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APPROACHES TO DIGITAL SNOW MAPPING WITH LANDSAT-1 DATA
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ABSTRACT

Applying the same Landsat-1 data to three sub-
stantially different image processing systems,
a snow mapping task was performed. LARSYS
Ver.3, STANSORT-2 and General Electric Image-
1OO did all the jobs of detecting the snowline
in forested mountainous terrain, and to de-
termine the snowcovered area. While the con-
trol and accuracy achieved with LARSYS is
remarkable, time and effort to perform the
processing favourize the systems STANSORT
and Image-lOO. The experiences and results
demonstrate the need for a fast interactive
system for operational snowmapping with
multispectral satellite data.

INTRODUCTION

The great need for better information on the earth's
water resources in general, and global snow cover ob-
servations in specific, call for an operational use of
satellite imagery. The great amount of available satel-
lite data leads to the question of automatization of
the snowcover determination process. As an input in a
runoff prediction model, the snowcovered area is the
most important factor - highly linearly correlated with
the runoff (Rango, Salomonson & Foster 1975).

As with Landsat 1 and 2 4-channel MSS data is
available in digital form, a good base for a test in
data processing is given. The problem,whether Landsat
orbit and coverage characteristics are sufficient for
an operational snow survey task,shall not be discussed
in this paper.

Generally it is known that three main problems are
observable in digital snow mapping using Landsat data.
- The differentiation between snow and clouds is often
difficult given the 4 MSS bands of Landsat.
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- Major interpretation problems are encountered in
mountainshadow areas.

- Difficulties arise when the snowline boundary lies in
forested mountainous terrain.

THE CASE STUDY

A Landsat-1 scene of 21 May 1973 of the Windriver
Mountains (Wyo) was selected. Good U-2 RC-8 color aerial
photography was available for part of the Bull Lake
Creek watershed. Therefore that area of roughly 6OO km
(23O mi^) was used as test area (see Fig. 1).

At that date no major shadow problems at snowline
altitudes were observed. This specific problem is dis-
cussed in Gfeller 1975.

No clouds persisted in the test area. Therefore all
effort was guided to the snowline differentiation prob-
lem in forested mountainous areas.

However it was tried to separate snow and clouds on
an adjacent area with LARSYS1 supervised classification
(see special description under LARSYS).

To test the feasibility of digital image processing
methods to classify the snowcovered areas, LARSYS Vers.3
- a non interactive statistical discriminant analysis
system, and two interactive systems - STANSORT-2 with a
semi supervised clustering, and General Electric Image-
1OO with a deterministic discriminant analysis approach
were applied to the same data.

The U-2 RC-8 photography served as ground check.
Training areas were determined by photointerpretation
techniques. Some checking on the ground, especially for
ground cover types and vegetation density, was carried
out in summer 1974.

Spectral signature research on the thawing process
of snow»with a Gamma Scientific ERTS-Radiometer,served
as a basis for the snowmapping job.
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Fig. 1: Landsat-1 Channel 5 scene of the Bull Lake Creek
area in the Windriver Mountains (Wyo) of 21 May
1973. The testarea for the snowcover investiga-
tion outlined. Scene ID 13O217362.

REPRODUCIBIUTY OF THE
ORIGINAL PAGE IS POOR
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THREE APPROACHES TO DIGITAL SNOW MAPPING

LARSYS Version 3 of Purdue University was the
first system used in the investigation. Histograms sho-
wed the unique distribution of the snow pixels, and re-
vealed also severe banding in Channel 6. Therefore this
channel had to be dropped from all further analysis.
Initially it was planned to divide the image data into
7 classes, namely: Water, clouds, shadows, bare forest
& vegetation, forest with snow, metamorphic snow (all
but dry fresh snow), and dry fresh snow.

After a very careful selection of training fields,
the cluster function provided the means to assign to
each class well separable subclasses. The subdivision
was necessary to make the signature overlap between ad-
jacent classes minimal. In total 28 subclasses were con-
sidered in the final classification. As mentioned ear-
lier, in the test area no clouds were persistent, there-
fore the cloud class (with 7 subclasses) was not anymore
important in the specific case.

From the previous spectral studies it was evident,
that sunny fresh dry snow would saturate the used 3
channels of Landsat-1. This datagroup was under such con-
ditions not acceptable to the LARSYS maximum likelihood
processor/classifier, because the standard deviations
of the training samples' brightness values were zero.
By the introduction of a few "dirt" pixels, with close-
to saturation values in all channels, the data finally
could be made acceptable. The sunny metamorphic snow
showed also saturation in channels 4 and 5, but in chan-
nel 7 the brightness was lower. Fig. 2 shows a plot of
ratios of the 4 channels, measured over a thawing cycle
of snow. Remarkable is the heavy increase in the 4/7
ratio while the snow is changing from a dry to a thawing
state with increasing water content at the surface.

The LARSYS separability function revealed, that one
of the three "bare forest & vegetation" subgroups was
statistically not well separable from one of the ten
"forest with snow" subgroups. Taking them together in
the final analysis they provided an interclass which may
be described as the snowline or the snow/non snow tran-
sition belt.The LARSYS classification is shown in Fig.3.

