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1	 INTRODUCTION
J

The Close Grid Geodynamic Measurement System experiment at The Ohio

State University envisages an active ranging satellite and a grid of

retro-reflectors or transponders in the San Andreas fault area and is a

detailed simulated study for recovering the relative positions in the grid.

The San Andreas fault system in California and Mexico forms the

boundary between the North American and the Pacific plates. The rate of

opening in the Gulf of California appears to be 6 cm/year, but estimates of

the rate of slip on the San Andreas fault system north of the transverse

ranges vary from 1 to 6 cm/year ['Drake et al,., 1973]. Seismically, the

system extends to the eastern margin of the Great Basin and along the Rio

Grande depression. The 'importance of the area demands extremely accurate

f	 determination of the "relative" motion of the two large plates.
r	 ^

i
The Close Grid Geodynamic Measurement System for determining the relative

motion of two plates in the California region, once experimented and found

feasible, could then be used in other areas of the world to delineate and

'i	 complete the picture of crustal motions over the entire globe and serve as	 {

a novel, geodetic survey system. In addition ` , with less stringent accuracy	 ="

standards, the system would also find usage in allied geological and marine

geodesy fields (Table 1-1). Thus, in this role the system would then become

complementary to the global Laser Geodynamic Satellite (Lageos) and other

Earth and Ocean Dynamics Applications Program (EODAP) satellite systems.

i;
As envisaged today there seem to be two main instrument concepts, viz.,

t

j:	 laser or radio frequency radar systems which will be available for inclusion
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in the Close Grid Geodynamic Measurement System. Table 1-2 gives the

specifications and nature of ground stations required by each system.

However, if the Close Grid Dynamic Measurement System is to become feasible,

the present state of system limitations for laser (5-10 cm) and/or radio

i
frequency (100 cm) will require significant improvements.

'	 What is needed then is a tool for making exceedingly accurate measure

ments from an active satellite to a grid of inexpensive (and passive)

stations on the earth in a short span of time. Because of the brevity in

` I	 time span for observations, it is important to assume that the observed

grid stations do not move during that period. In order to make the system

economically feasible and periodically repeatable_, when the satellite is up

and the observations cycle has been started it is imperative that the 'grid
I

stations must be extremely simple requiring the least possible manual

J	 operations and maintenance.

In an observational campaign during any calendar period, the satellite

I
will be activated to make accurate range measurements to the grid stations,

identify each observation and transfer the requisite observational informa-

tion to a data bank for subsequent data analysis-, and this procedure then

can be repeated periodically.

To meet the above considerations, the present simulated experiment
3

assumes that the satellite has the capability of making; accurate range
6	 i

measurements, either individually or collectively to grid stations, of

identifying each observation, of noting the exact time of such observations

and of transferring the information to a data bank.

i Y
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2. APPROACHES TO DATA ANALYSIS

In the simplest case, when a (spherical) satellite moves around its

(spherical) primary in an orbit affected only by the latter's attraction, the

resulting normal orbit can be defined by six constants, E i	(i = 1, 2 ...	 6).

These parameters may be selected according to various theoretical and/or

computational criteria.	 From a didactic point of view, the simplest set

is the classical Keplerian elements, which define the orientation of the

=jiane of the orbit in space (two parameters); the size, shape and orientation

of the Keplerian ellipse in that plane (three parameters) and finally, the

position of the satellite at some given epoch (one parameter).	 In the

gravitational force field of the spherical primary these elements are

constant and the satellite ` moves in its defined orbit in accordance with

the laws of Kepler.c

i
The circumstances of a near-earth artificial satellite are different 	 ;

from the above, the main consequence being that the orbital elements will

no longer be time invariant, or in other words, their derivatives with

respect to time, E i	(i	 1, 2 ...- 6), will	 not be equal	 to zero.	 The	 1

variation of a given element from some reference epoch, T o , to the epoch
4

of utilization, T	 can symbolically be described by the following equation:

T
` Ei	 =	 E9 +	 Ei dT

To

where E°.	 is the element-in question at the epoch T o , and E. at T.	 The	 4
i

integral represents the perturbation of the element E i .	 The function Ei

` is the rate of change of the elemcr,. E i due to all perturbing forces

4
(nonspherical part of the earth's attraction, atmospheric drag, etc.) and

F 

as such is a`'function of several 	 hundred parameters, P	 (j = 1, 2 ...	 n)

5
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a

defining these forces. For example, an adequate description of the earth's

gravitational field may require as many as 500, the atmospheric drag 10 and

the radiation pressure 5,force parameters. The integral may be solved'

analytically (method of general perturbations) or numerically (method of

special perturbations).

Once the orbital elements are thus computed at the epoch T, they can be

readily converted i nto positional and velocity components of the satellite

and referenced to some well-defined coordinate system, If the parameters

defining the observer's position in this coordinate system, S  (k = 1, 2, 3),

are also known, the observables can be calculated, i.e., predicted. To

refer the positions of the satellite and the observer to the same (usually

earth-fixed) coordinate system, the precise knowledge of precession, nuta-

tion, polar motion and earth rotation (UT 1) is also required.

For principal geodetic results the observables are frequency ,(range

rate), range, range difference and direction components (e.g., right

ascension and declination), either observed individually or in certain

combinations. Provided that the theory of motion, e.g., the mathematical

model is correct and that the observations have been reduced to station and

freed of systematic errors, the differences between the computed,'C^ (e = 1,

2,	 m) and the observed O Q values of the observables will be due to the

erroneous geocentric coordinates of the observer S k and the erroneous

orbital elements, thus the parameters P., Assuming that both the differences

O Q - C k , and the errors dP j , dS k are differentially small, the following type

of relations may be established:

acp	 act
0^	 C Q - dP^ +aS dSk	 (1)

k	 k

6_
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where

ICQ	 2CZ	 2Ei-	

(2)
2p j	 1i	 2P j

Ei being an orbital element at the instant of observation.

If equation (1) is regarded as an observation equation, the quantities

dPj and dSk are the vector components representing the unknown corrections

` to the assumed parameters and station coordinates, respectively; and

2C Q/2P j and Xz 2Sk are the elements of the corresponding coefficient of

design matrices.	 In order to obtain a satisfactory solution, the number of

observations (m) must greatly exceed the number of unknown parameters (n)

< _plus the station unknowns 	 p x k (p is the number of stations), and a least

squares adjustment is performed in the traditional sense. 	 To perform such

a calculation is a`formidable task considering that recent solutions, for

example, included data from 10-20 satellites observed over 2-4 week

periods from as many as 50-100 stations, and thus the unknowns included

150-300 components of positions in addition to the some 450-500 gravitational

coefficients, thousands of orbital constants (e.g., E? - s), possibly pole 	 s

position parameters, etc.	 Such general solutions, because of the high cost

of forming the large normal equation matrices and of their inversions, are

performed infrequently and only by a few organizations having access to

large computers.

Once the results of a general solution such as the one outlined above

are available, additional stations can be added on at a much smaller cost.

In such partial solutions, positions of observing stations are obtained

from least squares adjustments, where the earth's gravity field and the

positions of many of the stations are 'held at values determined in the

preceding general solution.	 Usually a` separate computer program is used
P.

- 7



for this purpose because program efficiency is greater when the objectives

are more limited. In these solutions shorter time span of data (2-5 days)

may be used, which will also reduce the effect of some errors in the force

field. The unknowns in such a solution-, in addition to the coordinates of
j	 the new stations, include the six initial orbital constants (E9), usually

a drag (scaling) parameter and maybe components of the pole position. In

other words, in such solutions most perturbations are treated as known

phenomena which can be calculated from the parameters determined in the

general solution.

Two special cases of the partial solution are the so called short arc
I

and the point positioning methods. In the former, the data is limited

generally to satellite passes of 10-30 minute lengths. These relatively

inexpensive solutions contain as unknowns only six initial orbital parameters

per pass and the coordinates of participating stations. The method is

limited to relative posi_tioni'ng with respect to a reference station whose

coordinates are held to their estimated (not necessarily geocentric), values.

Due to the shortness of the arc the perturbation models may be simpler than

in the partial solutions; for example, the gravity field may be 'satisfactorily

described by as few as 50-75 parameters, depending mainly on the length of

the arc and the altitude of the satellite. The relative station positions

obtained from short arc solutions are considered generally free of orbital

(or other) biases equally affecting stations observing the same arcs.

In the point positioning method the data span is several (2-7) days

long and the orbital elements are 'held to their values obtained from a

precise satellite ephemeris. Thus the only unknowns in the solution are the

coordinates of the observing stations. The satellite ephemeris is generated'

y



i
and made available by some organization which keeps continuous track of the

satellite(s) in question. A prime example of this method is positioning
1

through the use of instruments which measure the range difference between a

ground station and two satellite positions by means of integrating the Doppler

shift of radio transmissions from the Navy Navigational Satellites. Precise

ephemerides of these satellites are generated by the Naval Surface Weapons

Center (formerly the Naval Weapons Laboratory) in Dahlgren, Virginia, from

1
'	 which satisfactory orbital elements may be obtained for the instants of the

observations. Predicted, and therefore less accurate, elements are also

I
generated and injected into the satellite's memory by the Naval Astronautics

Group, Point Mugu, California, which in turn are retransmitted and can be

used with certain types of receivers. In this latter case, it is advisable

to observe the satellite asses from at least two stations simultaneously^

	

	 _p	 Y

and solve only for relative positions which, similarly in the short arc`

case, will be less affected by the biases in the orbital elements than the

positions themselves. This mode of operation is termed translocation.

