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NOMENCLATURE

constants appearing in equations (23) and (25)

integral appearing in cross section (see eq. (6))

constant associated with intermolecular potential (eq.

impact parameter

constant associated with intermolecular potential (eq.

coefficient of wave function (eq. (13))
coefficient associated with R® term (eq. (23))
molecular speed
rms molecule speed, M
transition amplitude

strength associated with intermolecular potential
kinetic energy or energy

distribution function

relative speed

Planck's constant divided by 2w

quantity given in equation (25)

matrix whose element is defined by equation (20)
Boltzmann constant

magnetic quantum number; also molecular weight
number of simulated molecules within the cell
number density

transition probability

modified transition probability

collision cross section

iii

(23))

(23))



R intermolecular distance

T temperature

t time

\' interaction potential

W eigenenergy of the rotational Hamiltonian

| o> eigenfunction of the rotational Hamiltonian

AT increment of collision time

8 index of power associated with point centers of repulsion model
(eq. (5)) or delta function (eq. (16))

A quantity defined in equation (25)

u reduced mass

v collision frequency

o effective collision diameter

T characteristic collision time based on initial translational
temperature, 1/(nw02c0)

X deflection angle defined in equation (1) or molecular orientation
angle (eq. (22))

b4 wave function

w difference eigenenergy

Subscripts:

C distance of closest approach of pair of molecules

i,j rotational states

max maximum value

0 initial

T rotational

t total

tr translational

o rotational state

iv



MONTE CARLO CALCULATIONS OF DIATOMIC MOLECULE GAS FLOWS
INCLUDING ROTATIONAL MODE EXCITATION
Kenneth K. Yoshikawa and Yukikazu Itikawa*

Ames Research Center

SUMMARY

The direct simulation Monte Carlo method is used to solve the Boltzmann
equation for flows of an internally exicted nonequilibrium gas, namely, of
rotationally excited homonuclear diatomic nitrogen. In this study, the semi-
classical transition probability model of Itikawa is investigated for its abil-
ity to simulate flow fields far from equilibrium. The behavior of diatomic
nitrogen is examined for several different nonequilibrium initial states that
are subjected to uniform mean fiow without boundary interactions.

A sample of 1000 model molecules was observed as the gas relaxed to a
steady state starting from three specified initial states. The initial states
considered are: (1) complete equilibrium, (2) nonequilibrium equipartition
(i.e., all rotational energy states are assigned the mean energy level that
obtains at equilibrium with a Boltzmann distribution at the translational
temperature), and (3) nonequipartition (i.e., the mean rotational energy is
different from the equilibrium mean value with respect to the translational
energy states). Since only uniform flow is considered, the effect of elastic
collisions is ignored in the Monte Carlo simulation.

In all cases investigated the present model satisfactorily simulated the
principal features of the relaxation effects in nonequilibrium flow of
diatomic molecules.

INTRODUCTION

Understanding the energy balance, as well as the energy transfer
mechanisms, within the internal excited states of a nonequilibrium rarefied
flowing gas, is important, in indeed, to a number of problem areas within the
broad categories of planetary reentry, combustion, and pollution. In this
paper, results are presented on translation-rotation relaxation. Furthermore,
these results are obtained by solving Boltzmann's equation by the Monte Carlo
direct simulation technique, a method that has received considerable recent
attention (refs. 1-11). A feature of this method is that it gives insight
into the effects of relaxation on the microscopic level during molecular

*Institute of Space and Aeronautical Science, University of Tokyo, Tokyo,
Japan; visiting professor at Stanford University; and guest worker at Ames
Research Center from August to October 1974.




collisions; in particular, the instantaneous distributions of internal states
can be continuously followed.

The method is described in detail elsewhere (refs. 1 and 6-9). Briefly,
the flow is computed by following in detail several thousand model molecules
that are allowed to interact with each other. The coordinates of each mole-
cule in phase space (including rotational state) are at all times known.

These coordinates change only during a collision and the modeling of these
intermolecular encounters is the essence of an accurate simulation. To
account for these encounters, a molecule and a near neighbor are each selected
at random as are also their impact parameter and deflection angles - all in a
manner representative of typical molecules undergoing encounters. They are
accepted for an interaction or rejected depending on a selected rule that
depends on cross section and, therefore, on intermolecular potential and the
relative velocity of the collision pair. Since the initial coordinates (rela-
tive velocity, impact parameter, and pair of rotational states) are known,
there remains only to find the final rotational state. This is found by com-
puting the distribution (transition probability) of all final states accessi-
ble from the known initial states. The final state is then determined by a
random selection from this distribution.

The procedure for handling the '"translational" interactions parallels
other investigations (refs. 1 and 6-9) treating monatomic gases. The proce-
dure described in this paper differs, however, from other investigations of
the treatment of internal state interactions. These other investigations fall
into four categories: (1) semi-empirical, (2) classical, (3) semi-classical,
and (4) quantum mechanical. The semi-empirical models, energy sink (ref. 11),
and rough spheres and loaded spheres (ref. 12), while adequate for steady
flows at or near equilibrium, lack sufficient physical detail to inspire
confidence in their use for highly nonequilibrium flows.

The classical models (refs. 13 and 14), although consistent with the
classical direct simulation Monte Carlo procedure used here, necessarily
include approximations to make the models sufficiently tractable to a study of
the type that is the subject of this report. Those approximations, although
yielding appropriate macroscopic behavior for a nonequilibrium gas, do not
adequately describe its microscopic behavior. For example, molecular
encounters can occur that violate energy and momentum conservation. One,
therefore, is at a loss as to how to treat the negative energies and momentum

that arise during a simulation.

Semiclassical models (refs. 10, 15, and 16) appear to be based on physi-
cally realistic criteria; however, the Pearson and Hansen model was too sim-
plified. Although this model would not seriously violate equilibrium concepts,
it was subject to slow drifts from equipartition (ref. 10) (i.e., the rota-
tional temperature would drift from equality with the translational tempera-
ture). Although, by heuristic arguments this model could be altered to
qualitatively satisfy proper interaction behavior, we have based our investi-
gation described here on the semiclassical model of Itikawa (ref. 16). This
model is founded on more rigorous concepts and, in addition, allows for treat-
ment of molecular collisions. The model also satisfies conservation of

probability.
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In this paper we treat translation-rotation interactions for a uniformly
flowing gas far removed from solid boundaries. In fact, we assume that the
rotational relaxation does not affect the flow; we are concerned only with
understanding the rotational relaxation behavior. Results are given based on
calculations starting from three different sets of initial conditions:

(1) complete equilibrium, (2) nonequilibrium equipartition (distribution of
energy is constant for all molecules - the energy value is based on the total
energy within the rotational states at complete equilibrium that is to be uni-
formly distributed to each molecule; that is, total energy in rotation is
physically correct but distributed incorrectly), and (3) nonequipartition
(same as (2) except partition of energy within rotational states is not based
on complete equilibrium). Throughout this paper the key mathematical rela-
tions essential to the Monte Carlo simulation are defined. Readers desiring a
more comprehensive treatment of the method are referred elsewhere (refs. 1 and
6-9).

PROCEDURE

The essential aspects of the procedure are described in the introduction.
The analytical relations peculiar to this investigation are described in the
text that follows.

Selection Rule Defining the Occurrence of an Encounter

The key to an accurate simulation is the procedure for selecting the
molecular pair to reach in a collision, determining whether a reaction occurs,
advancing the time parameter in a systematic manner until the next collision
occurs, and so on. Both the probability and time intervals are strongly
dependent on collision frequency which, in turn, is dependent on the uncertain
relation for intermolecular potential.

To aid this discussion, it is worthwhile to refer briefly to classical
relations and how those relations depend on, for example, an intermolecular
potential base and on a two-parameter repulsion between the point-center model.

