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0 INTRODUCTION
 

Most of the past effort in the field of earth resources data processing
 

has been research oriented. Earth resources imagery has been provided by NASA
 

to a number of researchers who have processed the data in various ways in
 

order to determine what, if any, useful information could be extracted from
 

the given images. These experiments have demonstrated that useful information
 

can indeed be extracted from aircraft and satellite multispectral scanner
 

imagery of the earth's surface. Economic studies have indicated potential cost
 

effective systems based on these techniques. Consequently, it is anticipated
 

that during the 1980-1990 decade earth resources satellites will be designed
 

and flown for specific purposes, i.e., to monitor severe weather systems, to
 

monitor water pollution, to survey and monitor world food production, etc. In.
 

these applications it may be more cost effective to process the data on-board
 

the satellite and transmit the data products directly to the users rather than
 

transmit the raw data to a ground processing station for generating the data
 

products and then distributing the data products to the users via another
 

satellite system.
 

The purpose of this study was to investigate the feasibility of an on­

board earth resources data processor launched during the 1980-1990 time frame.
 

Since about five years are required to design, build, check out, and launch
 

such a system, a 1980 system would be based on 1975 technology, and a 1990
 

system would be based on 1985 technology.
 

In order to determine the feasibility of on-board processing we must
 

first define the on-board processor. This requires that we define both the
 

technology available for use in the design and the computational requirements
 

required of the processor. The computational requirements depend on the algo­

rithms that the processor must implement which in turn, depend on the data
 

products that must be extracted from the data to satisfy the users. Consequently,
 

in order to determine the feasibility of on-board data processors we must
 

start with a study of projected user applications to define the data format
 

(data throughput rate, number of spectral bands, etc.) and the information ex­

traction algorithms the processor must implement. Based on these constraints
 

and the constraints imposed by the available technology we can design some
 

.on-board processors and evaluate their feasibility. The study plan is sum­

marized in Figure 0(l).
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Figure 0 (1) Study Plan
 

A brief description of the content of each of the succeeding sections of
 

this report follows.
 

Section 1. In this section we present the results of a survey of earth
 

resources user applications and their data requirements, earth resources multi­

spectral scanner sensor technology, preprocessing algorithms for correcting
 

the sensor outputs and for data bulk reduction, and a candidate data format to
 

be used in subsequent sections.
 

Section 2. This section contains the computational requirements required
 

to implement the data analysis algorithms, a review of some computer archi­

tectures and organizations, a design of some computer architectures capable
 

of handling the algorithm computational requirements, and a discussion of the
 

on-board processor environmental effects.
 

Section 3. The ability of the on-board processors designed in Section 2
 

to implement the algorithms described in Section 1 in real time for the re­

quired throughput data rates depends on the components that will be available
 

at the time of system design. The lead-time required for design, procure­

ment, fabrication, checkout, and launch is about 5 years, so that 1980-1990
 

launches will utilize 1975-1985 technology. Consequently, we require ac­

curate component and system technology forecasts for the next 10 years.
 

Section 4. This section identifies the pertinent performance parameters,
 

isolates the independent and necessary parameters, and relates these parameters
 

to the system requirements for each of the user requirements discussed in the
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preceding sections. This will-allow us to determine the feasibility of on­

board processing for each user type in the 1980-1990.time frame and to per­

form a tradeoff analysis to determine the sensitivity of our results to each
 

of the important system parameters.-


Section 5. This section contains an overview of the entire study re­

ported in detail in the preceding sections. Significant results and conclu­

sions are discussed, and recommendations for future actions by NASA are pre­

sented.
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1 EARTH RESOURCES ALGORITHMS AND DATA SETS
 

In this section we present the results of a survey of earth resources
 

user applications and their data requirements, earth resources multispec­

tral scanner sensor technology, preprocessing algorithms for correcting
 

the sensor outputs and for data bulk reduction, and a candidate data for­

mat to be used in subsequent sections.
 

Section 1.1 contains the results of the user requirements survey and
 

their projected data needs in the 1980-1990 decade. The survey is based
 

on existing literature and on personal interviews with earth resources
 

experimenters. A surveybf existing algorithms for carrying out the user
 

requirements was also conducted. The maximum likelihood, perceptron,
 

table look-up and clustering algorithms were examined in detail.
 

Section 1.2 deals with present-day and projected state-of-the-art
 

technology relative to electro mechanical and solid-state scanners and
 

their characteristics.
 

Section 1.3 contains a discussion of preprocessing algorithms for 

radiometric, gain, and offset corrections. Preprocessing algorithms for
 

reducing the data bulk passed to 'the on-board processor using data com­

pression and redundancy removal techniques are surveyed and analyzed.
 

In Section 1.4 a candidate data format is developed. This is used in
 

later parts'of the study as a baseline format for designing on-board
 

computer architectures. 

,.1 USER REQUIREMENTS 

1.1.1 Applications Survey 

The purpose of this section is to provide a brief survey of applica­

tion areas which are most likely to be affected by remote sensing and
 

automatic data interpretation techniques.
 

Two types of image-related information will be considered in the fol­

lowing discussion: (1) spectral information, and (2) spatial information.
 

Spectral information is that resulting from the intensity response of a
 

scene in the spectral bands of a multispectral scanner. Spatial informa­

tion is the relationship between features in a scene. For example, the
 

automatic classification of image elements in a lake can be easily carried
 

out using spectral information, while the shape of the lake is best
 

determined using spatial information.
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The discussion in this section is of a general nature. Specific data
 

requirements for each of the application areas discussed are covered in
 

Section 1.1.2.
 

1.1.1.1 	Agriculture (A)
 

Agricultural applications are receiving more attention by more inves­

tigators than almost any other application of Earth observations from
 

space. The most important application in this area is that related to
 

agricultural food production. The utilization of remotely-sensed data for
 

crop acreage and-production prediction will continue to play a central
 

role in the design of sensors and processing hardware because of the social
 

implications of this particular application.
 

Data processing functions related to food production include such
 

varied tasks as:
 

Al. Agricultural census
 

A2. Plant species identification
 

A3. Plant stress (due to insects, drought, or moisture).
 

A4. Soil conservation practices
 

A5. Crop yield estimates
 

The most challenging single technical problem associated with multi­

spectral data analysis in crop investigations appears to be in the area of
 

developing adequate automated machine techniques (i.e., the utilization of
 

sample data to design automatic recognition devices). This problem will
 

be discussed in Section 1.4.
 

1.1.2 Coastal-Zone Studies (C)
 

The monitoring of the physical as well as the biological environment
 

in the coastal-zone regions is of great importance in preserving the
 

quality of life in these regions. Data processing procedures related to
 

this application must be able to support the following functions:
 

Cl. 	 Mapping of shorelines
 

C2. 	 Mapping of shoals
 

C3. 	 Wetlands inventory
 

C4. 	 Bathymetry determination
 

C5. 	 Bottom topography studies
 

C6. 	 Mean high/low water line determination
 

C7. 	 Pollution detection
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The wide range of possible features of interest, in terms of their
 

spatial and spectral properties, requires that the minimum-sized objects
 

of interest, with their attendant scene contrasts, be stipulated to permit
 

an effective specification of required resolution; sampling rate, and
 

quantization levels. Resolution and sample rate is largely determined by
 

the minimum feature size and quantization level is determined by the multi­

spectral analysis techniques used for identification and classification.
 

1.1.1.3 	Forestry (F)
 

This application is in many respects similar to the agricultural pro­

blem. It is generally expected that a remote sensing system based pri­

marily oh multispectral analysis which will perform most agricultural sur­

vey problems will also be capable of solving many of the forestry survey
 

problems. Some of the most important applications of remote sensing in
 

forestry are:
 

Fl. Forest-nonforest delineation
 

F2. Forest typing
 

F3. Detection of forest fires
 

F4. Plant stress detection
 

These applications span a wide spectrum of sensor requirements. For
 

example, forest-nonforest delineation can be accomplished with fairly
 

coarse resolution, while individual tree counts and classification would
 

require resolution in the order'of one meter or less. It is doubtful that
 

satellites in the foreseeable future will possess the data requirement
 

capabilities to solve the latter problem.
 

1..1.1.4 Geography (G)
 

Some of the major applications of remote sensing to geography are:
 

G1. Land-use change
 

G2. Earth resources location
 

G3. Delineation of urban/rural areas
 

G4. Detailed urban structure
 

G5. Traditional map preparation
 

Of these, the ones related to the inventory and classification'of man's
 

activities are receiving the most attention. Because most of the above
 

application areas involv not only spatial and spectral signature investi­

gations but also generic pattern recognition, the data processing
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requirements tend to be very complex. Also, for political reasons, there
 

will likely be a need for archival copies of portions of the imagery
 

rather than summary data expressed in numerical form. These requirements
 

limit the applicability of on-board data processing to these areas.
 

1.1.1.5 	Geology (L)
 

Some of the most important applications of remote sensing to geology
 

are:
 

Ll. Structural Geology (faults, folds, lineaments)
 

L2. Geomorphology (landform classification)
 

L3. Lithologic mapping
 

L4. Geologic hazards
 

L5. Landslides
 

L6. Volcano studies
 

The information required for most geological investigations will include
 

both spatial and spectral information. However, in some cases only
 

spatial information will be of use. Examples of this would be cases where
 

the spectral information existing in the mineralogy of the viewed area is
 

obscured by vegetation or snow. In other cases, spatial information may
 

be secondary as, for example, in the case of relatively featureless
 

terrain.
 

The potential exists for partially automated analysis of the complex
 

interrelated spectral and spatial information which is of significance in
 

geological surveys. For example, certain lineaments and various other
 

patterns could, in principle, be detected automatically. Some limited
 

spatial frequency analysis has been attempted for geological investiga­

tions. Although this type of analysis has the potential for automation,
 

it only represents a limited sector of all image interpretation which is
 

of interest in geological studies. Automating the geological survey pro­

blem will undoubtedly be much more challenging than automating other
 

applications of remote sensing such as crop surveys because of the fre­

quent importance of simultaneous processing of both spatial and spectral
 

information.
 

1.1.1.6 Hydrology (H)
 

Because of the importahce of water-resources data acquisition to many
 

users and government agencies, present and anticipated Earth resources
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missions will find significant application of remote sensing to this area.
 

Some of the high priority hydrologic applications are:
 

Hi. Delineation of land-water boundaries
 

H2. Delineation of hydrologically-related terrain hectares
 

H3. Hydrodynamics, including floods, reservoirs, and estuaries
 

H4. Water quality evaluation
 

H5. Snow cover and run-off evaluation
 

Black-and-white infrared photography and near-infrared scanner imagery
 

have proven to be extremely effective in detecting water surrounded by
 

land. In infrared and near-infrared imagery, water appears black because
 

of its absorption of solar energy in these wavelengths. The high contrast
 

with the surroundings makes it possible to easily detect bodies of water
 

such as lakes, rivers, streams, and reservoirs. Coupled with the repeti­

tive coverage offered by a spacecraft, such a remote sensing technique
 

could be utilized to monitor changes in the boundaries of surface water.
 

In the infrared and the near-infrared bands, healthy green vegetation
 

reflects strongly and can be readily distinguished from water. Sensors
 

operating in these ranges can therefore be useful in detecting water/vege­

tation interfaces. One particularly notable application of this feature is
 

the delineation of wetlands areas. Wetlands are difficult or nearly impos­

sible to map by conventional ground survey methods or by regular black­

and-white or color photography.
 

It is evident that considerable variation in data processing require­

ments exist for the various hydrology applications. listed above. Some
 

,can be expected to be accomplished by gross evaluation of the presence or
 

absence of water. Such examples may relate to evaluation of regional
 

water resources and various other large-scale water inventory applications.
 

In these examples no firm requirement exists for precise, geometric loca­

tion data or for high spatial-frequency data content. Hence, these gross
 

evaluation applications appear to be prime candidates for on-board data
 

processing.
 

Other hydrology applications, however, may require somewhat precise
 

location data as well as spatial or textural data. Among these applications
 

are flood hazard evaluation and precision mapping of submerged land forms.
 

These applications will generally require the use of spatial and spectral
 

data.
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1.1.1.7 Meteorology (M)
 

Two of the principal areas where remote sensing is expected to yield
 

results of metereological importance are:
 

M1. Cloud cover survey
 

M2. Prediction and assessment of natural disasters
 

The information required for cloud cover survey is the three-dimen­

sional structure of the cloud cover of the globe. At first glance, the
 

scene radiance present in the features of interest-(clouds) seems to lend
 

itself well to a fairly narrow dynamic range or nonlinear quantization, as
 

most cloud cover images commonly published are relatively bright with
 

respect to the underlying land or ocean surface. When the total range of
 

lighting conditions (from a few hundred to nearly 104 foot-lamberts) and.
 

the apparent demand by some users for good radiometric resolution over the
 

full range are considered, this prospect may diminish in importance. The
 

relatively low spatial resolution required does offer good potential for
 

optimization of resolution, quantization level, and sample rate over the
 

very wide scan field. However, as the spatial resolution requirements are
 

specified at the point of swath contiguity, existing sensors produce ex­

cessive spatial resolution at the nadir point which might profitably be
 

traded for radiometric accuracy. Some of the relatively simple applica­

tions are appropriate for near-term automated data processing. One of
 

these would be that of percent cloud cover evaluation. This can be accom­

plished by multispectral analysis and area integration.
 

Disasters resulting from hurricanes, tornadoes, flash floods, etc.,
 

could be predicted more accurately and damage assessed more quickly by em­

ploying remote-sensing technology. A new insight into the behavior of
 

severe weather has been gained from the analysis of ATS satellite time­

lapse photography, radar, and motion picture photography of tornado cloud
 

tops taken from aircraft flying at about 15 km. A telltale cloud turret"
 

rises from the cirrus cloud shield, punctures the tropopause, collapses,
 

and falls back into the smooth top of the cirrus shield. Then, another
 

turret pops up. This tornado associated phenomena is shortlived, lasting
 

8 to 20 minutes.
 

These new scientific findings point the way to use remote-sensing
 

technology for the observation of severe weather. An area scanner capa­

bility to view the whole earth every 2P minutes needs to be added to a
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geostationary satellite. This area scanner would be pointed toward an
 

active weather area (approximately 800 x 1000 km) and view that specific
 

area every 2 or 3 minutes. Targets of 200 to 400 meters should be dis­

tinguishable. Such data would allow meteorologists to observe the turret
 

cloud phenomena and refine his severe weather warnings both in time and
 

location.
 

However, pin-p6inting the occurrence of severe weather more accurately
 

still cannot prevent the disaster. Once it has occurred, other remote­

sensing technology can be used for damage assessment. Side-looking air­

craft radar (SLAR) is an example. The geostationary area scanner might be
 

used for this purpose. With another set of optics having higher resolution,
 

smaller areas might be viewed'for damage assessment after--the clouds
 

have cleared. In an area measuring approximately 80 x 100 km, those
 

features approximating 80 to 100 meters in size could be imaged as a first
 

gross assessment of the destruction. Damage assessment data can be used
 

for many purposes: emergency routing of traffic (especially rescue,
 

vehicles), evacuation steps, estimates of emergency housing needs, and
 

location of emergency food stations. The application of sensor tech­

nology to the disaster problem is a matter of timeliness in acquiring the
 

observational data in usable form.
 

1.1.1.8 	 Global Oceanography (0)
 

The needs of the community of ocean researchers for synoptic environ­

mental data are naturally divided into two categories: (1) the coastal
 

environment and, (2) the global oceans. The former was discussed in
 

Section 1.1.1.2. 'Some of the most important applications of remote'
 

sensing to global oceanography are:
 

01. 	Study of biological processes
 

02. Sea-ice surveillance
 

03.- Study of current patterns
 

Assessment of features of biological significance in the more produc­

tive waters of the global oceans (approximately 10 percent of the total
 

global area) require resolution on the order of 1 km and remotely acquired
 

signatures of a quality that will permit the determination of chlorophyll
 

to within a factor of two for concentrations of 0.2 mg/m3 or greater.
 

Observations of chlorophyll in the open oceans for concentration as low
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as 0.02 mg/3 are important for global ecosystem analysis. Pollution detec­

tion and environmental impact are particularly important in monitoring the
 

natural and cultural stress induced in the coastal region.
 

Space techniques have demonstrated an immediate sensor application for
 

observation of the polar environment. Resolution as large as 10 km may be
 

used to delineate major boundaries and ice movements. However, the most
 

pressing problem is to define, monitor, and forecast the amount and loca­

tion of open water in polar regions, in particular, the Arctic. Resolution
 

on the order of 30-100 meters is needed, with a preference for infrared
 

over optical observations because of the nonavailability of solar illumina­

tion during the winter months.
 

Currents on a global scale can be mapped with relatively low resolu­

tion. Spatial dimensions of 10 km in extent would be meaningful for ocean
 

applications. However, higher resolution may be desired to permit sampling
 

between cumulus clouds. In general, the use of ocean color to monitor
 

currents and biological and ecological features requires high sun eleva­

tion angles and a scan which looks away from the sunside of the spacecraft.
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1.1.2 Data Requirements Survey
 

The following sections examine the data requirements of the applica­
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tion areas discussed in Section 1.1.1. All discussions are keyed to the
 

identifying labels introduced in that section. For example, general agri­

cultural applications will be referred to as A, while specific areas within
 

agriculture will be identified by A followed by a number.
 

1.1.2.1 Number of Spectral.Bands
 

Figure 1.1.2(1) summarizes the spectral band requirements of the eight
 

general areas discussed in Section 1.I.i. This figure vividly illustrates
 

the differences in needs of these areas. Only in the thermal IR region
 

(0.8 to 1.4 microns) does there seem to be a real consistency of needs.
 

1.1.2.2 Repeat Coverage
 

Typical minimum rates of coverage for various resolution requirements
 

are shown in Figure 1.1.2(2). The implidations of these rates on the vol­

umes of data generated are discussed in Section 1.1;2.4.
 

1.1.2.3 Spatial Resolution and Field of Coverage
 

The unit of resolution used in this study is EIFOV (Effective Instan­

taneous Field of View) which is defined as "the minimum linear dimension.
 

on the surface (at nadir) at which user specified characteristics can be
 

discovered." Field of coverage is defined as the swath width for a nadir
 

pointing sensor. Typical resolution and field of coverage requirements
 

for .the application areas discussed in Section 1.1.1 are summarized in
 

columns two and three of Table 1.1.2(I), Section 1.1.2.4.
 