In cases where simultaneous observations are made of the satellite

from two or more stations, the satellite may be used only as the target of
itl

observations and the fact that it moves in an orbit can be ignored. The

I
f	 target, in fact, may as well be a rocket, a balloon, or an airplane carrying

proper instrumentation, instead of being a satellite. The orbital elements

E• in equation (2) in this case become parameters and a E•/3 P. are identity

matrices. After converting the parameters E i to satellite-target coordinates;,

Tk (k = 1, 2, 3), referenced to the same coordinate system in which the

station coordinates S k are sought, equation (1) will have the following

form:

9`
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OR _ C R	_	
a CR (dTk - dSk)
aSk

k	 _.

where, as before, the left side is the discrepancy between the observed and

computed (predicted) values of the observables. 	 In the right side, dTk and

dS k are the unknown corrections to the predicted target and assumed station

,
coordinates, respectively, and 	 a CR/a S k is the coefficient matrix.

In this modeof operation the observables at a given station have

been mostly restricted to ranges (trilateration) or directions (triangula-
u

tion) although range differences or-a combination of ranges and directions

can also be used.

In order to invert a system of geometric normal equations, a certain

number of constraints will have to be introduced.	 These are due to the c	 ;

w fact that while in the dynamic solutions the system to which the station

coordinates refer is defined through satellite dynamics, in the geometric

solutions it is not defined. 	 Thus, in the case of satellite triangulation,

when the satellite directions are determined from photographs' against the r:	 j

background of stars, the orientation of the system is inherently defined by

means of the star catalog used.	 The origin of the system is to be specified

by holding three coordinates of a station to their a priori values; and the

scale is to be defined by constraining the distance` between two stations r
e:

to f6"s measured value. Thus, in this case the minimum number of constraints

j . to be introduced to obtain a solution is four. 	 In the case of trilatera'-

tion, only the `scale`is inherent in the observations; thus the origin and

the orientation of the system are to be defines- This can be done, for 	 r

example, by holding six coordinates distributed between three stations to

their estimated values. 	 In practice usually more than these minimum con-

.; straints are applied. 	 They are usually available from accurate ground

10
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` survey information which may be included in the solution if their values

are to be preserved. 	 Such information may be the relative positions of	 {

neighboring stations, known distances between stations, _heights, etc.

It should be mentioned at this point that the geometric_ mode is very

sensitive to the problem of critical configurations. 	 If the stations and/or

the target points happen to be in such configurations with respect to each

other, the solution will be singular even when the number of observations

is sufficient and the coordinate system is properly defined. 	 Near

singularity or ill-conditioning will occur when the stations and/or the

satellites are near the critical configurations.	 The problem has been well

studied and methods of avoiding it for trilateration may be found in [Blaha,.

1971b]; for triangulation in [Tsimis, 1972] and for range differences in

[Tsimis,	 19731.

2.1	 Recovery of Station Coordinates

To determine the relative positions of the grid stations with the

required accuracy, the geometric and short arc modes are the most promising. 	 r:

They have advantages and disadvantages with restrictions of different

character on the data. 	 One mode involves the geometry and its limiting

critical degeneracies, 	 while the other follows the orbital path with its

complexities arising from modeling of the earth's.potent`ial field,<atmos-

pheric drag, radiation pressure, et:. 	 Thy': advantages and limitations of	 a
a

E` each mode are tabulated in Table 2.`1-1.

t	

,`

g.  F
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Geometric Mode Short Arc Mode

Advantages Advantages

1. No strict requirement for time of 1. No requirement for simultaneous
observation. observations.

2. No dependence on orbital errors 2. Requires only six parameters per
and geophysical assumptions. pass for satellite positions;

hence lesser number of unknowns
3. System's overall accuracy is are involved.

directly proportional to the
observational acri:racy. 3.	 Use of orbital	 constraints, i.e.,

the satellite follows an orbit,
provides strength to the system.

Limitations Ljmitations

1. Geometric configurations involv- 1. Time of observations must be
ing both stations and satellite known accurately.
points can be extremely
CRITICAL. 2. Requires at least two to three

distant stations observing i'n
2. Minimum number of stations par- any pass" for coordinate system

ticipating in an observational definition, i.e., for stability
event is four (in a limited area of solution.
it is six).

3.	 Basic uncertainty'in scale aris-

3. Simultaneous observations are ing from uncertainties in'funda-
difficult to obtain. mental parameters, such as GM,

etc.,	 is inherent.
4. Station positions obtained are

relative.



1

Escobal et al., 1973]. The strength of the system lies in the fact that

the error in satellite position in any event of simultaneous observations

has very little influence on the overall accuracy of the system because

these errors are more or less common to the observations from each of the

stations participating in the event observation. Further, this impediment

can be improved upon by using two or more satellite passes with "differing

geometry" in the solution.

However, the system is highly sensitive to the configuration of both

the stations and the targets (i.e., satellite positions) observed [Blaha,

1971b; Aardoom, 1972; Tsimis, 1973]. This sensitivity to "critical"

configuration can be avoided (section 2.1.1.4) towards obtaining a near

perfect recovery of the relative positions between the ground stations in

the system.

2.1.1.2 Mathematical Modeling

The complete details of the theory involved can be found in [Krakiwsky

and Pope, 1967; Mueller et al., 1970, and Mueller et al., 1973]. However,

a brief development of the mathematical model is given below.

Fig. 2.1-1

13
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system with u and w, and with a it defines the average geodetic equator.

Thus, the mathematical model for any range rid can be written as

rid
[(u^ u, )2 

+ (v^	

Vi)1 +

Cwt	

W^) 2 ] 1 (3)
i	 Or _

Fij	
=

[( U U)2- ui) 2 + (vj '- v i ) 2 + (wj - wi) 2]? - r j	 = 0	 (4)

Equation (4) can then be,linearized -in the matrix notation [Uotila,	 u

1967]:

BV +AX +'W	 =	 0 (5)

where
r :

^^ 15



1'a F• J 	[

	

J	 a riJ

	

Aij	 a Fij	 [aj	 _aij];
a'uJ a ui

a	 - u j` " ui v^ - vi w _W9

	

..	 -4	 iJ	 r1	
riJ
	 rlJ

i
'i

	

Xij	 [duj dvj dwj 	du i dv i dwi]T

	

Wij	 r(computed) - rb (observed).

The values u9, ui,	 etc. are the initial approximate values which are

used to compute approximate 
rid 

from equation (3). The approximate satellite

position (u?, v^, w^) for any event results from a preliminary least squares

adjustment for that event with observing stations held fixed [Krakiwsky and

Pope, 1967]. The matrix B then becomes a negative unit matrix [-I] and the

residual matrix V corresponds to the observed ranges rbj.

Equation '(5), after some mathematical manipulation in a least squares

adjustment and elimination of nuisance parameters X i s takes the form of the

reduced normal equations [Mueller, 1967; Mueller, 19681:

NX i + U	 0	 (6)

where the 3 x 3 blocks in `N and 3 x`1 blocks in U are given as
I

T
Nkk =	

akj pkj a kj 	ak^p kjak^ [	 aTj p i j ai j ]-i akjpkiaki

N kQ - -	 { ak] P kj akj [ Ea jpi
j ai^]- 

a RJ P Q]a, }
J	 'i

T

Uk 
= -^ akjpkjaki	

f

16



In the above expressions,	 is the summation over all ground stations
i

involved in event (Ej , Qj ,	 Itj 1) and	 over-all events observed by ground
-	 J

stations k and/or Q.

t	 2.1.1.3	 Constraint's Contribution to the Normal Equation

The normal matrix as reached in the reduced normal_ equation (6) is

"singular," i.e., the system still	 lacks the orientation and origin

definitions while the requirement of scale is inherent in range measurements.
a

This can be avoided, for example, by holding six coordinates distributed

between any three stations in the system to any specified designated values.'

In practice, usually more constraints are applied than these minimum con-

straints.	 Details about the theoretical background of different types of j

constraints, effect of weights and their application/contribution to the

normal equations can be found elsewhere [Mueller et al. 	 1973; Uotila,	 1967].

However, even though the definitiori,of a coordinate system is arbitrary

in the case of a minimum constraint solution, the selection of six coordinates

to be constrained in the case of ranging is very critical, since any one set

of constraints would not give a unique solution. 	 The statistics for any

ground station coordinates in the system (other than the constrained coon-

dinates):would be significantly different in each case depending upon

varying propagation of errors.

To obviate this situation, the "best" solution 	 arrived at in a

coordinate system defined through the use of a set of inner constraints x

[Rinner et al., 1969; Blaha, 1971a] where the trace of the variance-

''	 covariance matrix for the unknowns would be minimum compared to any other

solution.	 The resulting adjustment is termed "free," 	 The functional

inner constraints for origin and orientation can be written as

17





observations is sufficient and thecoordinate system is properly defined

through requisite constraints.	 Blaha has discussed different cases of

singularities and categorized them as singularities A, B, C [B1aha, 1971b]

(see Figures 2.1-4 through 2.1-8).