In this case, where the intermolecular potential V(R) is spherically
symmetric, the deflection angle of an encounter, X(b,g), which depend on
impact parameter b and relative velocity of approach, g, and the &th moment
""transport' cross section, Q(Z , are given by

X(b,g) = m- 2_" (bdR/R2)/V/1 - (b/R)2 - V(R)/ (1/2)ug? (1)
Re

Q) (g) = 2nf°°(1 - cos? x)bdb (2)
o]



where R; and u  are the distance of closest approach and reduced mass,
respectively. (For example, see chap. 8, ref. 12.) The collision frequency
v is then given by

v = Qg (3)

From this relation, we can compute the collision time At of an encounter and
the elapsing time t. There results

s =21
v

AN

‘—f
[t}

oAt 4

where N 1is the number of particles in a simulated cell. The collision
frequency is not, however, accurately known in general.

In the case when the potential can be described by

d
V(R) = 28 (5)
the frequency is given by
2/8
vV = 7n fﬁi— A(z)(ﬁ)gm_u)/6 (6)
E‘U

If vpax and gpax are the maximum values possible in a cell then the dimen-
sionless ratios in the equation

(6-u)/
(vQ;x) ) (géix) o (72)

define a curve for specified values of &. 1If one accepts the above relation
as representative of molecular encounters, then any point in the region below
the curve represents a valid encounter, and points above the curve are invalid.
We can then use the relation as a "selection rule," defining whether an

encounter occurs Or not.

Rather than accept the above relations as completely valid, we also
investigated results using the linear relation

v g
=B+ (1 - B) (7b)
Vmax 8max



where B is an adjustable parameter that gives the best results in the case
B = 0.3. The reasons underlying this choice are described later.

Discussion of transition probabilities is given in the next section.
Given the fact that a rotational transition has occurred, however, trajecto-
ries are required by the method so that the particle coordinates in phase-
space can be recomputed.

Collision Dynamics

The relative velocity after the collision is obtained by knowing the
rotational energy and momentum before and after a collision. These relations
are classical relations given by

2
(g2 = g2 - H'(Eél - Epy + Eyp - Epp) (8)

and

[gb - (Mpy - Myp + My, - Mpp)/ul
bt = T (9)
g

where E,, and My, are rotational energy and momentum before a collision
and a prime denotes value after a collision, the transition probabilities as
well as calculation of a trajectory are based on ]g' - g|/g << 1 and

|b' - b|/b << 1; that is, the relative velocities and impact parameters are
only slightly perturbed as a result of the rotational transitions.

The deflection angle (eq. (1)), although also dependent on intermolecular
potential, can be adequately approximated to obtain trajectory results by the
infinite-rise, rigid-spherical molecule of diameter o. Such a relation
yields

X(b) = 2 cos~! (g) (10)

To properly account for the effect of inelastic collisions, we use the
following mean value:

[x(b) + x(b")]

X(b) = 3 (11)

The derivation of the relation for rotational transition probabilities is
briefly reviewed in the next section.

ROTATIONAL TRANSITION PROBABILITY

The details of the method and its applicability are discussed in
reference 16. Only major derivations and results will be presented here for
the purpose of direct application to the Monte Carlo simulation.



The interaction considered in the calculation of rotational transition
probability is described by the reaction:

N2 (31) + N2(3p) > Na(i1) + Na(ip) (12)

The calculation is based on a semi-classical theory. To make numerical calcu-
lations tractable, several approximations are made. Whether these approxima-
tions are valid is difficult to assess, except that they lead to the correct
qualitative behavior in the several applications considered. The total wave
function of the system is expanded in terms of a set of wave functions based
on a "rotational' Hamiltonian and given by:

1] =§Ca(t) |oc> exp(— %Wat) (13)

Here o specifies the rotational state of the molecules and W, and |a> are,
respectively, the eigenenergy and eigenfunction of that state. The time-
dependent coefficient Cq(t) is then determined by:

dc
ih —== =20 (o' [V]a) exp(ingrat)Cq (14)
a
where V is the interaction potential and wyi1y = (Wyr - Wy)/h. We separate

the Hamiltonian into isotropic (spherically symmetric) and nonisotropic parts.
Since our interest is in inelastic collisions, the elastic process due to the
isotropic part of the potential, V(O), is eliminated by introducing the
distorted-wave type coefficient defined by:

Dy (t) = Co(t)exp [% [y [R(t')]dt'} (15)

where R(t) is the distance separating gravity centers of the molecules at
time t. The coefficient D, satisfies the equation

dDa '

ik It ==§; [@x'lVla) - V(O)Sa,q]exp(iwa'at)Da

=2 <ot [V]a) exp(ingiyt)Dy, (16)
o
and the initial condition

(17)

1 for o = o4
Da(t = —oo) =

0 for o # %g

The second line in equation (16) defines the reduced matrix element (a'lVIa).



e |

The transition probability for the process a, -~ a 1is given by
2
Pog + a) = |Dy(t = )] (18)

In a rigorous treatment, the state o depends on the rotational
angular momenta, j, and the projections, m, of both molecules. For the
present problem, we are only interested in the probability averaged over the
m states. We use Rabitz method (ref. 17) to eliminate the m-dependence of
the interaction matrix (effective potential method). We solve equation (16)

with:
PR ceff). - >
<§1'32'|V 13,3,

This treatment is discussed in more detail in appendix A.

1

o = (§13,)s Do = Dy 5, and (a'|V]a)

We can further approximate the solution of equation (16) by introducing
the exponential approximation (refs. 18-20).

Dyt (=) <d'|exp k|ao>

[e o]

p IR U P (19)

n=o

where K 1is a matrix whose element is defined by
> __if” ceff .
<ai]K|aj> = - E'Jim dt oy |VE Iaj> exp (1wg;azt) (20)
The element of K" 1is evaluated by
<0L'|Rn|(lo> = E <0L'|I~(|0Ln_1><an_1|k|an_2>. . .<oc1|K|0Lo> (21)
alaz,...,an_l

For N, + N, we select the following interaction potential as the
relavant interaction (refs. 21-22),

v = v(O Ry + vA1I (R) [P, (cos X3) + Py(cos Xp)]
+v(2) (R)P, (cos x1)P; (cos Xx2) (22)

Here P, 1is the Legendre function of order two, R 1is the separation distance
between the two molecules as before, and xj 1is the angle between the




directions of the inter-molecular vector and the axis of ith molecule; the
two molecules are not necessarily in a single plane. v(2) induces a simultane-
ous rotational transition in both molecules in first order. Each term of the
potential is assumed to have the form

v (R) = ¢ exp(-oR) - Cg/R®
v (R) = AC exp(-aR) (23)
V(z)(R) = BC exp(-aR)

(See appendix A for further discussion.)

In the present calculation the trajectory R(t} is determined by solving
the classical equation of motion approximated by

1 @)Zz _c R, Cs _ EB2
> 1\t E-Ce RE T R (24)
where W is the reduced mass of the system, b 1s the impact parameter, Rg

is the distance of closest approach, and E 1is the kinetic energy of the
relative motion. This provides a semiclassical version of the modified wave
number approximation (ref. 23) with the assumption that the gradients of the
attractive part of the potential and the centrifugal force are much smaller
than those of the repulsive potential, in the region where most of the rota-
tional transition takes place. The solution of equation (24) can be obtained
analytically and the time integration in equation (20) can be performed
readily. We have, then

oilKlog) = -i(ejlay)I (25)
with
il ™
I = EXK'CoseCh (§K)
A = h(2uE)"1/2
~\1/2
R ol s
ajaj

and

. 2 C
E = E __b_2 +_6
Re Rc®



Two important properties of the transition probability should be
mentioned: the conservation of probabilities and detailed balancing. The
exponential approximation self-ensures the conservation of probabilities:

D PUd, >3, = 1 (26)
2 | I ]
iy'3,

To satisfy the detailed balancing relation, we choose, as the kinetic energy

E in the calculation of <aj|Veff|a;>, the mean value of the initial and
final channel energies (i.e., E = (1/2)(Ej + Ej)). The channel energy E; for
the ith channel is defined by

Ej = E¢ - Wo; = (Eg + Wo) - Wg,

; 27

where Egn 1is the initial relative kinetic energy and E¢ 1is the total energy
(which is conserved during the collision). This procedure results in a
symmetry relation

P(j,d, > 3,3, 3E0) = P(31'3," > J,i,3EQ") (28)
where

R = ' . .
EO + leJz EO + WJI'JZ'

In order to have a properly detailed balance, we modify our result by

)
B (2j1< + 1) (2j,< + 1)

P0,7, +-j1'j2') B (2j; + D(2j, + 1) P12 > 317351
for (3,3,) # (3,'3,"), and > (29)
P(yd, > 3130 =1 - .E :‘ BRLCIEPRE I P
j1'i2" (#3132) )
Here j;< designates the smaller of j; and j;'. These modified transition

probabilities, P, satisfy both the detailed balancing relation and the
conservation of probabilities.