1.1.2.4 Data Rates
 

The data rate DR (in bits/sec) for each of the application areas dis­

cussed in Section 1.1.1 may be calculated using the following relation:
 

S
 
D x x Nc x Nbp 

where
 

= 


RL = resolution along a scan line (m)
 

V = satellite ground track velocity (m/sec)
 

= resolution along scan path m)
 

SW swath width m)
 

NC = number of channels 

Nbp =- number of bits per pixel (picture element) (bits)
 

21
 



16.O000 

0 

3.zoo 

bI 
a) .600 

II 

00 

' jCoastal-Zone 

1* 

TT 

I.8ooj' 

.0.o •f 16.00 

3.200 

fMetereology 
1.600 

0.800 

KEY 
Agriculture (A) 

Studies (C) 

Forestry (F) 

Geography (G) 

Geology (L) 

Hydrology (H)
(M) 

Global Oceanography (0) 

040 

I I.Il 
2-5£ 

-56-9 
-

10i 

Number of Channels 

Figure 1.1.2(l) Spectral Requirements Summary 



KEY: 
000 - AGRICULTURE (A) 

I0 	 COASTAL-ZONE STUDIES (C)
 
FORESTRY (F)
 

GEOGRAPHY (G)
 
M GEOLOGY (L)


c3 HYDROLOGY (H)
 
30 METEOROLOGY (M)
 

GLOBAL OCEANOGRAPHY (0)
 
Li
 

100-

HCO 1OHLC FGI c 
I~ 

rI AA L 

o IHL C I A 
1L 30­

wt 

IH
 

I.
 
10-


I I -I I t . 

I Day 3 Days 10 Days I Mo. 3 Mos 6 Mos I Yr 

Repeat coverage (minimum)
 

Figure 1.1.2(2). Typical Rates of Coverage
 

Table 1.1.2(I) shows typical data rate ranges for the application areas
 

discussed in Section 1.1.1. All calculations are based on the following
 

figures:
 

SW: selected from Figures 1.1.2(1) and 1.1.2(2)'.
 

RL =Rp - resolution given in Figures 1.1.2(l)-l.1.2(2).
 

V = 6500 meters/sec.
 

NC: selected from Figure 1.1.2(1).
 

Nbp 6, which gives a range of 64 gray levels for each picture
 

element.
 

Table l.l.2(TI) indicates the number of classes for each application
 

area.
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Table 1.1.2(I) Typical Data Rate Ranges 

Field of No. of Data Rates 
Resolution (m) Coverage (km) Channels (M bits/sec) 

Application min-max min-max min-max min-max 

Al 30-50 185 4-7 11.5- 56.1 
A2 30-50 185 4-7 11.5- 56.1 
A3 30-50 185 4-7 11.5- 56.1 
A4 10-30 50 4-7 8.7- 137.0 
A5 30-50 185 4-7 11.5- 56.1 

Cl 30-50 200 6-20 18.7- 173.0 
C2 30-50 200 6-20 18.7- 173.0 
C3 30-50 200 6-20 18.7- 173.0 
C4 50-100 200 6-20 4.7- 62.4 
C5 50-100 200 6-20 4.7- 62.4 
C6 3-10 40 6-20 93.6-3470.0 
C7 30-300 200 6-20 .5- 173.0 

F1 50-100 185 4-7 2.9- 20.2 
F2 5-10 15-30 4-7 23.4- 328.0 
P8 10-30 185 4-7 32.1- 505.0 
F4 30-50 185 4-7 11.5- 56.1 

G1 30-50 185 4 11.5- 32.1 
G2 30-50 185 4 11.5- 32.1 
G3 50-100 185 4 2.9- 11.5 
G4 5-10 15-30 4 23.4- 187.0 
G5 5-10 15-30 4 23.4- 187.0 

Li 50-80 185 1-5 1.1- 14.7 
L2 50-80 185 1-5 1.1- 14.4 
L3 50-80 185 1-5 1.1- -14.4 
L4 50-80 185 1-5 1.1- 14.4 
L5 10-30 15 1-5 .7- 29.3 
L6 100-200 185 1-5 .2- 3.6 

Hi 40-60 200 1-3 2.2- 14.6 
H2 30-50 200 1-3 3.1- 26.0 
H3 10-30 50 1-3 2.2- 58.5 
H4 30-70 200 1-3 1.6- 26.0 
H5 50-80 200 1-3 1.2- 9.4 

MI 200-400 800 2 .4- 1.6 
M2 200-400 800 2 .4- 1.6 

01 1-10km 400 4-20 0.0* 0.3 
02 , 30-100 200 4-20 3.1- 173.0 
03 1-10km 200 4-20 0.02* 0.2 

624 bits/sec **312 bits/sec 
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Table 1.1.2(11) List of Applications 

Al Agricultural Census 
A2 Plant Species Identification 
A3 Plant Stress (Due to Insects, Drought., or Moisture) 
A4 Soil Conservation Practices 
A5 Crop Yield Estimates 

Cl Mapping of Shorelines 
C2 Mapping of Shoals 
C3 Wetlands Inventory 
C4 Bathymetry Determination 
C5 Bottom Topography Studies 
C6 Mean High/Low Water Line Determination 
C7 Pollution Detection 

Fl Forest-Nonforest Delineation 
F2 Forest Typing 
F3 Detection of Forest Fires 
F4 Plant Stress Detection 

G1 Land-Use Change 
G2 Earth Resources Location 
G3 Delineation of Urban/Rural Areas 
G4 Detailed Urban Structure 
G5 Traditional Map Preparation 

Ll Structural Geology (Faults, Folds, Lineaments) 
L2 Geomorphology (Landform Classification) 
L3 Lithologic Mapping 
L4 Geologic-Hazards 

L5 Landslides 
L6 Volcano Studies 

Hl Delineation of Land-Water Boundaries 
H2 Delineation of Hydrologically-Related Terrain Hectares 
H3 Hydrodynamics, Including Floods, Reservoirs, and Estuaries 
H4- Water Quality Evaluation 
H5 Snow Cover and Run-Off Evaluation 

Ml Cloud Cover Survey 
M2 Prediction and Assessment of Natural Disasters 

01 Study of Biological Processes 
02 Sea-Ice Surveillance 
03 Study of Current Patterns, 
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1.1.3 Algorithms Survey
 

The response of a multispectral scanner at any sampling time may be
 

arranged in the form of a measurement or pattern column vector
 

x1
 

x (1.1.3-1) 

x 

n 

where xk is the amplitude response of the kth channel in the system and n
 

is the number of channels.
 

Given M categories or classes of desired classification (such as M
 

crop types, for example), one of the principal approaches in pattern recog­

nition system design is to determine from representative (training) data M
 

decision functions d1 (x), d2(x), .. dM(x) with the property that if an
 

observation x belongs to the ith category, then
 

d(x) > d.(x) for all j i 	 (1.1.3-2)
 

Once the decision functions have been estimated, they are used as the
 

basis for automatic data classification El]. Thus, given a sample x of
 

unknown origin, the sample is assigned to the ith category if d.(x) yields
 

the largest value upon substitution of the observation into all functions.
 

Ties are resolved arbitrarily.
 

The boundary between the ith and jth classes is given by values of x
 

fior which d(x) = d.(x). In other words, the equation of the boundary
 

separating these two classes is given by
 

di(x) - d() = 0 	 (1.1.3-3) 
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For M classes, there are M(M - 1)/2 such boundaries. The first two algo­

rithms discussed below are based on the decision-function concept.
 

1.1.3.1 Maximum-Likelihood Algorithm
 

A maximum-likelihood decision rule is one in which the decision func­

tions are of the form 

dk(-x) = P(x/wk) P(wk) k = 1, 2, ... , M -(1.1.3-4) 

where wk denotes the kth category, p(x/w.k) is the multivariate probability
 

density function of the samples belonging to category w., and p(k) is the
 

probability of occurrence of ak"
 

The form of dkx) in Eq. (1.1.3-4) is determined by the nature of
 

p(x/ k ) and p(mk). When p(x/k) is the normal density, it can be shown [1
 

that Eq. (1.1.3-4) may be expressed in the form
 
dk( = Yn p (tok) - 1Cx kl -= ( - 'k-(- - m ](..-(1.1.3-5) 

where Yn is the natural logarithm, Ck and are the covariance matrix and
 

mean vector of the samples of category wk' and ICI is the determinant of
 

C. The prime (') in Eq. (1.1.3-5) indicates transposition.
 

The parameters of the decision function shown in Eq. (1.1.3-5) are 

p(k ) , C, and m . Once estimated, these components completely specify the 

decision function of each category. 'Studies with multivariate remotely­

sensed data indicate that the normal density assumption is valid for numer­

ous classification tasks [2].
 

1.1.3.2 Perceptron Algorithifi
 

Decision functions based on the perceptron approach are of the form 

dk(x) = wkl~l(x) + wk2 2() + ... + wkS (-) + wk,N+l 

= zjqdx() (1.1.3-6) 

where Hk = (Wkl' Wk2 ' "'' WkN+)' is the parameter vector, and 4(x) = 
.
((1 ) 2('), ..., N(),I)> The functions ti(x) arc real, single­

valued functions of the patterns x. Note that Eq. (1.1.3-6) can represent
 

any nonlinear function of finite degree, depending on the choice of (x).
 

For example, a linear decision function may be constructed by letting N = n
 

(see Eq. (1.1.3-1)), and ci() = x.. In this case, Eq. (1.1.3-6) becomes
 

d() = WklXl + wk2X2 + .. + WknXn + wk,n+l (1.1.3-7)
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From'Eq. (1'.1.3-3), the equation of the boundary between the ith and jth 

pattern classes is given by 

di(x)1- - dj(x)j- = (wil - wj2)j x + ... + (w. - w. ) jn xni in 

+ (w. - Wn) =0 (1.1.3-8) 
i,ntl j ,n+l 

which is the equation of a hyperplane in n-dimensional space. More com­

plex functions may be constructed by varying the degree of nonlinearity of 

the functions 4i(x)}. 

In applying Eq. (1.1.3-6) to a classification task, the functions
 

{ 1()} The problem then becomes the estimation of the co­are specified. 


efficients for each class. The procedure normally followed is to use
 

sample patterns from each class to determine these coefficients. One of
 

the simplest ways to accomplish this task is by means of the following basic
 

perceptron algorithm.
 

Given M pattern classes, wi, W 2 ' " M assign arbitrary initial 

values to the coefficient vectors l, 2, ... I EM. Then, at the kth itera­

tive step in the algorithm, if a pattern x(k) belongs to class oi and 

djx(k)] > d.Ex(k)] for all j / i (1.1.3-9) 

where d.[x(k)] = wC(k)4{x(k)], then 

w.(k + 1) = w.(k) for k = 1, 2, ... , M (1.1.3-10)-] -J] 

On the other hand, if x(k) belongs to class w. and for some Z 

d.[x(k)] < djx(k)] (l.1.311) 

then the following adjustments are made on the ith and Zth coefficient
 

vectors
 

w.(k + 1) = wi(k) + c x (k) 
(1.1.3-12) 

w55k + 1) = wjk) - c x (k) 

The other coefficient vectors remain unchanged. The factor c is a posi­

tive correction increment.
 

Basically, what this algorithm does is to change the parameter vectors
 

only when an error in classification occurs. The procedure is said to
 

have converged when an entire iteration through all sample patterns pro­

duces no errors. Several illustrations of this algorithm may be found in
 

reference El].
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1.1.3.3 	Table Look-Up
 

The table look-up approach is based on prestoring in fast, random­

access core memory the desired answer (e.g., crop-type) for all combina­

tions of multispectral scanner outputs from selected channels [3-6]. Spe­

cifically, each set of measurements from a given point on the ground is
 

interpreted as that address in core memory where the answer can be retrived.
 

Substituting the simple retrieved operation for the lengthy computations
 

required by the conventional approach offers two advantages:
 

(1) The processing time is reduced by more than an order of magnitude.
 

(2) The multispectral scanner data can be processed by computers
 

having minimal sophistication, complexity, and cost.
 

These two advantages may make it possible to use an on-board computer to
 

perform the classification function in flight. A general approach to
 

table look-up is given below.
 

Two Dimensional Case
 

All computer based systems for classifying MSS data operate by par­

titioning the multidimensional measurement space into non-overlapping
 

regions associated with each known class. Measurements which are spec­

trally dissimilar to all of the known classes are regarded as belonging to
 

the so-called threshold class. From Figure 1.1.3(l) it is clear that a
 

pixel* with the particular measurement vector ^ = (^IR2) should be as­

signed to Class 1 provided the following equations are satisfied
 

L (1) < x1 < H1 (1) 	 (1.1.3-13) 

L(U (1,21 	 (1.1.3-14)
 

L (1) and H (l) are the minimum and maximum values X can have to be
 

associated with Class 1. Similarly, the quantities L2 (1,x1)and H2 (1,5Z)
 

are the minimum and maximum values 2 can have for the specific case x1 = 

x1 to be associated with Class 1.
 

From this example, it is clear that the procedure defined by Figure
 

1.1.3(2) can be used to decide whether or not a pixel having measurement
 
= 
vector x (xlx2)Y should be assigned to class C. The values of the
 

* The term pixel is used often in image processing to denote an image or
 

picture element.
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Fig: 1.1.3(1) Explanation of Classification Algorithm for Two Dimensions
 

constants L1 (C), H1(C) and L2 (C,x1 ) for all LI(C) < x < HI(C) have to be
 

prestored in the random-access core memory. 
- The values L (C) and H (C) can be regarded as the contents of two­

dimensional arrays. Each array would require NC 8-bit (assuming 0 < x. <
 

255) bytes of the core storage, where Nc is the number of classes. Simi­

larly, it is possible.to regard L2 (Cx1 ) and H 2(C, x1 ) as two two-dimen­

sional arrays, each requiring NCNlmax bytes of core storage where Nimax is
 

given by Eq. (1.1.3-16) below.
 

From Figure 1.1.3(1) it can be seen that N (C) is the length which
 

results from projecting that measurement space region associated with
 

class C
 

N (C)= H (C) - L (C) + 1 (1.1.3-1!
 

,-Nlmax = Max [N1(C)] 1 < C <N C (1.1.3-16)
 

onto the x1 axis. In Figurd 1.1.3(1), NC = 3 and N = N (3) > N (1) > 
Clmax- 1 1 

N1 (2). 
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The core requirements can be minimized by storing only the number of
 

values that x1 can actually assume for a given case rather than the fixed
 

number Nlmax dictated by the worst case. This dynamic core assignment is
 

accomplished by storing and retrieving L2 (C,x 1 ) and H2(C,x1 ) using P1 as a 

pointer in the one-dimensional arrays L2(P 1 ) and H2(P1). The value of P1 

is computed using Eq. (1.1.3-17)
 

P, = 0 1(C) + x1 (1.1.3-17)
 

where 01(C) is a class-dependent offset given by Eq. (1.1.3-18).
 

1 - LI(1) for C 
0O1(C) =C-1 (1.1.3-18) 

i - L1 (C) + E N1 (i) for 2 < C < N( 

Figure 1.1.3(3) shows the core arrangement which results from applying Eqs.
 

(1.1.3-17) and (1.1.3-18) for the case shown in Figure 1.1.3(1).
 

Once the boundary information is prestored in the core memory, the
 

classification proceeds. A hypothesis C is formed concerning which class
 

gave rise to the measurement vector x = (xlx 2 )'. The initial hypothesis
 

is that class assigned to the preceding pixel. If this hypothesis fails,
 

classes are tested in descending order of a priori probability. The class
 

I. C 

RETRIEVE LI(C) AND HI(C)
 

LI(C), HI(C)
 

S 
 HO PIXEL NOT ASSIGNED 

2(CX 1 ) ,H2(C.X1)
 

2 (CX NO PIXEL HOT ASSIGNED 
2S TO CLASS C 

YES
 

PIXEL IsmASSIED 
TO CLASS C 

Fig. 1.1.3(2) Method for Determining Whether Pixel is from Class C 
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H1(1) N1(1) L2ElH (1)] H221,H1(1)]
 

2 I-L1(2)+N (1) L (2) N (1)+l L2 [2,L(2)] H22,L (2)]
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1 1 .1 2'1 2 '1iI-LI(3)+N (1)+N(2) LI'(3) N1(1)+NC(2)+l L213,LI(3)3 H213,L(3)]
 

H1(3) N(1)+N(2) L 2 3,H1 (3)] H2[3,H1 (3)]
 

+N (3)
 

Figure 1.1.3(3) Organization of the Prestored Tables of
 

Boundary Information for the Case Shown in Figure 1.1.3(1)
 

hypothesis C points to L (C) and HI(C) the minimum and maximum values x
, 


can have and still be inside the measurement space region associated with
 

class C. If LI(C) <x < H1 (C), the hypothesis is tested further; other­

wise a new hypothesis is formed as explained previously. The class hypo­

thesis C also points to 01 (C), a class-dependent offset which is added to
 

x1 . The resulting value P1 points to L2 (C,xl) and H2 CC,X, the minimum
 

and maximum values x2 can have, for the given value of xl, and still be
 

inside the measurement space region associated with class C. If L2 (C,xI)
 

Sx2 H2 (C,x1 ), the pixel is assigned to class C, otherwise a new hypo­

thesis is formed. If the measurement vector x = (x1x2) does not lie
 

within the prestored boundaries of any of the known classes, it is as­

signed to the threshold class.
 

Four-Dimensional Case
 

The measurement vector for each pixel consists of n > 4 measurements,
 

and the objective is to assign the pixel to one of the NC known classes or
 

else the threshold class. The first step is to form a class hypothesis C.
 

.'32
 



The initial.hypothesis is that the pixel is from the same class as the
 

previous pixel. If this hypothesis fails, the classes are searched in
 

order of decreasing a priori probability. The class hypothesis C is used
 

to retrieve the number of those four channels which are most effective in
 

discriminating class C from all of the other classes.
 

