figures 7a, b, c, and d, the converged wake pattern for a rectangular planform of aspect ratio $A R=8$ at an angle of attack $\alpha=5^{\circ}$, with an element grid having $N X=4$, $N Y=10$, with the length of the wake elements $\Delta x_{w}=.5 c$ is plotted in great detail for 10 chord lengths behind the trailing edge. Figures 7 a and 7 b show the rolled-up wake plotted at stations I through 10 chord lengths behind the trailing edge. Figure 7c is a side view of the rolled-up wake (the vertical scale is enlarged), showing the vertical displacement of the streamlines. The numeration system for the streamlines is also shown, with streamline number I being at $y=0$ and the last streamline starting at the wingtip. Figure 7d shows a top view of the rolled-up wake behind the wing, with the side displacement of the streamlines visible. The streamline numeration system is clearly shown here.

It may be noted that the analysis of convergence (presented in Appendix A) indicates that the solution is close to convergence, although improvements appear to be desirable at the trailing edge, especially near the wingtip.

Results for $\alpha=5^{\circ}, 10^{\circ}$ and 15° are presented in Figures 8 and 9, for a rectangular planform of aspect ratio $A R=8$, with an element grid of $N X=4, N Y=10, \Delta x_{w}=.5 c$. Figure 8
shows the effect of the angle of attack on the wake rollup, plotted at 5 chord lengths behind the trailing edge. The wake displacement becomes more pronounced as α increases from 5° to 10° and 15°. The effect of the angle of attack is shown also in Figure $9 \mathrm{a}, \mathrm{b}$ and c , where streamlines 1, 10 and 11 are plotted in a side view.

The analysis of the convergence of the iteration scheme is presented in Appendix B.

3.3 Comparisons with Existing Results

In order to assess the validity of the method, a number of comparisons with existing results are presented here.

3.3.1 Comparison with the Artificial Viscosity Method of Bloom and Jen

Figure 10 presents the wake roll-up for a rectangular planform of aspect ratio $A R=8$ at an angle of attack $\alpha=6.25^{\circ}$, for an element grid of $N X=4, N Y=10$, with the wake elements length of $\Delta x_{w}=.5 c$. Converged wake patterns are shown at stations l, 5 and 9 chord lengths behind the trailing edge and the results of the present method are compared with the artificial viscosity results of Ref. 1l. In Ref. ll, the lift coefficient was $C_{L}=1$ and no angle of attack was specified. Therefore, the lift coefficient per unit angle of attack, $C_{\text {L } \alpha}$, was evaluated with the present method and the
angle of attack was found according to

$$
\begin{equation*}
\alpha=\frac{C_{I}}{C_{I \alpha}} \tag{3.1}
\end{equation*}
$$

The lift coefficient per unit angle of attack was found to be $C_{L \alpha}=9.174$. For this value of the $C_{L \alpha}$, the value of the angle of attack which gives a lift coefficient of 1 is $\alpha=6.25^{\circ}$.

3.3.2 Comparison with the Experimental Results of Chigier
 and Corsiglia

In Ref. 8, the position of the vortex centerline is experimentally determined as the locations where the tangential velocity is zero. The results of Ref. 8 (Chigier and Corsiglia) have been obtained for a rectangular wing of aspect ratio $A R=6$, at an angle of attack of $\alpha=12^{\circ}$. For the present method, there is (as yet) no precise way for determining the location of the vortex centerline. The last streamline is taken to represent the vortex centerline for the planform with an element grid of $N X=4, N Y=10$ and $\Delta x_{w}=.5 c$. Figure 11 results obtained with the present method, compared with the ones of Chigier and Corsiglia.

3.3.3 Comparison with Results of Shollenberger

As mentioned in Section I, Ref. 12 (Shollenberger) uses a three-dimensional potential method and an iteration procedure to obtain the rolled-up wake. The wing planform used
has an aspect ratio $A R=6$ and it is at an angle of attack $\alpha=10^{\circ}$. The results obtained with the present method, in comparison with the ones of Ref. 12, are shown in Figure 12. The wake geometries are plotted for $1,2,3$ and 4 chord lengths behind the trailing edge.

3.4 Pressure Coefficient

In Subsection 2:6, the finite-difference procedure used in calculating the pressure coefficient was described in detail. The results obtained by using the linearized and nonlinear Bernoulli Equations with and without wake roll-up are presented here. Table I shows the values of Δc_{p} at $y=0$, linear and nonlinear, with straight and rolled-up wakes. The results are obtained for a rectangular wing with aspect ratio $A R=8$, atan angle of attack $\alpha=5^{\circ}$, with an element grid of $N X=7$, $N Y=7$, with $\Delta X_{w}=.5 c$. Figure 13 shows a plot of the pressure coefficient presented in Table I. Note the negligible effect of the wake roll-up on Δc_{p}. However, as previously mentioned, the wake roll-up is believed to have an important effect in the case of wing-tail interaction.

Finally, Figure 14 presents the potential distribution at the trailing edge of the wing, $\Delta \phi_{\mathrm{T} . E .}$, for the same planform as the one used in Figure 13. It can be seen from Figure 14 that at $\mathrm{y}=0, \partial(\Delta \phi) / \partial \overline{\mathrm{y}}=0$. The effect of the wake rollup is negligible.

x / c	Linearized Δc_{p}		Nonlinear Δc_{p}	
	Straight Wake	Rolled-up Wake	Straight Wake	Rolled-up Wake
. 055	. 8800	.8706	. 8699	. 8600
. 136	. 4523	. 4530	. 4471	. 44.70
. 258.	. 2799	. 2860	. 2767	. 2827
. 421	. 1921	. 1921	. 1899	. 1899
. 624	. 1276	. 1274	. 1261	. 1259
. 868	. 0732	. 0729	. 0723	. 0720

Table 1. Pressure Coefficient at $y=0$, for a rectangular wing planform of aspect ratio $A R=8$, at angle of attack $\alpha=5^{\circ}$, with element grid of $N X=7$, NY $=7$ and $\Delta x_{w}=.5 \mathrm{c}$.

A method for analyzing the wake roll-up has been described and numerical results have been presented. At this point, it might be interesting to quote Ashley and Rodden (Ref. 17) from their review on wing-body aerodynamic interaction: "It should be evident from the foregoing all too brief account of interaction theory that it is both a complicated subject and one in which computer automation is more nearly in a state of revolution than of evolution. Within a few years, programs should be available that will solve the linear potential equation; with boundary conditions satisfied by placing appropriate discrete singularity elements at a close approximation to all the true wing and body surfaces. The following 'nonlinearities' will be included: pressure velocity relations such as" the nonlinear Bernoulli Theorem; "boundary conditions that partially account for x - velocity perturbations...; wakes trailing streamwise from the actual positions of trailing edges; and/or estimates of self-deformation of wing wakes as they affect aft tail surfaces and the like."

All the nonlinearities mentioned above lwith the exception of the wing-tail interaction and the zero-thickness Iimitations of lifting-surface theory) have been included in the present work: The only approximations introduced are numerical ones, and they are negligible, as the convergence analysis

indicates.

Finally, the main innovations and advantages of the mehod are discussed. First, the method is based upon an exact (rather, than discrete) formulation. Only numerical approximations are introduced (other methods use approximate physical models such as discrete vortices): this implies that the formulation is apt to refinements (first-order finite-element representation for D is now under investigation). Second, the wake is represented as doublet distribution: this implies that the method may be extended to steady and unsteady, subsonic and supersonic aerodynamics around complex configurations, in a relatively straightforward method, using the formulation of Ref. 18. Third, the convergence of the solution is exceptionally fast (as is the more general method of Ref. 18). Fourth, the method is relatively fast: the results for $N X=4, N Y=7, N_{\text {wake }}=10$ require 3 minutes of C.P.U. time per iteration on the I.B.M. 370/145 computer of Boston University. Finally, the convergence of the iteration scheme is already good, although considerable improvements can be obtained by using alternative, more sophisticated iteration schemes which are now under investigation.

Most of the theoretical results on wake roll-up are of a rather recent origin (from 1973 onward) and comparisons with experimental results show that some refinements of the mathematical model are still in order. Viscosity effects, thickness effects, aerodynamic interaction still remain to be accounted for.

REFERENCES

1. Morino, L., and Suciu, E.O., "A Finite-Element Method for Lifting Surfaces in Steady Incompressible Subsonic Flow", Boston University, College of Engineering, Department of Aerospace Engineering, TR-74-05, December, 1974.
2. Ashley, H., Widnall, S., and Landahl, M.T., "New Directions in Lifting Surface Theory", AIAA Journal, Vol. 3, No. 1, January 1965, pp. 3-16.
3. Landahl, M.T., and Stark, V.J.E., "Numerical LiftingSurface Theory - Problems and Progress", AIAA Journal, Volume 6, No. 11, November 1968, pp. 2049-2060.
4. Jones, W.P., "The Calculation of Aerodynamic Derivative Coefficients for Wings of Any Plan Form in Non-Uniform Motion", R \& M 2470, 1952, Aeronautical Research Council, Great Britain.
5. Haviland, J.K., "Downwash - Velocity Potential Method for Lifting Surfaces", AIAA Journal, Vol. 9, No. 11, November 1971, pp. 2268-2269.
6. Chigier, N.A., "Vortexes in Aircraft wakes", Scientific American, Vol. 230, No. 3, pp. 76-83, March, 1974.
7. Tombach, I. "Observations of Atmospheric Effects on Vortex Wake Behavior", Journal of Aircraft, Vol. 10, No. 11, November 1973, pp. 641-646.
8. Chigier, N.A., and Corsiglia, V.R., "Wind-Tunnel Studies of wing Wake Turbulence", Journal of Aircraft, Vol. 9, No. 12, December 1972, pp. 820-825.
9. Mason, W.H., and Marchman, J.F. III, "Far Field Structure of Aircraft Wake Turbulence", Journal of Aircraft, Vol. I0, No. 2, February 1973, pp. 86-92.
10. Chorin, A.J. and Bernard, P.S., "Discretization of a Vortex Sheet, with an Example of Roll-Up", Journal of Computational Physics, Vol. 13, 1973, pp. 423-429.
11. Bloom, A.M., and Jen, H., "On the Roll-Up of Aircraft Trailing Vortices Using Artificial Viscosity", Joint Institute for Acoustics and Flight Sciences, NASA Langley Research Center, Hampton, Va., 1973.
12. Shollenberger, C.A., "A Three-Dimensional'Wing/Jet Interaction Analysis Including Jet Distortion Influences", McDonnell Douglas Research Laboratories St. Louis, Missouri, 63166, 1974.
13. Moore, D.W., "The Discrete Vortex Approximation of a Finite Vortex Sheet', AFOSR-1804-69, October, 1971.
14. Kandil, O.I., Mook, D.T., and Nayfeh, A.H., "Nonlinear Prediction of the Aerodynamic Loads on Thin Lifting Surfaces", Dept. of Engineering Science and Applied Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1975.
15. Morino, L., "A General Theory of Unsteady Compressible Potential Aerodynamics", NASA CR-2464, December 1974.
16. Morino, Li., "A Finite Element Formulation for Subsonic Flows Around Complex Configurations", Boston University; College of Engineering, TR-73-05, December 1973.
17. Ashley, H. and Rodden, W.P., "Wing-Body Aerodynamic Interaction", Annual Review of Fluid Mechanics, Vol. 4, 1972, pp. 431-472.
18. Morino, L., Chen, I.T. and Suciu, E.O., "Steady and Oscillatory Subsonic and Supersonic Aerodynamics around Complex Configurations", AIAA Journal, Vol. 13, No. 3, March 1975, pp. 368-375.

Figure I. Formation of the Wing - Tip Vortices.

Figure 2. Lifting Surface and Wake Geometries.

Figure 3. Surface \quad ry.

Figure 4. Hyperboloidal Quadrilateral Element.
$142=$

Figure 5. Hyperboloidal Element with Definition of Vectors $\overrightarrow{0}_{n}, \vec{Q}_{n}, \vec{Q}_{n}, \vec{Q}_{1}$.

Figure 6. The process of Aligning the Streamlines with the Velocity \vec{V} in a Typical Wake Surface EJ.ement.

Figure 7a. Converged Wake Pattern for a Rectangular Wing Planform of $A R=8$, with $\alpha=5^{\circ}$, Element Grid with $N X=4, N Y=10$, Length of Wake Elements $\Delta x_{w}=.5 c$, Plotted for 10 Chord Lengths Behind the Trailing Edge. Continued on Next Page.

Figure 7b, Continuation of Figure 7a.

Figure 7c. Side View of the Rolled -up wake for the Wing of Figure 7a.

Figure 7d. Top View of the Rolled-up Wake for the wing of Figure 7a:

Figure 8, The Effect of the angle of attack, α_{n} on the wake Rollup for a Rectangular Lifting Surface of $A R=8$, Plotted at 5 Chord Lengths Behind the Trailing Edge. The Element Grid has $N X=4, N Y=10$ and $\Delta x_{w}=.5 c$.

Figure 9a. Streamline \#l of a Rectangular Lifting Surface of $A R=8$, with $N X=4, N Y=10, \Delta x_{w}=.5 \mathrm{c}$, plotted for Various Values of the Angle of Attack.

Figure 9b. Streamline \#10 for the Planform of Figure $9 a$, Plotted for various Values of α.

Figure 9c. Streamline \#11 for the Planform of Figure 9a, Plotted for various values of α.

Figure 10. Wake Roll-up for a Rectangular Lifting Surface of $A R=8$, Angle of Attack $\alpha=6.25^{\circ}$, Element Grid with $N X=4, N Y=10$, $\Delta \mathrm{x}_{\mathrm{w}}=.5 \mathrm{c}$ and Comparison with the Results of Ref. II.

Figure 1l. Location of the Vortex Centerline for a Rectangular Lifting Surface of $A R=8$, for $\alpha=12^{\circ}$, Element Grid with $N X=4$, NY $=10, \Delta \mathrm{x}_{\mathrm{w}}=.5 \mathrm{c}$ and Comparison with the Result of Ref. 8.