The program listings for calculating rotational transition probability
are presented in appendix B.



RESULTS AND DISCUSSION

Calculations were performed using three different sets of initial condi-
tions. These initial conditions, described in the introduction, are: (1) com-
plete equilibrium, (2) nonequilibrium equipartition, and (3) non-equipartition.
The first case, equilibrium, was run to test whether the method remains in
equilibrium for long computational times; that is, to verify that the model
would not drift to improper internal distribution (ref. 10). The second case
tests whether, indeed, the model has an internal mechanism to drive itself to
equilibrium within a reasonable physical time scale. The third case provides
insight into relative internal time scales to reach (1) a quasi-Boltzmann
distribution characterized by a rotation temperature Trpo¢ # T and then
(2) the time scale for this quasi-distribution to decay to equilibrium
Tyot = T. The simulations, therefore, permit us to observe energy partition-
ing and the relaxation mechanisms, as well as relaxation rates. Because we
are here interested only in rotational transitions that lead to a final
equilibrium state, all elastic collisions have been ignored in order to
expedite the calculations.

Equilibrium Case and Collision Frequency

Many of the physical properties for one-dimensional calculations have
been based on the hyperbolic function trajectory sech(at) (ref. 15); some
others are based on the effective potential, and the classical equations of
motion are solved for this interaction potential including the step by step
energy conservation.

Collision frequency, however, cannot be evaluated analytically for these
potentials (see eqs. 1-3). It is also not feasible to use the Monte Carlo
method to compute and thereby describe intermolecular potentials numerically.
Nevertheless, we can semi-empirically determine a macroscopically (statisti-
cally) correct collision frequency by using the results of equation (7) for
the equilibrium case; that is, we determine the most probable index of power
§ in equation (7) by varying ¢ = 4 (Maxwellian molecules) to & = « (hard-
sphere molecules). The simulation should maintain equilibrium when the proper
value of & 1is chosen. The effect of the parameter & on rotational energy
is sensitive to the higher velocity collisions. We find that rotational tem-
perature increases as the parameter ¢ increases. Figure 1 shows the com-
puted rotational temperature history from an initial equilibrium state as the
value of & 1is varied. The proper value for which the model (point centers
of repulsion) fits close to the present model, is found to be approximately
C =~0.45, or &§ = 7.3, where C = (§ - 4)/8§. Also presented in the same fig-
ure are the results of the temperature variation obtained by using the linear
selection formula of equation (7b) where the parameter B was varied from 0
to 0.5. The best value of B that satisfies this selection rule seems to be
B = 0.3. Temperature histories computed using this value (C = 0.45) are shown

next.

In figures 2 through 7, translational and rotational temperatures for
different initial conditions are plotted as functions of nondimensional
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collision time. These temperatures should asymptotically approach the
equilibrium values shown by the dotted line at the end of the time scale.

Also shown in figure 2 for several time intervals, t/t = 0, 5, 10, and 20, are
the translational and rotational distribution functions. The translational
distribution function f¢y is plotted as a function of molecular speed ratio
c/cy, where co is the rms speed defined by Y3kT/M. The rotational distribu-
tion function fy is presented in terms of the rotational energy level j

for the same collision times corresponding to the translational distribution
functions. Mean collision time <t 1is calculated based on the initial trans-
lational temperature, kept always at room temperature T¢r = 320° K. Note
that initial equilibrium distribution functions for rotational and transla-
tional energies are selected at random from the Rayleigh and Maxwellian dis-
tributions, respectively, (their distributions, therefore, do not represent
analytical functions), and all subsequent distributions evolve from the
present simulation using the Itikawa model.

Throughout the testing, all distributions and temperatures represented
equally valid equilibrium states. Figures 3a and 3b show the comparison of
the Monte Carlo solutions with theoretical (equilibrium) functions for the non-
dimensional time at t/t= 15 and 20. Since the Monte Carlo solution - the
so called Klimontovich function (ref. 24) - does not, in general, present a
smooth function, a mean distribution function (Boltzmann solution), time
averaged over the last five collision times (from t/t = 15 to 20), is shown
in figure 3c. This mean value can be compared with the theoretical value when
the gas approaches equilibrium. The agreement with theory seems to be very
good.

Nonequilibrium Case

The result of the equipartition, nonequilibrium test is shown in
figure 4. The gas initially starts in the equipartition state with the rota-
tional energy of all molecules assigned the mean equilibrium energy correspond-
ing to the level of j = 10, and where the translational energy is specified
as in the previous case. Several energy distribution functions are shown at
nondimensional times of 0, 1, 2, 3, 5, 20, and 35. The simulation again seems
very good. The distribution functions for t/t = 30 and 35, and the mean dis-
tribution functions averaged over these time intervals, are compared with
theoretical calculations in figure 5; once again the agreement is good.
Notice that only even-numbered rotational energy levels are occupied. This
follows since we have considered a homonuclear model to be initially in an
even-numbered level, and we have not allowed changes in nuclear spin.

The last test investigated is for the nonequipartition and nonequilibrium
case. All gases initially start with the rotational energy level of j = 12
(corresponding to a rotational temperature of Tr = 455° K) and where the
translational energy is selected at random from the Maxwellian distribution
corresponding to a translational temperature of 320° K. 1In figure 6, both the
rotational and translational temperatures approach an equilibrium state,
corresponding to a temperature of 374° K. This occurs in an exponential
manner. Transition distribution functions are shown at t/t =0, 1, 2, 3, 5,
and 20 in the same figure. The present model also appears to perform very

11



well in this case. This is the case (initial rotational temperature higher

than translational temperature) for which the modified Pearson-Hansen model

failed to show satisfactory performance when extended to higher temperatures
(ref. 10).

The distribution functions for t/t = 15 and 20, and the mean distribu-
tion functions of rotational and translational energy, averaged over t/T = 15
to 20, are shown in figure 7. Comparison with theoretical distributions is

very satisfactory.

Notice that in both figures 4 and 6 the gas relaxes asymptotically to
equilibrium. The approach is rapid initially and quite slow finally.

Of all the models tested to date, the semiclassical model of Itikawa
appears most satisfactory. However, this model with 1000 molecules consumes
about 100 sec of the CDC 7600 machine computing time to travel one character-
istic collision time. The model, therefore, may still need further simplifi-
cation to permit its practical use in the more complex molecular simulations,
such as, for example, shock wave structure and gas-surface interactions.

CONCLUSION

The Itikawa model when used with the appropriate representations for
collision frequency provides an adequate physical description of a homonuclear
diatomic gas in rotational relaxation. This model appears to hold the most
immediate promise for further application to more complex problems. However,
because of the computational time required to do rigorous calculations at each
Monte Carlo collision event, subsequent investigations will require simplifi-
cation of the algorithm. Nevertheless, the present model will permit one to
examine the principal features of rotational effects in nonequilibrium flow of
diatomic molecules, such as shock wave structure.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, July 1975
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APPENDIX A
INTERMOLECULAR POTENTIAL AND INTERACTION MATRIX ELEMENT

Interaction Potential

Each term of the interaction potential (eq. (23)) is assumed to be
defined by the representations given in the text. The first term, V(O), can
be determined fairly reliably from either the result of molecular beam experi-
ments (ref. 21) or the analysis of transport coeff1c1ents (ref. o22) These
parameters are C = 3. 44x103 ev, Cg = 73.4 eV -6 and o = 3.16 A-1. Unfortu-
nately, we have little 1nformat10n about the anisotropy of the 1nteract10n
potential for N, + N,. Therefore, we adopt the form given by v(1) and v(2)
in equation (23), similarly as in reference 15, and regard A and B as adjust-
able parameters. The values employed in this report are A = B = 0.2.