The class hypothesis points to L (C), H (C) and 01(C). A test is made 

whether or not L (C) < x1 < H CC). If not, a new hypothesis is formed. If 

so, the value x is added to 01(C) to derive the pointer P1 which points 

to the core memory address where L2(Cx, H2(C,x1 ), and 02 (C,x1 ) are 

stored. The process is continued in the same way to determine whether 

L2(C,x1 ) < x2 < H2 (C,x1 ) and L3(C,xIx 2 ) < x3 < H3(C,xlx 2 ) and L4(CXlX2' 
x3 ) < x4 < H4(C,XlX2,X3). If all these conditions are met the pixel is
 

assigned to class C. The first time one of these conditions is not satis­

fied, a new class hypothesis is formed. If none of the NC class hypotheses
 

satisfy all four conditions, the pixel is assigned to the threshold class.
 

1.1.3.4 Clustering
 

Clustering is a data analysis technique by which one attempts to
 

determine the "natural" or "inherent" relationships in a set of observations
 

or data points. It is sometimes referred to as unsupervised classifica­

tion because the end product is generally a classification of each observa­

tion into a "class" which has been established by the analysis procedure,
 

based on the data, rather than by the person interested in the analysis.
 

Presently, the typical multispectral classification experiment is
 

conducted as follows [7-16]. The data, collected in a single region under
 

favorable conditions by airborne or spaceborne sensors, are examined in
 

their entirety by the experimenter, who decides which areas are most repre­

sentative of the region as a whole. The samples from these areas are as­

sembled to form a training set, which is characterized by ground truth in­

formation delineating the terrain types of interest. A statistical cate­

gorizer, or decision box, is constructed on the basis of the statistical
 

parameters extracted from the training set. The classification perfor­

mance is then evaluated on another portion of the data (the test set) for
 

which the location and extent of the different types of ground cover are
 

also known to the experimenter.
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The details of the various experiments differ with respect to the 

sources of data, the method of labeling the training and test sets, the 

terrain types to be identified, the number of spectral bands, the degree of 

the statistical sophistication of the categorizer, and the methods of 

evaluating the results, but the general scheme of classifying samples of 

the test set according to their similarity to a preselected training set is 

the same. 

Extrapolation of the performance levels evaluated in this manner to
 

an operational satellite data gathering system is doubtful. In most experi­

ments both the training sets and the test sets are selected on the basis
 

of visual inspection of the available data. Terrain classes without large
 

uniform representation are frequently deleted from consideration, as are
 

regions of abnormally high variability. The data are divided into train­

ing and test sets in such a way as to enhance the probability of success­

ful classification. Even in as well conceived an experiment to extend
 

the spatial recognition range as that described in [12], an intruding
 

cloud required complete reassignment of the intended training region. In
 

view of the amount of information to be collected by the satellite systems,
 

it seems unlikely that a considerable fraction of this data can be visually
 

screened in time to allow modification of the required decision parameters.
 

If, on the other hand, interactive systems are developed to a sufficient
 

,degree to allow human analysis of much of the imagery, then the whole
 

concept of automatic terrain classification becomes superfluous.
 

1 The point of departure from standard statistical classification tech­

niques can be in the application of an unsupervised learning approach, by
 

means of clustering algorithms [17], to circumvent the difficulties of
 

collecting representative training sets.
 

To get an intuitive idea of what is meant by natural or inherent
 

relationships in a set of data consider the example shown in Figure 1.1.3(4).
 

If the spectral reflectance of vegetation in a visible wave band were
 

plotted against reflectance in an infrared wave band, dry vegetation and
 

green vegetation could be expected to form discernible clusters.
 

If the data of interest never involved more than two attributes
 

(measurements or dimensions), cluster analysis might always be performed
 

by visual evaluation of two-dimensional plots such as that in Figure 1.1.3(4).
 

But beyond two or possibly three dimensions, visual analysis is impossible.
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Figure 1.1.3(4) Example of data clusters
 

For such cases, as in multispectral data, it is desirable to develop com­

puter algorithms to perform cluster analysis. Haralick and Kelly [18] have
 

presented two such algorithms: the first partitions the image sequence and
 

the second partitions the measurement space. In both, the partition is
 

constructed by finding appropriate center sets and chaining to them all
 

similar points. The resulting clusters are simply connected.
 

The reader interested in the many possible ways of defining clustering
 

in quantitative terms may consult references [19] and [20]. Essentially,
 

the definition of a clustering algorithm depends on the specification of
 

two distance measures: a measure of distance between data points or indi­

vidual observations; and a measure of distance between groups of observa­

tions (clusters). Figure 1.1.3(5) is a block diagram for a typical cluster­

ing algorithm [211. The point-to-point distance measure is used in the
 

step labeled "Assign each vector to nearest cluster center". The distance
 

between groups of points (clusters) is calculated in the step "compute
 

separability information".
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1.2 	 MSS SENSOR TECHNOLOGY
 

1.2.1 Electromechanical Scanners
 

Electromechanical scanners are capable of producing geometrically­

registered, multispectral images in spectral channels extending from the
 

visible to the thermal infrared. In addition, accurate radiometric measure­

ments can be made. Image formation is now accomplished by mechanical
 

scanning. Typically, mechanical motion causes the scene to be sampled in
 

the cross-track direction by a detector or array of detectors while satel­

lite motion provides the orthogonal scan component.
 

The information extracted from scanner data is in the spatial, spec­

tral, and temporal distribution of radiation from a scene. For the most
 

part, sensor advancement means improving the spatial resolution for a given
 

operating distance. More recently, attention has been given to spectral
 

distribution and automatic classification based on the spectral information
 

from the scene. Since the spectra of the vegetation features vary with
 

their growth cycle or season, the spectral classification task becomes
 

easier when temporal variations are included. Thus, the advanced images
 

may be viewed as a high resolution multispectral scanner with the ability
 

to observe a scene periodically.
 

When photomultiplier detectors are employed, the internal gain is
 

assumed to be sufficiently high that amplifier noise can be neglected in
 

comparison with photoelectron (shot) noise. In this case, the limiting
 

noise can be expressed as the square root of the number of photoelectrons
 

released during an integration period from a resolved elemental area of 

background while the signal is the difference between the corresponding 

numbers' of photoelectrons associated with target and background. ­
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Photomultiplier tubes are currently used in multispectral scanner
 

systems for the short wavelength channels. For high resolution systems,
 

PMT's are-used for wavelengths shorter than about 800.nm; in lower reso­

lution systems, PlT's may not be used at all or only at wavelengths shorter
 

than 500 nm.
 

Silicon planar p-n junction photodetectors represent the most advanced
 

semiconductor technology available at this time and provide good resolution
 

and parameter control. These units show good high-frequency response, high
 

quantum efficiency, low noise, and require no special cooling for most
 

applications. Because the photodiode has no internal signal gain, high
 

performance channels are usually limited by the noise of the first amplifier 

stage. Silicon photodiodes are normally used in multispectral scanning 

systems for wavelengths between about 0.4 pm and 1.1 pm. Other semicon­

ductor materials are used in the fabrication of p-n junction photodetectors
 

for wavelengths longer than 1.1 pm. In general, infrared photodiodes must
 

be operated at low temperature to achieve optimum performance, with the
 

longer wavelength detectors requiring the lower operating temperature:
 

Photoconductive detectors are most useful at infrared wavelengths
 

longer than 3 Pm. These devices are essentially variable resistors in
 

which the conductivity of the bulk material increases monotonically with
 

the'magnitude of optical power absorbed in the active volume of the units.
 

1.2.1.1 Detector Cooling Systems
 

Future infrared imagers and scanners will utilize cooled quantum- or
 

photodetectors. These detectors require cooling to cryogenic temperatures,
 

i.e., below approximately 1200K to achieve background-limited performance.
 

In general, the long wavelength cutoff and detectivity, as well as
 

other detector parameters, are determined by the operating temperature.
 

Photodetectors operating in the 8-13 pm atmospheric window require lower
 

operating temperatures than those operating in the 3-5 pm region. For ­

remote sensing applications, future imagers and scanners,particularly
 

those operating in the 8-13,pm region, will utilize intrinsic photodetec­

tors cooled to 100 K or below to achieve background-limited performance.
 

Within the next.decade it is anticipated that detector cooling require­

ment for airborne and space-borne infrared systems will generally lie in
 

the 50-120°K region with perhaps a few applications requiring temperatures
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as low as 20 K. The cooling capacity at these temperatures will range from
 

a few milliwatts for a single photovoltaic detector to perhaps a watt for
 

large arrays of photoconductive detectors.,
 

The basic design parameters for a cryogenic detector cooling system
 

are: the required operating temperature and temperature stability, heat
 

load at the operating temperature, the alignment requirements of the cooled
 

detectors relative to the optics, and the ieliability and operating life of
 

the system.
 

For spaceborne systems, where weight and power are usually limited,
 

the selection of a cooling system involres a tradeoff between the detector
 

and cooling system parameters for a given mission duration.
 

Three basic types of cooling systems are considered for spaceborne
 

systems.
 

(a) Passive radiators for spaceborne system which cool detectors by
 

direct radiation to the low-temperature sink of deep space.
 

(b) Open-cycle systems which use fluid or solid cryogens stored in a
 

dewar, or stored high pressure gas which provides refrigeration by the
 

Joule-Thompson effect. Solid cryogens are only applicable to spaceborne
 

systems.
 

(c) Closed-cycle systems employing a mechanical refrigerator using
 

.helium gas as the working fluid or closed-cycle Joule-Thompson systems.
 

For airborne application, open cycle systems using liquid cryogens
 

stored in a dewar, or closed-cycle refrigerators are the only logical sys­

tem choices. Open-cycle systems using liquid nitrogen or liquid helium
 

have been used to cover the temperature range from 42°to 70°K. These sys­

tems are relatively simple, low in cost, have good temperature stability
 

and do not introduce mechanical vibrations or microphonics to the focal
 

plane. They are capable of providing continuous refrigeration for the
 

duration of a single aircraft flight without resupply.
 

For spaceborne applications, passive radiators are applicable for
 

small heat loads down to their lowest temperature limit. Solid-cryogen
 

coolers are also applicable for low heat loads, and can be.used to reach
 

temperatures below those achievable,with radiators. For a specific space­

borne instrument, the particular constraint of the instrument should be
 

considered in detail before selecting the cryogenic cooler.
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Many of the cooling r~quirements-for spaceborne applications can
 

probably'be.met with passiye-radiators. Current passive radiator systems
 

are not large enough to handle the increased heat loads anticipated larger
 

detector arrays. Large passive radiators having a cooling capacity of
 

approximately 1 watt at 70-80 K temperature level are quite sufficient for
 

many spaceborne applications.
 

Open-cycle cooling systems may not be applicable for the one-to-two
 

year missions with focal plane heat loads which are expected to exceed.100
 

milliwatts.
 

1.2.1.2 Optical Systems
 

Multispectral electromedhanical scanning systems can be classified
 

broadly as image-space and object-space scanners. The former requires an
 

imaging system that covers the full field of view with the required resolu­

tion. Object-plane scanners take the load off the optical system and place
 

it on the scanning system sequencing a narrow optical field of view.
 

Narrow-field systems usually include simple spheres, parabolas,
 

Cassegrain, Newtonian, Ritchey-Chretien, and Dall-Kirkham systems. Using
 

the most expensive optical system (the Ritchey-Chretien), one can obtain
 

resolution of 0.02 mr for about 1 degree full field (17 mr).
 

Wide-field systems (10 degrees or more) are much more difficult to
 

design and build. They have scanning mechanisms that are simpler to imple­

ment, however, and are therefore of considerable interest. The two, main
 

candidates.for such wide-angle optical systems are the Schmidt and the
 

Bonwers-Maksutov system.- Both provide resolutions on the order of 0.1 mr
 

out to angles of about 15 degrees.
 

1.2.1.3 Hadamard System
 

A newer optical technique that makes use of the multiplex advantages
 

inspectroscopy is an image-space scanner called the Hadamard system.
 

Where the normal spectrometer uses' one exit slit and rotates a prism for
 

multiple imaging, the Hadamard system uses a mask that provides multiple
 

exit slits. A system of this type requires that the entire system be
 

imaged. Any variations in the radiation from the opaque elements causes
 

variations in the apparent scene iadiation. The nonuniformities cause
 

scene noise and uniform radiation can increase photon noise. This system
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is of great.advantage for sampling.a scene with a few variations, compared
 

to.a single.detector initially. Scanningnoisejhoiever,.;i.a serious pro­

blem.
 

A comparison can be made with a system employing a linear array of
 

detectors. For an array of n detectors to cover the n resolution elements
 

of the scan line, the gain in signaltto-noise ratio is nl/2. The detectors
 

probably cost more, having a varying responsivity from element to element
 

and require a bias supply, cold shielding, preamplifiers, etc. The Hada­

mard scanner uses one detector which reduces cost. The number of pre­

amps and bias supplies, weight, and cooling requirements are lower, but
 

the system requires a scanning mask, sampling system, and data processor
 

for inverting the matrices.
 

1.2.2 Solid-State Scanners
 

Solid state scanners are in the early stages of development at the
 

present time, but they offer important advantages for future earth-orbit
 

satellite missions. Advantages include: no mechanical scanning, built-in
 

geometric accuracy,the high quantum efficiency of silicon for the visible
 

range, high resolution, good stability, low voltage operation, and improved
 

signal-to-noise ratio performance.
 

The fundamental performance criteria for integrated, self-scanned
 

solid-state arrays closely parallel those for alternative sensors. Among
 

the important criteria are:
 

(1) Geometric resolution which is determined by element-size spacing
 

and number.
 

(2) Quantum efficiency and its variation with length, as determined by
 

reflection and absorption losses in layers overlying the silicon.
 

(3) Scan rates using integration and, together with element-size,
 

quantum efficiency, and available light, determine available signal.
 

These factors set limits on dynamic range and boundary conditions on
 

signal-to-noise ratio of the sensor itself.
 

Of importance in practical systems is device stability, particularly in
 

short term and, although of lesser consequence, power"supply requirements.
 

Scan rate, taken with the number of elements, imposes bandwidth require­

ments per monolithic chip and for the total system. Dynamic range require­

ments and signal compression and encoding requirements are dictated by
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system constraints.on the-bne hand; on the other,.they are limited by
 

available transmission bandwidth and-by predompression and precoding noise
 

associated with-the'signal,
 

As with other sensors,'solid state self-scanned arrays require geo­

metric, radiometric, and electrical calibration. 'Intrinsically, geometric
 

calibration is straightforward and, once established, is subject only to
 

mechanical distortions of the sensor structure. Element-to-element varia­

tions in photosensitivity or dark current must; as with other sensors,
 

be calibrated out.- Depending on the particular sensor design, additional
 

calibration must be provided when additional per-element variations exist;
 

for example, phototransistors require gain or linearity calibration, usually
 

at two or more points, plus additional calibration for temperature varia­

tions. In general, determination of photosensor geometry by the photo­

masking process during fabrication and the chemical stability of the sili­

con/silicon dioxide system make geometric, radiometric and electrical
 

characteristics of solid-state self-scanned arrays very stable.
 

Silicon-detector arrays represent an imaging technique that makes use
 

of linear arrays of solid-state detectors operating in what is termed a
 

"pushbroom scan".mode. In such a system, a detector array is used to
 

image the scene in the cross-track direction and spacecraft motion is-used
 

to provide the orthogonal scan component. The primary-advantages resulting
 

from the use of these arrays are:
 

(1) With the array oriented in a cross-track configuration, continuous
 

coverage of a wide swath width of terrain can be obtained. Mechanical
 

scanning is eliminated, since the satellite subpoint motion along the
 

ground track provides the single-axis scanning motion that is required, and
 

the detector elements are interrogated electronically.
 

(2) Large arrays can be formed containing several thousand detector
 

elements. The use of high-density arrays offers high resolution capability.
 

(3) The precise geometric alignment of the detector elements resulting
 

from the use of micro circuit fabrication techniques, in addition to the
 

precision of alignment within the optical system, offers an advantage in
 

accuracy of ground reconstruction of'images.
 

.(4) The detectors are operated in an integration mode, thus providing
 

high scan efficiency. The exposure time of each detector element is
 

limited only by the permissible image motion at the optical focal plane.
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http:constraints.on


The~high scanning efficiency-results in.along exposure time,.increasing
 

the signal-to-noise ratio andqesolution.,
 

Ther& are.three.candidate sensors:u Photodiodes,.phototransistors and
 

charge-coupled devices (CCD)., 'All three are -similar in mechanism, limita­

tions; and potential of the sensing.portions, but differ significantly in
 

the arrangements for signal amplification and scanning. In photodiode and
 

phototransistor.arrays, scanning is-accomplished by'switching, while, in
 

charge-coupled devices, scanning is accomplished -y movement of potential
 

wells.
 

In general, there are two self-scanning modes: digital multiplexing
 

and afialog charge-transfer. The photodiodes and phototransistors ordinarily
 

use digital multiplexing. The CCD sensors have analog charge-transfer
 

readout. Since-all of these sensors are silicon, their operation is re­

stricted to the visible and near infrared (1.1im). The readout circuitry
 

is generally on the same silicon chip as the array of detector elements
 

(usually 100 or more sensors per chip). ­

At.-present, silicon photodetector elementscan be assembled into line
 

arrays of several-thousand-elements with a center-to-center element spac­

ing of 15 pm for a,high-resolution, push-broom mode of scanning.
 

Charge-coupled devices are in the early developmental stage, but CCD 

scanners possess better performance capabilities for multispectral earth 

- imaging from orbit. Using the basic CCD principle, it is possible to 

transport a photon-generated signal charge over long distances within a 

..chip and to sense the charge-with a preamplifier having potentially an
 

extremely small input capacitance. This in turn leads to amplification
 

with very low input noise levels. Using the buried-channel CCD concept,
 

it is possible to achieve very-high transfer efficiencies over wide dynamic
 

ranges, which minimizes image distortion. Using.transparent gates over
 

the photosensing regions, it is possible to achieve high net quantum effi­

ciencies.
 