In practice, the case of near singularity or ill conditioning also

effects any solution and degenerates the recovery of the system when the

stations and/or the satellite points are near critical case.	 Such cases

are dangerous as the effects are, more or less, an inherent part of the

t;	 solution and not distinguishable at all times. 	 The problem has been well

studied [Blahs, 1971b; Tsimis, 1972 and 1973] and Tables 2.1-2 and 2.1-3

summarize the methods of avoiding singular solutions.

A study of Tables 21-2 and 2.1-3 shows that in any system the

degeneracy can be avoided either (1) through the introduction of height

separation between the ground stations or (2) by observing satellite j
s

targets well distributed on at least two significantly different altitudes.

The first condition, within a limited area, obviously has its own

topographical limitations:	 The inclusion of distant (several hundred km)
r.:1

stations is helpful in this regard. 	 In the simulated experiment "under ``

report with general station separation of 7 - 10 km, and no distant

stations, the best possible results were obtained when the targets were

observed at 9 km and 1007 km altitudes. 	 This introduces an extremely

flexible and practical operational system where an airplane can be flown

f	 to obtain necessary and sufficient observations together with a satellite.

It is not necessary that both types of targets be observed simultaneously. 1

1 9 ^.
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ILLUSTRATION OF SINGULARITY C'):	 Stations 1, 2, 3 observe; all targets;
i	 all stations observing off-plane targets are on a second order curve With

stations '1,	 2,	 3.
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Type of Arrangement of Necessary Conditions to Sufficient Conditions
Singularity Observations Prevent Singularity to Prevent Singularity Note

Singularity A) No station shouldbe in a plane No s	 n statiohould be in This singularity is
(or closely re- ^y Iwith all its observed targets a plane with-the'corre- assumed non-existent
lated singularity) (distributed over one or more sponding satellite in analysis of singu-

satellite groups) group larity C)

Stations 1, 2, 3 Three stations in adeUtion' to
observe 

all
1, 2, 3 not lying on a second The same as the

targets order curve with them should necessary conditions
observe off-plane targets

Group One station in addition to 4
J  con- and k not lying on a second The same as the
tains order curve with 1, 2, 3, 4, necessary conditions Special case of singu-

Station k' off- k should observe off-plane larity C) is singularity
replaces plane I targets B); it occurs when all
station 3 targets stations are on a second

Group	 wo stations in addition to 4	 -p	 More complex require-Singularity C) (satellite order curve
(global type of group j4 j k con- 

a 
should observe off-plane 	 ments (according to

singularity) contains tains	 Aargets. Always: Avoid all	 j stations which observe
off- in-	 stations lying on a second	 off-plane targets)
plane plane	 4order curve
targets)

I targets i

All stations ob-	 Avoid all targets lying in a
serve all targets iplane (any plane) and all 	 The same as the
(all stations co- istations lying on a second	 !necessary conditions
observe)	 ;order curve	 ,



Type of Arrangement of Necessary Conditions to Sufficient Conditions
Note

Si'	 r Observations Prevent Si	 larity to Prevent Singularity

Singularity A) No station should be in a plane No station should be in This singularity is as-
(or closely re- Any with all its observed targets a plane with the corre- sumed non-existent in
lated singularity) (distributed over one or more sponding satellite analysis of global

satellite'' groups) group singularity

Reversed Sin- Targets should not he all is a The same as the nec- This singularity is as-
gularity B) Any plane on a second order curve essary conditions sumed non-existent in

analysis of global
singularity

Avoid all satellite groups (one` All the critical surfaces
group per quad) containing tar- can be computed explic-

Stations 1, 2, 3 gets lying all on the corre- The same as the - itly.	 They all intersect
observe all sponding second order criti- necessary conditions in the plane of stations
targets cal surfaces (one surface per 1 2, 3 on a second orde

quad). Always: Avoid all curve containing the
points 'lying on a second order three stations. If four
surface points outside this plane

are common to -some

Global critical surfaces- then

Singularity these surfaces coincide
Station replace- Always; Avoid all points lying Avoid certain second
ment (e.g., leap- a second order surface order surfaces not
frogging) expressed explicitly
All stations ob- Avoid all points 1 i	 on apo'	 yid The same as the1

I serve	 all targets second order surface i necessary conditions
(all stations co-

T r
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2.1.1.5	 Computation of Estimable Quantities
and Their Statistics

In most ranging systems a lack of coordinate system definition results
r

in a design matrix A which is less than full column rank.	 In an ordinary

least squares solution the rank of A is equal to the number of unknowns

u, i.e., R(A) = u.	 As indicated earlier, if we assume that a ranging measure-

ment system defines the scale, the system still lacks information about

orientation (3 angles) and position (3 coordinates)..	 This results in{

column rank of A which is six smaller than the number of unknowns, i.e.,

R(A)_u-6.
1:

The normal equations (ATA)X + U	 0 cannot be solved for using the
}

Caylean inverse since the determinant of the normal matrix N is equal to

zero or R(N) = R(ATA) = R(A) = u - 6.	 However, a unique solution for `X

can still be obtained using the pseudo inverse X- = -N+ U (the least squares

method using the pseudo inverse minimizes not only V TPV, but also XTX).

But X is not a vector ofestimable quantities, i.e., E(X) # X [Grafarend

and Schaffrin, 1974].

A method to compute the pseudo inverse N + is to border the singular

matrix 'N by columns and/or rows which are orthogonal to all the columns

and/or rows of the matrix N.	 The usual Caylean inverse can be computed

now and from the inverse the added columns and /or rows are removed

(transpose-wise). 	 The resulting matrix is the pseudo inverse of the normal

matrix -N [Bjerhammer, 1973].,

In case the rank deficiency of the matrix N is caused by a lack of

coordinate system definition, the above-mentioned method of computing the

pseudo inverse of N is known as the method of applying inner constraints

rt
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(see section 2.1.1.3). 	 The added orthogonal rows and columns are the

constraints added to the normal equations which yield a solution vector,

in the "best" coordinate system.

i
i The disadvantage of this method, which was already mentioned earlier,

j is that it results in the nonestimable quantities E(X) # X.'

i
A transformation R'is needed to map the solution vector of nonestimabl e

r^ quantities X into a vector of estimable quantities X'

X'	 =	 RX.

In case of a range measurement system, the vector X consists of coordi:.nates

as obtained from the (pseudo inverse) inner constraint least squares
s

solution.	 The vector X'	 (= RX) is said to be estimable if the following

necessary and sufficient condition is fulfilled [Rao, 1973]:

R {I - (ATA)+_(ATA))	 =	 0.	 (9)

' This condition is fulfilled for the chords and angles between stations in

case of a ranging measurement system, assuming that the scale is defined by
x. I  t

the ranges themselves.

The variance/covariance matrix of X' 	 is obtained the usual way:

}

4: 

( T
)
+	 +

I

t ^X1 	
RN

+ 
RT.

Thus in view of the above, the distances r ij and the angles aijk

between the stations i, j (and k) are the only estimable quantities when

j the geometric solutions are obtained with inner constraints.	 These

quantities are defined as follows:

1
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'F

I
I
i

I,

I

rij	 = (xi	 - xj )2 + (Y i	 - yj )2 +_( Zi , _ `Zj)2

( x. - X^)(xk— xi) + (y - Y i )(Yk- Y i ) + (z i - zj )(z k- zi)

aijk cos- 1 - (lp)

f

ri jri k

j	 and the standard deviations through error propagation are given as [Uot;ila,

}	 1967]

E	 ^r -	 G^X.G'
4 ij

Q
ai

=	 H	 H'
X.•

l
jk	

'iki'	
where

F'Xi
EXi	

EXi Xj
-; X-

6 x 6
EXj
	 EXi Xj 	 EXiXk

C ^X i jk
_ -- E	

-^- F
X 
j	 XjXk

Xk'	 '	 9 x	 9

i a ri 
j	 a ri j	 a r i j	 a r i j	 a ri j	 a ri j

G -
a x i	 a y	 a z i	 a; xj	 a yj	 a zj

'	
H

- [a

a ai k a ai jk	 a ai jk 	 a a i j k	 a ai j k	 a ai jk
a ai jk	 a a i jk	 a a i jk1

x • 	ay•	 a z•	 ax•	 a	 a z•i	 i	 i	 yj	 J ax	 a	 az	 Jk	 Yk	 k
a

Here, the typical partial derivatives are given as

a rte_
-	

(xi	 - xj )/ r i j8 Xi

a 01

a

 sin ai jk

=	
[r ij (x k-.xj) -cos ai jk rjk (X i -

r 2	 r
xj)]

x i i J_	 ik
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;I

^.