Interaction Matrix
Applying the effective potential method (ref. 17) to the interaction

potential given by equations (22) and (23), we can calculate the matrix
element as follows:

<j1'j2' I{/effljlj2>

(Gytd,t Ivett] 55, - v )(R)‘Sn 5185232

(31'32"13,3,)C exp[-aR(t)] (A1)

Gp'3,'id,) = [(2i, + 1) (@, + 1) (25, + 1) (25," + DIV (-l
X—A—- _ jo . -172 {4 j 2 o
|/§ [( D725, + 1) ( 6 o1 0)532 J2
. _ J 1 3 2
entei e n™ (5 () ey
B (J1' 31 2\(i2' J2 1/2 l
* E( 0 0 o)( 0 0 )m Oz; 4(2’“”1) o 0 o)
(A2)

J) is the 3-j symbol and L = max (j;+1J,, J;'*+3,")-
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APPENDIX B

PROGRAM LISTING FOR ROTATIONAL TRANSITION PROBABILITY CALCULATION

=DECK MAIN
PROGRAM MAIN(INPUT,QUTPUT,TAPES=TNPUT,TAPELG=0UTPUT)
CROSS SECTION CALCULATION
COMMON ZLLMIT/ LLIMINSLLIMAX,LLZMIN,LL2MAX
DIMENSION PWAVE(20,20),STIGMA{20,20) ,LABCSA(16)
DIMENSION SIG(20)
COMMON /CM1/ PWAVEEKIN,L1GC,L20,BIMP,NMAX s NPRINT,LLPAR,,LZPAR
COMMON /CM2/ JEL1,JEL2,LABCSA,LLMAX
COMMON /CM3/ VAZB,IPRTL,IPRTZ2,IPRT3,IPRT4
COMMDN /CMVR1/ VC,VALPHA,VC6+BBIMP,EEEE
COMMON /CV1/ ABCC(40+40,9)
JMAX= 20
PAI2= 6.283185
C**x INITIAL CLFAR OF ABCC, SHOULD BY MADE FOR EACH VA,VB
D0 5009 1=1,40
DO S009 J=1,40
DO 5009 K=1,9
ABCC(IyJsK)= 0.0
5009 CUONTINUE
5010 CUONTINUE
DD 5016 I=1,JMAX
DO 5016 J=1ly,JMAX
SIGMA(I,J4)=0.0
PWAVE(I,J)= 0.0
5016 CONTINUE
Cxx TNPUT %% IMPACT PARAMETER (IN ANGSTR(GM)
O CALCULATION FROM *BIMPI* YO 'BIMPF!? WITH STEP 'OBiMP?
READ(5,4) BIMPI,DBIMP,BIMPF
4 FORMAT(3F10.0)
IF{BIMPI.LT.0.0) GO TO 5999
Cx% JNPUT %% (CROSS SECTION CALCULATION (ICRDS=1) 0OR NOT (0)
READ(5,3) ICROS
C*%x INPUT %% RELATIVE KINETIC ENERGY (IN EV)
READ(5451) EKIN
1 FORMAT(F10.0)
Ck%x TNPUT *%=x INITIAL ROTATIONAL STATES
READ(S5,2) Li0,L20
2 FORMAT(215)

14



C e

S}

g

INPUT %% MAX NO. OF TERMS IN EXP
READ(543) NMAX
3 FORMAT(IS5)
INPUT =*=x INDEX FOR PRINT QOUT
READ(546) IPRTL,IPRTZ,IPRT3,IPRTS
& FORMAT(415)
INPUT skx POTENTIAL PARAMETERS FUR SPHERIC
VIR)= VCHEXP(-VALPHA%R)-VC&/R&*¥E
V IN EVy R IN ANGSTROM
READ(597) VCsVALPHA,LVCS
7 FNRMAT(3F10.0)

INPUT %% PUTENTIAL PARAMETERS FUP NON-SPHERICAL PART

READ(545) VA,VB
5 FORMAT(2F5.0)
INPUT %% WHEN IPRTSG=0,PRINT PARTIAL SUM
READ(Dy3) IPRTSG
TNPUT %% LIMITATION 0OF RANGE OF LlisLZ
Ll= LIMIN=-LLIMAX, L2=LZ2ZMIN-L2MAX
READ(548) LIMIN,LIMAX,L 2MINyLZMAX

3 FORMAT(415)
LLIMIN= L1IMIN+1
LLIMAX= L LMAX+]
LL2MIN= LZ2MIN+1
LLeMAX= LZMAX+1
JIMIN= (LLIMIN+1)/Z
JIMAX= {(LLLIMAX+1)/2
J2MIN= (LL2MINM+1) /2
J2MAX= (LLZ2MAX+]1)/2
WRITE(6,95900)
1 BIMPI,DRIMP,BIMPF,
2 ICROS
2 FKIN,
s LLO,L20
5 NMA Xy
& IPRT Ly IPRTZ2,IPRT3,1PRT4A,
7 VO sy VALPHAZVC 6,
9 VA V3,
2 1PRTSG

<O

0 FORMAT(LHL/S5X,108BINPUT DATA/

AL PART

OVER RBRIMWP

11 SXe LEHBIMPY ,OBIMP ,8BIMPF/,3F10.2/

2 5Xy 6HICROS/ 15/

2 5Ky HHEKIM/F10.6/

4 SXe 8HLLO:L20/4+215/

3 5Xye SHNMAX/ 15/

5] 5X924HIPRTLyIPRTZLZIPRT3,IPRT4/ 4415/

15



7
8
9

5Xe14HVC,VALPHA,VC6/4y3F10.4/
5Xs 6HVA B/ ,2F5.2/
5Xy THIPRTSG/,157/7)

WRITE(645902) LIMIN, LIMAX, L2MIN, L2MAX
5902 FORMAT(1HO/5X,4H L1=14,3H -

Cookkddoksk NPRINT

5100

5111

5112

5113

5120

5200

NPRINT= NMAX-3

BIMP= BIMPI

IF{ICROS.EQ.0) IPRT4=0
IF(ICRUS.EQ.0) GO TO 5500

H3= DBIMP/3.0*PAl2

NSUM= 0

MPRINT=0

H3B= H3*BIMP

CALL PROB

CONTINUE

DO 5111 I=J1MIN,J1IMAX

D0 5111 J=J2MIN,J2MAX

SIGMA(I,J)= SIGMA(1,J)+H3B*PWAVE(],J)
CONTINUE

BIMP=BIMP+DBI MP

CALL PROB

H4B=4,0%H3%¥BIMP

DO 5112 T=JIMIN,J1IMAX

DO 5112 J=J2MIN,J2ZMAX
SIGMA(I4J)=STGMA(I,J)+HaB*PWAVI(14J)
CONTINUE

BIMP= BIMP+DBIMP

CALL PROB

H3B=H3*B1IMP

DO 5113 I=J1MIN,JIMAX

DO 5113 J=J2MIN,J2MAX

SIGMA{I,Jd)= SIGMA(I4+J) +H3IB*PWAVE(], J)
CONTINUE

IF{IPRTSG.EQ.1) GO TO 5120

GO TO0 5300

CONTINUE

IF(BIMP. GT.BIMPF-0.5*%DBIMP) GO TO 5200
NSUM= NSUM+2

GO 70 5100

CONTINUE

MPRINT =1

IFLIPRTSG «EQ.0) GO TO 5400

5300 CONTINUE
Cfeddmetokgopokxkk ¥k SEARCH FOR MAX OF SIGMA

’I493X’4H L2=I4,3H -

114/)