Figure 12. Wake Rollrup for a Rectangular Lifting Surface of $A R=8$, at $\alpha=5^{\circ}$, with $N X=4$, $N Y=10$, Length of Wake Elements $\Delta x_{w}=.5 c$ and Comparison with Results of Ref. 12 . Continued on Next Page.

Figure 12, Continued.

Figure 13. Nonlinear Section Pressure Coefficient at $y=0$, for a Rectangular Planform of $A R=8$, at $\alpha=5^{\circ}$, with $N X=7, N Y=7, \Delta x_{w}=.5 c$.
-57-

Figure 14. Potential Distribution at the Trailing Edge of a Rectangular Planform of $A R=8$, with $\alpha=5^{\circ}, N X=N Y=7$ and $\Delta X_{w}=.5 C$.

APPENDIX A

CONVERGENCE OF SOLUTION

In this Appendix, a numerical study is performed on the influence that the parameters NW (the number of wake elements along the x direction), Δx_{w} and NY have on the convergence of the solution. The only case presented here is relative to a rectangular wing planform of aspect ratio $A R=8$ at $\alpha=5^{\circ}$.

In Figures Ala, b and c, the effect of the length of the wake elements on the wake roll-up is shown. The element grid for the planform has $N X=4$ and $N Y=10$. The length of the wake elements Δx_{W} is allowed to vary from .5 c to .75 c and lc. Rolled-up wake patterns are plotted for stations located at 3,6 and 9 chord lengths behind the trailing edge. Note that, as Δx_{w} increases, the wake pattern becomes "larger", as it is easy to see from Figure Al. Note also that the difference between wake patterns for various values of Δx_{w} becomes smaller as the distance from the trailing edge increases. In Figure A2 one might find an explanation to this difference, as well as a suggestion for the improvement of the numerical model. In this figure, the same rectangular planform with an element grid of $N X=4, N Y=10$ is used. The figure shows streamlines (counted from the line of symmetry of the wing, the mid-line included) numbers 1,10 and 11, plotted for values of Δx_{w} of $.5 \mathrm{c}, .75 \mathrm{c}$, and 1 c , for 10 chord lengths.

The first streamline shows remarkable closeness (on this enlarged vertical scale) for the various ΔX_{w}. The difference increases as we approach the wing-tip streamlines. Note that the streamlines are approximately parallel; the difference between them is due to the fact that, by imposing the Rutta condition, the first row of wake eiement's lies in the same plane as the wing, and since Δx_{w} varies, the streamlines will start at $.5 \mathrm{c}, .75 \mathrm{c}$, and lc behind the trailing edge. Also, the downwash is larger in the vicinity of the trailing edge and decreases as we move farther behind. Therefore, the wake slopes can be expected to be larger in the vicinity of the trailing edge. Note the sharp jump between the first element and the next in streamline number ll. It may be worth noting that, since the streamline displacement is obviously influenced by the length of the wake elements, we might obtain a smoother profile in the vicinity of the trailing edge by using smaller elements in this region, for one or two chord lengths. This remains to be implemented.

Next, consider the influence of NW. If the number of wake elements is increased, it is observed that the newly added rows of elements have no effect whatever on the wake roll-up of the previous ones.

The effect of the number of wake strips on the wake rollup is shown in Figure A3, for the rectangular wing having an element grid of $N X=4$, with $N Y$ varying between 7 and 10 ,
$\Delta X_{V}=.5 c$ and $N W=11$. All cases are converged and lie practically on the same line.

O $\Delta \mathrm{x}_{\mathrm{w}}=.5 \mathrm{c}$

- $\Delta x_{w}=.75 \mathrm{c}$
$\diamond \Delta x_{w j}=1 c$
Figure Ala. Influence of the Length of the Wake Elements $\Delta \ddot{x}_{\text {w }}$ on the Rolled-up Wake for a Rectangular Wing ' of $A R=8$, for $\alpha=5^{\circ}$, at a station Situated 3 Chord Lengths Behind the Trailing Edge. The Element Grid has $N X=4, N Y=10$.

Figure Alb. Influence of the Length of the Wake Elements Δx_{w} on the Rolled-up wake for the Wing of Figure Ala, at a Station Situated 6 Chord Lengths Behínd the Trailing Edge.

Figure Alc. Influence of the Jength of the Wake Elements Δx on the Rolled-up. Wake for the Wing of Figure Ala, Plotted at a Station Situated 9 Chord Lengths Behind the Trailing Edge.

Figure A2, Influence of the Length of the Wake Elements Δx on the Wake Roll-up for a Wing of $A R=8$, with $\alpha \doteq 5^{\circ}, N X=4, N Y=10$. Plotted are the streamlines \#1, 10 and 11.

Figure A3, Convergence Problem: Influence of NY on the Wake Roll-up for a Rectangular wing of $A R=8$, át $\alpha=5^{\circ}$, with $N X=4$ and $\Delta x^{\prime}=5 \mathrm{C}_{\mathrm{s}}$ Plotted at a Station Situated 10 Chord Length's Behind the Traizing Edge.

APPENDIX B

CONVERGENCE OF ITERATION SCHEME

In this. Appendix, an analysis of the convergence of the iteration scheme is presented, for a rectangular wing of $A R=8$, at an angle of attack $\alpha=5^{\circ}$, with an element grid having $N X=$ 4, NY $=10$ and $\Delta x_{W}=.5 c$. Figures Bla, b, c, d show the evolution of the rolled-up wake pattern through successive iterations until convergence is reached. The plots are for stations at $1,2,5$ and 10 chord lengths behind the trailing edge. Figures $B 2 a, b, c, d$ show the evolution of the wake streamlines numbers $1,9,10$ and 11 through successive iterations until convergence, plotted for 10 chord lengths behind the trailing edge.

A common feature of Figs. B1 and B2 is that the plots of the initial iterations show very large displacements of points on the wake. The largest displacement takes place near the wing-tip and far behind the trailing edge. Convergence is attained faster near the trailing edge and the rate of convergence decreases as we move from the wing root toward the wing-tip.

The computation time required to obtain the convergence of the iteration scheme (described in Subsection 2.4) for a wake having 210 elements is of the order of one hour and 20 minutes on Boston University's IBM $370 / 145$ computer. A number of improvements of the present iteration scheme can be tried.

First, since the calculated potential distribution on
the wing•is essentially the same with a straight wake as well as with a rolled-up one, the potential distribution could be computed for the straight wake and then recomputed for instance every fifth iteration. This should lead to some savings in computational time. Second, a much better iteration scheme can be used (suggested by the plots of Figures B1 and B2). This scheme should converge much faster than the one used in this paper and account for significant time savings. The first iteration should only change the position of the second row of boxes on the wake; (the first one is kept tangent to the wing plane according to the way the Kutta condition is satisfied) the rest of them will have the same y and z coordinates as the second row. only the velocities at the influencing corners are calculated. The third row of corners should be realigned according to the velocities at the second row; the rest of the boxes will have the same y and z coordinates as the second row. The process should be repeated until convergence is reached everywhere.

Figure Bla. Evolution of the Rolledup Wake Patterr Through Successive Iterations, at a Station Situated I Chord Lengths Behind the Trailing Edge, for a Rectangular wing of $A R=8$, at $\alpha=5^{\circ}$, with $N X=4, N Y=10, \Delta x_{W}=.5 \mathrm{c}$.

Figure Blb , Eyolution of the Rolled-up Wake Pattern Through Successive Iterations, at a Station Situated 2 Chord Lengths Behind the Trailing Edge, for the Wing Planform of Figure Bla

Figure Blc. Evolution of the Rolledeup Wake Pattern Through Successive Iterations, at a Station Situated 5 Chord Lengths Behind the Trailing Edge, for the Wing of Figure RT=

Figure Bld. Evolution of the Rolled-up • Wake Pattern Through Successive Iterations, at a Station Situated 10 Chord Lengths Behind the Trailing Edge, for the Wing of Figure Bla.

Figure B2a, Evolution of Wake Streamline \#l Through Successive Iterations for the Planform of Figure Bla.

Figure B2b. Evolution of Wake Streamline \#9 Through Successive Iterations, for the Planform of Figure Bla.
-74-

Figure B2d. Evolution of Wake Streamline \#ll Through Successive Iterations, for the Planform of Figure Bla.

-Cl. FIow Chart of Computer Program ILSAWR


```
    COMMON/ZZZI/NNX,NY,NZ,NW,REFLEN,SPAN,K SYMMY,KSYMMZ,NSYMMY,NSYMMZ
        COM#MN/ZZZ2/TAU, ALFA,TANGLE,TANGTE, CHCRD,NTOTAL,UMACH
        COMMON/ZZZ8/AA(2500), SOURCF(250), SINABC,COSABC,ALFABC
        COMMON/ZZZ11/VHKX(2500),VHKY(2500),VHKZ12500),VKX(250),VKY(250),
    IVKZ(.250)
    COMMDN/CONTR/NITER
    DIMENSION ITCCNT(100)
    DO 10 I=1,15
    10 ITCONT (I)=1
    ITCONT(1)=2
    ITCONT(5)=2
    ITCONT(10)=2
    ITCONT(15)=2
    ITCONT(20)=2
    ITCONT(25)=2
    ITCONT (30)=2
    ITCONT (35)=2
    ITCONT(40)=2
    ITCONT(45)=2
    ITCONT(50)=2
    CALL INITIA(I)
    CALL PRINTA(5)
    CALL GEOMET
    CALL VEC123
    C CALL PRINTA(3)
    DO 1 NITER=1,12
    IF(NITER.EO.11)ITCGNT(NITER)=2
    IF(NITER.EQ.12)ITCONT(NITER)=2
    IF(ITCONT(NITER).NE.2)GO TO 1000
    CALL COEFF
    C . CALL PRINTg(4)
    TOL=0.001
    CALL GELGOSOURCE,AA,NTOTAL,1,TOL,IER`Y
    CALL PRINTB(1)
    CALL VELMM
    C CAll vei.aux
    CALL ITER
    1 CONTINUE
    STOP
    END
```

 1000 CONTINUE
    ```
        SURROUFINE INITIA(K)
        COMYON/ZZZL/NX, NY,NZ,NW, REFLFN, SP AN,KSYMMY,KSYMMZ,NSYMMY,NSYMMZ
        COMMON/ZZZ2/TAU,ALFA,TANGLE,TANGTE,CHORD,NTOTAL,UMACH
        COMMON/ZZZ3/YK(3,11,11,2)
        COMMON/ZZZ6/XPC(250),YPC(250);ZPC(250)
        COMMON/ZZZ7/XP1(250),YP1(250),ZP1(250), XO2(250),YP2(250),
        1ZP2(250), XP3(250),YP3(250),ZP3(250)
        C.OMMON/Z.2Z8/AA(2500), SOURCF(250),SINABC,COSARC, ALFASC
        COMMON/ZZZ9/XPP(250),YPP(250),ZPP(250), XPM(250),YPM(250)
1,ZPM(250), XMP(250),YMP(250),ZMP(250),XMM(250),YMM(250),
1ZMM(250),INAKE(250)
        COMMON/ZZZIO/JNXB(250),NXWAKE,WAKEIN
        G@ TO(1,2,3,4),K
        CONTINUE
        NX=7
        NY=7
        NZ=1
        NXWAKE=11
        WAKEIN=.5
        NW=1
C
C FI MEANS THE GECMETRY OF THE PROBLEM IS SYMMETRIC
C -1 MEANS THE GECMETRY OF THE PROBLEM IS ANTISYMMETRIC
C O MEANS THE GEGMETRY OF THE PROBLEM IS NEITYER SYMMETRIC NOR ANTI
C
C
    IF KSYMMZ NE. O ,THEN NZ=1 (EXCEPT FOR GROUND EFFECS)
C
KSYMMY=+1
KSYMM:Z=0
NTOTAL=NX*NY*NZ*NW
IF(KSYMMY.EQ.O)NTOTAL=NTETAL*2
NSYMMY=1
NSYMMZ=1
IFIKSYMMY.NE.0INSYMNY=?
IF(KSYMMZ.NE.O)NSYMMZ =2
UMACH=0.0
REFLEN=1.
TAU=.00
SPAN=8.
ANGLA=0.
ANGLB=0.
ALFA=5.
ALFAR=ALFA%3.14159/180.
SINALF=SIN(ALFAR)
COSALF=COS (ALFAR)
C
ALFABC=0.
ALFRBC=ALFABC*3.14159/180.
SINABC=SIN(ALFRBC)
COSABC=COS(ALFRBC)
C
```

```
BETA=SQRT(1.-UNACHNUMACH)
```

BETA=SQRT(1.-UNACHNUMACH)
XLEZ=-1.
XLEZ=-1.
XTFZ=0.
XTFZ=0.
CHORD=XTEZ-XLEZ
CHORD=XTEZ-XLEZ
XLEZ=XLEZ/(REFLEA*EFTA)
XLEZ=XLEZ/(REFLEA*EFTA)
XTEZ=XTEZ/(REFLEN*BETA)
XTEZ=XTEZ/(REFLEN*BETA)
SPAN=SPAN/REFLEN

```
SPAN=SPAN/REFLEN
```

```
    HFSPAN=.5*SPAN
    XLED=ANGLA/BETA
    XTEP=ANGLB/BETA
    TAUBAR=TAU*.75*SQRT(3.)*(XTEZ-XLEZ)
    RETURN
    CONTINUE
    RETURN
    CONTIMJE
    nXX=1./NX
    DYY=1./NY
    NXP=NX+1
    NYP=NY+1
    OO 33 IX=1,NXP
    DO 33 IY=1,NYP
    DO 33 IZ=1,NZ
    XX=(IX-1)*DXX
    YY=(IY-1)*DYY
    CSI=XX*XX
    THIS IS FOR A UNIFCRM Y-MESH
    ETA=YY
    THIS IS FOR A NCNUNIFORM Y-MESH
    ETA=1.-(1.-YY)**2
    Y=HFSPAN*ETA
    THIS IS A SEMI-ELLIPTICAL WING PLANFORM
```