CCD is a new class of semiconductor structures normally operating in
 

(thermal) non-equilibrium and utilizing, as the signal carriers, minority
 

charge transported by moving,potential wells. In essence, therefore, a
 

.CCD is a nearly ideal semiconductor analog shift-register. The CCD con­

-cept permits the design of highly complex functional devices at potentially
 

low cost. In addition CCD has the attributes of:
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-(1) silicon fabrication simplicity
 

(2) 	high packing density
 

(3) high reliability
 

(4) low power requirements
 

(5) potential low-noise analog signal processing
 

Self-scanned arrays also appear worth exploring for infrared applica­

tions, although the advantages in the infrared range appear not to be as
 

significant as in the visible spectrum. The limitations result from the
 

fact that the devices are still in the early developmental stage and infra­

red detector development has not reached the technological maturity of
 

silicon detectors and arrays. Major differences are contained in the fol­

lowing: (a) present HgCdTe detectors operate generally in the photoconduc­

tive mode; (b) small scale (approximately 100-element) IR arrays have been
 

manufactured only through the physical assembling of individual detectors;
 

and (c) 1/f noise in the infrared detectors is considerable higher than in
 

silicon detectors. The implications of these differences for the IR systems
 

are 	as follows: (a) present systems require a drop in the incoming radia­

tion; (b) detector bias (1 mW per detector) is required; and (c) the low
 

impedance of the detectors (25-250Q) requires high-power preamplifier
 

stages.
 

It is currently possible to make high-density arrays of IR detectors
 

(photo conductive, photovoltaic) out of narrow band gap semiconductors for
 

use in mechanical scanners. However, it is not possible yet to inte­

grate these detectors with their associate electronics onto one chip; this is
 

because the technology for fabricating transistors in materials such as
 

InAs, InSb, HgCdTe, PbSnTe, etc., has not been established. It is
 

possible to consider hybrid devices consisting of IR detector arrays ce­

mented to a silicon-chip that contains the necessary readout circuitry.
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1.3 	PREPROCESSING ALGORITHMS
 

1.3.1 Sensor Corrections
 

In order to illustrate the kind of MSS sensor corrections that will be
 

required on-board a satellite we briefly review the ERTS system which is
 

typical of most multispectral scanners.
 

The purpose of the MSS system is to accurately produce images of the
 

earth from a low altitude.satellite. The energy received from the earth's
 

surface, both reflected and emitted, is sensed and digitized by the system.
 

The digitized data are transmitted to the ground where they are recorded
 

for later processing. The recorded data are either analyzed directly by a
 

computer or transferred first to a photographic transparency.
 

The recorded data on the magnetic tapes includes timing and radio­

metric calibration information that can be converted by computer programs 

into spectral signatures for direct analysis. In photographic transparen­

cies, the density of the film is proportional to the scene energy levels.
 

There are twenty-four channels in the system and six channels are involved
 

in making a one band picture.' To-produce a perfect picture of the scene
 

imaged, the channel gain and the offset of each of the six channels in a
 

band 	must be known exactly. This is necessary so that the correct film
 

density can be assigned to the digital words generated by the multiplexer.
 

If this condition is met, individual lines in the picture'at almost all 

density levels will not be discernible. However, if the gains and offsets
 

are in error in one or more channels, the individual adjacent lines which
 

should have nearly the same scene information will have different average
 

levels of density in each channel-and, consequently, will be displayed as
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stripes in the picture. Also, for signature analysis the channel gain and
 

offset are equally important to maintain relative response between the four
 

bands. For these reasons, a calibration system is required in the MSS
 

system to report periodically on the status of the channel gain and offset.
 

1.3.1.1 Radiometric Response
 

The integrating sphere is used as a light source to establish absolute
 

gain/sensitivity for the scanner. The integrating sphere is calibrated
 

using a primary standard source. Table 1.3.1(I) gives a listing of the
 

radiance required for each channel to produce full scale signals at
 

the output of the multiplexer. The integrating sphere used to determine
 

the radiance required was calibrated at GSFC. The details are given in the
 

Acceptance Test Report (HS 324-5196).
 

Table 1.3.1(I) Radiance Necessary to Produce Full Scale at the
 

Multiplexer Output (mw/cm2 ster)
 

BAND
 

CHANNEL .1 2 3 4
 

A Z.45 - 1.86 1.84 4.81
 

B 2.43 1.95 1.68 4.80
 

C 2.34 1.94 1.73 4.76
 

D 2.33 1.87 1.80 4.84
 

E 2.39 1.92 1.74 4.70
 

F 2.35 1.96 1.78 4.70
 

1.3.1.2 Determination of Gain and Offset
 

Over a wide range of shades of gray, the eye responds to ratios, in­

stead of absolute levels. The eye can detect a sharp-edged junction be­

tween two fields that differ by little more than 2 percent in level. As a
 

result the gain determination procedure should be designed to compute the
 

gains of all channels in a band to within an uncertainty of 2 percent peak­

to-peak. Furthermore, based on visual impressions of a test transparency,
 

it has been determined that an acceptable offset spread in a band for strip­

free pictures is 30 my. The gain and offset are defined in Figure 1.3.1(1).
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Scanner Input Radiance,.N'
 

Figure 1.3.1(1) Determination of Gain and Offset
 

The gain and offset of each-channel in a band are determined by pro­

cessing the gray wedge in conjunction with the sun calibration pulse.. The
 

sun-pulse is used to modify the gain and offset computed from the gray
 

wedge.
 

The reference.(initial) gain and wedge have to be known a priori be­

cause the calibration gray wedge -(different for each scanner channel) can
 

only provide information to compute the change in gain and offset from a
 

previously recorded reference gray wedge. The integ-rating sphere is all
 

that is needed to obtain the reference calibration data. Two different
 

radiance outputs are used to establish the initial offset. One of these
 

two settings, or an average of several settings, is used to establish the
 

.gain.
 

1.3.2 Data Bulk Reduction
 

The extremely large volume of data generated by a MSS imposes a
 

severe computational burden on the on-board processor. The application of
 

appropriate data compression and/or feature selection techniques can some­

times reduce the severity of this problem. The algorithms used should not
 

destroy more than.the maximum acceptable amount of information and should
 

be capable of efficient compression of different kinds of data (i..e.,
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vegetation, desert, mountain, etc.) that a multispectr&l sensor might
 

encounter over changing terrain.
 

1.3.2.1 Coding
 

Data compression algorithms for multispectral scanner data, (e.g.,
 

ERTS data), have been developed, analyzed and tested to the point where
 

these algorithms and their performances are reasonably well understood.
 

From the results of these studies and experiments there appear to be two
 

basic types of data compression algorithms that are applicable: (1) trans­

form coding; (2) coding by BLOB.
 

1.3.2.1.1 Transform Coding
 

Transform coders perform a sequence of two operations. The first opera­

tion is a linear transformation that transforms the set ,of statistical
 

dependent data elements into a set of more independent coefficients. The
 

second operation is to individually quantize and code each of the coeffi­

cients. A variety of linear transformations is available to implement
 

transform coding or MSS data, but the eigenvector transformation is the
 

optimum linear transformation in two senses: The mean square error between
 

the original and reconstructed data is less than for any other linear trans­

formation; also, it eliminates all correlations in the data.
 

In this method an N-vector of data samples
 

S(xx xN) 1 ) 

is transformed into an n-vector of coefficients 

y = (Yl' Y2' " YnY) (1.3.2-2) 

by the transformation
 

y = T (x - m) (1.3.2-3) 

where m is the mean vector of x, 

m = E [xI (1.3.2-4) 

and T is a n x N matrix whose rows are the eigenvectors of the covariance 

matrix of x: That is, if 

C = E [(x - m) (x - m)] (1.3.2-5) 

Then the rows t of T are the n solutions to the equation 

C t = At (1.3.2-6) 

corresponding to the n largest eigenvalues A = AI > A2 > ". > An" A replica 

x of the data is reconstructed from the coefficient y by transformation 
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x = T' (y + m) (1.3.2-7)
 

For n = N the reconstructed data ^ is identical to the original data
 

x; i.e., x = x. For n < N some error (X -̂ x) is incurred. However, the
 

eigenvector transformation results in the least mean square error
 

2 {E !1 -j1 2 (1.3.2-8) 
of all linear transformations. The elements y1 , Y2 ' ""' yn of y are un­

correlated and have variances given by the eigenvalues X1i x2' "'' An. It
 

can also be shown that the mean square error Eq. (1.3.2-8) is given by
 

N
2 N -n 

2 = Z X. - Z X. = Z X. (1.3.2-9) 

i=l i=n+l I
i=l I I 


so that retaining only the first n of the N coefficients results in a mean
 

square error given by the sum of the variances (eigenvalues) of the dis­

carded coefficients.
 

In any particular application the number of coefficients n that must 

be retained depends on how fast the eigenvalues A1 > X > x > .. > xN 

decrease. If the data samples are not correlated, all N eigenvalues have 

significant values and we must choose n = N for negligible distortion. On 

the other hand if the data samples are highly correlated then the eigen­

values decrease rapidly so that only the first few have significant values 

and all but the first few can be discarded. In this case n << N and signi­

ficant sample compression ratios 
R (2) = N (1.3.2-10)
 

s n
 

can be obtained with negligible distortion. Hence the compression ratio
 

that can be achieved depends on the amount of redundancy in the data and
 

the amount of error that can be tolerated.
 

For correlated data the n retained coefficients have different rms 

values /37 2 > ... > VT so that a different number of bits should be 
n
 

used to code each coefficient. The mean square quantization error is mini­

mized by choosing m. log A.. This is called block quantization. If the"
 

original N data samples have m bits each, then the bit compression ratio
 

achieved by the eigenvector transformation and block quantization is
 

MN (1.3.2-11) 
m1+m2+...+mn 

2 (2 ) (frsm 2) 
It can be shown that Rb ( ).can be made less.than Rs ) Cfor some e 2 
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The eigenvector transformation and the block quantization method have
 

been used to encode waveforms [2,3] and pictures [4,51. Monochromatic
 

pictures were encoded and reconstructed with no-noticeable distortion at
 

2.5 bits per picture element. Ready and Wintz [6] implemented the same
 

technique for MSS data. They considered two additional transforms (Fourier
 

and Hadamard) also applicable to the MSS data. Both of these transforma­

tions are non-source-dependent in that the set of orthonormal basis vectors
 

is fixed regardless of the source characteristics. The rows of the Fourier
 

transformation matrix are the sampled, harmonically-related sine and cosine
 

functions. The rows of the Hadamard matrix are the discrete version of ortho­

gonal Walsh functions.
 

1.3.2.1.2 Coding by BLOB
 

BLOB first subdivides the multi-imagery into 2 x 2 subsets (pixel
 

groups) of picture elements (pixels). A hypothesis testing algorithm com­

putes the mean (gray level) and variance (texture) of each 2 x 2 array and
 

compares the first and second order statistics of adjacent subsets. Adja­

cent subsets having similar first and second order statistics are merged
 

into blobs. In this manner the entire imagery is partitioned into blobs
 

such that the picture elements within each blob have similar gray levels 

and/or variances. By varying either of two parameters, the amount of con­

sideration given to gray level and texture can be adjusted [8]. 

The boundaries may be weak in some spectral channels and strong in
 

others. To take this consideration into account, the variance (F-test) and
 

mean (student t-test) tests are implemented separately in each channel.
 

This has been called a "multiple-univariate approach."
 

Finally, BLOB transforms the boundaries into a sequence of binary
 

digits with the help of contour tracing algorithm discussed in [3]. The
 

output of the contour tracer is in the form of directionals which are coded.
 

1.3.2.2 Feature Selection
 

Use.of coding procedures reduces the data volume that must
 

be processed by the data analysis algorithm. This in turn reduces both the
 

time required to read the data into the computer and the time required to
 

do the mathematical operations on the data. For example, classification
 

algorithms are usually designed to operate on fewer number of spectral
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channels because including more channels requires excessive computer time.
 

In that case it is desirable to know the relative importance of the indivi­

dual features from the classification viewpoint. This suggests the study
 

of feature selection; that is, the selection of subsets of feature measure­

ments from the complete set.
 

The eigenvector transformation discussed in Section 1.3.2.1.1 is also
 

one of the most popular techniques for feature selection. The procedure is
 

usually referred to as the principal components method [1] and consists of
 

the following steps.
 

(1) Compute the covariance matrix C df the given data. This matrix is
 

n x n.
 

(2) Obtain the n eigenvectors and associated n eigenvalues of C. The
 

eigenvectors are n-dimensional.
 

(3) Choose the m eigenvectors associated with the m largest eigenvalues
 

of C, where m < n.
 

(4) Form an m x n transformation matrix A/whose rows are the m eigen­

vectors selected in Step (3).
 

(5) Reduce all original vectors x into a set of y vectors by means of
 

the transformation
 

yAx
 

The resulting vectors are of lower dimensionality but, according to Eq.
 

1.3.2-8, this reduction results in the least mean square error.
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1.4 	CANDIDATE FOR DETAILED STUDY
 

In this section a detailed study of a particular application area is
 

carried out. The area which has been selected for this study is the remote
 

detection and classification of agricultural crops. This choice is based
 

on the importance and relevance of this problem in terms of human as well as
 

economic considerations.
 

There are two principal items of information relative to agriculture
 

remote sensing systems - (1) total crop acreage and (2) total expected
 

yield. On a world-wide scale, the first item requires classification of
 

ground crop information into one of approximately twelve different crops
 

(pattern classes). Once the total acreage of each crop has been determined,
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the yield can be calculated by assessing the state of healthof each crop.
 

It has been-suggested that a minimum of three states of health ranging from
 

normal to abnormal should be adequate for a close approximation of the
 

expected yield from a particular crop El]. Therefore, the crop classifica­

tion problem may be divided into two stages. The first stage is used for
 

classifying ground information into one of the crop categories. The second
 

stage then classifies each into one of the health states. Assuming twelve
 

crops and three states of health this is equivalent to a thirty-six-class
 

pattern recognition problem.
 

1.4.1 Baseline Data Format
 

From Table 1.1.2(I), entry AS, the average resolution for crop classi­

fication is 40m, while the scanner swath width (field of coverage) is 185 km.
 

From Figure 1.1.2(1), the desired number of bands (channels) for this appli­

cation is seven. These bands consist of the four ERTS bands, plus two
 

bands in the mid-infrared range and a band in the thermal region.
 

Using the data rate formula given in Section 1.1.2.4 with
 

S = 185 km
 
w
 
RL = R = 40 m
L Rp
 

V = 6500 m/sec
 

NC = 7
 

Nbp 6
 

we find that the data rate for this application is
 

DR = 3.16 x 107 bits/sec
 

This data format will be referred to as the "baseline data format" in
 

subsequent sections.
 

1.4.2 Preprocessing Algorithms
 

1.4.2.1 Coding
 

From the results of data compression algorithms studies, there appear
 

to be two candidate algorithms applicable to on board data compression.
 

They are: (1) transform coding (Section 1.3.2.1.1); and (2) Coding by BLOB
 

(Section 1.3.2.1.2). Both of these algorithms are non-information pre­

serving in the sense that an exact replica of the original data cannot be
 

constructed from the coded data.
 

The studies further indicate that coding by BLOB achieves a higher
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compression ratio than that obtained by transform coders, and this suggests
 

that this approach is a better candidate algorithm for on board processing
 

purposes, though it involves more computation.
 

To determine the performance of this method of data compression experi­

mentally two sets of data were considered [2]. One was aircraft imagery
 

(Laboratory for Application of Remote Sensing (LARS) Run.#71053900) and the
 

other was ERTS-l imagery (LARS Run #73041801).
 

BLOBS are larger and fewer at high significance levels. The contour
 

tracer output contains fewer initial point locations and gray levels that
 

must be coded resulting in a higher compression ratio. Figure 1.4.2(1)
 

illustrates the effect of various significance levels on the compression
 

ratio.
 

100 

to_ 

(ONLY MEAN 	 FOR THE BLOBS ARE CODED) 

:0 	 COMPRESSION RATIO FOR AIRCRAFT IMAGERY 
(MEAN a COVARIANCE MATRICES ARE CODED) 

COMPRESSION RATIO FOR ERTS IMAGERY 
(ONLY MEAN VALUE CODED) 

r, 	 COMPRESSION RATIO FOR ERTS IMAGERY 
(MEAN a COVARIANCE MATRICES ARE CODED) 

1 4 	 3,T 

SIGNIFICANCE LEVELS \ 
Figure 1.4.2(1) Data Compression Ratio for BLOB-Contour Encoding Scheme.
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To determine the effect of data compression on classification accuracy
 

in both these images, the blobs of the decoded data were classified using a­

minimum distance classification algorithm [2]. The classifier was imple­

mented to distinguish corn, forage, soybean, forest and water in aircraft
 

imagery, and wheat, pasture and other in ERTS-l imagery. The results are
 

shown in Figure 1.4.2(2). Presently, machine classification of multispectral
 

data images is most commonly done on a point-by-point (spectral signature)
 

basis. Both data .sets were also classified according to their spectral sig­

nature analysis. It is evident from Figure 1.4.2(2) that compression ratios
 

of the order of 12 and 32 for ERTS-l and aircraft imageries, respectively,
 

can be obtained without degrading the classification accuracy.
 

'PER POINT' (SPEC. SIGN.)
 
/ANALYSIS PERFORMANCE FOR
 

O-R IMAGERY FAIRCRAFT 
"l ..---- IMAGERYA IRCRAFT 

0 0 

o \ PER POWT'(SPEC. SIGN.)
U_ )rL2 .E. - .' : .'' I\ ' \ ANALYSIS PERFORMANCE FOR I\ERTS.1 IMAGERY 
< ~ERTS- 1 IMAGERY I- I 
jO GoI 'E-PIT (PCqSG.

I a 

1 6 10 A 14 18 B 22 26 30 
COMPRESSION RATIO 

Figure 1.4.2(2) Compression Ratio vs Percent Classification Accuracy
 

1.4.2.2 Feature Selection
 

The-candidate algorithm for feature selection is proposed to be based
 

on eigenvector transformation discussed in greater detail in Section 1.3.2.2.
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To illustrate-the effect of this transformation on ERTS-l data, an estimate
 

of the'4 x 4 covariance matrix of the data was determined, The'data was
 

taken from an agricultural scene in Ogle, Lee and DeKalb Counties in the
 

midwestern United States (LARS Run #72032806). The eigenvalues, matrix of
 

eigenvectors and the variance in the individual channels is given in
 

Table 1.4.2(I).
 