SMAX=0.0
DO 5305 I=JIMIN,JIMAX
DO 5305 J=J2MIN,J2MAX
IF(SIGMA(I,J) .GT.SMAX) SMAX= SIGMA(I,J)
5305 CONTINUE
sk e Fokofe e dkokkxkx PRINT
L1PARO= MOD{(L10,2)+1
L2PARO= MOD(L204,2)+1
WRITE(6,5901) BIMPI,BIMP,NSUM,L10,L20,EKIN
5901 FORMAT(1H1/5X,23HCROSS SECTION FOR BIMP=F6.293H - ,F6.2y7H (NSUM=
11291H) 93X SH(LLO0=12y LX94HL 20=1291H) y3XsSHEKIN=F13.5//3X42HL2)
DO 5311 JINV=J2Z2MIN, J2MAX
J= J2MIN+J2MAX-JINYV
L2= 2%J-3+L2PARO
C3oktoktkk ik  NORMALIZATION TO SMAX
D0 5310 I=JIMIN,JIMAX
SIG(Il= SIGMA(I,Ji/SMAX
5310 CCNTINUE
JF= J1IMIN+15
IF(JF.GCTJJIMAX) JF= J1IMAX
WRITE(0+5911) L24{SIG(I),1=J1MIN,JF)
5911 FORMAT{1HOy3Xy12s16(1PF6.3,1X))
5311 CCNTINUE
WRITE(6,5912) (LABCSA(1),I=1,16)
5912 FORMAT(1HO»4Xy16(3X,1242X)43H L1)
SMAX= O« l1*%SMAX
WRITE(645919) SMAX
591° FURMAT{1HO/3Xs15HNORMALIZ FACTOR»2X 5 13.592Xy 11HANGSTROM* % 2)
SEL= -SIGMA(JELL,JEL2)
Cokkdkdiekkk E| ASTIC
WRITE(6,5918) SEL
5918 FORMAT{1HU 4X,29HTOTAL INELASTIC CROSS STCTIJION, 2X4E13.5)
IF(MPRINT.EQ.1) GO TO 5400
GO TO 5120
5400 CCONTINUE
CoHxxdkrkkkx  ROTATIONAL CONSTANT IN EV
BROT= D.2512E-3
S= 0.0
SWiW= 0.0
W0= BROT* FLOAT(L1O0*{L10+1)+L20*(L20+1))
DO 5415 I=J1MIN,JLIMAX
LI= 2%1-3+L1PARQ
DO 5414 J=J2MIN,J2MAX
IF(IeFUaJELL.ANDL.J.EQaJEL2) GO TO 5414
L2= 2%J-3+L2PAROD
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5414
541%

5916

5917

5500

5501

5999

*NECK

Wl= BROT* FLOAT(LI*(L1+1)+L2%(L2+1))
WiW= (WO-W1)%%2

Swh= SWHW+SIGMA(TI,J)%*WNW

S=S+SIGMA(I,4J)

CONTINUE

CCONTINUE

WRITE(6,5916) S

FORMAT( 1HO»4X 92SHTOTAL INELASTIC CRCSS SECTION,2X,E13.5)
WRITE(695917) SWW
FORMAT{ 1HO/4X 92 TH¥¥Xx%%x  SUM OF PCORCT  *% %%k, 3X,4HSAW=F13.5/)
GG TO 5010

CONTINUE

IF(BIMP.LT.0.0) GO TO 5010

CALL PROSB

IF(BIMP e GEBIMPF-0,5*0BIMP)GO TO 5010
CONTINUE

BIMP=BIMF +03IMP

GC TO 5500

CONTINUE

STGOP

END

PRGB
SUBROUTINE PROB

Cedekdrkkxx  MATN PROGRAM FOR THE CALC. OF TRANS. PROB,

COMMON ZLLMIT/ LULMINSLLIMAX,LL2MIN,LL2MAX
DIMENSION PODD{20+20),PEVN(20,20)4PWAVFE(20,20)
DIMFNSTION AKSUMO(20,420) sAKSUML(20,20)
DIMENSION LABCSA(16)

CCMMON /MVL/ AMATRX(20+920,9)

COMMON /MV2/ VBByVAA,,BROT,ETOT,BRC,VVALP
COMMON /CMVRL/ VCyVALPHA,VC6,BIMP,EECE

CGMMON /MV3/ NCOUNT

COMMON /CML/ PWAVELEKINsL10,L20,BBBEB,NMAX NPRINT,LLPAR,L2PAR
COMMON /CM2/ JELL,JEL2,LABCSA,LLMAX

COMMON /CM3/ VAWBIPRTLsIPRT2,IPRT3,IPRTS
ICLOCK=0

BIMP=8BB8B

JMAX=20

LMAX= 2*JMAX~2

Cukkrrxixk REDUCED MASS IN AMU

RMASS= 14.02

Crofikinddkk  ROTATIONAL CONSTANT IN fFV

18
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VVALP= 0.045723%VALPHA/ SQRT(RMASS)
VAA= 0,4472136*%VA
VBB= 0.2%VB*0.6298283

ETOT= EKIN+ FLOAT(LL1O*{L10+1)+L20%(L20+1) )*BROT

EB= ETOT/BROT

€EB8l= SQRT(EB)

LLMAX= INT(EBl)+1
IF(IPRTl.EQ.1) GO TO 11

WRITE(69901) BIMPyLLOyL20, EKINSJETOT JLLMAX,EB,VC,VALPHA,V( 6,VA,VB

901 FORMAT(1H1 +5X ySHBIMP=F6.2,5HANGST 35X 6 H(

L10=12,45H L20=1242H ),
1 SXsSHEKIN=F13.593HEV $3X,5HETOT=E13.5,3Xy6HLLMAX=12,

2 3X93HEB=FB8.2/6X93HVC=FLl0.292Xy THVALPHASF 843y 2X¢4HVCO=FTa 242Xy

3 3HVASFT.2+2X93HVB=FT.2/)
11 CONTINUE
IF(LLMAX . GTJLMAX) LLMAX=LMAX
IF{LLIMAX.GT.LLMAX) LLIMAX= LLMAX
IF(LLZMAX o GT oLLMAX) LLZ2MAX= LLMAX
DU 18 I=19JMEX
DO 18 J=1,JMAX
PEVN(I,Jdi= V.0
PODDI{I,J)= 0.0
PWAVE(T yJ)= 0.0
AKSUMO(1,41)=0.0
AKSUMI(1,J)= 0.0
DO 16 M=1,9
AMATRX(I4Jd9M)= C.0
156 CCONTINUE
18 CONTINUE
LL10= L1O+1
LL20= L20+1
JFLL1= (LL1O0O+1)/2
JELZ=(LL20+1)/2
L1PAR= MOD(L10,2)+1
LZ2PAR= MOD(LZ20,2)+1
IF(LIPAR.LT.LLIMIN) L1PAR= LLIMIN
IF(L2PARLTLLL2MIN) L2PAR= LLZMIN
CLO= FLOAT((2*%L10+1)*(2%L20+1}))

PEO= 0.0
Chhmatkkxk N= 1

N=1

LLlI= LL1O

LL2l= LLZ2O

NCCUNT= O

DO 59 K=1,9
CALL VMATRX(LLLILLL2I,K)