```
    THIS IS A RECTANGULAR WING PLANFORM
    XTE=XTEZ
    XLF=XLEZ
    XO=XLE+(XTE-XLE)*CSI
    IF(IZCEQ.1)SIGNIZ=.+1
    IF(IZ.E0.2)SIGNZ=-1
    ZO=SIGNZ*TAUBAR*XX*(1.-CSI)*SGRT(1.-ETA**2)
    X=+XO*COSALF+ZO*SINALF
    Z=-XO*SINALF+ZO*CCSALF
    YK(1,IX,[Y,IZ)=X
    YK(2,IX,IY,IZ)=Y
    YK(3,IX,IY,IZ)=?
    CONTINUF
    RETURN
    CONT INUE
    RETURN
    ENn
```


SUBROUTINE GECMET

rHis subroutine is for quadrilateral elements
COMMON/ZZZI/NX, NY,NZ, NW, REFLEN, SP $\triangle N, K$ SYMMY, KSYMMZ, NSYMMY, NSYMNZ COMMON/ZZZZ/TAS, ALFA,TANGLE, TANGTF, CHORD,NTHTAL, UMAC,H C CMMON/Z2Z3/YK(3,11,11,2)
COMMON/ZZZ6/XPC(250), YPC(250), ZPC(250)
COMMON/ZZZ7/XF1(250),YP1(250), ZP1 (250), XP2(250), YP2(250),
1ZP2(250), XD3(250),YP3(250i, ZP3(250)
COMMON/ZZZ9IXPP(250),YPP(250), ZPP(250), XPM(250),YPM(250)
$1, Z P M(250), X M P(250), Y M P(250), Z M P(250), X M M(250), Y M M(250)$,
1ZMM(250), IWAKE(250)
COMMON/ZZZ10/JNXB(250), NXWAKF, WAKEIN
C
C
$\operatorname{INDEX}(J W, J X, J Y, J Z, M W, M W X, M W X Y)=J W+M W *(J X-1)+M W X *(J Y-1 J+M W X Y *(J Z-1)$
$N W X=N W * N X$ NWXY=NWXX* N $N W X Y Z=N W X Y * N Z$
C
CALL INITIA(3)
C
DO 200 I $X=1, N X$
DO 200 I $Y=1, N Y$
DO $200 \mathrm{IZ}=1, \mathrm{NZ}$
C
C. -- -
$\stackrel{c}{c}$
C
$I W=1$
$I N D=I N D E X(I W ; I X, I Y, I Z, N W, N W X, N W X Y)$
IF(IZ.EQ.2)GQ TO 906
$I X M M=I X$
$I X P M=I X+1$
$I X P P=I X+1$
$I X M P=I X$
$I Y M M=I Y$
I YPM $=I Y$
$I Y P P=I Y+1$
$I Y M P=I Y+1$
$12 M M=12$
$I Z P M=I Z$
$1 Z P P=I Z$
$I Z M P=I Z$
C
C
C
C

906 CONTINUE
$I X M M=I X$
$I X M P=I X$
$I X P P=I X+1$
$I X P M=T X+1$
I Y MM $=I Y+1$
$I Y M P=I Y$
$I Y P P=I Y$

```
        IYPM=IY+i
        IZMM=IZ
        IZMP=1Z
        IZPP=IZ
        I ZPM=IZ
999
C
    XPP(IND)=YK(1,IXPP,IYPP,IZPP)
    YPP(IND)=YK(2,IXPP,IYPP,IZPP)
    ZPD{IND}=YK{3,IXPP&IYPP,IZPP}
    XPM(INO)=YK(1,IXPN,IYFN,IZPM)
    YPM(IND)=YK(2,IXDN,IYPM,IZPM)
    ZPM(IND) =YK(3,IXPN,IYPM,IZPN)
    XMP(INO)=YK(1,IXMP,IYMP,IZMP)
    YMP(IND)=YK(2,IXMP,IYMP,IZYP)
    ZMP(IND) =YK(3,IXSPP,IYMD,IZMP)
    XMPM(IND)=YK(1,IXMN,IYMM,IZMM)
    YM& (IND) = YK(2,IXMN,IYMM,IZMM)
    ZMM(IND)=YK(3,IXMN,IYMM,IZMM)
C GRITE(6,19\vartheta)IND,XPP(IND),YPP(IND),ZPP(IND, XPM(IND),YPM(IND)
G 1,ZPM(IND), XMP{IND},YMP(IND), ZMP{IND), XMM(IND),YMM(IND),ZMM(IND)
199 FORMAT(/'IND=',I2,/'PP'.3X,3F10.4/'PMP,3X,3F10.4/1MP',
    13X,3F10.4/'MM:,3X,3F10.4)
    IWAKF(IND) =0
    IF(IX.EQ.NX) [WAKE(IND)=1
200 CONTINUE
    IF[KSYMMY.NE.O!GO TC 701
    OO 300 IR=1,NWXYZ
    IL=IR+NWXYZ
    XPP(IL)=+XMP(IR)
    XMP{IL}=+XPOP(IR)
    XPM(IL)=+XMN(IR)
    XMM(IL) = +XPM(IR)
    YPP(IL)=-Y\cupP{IR)
    YMP(IL)=-YPO(IR)
    YPM(IL)=-YMM(IR)
    YMM(IL)=-YPM(IR)
    ZPP(IL)=+ZNP(IR)
    ZMP(IL)=+7PP(IR)
    ZPM(IL)=+ZNM(IR)
    ZMM(IL)=+ZPM(IR)
    INAKE(IL)=IWAKE(IR)
300 CONTINUE
701 CONTINUE
C
C POIVTS FOR WAKE
C
    NWTOT=NXWAKE*NY
    nO 1 IY=1,NY
    DO 1 IX =1,NXWAKE
    JNXW=IX+(IY-1)&NXWAKF
    JNXB(JNXW)=IY*NX
1 CONTINUE
    DO 10 IY=1,NY
    DO 10 IX=1,NXWAKE
    II=IY*NX
    INO=NTOTAL+IX+(IY-I)*NXWAKE
    FACTOR=1.
```

```
    IF(IX.FQ.NXWAKF)FACTIRR=100.
    XMM(IND) = XPM(II)+hAKEIN*(IX-1)
    XMP(IND)=XPP(II)+WAKEIN*(IX-1)
    XPP(IND) = XPPP(II) +NAKEIN*IX*FACTOR
    XPM(IND)=XPM(II)+WAKEIN*IX*FACTOR
    YMM(IND)=YPM(11)
    ZMM(IND)=ZPM(II)
    YMP(IND)=YPP(II)
    ZMP(INND)=ZPP(II)
    YPP(IND)=YPP(II)
    ZPP(IND)=ZPP(IT)
    YPM(IND)=YPM(II)
    ZPM(IND) =ZPM(II)
10 CONTINUE
    RETURN
    END
```

SUBROUTINE VFC123
COMMON/ZZZI/NX,NY,NZ, NW, REFLEN,SPAN, KSYMMY, KS YMMZ, NSYMMY, NSYMMZ COMMON/ZZZZ/TAU, $\triangle L F A, T A N G L E, T A N G T E, C H O R D, N T O T A L, U M A C H$ COMYON/LZZ3/YK(3,11,11,2)
COMMON/ZZZG/XPC(250),YPC(250), ZPC(250)
COMMON/ZZZ7/XP1(250),YP1(250),ZP1(250), XPZ(250),YP2(250),
1ZP2(250), XP3(250),YP3(250), ZP3(250)
COMMON/ZZZ9/XPP (250), YPP (250), ZPP (250), XPM(250), YPM(250)
1, ZPM (250), XMP(250), YMP(250), ZMP(250), XMM(250), YMM(250),
1ZMM (250), IWAKE(250)
DO 200 IND $=1$, NTOTAL
$X P C(I N D)=(X P P(I N D)+X P N(I N C)+X M P(I N D)+X M M(I N D)) / 4$.
$Y P C(I N D)=(Y P D(I N D)+Y P M(I N C)+Y M P(I N D)+Y M M(I N D)) / 4$.
$Z P C(I N D)=(Z P P(I N O)+Z P N(I N C)+Z M P(I N D)+Z M M(I N D)) / 4$.
$X P I(I N D)=(X P P(I N D)+X P N(I N C)-X M D(I N D)-X M M(I N D)\} / 4$.
$Y P 1(I N D)=(Y D P(I N D)+Y P M(I N C)-Y M P(I N D)-Y M M(I N D) / / 4$ 。
$Z P I(I N D)=(Z P P(I N \cap)+Z P M([N D)-Z M P([N D)-Z M M(I N D)] / 4$.
$X P 2(I N D)=(X P P(I N D)-X P N(I N C)+X N P(I N D)-X M N(I N D)) / 4$.
$Y P 2(I N D)=(Y P P(I N D)-Y P M(I N D)+Y M P(I N D)-Y M M(I N D) / / 4$.
ZP2(IND) $=(Z P P(I N D)-Z P M(I N D)+Z M P(I N D)-Z N Y(I N D)) / 4$.
XP3 $(I N D)=(X P P(I N D)-X P M(I N D)-X N P(I N D)+X M M\{I N D) / / 4$.
YP3 (IND) $=(Y P P(I N D)-Y P N(I N D)-Y M P(I N D)+Y M M(I N D)) / 4$.
$Z P 3(I N D)=(Z P P(I N D)-Z P N(I N D)-Z M P(I N D)+Z M M(I N D) / / 4$.
RETURN
END

SUBROUTINE PRINTA(KPRINT)
COMMON/ZZZL/NX, NY, NZ, NN, REFLEN, SPAN, KSYMMY, KSYMMZ, NSYMMY, NSYMMZ COMMON/Z7Z2/TAU, ALFA, TANGLE, TANGTE, CHORD, NTOTAL, UMACH
COMMON/ZZZ3/YK (3,11,11,2)
CDMMON/ZZZ6/XPC(250), YPC(250), ZPC 2.50)
COMMON/ZZZ7/XP1(250),YP1(250):ZP1(250), XP2(250),YP2(250),
LZP2(250), XP3(250),YP3(250), ZP3(250)
COMMON/ZZZ8/AA(2500), SOURCF(250), SINABC, COSABC, ALFABC
COMMON/ZZZQ/XPP (250), YPP(250), ZPP (250), XPM(250), YPN(250)
1, ZPM(250), XAD 250), YMP(250), LMP(250), XMM(250), Y: YM(250),
IZMM(250), IWAKE(250)
COMMON/ZZZ10/JNXB(250),NXGAKE,WAKEIN
COMMON/CINTR/NITER
NTP $=$ NTOTAL +1
NTBW $=$ NTOTAL + NY*NXHAKE
NY4 $=4 *(\mathrm{NY}-1)$
GO TO (1, 2, 3,4,5,6), KPRINT
continue
RETURN
continue
$N X P=N X+1$
$N Y P=N Y+1$
DO $35 \quad I Z=1, N Z$
DO 35 IY $=1$,NYP
DO 35 IX $=1, \mathrm{NYP}$
On $35 \mathrm{~J}=1,3$
WRITF $(6,2500) \mathrm{J}$, IX, IY, IZ, YK (J, IX, IY, IZ $)$

continue
RETURN
3 CONTINUE
WRITF(6,400)
400 FORMATI2X,'IND', $4 X,{ }^{\prime} X P C ', 7 X, ' Y P C ', 7 X,{ }^{\prime} Z P C, 7 X, 1 X P 1^{\prime}, 7 X: Y P 1^{\prime}, 7 X$,
 DO $45 \mathrm{I}=1$, NTOTAL
45. WRITE(6,500)I,XPC(I),YPC(I),ZPC(I),XPI(I), YPI(I), ZPI(I), XPZ(I), IYP2(I),ZP2(I), XP3(I), YP3(I),ZP3(I)
500 FGRMATIIX,13,12F10.5)
RETURN
4 CONTINUE RETURN
5 CONTINJE
550 FORMAT(//2X,'SPECIFICATIONS OF THE PROBLEM:/) WRITE $(6,555)$ NX, NY, NZ, NW, NTOTAL, KSYMMY, KSYMMZ, REFLEN;SPAN, TAU, IALFA, ALFABC, UMACH,NXWAKE, WAKEIN

12X,'REFERFNCE LENGTH=',FG.2/2X,'SPAN/REF LENGTH $=1,56.21$
 $12 \mathrm{X}, \mathrm{MACH}$ NUMBER $=$ ', F7.3//2X, N NWAKE=1,I3,1/ 12X, 'VAKEIN=',FT.3) WRITE (6.556) TANGLE, TANGTE, CHORT
 RETURN
6 Continue
RETURN
ENT