a ai jk
=	 z	 ' Cr j r•	 (2x• - x• - x) +cos or• • {r 2 	(x• - x.) +, xj	 ri rjk	 J J k 	J	 i	 k	 i J k 	 jk	 ij

rj(xk - xj)}]i

2.1.2	 Short Arc Mode

R 2.1.2.1	 General Comments_

As mentioned earlier the dynamic methods in satellite goedesy are

generally recognized as being either long arc or short arc. 	 To obtain

the necessary accuracy, the long arc method characteristically must employ,

such a complex mathematical model that is not available at present. 	 How-

ever, the requirements in short arc mode are less stringent as the arc

described is short and many approximations can be introduced without

jeopardizing the accuracy.	 For the range observations in short arc mode, -

,. each participating station (P i ) observes the distances	 ( P i Qj , j = 1, '2, 3 ... )

to the satellite positions (Qj ) along an arc (Figure 2.1-9).

i

2.1.2.2	 Equations of Motion

The motion of a satellite through space can be described by a set oft

three second-order differential equations, solution of which contains six

arbitrary constants of integration.	 These six constants may take different

forms	 depending on the variables in terms of which these differential

F equations are solved.

r
The solution to this set of differential equations may be written as

X (t)	 f 
t 

(t - T)F(T)dT + (t - t o ) x(to) + X(to)	 (12)
t

E^ where the constants of integration are the position and velocity vectors

x(t o ), x(t o ) at epoch time 
to 

and F(T) describes the force function at

..
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(c) errors in the parameters of the model included in the force function

(d)	 errors of integration for equations of motion

c (e)	 errors due to use of rotating coordinate system

If xi2 yi' zi , X i , yi`, ii denote the geocentric inertial state vector

at any arbitrary time t i , relative to an adopted epochto = 0, the power

series solution of the equations of motion can be represented as [Brown

and Trotter, 1969]:

I

1	 0
t

x,	 x ao	 a l	 a 2	 an ti	 1

y	 y = bo	 bi	 b2	 .	 bn ti	 2t (13)

z	 z co	 c 1 	 c2	 ...	 c n .n	 n-1
t i_	 nti

in which all the coefficients are functions of the six initial state vectors

xo, yo	 zo,-xo, yo, zo'at to = 0 and of the gravitational coefficients alone.

The series is truncated automatically when a prespecified-tolerance is

satisfied for the maximum value of t = to be exercised. 	 If the epoch to

is taken near mid-arc, the radius o f convergence of each expansion in k

equation (13) is sufficiently great to accommodate as long as one-third

of a revolution for nearly circular orbits.

The orbit-yenerated by equation (13) can be'referred to an earth- .	 ._
'Fi

fixed framework by the transformation {'
^^ 5

j X x

Y y
I R	 0Z z

(14)
4' X R	 R x

F
Y
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i

1't
in which_

cos wt	 sin wt	 0
R	 = -sin wt	 cos wt	 0 (l6)

0	 0	 1
and

j
-sin wt	 cos wt	 0

R = w -. cos wt	 -Cos wt	 0 (16)

This body-fixed orbit is then used to generate ranges corresponding

to the observations and to form the discrepancy vector

E	 =	 r ij	 (computed) - rj	 (observed)'	 (17)

A least squares adjustment from the discrepancy vector a gives a

body-fixed, state vector at to which when transformed to an inertial coor-

dinate system can be used again in equation (13) to iterate.

f

2.1.2.3	 Constraint Requirements	 j

An inherent limitation of the short arc mode is that it falls short 	 a

of uniquely defining the orbit around the ,earth and thereby locking it

dynamically.	 The system consisting of ranges only will be solvable when

sufficient constraints for the origin and orientation of the coordinate

system in which the motion is described are applied.
E

The above requirement necessitates the inclusion of three distant

fundamental stations in the system of whose six coordinates must be constrained

to obtain stability of solutions.	 At least two of these fundamental stations

must observe any given pass.	 If directional constraints are separately in-

cluded, then constraining the three coordinates of any station will pPovide

satisfactory solutions.
33





m m + I
2 H (km)

16.5 139.5
16 274.6

15.5 416.9
15 567.0

14.5 725.8
14 893.9

13.5 1072.4
13 1262.2

equations (1) and (2):

h vG—m
24	 1

3	 M, M	 2 ...	 (3)
27r(ae + H)T

Using the above equation; the following table gives the "critical"

altitudes which are complemental to resonance m, m + 2, ...





Table 3.1-1

General Coverage Information for Different Orbits

Coverage* Interval Average No. of No. of Total
Height betty. Events Length Req'd Passes Days
of Orbit A^	 Aa to Obtain of a Pass Passes Per Day Req'd

5000 Events

LL=	 9 km 1°0 ON 0.05 sec 10 sec 250

L= 392 km 19°0 24°0 1.0	 sec 4 min 21 2 10 1/2

M= 657 km 27°8 35°2 1.0 sec 6 min 14 3 5

U=1-007 km 37°0 46°8 1.0 sec 9 min 10 4- 2 1/2

*Ideal weather conditions.

To obtain the most accurate satellite orbits and an extremely dense

a
distribution of satellite points observable over a selected area, and

distributed over a time frame of three to five days, the or-b it generation

was carried in the following two steps:

A. Long Arcs

In view of the stringent requirement of long arc (section 2.1.2.1) and

the nonvisibil"ity of most of the orbit over the specified small area, long

arcs over 126_ hours ,were used only to select satellite positions in passes

where the satellite becomes visible for the first time from the grid stations.

This requirement allowed the generation of the long arc with relaxed s'peci-

fications ' and sparse density. Except for the orbital height variations, the

other parameters were kept common in different cases as follows:

Inclination	 900

Y	 Eccentricity	 0.001

Observational time span September 24, 1973 ( Oh0) to September 29,

1973 ,(6h0)'

37
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F

All the arcs were generated in True of Date (TOD) systems.

k The computer program Goddard Trajectory Determining System (GTDS) was

used in generation of long arcs [COSMIC, 1974; Wagner and Valez, 1972].

B.	 Short Arcs

From the long arcs in the L,, M, and U orbital case,	 the portions of

arcs were sorted out when the satellite in each case was over the specified

area under consideration. The "starting" sateilite position coordinates for

each pass and for each orbital height were then used as input linto GTDS

' program to generate short arcs to the position where the satellite would

become nonvisible from the grid stations.

In generating these short arcs all possible refinements, e.g.,

inclusion of the latest geopotential model GEM 6	 the latest solar radiation

and air drag effects, of luni-solar perturbations, etc., as available in

Y GTDS were utilized to simulate the orb,:-ts as near to.reality as possible.

The integration stepsize was also reduced to 10.0 s in place of default
<3

value of 24.0 s used in GTDS to increase the accuracy of the integrated
4

orbits.	 All short arcs were generated in a-body-fixed coordinate system.

Details on the number of short arcs and the density of satellite

points generated for various orbital heights are given in Table 3.1.2.

The coverage pattern for h = 392 km is shown in Figure 3.1-2 with

central station #5 in the center. 	 The solid and broken lines show

' passes from south to north and vice versa, respectively.	 In about two

days the satellite on pass #32 returns behind pass #1	 (with a lag of about

3°)	 the cycle would repeat.	 In the 'cases of the M and U orbits, the,Wand

3= Passes trace back with I' lag in about 3 days, and with 2°5 lag in about

2 days, respectively.

F
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Satellite Average Density of
Height Number of Length of Satellite

(km) -Short Arcs Each Arc Positions-
(in time) per Arc/s

9 30 10 s 20

392 35 8 m 10
26 8 m 1

657 22 10 m 10
31 10 m 1

x

1007 30 12 m 10
30 12 m 1



r

For the airplane (LL), the coverage is more flexible as flight plans

can be modified both in time and spacing.

3.2	 Station Configuration

To keep the area near the San Andreas Fault, a grid, configuration of

9 ground stations with the central station at	 = 380N and a _ 2400 E was

selected.	 The remaining eight stations were placed at 5' 	 separations,

both in latitude and longitude from the central station (Figure 3.2-1).

#3
38 005'N

3

l

#4 #5 #6

(38 0 N,2400 E)
9.3 km

7j 8
i

9^
1k 37° 55'N

7.3 km
,.	 2390 55' 	 2400 OWE

Fig. ` 3.2-1
7	 y

3.2.1	 Geometric Mode;

Withti reference to earlier discussions (section 2.1.1.4) for studying U

the effect of near-critical configurations and improvement in the solution j

due to station separation in height away from the coplanar case, three

different cases (A, B-and C) were selected (Figure 3.2-2)._ 	 The station

height separations in the figure are not to scale. 	 It is seen that the

F	 ^
F heights of stations #1, 5, 7, 2, 4, 6 and 8 in case B are one-tenth of^	 g G

case C	 while stations#3 and 9:,have zero height.. in all three cases.

sS'
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LOCATION OF GRID AND FUNDAMENTAL STATIONS

2	 3

i^ I_ — —

 

	

STATION SEPARATION
NORTH—SOUTH 5';-- 9.3 KM
EAST—WEST 5';s 7.3 KM

BEAR LAKE (a`#II)
t	 / QUINCY(#I )	 420N r 248°E

U^ °", 239
°",E ...	 IL	 SF's

I	 /
^	 \	 SAN DIEGO (#'10) 	 '

33,°N, 243°E	 "^'•^\	 \	 300, ^	 /

225 0	—	 2°...,..
1	 240°

1
Fig. 3.2-3
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3.3 Generation of Ranges

The Range Generation Program (RGP) and the short arcs (section 3.1.2)

were used to generate ranges, both for the geometric (simultaneous) and the

s	 short arc (sequential and simultaneous) modes. Table 3.3-1 gives the

details about the ranges generated.