Table 1.4.2(I) Variance Eigenvalues and Eigenvectors of ERTS-1 Data
 

Variance Eigenvalues - Matrix ofEigenvectors' 

Channel 1-14.3 124.39 0.0491 -0.0327 0.8255 0.5612 
Channel 2-27.6 41.97 0.5602 0.8024 0.1143 -0.1705 
Channel 3-85.9 1.97 0.1927 -0.1147 -0.5526 0.8027 
Channel 4-41.7 1.19 0.8040 -0.5846 0.0023 0.1079 

Clearly the first two principal components of the transformed data
 

contained 98.14% of the total variance contained in all four spectral bands
 

of the original data. A set of training fields was selected to train the
 

classifier on the data from the first two principal components to classify
 

the data into three classes (corn, soybean and other). A scatter plot of
 

the first principal component versus the second principal component is
 

given in Figure 1.4.2(3). The decision boundaries shown yield a classifi­

cation accuracy of 98% determined on the training fields.
 

This indicates that the eigenvector transformation of the ERTS-l data
 

reduces the data bulk by two orders of magnitude without any loss of infor­

mation. In addition, since the most information is contained only in two
 

dimensions, handling and processing of the transformed data becomes an
 

easier task.
 

1.14.2.3 Conclusion
 

Although preprocessing plays a central role in data transmission, we
 

have concluded that its usefulness is limited for on-board processing. The
 

increase in hardware and software required to carry out the coding opera­

tions is a-necessity if data is to be transmitted from the host system to
 

some processing station. In most applications, especially in agriculture,
 

the actual classification can usually be best carried out directly on the
 

input data. For this reason, attention will be focused on the classifica­
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tion aspects of an on-board system for agricultural applications.
 

1.4.3 Analysis Algorithms
 

The analysis algorithms which are most suitable for on-board agricul­

tural data processing are the maximum-likelihood and table look-up approaches
 

discussed in Section 1.1.3.
 

Attention will be focused in Section 2 on the hardware and software
 

requirements of these two algorithms; as will be seen, the two approaches
 

pose quite distinct implementation,problems.
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2 ON-BOARD PROCESSOR REQUIREMENTS
 

This section contains the computational requirements of the data analysis
 

algorithms, a review of some computer architectures and organizations, a
 

design of some computer architectures capable of handling the algorithm
 

computational requirements, and a disbussion of the on-board processor en­

vironmental effects.
 

In Section 2.1 we survey some earth resources user requirements and the
 

.data analysis algorithms for implementing them. In addition, we analyze
 

in detail the basic computational requirements; i.e., the number of multi­

plications, additions, etc., required to implement these algorithms for the
 

baseline data format.
 

In Section 2.2 we present some computer architectures and organizations
 

with particular emphasis on pipeline, array processors and multiprocessors,
 

since it is apparent that some sort of parallel processor will be required
 

to keep up with the high data rates required by the users. Memory and soft­

ware requirements are also discussed. A number of on-board processors were
 

then designed to efficiently implement the maximum likelihood and table look­

up algorithms at the required rates.
 

Finally, the environmental effects on the on-board processor for both
 

the earth-synchronous and the sun-synchronous orbits are discussed in
 

Section 2.3.
 

2.1' ALGORITHM COMPUTATIONAL REQUIREMENTS
 

This section deals with the basic computational requirements of pre­

processing and analysis algorithms. It will be assumed throughout the
 

following discussion that the estimation of the parameters for the eigen­

vector transformation of Section 2.1.1.2 and the training of the maximum­

likelihood and perceptron algorithms of Section 2.1.2.1 are carried out on
 

the ground.
 

The following notation is used throughout this section:
 

n: number of features Cchannels)
 

x =(xl,x 2, ..., xn)': pattern vector
 

M: number of pattern classes 

Np: total number of picture elements (pixels) in a data frame 

NA: total number of additions 

NM: total number of multiplications 
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NC total number of comparisons,
 

NS: total number of.square roots
 

2.1.1 Preprocessing Algorithms
 

The preprocessing algorithms considered in this section are the data
 

bulk reduction procedures discussed in-Section 1.3.2. The two principal
 

approaches discussed in that section are based either on an eigenvector
 

transformation or BLOB coding. The computational requirements for these
 

two appraoches are discussed below.
 

2.1.2 Basic Computatidnal Requirements
 

(1) Eigenvector Transformation
 

The reduction of a pattern vector with q components to n components by
 

means of an eigenvector transformation requires nq additions and nq multi­

plications. For a total of Np pattern vect6rs the following totals apply:
 

NA = nqNp (2.1.2-1)
 

NM = nqNp (2.1.2-2)
 

where N and N are the total number of additions and multiplications res-

A M - -. 

, 

pectively. 

(2) BLOB Coding
 

The BLOB coding algorithm operates on two rows of an image at a time.
 

Letting W represent the number of columns per row we have the following
 

processing requirements:
 

(a) Additions in calculating the mean - 4nW 

(b) Additions in calculating F-test = 0
 

(c) Additions in calculating t-test = 5nW
 

(d) Multiplications in calculating mean and variance - n(n+l)W
 

(e) Multiplications in calculating F-test - 2nW
 

(f) Multiplications in calculating t-test - 6nW
 
n(n+l)W
(g) Additions in storing mean and.variance - nW + 2
 

Then, the total number of additions required to process two rows of an
 

image is given by
 

additions = ElOn + n(n+l)I Wx 

and the number of multiplications is given by
 

multiplications = [8n + nn+l)] W.
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If we let.V equal the number of rows in an image then we have.the following
 

total figures:
 +n (N+I) 3 
NA. El0n + (Nl)1§ (2.1,2-3) 

NM L8n.+ n(n+l)J W (2.1.2-4)
N2-


However, VW =N , the total number of elements in the digital image, so that
 

N ElOn + n(n+l)N (2.1.2-5)NA 2 
 2 P
 

N = - [8n + n(n+l)3 N (2.1.2-6) 

2.1.3 Storage Considerations
 

The storage requirements of the eigenvector transformation are simply
 

those associated with the q x n transformation matrix. The transformation
 

program itself consists of nothing more than the instructions required to
 

multiply-the transformation matrix by each input pattern vector. Therefore,
 

the total storage requirements are qn words for the matrix plus that re­

quired to store the short multiplication program.
 

Experiments conducted at LARS with the BLOB algorithm indicate that
 

approximately 35,000 32-bit words, including data storage, are required for
 

coding with this approach.
 

2.1.4 Analysis Algorithms
 

2.1.4.1 Basic Computational Requirements
 

The operations required to implement the maximum-likelihood, percep­

tron, clustering, BLOB, and table look-up algorithms are examined in this
 

section. Expressions for the number of arithmetic and other required opera­

tions such as comparisons and squdte roots are derived, The results are
 

then compared in Section 2.1.2.2 using typical parameter values.
 

(1) Maximum-Likelihood Approach - Classification of a pattern vector 

x= (x, x2 , ..., xn ) into one of M classes by the maximum-likelihood 

approach requires implementation of Eq. (1.1.3-5) 

dk(x) =n w - £ng IC - 1 .1 (2.1.2-7) 

- k.l, 2;.., M -. 
)Zn a 'are estimated during-training and, 

The terms Zn p(W); ki IandC ar 

consequently, need not be balculated-during the classification process.
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Therefore, the principal computation for each x involyes multiplications
 

and additions.in.the last term..of'Eq. (2.1.2-7) aboye.

-1
 

For n.channels, x and m hase.n components and C is an n x n matrix.
 

Thus the number of arithmetic operations is determined as fbllows:
 

Ca) formation of (x-m): n additions
 

(b) multiplication of C by (xhm ): n(n-'l) additions; n multipli­

.cations
 

Cc) multiplication of Cx-m) by the'results of (b): (n-l) additions;
 

n multiplications
 

Cd) multiplication of 0.5 by the results of Cc): 1 multiplication
 

(e) addition of all three terms in Eq. (2.1.2-7): 3 additions
 

"The results are, therefore,
 
2 

number of additions = n + n + 2 

number of multiplications = n2 + n + 1
 

These results are for one class and one pattern. Letting M equal the number
 

of classes and N the total number of patterns to be classified yields:
 

NA = (n2 + n + 2) M N (2.1.2-8) 

NM = (n +n+ ) M-Np (2.1.2-9) 

In order to classify each observation x into one of M classes it is
 

required that the maximum of M decision functions be determined; as was
 

indicated in-Section 1.1.3.1. Therefore, in addition to the total number
 

of operations given in Eqs. (2.1.2-8) and (2.1.2-9), it is also necessary
 

to perform NC comparisons, where
 

NC = Np (M-) (2.1.2-10) 

This relationship follows from comparing M decision function values for Np
 

patterns.
 

(2) Perceptron Approach - Classification of a-pattern vector into one
 

of M classes by the perceptron approach requires implementation of Eq.
 

(1'.1.3-6)
 

d kx) k () + wk22() + ... + WkN( x) + Wk,N+ 1
 

= w - (x) (2.1.2-11)
k = 1, 2, ..., M
 

where the coefficients {wki} and functions {4iCx)} are determined during
 

training.
 

64
 



Inorder.to establish.the number of arithmetic operations required to
 

implement the-perceptron approach.it is.necessary to choose a particular set
 

of functions {4:(x)}. One of-the most common approaches is to express the

i ­

above decision functions in'.theform of an rth degree polynomial Eli by
 

means of the following recursive formula:
 

n n n 
dr(x) E z ... E WP F P xPXP..xP
1 P
2 
= Pr=Pr_l
[1 I P2 : I 


(2.1.2-12)
 

where the first term d0 (x)-is given by-d0 (x) = Wn+l. In this equation the
 

superscript indicates the degree of the polynomial. The class subscript has
 

been dropped from the equation,'to simplify the notation. It is understood
 

that there are N decision functions, one for each class. 

The number of additions in Eq. (2.1.2-12) is given by: 

additions - (n + r)! - 1 
n! rI
 

and the number of multiplications by:
 

multiplications = :r (n+q)! (ntq_

ql q! n -2 

These results are-for one pattern and one class. Letting M equal the num­

ber of classes and Np the total number of patterns to be classified results
 

in the following total number of arithmetic operations:
 

NA= [nr! MNp (2.1.2-13) 

N- ( Y(n+q)! (n+q-l)! - MN (2.1.2-14)NM= r (qtl) " -2JMp(1.-)
 

N {ql n!q! q-1).
 

As in the case of the maximum-likelihood approach, it is also necessary to
 

perform NC comparisons, where
 

NC = Np(M-1) (2.1.2-15)
 

(3) Clustering Approach - The clustering approach discussed in Section
 

1.1.3.4 operates directly on the complete set of data to be classified.
 

This is in contrast with the two approaches discussed above which classify
 

one pattern vector at a time. The number of operations required to imple­

ment the clustering approach is determined as follows:
 

(a) sample mean for each &lass M, pj1 L 
fj : j 1, 2, .n
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additions:- n L M 

*multiplications:, n i 

where L = N /M. It is noted.that M, the.class or mode-of'a.cluster, is not 
F
 

specified'as in.the case of the two approaches discussed above, but is in­

stead determined by the algorithm based-on the properties of the data being
 

analyzed. L
 
- 2")1 

(b) sample variance a. = L-iil E Cx..- ; ... n] 'j ,2 , 

additions: 2 n L M; multiplications: n(L+l) M 

Cc mode (class center = a.+8Lk-l)] - 1; j = 1, 2, ., n 

additions: (3M+I) n; multiplications: (3M+L) n: k = 1, 2, ... , M 

(d) Euclidean distance D n=i2 k = 1, 2, .. , N
 
ill
 

additions: n Np M; multiplications: n NP M
 

Let I be the number of iterations allowed for convergence -of the algorithm.
 

Then, the total number of computations involved in assigning all the data
 

vectors to one of M classes is:
 

additions = (n L M + 2n'-4M + + n Np M) I
+l)n 

= (n N + 2n Np + 3n M + n + n Np M) I 

= n IM + 3)N + 3M + 1] 

multiplications = (n M + n Np + n M + 3Mn + n + n N M) I 

= n I[5 M + (M + 1) Np + 1] 

to determine the distinctness of classes we have the following additional 

computations: , A A2 

(e) Swain-Fu distance:V = 
VA + A2 

where A Tr C l Calculating C-1 involves n3 additions 

and n multiplications. Then, the calculation of Ak involves 2n + 1 addi­

tions and 2n + n2 multiplications. Finally,'the calculation of V for two 

classes involves: 

additions: 4n + 3; multiplications: 4n + 2n2 + 2; 

square roots: 3 

Considering next every pair of classes.yields: 

additions: 2, E4n,+'31; multiplications: M()2 [4n + 2n2 + 2];- 2 -- (-)[n{tn 2;mlipiain: 


3N4CMl)
 
square roots: t
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The-total number of computations.required for clustering is then:, 

N =~n IjQ4 +-3)NI t 3M + 1it 1MM-I) [4n3 + 3](2.1.2-16)
A = 2 .
 

[ 4 n  2n
NM = p I [5M + (M+l)Np'+'I] +4l)2 + + 2] " (2.1:2-17) 

N 3 M-) (2A1.2-18)

S . 2
 

where NS is the number of square roots.
 

In addition it is also necessary to perform
 

Nc = Np(M - 1) (2.1.2-19)
 

comparisons.
 

C4) Blob Classification - After the data have been compressed by the
 

BLOB preprocessing algorithm, it may be desired to classify each blob into
 

one of M classes. Two principal approaches are used in th6 BLOB classifi­

cation algorithm: (1) minimum-distarce classification, and (2) maximum­

likelihood classification. Letting NB represent the number of blobs, we
 

have the following figures for the minimum-distance approach:
 

2
NA ='(2n 3 + n + n + 2) 14NB (2.1.2-20)

3 2
 

NM = (2n
3 + n + n + 5) MNB (2.1.2-21)
 

NC = NB(M - 1) (2.1.2-22)
 

In addition, there are NBMlog operations.
 

The maximum-likelihood figures are obtained from Eqs. (2.1.2-8)
 

through (2.1.2-10) with Np = NB*
 

NA = (n2 + n + 2) MNB (2.1.2-23)
 

NM = (n2 + n + 1) MNB (2.1.2-24)
 

NC = NB(M - 1) (2.1.2-25) 

(5) Table Look-Up - The principal operation in the table look-up
 

approach discussed in Section 1.1.3.3 consists simply of 

= (11 + M) MN (2.1.2-25)NA 


additions. Although this technique is attractive from a computational
 

point of view, it must be kept in mind that the actual program and storage
 

requirements are considerably more complex than the approaches discussed
 

above.
 

2.1.4.2 A Numerical Comparison
 

The results obtained in the previous section are best appreciated by
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comparing the number of required operations on an absolute basis. Table
 

2.1.1(I) presents such a comparison for the following typical parameter
 

values"
 

n 4.
 

N = (3300 rows) x (2500-columns) = 8.25 x 106 pixels
 

Mr5
 

I = 15 
10. Then N. = Np/10 8.25 x 105
 

Number of points/blob = 


These values are typical of those used in connection with ERTS-I MSS data.
 

'Table 2.1.1(I) A comparison of Analysis Algorithms
 

for One Data Frame
 

Equations Number Number of Number
 

Used of Multipli- of Other
 

(Section 2.1.2) Additions cations Operations
Approach 

N : 3.30 x 107
8.663 x 10 


Maximum-Likelihood ()(9),(1) 9.075 x 10b 


Perceptron (13),(14),(8), 5.775 x 10 1.485 x 10 N : 3.30 x 10
 

[r=2], (15)
 
Clustering (16,(17), 3.960 x 109 2.970 x 109 NS: 30
 

[I=15],X(18), NC: 3.30 x 107
 

(19) 8 8
 

BLOB [Min. Dist.] (5),(6),(20), 8.251 x 10 8.044 x 10 Log: 4.13 x 10
 
NC: 3.30 x 106
 

(21),(22) 

N: 3.30 x 106
1.114 x 109 1.040 x 109
)(5)(6),(23),
BLOB [Max-Likeli-


hood] (24),(25) 8
 
6.600 x 10 --


Table Look-Up (26) 


*The results obtained in Table 2.1.1(I) for the perceptron approach
 

assume decision boundaries of the second degree (r=2). This assumption is
 

made to arrive at a meaningful comparison between the perceptron and maxi­

mum-likelihood approaches, since the latter implements second degree
 

boundaries when the data are assumed to have Gaussian properties. This is
 

by far the most common assumption followed in processing remotely-sensed
 

data by the maximum-likelihood approach.
 

The results shown for the BLOB approach take into account Eqs. (2.1.2-5)
 

and (2.1.2-6). Although these eqlations are associated with preprocessing
 

functions, they are also required -in classification. In other words, pre­

processing is a necessary step prior to classification by the blob approach.
 

68
 



2.1.4.3' Storage Considerations
 

Implementation of the maximum-likelihood algorithm for 14classes re­

quires S storage locations for~ n pCN)M st1rage.locationsfor -n 

Mn storage locations for the mean vector§mk and Mn storage locations for 
the'matrices C The actual classification algorithm can be implemented


--k
 
in less than 2500 storage words. 'Inaddition, it is necessary to have a
 

buffer for the input data. The size- of the buffer depends on the processor
 

speed.
 

The perceptron algorithm requires M(n~r)!/n~r! storage locations for
 

the coefficients of the decision functions. The algorithm itself can be
 

stored in less than 2000 words. A buffer is also required for this
 

approach.-


Experiments conducted at LARS with the clustering algorithm indicate
 

that 57,000 32-bit words are required to process 40'000 data vectors (with
 

n=4). This includes program and data storage. in-addition, a buffer whose
 

size depends on processor speed is required
 

The storage requirements for the classification aspect of the BLOB
 

algorithm depends on the approach taken. For the minimum-distance approach
 

it is necessary to store the.mode centers along with the covariance matrix
 

of each blob. Since the humber of'blobs varies with the application the
 

storage requirements must be determined by actual experimentation. -The
 

classification algorithm itself can be stored in less than 2000 words and
 

a buffer is also required.
 

The maximum-likelihood approach to blob classification has the same
 

requirements as the general maximum-likelihood algorithm discussed above.
 

Experiments with the table look-up approach indicate that this approach
 

requires in the order of 31,000 words of storage [5,6]. This figure
 

applies to a maximum of 24 classes with n=4. A buffer whose size depends
 

on processor speed is also required.
 