```
    SUBROUTINF PQINTQ(KPRRINT)
    COMMON/ZZZI/NX,NY,NZ,NW,REFLEN,SPAN,KSYMMY,K SYMMZ,NSYMMY,NSYMMZ
    COMMON/ZZZ2/TAU,ALFA,TANGIF,TANGTE,CHORD,NTOTAL,UMACH
    COMMON/ZZZZ6/XPC{250),YPC(250),ZPC(250)
    COMMON/ZZZ7/XP1(250),YP1(250),ZP1(250),XP2(250),YP2(250),
    LZP2(250),XP3(250),YP3(250),ZP3(250)
    COAMON/ZZZ8/AA(2500),SOURCE(250),SINABC,COSABC,ALFABC
    NHX=NH*NX
    NWXY=NWX*NY
    NWXYZ=NWXY*NZ
    NY4=4*(NY-1)
    GO TO(1,2,3,4,5,6,7),KPRINT
l CONTINUE
    . WRITE(6,100)
100 FGRMAT(///2X,'THE DISTRIBUTION OF THE DOUBLET STRENGTH DH:)
        INDFIN=0
        IPRINT=0
    DO 25 ISYMY=1,?
    IF(ISYMY.EQ.2.AND.KSYMMY.NE.O)GO TO 25
    IE(ISYMY.EQ.1)WRITE(6,120)
120 FORMAT(//5X,'RIGHTHANC SIDE')
    IF(ISYMY.EQ.2)WRITE(6,140)
140 FORMAT(//5X,'LEFTHANO SIDE')
    DO 25 IZ=1,NZ
    INDFIN=INDFIN+NWXY
    IPRINT=IPRINT+1
    IND=NWXY*(IPRINT-1)
    DO 25 IX=1,NX
    WRITE(6,300)
    no 25 [W=1,NM
    IWX=IW*IX
    IND = IND+1
    WRITE(6,200)(SOURCF(KK),KK=IND,INDFIN,NWX)
    CONTINUE
    FORMAT(8E15.5)
    FORMAT(/)
    RETURN
2 CONTINUE
    RETURN
3 CONTINUE
    RETURN
CONTINUE
    WRITE(6,770)
770 FORMAT(///'DISTRIBUTION OF AA(I,J):/)
    DO 77 I=1,NTOTAL
    WRITE16,771)I
    N1=I
    N2=NTOTAL*NTOTAL
771 FORMAT(2X,'INDEX=',12)
    IF(NY.LE.4.OR.NY.GE.9)WRITE{6,772)(AA(K),K=N1,N2,NTOTAL)
772 FORYAT(8E15.6/8E15.6/8F15.6/8E15.6/8F15.6)
    IF(NY,EQ.5)WRITE(G,775)(AA(K),K=N1,N2,NTOTAL)
    FORMAT(5E15.6)
    IF(NY.EQ.6)WRITE(6,776)(AA(K),K=NI,N2,NTOTAL)
    FORMAT(6E15.6)
    IF(NY.EQ.7)WRITE(6,777)(A\Delta(K),K=N1,N2,NTOTAL)
777 FORMAT(7E15.6)
7 7
    CONTINUE
```

 RETIJRN
 5 CONTINUE
QETURN
6 CONTINIJF
WRITE(6,881)
881 FORMAT(///2X, 'THE DISTRIBUTION OF SURFACE NORMAL'/)
NX!N=NX*NW
NXWY=NXW*NY
DO 883 IX=1,NXW
WRITE(6,882) (SOURCE(KK),KK=IX,NXWY,NXW)
882 FORMAT(8E15.6)
883 CONTINUE
RETURN
7 CONTINUE
R-ETURN
END

```
-87-

\section*{SUBROUTINE CFBUG(K)}

WRITE \((6,1) \mathrm{K}\)
1 FORMAT \(2 \mathrm{X},{ }^{\prime}\) ERROR CODE \(=1\), I 2 )
RETURN
END
```

SUBRROUTINE VFEMN
COMMON/ZZZ.1/NX, NY,NZ,NW,REFLEN,SPAN,KSYMMY,KSYMMZ, NSYMMY, NSYMMZ.
COMMON/ZZZ2/TAU, ALFA, TANGLE,TANGTE,CHDRD,NTOTAL, UMACH
C CMMON/ZZZ6/XPC (250), YPC (250), ZPC(250)
COMMON/ZZZ7/XP1(250),YD1(250), ZP1(250), XP2(250),YP2(250),
12P2(250), XP3(250),YP3(250);ZP3(250)
COMMON/ZZZB/AA(2500), SOURCE(250), SINABC, COSABC,ALFABC COMMON/ZZ7.9/XPP(250), YPP(250), ZPP (250), XPM(250),YPM(250)
1, ZPM (250), XMP (250),YMP(250), ZMP(250), XAM(250),YMM(250),
1ZMM (250), INAKE(250)
COMMON/ZZZ10/JNXG(250) , NXWAKE,WAKEIN
COMMON/Z.Z.Z11/VHKX (2500), VHKY (2500), VHKZ(2500), VKX(250), VKY(250$)$,
1VKZ (250)
CO:AMDN/ZZZ12/VXUAKE(250), VYWAKE(250), VZWAKE (:250.).
COMMON/CONTR/NITER
DOTPRO (X1,Y1, Z1; X2, Y2, Z2) $=X 1 * X 2 ; Y 1 * Y 2 t Z 1 * 22$ PROMIX (XX1,YYL,ZZ1, XX2,YY2,ZZ2,XX3,YY3, 723) $=(Y Y 2 * Z Z 3-Y Y 3 * Z Z 2) * X X 1$
$1-(X X 2 * Z Z 3-X X 3 * Z Z 2) * Y Y 1+(X X 2 * Y Y 3-X, \times 3 * Y Y 2) * Z Z 1$
NT2S=NTOTAL**2

```

C
```

NYP=NY+1 -
NWT=NXWAKE*NY
NWTP = NWT + NXWAKE
NTBW=NTOTAL+NHT

```
C
C
    DO 2. \(1=1,250\)
    \(V \times W A K E(I)=0\) 。
    \(V Y W A K F(I)=0\).
    VZWAKE(I)=3.
2 CONTINUE
    DO 250 JNXSW=1, NTBW
    DO 250 INXW \(=1\), NWT
    DO 250 I SYMMY \(=1\), NSYMMY
    DO 250 ISYMMZ \(=1\), NSYNMZ
    SIGNY=3.-2*ISYMMY
    SIGNZ \(=3 .-2 *\) ISYMMZ
    JNXN= JNXBW-NTETAL
    IF (JNXBH.LE.NTOTAL) JNX=JNXBW
    IFF (JNXBW.GT. NTOTAL) JNX=JNXB(JNXW)
C
    INDEX=NTDTAL+INXW
    Q1X \(=X P P(J N X P N)-X M M(I N D E X)\)
    Q1Y \(=Y P P(I N X B G)-Y M M(I N D E X) * S I G N Y\)
    Q1Z = ZPP (JNXBN)-ZMM(TNDEX) *SIGNZ
    Q2X \(=\mathrm{XMP}\left(\mathrm{JN} \mathrm{XBW}^{\prime}\right)-\mathrm{X}^{N N}(\operatorname{INDEX})\)
    Q2Y \(=Y M P(J N X B W)-Y M M(I N D E X) * S I G N Y\)
    Q2Z \(=2 M P(J N X E W)-Z N N(I N D E X) * S I G N Z\)
    Q \(3 X=X M M(J N X B W)-X N N(I N D E X)\).
    Q \(3 Y=Y M A(J N X B N)=Y\) MM (INDEX) \(* S I G N Y\)

    Q\& \(\quad\) = XPM (JNXBh; -XMN (IIDEX)
    Q4Y=YPM(JNXBW)-YMM (INDEX)*SIGNY
    Q4Z \(=7 . P M(J N X R W)-Z V\) (INOEX)*SIGNZ
    QLQL=DOTPRO(OLX,QLY, \(1 \mathrm{Q}, \mathrm{Q}, \mathrm{Q}, \mathrm{Q1Y,Q1Z)}\)
    Q2Q2=DOTPRC(Q2X;Q2Y,Q2Z, \(22 X, Q 2 Y, 22 Z)\)
    Q \(3 \mathrm{Q} 3=\mathrm{DOTPRO}(03 X, Q 3 Y, 03 Z, Q 3 X, Q 3 Y, 03 Z)\)
Q4Q4=DOTPRC(C4X,Q4Y,Q4Z,Q4X,Q4Y,Q4Z)
```

 QIQ2=DOTPRO(OIX,QYY,21Z,22X,Q2Y,02Z)
 01Q4=DOTPRE(G1X,Q1Y,Q1Z,Q4X,G4Y,Q4Z)
 Q2Q3=DOTPRO(Q2X,Q2Y,Q2Z,Q3X,Q3Y,Q3Z)
 Q3Q4=DOTPRO(03X,Q3Y,Q3Z,Q4X,Q4Y,Q4Z)
 Q1=SQRT(Q1GI)
 Q2=SQRT(Q2Q2)
 Q3=SQRT(Q303)
 Q4=SQRT(0464)
 Q41X=04Y*012-Q47*01Y
 Q41Y=-{0'4X*Q1Z-64Z*G1X)
 Q41Z=04X*01Y-64Y*01X
 Q41SQ=DOTPRO(Q41X,041Y,041Z,041X,Q41Y,Q41Z)
 Q12X=Q1Y*Q2Z-61Z*G2Y
 012Y=-(01X*Q2Z-QIZ*Q2X)
 Q12Z=Q1X*Q2Y-Q1Y*02X
 Q12SQ=DOTPRO(Q12X,012Y,Q12Z,Q12X,Q12Y,Q12Z)
 Q23X=Q2Y*03Z-Q2I*03Y
 Q23Y=-(02X*03Z-62Z*G3X)
 Q23Z=Q2X*Q3Y-Q2Y*Q3X
 Q23SQ=nחTPRO(Q23X,Q23Y,Q23Z,Q23X,Q23Y,Q23Z)
 Q34X=03Y*C4Z-63Z*Q4Y
 Q34Y=-(Q3X*047-Q 3Z*Q4X)
 Q34Z=03X*Q4Y-Q3Y*04X
 Q34SQ=DOTPRO(Q34X,Q34Y,Q34Z,Q34X,Q34Y,Q34Z)
    ```
C
    PARTI=0.
    IF(Q4ISQ.NE.0.)PARTI=((Q4Q4-Q1Q4)/Q4+(Q1QI-Q104)/Q1)/04ISO.
    \(\mathrm{P} A R T 2=0\).
    \(\operatorname{IF}(01250 . N E .0.) \operatorname{PART} 2=((Q 161-Q 1 Q 2) / Q 1+(Q 2 Q 2-Q 1 Q 2) / Q 2) / Q 12 S Q\)
    PARTB=0.
    \(\operatorname{IF}(Q 23 S Q . N E .0) P A R T 3=.((Q 2 Q 2-Q 2 Q 3) / 02+(Q 3 Q 3-Q 2 Q 3) / Q 3) / 023 S Q\)
    PART4=0.
    IF (Q34SQ.NE. O.) PART4=( \((0363-Q 3 Q 4) / Q 3+(Q 4 Q 4-Q 364) / C 4) / Q 34 S G\)
    \(V X=Q 41 X \geqslant P A R T 1+Q 12 X * P A R T 2+Q 23 X * P A R T 3+034 X * P A R T 4\)
    \(V Y=(Q 41 Y * P A R T 1+R 12 Y * P A R T 2+Q 23 Y * P A R T 3+Q 34 Y * P A R T 4) * S I G A Y\)
    \(V Z=Q 41 Z * P A R T 1+Q 12 Z * P A R T 2+Q 23 Z * P A R T 3+Q 34 Z * P A R T 4\)
    VXWAKE(INXW) \(=V X W A K E(I N X W)+V X * S C U R C E(J N X)\)
    VYWAKE (INX'N) = VYWAKE (INXW) +VY*SOURCE (JNX)
    \(V Z W A K E(I N X H)=V Z W A K E(I N X W)+V Z * S O U R C E(J N X)\)
    CONTINUF
    CALL VELPP
    DO \(4 \mathrm{I}=1\), NTOTAL
    \(\operatorname{VKX}(I)=0\).
    \(\operatorname{VKY}(I)=0\).
    \(\operatorname{VKZ}(I)=0\).
4 CDNTINUF
    DO \(3 \mathrm{I}=\mathrm{I}\), NTOTAL
    DO \(3 \mathrm{~J}=1\), NTOTAL
    NNN \(=1 \div(J-1) * N T C T A L\)
    VKX(I) \(=\operatorname{VKX}(I)+\operatorname{SDURCE}(J) * V H K X(N N N)\)
    \(\operatorname{VKY}(I)=V K Y(I)+S C U R C F(J) * V H K Y(N N N)\)
    VKZ(I) \(=V K Z(I)+S C U R C E(J) * V H K Z(N N N)\)
CONT INUF
    IF (NITER.EQ.I)GE TO 753
    IF(NITFR.LE.10)GO TO 2000
WPITE 6,5\()\)
format (/IOX,'THIS IS THF X-WING VELOCITY'/)
CALL PRINTV(VKX,NX,NY)
\begin{tabular}{|c|c|c|}
\hline & WRITE (6,6) & \\
\hline \multirow[t]{2}{*}{6} & FORMAT (/10X, THIS IS THE K-WAKE & VELOCITY:/) \\
\hline & CALL PRINTV(VXWAKE,NXWAKE,NYP) WRITE 6,7 ) & \\
\hline \multirow[t]{3}{*}{7} & FOPMAT (/10X, THIS IS THE Y-WING & VELOCITY*/) \\
\hline & CALL PRINTV (VKY,NX, NY). & \\
\hline & WRITE ( 6,8\()\) & \\
\hline \multirow[t]{2}{*}{8} & FORMAT //10X, \({ }^{\text {THIS }}\) IS THE Y-WAKE & VELOCITY'/) \\
\hline & CALL PRINTV(VYWAKE,NXWAKE,NYP) WRITE \((6,9)\) & \\
\hline \multirow[t]{3}{*}{9} & FORMAT (/10X, 'THIS IS THE Z-WING & VELOEITY M \\
\hline & CALL PRINTV (VKZ,NX,NY) & \\
\hline & WRITE(6,10) & \\
\hline \multirow[t]{2}{*}{10} & FORMAT (/10X, THIS IS THE Z-WAKE & VELCCITY'/) \\
\hline & CALL PRINTV (VZWAKE, NXWAKE, NYP) & \\
\hline \multirow[t]{3}{*}{2000} & CONT INUE & \\
\hline & RETURN & \\
\hline & END & \\
\hline
\end{tabular}
```

 SUSROUTINE PRINTV(VECTOR,N1,N2)
 DINENSION VECTOR(1)
 WRITE (6,3)
 NO 1 IX=1,N1
 WRITF(6,2){VECTCR(IX+N1*(IY-1.)}, I Y=1,N2)
 CONTINUE
FORMAT(8E15.6)
WR.ITE(6.3)
FORMAT(/)
RETURN
END

```
```