Table 3.3-1

Generation of Ranges*

Satellite geometric Mode Short Arc Mode

Height Maximum Maximum
(km) No. of Case Data Points No. of Case Data Points

'Passes Type Generated Passes Type Generated

A 3000
9 30 B 1500 -- -- --

C 1500

A 5000 A 5000
392 35 B 5000 26 B --

C 1000 C 500

A 500
657 22; B 5000 --

C 1000

A 5000 'A 5000
1007 30 B 5000 30 B --

C; 1000 C 500





I
I

4 SOLUTIONS PERFORMED

4.1 Geometric Mode Solutions

The software used to generate the solutions in the geometric mode is a
i

I
Fortran program developed at The Ohio State University between 1966 and 1972

N

	

j	 known as "The Ohio State University Geometric and Orbital (Adjustment)'
i

Program" (OSUGOP) [Reil ly et al., 1972]

All solutions are summarized in Table 4.1-1.. For each solution two
i

numbers are listed. The upper number is the standard deviation in cm of the

distance between the grid stations 1 and 2. The lower number is the same

standard deviation divided by the distance itself in parts per million.

All the OSUGOP solutions were solved using inner constraints for the

origin and orientation. Since, this method ,yields nonestimable quantities

(in this case coordinates), they were mapped into estimable quantities

(chords between the stations and angles between the chords) 	 A

subroutine was added to OSUGOP which computes these angles and chords and
i

their variances.

	

f j'	 4.2 Short Arc Mode Solutions

	t	 The software used to generate the solutions in the geometric mode is

a Fortran program developed by Duane Brown Associates between 1968 and

1973 known as "The Short Arc Geodetic Adjustment" (SAGA). A more detailed

,f
description of the capabilities of this program can be found in the two

reports by Brown and Trotter [1969 and 1973]. The most important solutions

	

r	 ^

	j	 are tabulated in Table 4.2-1. Due to the complexity of the problem, no

numerical results are included. They may be found in the discussion in

	

i	 Section 5.
f

	

j	 45'



GEOMETRIC MODE SOLUTIONS

No.	 of Observations
per Station 50 500 1000 2500 5000

Case
No. of Grid Stations
+ No. of Fundamental 9+0 9+0 9+1 9+2 9+3 9+0 9+0 9+0

Stations`

A 832.7 277.0 - - - 158.6 114.5 _

Orbit:	 LL 1139.0 378.0 217.0 156.7
(9 km) B 154.6 49.9 - - - 28.4 - -

211.4 68.3 38.8
C 18.0 6.0 = 3.4 -

24.6 8.2 4.7

A 925.2 289..7 - - 204.8 129.5 91.2
L 1265.5 396:2 280.1 177.2 124.7
(392 km) B 176.7 53.9 - - - 38.1 24.1 17.0

241.6 73.7 62.1 32.9 23.2
C 19.9 5.9 - -, _ 4.2 - _-

-27.1 8.1 5,7

A - 249.5 - - - - -

M 341.2
(657 km) B 142.6 43.0 - - - 30.0 19.1 13.4

195.1 58.9 41.1 26.1 18.3
C 15.5 4.7 - - - 3.3 - -

21.2 -	 6.4 4.5

A 739.8 238.2 2.9 2.3 ` 1.2 168.6 106.1 74.7
U 1011.9 325.7 4.0 3.2 1.7 230.6 145.2 102.2
(1007 km) B 123.3 38.6 - 27.3 17.2 12.1

168.7 52.8 37.3 23.5 16.5`

C 13.5 4.1 3.2 3.4 ` 1.3 2.9
- _

18.5 5.6 4.4 4.6 1.7 4.0

A - 2.2 - - - - - -
LL+L 3.1

A' - 2.2 - - - - -
LL+U 3.0

C= = - - - = -

A

-

128.1
- - - - - -L+M 175.3

B 43.8 - - -
59.9

C 5.0 -
6.9

A 109.3 -
L+M+U 149.4

B 39.8'-
54.4

G - 4.6
6.2`

ORIGINAL PAGE IS	 46
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SHORT ARC MODE SOLUTIONS
No. of Observations

per Station 250 500 750 1000
Case

No. of Grid Stations
+''No. of Fundamental 9+3 6+3 4+3 9+2 7+2 4+2 3+2 9+1 9+3 6+3 7+2 9+3 9+3

Stations

A Orbit:	 L 4* x

C'

A U 2** 2** x x x x x x x x x x

C X

A L+U x

C i

3

0



5. RESULTS

The initial analysis for the geometric mode differed from the analysis

for the short arc mode in a number of aspects which are described below.

Geometric Mode .
, Due to the simplicity of the model only a variance

r	 analysis was performed, and the standard deviations of the recovered dis-

tances between the grid stations were investigated. A linear dependency

between the standard deviation dr,, and the distance 
ri7 

became clear as

the following examples ` show (Figures 5-1, 5-2, 5-3, and Table 5-1). In these

figures Qrij is plotted against rij for 500 observations per station. it

Three graphs for the height differences 0 m, 100 m and 1000 m (cases A, B,

and C) show that the linear dependency, increases with the height difference

between the grid stations. Only the distances between grid point 1 and all

the other grid stations were considered (rid, j = 2,	 9) since this set of

8 distances turned out to be a representative set of all the possible 36

distances between the 9 grid stations`.'

In Figures 5-1 through 5-6,; the interruption in the linear trend occurs 	 a

for the distance r 13-( p 15 km) where the distance under consideration lies' 	
j

more or lesserpendicular to the satellite` orbit. It may be quite possiblep	 Y

that in case of a nonpolar orbit this interruption may disappear.

An alternative representation was also chosen where-the variations of

the relative standard deviations vr ij /r ij with the distances r i d were

investigated. The units for the relative standard deviation are expressed

in parts per million. The same three graphs are plotted as before except

the ordinates are 'v ../r• • instead of a .. (Figures 5-..4, 5-5, 5-6,andr id,.	 i^ 	 rid 	 s .,

Table 5
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i
Table 5-1

r
k	 ar	 (cm), Upper Number, and 6 r /rid (p.p.m.),, Lower Number, As a Function

i3	
iJ

j	 of Orbital Height and Station Height Difference (500 Observations per Station)

K,

r

i
i

E
j'

t	 ri
E•

I
I
i

4.

i

_	 4

t

t,

r

F .

k

Case i	 - j 1	 ^-2 1=3 1-4 1--5 1-6 1-7 1-8 1-9

A
riJkm

7.311' 14.622 9.250 11.793 17.309 18.499 19.895 23.591

LL 277.0 554.3 296.0 330.4 541.2 594.1 592.6 663.5
378.8 379.1 320.0 280.1 312.7 321.1 297.9 281.3

L 289.7 579.5 206.4 258.5 517.7 412.8 413.2 517.6

396.2 396.3 223. 2 219.2 2.99.1 223.2 207.7 219.4

M 249.5 498.9 208.4 258.5 468.1 416.8 427.2 517.2
341.2 341.2 225.4 219.2 270.4 225.3 2.14.8 219.2

U` 238.2 476.2 237.2 275.7 460.6 474.3 479.5 551.4
325.7 325.7 256.5 233.7 266.1 256.4 241.0 233.6

LL+L 2.2 4.1 1._9 2.2 3.8 3.3 3.3 3.9

3.1 2.8 2,.0 1.8 2.2 1.8 1.7 1.7

LL+U 2.2 3.8 1.8 2.1 3.5 3.1 3.1
3.7

3.0, 2.6 2.0 1.8 2.0 1.7 1.6 1.6

L+M 128.1 256.3 102.7 122.0 232.0 205.4 2.04.1 244.1'
175.3 175.3 111.0 103.4 134.0 111.0 102.6 103.5

L+M+U 109.3 88.4 105.8 199.2 176.7 176.6 211.7

149.4 t149.4 95.6 89.7 115.1 95.5 88.8 89.7

B ri
3km

7.311 14.623 9.250 11.793' 17.310 18.500 19.895 23.591

LL` 49.9 99.5 70.6 87.2 123.9 141.2' 150.5 175.2
68.3 68.0 76.4 73.9 71.6 76.3 75.7 74.2

L 53.9 107.8 43.6 57.2 103.4 87.3 91.5 114.4
73.7 73.7 47.0 48.5 59.7 47.2 46.0 ` 48. 5

M' 43.0 ` 86.0 42.8 58.9 93.5 85.6 94.6 117.6	 -
58.9 ' 58.8 46.3 49.9 54.0 46.3 47.6 49.9 -

U 38.6 77.1 47.1 59.3 87.5 94.3 100.4 118.4

52.8 52.7 50.9 50.2 50.6 51.0 50.5 50. 2

L+M 43.8 87.5 40.2 .51.0 86.7 80.4 84. 3 101.9
59.9 59.9 43.4 43.2 50.1 43.5' 42.4 43.2

L+M+U 39.8 79.5 40.3' 49.0 80.0 80.6 83.5 98.0
54.4 54.4 43.6 41.6 46..2 43.6 42.0 41.5
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Table 5-1 (cont`d)