Further enlarging of the testarea to include cloud
pixels as well revealed, that by direct methods, clouds
could not well be distinguished from snow, given the 4
spectral channels of Landsat. However by indirect means,
by an interpretation of the classification result it
could be achieved. The cloud training class could be
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Fig. 2: Ratios of Landsat-1 channels' brightness values
shown in a time sequence during melting of snow.
The instrument measured/relative values were
normalized and smoothed before ratioing.
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Fig. 3: LARSYS Ver.3 classification result, Bull Lake
Creek testarea (scene and area same as in Fig.l,
distortions due to printer).
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grouped into 7 subclasses, with the "metamorphic snow"
we got 2, and with the "forest with snow" class 1O sub-
groups or subclasses. One of the cloud-subclasses (A)
caused problems in distinguishing it from one "meta-
morphic snow" subclass (B), and another cloud subclass
(C) was not well separable from a "forest with snow"
subclass (D). If now in the classification a few cloud
pixels of the same cloud subclass (A) were encountered
alone in "metamorphic snow" area (B), they could be re-
interpreted as wrong classified "metamorphic snow"
pixels. Similar with the second error groups C vs. D.
If however the cloud classified pixels of group A and/
or C were surrounded by pixels of other cloud subclasses,
they could be regarded as real cloud pixels. On an in-
teractive system with CRT display and lightpen, these
error eliminations can be achieved by pointing at prob-
lem pixels or areas and correcting them directly. While
with LARSYS Vers. 3 it was quite a time consuming re-
interpretation of the classification map and statistics.
An automatic error correction could be made as follows:
When for instance a cloud pixel is classified, all
neighbouring pixels could automatically be checked for
their class origin. According to the result it could
then be decided, whether it is a real cloud pixel or not.

Generally it can be said about the LARSYS approach,
that it uses a well supervised, stepwise, statistically
proof method. Little processing knowledge is requiredf
and the documentation and courses offered are very good.
It seems not necessary to describe the LARSYS features
in detail, because they are well known. Critical points
are, that the whole procedure is very time consuming
and therefore expensive. Mathematically there is no
possibility to change algorithms in the system - one
has to use the preprogrammed ones. The communication
lines from external terminals to Purdue are not very re-
liable. Hopefully the LARSYS Vers.3 system will in the
future be available to other Universities as well, to
avoid the constant overloading of Purdue.

But finally it must be said, that at the end of the
classification process you have gained considerable in-
sight into your data, and you know well how you reached
your result.

The overall achieved classification accuracy regar-
ding to the training areas amounted to 92 % (see Tab. 1).
The process with LARSYS Vers.3 is - good ground training
data given - very accurate. But as the whole procedure
is very time consuming and therefore costly, it is very
questionable whether to use this approach for large area
operational snow mapping at all.
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The second processing system used in the snowmap-
ping job was STANSORT-2 developed by R.J.P.Lyon and
F.R.Honey at Stanford University. Having gained much
experience with the data in the LARSYS procedure, the
STANSORT system was used to check the feasibility of a
highly interactive semi-supervised clustering as an
approach to the snow cover determination problem.

In a first step, by simple density slicing in chan-
nel 7, the dry snow pixels were detected and stored.
Then an unnormalized fast cluster was used and different
printouts obtained by varying the cluster tolerance le-
vels (gates) in the STANSORT clustering algorithm. In
this approach, the first pixel in the first scanline is
stored with its channels' brightness values. It is named
class (or clustergroup) A. Then the next pixel is check-
ed whether its values lie within a given tolerance (gate)
setting to the ones, of A. If so it is assigned to class
A as well; if not it is called a new class B, and so
on with the following pixel...

Up to 26 classes - due to the 26 characters in the
alphabeth - can be formed. If there are more distinct
different groups, the spaces are left blanc. To fit
those into the scheme, the tolerance setting has to be
widened. If finally an acceptable or useful tolerance
setting is found, these gate factors can be stored and
applied over larger areas.

By setting in our case the upper ranges for channels
4 and 5 to exclude the saturation level, all metamorphic
+ dry snow areas could be extracted. The combination of
this byproduct with the previous density slicing in
channel 7 lead to1 the distinction of the first two clas-
ses. The varying results of the following clusterings
were compared with the training area pattern gained by
photointerpretation of the U-2 RC-8 photography. Thus
the best fitting gate settings could be easily determi-
ned. This checking was done on a black and white tv
screen where the cluster results appeared. Because of
this interactive access to the system, we named the
clustering process semi supervised. The STANSORT classi-
fication is shown in Fig. 4.