 SUBROUTINE COEFF
 CDMMON/ZZZI/NX,NY,NZ,N&,REFLEN,SPAN,KSYMMY,KSYMMZ,NSYMMY, NSYMMZ
 COMMON/ZZZZ/TAU,ALFA,TANGLE,TANGTF,CHORD,NTOTAL,UMACH
 COMMON/ZZZ6/XPC(250),YPC(250),ZPC(250)
 COMMON/ZZZ7/XP1(250),YP1(250),ZP1(250), XD2(250),YP2(250),
 12P2(250), XP3(250),YP3{250), ZP3(250)
COMMON/ZZZ8/AD(2500), SOURC巨(250),SINABC,COSABC,ALFABC
COMMON/ZZZ9/XPP(250),YPP(250),ZPP(250), XPM(250),YPN(250)
1,ZPM(250), XMD(250),Y盾P(250),ZMP(250), XMM(250),YMM(250),
LZMM(250),TWAKE(250)
CO4\ON/ZZZ:O/JNXB(250),NXWAKE,WAKEIN
COM4DN/ZZZ11/VHKX(2500),VHKY(2500),VHKZ(2500),VKX(250),VKY(250).
{vMk2 (250)
QIMENSION XUNORM(250),YUNCRM(250), ZUNORM(250)
DOTPRO(X1,Y1,Z1,X2,Y2,Z2)=X1*X2+Y1*YZ +Z1*Z2
PROMIX(XX1,YY1,ZZ1,XX2,YY2,ZZ2,XX3,YY3,ZZ3)=(YYZ*ZZ3-YY3*ZZ2)*XX:
1-{XX2*ZZ3-XX3*ZZ2)*YY1+(XX2*YY3-XX3*YYZ)*ZZ1
NT2S=NTOTAL**2
C
C
OO. }9\mathrm{ NNN = 1,NT2S
C VHKX(NNN)=0.
C VHKY(NNN)=0.
VHKZ (NNN) =0.
AA(NNN)=0.
CALCULATICN OF THE SURFACE NORMAL
OQ 140 JNX=1,NTOTAL
C
XDL=XPP{JNX - XMN (JNX)
YD1=YPP(JNX) -YNM(JNX)
ZD1=ZPP(JNX)-ZNN(JNX)
XD2 = XMP(JNX)-XPN(JNX)
YD2=YMP(JNX)-YPN(JNX)
ZD2=ZMP(JNX) - ZPN(JNX)
CRX=YO1*ZC2-ZC1*YO2
CRY=-(XD1*ZC2-ZC1*XO2)
CRZ=XD1*YD2-YO1*XD2
ABN=SORT(DOTDRO(CRX,CRY,CRZ,CRX,CRY,CRZ))
XUNORM (JNX)=CRX/ARN
YUNORM (JNX)=CRY/ABN
ZUNORM (JNX)=CRZ/ABN
140
CONTINUE
NTBW=NTOTAL+NXWAKE*NY
DO 250 JNXBW=1,NTBW
C
DO 250 INX=1,NTCTAL
DO 250 ISYMMY =1,NSYMMY
DO 250 I SYMMZ = 1, NSYMMZ
SIGNY=3.-2*I SYMNY
SIGNZ=3.-2*ISYMNZ
C
JNXW=JNXBW-NTOTAL
IF(JNXPH.LE.NTOTAL)JNX=JNXBW
IF(JNXBW=GT, NTחTAL) JNX=JNXB (JNXW)
NNN=INX+(JNX-1)*NTOTAL
C
QIX=XPP(JNXBW)-XPC(INX)

```
```

Q1Y=YPP(.JNXBW)-YPC(INX)*SIGNY
QIZ=ZPP(JNXB4)-ZPC(INX)*SIGNZ
Q2X=XMP(JNXRW)-XDC(INX)
Q2Y=YMP(JNXBN)-YPC(INX)*SIGNY
Q2Z=ZMP(JNXBW)-ZDC(INX)*SIGNZ
Q3X=XMM(JNXBW)-XPC(INX)
Q3Y=YMM(JNXBW)-YPC(INX)*SIGNY
Q3Z=ZMM(NNXBW)-ZPC(TNX)*SIGNZ
Q4X=XPM(JNXBW)-XPC(INX)
Q4Y=YPM(JNXBH)-YPC (TNX)*SIGNY
Q4Z=ZPM(JNXPN)-ZPC(INX)*SIGNZ
QLQL=DOTPRO(Q1X,QIY,Q1Z,Q1X,QIY,Q1Z)
02Q2= DOTPRD(Q2X,D2Y,Q2Z,Q2X,Q2Y,Q2Z)
Q3Q3= DOTPRO(Q3X,Q3Y,03Z,Q3X,Q3Y,Q3Z)
04Q4=00TPRO(N4X,Q4Y,04Z,04X,Q4Y,Q4Z)
Q1Q2=DOTPPC(O1X,Q1Y,Q1Z,Q2X,Q2Y,Q2Z)
Q1Q4=DOTPRO(Q1X,Q1Y,Q1Z,Q4X,Q4Y,Q4Z)
Q203= DOTPRO(Q2X,Q2Y,Q2Z,Q3X,Q3Y,Q3Z)
Q3Q4=DOTPRO(Q3X,Q3Y,Q3Z,Q4X,Q4Y,Q4Z.)
01=SQRT(0101)
Q2=SQRT(Q2Q2)
Q3=SQRT (Q3G3)
Q4=SQRT(Q4Q4)
Q41X=Q4Y*Q1Z-64Z*Q1Y
Q41Y=-(04X*Q1Z-Q4Z*Q1X)
Q41I=04X*Q1Y-84Y*Q1X
Q41SO= DOTPRO(541X,041Y,Q417.Q41X,Q41Y,Q41Z)
Q12X=Q1Y*Q2Z-Q1Z*Q2Y
Q12Y=-(01X*Q2Z-N1Z*Q2X)
Q12Z=Q1X*Q2Y-G1Y*Q2X
Q12SO=DOTPRO(Q12X,O12Y,Q127,Q12X,G12Y,G12.Z)
Q23X=Q2Y*Q3Z-Q2Z*Q3Y
023Y=-(02X*Q3Z-62Z*Q3X)
023Z=Q2X*Q3Y-Q2Y*Q3X
Q23SQ=COTPRO(G23X,Q23Y,Q23Z,Q23X,Q23Y,Q23Z)
Q34X=Q3Y*Q4Z-63Z*Q4Y
Q34Y=-{03X*@4Z-Q3Z*@4X)
Q34Z=Q3X*Q4Y-G3Y*G4X
034SQ=DOTPRO(Q34X,Q34Y,Q34Z,Q34X,Q34Y,Q34Z)

```
C
PARTI \(=0\) 。
IF (Q41SQ.NE.0.)PART1=((Q4Q4-Q1Q4)/Q4+(Q1Q1-Q1Q4)/Q1)/Q41SQ
PART2=0.
IF (Q12SQ.VE.0.)PART2=((Q1G1-Q1Q2)/Q1+(Q2Q2-Q1Q2)/Q2)/Q12SQ
\(P A R T 3=0\).
\(I F(Q 23 S Q . N E \cdot 0) P A R T 3=.((Q 2 Q 2-Q 2 Q 3) / Q 2+(Q 3 Q 3-Q 2 Q 3) / Q 3) / Q 23 S Q\)
PART4 \(=0\).
IF(Q34SQ.NE.0.)PART4=((03Q3-03Q4)/03+(Q4Q4-Q3Q4)/64)/034SG
\(V X=Q 41 X * P A R T 1+0.12 X * P A R T 2+623 X * D A R T 3+Q 34 X * D A R T 4\)
\(V Y=(Q 4 I Y * P A R T 1+Q 12 Y * P A R T 2+Q 23 Y * P A R T 3+Q 34 Y * P A R T 4) * S I G N Y\)
\(V Z=Q 41 Z * P A R T 1+Q 12 Z * P A R T 2+Q 23 Z * P A R T 3+Q 34 Z * P A R T 4\)
C \(\quad V H K X(\cdot N N A)=V H K X(N N N)+V X\)
C \(\quad \operatorname{VHKY}(N N N)=V H K Y(N N N)+V Y\)
\(V H K Z(N N N)=V H K Z(N N N)+V Z\)
FACTOR=DOTPRO(VX,VY,VZ,XUNORM (INX),YUNORM (INX), ZUNORM (INX))
\(\triangle A(N N N)=A A(N N N)+F A C T O R\)
```

C SOURCE(INX)=SOURCE(INX) +FACTOR
250 CONTINUE
C . WRITE(6,152)
152 FORMAT(2OX,'THI'S IS THE MATRIX AA://)
C WRITE(6,151)(AA(I),I=1,NT2S)
C WRITE(6,153)
153 FORMAT(//2OX,'THIS IS THE MATRIX SOURCE;//)
C WRITE(6,151)(SOURCE(I),I=1,NTOTAL)
151 FORM4T(8F15.6)
OO 154 T=1,NTOTAL
SOURCE(I)=-(XUNORM (I)*COSABC+ZUNORM (I)*SINABC)
154 CONTINUE
RETURN
ENO

```

\section*{SURROUTINE VELPP}

COMMON/ZZZI/NX,NY,NZ, NW,RFFLEN,SPAN,KSYMMY,KSYMMZ,NSYMMY,NSYMMZ
COMMON/ZZZ2/TAU, ALFA, TANGLE,TANGTE, CHORD, NTOTAL, UMACH
COMMON/ZZZ6/XPC(250), YPC(250), ZPC(250)
COMMON/ZZZ7/XP1(250),YP1(250), ZP1 (250), XP2(250), YP2(250),
1ZP2(250); XP3(250),YP3(250); ZP3(250)
COMMON/ZIZ8/AA(2500), SOURCE 250 ), SINABC, COSABC, \(\triangle L F A B C\)
COMMON/ZZZ9/XPP(250),YPP(250), ZPP (250), XPM(250), YPM(250)
1, ZPM(250), XMP(250), YMP(250), ZMD(250), XMM(250), YタM(250),
1ZMM(250), IWAKE(250)
COMMON/7ZZ10/JNXB(250), NXWAKE,WAKEIN
COMMON/ZZZ11/VHKX(2500), VHKY(2500), VHKZ (2500), VKX(250), VKY(250), 1VK?(250)
COMMON/ZZZI2/VXWAKE(250), VYWAKE(250),VZWAKE(250)
DOTPRO (X1,Y1,Z1,X2,Y2,Z2)=X1*X2+Y1*Y2+Z1*Z2
PROM \(\{X(-X X 1, Y Y 1,7 Z 1, X Y 2, Y Y Z, Z Z 2, X X 3, Y Y 3, Z Z 3)=(Y Y 2 * Z Z 3-Y Y 3 * Z Z 2) * X X 1\)
\(1-(X X 2 * Z Z 3-X X 3 * Z Z 2) * Y Y 1+(X X 2 * Y Y 3-X X 3 * Y Y 2) * Z Z 1\)
NT2S=NTOTAL**2
\(N W T=N X W A K E * N Y\)
NWTP \(1=\) NWT +1
NWTP \(=\) NWT 4 NXWAKE
NTBN=NTOTAL +NHT
\(c\)
c
c.
initialization ef the wake velocity at the corners
DO 250 JNXBW \(=1\), NTEW
DO 250 INXW=NKTPI,NGTP
DO 250 ISYMMY \(=1\), NSYMMY
DO 250 ISYMMZ \(=1\), NSYMMZ
SIGNY \(=3 .-2 *\) I SYMNY
SIGNZ \(=3 .-2 * 15 Y M M Z\)
JNXW= JNXBW-NTGTA!.
IF (JNXBW.LE.NTOTAL) JNX=JNXBW
IF (JNXBH.GT. NTOTAL) JNX \(=\) JNXB (JNXW)
C
```

INOEX=NTOTAL + INXW-NXNAKE
QIX=XPP(JNX8N)-XMP(INDEX)
QLY=YPP.(JNXSW)-YMP(INDEX)*SIGNY
Q1Z=ZPP(JNXBN)-ZNP(INDEX)*SIGNZ
Q2X=XMP(JNXRW!)-XMP(IN\capEX)
Q2Y=YMP(JNXBW)-YMP(INDFX)*SIGNY
02Z=ZMO(JNXBW)-ZMP(INDEX)*SIGNZ
Q3X=XMM(JNXBW)-XMP(INDEX)
Q3Y=YMM(JNXPW)-YMP(INDFX)*SIGNY
Q3Z=ZMM(JNXRW)-ZMP(INDEX)*SIGNZ
Q4X=YPM(JNXRW)-XNP(INDEX)
Q4Y=YPM(JNXBW)-YMP(INDEX)*SIGNY
Q4Z=ZPM(JNXBW)-ZMP(INEEX)*SIGNZ
Q1Q1=DOTPRO(Q1X,Q1Y,O1Z,G1X,G1.Y,Q1Z)
Q2Q2= DOTDRO(02X,Q2Y,O27,Q2X,Q2Y,Q2Z)
Q3Q3= DOTPRO(Q3K,Q3Y,03Z,G3X,Q3Y,03Z)
Q4Q4=DOTPRO{04X,Q4Y,Q4Z,Q4X,Q4Y,04Z)
Q102=DOTPRO(Q1X,Q1Y,Q1Z,Q2X,Q2Y,Q2Z)
Q1\cap4=DOTPRO(Q1X,Q1Y,Q1Z,R4X,04Y,04Z)
Q2Q3= DOTPRO(02X,Q2Y,Q2Z,Q3X,Q3Y,O3Z)
03Q4=ПOTPRO(63X,Q3Y,Q3Z,G4X,Q4Y,Q4Z)
QL=SQRT(QLQL)

```
```