e
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59 CONTINUE
LLIFMN= MAXO(LL 10-2,L1PAR)
LL1FMX= MINO(LL10+2,LL1IMAX)
LL2FMN= MAXO{LL20-2,L2PAR)
LL2FMX= MINO(LL20+2,LL2MAX)
K= 1
JJIl= (LL1I+1)/2
JJiz= (LL2I+1)/2
DO 64 I=1,3
LL2F= LL20-4+2%]
DO 63 J=1,3
LL1F= LL10-4+2%J
TF(LL2FalTalaORJLLIFLLTL1) GO TO 62
JJFl= {(LL1F+1})/2
JJF2= (LL2F+1}/2
AKSUMO(JJFLyJdJF2) = AMATRX(JJILl1J4J12,4K)
62 K=K+1
£3 CONTINUE
¢4 CUONTINUE
TCTPW= 0.0
TCTPC= 0.0
DO 74 LL1F=LLIFMN,LL1FMX,2
DO 73 LL2F=LL2FMNyLL2FMX,2
JJFl= (LL1F+1)}/2
JJF2= (LL2F+1}/2
POCD(JJIFLsJIF2)= AKSUMOUJJIFL,JdF2)
PEVN(JJUF1,yJJF2)= 0.0
IF(LLLIFeFQelL 1T tANDLL2F.EQ.LL2T) PEVN(JUFL,JJIF2)=1.0
PWAVE(JJIFL9JJIF2)= PODDI(JJFLyJUF2)%%k2%4 ,0+PEVNIJIFLyJUF2)%%2
P=PWAVE(JJF1lyJJF2)
LOL=LL1F-1
LOZ2=LL2F -1
IF(IPRT2.EQ.1 )} GO TQ 72
PCORCT= P
WRITE(6+902) NsLO1,L02,P,PCORCT,PODD{JJIFL yJJIF2)yAKSUMOLJIFLyJdJdF2)
902 FORMAT(1HOs2Xs2HN=12,33Xy5H L1F=1242X,y5H L2F=I12+5Xs6HPWAVF=E13 .5,
1 3XyTHPCORCT=E13e543Xy5HPNDD=E13.5y 5Xy6HAKSUM=E13.5)
72 CONTINUE
TOTPW=TOTPW+P
73 CONTINUE
74 CONTINUE
IF(IPRT1.EQ.1) GO TO 75
WRITE(69904) Ny TOTPW, ICLOCK,MNCOUNT ,TOTP(C
75 CONTINUE
IF(NMAX.EQ.l) GO TO 300
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N= 2

C ekt ke kk%k 100

100

114

119

125

130

134

CCNTINUE

NCCUNT= 0O

N2= 2%N-2

LLZIMN=MAXO(LL20-N2,L2PAR}

LL2IMX= LL20+N2

IF(LLZIMXLGELLLMAX) LLZ2IMX= LLMAX

DO 149 LL2I=LL2IMN,LLZIMX,2

JJlz= (LL2I+1)/2

EB2= SQRT(EB- FLOAT(LLZ2I-1)%%2)

LLMAXL1= INT(EB2)+1

LLII=LL10+N2

JJull={LL1I+1)/2

IF{LLMAX1lGELLLIMAX) LULMAXL1= LLIMAX

IF(LLLIT .GTJLLMAXYL) GO TO 130

DC 114 K=5'593

CALL VMATRX(LLLIT,LL2T,K)

CONTINUE

DC 119 K=3,9,3

CALL VMATRX({LLLIT,LL2T1,K)

CCNTINUE

IF(LL1I-2.LT.1) GG TO 125
AMATRX{JJI19Jd12948) = AMATRX({JJIIL-1 4d412,06)
K=4

TFRF(LL2] e FQalL20-N2ORaLLZ2T EQLLZ204#N2) CALL VMATRX(LLLII,LLZ2I,K)
AMATRX(JJT1edJdIl2,7)= AMATRX(JUT1l=-1,4Jdd12+}1,43)
K= 7

IF(LL2] e EQabllL204N2 -2 sORLLL2TLEQLLL20+N2) CALL VMATRX(LLLI,LLZIyK)
[FiLL2I-2.LT.1) GO TO 130
AMATRX(JJT Ly dJdIgyl)= AMATRX(JIT1-1,4dU12-1,9)
K= 1

JF(LLZ] e FQelLL20-N2+ 2. URQLL 2T dEQab Lz O-ti2) CALL VMATRX(LLLIsLLZIJK)
CONTINUE

IF(LLZ2I~-2.LT.1) GO TN 130
AMATRXUJJI Ly JdJdIe2) = AMATRX(JJTLsJJI2-1,48)
K= 2

IF(LL2IEQ.LL20~N2) CALL VMATRX(LLLII,LLZ2I,K)
CONTINUE

LL1Y=LL10O-N2Z

JJIl= {(LL1I+1)/2

TF(LLLITI LT LL1IPAR) GO TO 149

DO 134 K=51813

CALL VMATRX(LLLIIJLLZ2T,4K)

CONTINUE
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DO 139 K=11793
CALL VMATRX(LLL1TI,LL2I,4K)
139 CONTINUE
AMATRX(JJ11,3d1296)= AMATRX(JJILl+1,4dd12,4)
K= 6
TF(LL2T o EGeLL20-N2+sORLL2TIJEQeLL20+N2) CALL VMATRX(LLLII,LL2I,K)
AMATRX(JJIIL4JJ12,9)= AMATRX{(JJIL+]1,JJI2+1,1)
K=6
TJFILL2T o EQLL20#4N2-20RLL 2T &FQeLL20+N2) CALL VMATRX(LLLISLL2I,4K)
IF(LL21-2.LT.1) GO TO 149
AMATRX({JJILydJI2,42)= AMATRX(JJIL,JdJ12-1,38)
K= 2
IF(LL2T ¢ FQeLL20-N2} CALL VMATRX{(LLLI,LLZ2I K]
AMATRX(JJT 149JJI2,3)= AMATRX(JJTL+1,4d412-1,7)
K= 3
TF{LL2T e EQaLL20-N24+2.,0RLL2T.7Q.LL20-N2) CALL VMATRX{LLILI LL2T,K)
149 CONTINUE
O %5 e ook ook ok 150
LLLIMN= MAXU{LL10-N2+2,L1PAR)
LL1IMX= LLL1O#N2-2
TF(LLLIIMX G LLLIMAX) LLLIIMX= LL1IMAX
DC 199 LLII=LLLITIMN,LLLIMX,2
JJIl= (LLLI+L)/2
£B82= SQRT(EB~ FLOAT(LLLI-1)x%x*2)
LLMAX1=INT(EB2}+1
LL2I= LL 20+N2
JJi2= (LL2I+1)/2
TF(LLMAX1.GELLL2MAX) LLMAX1= LLZ2MAX
IF(LL2I .GT .LLMAXLI) GO TO 180
DO 164 K=5,9
TF{LLL] e EQaLL1I0O+NZ2-2.ANDeKoFQe6) GO TO 163
CALL VMATRX{LLL1I,LL2I,K)
GO TO 164
163 CONTINUE
AMATRX{JJILydJ1246)= AMATRXUJJIL+1,4JU12,4)
1€4 CONTINUE
IF{LL2I-2.LTa1) GO TO 175
AMATRX(JJUIL,3J12,2)= AMATRX(JUIl,4d412-1,8)
AMATRX{JJI1sdJ12,3)= AMATRX(JJIL+],J412-1,7)
IF(LLLI-2.LT.1} GO 7O 180
AMATRX{JJIILsJJ12y1)= AMATRX(JJIL1-1,0J12-1.9)
175 CONTINUE
IF(LLLI-2.LT41) GO TO 180
AMATRX({JJILsJddI2940= AMATRX{JJIL1-1,JJ1246)

180 CONTINUFE
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i83

184

189

LL2I=LL20-N2

JJdI2= (LL2I+1)/2

IF(LL2I LT LL2PAR)} GO TO 199

DO 184 K=5,6
IF(LLLIIEQ.LLLIO+N2-2,AND.K.EQ.6) GO TO 183
CALL VMATRX(LLL1I,LL2I,K)

GO TO 184

CONTINUE

AMATRX(JJILlyJJ12,6)= AMATRX{JJTIL+1yJd12,44)
CONTINUE

DO 189 K=1,3

CALL VMATRX{LLL1I+LL2TI,4K)

CONTINUE

AMATRX(JJTI1,dJ12,8)= AMATRX({JJILyJJI12+1,2)

AMATRX{JJIL9Jd1299)= AMATRX(JJIL+1,JJ12+1,1)

ITF(LLLII-2.LTe1l) GO TQ 199
AMATRX{JJITL1ydJI2y4)= AMATRX(JJITL-1,4d12,6)

AMATRX(GJJIL,JJIZ2,7)= AMATRX{JJI1=-1,J412+1,3)