The above comparisons are intended only as rough guidelines of algo­

rithm storage requirements. The actual figures for each algorithm depend
 

on a number of factors such as processor instruction set and speed, program
 

optimization, and the application area.
 

2.1.4.4 fDetermination of the'Algorithm Constants
 

The constants in the preprocessing and analysis algorithms depend on
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the particular application, For example, the L, I[1, etc., in the maxi­

mum likelihood algorithm decision functions given by equatiQn(2.1.1-7)deped
 

on the statistics of the .data classea'to-be classified. The an-boara pro­

cessor.must implement this equation, but the processor design, speed of
 

operation, etc., are invariant to the numerical values of the constants.
 

There are two possibilities for determining the numerical values for
 

.these constants: (1) the spectral signature bank approach; and (2) training.
 

The'signature bank approach assumes that the required numbers for each
 

application are known and stored so that for any particular application the
 

required set of numbers can be looked up in the bank. This approach is not.
 

feasible at this time because the constants for any particular application
 

depend on many different parameters in a complicated way that is not well
 

understood at this time. For example, the spectral signature of corn de­

pends on lighting conditions, soil characteristics, the amount of moisture
 

in the leaves, the point in the growing cycle, etc. When, if ever, the
 

-dependence of the constants on these parameters becomes well enough under­

stood to allow application of this approach is uncertain.
 

The-second approach is called training and requires, that a sample of
 

each type of data to be classified be obtained and the required numerical
 

values measured from this data sample. For example, the ! in the maximum
 

likelihood algorithm are the mean intensity values in each spectral band.
 

The idea is to choose a typical data sample (called a training sample),
 

make the measurements from this sample, and use them in the decision func­

tion.
 

If the training approach is used there are two possibilities'for
 

training the classifier; i.e., obtaining the numerical values of the con­

stants. The first approach is to collect the data sample and compute these
 

parameters on board the satellite. The second approach is to transmit the
 

raw data sample to a ground computer, compute the parameters on the ground,
 

and transmit these back to the satellite. The latter approach appears to
 

be the most feasible at this time. The entire problem of how to go about
 

collecting training samples, verifying ground truth, etc., is not well under­

stood at this time. NASA is presently expending considerable resources in
 

an attempt to solve these problems. The results of these studies will com­

plement the results of our study.
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2.2 COMPUTER ARCHITECTURE AND ORGANIZATION
 

2.2.1 Historical Data
 

Historically, computer organization has developed along the classical
 

lines of the Von Neuman machine [i]. When the arithmetic logic unit (ALU)
 

is designed to operate on n-bit operands in a time-sequential mode, the
 

operation of the computer is termed serial mode. Traditionally, a computer
 

whose ALU is serial has been classified as a serial computer. If the ALU
 

execution on an n-bit operand is performed separately and simultaneously,
 

the 	mode of operation is parallel. Approximately n times as much hardware
 

is required in a parallel organization as compared to a serial organization.
 

This is somewhat offset by the fact that the serial control unit is more
 

complicated than that of a parallel organization. However, the parallel
 

structure executes operations nearly n times faster [2,3J.
 

First generation computers were serial. The performance/cost ratio
 

was 	relatively small. To increase the speed of operation, second genera­

tion machines were designed with a parallel structure. Transistor and ­

better random access memory technologies significantly increased the per­

formance/cost ratio. The user base broadened with the development of 

- hikher'level programming languages which-generated a demand for more com­

puting power.
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Third generation computers use integrated circuit technology and im­

proved-peripheral and memorytechn1og ies~to~continue-the improyement in the
 

performance/cost ratio.,.The-.organization of these computer systems still
 

usesa parallel'organization.' Systemlresources are utilizedjmore efficiently
 

in a few of these systems by.adding a second processing unit. In this
 

organization, independent processors, each with identical physical organiza­

tion, performs relatively independent functions. The memory unit is a
 

resource shared'by each processor. Although the processor cost has in­

creaied two-fold, the performance has increased by a lesser factor. Even in
 

third generation machines'the Von Neuman influence is evident in most com­

puter'organizations." Flynn [4] and Higbie [6] have presented new concepts
 

which attempt to avoid the ambiguous term "parallelism" in categorizing
 

computer organizations.
 

Four major classifications for computer processors have been defined:
 

()" Single Instruction Stream-Single Data Stream (SISD) processors;
 

(2) Multiple Instruction Stream-Single Data Stream (MISD) processors;
 

(3) Single Instruction Stream-Multiple Data Stream (SIMD).processors;
 

(4). Multiple,instruction Stream-Multiple Data Stream.(MIND) processors.
 

The Instruction Stream is the sequence of instructions as executed by
 

the processor while the Data Stream is the sequence of data called for by
 

the instruction stream. Computer organizations are described by the multi­

plicity of hardware subsystems utilized to service the Instruction and Data
 

Streams. No longer is a system structure identified by the physical con­

struction of its ALU, but rather by the number of instruction streams, the
 

number of data streams, and their interactions.
 

2.2.2 Parallel Processor
 

SISEComputer. This system'has a single processor. -Several computer 

- systems using this basic organization achieve computing power by overlap­

ping the execution of sequential instructions. That is, the execution of
 

the next instruction begins as soon as the first phase of the current in­

struction is completed. When conditional instructions are encountered,
 

"dummy" instructions are executed until the decision or conditional pro­

cess is complete. The CDC 6600 series [51 and the IBM-360/90 series [71
 

-are.examples of computers falling into this class.
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2.2.3 PipelineProcessor
 

MISD Computer. This structure has.become known as.a pipeline computer
 

[8,9]. The whole philosophy of pipeliningtis-to2implement a series of
 

independent processors,-or-processor subsystems, in the form of a long
 

pipeline. As a computation flows thbrugh the collection of processors, each
 

processor performs a specific sub-operation; Seyeral computations may be
 

in process in distinct processors at the'same time. The overlapping of
 

computations is made possible by locating output registers with each segment
 

of the pipeline. The CDC STAR [103 and the TI-ASC Ell] are The most signi­

ficant examples of computers in this class.
 

2.2.4 Array Processor
 

SIMD Computer. Several computers (SPAC, [12] SOLOMON, [13] and
 

ILLIAC IV [14]) have been proposed to process multiple data streams. ILLIAC
 

IV is the only one of consequence to have achieved an operational status.
 

Computers falling in this class of structure are described alternately as
 

array- processors, associative array processors, parallel processors, vec­

tor processors, or othogonal processors depending upon their organizational
 

differences. Communication between processors is predetermined and instruc­

tion stream execution operates simultaneously on all data streams. No
 

overlapping of instruction execution is presently used in this organization.
 

2.2.5 Multiprocessor
 

1MIMD Computer. This is an example of a multiprocessor system with
 

either shared or multiple memories in which more than one program is
 

executing on its own data (i.e.- multiprogramming). The Carnegie-Mellon
 

system[15] -is an example of such an organization and employs a number of
 

independent minicomputers with a shared memory.
 

Looking at these organizations with respect to the data acquisition
 

from a multispectral scanner, an obvious observation is that data acquired"
 

from the multispectral scanner represents a multiple data stream. A SIMD
 

organization is one possible consideration. However, to achieve the data
 

rate-constraints, a MIMD structure represehts an alternate approach.
 

2.2.6"'Memory-


In a small general-purpose digital computer the memory is the most
 

expensive of the various computer subsystems. The memory size must be in
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excess of the-requireinents.set, orth.by.the average job that is anticipated,
 

must'.be fast to prevent a limiting of the~computer performance, and must be'
 

low pov erlto reduce.poer-supply.costs. .Small'computers today are turning,
 

almost.exclusively, to semiconductor-memorieswhichae out-performing core
 

in both speed and.cost for small to~mediumsized-iiemories [16,171.
 

- The architecture of contemporary machines has included a single memory 

which is used for both program storage and temporary storage. With the 

advent of the.microprocessor and the semiconductory memory, the memory has
 

been partitioned into two separate memories, program memory and working
 

memory. Because of the volatility of semiconductor memories, the program
 

memory is a read-only memory (RON) and the working memory is a random­

access memory CRAM).
 

2-:2.6.1 Program Memory
 

In examining the algorithms for earth resources applications the pro­

grams are not lengthy and complex since speed is the predominating factor;
 

therefore, the program memory can be relatively small. Projections
 

indicate that the on-board computer will be of the multi-instruction
 

multiple-data-input type in the 1980-1990 time span. To implement this
 

type of architecture, one method is to interconnect a number of micropro­

cessors; one or more would be in each stage of the pipeline, and to accom­

plish the throughput requirements, pipelines could be parallelled. Each
 

microprocessor or group of microprocessors could be assigned a small program
 

membry. At present the access time for a semiconductor memory is much
 

faster than the cycletime of the microprocessor so that something like five
 

microprocessors could share a memory. Since both microprocessor speed and
 

memory speed will increase, this ratio may still stand in the 1980-1990 time
 

frame.
 

The program memory must be non-volatile and there must be a convenient
 

way to change the program. Today, this is accomplished in programmable
 

read-only memories (PROM). Electrically-alterable read-only memories (EAROM)
 

will be available soon. The common type of PROM today requires an ultra­

violet light source to erase the memroy. By 1980 the bits of the EAROM can
 

be'selected randomly for writing into either state.
 

2.2.6.2 'Working Memory-


The working memory criteria can be satisfied by a random-access
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volatile memory (RAM). Pves&ntly these-.re either.bipolar or.metal-oxide.
 

semiconduct6r (MOS). 'Thelhipolar,RAMs enjoy on the'ayerage-a speed*advan­

tage and the MOS RAs are.superior in their efficient use of power. Currently
 

the'bipolar chips cofitain 4000 bits,require 6 mil2/bit and an access rime
 

of 50-:00 ns.' This performance-is expected.to improve-at a.substantial rate
 

through the 1980's.
 

-2.2.6.3 
Bulk Memory
 

The on-board earth resources computer will not need an on-board bulk
 

memory to store the MSS signals for later processing. An on-board computer
 

is being designed to operate in .real time and to immediately process all the
 

data as,it is produced'by'the sensors.
 

The output of the computer contains processed data in the form of
 

classification data for each pixel. For the candidate format discussed in
 

Section 1.4 there are four spectal bands with 6 bits of gray-level quanti­

zation for each pixel. There are 1.3 ps per pixel so that the input data
 

rate is 31.2 MHz.
 

The output data is classified into 12 classifications or four bits per
 

pixel. This gives an output data rate of 5.2 megabits per second. At this
 

point the on-board processor has compressed'the data by a factor of six to
 

one. If these output data are to be preserved, an on-board magnetic tape
 

recorder would be required or a wide band data link would be necessary
 

between'the spacecraft and the ground. Another approach is to sort the
 

classification data into twelve registers aboard the spacecraft. The regi­

sters could be read out at the end of each scan line indicating the combined
 

type and quality of crop along the scan line. This greatly reduces the
 

output data rate but sacrifices the knbwledge of the exact location and
 

quality of a particular crop.
 

2.2.6.4 New Memory Technologies
 

A number of new technologies 117] have been developed in the memory
 

area. One of the most promising is.the silicon-on-sapphire complementing
 

MOS memory element. These circuits offer one very important advantage..
 

The- insulation resistance between the components is extremely high and the
 

decrease in.substrate parasiti6 capacitance is so great that it appears)
 

that M0S circuits built on sapphire bould be as fast as or faster than
 

bipolar integrated cifcuits;
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The metal-alumina-silicon field-effect transistor is especially well­
.adapted for use as an electronically-alterable read-only memory. 
This
 

transistor is the same as a conventional MOS except that the alumina is used
 

in place of oxide as the gate dielectric material. The characteristics of
 

the alumina dielectric material can be changed,by applying a voltage to the
 

gate. There is a critical gate voltage level which, when reached, alters
 

.the transistor's threshold voltage. Shifting the threshold voltage from
 

one level to another corresponds to the storage of one bit of information.
 

Fortunately, the change in threshold voltage is non-volatile allowing the
 

device to be especially suited as a program memory.
 

Charge-coupled devices appear to have their'greatest potential in re­

placing disk and drum storage since the device works an excellent shift 

register. Presently there appears to be no need for high-capacity shift ­

registers for on-board earth-Resources computers.
 

For severe environment applications the Metal-Nitride Oxide Semlconduc­

tor (MNOS) has shown great promise coupled with the fact that it is a non­

volatile memory element. The devices have been applied in a large memory 

,-which replaces disk or drum [19]. An MNOS memory could serve either as a
 

program memory or a working memory or both.
 

2.2.7 Software
 

The requirements on the software for the on-board processing of earth­

resources data are basically different from the requirements of ground-.
 

based processing software. This stems from the fact that the ground com­

puters have traditionally been large-scale general-purpose digital computers.
 

These computers are used for many tasks and may even be assigned to com­

pletely different roles at the conclusion of the earth-resources mission.
 

The on-board processor is dedicated to a specific task and more of the
 

system implemented in hardware than in software. This is complemented by
 

the speed advantage of hardware over software.
 

A little over a decade ago the software costs were less than the costs
 

of the hardware. With the introduction of Large Scale Integration (LSI),
 

the cost of the computer has declined considerably; however, the labor
 

costs for software design has continued to rise. Some estimates put the
 

cost of a single instruction in a complicated program in the neighborhood.
 

of ten dollars; another figure is that-one hour of labor is required for
 

each two instructions in a program [20]. The trend, then, is to put more
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software functions -into hardware. For the earth-resources on-board compu­

ter this trend is emphasized even more strongly. Since speed-is the pre­

dominant factor, as many of the computer functions as possible will have -to
 

be done in hardware. In early computers binary addition was the only
 

function implemented in hardware. To increase speed-, more and more functions
 

have been implemented in hardware.
 

.The on-hoard earth-resources computer does not'need a-lthe features
 

of a large general-purpose machine,, but it does need,speed. It seems practi­

cal, then, to do the time consuming jobs by hardware and use software where
 

speed is not essential so that flexibility can.be maintained. As an
 

example, the maximum-likelihood algorithm involves primarily additions and
 

multiplications. It was very evident from the start that multiplication
 

could not be done in software and that either hardware-multiplication'or a
 

table look-up multiplication method would be employed. The addition func­

tion, oft'course, is-readily available in hardware form in all CPU chips or
 

arithmetic logic units..
 

, Since high speed is a prime requirement of the on-board computer, the
 

programs must-be short, simple and efficient. Efficiency dictates the use
 

of an assembly language for the programming. In the maximum-likelihobd
 

algorithm the total number of operations required is small; further, the
 

pipelining technique breaks down the computation into individual tasks.
 

The microprocessors are assigned to each task, and each task has its own
 

program. These programs are very short since the total operation has been
 

broken down-into parts (tasks). The individual programs would reside in an
 

"electrci'lly-alterableread'only memory (EAROM). By ground command to the
 

spacecraft, coefficients could be changed in the program to match ground­

truth mehsurements.
 

An advantage of utilizing identical microprocessors in the on-board
 

computer is that programming becomes fairly standard. A cross-assembler
 

would be used to develop each program for each task for loading into the
 

EAROMs. *The cross-assembler program would be run on any available computer
 

- of adequate capaity. A higher-level language would'be of little use 

since it'is not envisioned that a large amount of program will be needed; 

also, a higher-level language is not as efficient. 

2.2.8 Computer Architecture Examples
 

Attention will be focused on implementations of the maximum-likelihood
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and table look-up 	algorithms. Section 2.2.8.1 deals with a microprocessor,
 

implementation of the maximum-likelihood algorithm. This is followed in
 

Section 2.2.8.2 with a microprocessor implementation of the table look-up
 

approach. Section 2.2.8.3 deals with a microprocessor implementation of an
 

expanded form of the maximum-likelihood algorithm. This is followed in
 

Section 2.2.8.4 by a hardware implementation of this approach. Finally,
 

Section 2.2.8.5 presents a hardware implementation of the table look-up
 

algorithm. All examples are based on the baseline data format defined in
 

Section 1.4.
 

2.2.8.1 Microprocessor Organization for the Maximum-Likelihood Algorithm
 

Four processing elements are pipelined to execute the maximum likeli­

hood function for one class as shown in Figure 2.2.8(1). Each processing
 

element (PE) is organized about a microprocessor; the performance measure
 

is the execution time. A PE utilizing the INTEL 8080 is shown in Figure
 

2.2.8(2).
 

=:k
 

d(-x) Ck -1/2 A ( _k) 

Figure 2.2.8(1) Pipelined Organization for Executing
 

the Maximum Likelihood Algorithm
 

Input - Output
 
Registers Registers
 

Address Buss
 

8080 	 Rom Ram Input Output 
Memory Port . Port 

Data Buss
 

Status . Memory, I/0 
Register Control 

Figure 2.2.8(2) Microprocessor System Organized
 

About an INTEL 8080 Microprocessor.
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The vector x is input to PEI. PEI forma - and outputs the result to
 

PE2 which generates (xC-) and.outputs it to PE8 where dk(x) is computed,
 

PE4 determines the classification category, k.
 

Processing Element PEI."
 

The n input registers and nM output registers are required for n 

spectral bands and M classification categories. In order to determine the 

time required to compute x--mk the required code was written using the instruc­

tion set of the 8080 as illustrated in Table 2.2.8(I). This computation 

must be repeated for each of the m categories, k = 1, 2, ..., M. The total 

execution time is 

TE = (13.5M + 7.,5)n ps.
 

Table 2.2.8(I) Program for Generating x- in PE1
 

MNEMONIC OPERAND BYTES 	 COMMENT
 

LXI H, ARRAY 3 initialize f!kl array 
IN X1 2 input ?l component of x 
MOV D,A 1 
SUB MIl 1 generate.x1 - m11 
pUT Xll 2 output - m component 
INX H 1 increment EL 
MOV A,D - 1
 

SUB M21 1 generate x m21

OTX21 	 2- output xI Lm2 component 

1 incremen% EL 21INX H 

5(M-3) generate and output xl - m.1 

component i3, M - 1 

MOV A,D 1 
SUB MMI 1 generate xI - ml 
OUT . 2otptl I~XM1 	 2 output xI M1 component
 

This segment bf program is written for the ,l component of x, but
 
must be executed for each of the remaining components x2, . .x.
 

Processing Element PE2.
 