Q2=SQRT(Q2Q2)
Q3=SQRT (Q303)
Q4=SQPT(Q4Q4)
Q41X=Q4Y*Q1Z-Q4Z*Q1Y
041Y=-(04X*01Z-Q4Z*01X)
04IZ=Q4X*R1Y-G4Y*GIX
Q41SO=NOTPRO(041X,Q41Y,Q41Z,Q4IX,Q4IY,Q41Z)
Q12X=Q1Y*Q2Z-G1Z*G2Y
012Y=-(01X*Q2Z-G1Z*Q2X)
Q12Z=01X利Q2Y-C1Y*Q2X
012SO=nOTPRO(G12X,G12Y,Q12Z,Q12X,Q12Y,Q12Z)
Q23X=Q2Y*Q3Z-Q2Z*Q3Y
Q23Y=-(02X*Q3Z-Q2Z*03X)
Q23Z=Q2X*Q3Y-Q2Y*0.3X
Q23S0=DOTPRO(Q23X,Q23Y,Q23I,Q23X,Q23Y,Q23Z)
Q34X=Q3Y*Q4Z-Q37*64Y
Q34Y=-(03X*Q4Z-Q3Z*Q4X)
034Z=03X*Q4Y-Q3Y%Q4X
Q34SQ=DOTPRO(634X,Q34Y,034Z,Q34X,Q34Y,Q34Z)
PART1=0.
IF(Q41S0.NF.0.)PART1=((Q4Q4-Q1Q4)/Q4+(0101-Q104)/Q1)/041SQ
PART2=0.
IF(Q12S0.NE.0.)PART2=((Q1Q1-Q1Q2)/Q1+(Q2Q2-Q1Q2)/G2.//Q12SO
DART3=0.
IF(Q23SQ.NE.0.)PART3=((Q2Q2-Q2Q3)/Q2+(Q3Q3-Q2Q3)/Q3)/Q23SQ
PART4=0.
IF(034SO.NF.O.)PNRT4=((G3G3-Q3Q4)/Q3+(Q4Q4-03Q4)/Q4)/Q34SQ
VX=Q41X*PART1+012X*PART2+Q23X*PART3+Q34X*PART4
VY={Q41Y*PARTI+G12Y*PART2+Q23Y*PART3+Q34Y*PART4)*SIGNY
VZ=Q41Z*PART1+012Z*PART2+G237*PART3+Q34Z*PART4
IF(INXW.LE.NUT)GO TO 250
VXWAKE(INXW)=VXWAKE(INXW)+VX*SCURCE(JNX)
VYWAKE(INXW)=VYWAKE(INXW) +VY*SCURCE (JNX)
VZWAKE{INXW)=VZHAKF(INXW)+VZ*SOURCE(JNX)
CONTINUE
RETURN
END

```
C
250
```

 SUPROUTINE ITER
 COMMON/ZZZ1/NX,NY,NZ,NW,RFFLFN,SPAN,KSYMMY,KSYMMZ,NSYMMY',NSYMMZ
 COMMON/ZZZZ/TAU,ALFA,TANGLF,TANGTF,CHDRD,NTOTAL,UMACH
 COMMON/ZZZ6/XPC(250),YPC(250),ZPC(250)
 COMMON/ZZZ7/XP1(250),YP1(250),ZP1(250), XP2(250),YP2(250),
 1ZP2(250), XP3(250),YP3(250),ZP3(250)
 COMMON/ZZZ8/AA(900),SOURCE(250),SINABC,COSABC,ALFABC
 COMMON/ZZZ9/XPP(250),YPP(250),ZPP(250), XDM(250),YPM(250)
 1,ZPM(250), XMP(250), YMP(250), ZMP(250), XMM{250),YMM(250),
 1ZMM(250), IWAKE(250)
 CJMMON/ZZZ10/JNXB(250),NXWAKE,WAKEIN
 COMMDN/ZZZ11/VHKX(900),VHKY(900),VHKZ(900),VKX(250),VKY(250),
 IVKZ(250)
COMMON/ZZZ12/VXWAKE (250),VYWAKE (250)., VZWAKE(250.).
COMMON/CONTR/NITER
DIMENSION XXX(250),YYY(250), ZZZ(250),VXW1250),VYN(250),VZW(250)
DIMENSION INDICA(100)
DOTPRO(X 1,Y1,T1,X2,Y2,Z2)=X1*X2+Y1*Y2+Z1*Z2

```
C
C
    NXWAK P=NXWAKE+1
    \(A L F A R=A L F A * 3.14159 / 180\).
    TANALF=TAN(ALFAR)
    \(N Y P=N Y+1\)
    001 I \(X=1\), NXNAKE
    DO 1 IY=1,NY
    \(I X P=I X+1\)
    \(I Y P=I Y+1\)
    IELEM=NTOTAL+IX+(IY-1)*NXWAKE
    INONE \(1=\{X P+(I Y P-1\} * N X W A K P\).
    INODE \(2=I X+(I Y P-1) \approx N X W A K P\)
    INODE \(3=I X+(I Y-1) * N X W A K P\)
    INODE \(4=I X P+(I Y-1) \approx N X W A K P\)
C
    \(X X X(I N O D E 1)=X P P(I E L E M)\)
    YYY(INODEI) \(=Y P P(I E L E M)\)
    ZZZ \((I N O D E 1)=Z P P(I E L E M)\)
C
    \(X X X(I N O D E 2)=X M P(I E L E M)\)
    YYY(INODE2) \(=Y\) NP (IELEM)
    \(Z Z Z(I N O D F 2)=Z N P\{I E L E M\}\)
C
    \(X X X(I N O \cap E 3)=X^{N} N(I E L E M)\)
    YYY(INODE3) \(=Y M M(\) IELEM \()\)
    ZZZ(INODE3) \(=Z N M_{(I E L E M)}\)
C
    \(X X X(\operatorname{INODE} 4)=X P M(I E L E V)\)
    \(Y Y Y(I N O \cap E 4)=Y P M\) (IELEM)
    \(Z Z Z(I N O D E 4)=Z P N(I E L E M)\)
6
1 CONTINUE
    DO 50 IX \(=1\), NXWAKP
    DO 50 IY=1, NYP
    \(I N \cap I C A(I Y)=I Y * N X W A K P\)
    INODE \(=I X+(I Y-1) \div N X W A K P\)
    INDEX \(1=I\) NODE \(-(I Y-1)\)
    \(V X W(I N O \cap E)=V \times W A K E(I N \cap E X I)+1\).
    \(V Y W(I N O D E)=V Y W A K E(I N D E X I)\)
```

 VZW(INODE) =VZWAKE(INDEXI)
 IF(IX.EQ.NXWAKDIVXW(INODE)=0.
 IF{IX.EQ.NXWAKP)VYW{INOCE}=0.
 IF(IX.EQ.NXKAKP)VZW(INODF)=0.
 IF(IX.EQ.LIVZW(INODE)=-TANALF
 IF(IX.EQ.I)VYK(INCOE)=0.
 IF(IX.EQ.I)VXN(INODE)=1.
 50
CONT INUF
C
C
C WRITE(6,51)
51 FORMAT(/3X,'PRINTCUT CF THE WAKE X-VELOCITY*/)
C CALL PRINTV(VXW,NXWAKP,NYP)
WRITF(6,52)
52 FORMAT(/3X,'DRINTCUT OF THE WAKE Y-VELDCITV'/)
CALL PRINTV(VYW,NXWAKP,NYP)
WRITE (6,53)
FORMATI/3X,GDRINTOUT OF THF WAKE Z-VELOCITY'/)
CALL PRINTV(VZW,NXWAKP,NYP)
IF(NITER.GT.1)GC TC 1000
WRITE(S,100)
100 FORMAT (/ 3X,'PRINTOUT OF THE WAKE CORNER COORDINATES BFFORE')
WRITE(6,201)
201 FORMAT(3X,'ITERATION IN THE X-DIRECTION:/)
CALL PRINTV(XXX,NXWAKP,NYP)
WRITE{6,202)
202 FORMAT (/ 3X, PPRINTOUT OF THE HAKE CORNER COORDINATES BEFORE:)
MRITE(6,203)
203 FORMAT{3X,'ITERATION IN THE Y-DIRECTICN'/)
CALL PRINTV(YYY,NXWAKP;NYP)
WRITF(6,204)
FORMAT(/3X,'PRINTOUT OF THE WAKE CORNER COORDINATES BEFORE')
WRITE (6,205)
205 FORMAT(3X, ITFRATICN IN THE Z-DIRECTION 1/)
CALL PRINTV(ZZZ,NXWAKP,NYP)
1000 CONTINIJE
C
C
DO 3 IX=1,NXHAKP
DO 3 IY=1,NYP
INODE =IX+(IY-1)*NXWAKP
IF(IX.EQ.NXWAKP)GG TO 3
R=WAKEIN
VELTOT=SQRT(OOTPRR(VXW(INODE),VYN(INODE),VZW(INODE),
IVXW(INONE), VYW(INODE), VZW(INONE)))
IF(VELTOT.EQ.O.JCALL CEBUG(50)
DELX=R*VXW(INDOE)/VELTOT
DELY=R*VYW(I VCNE)/VELTOT
DELZ=R*VZW(INODE)/VEL.TOT
C
INDDPI=INODE+1
IF(INODP1.EQ.INDICA(IY))GC TO 2001
XXX(INOTP1)= XXX(INOOPI) \&DELX
YYY(INONPI)=YYY(INONE) \&DELY
C IF{IX.EO.I.NND.IY.EQ.NYPIGO TO 2000
ZZZ(INODPI)=ZZZ(INODE);DELZ
GO Tก 3
CONT INUE

```

IF(NITER.EO.1)ZZZ(INODPI)=ZZZ(INONE) +DELZ
0
c bring the whole vcrtex in line with the last 2
C
INDEX \(1=\) INODP \(1+1\)
INDFX2=NXWAKE \(+(1 Y-1) *\) NXWAKE
C DO 2 INDEX=INDEXI,TNDEXZ
C2 ZZZ(INDEX)=ZZZ(INODP1)
C
GO TO 3
2001. CONTINUE

YYY(JNODPI)=YYY(INODE)
ZZZ(INODO1)=ZZZ(INODE)
C
3 Continue
C
DO 4 IX=1, NXWAKE.
DO \(4 \mathrm{I} \mathrm{Y}=1\), NY
IELEM =NTOTAL+IX + (IY-1) *NXWAKE
\(I X P=I X+1\)
\(I Y P=I Y+1\)
INODE \(1=I X P+(I Y P-1) * N X W A K P\)
INODE \(2=I X+(I Y P-1) * N X\) WAKP
INODE3 \(=I X+(I Y-1) * N X W A K P\)
INODE4 \(=\) IXP \(+(I Y-1)\) *NXWAKP
C
\(X P P(\operatorname{IELEY})=X X X(\operatorname{INODEL})\)
\(Y P P(I E L E M)=Y Y Y(T N C D E 1)\).
\(Z P P(I E L E M)=Z Z Z(I N O D E 1)\)
C
\(X P M(I E L E M)=X X X(\) INCDP4 \()\)
YPM (IELEM) \(=Y Y Y(I N O D E 4)\)
ZPM(IELFM)=ZZZ(INODE4)
c.

IFIIX.EQ. IIGO TC 4
C
\(X M M(I E L E M)=X X X(\) INCDE3 \()\)
YMM (IELEM) \(=\) YYY( INODF3)
ZMM(IELEM)=ZZZ(INODE3)
C
XMP(IELEM) \(=X X X(\) INODEZ \()\)
YMP(IELEM) \(=Y Y Y(I N O D E Z)\)
\(Z M P(I E L E M)=Z Z Z(I N O D E Z)\)
C
C
4 CONTINUF
IF(NITER.LF.10)GO TO 738 WRITE(6,400)NITER
\(G\)
400 FORMAT(/3X,'AFTER',13,2X,'ITERATIONS, THE X-CORNER ')
C WRITE 6,401\()\)
401 FDRMAT \(3 X\), COCRDINATES OF THE WAKE ARE:/)
C CALL PRINFV(XXX,NXWAKP',NYP)
WRITF(6,402)NITER
402 FORMAT(/3X,'AFTER:,13,2X,'ITERATIONS, THE Y-CORNER')
WRITF(6,403)
403 FRRMAT(3X,'COORTINATFS DF THE WAKE ARE:/)
DO 601 I \(X=1\), NXWAKP
DO 601 IY=1,NYP
```

 INODE=IX*(IY-1)*NXWAKP
 YYY(INODF)=(1./(SPAN/2.))*YYY(INODE)
 6 0 1
CONTINUE
CALL PRINTV(YYY,NXWAKP,NYP)
WRITE(6,404)NITER
404 EORMAT(/3x,'AFTER',I3,2X,'ITERATIONS, THE Z-CORNER')
WRITE(6,405)
405 FORMAT(3X,'COOROINATES OF THE WAKE ARE'/)
C.ALL PRINTV(ZZZ,NXWAKP,NYP)
738 CONTINUF
RETURN.
END

```

\section*{C3. Printout of Computer Program ILSAWR}
```