Case i	 - j 1	 -2 1.-3 1 -4 1	 -5 1	 -6 1	 -7 1	 -8 1 -9

C r ijkm 7.329 14.658 9.264 11.795 17.319 18.502 19.903 23.614

LL 6.0 11.4 8.8 10.4 14.6 16.8 17.9 20.6
8.2 7.8 9.5 8.8 8.4 9.1 9.7 8.7

L 5.9 11.7 4.8 6.4 11.4 9.6 10.1 12.7
8.1 8.0 5.2 5.5 6.6 5.2 5.1 5.4

M 4.7 9.2 4.7 6.6 10.2 9.5 10.4 12.8
6.4 6.3 5.1 5.6 5.9 5.1 5.2 5.4

U 4.1 8.1 5.2 6.6 9.4 10.4 11.0 12.8
5.6 5.5 5.6 5.6 -5.4 5.6 5.5 5.4

L+M 5.0 9.9 4.7 6.3 10.3 9.4 10.1 12.4
6.9 6.8 5.1 5.3 6.0; 5. 5.1 5.2

L+M+U 4.6_ 8.9 49 6.3 9.7 9.8 10.3 12.2
6.2 6.1 5.3 5.3: 5.6 5.3 5.2 5.2'
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A similar variance analysis was performed for the angles between the
a

' chords (Figure-5-7 and Table 5-2). 	 A representative set of angles was chosen:

the horizontal angles a 	 e.g., 4253 and )256 (the behavior of these angles

is very similar to the distances r id ); the vertical angles a, e.g., )456

r,
and )258 (the behavior of these angles is related to the strength of the

` network in the vertical direction, i.e., in 'height).	 See Table 5.2.

i.: N.	
-

^^--	 3	 r

:;
d

I

I	 x253

I	 I

256	
i	

N^

< ^4 _ --_ 1 5 6 	 _I
I	 I	 I

i
I	 l	 I	 _	 I

-
7	 8	 9

4	 5	 6

r	 '

Fig.	 5-7

Short arc mode.	 Instead of a variance analysis, a recovery analysis	 3

was performed for quantities least affected by the systematic modeling

errors, namely, the distances between the grid stations.	 The representation

in this case isi n terms of residuals computed as the difference between
i

{

the recovered distances and the true distance between the grid stations.

Geometric mode vs, short arc mode. 	 In the final analysis which com-

pares the geometric mode against the Fhnrt arc mode, the common denominator

k 

f	

Y

of the analysis was the recovery of the distances between the grid stations.

I'=	 ,I - 	 3337

t. 57



Table 5-2

Standard Deviations of Recovered Angles in Radians x 10'
(500 Observations per Station)

a

Case ijk 253 256 456 - 258

«s ijk -45° -90° -180° -180°

A LL 314.12 395.88 424.13 558.29 -

L -277.19 295.14 13.84 12.13
M 258.29 319.33 7.81 7.87
U 268.14 352.96 5.81 6.45

LL+L " 04 2.46- 3.40 - 2.96

LL+U 1.98 2.44 3.23 2.71
L+M 115.39 _109.66, 5.56 5.32
L+M+U 96.87 91.71 4.49 4.19

a,( i j  X450 -90° - 180° -180°

LL 61.87 100.89 96.2.0 135.40B
L 51.89 63.30 6.62 4.70
M 47.20 73.87 4.33 3.56-

U 47.24 77.47 4.07` 3.49

L+M 44.37 58.04 ' 4.90 3.84
L+M+U 41.70 55.68 4.41 3.59

U,0 ijk -.450 X90° -1800 -1800

C LL 6.96 11.75 1.4.48 - 19.13 -
L -	 5.65 6.96 4.48 3.21
M 5.21 8.11 3.56- 2.74
U 5.10 8.32 3.56 2.84

L+M -, 5.25 7.34 3.85 2.91
L+M+U 5.08 7.49 3.67 2.85



The questions to which answers were sought through the analysis were

the following:	 Now is the recovery of distances affected, by

(1)	 the altitude of the satellite

(2)	 the number of observations

k (= (3)	 the number of stations and their distribution

G (4)	 the coplanarity of the stations

G (5)	 the mode of the observations

(6)	 the algorithm.-

These considerations are elaborated on below for both modes of analysis.	
jj3(

5.1	 Altitude of Satellites and Airplanes

5.1.1	 Geometric Mode

Considering only the worst case whereby the stations are situated near`

a plane, it is obvious from Tables 4.1-1, 	 5-1 and Figure 5-1 	 that a single

measurement system (i.e., one satellite at various altitudes or an airplane)

cannot obtain an efficiency factor of 1. 	 (The efficiency factor in this case

is the ratio of the standard deviation of the recovered distance between two

grid stations and the standard deviation of the range measurement a = ,10 cm).r

It can be seen from Table 5-2- that 'the -vertical control of the network
e

(s angles) is much better determined than the horizontal control 	 (by at

least a factor of 20).	 Summarizing, except for the vertical control, single

measurement systems are unable to recover relative station positions with an

efficiency factor of 1.

An improvement, although-not spectacular, is the combination of satel-

lite orbits, i.e.,	 lower and middle orbit combined' or lower, middle and

upper orbit combined.

I
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The best measurement system seems to be the combination of the airplane

and the satellite. From Table 4.1-1 and Figures 5-1 and 5-4, it can be seen

that the efficiency factor exceeds 1 impressively (E.F.z 1/5); thus fewer

than 500 observations (-50 - 100) should be sufficient.

The tables and figures mentioned in this section are summarized in

Tables 5.1-1 and 5.1-2.

Table 5.1-1

500 Observations per Station, Case A (oH 0 m)
a

r1 2 = 7.311107 km
-ari 2 cm

ar12/r1. ppm Cr 

C'2x 

10- 6 rad os 
456

x 10-6 rad

LL 277 378.8 314.12 424.13
L 290 396.2 277.19 13.84
M 250 341.2 258.29 7.81
-U 238 325.7 268.14 5.81
LL+L 2 _ 3.1 2.04 3.40
LL+U 2 -3.0 1.98 3.23
L+P1 12.8 175.3 115.39 5.56
L+M+U 109 149.4 96.87 4.49

Table 5.1-2

Percentage of Residuals (Absolute)



s

5.1.2	 Short Arc Mode
is

In this mode only two orbital altitudes have been investigated, the

lower and the upper orbits.	 As it may be seen from Table 5.1-3 and Figure
s:

5.1-1, the upper orbit gives better recovery than the lower orbit, probably

' due to possible modeling deficiency of the force field in which the satellite

moves.

A clear scale-type effect is visible from the histograms in Figure

5.1-1 and from Figures 5.1-2 and 5.1-3. 	 A shift_ to the negative side can be

recognized.	 The reason for this effectis unexplained at the present time.

5.2	 Number of Observations per Station

5.2.1	 Geometric Mode

In the near critical configurations the number of observations played

only the conventional role that when increasing the number of observations_ by

a factor of n, the efficiency factor decreased by a factor of v'—n.

As an example (from Table 4.1-1), for 50 observations per station in

the lower orbit, the efficiency factor was

a
r12	 925

E.F.=	 =	 10	
=	 92.5Q r

while for 5000 events

91	 92.5
E.F.	 _ r12	 =	 =	 9.1	 = y6r	 10	 5000

50

In the best measurement system (airplane + satellite), the efficiency

factor was already 1/5 for 500 observations per station'.	 Consequently, the

number of observations per station should not have been a factor of
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Observations 'per Station Results
Funda- 6r

# Orbit Case mental Grid Days Minimum Total Total Spread
Stations Stations Passes Events Observations Obser- (cm)- Residuals in cm cm
per Pass per Pass per Pass per Station _ vations

5 upper A 3 9 3 9 8 239 2868 10 10 <Ax<	 15 5
2 <Ay<	 8 6

- 34 <Az< - 29 5
-	 7 <Ar<	 2 9

8` lower A 3 9 5 7 10 254 3048 10 39 <Ax<	 51 12
81 <Ay<	 99 18

-160" <Az< -143 17
-	 9 <or<	 1 10

2, upper A 3 9 3 9 15 483 5796 10 4 <Ax<	 7 3
1 <Ay<	 7 6

- 37 <Az< - 31 6
-	 6 <Ar<	 0 6

13 lower A 3 9 5 7 29 758 9096 10 36 <AX<	 51 15
79 <Ay<	 98 19

-163 <Az< -147 16
-	 9 <Ar<	 2 11

{
i



EFFECT OF ORBITAL HEIGHT, SHORT ARC MODE
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-ion in the geometric mode. If the configuration is near critical,considerat

the number of observations does not help; on the other hand, if the configu-

ration is not critical, a very low number of observations per station (20-50)

can suffice for obtaining an efficiency factor of 1.

5.2.2 Short Arc Mode

The effect of the number of observations per station seemed to be negli-

gible according to Table 5.2-1 and Figures 5.2-1 and 5.2-2. However, an

increase in the number of observations seems to make the systematic effects

more pronounced due to modeling deficiencies (see Figures 5.2-1 and 5.2-2).