PE2 computes the.product
 

A C 
=k - 7 k 

nM input registers and 2nm output registers are required. Table 2:2.8(11)
 

shows the 8080 code required to use tablm look-up to form the products.
 

x.-mli and the coefficients of £i7l are used to address a multiplication
 

ROM from which the product is read. This code must be executed for each
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Table 2.2.8(11) Program for Generating - I in PE2
 

MNEMONIC 


LXI 


LXI 

IN 

OUT 

MOV 

LDAX 

MOV 

LDAX 

MOV 

INX 

INX 


LDAX 

MOV 

LDAX 


MOV 

LXI 

LXI 

IN

OUT 


MOV 

LDAX 

.MOV 

LDAX 

ADD 

MOV 

INX 

INX 


LDAX 
MOV 
LDAX 

ADD 

MOV 

LXI 

LXI 

IN 

OUT 

MOV 

LDAX 

MOV 

LDAX 

,ADD 

OUT 

INX 

INX 


OPERAND 


H, TEMP 


B, CROWI 

XII 

Xll 

D,A 


B 

E,A 

D 

T1, A 

B 

H 


B 

E,'A 

D 


Tn,A 
H, TEMP 

B, CROWi 

Xli

Xli 


D, A 

B 

E, A 

D 

T1 

T,A 
B 

H " 

B 
E,A 
D 


iA 

,TEMP 

, CROWn. 

Xln 

Xln 

D, A 


B 

.E., A 
D 

TI 

All 

B 

H 


BYTES 


3 


3 

2 
2

1
 

1
 
1 

1 

1 


1 

1 


6(n-2) 


1
 
.1
 
1 


1 
3
 
3 

2

2 


1 

1
 
1
 
1 

1 

1 
1 
1 

7(n-2) 


1 
1 
1 

1 


I
 
3
 
3 

2 

2 

1 


1
 
1 
1 
1 
2 

1 

1
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COMMENT
 

initialize location of n tem­
porary storage locatios 
initialize row 1 in C1 matrix 
input x m component 
output xI - to PE3 1 1 

1 
generate product (x - ).c
Tl - (A) 11 11
 

increment BC
 
increment HL
 

generates products (x -ml).Cli
 
i=2, ..., n-i
 

generates product
Cx -m..)C n 

Tn1 + in 

initialize row i in C matrix
 
input x.-m componen
 
-output x PE3
 

' 11 

generates product (x.-m .).C1
 

accumulate sum in T1i z
 

C1
product (x. -m
2,-m..).C..
 

product (x.-m ).Cn 
i i in 

initialize row n in C matrix
 
input x -m componen%
 
output x in
 

n in
 

product (Xn-mn) C1 

n li nl 
output AI of A 1 

1 



k = 1, 	2, ..., M. The program execution time in PE2 is
 

TE = (21.5n + 15.5)nN Vs.
 

Processing Element PE3.
 

PE3 accepts the 2nm outputs of PE2 and generates 
dk(x) = Ck - 1/2 A-1 x-a ) 

with 2nm input registers and m output registers. A program is presented in
 

Table 2.2.8(111). The execution time is
 

TE = (23.On + 15.5)M Vs.
 

Table 2.2.8(111) Program For Generating dl(x) in PE3
 

MNEMONIC OPERAND BYTES COMMENT 

LXI H, CONS 
~C 

3 initialize location of constant 
1 

IN XII 2 input xI - mil component 
MOV D,.A 1 -1 
IN All 2 input A component of Al 
MOV 
ODAX 
MOV 

E,A 
D 
B,.A 

1 
1 
1 

E-- (A)! 

product A .(x 
B + (A) 11 1 

-

IN jXl2 2 
MOV D, A 1 
IN A12 2 
MOV E, A 1 
LDAX D 1 product A12.(x2-m12) 
ADD B 1 
MOV -B, A 1 accumulate sum in B 

S9(n-3) 
-l-

A .(x.-m .) 

IN Xln 2
 
MOV D, A 1
 
IN Aln 2
 
MOV E, A .1
 
LDAX D 1 product A (Xn-m 
ADD B 1 ln n in 
RAR. 1 divide by 2

l/2(x-mi)6l Cs-rni)
 

MOV B, A 1
 
MOV A, Cl 1
 
SUB B 1 generates d (x) 
OUT Dl 2 outputs dI {x 

Processing Element PE4.
 

PE4 compares the M values of dk(x) to determine the classification.
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This requires m input registers and a single output register. Table 2.2.8
 

(IV) describes the program for PE4. The time required is 

TE = (19.5M - 2.5)ps 

Table 2.2.8(IV) Program for Determining Classification k in PE4
 

MNEMONIC OPERAND BYTES COMMENT 

MVI C, 1 2 C Il 
MVI E, 2 2 E 2 
IN D1 2 input d1 (x) 
MOV B, A 1 B contains largest 
IN D2 .2 input d2 x) 
CMP B1 1 compare d1 (x), d2 (x) 
JC ALPHA 3 
MOV B, A . 1 replace d Cx), 1 
MOV C, E 1 with d2 (R),2 

ALPHA: INR E 1 
IN D3 2 

LAST: NOV AC I
 
Output'classification
OUT k 1, 2 


Table 2.2.8(V) presents the comparison of current and projected pro­

gram execution times for each processing section for n and M equal to 4 and
 

12 respectively. The 1974 column and 1983 column result from data taken
 

from the median curve of Figure 3.2.2(1) for projected microprocessor add
 

times..
 

Table 2.2.8(V) Comparison of Current and Projected Program
 

Execution Times for the Processing System of Figure 2.2.8(1)
 

8080 1974 1983
 
Number of Microprocessor Microprocessor Microprocessor
 
Microprocessors 3.5 ps ADD 1.0 ps ADD 100 ns ADD
 

PEI 1 678.0 ps 193.7 ps 19.37 vs 
PE2 1 4872.0 1392.0 139.20
 
PE3 1 1290.0 368.6 36.86
 
PE4 1 231.5 66.1 6.61
 

The bottleneck in the pipeline is PE2. PE2 can 
I 
be split into M parallel 

processing elements as in Figure 2.2.8(3). Each "ak(k = 1, ..., M) is 

i.nput to a separate PE2k and the computation for each category proceeds in 
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PE 21
 

Figure 2.2.8(3) Organization of a Processing System for
 

Executing the Maximum Likelihood Algorithm.
 

parallel. Table 2.2.8(VI) gives the execution times for M=12.
 

Table 2.2.8(VI) Comparison of Current and Projected Program
 

Execution Times for the Processing System of Figure 2.2.8(3)
 

8080 1974 1983 
Number of .Microprocessor Microprocessor Microprocessor 
Microprocessors 3.5 lUs ADD 1.0 vs-ADD 100 ns ADD 

PEI 1 678.0 ps 193.7 ps 19.37 s 
PE2 12 406.0 116.0 11.60 
FF3 1 1290.0 368.6 36.86. 
PE4 1 231.5 66.1 6.61 

bottleneckgThe is now PE3. Suppose that E3 is organized as 2 pro­

cessing elements in parallel. Bach processing element handlesonly 6 of
 

the 12 categories. The program execution time in FF3 is halved, requiring
 

645.0 iDs in the INTEL 8080 microprocessor. Now FF1 is the constraining
 
section of the pipeline. Proceeding in this manner we arrive at the pro­

cessor shown in Figure 2.2.8(4). The resulting number of processors and
 

their execution times for each of the processing elements are summarized
 

in Table 2.2.8(VII).
 

The maximum likelihood processbr of Figure 2.2.8(4) requii'es 5,814
 
Intel 8080 microprocessors for implementation with a projection of 171
 

microprocessors in 1983. it also requires the sixteen 16K multiplication
 

ROMs required in FF2 and FF3. Another method for implementing the multi­

plication is with a peripheral, hardware multiplier as illustrated in
 
Figure 2.2.8(5). The microprocessor outputs the multiplicand and the multi­

plier to output registrs NCAND and LIER, respectively, and the multiplier
 

generates the product (PROD) which is input to theIE0icroprocessor. The
 

resulting program execution times were determined and found to be
 

83
 



P2 PE1
 

-E1 
 PE3 2 PE k 

nE ---- PE3 3 _ ---­

_> PE212 _ PE34 

E-Ek A1 ddk(x) 

Figure 2.2.8(4) A More Efficient Organization for
 

Executing the Maximum Likelihood Algorithm.
 

-Table 2.2.8(VII) Comparison of Current and Projected Program
 

Execution Times for the Processing System of Figure 2.2.8(4)
 

8080 1974 1983
 
Number of Microprocessor Microprocessor Microprocessor

Microprocessors 
 3.5 Vs ADD 1.0 ps ADD 100 ns ADD
 

PEl 2 354.0 ps 101.1 Ps 1OI1l ps

PE2 12 406.0 116.0 11.60
 
PE3 4 322.5 92.1 9.21
 
PE4 1 231.5 66.1 6.61
 

PROD 
SINPUT REGISTERS MCAN MLIER
 

ADDRESS BUSS 
 OUTPUT
 

Figure 2.2.8(5) Microprocessor System Organized About
 
an INTEL 8080 Microprocessor and a Hardware Multiplier.
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PE2: T =22.5n2 + 16n + 2 ps 

PE3: T = (29.S5n + 10.5)- ps. 

The program execution times for PE2 and PE3 when organized with a ROM and a
 

hardware multiplier are listed below. These differences are primarily due
 

to the faster execution times of the instructions for addressing memory as
 

compared to that of the INPUT/OUTPUT instructions.
 

PROCESSING ROM HARDWARE
 
ELEMENT MULTIPLIER MULTIPLIER
 

PE2 406.0 426.0
 
PE3 322.5 385.5
 

Use of the hardware multiplier affects the previous results very little.
 

However, since PE2 was the critical section in the pipeline organization,
 

the increased execution time in PE2 from 406 Vs to 426 ps will cause the
 

number of microprocessors to increase. This is reflected in the'following
 

comparison.
 

ROM HARDWARE
 
MULTIPLIER MULTIPLIER
 

no. multiplexed total no. no. multiplexed total: no. 
systems microprocessors systems microprocessors 

INTEL 8080 306 5,814 321 6,099
 
1974 Microprocessor 88 1,672 92 1,748
 
1983 Microprocessor 9 171 10 190
 

As long as the multiplication time is much less than the execution time of
 

the INPUT instruction, these results are valid.
 

2.2.8.2 Microprocessor Organization Using Table Look-Up (TLU)
 

Most of the processing in the TLU algorithm involves calculating the
 

new address to use as a pointer to recover the'boundaries for a particular
 

dimension. Little processing is required to compare the data with the
 

boundaries. If no microprogramming feature is available, the single micro­

processor approach is inviting. A typical search loop for the TLU imple­

mentation with the Intel 8080 is:
 

Instructions Execution
 
Cycles
 

INB
 
CMP M 2 
JP OUT 3 /Jump out of Loop
 
INXH 1
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CMPM 2 
JM OUT 3 /jump out of Loop 
INXH 1 
ADD M 2 
MOV EA 1 
INX H 1 
ADC M 2 
MOV L,E 1 
MOV H, A 1 
JMP START 3 

23 

In the worst case 90% of the processing time is spent in this compari­

son loop. Since the processor spends 46 ws in this loop gnd,in the worst
 

case must execute the loop 48 times (n=4, M=12) for each pixel, the maximum
 

pixel rate is about 500 pixel/second. To achieve the baseline format data
 

rate of 1.3 x 106 pixels/second, the processing load must be distributed
 

over 2600 identical systems.
 

If no microprogramming feature is available , the pointer calcula­

tion must be done using the last eight steps in the programming. The over­

head due to this processing amounts to 12 machine cycles or about 25 

microseconds per pointer. For the n=4, M=12 machine a data throughput of 

10,000 pixels/second is achieved using 36 microprocessors and 300 K bytes 

of memory. The same data throughput may be achieved by paralleling about 

20 single microprocessor units with about the same total memory require­

ments. The fully parallel system is faster but requires more memory to­

handle the 	worst case boundary size.
 

2.2.8.2.1 	On-Board Computer Organization for the Table Look-Up Pattern
 

Classification
 

In this section, we present an on-board computer organization for the
 

4-dimensional table look-up algorithm described in Section 1.1.3.3. These
 

include the general specifications, memory planning for-the table entries,
 

and the multi-microprocessor system design.
 

We consider n=4 channels per scan line so that each pixel is a 4-di­

mensional vector x = (xl,X 2 ,x3 ,x4 )Y, each element requiring 6 bits. If we
 

include the sign bit and a parity-check bit,we allow one 8-bit byte per
 

measurement x-. Thus, the computer can be either an 8 bit or a 16 bit
 

machine. We consider M=12 classes and a data rate of 1 MHz. There are
 

six multispectral scan lines. We present the computer architecture per
 

scan line; 	the processors for all scan lines are identical.
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Eppler's dynamic memory assignment technique discussed in Section
 

1.1.3.3 requires a memory of roughly 32K 16 bit memory words.
 

Figure 1.1.3(1) suggests that the region in measurement space asso­

ciated with a particular class can be one of two types. Class 3 is com­

pletely separate from all other classes and shares a boundary with only the
 

Threshold Class; this type of class will be referred to as disjoint. The
 

regions associated with Classes 1 and 2 share a common boundary. If Class 1
 

were not present, the boundary for Class 2 would be extended into the
 

region now assigned to Class 1 and vice versa. Qlasses 1 and 2 will be
 

referred to as overlapping.
 

Boundary information is stored in main memory for'only those measure­

ment space points actually assigned to the class. For this reason over­

lapping classes require less storage than disjoint classds having the same
 

statistics. Therefore the upper-limit on the memory requirement can be
 

derived by considering each class separately-(i.e., the disjoint case). It
 

is shown in [25] that N (C), the number of values x can have and still be
 

inside the measurement space region assigned to Class C, is given-by
 
N (C) = 2 Q1/2 IK(C)il/2 (2.2.8-1);-


In this equation Q is a user-specified threshold parameter indicating the
 

maximum Mahalanobis distance from the.mean that a measurement vector can
 

have and still-be &ssigned'to that class. For a four-dimensional classifier
 

using Q=12,O excludes fewer thah 2 percent of samples taken from a Normal
 

distribution and K (C) is the one-dimensional covariance matrix (involving
 

terms for only the first channel) for Class C. The value N (C) represents
 

the length of the line which results from projecting Region C onto the xl
-

axis as in Figure 1.1.3(1). Similarly N2(C), the numbet of (X,X2)-combina­

-tions inside the'region assigned to Class C, is given by
 

N2(C) = ?QIK 2(C)I/2 (2.2.8-2)
.i
 

2In
this equation K2(C ) is that part of the covariance matrix for Class C
 
which involves x1 and x2 terms. The value N2(C) represents the area which
 

results from projecting Region C onto the (x1 ,x2 )-plane as in Figure 1.1.3
 

(1). Similarly N3 (C), the number of (xlx 2 ,x3 )-combinations inside the
 

region assigned to Class C; is given by
 

Q3/2
4 3 (C)I/ 2
N3(c) = IK1 (2.2.8-3) 
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In this equation K3 (C) is that part of the covariance matrix for Class C
 

which involves the '(x,,xjx 3 )-subspace. Finally N4(C), the number of
 

(xl,x 2 ,x3,X4)-combinations inside the region assigned to Class C, is
 

given by
 
2l'
 
Q2
C2 IC)11/2N4(C) (2.2.8-4)


4
 

In this equation K4(C) is the full four-dimensional covariance matrix and
 

N4 (C) represents the volume inside the four-dimensional ellipsoid for a dis­

joint class.
 

Equations (2.2.8-1) through (2.2.8-4) give the n-dimensional volume
 

for each class separately. It is useful to define the total and the average
 

n-dimensional volume for an application according to Eqs. (2.2.8-5) and
 

(2.2.8-6), respectively. (Notations were defined in Section 1.1.3.3).
 

N 
n c N (C) (2.2.8-5)
n .n 

c=1
 
N 
n (2.2.8-6)
 

n 
Nc
 

The quantity N N is very important in that it is the number of
n e n
 
different values pointer P can have; see Figure 1.1.3(3). For each pos­n 

sible value of P main memory must be provided to store L2, H2, and 02. The
 

quantities L2 and H2 can each'be stored in one 8-bit byte, but 02 requires
 

2 bytes because it can exceed 255. As shown in Figure 1.1.3(3), the total
 

memory required to store all L2, H2, and 02 values for a complete applica­

tion is 41 = 4Nc bytes. Similarly 4N2 = 4N N2 bytes are required to 

store all values of L3 , H3 and 03* The memory required to store all 

values of L4 and H4 is 2N = 2NcN It can be seen from Figure 1.1.3(5) 

that 4N 'bytes of main memory must be provided-to store all values of LI,
 

HI, and 01. The total memory required to store all of the boundary infor­

mation for a complete four-dimensional Table Look-Up classification is 

given by 

NB = 4N N 4N2 + 2N3 = 2 0.5N) (2.2.8-7)+4I 4Nc(1 +N1 + + 

The main memory requirement was calculated using statistics from a
 

study involving a wide variety of sensors, platforms, and applications.
 

Flight Line Cd [28] is a 6.4 km by 1.6 km agricultural test site near
 

Purdue University; data was collected on June 28, 1966, using the Michigan
 

multispectral scanner at an altitude of 800 meters.
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An upper-limit for main memory requirement (i.e., assuming disjoint
 

classes) was calculated using Eqs. (2.2.8-1) through (2.2.8-7) and the
 

covariance matrix for each of the classes. Table 2.2.8(VIII) gives the
 

Table 2.2.8(VIII) Computed Upper-Limit Estimates for Main
 

Storage and Table-Making Calculations for the Case Q=12
 

Study*Std- Class 
Optimum 
Searcheune NI1 N2 N331 NSr 

NB 
Storage 

Number of 
PointsTested to 

Sequence 
(Bytes) 

oRequired 
Computer 
Tables 

Soybean 1,6,9,11 18 230 2,530 46,300 6,530 46,300 
Corn 6,9,1.12 17 193 2,090 32,800 5,020 32,800 
Oats 1,6,9,11 21 242 4,600 90,500 10,252 90,500 

r Wheat I 6,8,9,12 26 284 2,160 25,100 5,560 25,100 
Red Clover 1,9,6,12 15 158 1,740 43,200 4,172 43,200 

W Alfalfa 1,6,9,11 13 126 1,300 37,900 3,156 37,900
i Rye 1,6,9,12 16 163 1,670 15,700 4,056 15,700 

Bare Soil 9,12,1,11 11 93 760 8,150 1,936 8,150 
Wheat II 1,6,9,11 19 614 11,950 232,000 26,432 232,000 

Total: i --- 156 2,103 28,800 531,650 66,636 531,850 
Average: N --- 17 233 3,200 59,072 7,404 59,094 

search sequence which minimizes the memory requirement and NBI the,number
 

of 8-bit bytes of main memory required to store the necessary tables. This
 

table shows that to store the complete representation of the classification
 

regions of the measurement space requires at most 66,636 bytes in the case
 

of Flight Line Cl. For this case 531,850 different Clx 2,x3 ,x4)-combina­

tions must be tested to compute the prestored tables.
 