SPECIFICATIONS OF THE PROBLEM
NX= 7
NY=7
NZ=1
NW=1
NTOTAL= 49
KSYMMY= 1
KSYMMZ= 0
REFERENCE LENGTH= 1.00
SPAN/REF LENGTH = 8.00
THICKNESS= 0.0
ALFA= 5.000
ALFABC= 0.0
MACH NUNBER = 0.0
NXWAKE= 11.
WAKEIN= 0.500
TANGLE= 0.0.0
TANGTE=0.0
CHORD= 1.00

```

PRTNTOIJT OF THE WAKE CORNER CODRDINATES BEFORE ITERATION IN THF X OIIRECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline －0．118756F & & \multicolumn{2}{|l|}{－0．118756F－06} & \multicolumn{2}{|l|}{－0．118756E－n6} & \multicolumn{2}{|l|}{－0．118756F－96} \\
\hline 0.500000 E & 00 & 0.500000 F & 00 & 0.500000 E & 00 & 0.500000 E & 00 \\
\hline 0.100000 F & 01 & 0.100000 F & 02 & 0.100000 F & 01 & \(0.1000000^{\circ}\) & 01 \\
\hline \(0.150000 E\) & 01 & 0.1507005 & 01 & 0.150000 F & 01 & 0.150700 F & 01 \\
\hline 0.200000 E & 01 & 0.200000 E & 01 & 0.200000 E & 01 & \(0.200000 E\) & 01 \\
\hline 0.2500005 & 01 & 0.250000 F & 01 & 0.250000 F & 01 & 0.750000 E & 01 \\
\hline \(0.3000 \cap \cap E\) & 01 & 0.3 OODODE & 01 & 0.3090 OOF & 01 & 0.300000 E & 01 \\
\hline 0.350000 E & 01 & 0.3500000 & 01 & 0.350000 F & 01 & 0.350000 F & 01 \\
\hline 0.400 COOF & 01 & 0.407000 E & 01 & 0.490000 E & 01 & \(0.400 \cap O D E\) & 01 \\
\hline 0.4500005 & 01 & 0.4500005 & 01 & 0.450000 F & 01 & 0.450000 F & 01 \\
\hline 0.500000 F & 01 & 0.5000015 & 01 & 0.500000 F & 01 & 0.500000 F & 01 \\
\hline 0.550000 E & 03 & O． \(55000 \cap \mathrm{~F}\) & 03 & \(0.5500 C O E\) & 03 & 0.550000 F & 03 \\
\hline
\end{tabular}
0.500000 E 00 \(0.100000 \% 01\) \(0.1500 \cap 0\) F 01 0.200000 E 01 0.250000 E 01 0.300000 F － 0 － 01 －． 350000 O Ol \(0.4070 \cap 0 E O 1\)
\(0.450000 F 01\) 0.500000 F 01 0.55 クOONE 03
\(-0.118756 F-06\) 0.500000 OF 00 \(0.100000^{\circ} 01\) 0.150000 F 01 0.200000 F 01 0.25000 OE 0 ． 300000 F 01 －30010 0 ． 35000 OF 0 \(0.400000 \mathrm{E} ~ O 1\) 0.450000 E O1 0.500000 OE 01 0.550000 E 03
\(-0.119756 \mathrm{~F}-06\) 0.500000 E 00 0.100000 E 01 0.150000 F 01 0.200000 F 01 \(0.25000 \cap \mathrm{E}\) OI 0.300000 F 01 0.350000 F 01 0.4000 ONE 01 0.450000 F 01 0.500000 EL 0.550000 F 03
\(-0.1187565-06\) \(0.500000 E O 0\) 0.1000 OOE 01 0.150000 F 01 \(0.200000=01\) 0.250000 E 01 \(0.300000^{\circ} 01\) \(0.3500000^{\circ} 01\) \(0.40000 \cap \mathrm{OL}\) 0.450000 F 01 0.500000 F 01 0.550000 E O

PRINTOUT GF THF WAKE COPNFR COIRDINATFS REFORF ITERATIGN IN THF 7．－NIPECTION
\(0.103898 \mathrm{E}-07\)
\(0.103893 \mathrm{~F}-07\)
\(0.103898 \mathrm{E}-07\)
\(0.103898 \mathrm{E}-07\)
\(0.103898 \mathrm{E}-07\)
\(0.103898 \mathrm{~F}-07\)
\(0.103898 \mathrm{~F}-07\)
\(0.103898 \mathrm{~F}-07\)
\(0.103898 \mathrm{E}-07\)
\(0.103898 \mathrm{~F}-07\)
\(0.103898 \mathrm{~F}-07\)
\(0.103898 \mathrm{E}-07\)
\(0.103898 \mathrm{~F}-07\) 0.1 ก3898F－07 \(0.103898 \mathrm{~F}-07\) \(0.103399 \mathrm{~F}_{\mathrm{F}}-07\) 0.103 〇98E－07 \(0.103398 \mathrm{~F}-07\) 0.10389 ne－07 \(0.103898 \mathrm{~F}-07\) \(0.103898 \mathrm{~F}-07\) \(0.1038985-07\) \(0.103898 \mathrm{~F}-07\) \(0.1038988-07\)
\(0.103993 F-07\) 0． \(103998 \mathrm{~F}-07\) 0． \(103999 \mathrm{~F}-07\) 0.103 S98E－07 \(0.103898 \mathrm{~F}-07\) \(0.103898 \mathrm{~F}-07\) \(0.103998 \mathrm{~F}-07\) \(0.103898 \mathrm{~F}-07\) \(0.103998 F-07\) 0． 103898 F－07 \(0.173898 \mathrm{~F}-07\) \(0.103898 F-07\)
\(0.103398 \mathrm{E}-07\) \(0.103898 \mathrm{~F}-07\) \(0.103898 \mathrm{~F}-07\) \(0.103898 \mathrm{E}-07\) \(0.1038985-07\) \(0.103898 \mathrm{~F}-07\) \(0.103898 \mathrm{~F}-07\) \(0.103898 E-07\) － 1038 •8E－07 \(0.103898 \mathrm{E}-07\) \(0.103898 \mathrm{~F}-07\)
\(0.103898 \mathrm{~F}-07\) \(0.103898 \mathrm{E}-07\)
\(0.1038995-07\) \(0.123898 \mathrm{~F}-07\) \(0.1038935 \sim 07\) \(0.1733985-07\) \(0.1038938-07\) 0．103898E－07 \(0.1038985-07\) \(0.103898 \mathrm{~F}-07\) 0.10389 BE－07 0．103898F－07 \(0.103898 \mathrm{E}-07\) \(0.103998 \mathrm{EmO7}\)
\(0.103898 \mathrm{E}-07\) 0.103898 FW 07 \(0.1038985-07\) \(0.103898 \mathrm{~F}-97\) \(0.103898 \mathrm{~F}-07\) \(0.103898 \mathrm{~F}-07\) 0.1 ก389RF－の7 \(0.103898 \mathrm{E}-07\) \(0.103898 \mathrm{~F}-07\) \(0.103898 \mathrm{~F}-07\) \(0.103898 \mathrm{~F}-07\) 0.103898 F
\(0.103898 \mathrm{E}-07\)
\(0.103893 \mathrm{~F}-07\) 0．103879F－07 0.103898 － 07 \(0.1038985-07\) \(0.103893 \mathrm{~F}-07\) \(0.103998 \mathrm{E}=07\) \(0.103899 \mathrm{~F}-07\) 0.1038 คダー07 \(0.103899 \mathrm{E}-07\) \(0.103393 F-07\) 0.1 C3998F－07 \(0.103898=07\)
．103899F－07 ．103898F－07 \(0.103898 \mathrm{~F}-07\) ． \(103898 \mathrm{~F}-07\) －103898E－07 0.1038 ค85－07 \(0.103898 \mathrm{r}-07\) \(0.103398 \mathrm{~F}-07\) \(0.103898 \mathrm{E}-17\) \(0.103898 \mathrm{~F}-07\) \(0.103898 \mathrm{E}-07\) \(0.103898^{5}-07\)
> \(0.106132 E 01\) 0.106122 F 0 L 0.106122 F 129122F 01 0.100122 F 01 0.106122 F OL 0.106122501 \(0.106122^{\circ} 01\) \(0.10 ง 122 \mathrm{~F} 01\) 0.106122 E 01 \(0.106122 \% 01\) 0．100172F 91
0.175918 E 01 0.195918 F 01 0.195918 F OL 0.195919 F 01 0.19 ร918E 01 \(0.195918 F 01\) 0.195919501 \(0.19591 \rho \mathrm{FF} 01\) \(0.199918 \mathrm{~F} \mathrm{O1}\) 0． 125913 F O1 0.195913 F 01 0.19 9185 01
\(0.2693 B 8 E 01\) 0.76 ด78月F 01 0.269388 E 01 0.269398 OL 0.769338 F 01 \(0.269388 \% 01\) 0.269388501 0.269388 E 01 \(0.269383: 01\) \(0.269384 \mathrm{~F}^{01}\) 0.289388 E O1
\begin{tabular}{llll}
\(0.326531 F\) & 01 & \(0.367347 E\) & 01 \\
\(0.326531 F\) & 01 & \(0.367347 F\) & 01 \\
\(0.326531 F\) & 01 & \(0.367347 F\) & 01 \\
\(0.326531 F\) & 01 & 0.3673475 & 01 \\
\(0.326531 E\) & 01 & \(0.367347 F\) & 01 \\
0.336531 E & 01 & \(0.367347 E\) & 01 \\
\(0.326531 F\) & 01 & \(0.367347 F\) & 01 \\
\(0.326531 F\) & 01 & \(0.367347 F\) & 01 \\
\(0.326531 E\) & 01 & \(0.361347 F\) & 01 \\
\(0.326531 F\) & 01 & \(0.367347 F\) & 01 \\
\(0.326531 F\) & 01 & 0.3673475 & 01 \\
0.32 .65315 & 01 & \(0.361347 F\) & 01
\end{tabular} \(0.3: 6.531501\)

> 2． \(391837 E\) OL 0．391837F 01 1）．3913375 01 \(0.391837 \% 01\) 0.301837501 \(0.391837 E 01\) 0.391837 F 01 0.391837 F 01 ク． 391837501 0.391837501 0.391837801 \(0.3918: 7^{\circ} 01\)
0.40 OONOF 01 0.400 OnOF 0 L 0.400003501 0.400030 F 01 0.400000 O 0.4070 OOE OL 0.400000 E 01 0.400000 F OI \(0.40 n 009501\) 0.4070 ）0 01 \(0.40000 J F 01\) 0.400000 ol
the Distributinn of the noublat strengit dh Righthand side
\begin{tabular}{lllllllll}
\(-0.39589 \mathrm{~F}-02\) & \(-0.38849 \mathrm{E}-02\) & \(-0.37125 \mathrm{~F}-02\) & \(-0.34288 \mathrm{~F}-02\) & \(-0.3000 \mathrm{E}-02\) & \(-0.23927 \mathrm{E}-02\) & \(-0.15925 \mathrm{~F}-02\) \\
\(-0.68218 \mathrm{E}-02\) & \(-0.66766 \mathrm{E}-02\) & \(-0.63782 \mathrm{~F}-02\) & \(-0.58863 \mathrm{E}-02\) & \(-0.51416 \mathrm{E}-02\) & \(-0.40764 \mathrm{E}-02\) & \(-0.26464 \mathrm{E}-02\) \\
\(-0.97730 \mathrm{~F}-02\) & \(-0.95619 \mathrm{E}-02\) & \(-0.91271 \mathrm{E}-07\) & \(-0.84065 \mathrm{E}-02\) & \(-0.73069 \mathrm{E}-02\) & \(-0.57133 \mathrm{E}-02\) & \(-0.35749 \mathrm{E}-02\) \\
\(-0.12560 \mathrm{~F}-01\) & \(-0.12283 \mathrm{E}-01\) & \(-0.11710 \mathrm{E}-01\) & \(-0.10753 \mathrm{E}-01\) & \(-0.92783 \mathrm{E}-02\) & \(-0.71273 \mathrm{E}-02\) & \(-0.43533 \mathrm{~F}-02\) \\
\(-0.15061 \mathrm{E}-01\) & \(-0.14720 \mathrm{~F}-01\) & \(-0.14011 \mathrm{E}-01\) & \(-0.12818 \mathrm{E}-01\) & \(-0.10967 \mathrm{E}-01\) & \(-0.82876 \mathrm{E}-02\) & \(-0.49955 \mathrm{E}-02\) \\
\(-0.17136 \mathrm{E}-01\) & \(-0.16737 \mathrm{~F}-01\) & \(-0.15904 \mathrm{~F}-01\) & \(-0.14494 \mathrm{E}-01\) & \(-0.12303 \mathrm{E}-01\) & \(-0.91863 \mathrm{E}-02\) & \(-0.54987 \mathrm{E}-02\) \\
\(-0.18558 \mathrm{~F}-01\) & \(-0.18116 \mathrm{E}-01\) & \(-0.17189 \mathrm{E}-01\) & \(-0.15618 \mathrm{E}-01\) & \(-0.13183 \mathrm{E}-01\) & \(-0.97781 \mathrm{E}-02\) & \(-0.58347 \mathrm{E}-02\)
\end{tabular}
\begin{tabular}{ll}
\(-0.480406 \mathrm{~F}-02\) & \(-0.477409 \mathrm{~F}-07\) \\
\(-0.160829 \mathrm{E}-02\) & \(-0.167449 \mathrm{~F}-07\) \\
\(-0.853070 \mathrm{E}-03\) & \(-0.747636 \mathrm{C}-03\) \\
\(-0.532014 \mathrm{~F}-03\) & \(-0.524415 \mathrm{E}-03\) \\
\(-0.361373 \mathrm{E}-03\) & \(-0.353007 \mathrm{E}-03\) \\
\(-0.258579 \mathrm{~F}-03\) & \(-0.250580 \mathrm{~F}-03\) \\
\(-0.191573 \mathrm{E}-03\) & \(-0.184665 \mathrm{~F}-03\) \\
\(-0.145032 \mathrm{~F}-03\) & \(-0.139999 \mathrm{E}-03\) \\
\(-0.113191 \mathrm{E}-03\) & \(-0.108481 \mathrm{E}-03\) \\
\(-0.894483 \mathrm{E}-04\) & \(-0.857113 \mathrm{~F}-04\) \\
\(-0.717442 \mathrm{E}-04\) & \(-0.688077 \mathrm{~F}-04\)
\end{tabular}