Increasing the number of observations per station could be advantageous

if one would like to model these systematic effects. The problem of system-

atic effects is discussed further in section 5.6.2.

5.3 Number of Fundamental Stations

5.3.1 Geometri c Mode

One of the alternatives to break critical configurations was to observe

either the distant fundamental stations (future Lageos stations) or other

grid stations outside of the small area of investigation. From Tables

5.3-1 and 5.3-2 it appears that at least three fundamental stations need to

be observed simultaneously, which may be a very unrealistic requirement.

Although one or two fundamental stations look favorable when looking at the

standard deviations (Table 5.3-1), Table 5.3-2 shows that due to high correla-

tion the interstation distances could not be recovered with high accuracy in

these two cases. It should be kept in mind that in the combination mode (air-

plane,and satellite) no fundamental stations need to be observed to obtain the

same or higher accuracy than in the 9 + 3 mode as depicted in Table 5.3-2.
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Observations per Station Results
Funda- Qr

Minimum Total Total Spread# Orbit Case mental Grid Days
Stations Stations Passes Events Observations " Obser- (cm) Residuals in cm cm
per Pass, per Pass per Pass per Station vations

5 upper A 3 9 3 9 8 239 2868 10 10 <ox<	 15 5
2 <oy<	 8 6

- 34 <oz< - 29 5
-	 7 <ar<	 2 9

2 upper A 3 9 3 9 15 483 5796 10 4 <ox<	 7 3
1 <oy<	 7 6

- 37 <oz< - 31 6
-	 6 <dr<	 0 6

3 upper A 3 9 5 16 15 969 11628 10 3 <Ax<	 7 4
4 <oy<	 3 7

- 43 <oz< - 37 6
-	 7 <or<	 1 8

8 lower A 3 9 5 7 10 254 3048 10 39 <ox<	 51 12
81 <Ay<	 99 18

-160 <oz< -143 17
-	 9 <ar<	 1 10

10 lower A 3 9 5 7 29 758 9096 10 36 <ox<	 _51 15
79 <oy<	 98 19

-163 <oz< -147 16
9 <or<	 2 11







Grid Stations +

Fundamental Stations
Q	 cm
r12

Q	 /r	 ppm
r12	 1.2

x 10-6 rad
az53

Q	 x 10-6 rad
R45s

9 + 0 238 325.7 , 268.1 5.8

9 + 1 3 4.0 4.5 2.3

9+2 2 3.2 4.0 2.8

9 + 3 1 1.7 1.4 2.8

Residual 0 - 1 cm 1 - 2 c 2 - 3 cm 3 - 4 cm >4 cm Max.	 Res.

9 + 0 -- -- -- -- 100 669 cm

9 + 1 28 16 14	 ' 14 28 11	 cm
r15 E c

yr	 -P 9 + 2 8 17 11 8 56 14 cm
-a

`^' 9 + 3 72 22 6 -- -- 3 cm



^Q



500 Observations
per Station

Case Qr	cm
, 2

ar	 /r12 ppm12
x 10- 6 rad

x253
x 10- 6 radS 456

lower A 290 396.2 277.2 13.8
392 km B 54 73.7 51..9 6.6

C 6 8.1 5.6 4.5

upper A 238 325.7 268.1 5.8
1007 km B 39 52.8 47.2 4.1

C 4 5`.6 5.;1 3.6

f

are as influential in the short arc mode as in the geometric mode. In this
f

case the only advantage of the short arc mode is the absence of the require-
r	

ment of simultaneous observations.

5.4 Height Difference Between Grid Stations

5.4.1 Geometric Mode
1

Since the situation of station_ positions near a plane form a near

critical configuration for ranging measurement systems, the extent to which

a solution (i.e., the inverse of the normal matrix) might be improved by mov-

ing some grid stations out of-the-plane-was investigated. Having height dif

ferences of only 100 m ; ( Case B) already showed an improvement. When the height

difference was 1000 m (Case C) (See Tables 4.1-1, 5-2,`5.4-1 and 5.4-2), fur-

ther improvements were evident. For example, in caseof the upper orbit, the

standard deviation of the distance between stations 1 and 2-dropped from 2.38 m

(Case A) to 39 cm (Case B) to 4 cm (Case C). However, from Table 5.4-2 it

Table 5.4-1



Table 5.4-2

Percentages of Residuals (Absolute)

500 Observations
per Station Case 0 - 1 cm 1 - 2 cm 2 - 3 cm 3 - 4 cm >4 cm Max. Res

lower A -- -- -- -- 100 13226 cm
392 km C 6 8 6 11 69 19 cm

upper A -- -- -- -- 100 669 cm
1007 km C 14 11 11 11 53 25 cm

I	 I	 !	 '	 1	 1

creation of height differences in any case is an unrealistic suggestion

because the topography in most areas may prove to be unsuitable.

a

5.4.2 Short Arc Mode

The nature of the dynamic mode is such that critical configurations

due to the fact that stations are situated in or near a plane do not exist

as Table 5.4-3 and Figure 5.4-1 show.

Table 5.4-3

Percentage of Residuals (Absolute)
500 Observations per Station, Upper Orbit

Case 0 - 1 c 1	 - . 2 cm- 2 - 3 cm- 3 - 4 cm >4 cm Max.	 Res.'

A

C

22

20

28

11

14

25

14

22

22

22

7 cm

6 cm





r

j	
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5.5.2 Short Arc Mode
t

Often the ranges used for the short arc mode were the same as those

generated for the geometric mode. To ascertain if the simultaneity of the

ranges imposed unnecessary constraints on the passes in the short arc mode,

similar solutions were made where the simultaneity was broken up.

One example which is shown below originally had one event every 12

seconds, observed by all the 12 (9 + 3) stations. The same solutions with

one observation observed to a single station showed hardly any difference.

(See Figure 5.5-1 and Table 5.5-1.)

j

Table 5.5-1

Percentage of Residuals (Absolute)
Upper Orbit, 250 Observations per Station, Case A (oH = 0 m)

Mode 0-1 cm 1-2 cm 2-3 cm 3-4 cm >4 cm Max'. Res.

Simultaneous 11 17 6 19 47 8 cm

Not 11 25 17 22 25 6 cm
Simultaneous



.»r1

E

EFFECT OF OBSERVATIONAL. MODE, SHORT ARC MODE

UPPER -ORBIT 1007 km

HEIGHT DIFFERENCE: O M.
20

250 OBS./STAT. (3000 OBS.
E_

15 GROUPED OBSERVATIONS	 334	
1

1232
 234-

.— SEQUENTIAL OBSERVATIONS /---f 4 z	 3 41

10

v

E
5

5	 •^__-•	 15	 20	 25
` Ocm .- '
r 10	 -.

-
-'	 ^^	 --

-10

RIj(km)

Fig.	 5.5-1



5.6.2 Short Arc Mode

5.6.2.1 Gravity Model

w
As will be explained in section 5.6.2.3, some concern was expressed when

solutions with exact ranges (Q = 0 cm) as compared to similar solutions with

c	ranges of a x , 10 cm did not show any improvement in the residuals of the

recovered distances between the grid stations. Modeling deficiencies were

suspected.

The first possible cause of systematic effects in the residuals of the

grid station coordinates could be the difference between the gravity models'

in the data (orbit) generation program (GTDS) and the solution .program (SAGA)

To test this hypothesis data was generated with CTDS using only the GEM 6

(15 x 15) gravity field (no drag, etc.). In the solutions the following

fields were used:

(a) spherical gravity field (J o 	1)

(b) "ellipsoidal gravity field (J o , J2 from GEM 6)

(c) 8 x 8 gravity field from GEM 6

(d) 8 x 8 gravity field as it is inherent in the SAGA program._

The results of the comparison are given in Table 5.6-1.

Table 5.6-1

Percentage of Residuals (Absolute)
Lower Orbit, 250 Observations per Station, Case A (oH = 0 m), `o = 10 cm

0-1 cm 1-2 cm 2-3 cm 3-4- cm >4 _cm Max.	 Res.

a 22 6 3 0 69 25 cm
b' 25 14 14 8 39 9 cm
c 27 11 17 6 39- 9 cm
d " 22 22 6 11 39 9 cm



s

5.6.2.2 Nongravitational Forces

Since the gravity field was not the cause of the large residuals, a

new lower orbit was generated without any nongravitational forces such as

atmospheric drag, solar radiation pressure. Solutions using the truncated

GEM 6 (8 x 8) gravity field did not provide any clue as to the nature 'Of

the residuals in grid station coordinates (see Table 5.6-2).

Table 5.6-2

Percentage of Residuals (Absolute)
Lower Orbit, 250 Observations per Station, Case A (oH	 0 m), u = 10 cm

0-1 cm 1-2 cm 2-3 cm 3-4 cm >4 cm Max.	 Res.