Crdkpnkkikk 199

199

200

201

202

205

206

CONTINUE

LLLIFMX=LL10+2%*N

LL2FMX= LL20+2%N

LLIFMN= LL10=-2%N
TF(LLLFMN.LT.L1PAR) GO TO 201
LL11=LL1FMN+2

CONTINUE

LL2FMN=LL20-2*N
IF(LL2FMN.LTLLZPAR) GO TO 202
Li22= LL2FMN+2

60 YO 205

CONTINUE

LL1IFMN= L1PAR

LL1l= L1IPAR

GO TO 200

CONT INUE

LL2FMN=L2PAR

LL22= L2PAR

CONTINUE

LL22F= LL2FMX-2
TF(LL2FMXLE.LLZMAX) GO TO 206
LL2FMX= LL2Z2MAX

LL22F= LL2MAX

CONT INUE

DC 249 L2=LL22,LL22F,2

LL11F= LL1FMX-2
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218
219

EB2= SQRT{EB- FLOAT{L2-1)*%%*2)
LLMAXLI= INT{EBZ2)+1
TF(LLMAX1GELLLIMAX) LLMAX1= LL1MAX
IF(LLIFMX.GE.LLMAXL) LLLILF= LLMAXL
DO 248 Ll= LL11,LL11F,2

Kl= 1

K= 0

L22=L2-2

Lil= L1-2

IF(L2.LFJL2PAR) L22= LZ2PAR
IF{L1.LE.LLIPAR) L1l= L1PAR
IF{L2.LE.L2PAR) Kl=4
IF(LL.LELLIPAR) K2= 1

K= Kl

Ji= {L1l+1)/2

J2= (L2+1)/2

AK= AKSUMO({JLl.42)

L2P2=L2+2

DO 219 LLg= L22.L2P2y2

K= K+K2

LlP2=L1+2

DO 218 LL1=L11.11P2+2

JJl= (LLi+1)/2

Jde= (LL2+1)/2

AKSUMI{JJL9dd2)= BKXAMATRX{J1+J2yK)+AKSUML{ JJ1+JU2)
K= K+l

C ONTINUE

CONTINUE

Chkodokagdkkk  PRINT OF AMATRX

220
906
07

248
249

IFI(NLTLIPRT3) GU Ti) 248

LOl=Li-1

LOZ2= L2-1

IF(L2.GELLLZ2F=1ANDLt L20+2%NLELLLMAXE2) GO TO 220
IF(LLeGELLLLILIF~-1.ANDJLLIO#2*NJLELLMAX+2) GU TO 220
IF(L2.EQetL22.AND LL20-2*%NeGESL2PAR=-2) GO TO 220
TF{L1.EQeLL11l ANDSJLL10-2%N.GELLIPAR=-2) GO TO 220

GC TO 248

CONTINUE

WRITE(6,906) LOL1,LO02

FORMAT(1HOD 45X y15HCHECK OF AMATRX 35X y3HL1=12,2X,3HL2=12)
WRITE{(6,907) (AMATRX{J19J29vJ)»J=1,9)

FORMAT(1H 42X,49E13.5)

CONTINUE

CONTINUE

Cakktrhxik 250



294

295

LLIFMX= LL10+2%*N

TOTPW= 0.0

DO 299 LL2F=LL2FMN,LL2FMX,2

LLL1LF= LL1FMX

EB2= SQRT(EB- FLOAT(LLZF=1)%%*2)

LLMAXLI= INT(EBZ)+1

IF(LLMAX]1.GELLLIMAX) LLMAX1= LL1IMAX
IF(LLLFMX.GE.LLMAXL) LL11F= LLMAX1

DG 298 LLIF=LLLIFMN,LL1LF,2

JJFl= (LLLF+1)/2

JJF2= (LL2F+1)/2

AKSUML({JJUFL,JdJF2)= AKSUML{JJF1l,JIF2)/ FLOATI(N)
IF(MOD(N,2).NEL.O) GO TD 294

AKSUML{JJFLlsJJF2)= —4,0%AKSUML(JJFLl4JJF2)
PEVN(JUFLsJJF2)= PEVN(JJFL,JJUF2)+ AKSUML(JJFLyJJIF2)
PWAVE(JJF14JJF2)= PODDUJJIFL,JJIF2)%%2%4 ,0+PEVNIJIF Ly JUF2)%%x2
GO TO 295

CONTINUF

PODD(JJUFLyJJF2)= PODDUJIFL,JJIF2)+ AKSUMLI{JJFL,JJdF2)
PWAVE(JJF 1.JdJF2)= PODD(JIF Ly JUF2)%%2%4 0+ PEVNIJJIFLydJF2)*%2
CCNTINUE

P= PWAVE(JJFLl4JdJF2)

t0l= LL1F-1

LO2= LL2F~-]

Caxkokkkkdkk PRINT OF PWAVE

2S¢

297

298
299

904

IF(NLLE.NPRINT) GO TOD 297
IF(P.GE.O.1lE-4) GO TO 29¢
IF(LLLF.EQ.LLLFMN) GO TO 296
IF(LLLIFLGTJLLLLF=2) GU TO 296
GC TO 297

CONTINUE

PCORCT= P

WRITE(6+302) NyLOLyLO24yPsPCORCTPODDCIJIIFL yJJF2) y)AKSUML(JUIF L1y JJIF2)

CONTINUE

TOTPW= TOTPW+P

AKSUMO(JJUFLyJJF2) = AKSUML(JJF1,JdJF2)
AKSUML(JJFLl,JJF2)= 0.0

CCNTINUE

CONTINUE

PE1=PWAVE(JELL1,JEL2)

PE10= ABS((PE1-PEO)/PELl)

IF{IPRT1.EQ.1) GO TQ 3904

WRITE(6,904) NosTOTPW, ICLOCK,NCOUNT, TOGTPC
FORMAT(1HO//2X 9 8H¥%%%% N=]2,5X,13HSUM OF PWAVE=E]l3.5,
15Xy THICLOCK=T1093HSECs5Xy THNCOUNT =1 104 5Xy 6HTOTPC=E13.5)
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3904 CONTINUE

IF{ABS{TOTPH-1.0) L Te0.1E-3.ANDPELO.LT.0.1E-3) GO TO 300
IF{N.EQsNMAX) GO TO 300

N=N+1

PEO= PEL

GC TO 100

300 CONTINUE
Ckxrnids ELASTIC

DELSTl= PEVN{JELL,JEL2)
DELST2= -2.0*%PODD(JFLL,JEL2)

Crdoxdkkkk FINAL PRINT

301

MPRINT=0

L1PARO= MOD(L10,2)+1

CONTINUE

WRITE(6,901) BIMPsLL1C,L20,EKINL,ETOT JLLMAX yEBy VCyWALPHA4VC 64V A,VE
WRITE(65910) N, TOTPW,ICLOCK,TOTPC

910 FORMAT{1lH 45X ySHNMAX=1242X46HTOTPW=EL13.5,2X ,6HCLOCK=15y3HSEC,

gil
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1 2Xs OHTOTPC=E13.5//3X42HL2)

IMN= LL2FMN

IMX=LL2F MX
IF(MOD{LLZFMX—L2PAR,2) «NFo O} TMX= LL2FMX-1
DO 319 I=1IMN, IMX,2

LL2F= IMX+IMN-1

J2= (LL2F+11/2

LLI1F= LLLIFMX

EB2= SQRT(EB- FLOAT(LLZ2F-1)%*%*2)
LLMAX1= INT(EB2)+1
IF(LLMAX1.GEL.LLIMAX) LLMAXL= LLIMAX
IF(LLIFMXeGE«LLMAXL) LULL1LIF=LLMAX]
JIMX= (LL11F+1)/2

JLIMXLl= J1MX

JIMN= (L1PAR+1)/2
TFCJIMX=JIMNLGT . 15) JLIMX= JIMM+]15
LOZ2=LL2F -1

WRITE(69S11) LOZy(PWAVE(JLsJ2)2JLl=J1IMN,yJ1MX)
FORMAT{1HO/3X12,16(1PF6.3,41X))
IFIMPPINT.EQ.1) GO 7O 319

LMIN2= MINO(LZ20,L02)

CL10= FLOAT(2*LMINZ2+1)