\(-0.463118 F-02\) \(-0.156455 F-02\) \(-0.821968 E-03\) \(-0.495505 \mathrm{E}-03\) \(-0.325844 \mathrm{~F}-0.3\) \(-0.227359 \mathrm{~F}-03\) - ก． \(165822 \mathrm{~F}-03\) \(-0.125161 \mathrm{~F}-03\) \(-0.969310 \mathrm{E}-04\) \(-0.767920 \mathrm{~F}-04\) \(-0.6190675-04\)
\(-0.4542475-02\) \(-0.1520605-02\) \(-0.7484435-03\) －0．4322215－03 -0.2771 55F－03 \(-0.191435 r-03\) － \(191+35:-03\) \(-0.139445 \mathrm{E}-73\) \(-0.1057485-03\)
\(-0.824915=-04\) \(-0.6594645-04\) －0． 535891 F－04
\(-0.441279 \mathrm{E}-02\)
\(-0.13285 \mathrm{AF}-02\) -0.59707 ก下ーロ3 \(-0.336761 E-03\) \(-0.216465 F-03\) \(-0.151761=-03\) \(-0.1126075-03\) \(-0.868635 \mathrm{~F}-04\) －0．6389005－04 \(-0.559298 E-04\) \(-0.461758 \mathrm{~F}-04\)
－0．4 4 149E－02 \(-0.903000 \mathrm{~F}-03\) \(-0.4732985-03\) \(-0.2405645-03\) \(-0.1632725-03\) \(-0.119269 \mathrm{~F}-03\) \(-0.9132515-0\) \(-0.7235065-04\) \(-0.585701 \mathrm{E}-04\) －0．483691F－04 \(-0.405120 \mathrm{~F}=04\)
\(-0.3410415-02\) \(-0.440632 \mathrm{E}-03\) \(-0.2637975-93\) \(-0.1789858-03\) \(-0.130310 \mathrm{~F}-03\) \(-0.9948335-04\) \(-0.785630 \mathrm{~F}-04\) \(-0.635739 E-04\) \(-0.524171 E-04\) \(-0.4384775-04\) \(-0.371014=-04\)
\(0.3404515-02\) －0．275148F－03 －．21820LF－03 －）．153966「－03 \(-0.119560 \mathrm{E}-03\) \(-0.930089 E-04\) \(-0.743386^{\mathrm{c}}-04\) \(-0.6066985-04\) \(-0.503959 \mathrm{E}-04\) \(-0.423570 \mathrm{E}-04.1 \mathrm{I}\) \(-0.359719 \mathrm{~F}-04\)

FRINTOUT OF THE WAKF Y－WFLDCITY
\begin{tabular}{lll}
0.0 & 0.0 & 0.0 \\
0.0 & \(-0.716022 \mathrm{E}-04\) & \(-0.175023 F-03\) \\
0.0 & \(-0.624721 \mathrm{~F}-04\) & \(-0.146541 \mathrm{~F}-03\) \\
0.0 & \(-0.549076 \mathrm{~F}-04\) & \(-0.119714 \mathrm{~F}-03\) \\
0.0 & \(-0.463545 \mathrm{~F}-04\) & \(-0.939147 \mathrm{~F}-04\) \\
0.0 & \(-0.379370 \mathrm{~F}-04\) & \(-0.728592 \mathrm{~F}-04\) \\
0.0 & \(-0.305000 \mathrm{~F}-04\) & \(-0.563585 \mathrm{~F}-04\) \\
0.0 & \(-0.242877 \mathrm{~F}-04\) & \(-0.437568 \mathrm{~F}-04\) \\
0.0 & \(-0.191143 \mathrm{E}-04\) & \(-0.337328 \mathrm{E}-04\) \\
0.0 & \(-0.1519725-04\) & \(-0.266060 \mathrm{E}-04\) \\
0.0 & \(-0.121347 \mathrm{~F}-04\) & \(-0.211475 \mathrm{~F}-04\) \\
0.0 & 0.0 & 0.0
\end{tabular}
0.0
-0.35548 ） \(\mathrm{E}-03\) \(-0.2647795-03\) \(-0.190576 \mathrm{~F}-03\) \(-0.1373615-03\) －0．100491F－03 －0．748018F－04 －0．567539F－04 \(-0.4303505-04\) \(-1.337119 \mathrm{E}-04\) \(-0.2677665-04\) 0.0
\(: 0.0\)
－0．643119E－n3 \(-0.3896375-03\) \(-0.2451475-03\) \(-0.164443 F-03\) －0． \(11.56615-03\) \(-0.846302 \mathrm{E}-04\) \(-0.630960 E-04\) -0.471937 F－04 \(-0.370468 \mathrm{~F}-04\) \(-0.2958418-04\) 0.0

\section*{0.0}
\(-0.9323075-13\) －0．451965F－03 \(-0.2644935-03\) \(-0.172 .431 F-73\) －0． \(119803 \mathrm{~F}-03\) －0．870027E－04 \(-0.652968 \mathrm{~F}-04\) \(-0.479207 \mathrm{~F}=04\) \(-0.378746 E=194\) -0.305684 F－04 0.0
0.0
-0.994839 F－03 \(-0.4500735-03\) \(-0.261429 \mathrm{~F}-03\) \(-0.170783 F-03\) \(-1.118961 F-03\) -0.86635 OE－04 \(-0.656978 \mathrm{E}-04\) \(-0.475501 E-04\) \(-1.3793005-04\) \(-0.308213 E-04\) 0.0
0.0
\(-1.9611385-13\) \(-0.445730 \mathrm{E}-03\) \(-0.257859 \mathrm{~F}-03\) \(-0.169176^{-03}\) \(-0.113196 \mathrm{E}-03\) －0．965576F－04 \(-0.654446 \mathrm{~F}-04\) \(-0.475683=-04\) \(-0.380060 F-04\) －0．309056E－04 0.0

\section*{PRTNTDUT OF THE WAKE Z \(-V E L O C T Y Y\)}
\begin{tabular}{lll}
\(-0.374885 \mathrm{E}-01\) & \(-0.874885 \mathrm{E}-01\) & \(-0.874385 \mathrm{~F}-01\) \\
\(-0.432382 \mathrm{~F}-01\) & \(-0.440590 \mathrm{~F}-01\) & \(-0.462579 \mathrm{~F}-01\) \\
\(-0.353017 \mathrm{E}-01\) & \(-0.363320 \mathrm{~F}-01\) & \(-0.391258 \mathrm{E}-01\) \\
\(-0.312628 \mathrm{E}-01\) & \(-0.324179 \mathrm{~F}-01\) & \(-0.355478 \mathrm{E}-01\) \\
\(-0.288760 \mathrm{E}-01\) & \(-0.301112 \mathrm{E}-01\) & \(-0.334463 \mathrm{~F}-01\) \\
\(-0.273377 \mathrm{E}-01\) & \(-0.286259 \mathrm{~F}-01\) & \(-0.320919 \mathrm{E}-01\) \\
\(-0.262872 \mathrm{E}-01\) & \(-0.276112 \mathrm{~F}-01\) & \(-0.311631 \mathrm{~F}-01\) \\
\(-0.255392 \mathrm{~F}-01\) & \(-0.269866 \mathrm{~F}-01\) & \(-0.304969 \mathrm{~F}-01\) \\
\(-0.249849 \mathrm{E}-01\) & \(-0.263503 \mathrm{E}-01\) & \(-0.300006 \mathrm{E}-01\) \\
\(-0.245665 \mathrm{~F}-01\) & \(-0.259441 \mathrm{~F}-01\) & \(-0.296227 \mathrm{~F}-01\) \\
\(-0.242425 \mathrm{E}-01\) & \(-0.256287 \mathrm{~F}-01\) & \(-0.293274 \mathrm{~F}-01\) \\
0.0 & 0.0 & 0.0
\end{tabular}
\(-0.874885 \mathrm{~F}-01\)
\(-0.502368 \mathrm{E}-01\)
\(-0.440521 \mathrm{E}-01\)
\(-0.409581 \mathrm{E}-01\)
\(-0.391316 \mathrm{~F}-01\)
\(-0.379440 \mathrm{E}-01\)
\(-0.371205 \mathrm{E}-01\)
\(-0.365745 \mathrm{~F}-01\)
\(-0.360755 \mathrm{~F}-01\)
\(-0.357309 \mathrm{E}-01\)
\(-0.354595 \mathrm{E}-01\)
0.0
\(-0.5682305-01\) \(-0.517856 \mathrm{E}-01\) \(-0.492123 \mathrm{E}-01\) \(-0.476605 \mathrm{~F}-01\) \(-0.366324 \mathrm{E}-01\) －0．459096E－01． \(-0.453760 \mathrm{~F}-01\) \(-0.449708 F-01\) \(-0.446557 E-01\) \(-0.444059 \mathrm{~F}-01\) 0.0
\(-0.8748855-01\) \(-0.6052035-01\) \(-0.645059 \mathrm{~F}-01\) \(-0.623593 \mathrm{EF}-01\) \(-0.610232 \mathrm{~F}-01\) －0．6n1180Fi－01 \(-0.504692 \mathrm{E}-01\) \(-0.5996635-01\) \(-0.536147 \mathrm{~F}-01\) \(-0.583240 \mathrm{OF}-01\) \(-0.530906 \mathrm{E}-01\) 0.0
－0．874885E－01 \(-0.119565 \mathrm{~F}\) －0．116190F 00 －0．114302F 00 \(-0.117079500\) \(-0.112267 F 00\) \(-0.111655 F 00\) \(-0.111211 E 00\) \(-0.110361 E 00\) \(-0.110534500\) \(-0.110361500\) \(\cdot 0.0\)
\(-0.8748854-01\) 0.112517 F .00 0.115883 F 00 0.117496500 0.118648500 0.119454500 0.120042500 0.120495 F 00 0.120229500 0.121102 F 00 0.121322 F 00 0.0

AFTER 12 ITERATIONS，THE Y－CCRNEA cooroinates of the wake arf
\begin{tabular}{|c|c|c|c|c|}
\hline 0.0 & 0．265305E & 00 & 0．489706m & 00 \\
\hline 0.0 & \(0.2653066^{\circ}\) & 00 & 0.4897965 & 00 \\
\hline 0.0 & 0.2553045 & 00 & 0.4897915 & 00 \\
\hline 0.0 & 0． 3657995 & 00 & 0.489782 F & 00 \\
\hline 0.0 & 0．265 2967 & 00 & 0.459781 F & 00 \\
\hline 0.0 & 0.2652954 & 00 & ¢．489791F & 00 \\
\hline 0.0 & 0．265297E & 00 & 0.489012 F & 00 \\
\hline 0.0 & 0.765303 F & 00 & \(0.489845 E\) & 00 \\
\hline 0.0 & 0.265312 E & 00 & 0.489888 E & 00 \\
\hline 0.0 & 0．2653236 & 00 & \(0.48994{ }^{\text {a }}\) & 00 \\
\hline 0.0 & 0.2653385 & 00 & 0.490004 E & 00 \\
\hline 0.0 & 0.2653385 & 00 & 0.490004 F & 00 \\
\hline
\end{tabular}
 0.810326 F \(0.816316 \% 00\) 0．8163月OE OO \(0.816390 E\)
\(0.816621 E 00\) \(0.816621 E 00\)
\(0.317064 E 00\) \(\begin{array}{ll}0.317064 E & 00 \\ 0.817712 E & 00\end{array}\) 0.815561 E 00 0.819605 F 00 \(0.520839 E 00\) 0.822255 E 00 0.822255500

\(0.970592=00\) \(0.979592 \% 00\) \(0.779583=00\) \(0.789572=00\) \(0.999054=00\) \(0.998054 F 00\) 0.100617601 \(0.101480 E\) OL \(0.101475 E 01\) 0.101530 F 01 0.171786 E OL 0.101085 F 01 0.101085801
0.100000 E OL 0． 10000 OE OL 0.999995 E 00 0.993113 F 00 5． 985269 E 00 0.977684 F 00 0.971098 F の 0 \(0.965665 E 00\) 0.961232 F 00 0.957566 F 00 0.934468 E 00 0.954468500

AFTER 12 ITFAATIOKS THE \(Z \omega C\) CRNFR
COORDINATES DF THE WAKF APF
\begin{tabular}{|c|c|c|}
\hline \(0.103993 \mathrm{E}-07\) & \(0.103898 \mathrm{~F}-07\) & \(0.103898 \mathrm{E}-07\) \\
\hline －0．435773F－01 & －0．4357775－02 & －0．42573日F－01 \\
\hline －0．651601F－01 & －0．655704 \(5-01\) & －0．666694F－01 \\
\hline －0．8278365－01 & －0．9370705m01 & －0．861989F－01 \\
\hline －0．983933F－01 & －0．9989344－01 & －0．103939\％ 00 \\
\hline －0．112．814F 0 & －0．114927F 00 & －0．1206245 00 \\
\hline －0．126486\％ 00 & －0．120219\％ 00 & －0．136625F00 \\
\hline －0．179593F O0 &  & －0．152152F 00 \\
\hline －0．152344800 & －0．156419F 00 & －0．167333E 00 \\
\hline －0．164817E 00 & －0．169565E 00 & \(\cdots\)－ 0.192254 E 00 \\
\hline －0．177079E 00 & －0．182505F 00 & －0．196972F 00 \\
\hline －0．177079E 00 & －0．182505E 00 & －0．196972E 00 \\
\hline
\end{tabular}


\footnotetext{
0． 1 ก3898F－07 \(-0.4357785-01\)
}

0． \(10389 \mathrm{AF}-07\)
0.10389 AE－07
\(-0.635778 \mathrm{E}-01\)
\(0.10369 \mathrm{FF-07}\) \(-0.435779 \mathrm{Em}-01\) \(-0.102429500\) \(-0.114252 \mathrm{~F} 00\) －0．106455F 00 \(-0.9389765-01\) \(-0.5 \geqslant 02287-01\) \(-0.1597778-01\) －0．159772－01 0.2063 ต95－01 \(0.556518 E-01\)
\(0.675765 \mathrm{~F}-01\)
\(0.878766 \mathrm{E}-01\)

0． \(103898^{5}-07\) \(-0.43577 \mathrm{Br}-01\) O．11 \(144395-01\) 0.37351 7F－01 \(0.4967755-01\) \(0.514905 \mathrm{~F}-01 \mathrm{I}\) 0．462482E－0L \(0.3715738-01\) \(0.262983=02\) \(0.146913 \varepsilon-01\) 0． \(265461 \mathrm{E}-02\) \(0.265461 E-02\)```


[^0]:    *See for instance Ref. 15