Generally the STANSORT system can be described as
follows: It allows to work directly with the standard
NDPF computer compatible tapes of Landsat. The following
functional handling procedures can be applied to the
pixel data: Smoothing, ratioing, edge detection, norma-
lized and unnormalized clustering, removing of atmos-
pheric effects, calibration, shadeprinting, extraction
of data values, histogramming, debanding and deconvo-
luting. The interactive access to the PDP-1O computer
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Fig. 4: STANSORT-2 classification result, Bull Lake
Creek testarea (scene and area same as in Fig.l,
distortions due to printer).
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5: General Electric Image-lOO classification result,
Bull Lake Creek testarea (scene and area same as
in Fig.l, distortions due to printer).
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is achieved through a keyboard, and instant control over
the extremely fast operating processor is possible via
a black and white CRT display. A very fast primary eva-
luation of test results is hereby possible, and para-
meter changes - as for instance the gate setting in the
clustering - may be applied easily. The very fast algo-
rithms and processor make the system comparatively in-
expensive. The operation of the system can be learned
quickly (1-3 hours), making it a very valuable tool for
the discipline oriented user-investigator who often is
not a specialist in digital image processing.

In the comparison with results obtained by the
LARSYS classification, the STANSORT cluster/slicing
showed almost identical distribution of the classes
(see Tab. 1). The amount of time and effort however was
considerably smaller than with LARSYS. On the other hand,
the control and final accuracy achieved with LARSYS' su-
pervised technique cannot be reached. Again the question
is how accurate your result has to be and how much time
and money that you are willing to spend .

The third and probably one of the most advanced
systems in operational image processing tested was
Imaqe-lOO of General Electric. The same CCT's and test
area, and part of the same ground "truth" were used again.
As a classification approach a parallel epiped classifier
in an interactive signature mode was used. The also
available more sophisticated, more precise but more time
consuming classifiers were not tried, because the idea
of the test was to check the feasibility to operational
snowcover determination. On a color tv display which
shows the test area (in any color combination of the
channels), the user places a cursor around the object
or ground cover class of interest to define the training
area. The upper and lower limits in each spectral band
of that group of training-pixels are determined. All
data points in the displayed image, that spectrally fall
within that parallel epiped shaped hyperspace, can be
alarmed and displayed to be checked against ground data.
If in the feature space there are overlapping classes,
the limits or boundaries of the parallel "epipeds can be
shifted to minimize the problem. For some specially
distributed classes, this technique does however not
give optimal results.
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As normally just one to two training areas are used per
class, the whole classification is•statistically not
that proof as with LARSYS (see Tab. 1). There, for the
whole area and all classes together, 35O training areas
were used. The main advantage of Image-lOO is however,
that a full screen of about 37O by 525 pixels of in our
case 3-channel data, can be classified into 8 classes
within a few seconds of computertime. The display and
interactivity of the system are a great help in defining
training areas. Also the color coding of an intermediate
class result makes the decision process, whether to
change levels or not, very easy. But the overall classi-
fication with 7 or 8 classes does not show up very well
on the color display - another output medium than photo-
graphy from the color screen is necessary.

The whole training and classification of the Bull
Lake River test area was possible in less than 2 hours
time (results see Fig. 5 and the comparison in Tab. 1).
This is surely an indication that such or similar
systems should be used in operational snowcover deter-
mination.

COMPARISON OF RESULTS

If we look at Tab. 1 and compare the obtained re-
sults, we might argue that LARSYS did the best job. This
is sure so if we disregard the amount of time and effort
spent to reach that goal. Due to system overload and non
interactivity it took weeks to perform the LARSYS job.
With STANSORT within about one day experiencing and
classifying - but basing strongly upon the experience
gained by LARSYS - almost the same could be achieved.
With Image-lOO the results seem to lack of precision.
But comparing the two hours cost of operating the system
and the little experience we had with Image-lOO, the re-
sult is still surprising. We are convinced that now with
all the experience, we could improve the nominal Image-
lOO result furthermore applying the same data again.

Generally there is observable a tradeoff between
the classification accuracy and the time or money needed
in the three different approaches.
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Tab. 1: Comparison of Classification Results
(Numbers represent areas in percent)

Cover Type LARSYS Ver.3 STANSORT-2 GE Image-lOO

Dry Snow
Metamorph . Snow
Forest w.Snow
Interzone
Bare Forest/Veg.
Shadow + Water

Total Snow
Covered Area

Total Area
Bare of Snow

Unclassified Area

31.8
22.1
27.2
9.4
6.2
0.4

85.8

11.3

2.9

30.8
22.5
27.8
11.2
6.0
O.2

86.7

11.8

1.5

30.9
21.1
27.1
4.6
10.4
0.2

81.4

12.9

5.7

Accuracy/Testfields 92 (calc.) 9O (est.) 87 (est.)

CONCLUSIONS

Digital snow mapping is still a problem where the
human interaction represents an essential factor. It has
to be kept in mind, that operational snow mapping means
a big number of imagery, and in most cases the require-
ment to cover a large area.

In this specific test an area of just 6OO km was
processed, but we used 3-channel Landsat data with full
pixel resolution. It is believed, that the resolution
of this satellite is not needed for large area snow-
mapping, and we could have been working with a bigger
area by using incremental samples of the image data.
But it was the aim of this project to demonstrate the
substantial increase in applicability of satellite data
to operational snowmapping, by connecting a multispec-
tral approach with digital image processing techniques.
As a result it is believed, that a highly interactive,
specially designed system together with a skilled appli-
cations specialist can, for the future bring maximum
operational use in satellite snowcover observations.
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