DD 318 Jl= JIMN,J1MX]

LOl= 2%J1-3+L1PARO

LMINL= MINU(L10,LO1)

CL1= CL1O* FLOAT{2%LMINL+1)

P= PWAVE(JL,J2)

PCCRCT= CLL/7CLO*P



e iy

TAOTPC= TAQTPC+PCORCT
PWAVE(Jl ,J2)= PCORCT

318 CONTINUE

319 CONTINUE
LABCSA(1l)= L1PAR-1
DO 320 1=2,16
LABCSA(I)=LABCSA{(1)+(1I-1)%2

320 CONTINUE
WRITE(6,912) (LABCSA(J)yJ=1,416)

912 FCRMAT(1HO »4Xy16(3Xy1242X)93H L1)
IF{MPRINT.EQ.1) GO TO 9906

CHxkatkdak PRINT GF PCORCT WITH PELASTIC MODIFIED

PWAVE{JELL+JEL2)= 1.0-TOTPC+PWAVE{JELL,yJELZ2)
IF{IPRT4.EQ.1) GN TO 1000
MPRINT=]
Ga 70 301

9906 CONTINUE
WRITE(6,9909) TOTPC

9909 FORMAT(L1HO/2Xy35H**%x%x%x%xpC CRCT WITH ELAST IC MOOIFIED, 5X,
1 TH{TOTPC=E134542H )/)

1000 CONTINUE
PWAVE(JELL,JEL2)= PWAVE(JELL,JEL2)}~1.0
WRITE(6,9911) DELSTL,DELSTR

9911 FORMAT(LHO,1lX 28H*%%%%x FOR ELASTIC SCATTERING,»3Xy3HDI=EL13.5,
1 2Xy 3HDZ2=E13.5)
RETURN
END

*DECK VMAT

SUBROUTINE VMATRX(LLL,LL2yK)
COMMON /MVL/ AMATRX(20,20+9)
COMMON /MV2/ VBBsVAA,BROT,ETOT,BRCyVVALP
COMMON /CMVRL1/ VC,VALPHA,VC&,BIMP,ETY
COMMON /MV3/ NCOUNT
COMMON /CVLl/ ABCC(40+40,9)
JJl= (LL1+1)/2
JJ2= (LL2+1l)/2
Lid= LLI-1
L2d= LL2-1
IF{K.GT.3) GO T0O 1011
L2I= L2J4-2
IF{L21.LT.0) GO TO 1510
60 TO 1100

1011 TFIK.GTL6) GO TO 1012
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L2I= L2J
GC TO 11060
1012 L2I= L2J+2
1100 CONTINUE
IF(MOD{Ks3).NE.1) GO TO 1111
L11= L1J-2
IF(L1I.LT.0) GO TO 1510
GO TO 1200
1111 IF(MOD(Ks3).NEL2) GO TO 1112
L1l= L1Jd
GG 7O 1200
1112 L1I= L1J+2
1200 CONTINUE
ABC= ABCC(LL1,LLZ2,4K)
IF(ABC.NEL.DO.0) GO TO 1299
CALCULATION OF VEFF(L1I,L2T /7 L1lJyyL2J )
CCl= CG20(LLI,L1Y)
CCe= CG20(L2I,L2J)
1211 CONTINUE
[F{KsLESs5) CSIGN= {-1.0)%*x(L1J+L2J)
[F{KeGEe6) CSIGN= (=1.0)**(L1I+L21)
C= FLOAT( (2%L1TI+1)x(2%L2T+1)*x(2%L 1J+1)%(2%L24+1))**%0,25 *CSIGN
1212 CONTINUE
B= VBB*CC1*CC2
1213 CONTINUE
A= 0.0
IF(LZ2INELL2J) GO TO 1215
A= VAAXCCLl/ SQRT(FLUAT{2%L2I+1))
IF(MOD(LZI 4+2) oNELO) A= -A
1215 IF(LLITJNELLLJ) GO 70O 1219
AA= VAAXCC2/ SQURT(FLCAT(Z2*L11+1)})
TFIMOD(LL1I,2) eNELO) AA= —ARA
A= A+AA
1219 CCANTINUE
ABC= C*(B+A)
12399 CCNTINUE
wi= BROT*FLOAT(LLII*(LLII+L)+L2I%(L2T+1})
Wd= BROT*FLOAT(LLIJ*(LLIJ+1)+L20*(L2J+1})
AlJ= ABS(WI-WJ)
El= ETOT-W!
Ed= ETOT-wWJ
IF(EIoLE «0e0eDReFJsLELD0) GO TO 1510
ElJd= 0.5%(EI+EUI
CALL ROOT(RC)
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BRC= 1.0-(BIMP/RC)**2+VC6/ETJ/RC**6
ElJl= EIJ*BRC

IF{K.EQe5) GO TO 1500
IF(LLIT.EQ.L2J.ANDK.EQ.3) GU TO 1500
IF{LLII.EQ.L2J.ANDK.EQeT7) GU TO 1500
ATJd= VVALP* SQRT(EIJ1)/HWIJ

EWw= EIJL/WIJ

DBALPH= EW/ATJ

APAI= 1.57C796327/A414

F= EXP(-APAI)

FAIJ= 2. 0%APAI*F/ (1 0~F%F)

AAA= ABC*DBALPH*FATY

C*%x* 9399 CHECK PRINT

369
1438
1499

1500

1510

C #oke ke

3099

3100

CONTINUE

CONTINUE

NCOUNT= NCOUNT+1
CUNTINUE
AMATRX(JJ1sJdJ2,K)= AAA
RETURN

C GNTINUE

AbA= ABC/VVALP* SQRT(EIJLI
GO TO 1498

CONTINUE

AAA= V.0

GO TO 1499

END

SUBROUTINE RNOOT (RC)
REVISED 8/726/74

COMMDN /CMVR1/ VCyVALPHAZVC6,BIMP,EKIN

RMIN= l.1¢&

RRO= ALOG(VC/EKIN)/VALPHA

IF(RRO.GEe4el) RRO= 4.1

N=1

CONTINUE

RR=RRO

CONTINUE

RL= EKIN*BIMPx¥2 /RR*%2

V= VC* EXP(-VALPHA®*RR)

Vi= =VALPHA*V

IF{VC6.EQ.0.0) GO TO 3101

VR= VC6/RR*Xx6

V= V=VR

Vi= V1+6.0*VR/RR
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3101 CONTINUE
F= {(V+RL-EKIN}/ (240%RL/RR=-V1)
IF{ABS(F/RR)«LTL0.1E~5) GO TO 3199
IF(N.GE.100) GO TQ 3299
RR= RR+F
IF(RRLT.RMIN) GO TO 3900
N=N+1
G0 TO 3100
3199 CONTINUE
RC= RK
RETURN
3299 CONTINUE
WRITE{(69998) RR,FyRRO
963 FORMAT (1HO//5Xs14HERROR N GT 10043X93HRR=F13.%5,3X42F13.5//)
RR=RRO
G0 TO 3199
3900 CCNTINUE
RRG= 0.5*(RRO+RMIN)
GG 70 3099
END

*DEFCK CG20
FUNCTIUN CG20{(Jl,42)
[FlJ2.EQeJ1+2.0ReJ2.FQ.Jd1-2) GO TO 80601
IF(J2.EQ.J1) GO TO 8002
= 0,0

GO TO 8100

8001 CONTINUE
1F(J2.EQ.ul+2) J=J1
X1= FLUAT(J#2)/FLOAT (2%J+5)
X2= FLOAT(J+1)/FLOAT{2%J+3)
X3= 1.0/FLOAT(2%J+1)
C= SQRT{1l.5%X1%X2%X3)
GC 70 8099

8002 CONTINUE
Jd= Jl
X1= FLOAT{J+L)/FLOAT(2%J+3)
X2= FLOATU{JI/FLOAT(2%J+1)
X3= 1.0/FLOAT(2%J-1)
C= - SQRT(XL1*X2*X3)

8092 TF(MOD(J,2).NE.U) C= -C

8100 CG20= C

RETURN
END
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