Drag,
Radiation 22 22 b 11 39 9 cm
Pressure

No Drag,
No Radiation 20 19 14 8 39 9 cm

Pressure

5.6.2.3 Adjustment

The final step which could be made towards the discovery of the

reason behind the systematic effects in the residuals of the grid station

coordinates was to generate data and solutions with only the GEM 6 (8 x 8)

gravity field using either ranges with a standard deviation, of 10 cm or

true ranges (a = 0 cm). According to Table 5.6-3, the difference in results

is again insignificant. The residuals in terms of grid station coordinates

are listed in Table 5.6-4. Subtracting the residuals in X,Y,Z of station -5

from all the others and plotting the differences, clearly shows a very

systematic pattern (Fig. 5.6-1).
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Table 5.6-3

Percentage of Residuals (Absolute)
Lower Orbit, 250 Observations per Station, Case A (oH = 0 m), Q	 0 cm

0-1 cm 1-2 cm 2-3 cm 3-4 cm >4 cm Max.	 Res.

a = 10 cm

a =	 0 cm

20

_28

19

11

14

8

8

25

39

28

9 cm

8 cm

1

Table 5.6-4

Station AX	 (m) AY (m) 07.	 (m)

1 0.39 0.82 -1.50
2 0.44 0.90 -1.55
3 049 0.97 -1.61
4 0.41 0.83 -1.47
5 0.46 0.91 -1.52
6 0.51 0.99 -1.57
7 0.43 0.84 -1.44
8 0.48 0.92 -1.49
9 0.52 1.00 -1.54

i

3_	 6

5'
	

8



is

It might also be added that the recovered state vectors (X, Y, Z,

X, Y, Z) by the short arc adjustment as compared to the true state

vectors, in a body-fixed system, show residuals in X, Y which are a factor

of 100 larger than the residuals in X, Y, Z, Z. In an inertial system

the residuals in X, Y are a factor of 100 larger than the residuals in

Z, X, Y, Z. This clearly indicates a rotational problem, namely, the
t

corrections to X, Y were such that in a body=fixed system the polar orbit

did not yield tracks of subsatellite points which form an angle with the

meridians (at the equator the angle is about 3°5).

The reasons for the above problems are not clear at the present time.'
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6. SUMMARY AND CONCLUSIONS

The Close Grid Geodynamic Measurement System was conceived as an orbit -

ing ranging device with a ground base grid of reflectors or transponders

(spacing 0.5 - 50 km), which are projected to be of low cost (maintenance free

and unattended), and which will permit the saturation of a local area to obtain

data useful for geodynamic and geodetic (oceans included) purposes. In this

investigation a first attempt was made to get an insight on how maximum

accuracy of relative station positions can be achieved in a short time span

(3_5 days).

Measurement systems as laser radar, RF radar or a combination of both

operating in continuous wave or pulse mode are able to provide ranges, range

rates (Doppler) or range differences (integrated Doppler). In this study

only ranges were considered with the already feasible laser precision of

10 cm. The ranges are observed in two modes, simultaneous and nonsimultaneous.

Two types of vehicles carrying the transmitter have been considered: (A)

Satellites at variousaltitudes: 392, 657 and 1007 km. The satellite orbits
	 -3

(passes) were generated with the Goddard Trajectory Determining System

(GTDS), developed at t`'ASA's Goddard Space Flight Center. (8); Airplane flying

at an altitude of 9 km.

Two types of stations were considered: (A) Nine grid stations At five-

minute intervals chosen in the vicinity of the San Andreas Fault area in

California (A^ = 9.3 km and AX = 7.3 km). The ellipsoidal height differences

between the stations were varied between 0 and 1000 m. (B) Three distant

fundamental stations were selected outside the grid area near San Diego

and Quincy in California and near Bear Lake, Utah.

Having simultaneous and nonsimultaneous ranges, two different algorithms

can be used to compute the relative positions of grid stations: (A) Geometric
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adjustment which takes advantage of the simultaneity of the observations.

The software used was The Ohio State University Geometric and Orbital

(Adjustment) Program for Satellite Observations (OSUGOP). (B) Short arc

adjustment (dynamic mode) which does not have the requirement of simultaneous

observations. The software used was the Short Arc Geodetic Adjustment

Program (SAGA). Since a range measurement system lacks any coordinate

G

	

	 system definition, especially in the geometric mode, the recovery of the

relative positions was expressed in terms of the estimable quantities, the

k	 lengths of the chords between the grid stations and the angles between the

i	
chords.

6.1 Geometric Mode Results

The geometric mode leads to`a very simple mathematical model. However,

local, satellite ranging networks often degenerate into critical configurations

(see Table 6-1, line 1) as opposed to global satellite ranging networks. To

avoid these critical configurations two possibilities are mentioned: (1)

Separate stations in height either by giving the grid stations some height

di-fference off (Table 6-1, line 2) , a possibility only in the case > of accom

modating topography, or by including into the observation campaign the three

stations outside the area (Table 6-1, line 4). This possibility has the

stringent requirement of having favorable weather conditions at the different

sites (grid area and 3 fundamental, stations). (2) Separate the ranging devices

in height. The best (and most realistic) solution to avoid the effects of

critical configurations within the limited area of the grid is the combination

of an airplane and a satellite (Table 6-1, line 5. Note that no distant

[fundamental] stations are needed.) The only disadvantage of geometric mode

is the instrumental problem related to the realization of the simultaneous

observations. These at least for the lasers may be overwhelming.
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No. of Height (km)
Mode ail No. of Funda- Percentages of Residuals (Absolute)

(m,) Grid mental Satel- Air
Stations Stations 1ite- plane 0-1 cm 1-2 cm 2-3 cm 3-4 cm >4 cm Max.	 Res.

Geometric 0 9 0 1007 -- 100 669

Geometric 1000 9 0 1007 -- 14 11 11 11 53 25

Geometric 0 9 1 1007 -- 28 16 14 14 28 11

Geometric 0 9 3 1007 -- 72' 22 6 3
Z

r Geometric 0' 9 0 392 9 69 28 3 3
Q _

Short Arc 0 9 1	 3 1007 -- 22 28 1	 14 14 22 7

s

WWI



6.2 Short Arc Mode Results

The absence of the requirement of having simultaneous observations and

the absence of the bothersome critical configurations are the main advantages 	 _t

of the short arc mode. However, in order to get stability in the solutions,

the three distant (fundamental) stations must be observed during each pass

(Table 6-1, line 6). A pass of four- to ten-minute lengths for satellites

at altitudes between 400 and 1000 km is so short in duration that favorable

weather conditions occurring simultaneously at all the sites might be just as

stringent a requirement as in the case of the geometric mode. (Short

arc mode using RF radar may alleviate the weather dependency but is

negatively compensated by more serious'refractional problems and more

complex active grid stations:)

The information contained in Table 6-1 has also been graphically

represented within Figure 6-1 to bring out the comparison between various

approaches.

6.3 Conclusions

Ranging with ar	 10 cm and 500 observations perstation can recover

relative positions well (a rid	 4 cm and Ivri	 < 3 cm). Unit efficiency

ar/ar
ij
 can be achieved with :fewer observations. Expected improvements in

the ranging accuracy (to 1-2 cm) and in the corresponding precision makes

the proposed system an excellent candidate for geodetic and geodynamic
,

applications. As far as the mode of operation is concerned for a laser	 a

system, the following trade-offs need to be considered: The likelihood of

having favorable weather conditions at the distant sitesin case of the

{	
short arc mode (possibly with a single satellite and nonsimultaneous ranging)
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HISTOGRAMSTAT STAT. 0- ^^
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Fig 6-1
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versus the feasibility of overcoming instrumental problems in the geometric

mode (airplane and satellite with simultaneous ranging).

Neither of these problems are critical for an RF system, and the

k
decisive factor is whether systematic errors affecting the RF systems can

, i be reduced to the level of those required by the users of the system.

6.4	 Applications

` Possible candidates as users of a Close Grid Geodynamic Measurement

System are:	 Solid Earth--measurement of motions near plate boundaries,

subsidence and uplift, regional 	 strain measurements, horizontal motions

and dilatancy components near faults, post earthquake resurvey, regional

tidal loading, volcanism associated motions, surface motions on unstable;

slopes, geodetic surveys.	 Cold Regions--measurement of rigid body motions,

deformations and strains associated with the dynamics of pack ice and ice

islands,, snow/ice motions in major ice sheets, profile and flow of glaciers,

surface motions in permafrost. 	 Marine Geodesy--positioning of ocean bottom

geodetic reference frame, positioning or tracking of surface buoys,

:

t
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7. RECOMMENDATIONS FOR FUTURE STUDIES

A. The grid station network snould be extended to a large grid (1000

stations). Organization of observations might be a major task in this

case.

B. Once a large network has been set out, measured and recovered, actual

changes in the relative positions of the grid stations should be

simulated. A second recovery adjustment will give an insight in the

capabilities of monitoring these changes in relative position. 	
j

C. Better algorithms for short arc adjustment should be devised to

remove systematic effects at the centimeter level.

D. A short investigation should bE made into the correctness of the step

and iterative adjustment procedure and the computational accuracy of

geometric mode algorithms.

E. An optimum estimation procedure for, station recovery might be a

geometric mode which takes advantage of orbital constraints which

connect the different (unknown) satellite positions, or, the reverse,

a short arc mode which makes use of (near) simultaneities between

observations.

F. The case of very closely spaced'< (< 1 km) grid system should be

investigated because of numerous potential applications to engineering

works.

F
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