In addition to the disjoint case, in which each class is treated
 

separately, computations were performed to determine the actual memory re­

quirement taking into account the overlap between classes. This was
 

accomplished by finding the various volumes using the maximum likelihood
 

classifier for assumed normal statistics as in [281. Table 2.2.8(IX) shows
 

that the actual core requirement is 92 percent of the worst-case require­

ment (see Table 2.2.8(VIII)) for the case of Flight Line Cl.
 

The results presented in Table 2.2.8(IX) support the following impor­

tant conclusions:
 

(i) The main memory requirements for a four-channel Table Look-Up
 

classifier are easily satisfied. Flight Line Cl can be run on a minicom­

puter with 32K 16-bit words or 64K 8-bit words.
 

89
 

http:6,9,1.12


Table 2.2.8(IX) Actual Requirements for Main Storage and
 

Table-Making Calculations for the Case Q=12
 

N Number of, 
Optimum B Points 

Study Class Search NI N 3 N4 Storage Tested to 
Sequence Required Computer 

(Bytes) Tabies 

Soybean 1,6,9,11 18 236 2,246 40,096 5,506 46,300 
CornOats 6,9,1,121,6,9,11 1721 178251 1,8954,172 28,56978,290 4,570-9,432 32,80090,500 

cWheat 1 6,8,9,12 26 302 2,136 24,074 5,584 25,100 
Red Clover 1,9,6,12 15 154 1,670 37,934 4,012 43,200 
Alfalfa 1,6,9,11 13 129 1,153 32,243 2,874 37,900 
Rye 1,6,9,12 16 161 1,509 13,805 3,718 15,700 
Bare Soil 9,12,1,11 11 90 762 8,150- 1,924 8,150 
Wheat II" 1,6,9,11 19. 587 10,720 202,556 23,860 232,000 

Total: _ --- 156 2,088 26,263 465,717 61.,480 531,850 
Average: N - 17 232 2,918 51,746 6,831 59,094 

(2) Use of 	the Table Look-Up algorithm in-five dimensional measurement
 

space is probably not practical. For five dimensions the memory require­

ments are 1,045,440 bytes for Flight Line Cl. If more than four channels
 

are required, it is more practical to compute the four best linear combina­

tions of channels and use the result in the four-dimensional Table Look-Up
 

algorithm ".
 

(3) Using Eqs. (2.2.8-1) through (2.2.8-7) gives moderately good esti­

mates of the main RAM memory requirements without having to actually carry
 

out the maximum likelihood computations.
 

2.2.8.2.2 	 Multi-Microprocessor Computer System for On-Board Table Look-Up
 

Pattern Classification
 

For n = 4 channels and M = 12 pattern classes, we need a multiprocessor
 

which allows parallel retrieving and comparing boundary information as
 

well as concurrent address pointer calculations. A modified version of
 

the table look-up algorithm emphbsizing the inherent parallelism was de­

veloped; the required multiprocessor/multi-memory module computer system
 

per each class is presented'in Figure 2.2.8(7). The lower boundary infor­

mation Lj(Pi) , the upper boundary information Hj(P), and the pointers 0 (P
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are stored in memory module MI, M and M3, respectively. At each memory
 
cycle, these are simultaneously fetched. The processors are assigned
 

special missions; i.e., P1 performs the comparison L.(P i) < x ; P2 performs 

the comparison x. < H.(P.) and P3 is responsible for pointer updating P. = 

0.(P.) + x.. Each measurement x. in the pixel x may be input to all three
 
J 1 3 1
 

processors at the same time so that concurrent executions are enhanced.
 

Since each processor is required to perform only simple computations
 

and logical decisions, we use microprocessor approach with micr6programmed
 

control. Table 2.2.8(X) shows the system characteristics in the Intel 8080
 

microprocessors.
 

x. measurement
 

1/0 area
 

P21 [ Processors 
L.(P.)<x.Lx.H. (P) P =. p)+x. (1 lsec per 

J 3 1 j instruction cycle) 

MI M2 M3 

Parallel
 
memory

modules
 

Figure 2.2.8(7) A 3-Processor and 3-Memory Module Subsystem
 

for Table Look-Up Classification (Per Class).
 

Table 2.2,8(X) Major System Characteristics of the Multiprocessor.
 

System for 4-Channel Table Look-Up
 

of p-processors used 36 (Intel 8080 n-MOS) 
# of 4Kxl RAM chips required 150K x 8 

4K x 1
 
memory cycle 450 n sec (n-MOS RAMs)
 
processing speed per each 4 secs or 250 KC data rate-(lkvpsec per addi­
pixel tion or comparison) 

# of registers'or buffers 36 16-bit address buffers; 72 8-bit data 
required buffers; (need 2 8-bit buffers, 1 16-bit 

buffer per p-processor) 
Power required 36 watts + 100 watts = 136 watts (1 watt/ 

processor and 0.5 watts/4Kxl RAM) 
Total # of IC chips 36 + 300 + 108 = 450 
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2.2.8.3 	'Microprocgssor Organization for the Expanded Maximum Likelihood
 

Algorithm
 

-By expanding Eq. (1.1.3-5) and merging coefficients we generate the
 

following .expression for the maximum likelihood decision function:
 

A A x 2 2 2 + AX2 + A-Axx + AkXX +k) kl 1 + \ 3x3 4 k512 k613
 

Ak7X1X4 + Ak8x 2x3 + Ak,10x3x 
A 	 + Ak9x 2X4 + A k,llXl +
 

Ak,12x 2 +,Ak,13x 3 + Ak,14x4 + Ak,15 	 (2.2.8-8)
 

Figure 2.2.8(8) depicts a system architecture for implementing Eq. (2.2.8--8)
 

in-which each PE is organized about a microprocessor. PE3 is the same as
 

PE4 in the previous microprocessor system organizations. PEI and PE2 are
 

organized for efficient execution of Eq. (2.2.8-8) rather than the matrix
 

format presented in Eq. (1.1.3-5). PEIk of PEI generates the output Pk
 

which consists of the partial products formed from the pattern vector input
 

x, and a partial sum.
 

PEII-
 PE21 .
 
- PE2 

PEIl2 
 PE212 L 

- P12 dd12(x)
 

Figure 2.2.8(8) A Microprocessor System Organized S.imilarly to the
 

Optimal Pipelined Arithmetic Unit
 

2 h-2PATAc
 
"Pk = 
 X'2 'x3 .x4 x'x 2 ,x1
''x 3 'xl-x4 'x2 -x3 ,X2 x4 ,x3'x4, PARTIALk 

where 

- PARTIALk Ak=1 1x + Ak,1 2x2 fA ,13x3 +.Ak, 1 4x4 + Als 

for k 1, 2, ..;., 12.
 

Pk is input to PE2k of PE2 which forms dk (x). dk(x) is input to PE3 (k =-i,
 

-,'12) for classification.
 

* Table 2.'2.8(XI) presents the'program for PE2. The program for PEI is
 

1-isted -in Progress Report No. 8. Each PE in PEI and PE2 has a peripheral
 

92
 



1V
 

M Table 2.2.8(XI) Program for Generating dk x) in PE2 

MNEMONIC OPERAND BYTES COMMENT 

LXI H,COEFFA 3 initialize coefficient location 
IN PARTIAL 2 

MOV 
IN 
OUT 

,TEMP,A 
XISQ 
MCAND 

1 
2 
21 

initialize TEMP with partial sum 
input x1 

2 

MOV A,COEFFA 1 input kl -

OUT 
IN 

MLIER 
PROD 

2 
input product Alxi 2 

ADD TEMP 1 accumulate sum 
MOV TEMP,A 1 
INX 1 

multiply each Akj by-appropriate
2' 2 2 

.96 partial product, x2 , x3 , x , 

x *x x 
1 2' X ,V xiX 4 

X x 
x2x 3, x2 x 4, 

-­for-j. 2; .... 9 
IN X3X4 2 input product x3 .x4 

OUT MCAND 2 
MOV A,COEFFA I input Ak,1 0 

OUT MLIER 2 

IN PROD 2 input product Ak,10 *x3 x4 

ADD TEMP 1 accumulate final sum 
OUT Dk 2 outputdd() 

hardware multiplier. Table 2.2.8(XII) gives the comparison of current and
 

projected execution times for each processing section in Figure 2.2.8(8).
 

Table 2.2.8(XII) Comparison of Current and Projected Execution
 

Times.for the Processing System of Figure 2.2,8C8)
 

1983
Number of 8080 1974 


Microprocessors Microprocessor Microprocessor Microproce
 
3.5s ADD l.Ops ADD 100 ns ADD
 

PEI 12 338.0 96.57 9.66
 

PE2 12 342.5 97,86 9.79
 

PE3 1 231.5 66.1 6.61
 

In Table 2.2.8(XIII) the number of multiplexed, parallel systems and the
 

total number of microprocessors required to process data at the acquisition
 

rate of 1.33 ps per pixel f6r the baseline data format defined in Section
 

1.4 is summarized.
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Table 2.2.8(XIII) Comparison of the Number of Microprocessors
 

Required for the Processing System of Figure 2.2.8(8)
 

Number of Total Number of
 
Multiplexed Microprocessors
 

Parallel Systems
 

INTEL 8080 258 6,450 (258 x 25)
 
1974 Microprocessor 74 1,850
 
1983 Microprocessor 8 200
 

Each PEl k duplicates the generation of the partial products formed from
 

the input vector. These products are not functions of the classification
 

categories and need be generated only once. Figure-2.2.8(9) presents a
 

much more efficient organization. FElA generates the partial products P
 
2 2 

p x, x2 , ...	 , x2 4 , xc'xx kx 

PEIB	 3
I dl C) 
PEIB2 

PEIB3
 

21(
 

Figure 2.2.8(9) 	A More Efficient Microprocessor Organization
 

For Implementing Eq.(2.2.8-8)
 

in parallel, PElB generates the partial sum, PARTIALk' k = 1, ..., 12.
 

PEIB consists of four (4) parallel microprocessor processing elements. Each
 

processing element generates three (3) partial sums. For instance, PElB
 

generates
 

PARTIAL =A x 1.............t A
 

PARTIAL2 
= A 12 
 A2,15
 

PARTIAL =A x + .......... +A
 
3 3,11.1 3,15
 

PE2 and PE3 are the same as in the Figure 2.2.8(8) organization.
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The program can be split between PElA and PEIB. However, each pro-­

cessing element in PEB must execute the segment of code related to the
 

partial sums three times, one for each of the classification categories.
 

Table 2.2.8(XIV) and Table 2.2.8(XV) summarize the results for this system
 

architecture. Notice that this organization requires the fewest number of
 

microprocessors, but not a spectacular decrease. Eq. (2.2.8-8) requires
 

twenty-four (24) multiplications While the matrix form
 

requires only twenty (20) for n = 4. The efficient use of PElA provided 

the slight improvement. 

Table 2.2.8CXIV) Comparison of Current and Projected Execution
 

Times for the Processing System of Figure 2.2.8(9)
 

Number of 8080 1974 - 1983
 
Microprocessors Microprocessor Microprocessor Microprocessor
 

3.5Ps ADD 1.0ps ADD 100 ns ADD
 

PElA 1 200 57.1 5,71
 
PUIB 4 384 109.7 10.97
 
PE2 12' 342 97,7 9.77
 
PE3 1 231.5 66.1- 6.61
 

Table 2.2.8(XV) Comparison of the Number of Microprocessors Required
 

For the Processing System of Figure 2.2.8(9) .
 

Number of 	 Total Number of
 
Multiplexed Microprocessors
 

Parallel System
 

INTEL 8080 289 5,202
 
1974 Microprocessor 83 1,494
 
1983 Microprocessor 8 162
 

A summary of all the microprocessor organizations is provided in Table
 

2.2.8(XVI). The effort to identify the hardware requirements for these
 

various architectures culminated in Tables 2.2.8(XVII) through 2.2.8(XXI).
 

Several considerations were taken into account and are:
 

1. 	In calculating the required RAM memory each processing element in
 

a particular processing section has the same amount of RAM. How­

ever, the program store was assumed to be in only one of the
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Table 2.2.8(XVI) Comparison of Number of Microprocessors for Different 

Function and Multiplication Implementations 

Hardware Multiplier 
ROM Multiplier System of Figure 2.2,8C5) 

System of Figure 2.2.8(5) Using PE in Fig. 2.2.8(6) 
no. no. 

multiplexed' total no. multiplexed total no. 
systems microprocessors systems microprocessors 

INTEL 8080 306 5,814 321 6,099 
1974-
Microprocessor 88 1,672 92 1,748 

1983-
Microprocessor 9 171 10 190 

(a) Eq. (1.1.3-5) Implementation
 

Hardware Multiplier Hardware Multiplier
 
System of Figure 2,2.8(8) System of Figure 2-2.8(9)
 

no. no.
 
multiplexed total no. multiplexed- total no.
 

systems microprocessors systems microprocessors
 

INTEL 8080 258 6,450 289 5,202
 
1974-

Microprocessor 74 1,850 83 i494
 
1983-

Microprocessor 8 	 200 9 162
 

(b) Eq. (2.2.8-8) Implementation
 

processing elements. Since each processing element is working in
 

synchronization in a processing section, the instruction to be
 

executed is output to all by the master element.
 

2. 	Different types of multiplication schemes were utilized to access
 

the impact on system program .execution times. ROM multipliers,
 

PLA multipliers, and hardware multipliers were considered.
 

3. 	For calculating power, a power standard was developed by identify­

ing the major components in the system and associating a typical
 

power dissipation with each. In future projections, the power
 

dissipation was assumed to remain constant. For instance, al­

though the projection gave fewer and assumed more powerful micro­

processors, the power dissipation per pP chip remained 1.0 watt.
 

The same was true for RAMs, ROMs, PLAs hardware multipliers, and 

I/O registers: A power standard is provided in the bottom row of 

Table 2.2.8(XVII). 
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Table 2.2.8(XVII) System Htrdware-Requirements for the Microprocessor
 

Processing System Using FQM Multipliers
 

Total ROM
 
Number Required Multiplier Number Volume
 
Micro- Memory Memory of I/0 *Power Weight, (Cubic Cost 

jrocessors (Bytes) (K Bytes) Registers (Kwatts) (Kgrams) Meters) (K$) 

INTEL 5,814 78,697 78,336. 97,002 16 286 978 1.96 6,300 
8080 

1974 Micro- 1,672  22,889 22, 528 27,896 4.684 281 0.57 1,870 
processor 

1983 Micro- 171 2,665 2,304 2,853 0.479 29 0.06 186 
processor 

Power INTEL INTEL INTEL 2-TI 
Standard 8080 8102 8316 SN74L95 

1.0 RAM i024 ROM 2048 38 mwatt 
watt words x 1 words x 8 

bit 150 bits 175 
mwatt mwatt 

*-based on Low-power TTL MSI and Silicon Gate n-channel MOS technology. .Power
 
Standard is Provided as bottom line of table.
 

Table 2.2.8(XVIII) Same as Table 2.2.8(XVII) Except the ROMMitipliers
 

Are Replaced by PLA Multipliers
 

Total 
Number Required Number., Number Volume 
Micro- Memory of PLA of I/O *Power Weight (Cubic Cost 

processors (Bytes) Multipliers Registers (Kwatts)(Kgrams) Meters) (K$)
 

INTEL 5,814 78,697 4,896 97,002 12.285 845 1,69 5,854 
8080 

1974 Micro- 1,672 22'889 1,408 27,896 3,533 243 0.49 1,684 
Processor 

1983 Micro- 171 2,665 144 2,853 0.361 25 0.05 172 
Processor DM 7575 

550 mwatts
 

Same power standard as Table 2.2.8(XVII)
 

National Semiconductor DM 7575/DM 8575 programmable logic array (PLA). A
 
16K x 8-bit memory would be required to provide equivalent function. Power
 
Dissipation is 550 mwatts.
 

4. Realistic estimates were made concerning'weight, volufje, and cost.
 

In each table the number of chips required was calculated. Weight
 

was generated on the basis of 250 integrated circuit6/kg and 125
 

1P circuits/kg.- Integrated circuit and circuit board volume was
 

calculated on the basis of 8 cm3 for integrated'circuit chips and
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Table 2.2.8(XIX) System Hardware Requirements for the Microprocessor
 

processing System Using Hardware Multipliers
 

Total
 
Number Required Number** Number Volume
 
Micro- Memory 'of , of I/0 *Power Weight (Cubic Cost
 

processors (Bytes) Multipliers Registers (Kwatts)(Kgrams) Meters) (K$)
 

INTEL 8080 6,099 82P584 5;136 101,757 14,983 1070 2.14 6,911 
1974 Micro- 1,748 23,960 1,472 29,164 4.204 307 0.62 1,967 
processor 

1983 Micro- 190 2,968 160 3,170 0.467 33 0.07 215 
processor 

* Power standard same as Table 2.2.8(XVII) except for multipliers 

** 	 Iterative array multiplier using 8-2 bit x 4 bit binary parallel multipliers 

such as TI SN74LS261, F 93S43, or AM 2505. Includes multiplicand and multi­
plier registers. Power dissipation 958 mwatts. 

Table 2.2.8(XX) System Hardware Requirements for the Microprocessor
 

Processing System of Figure 2.2.8(8) Using Hardware
 

Multipliers and Eq. (2.2.8-8) Implementation

I 

Total
 
Number Required Number Number Volume
 
Micro- Memory Iof of I/0 *Power Weight (Cubic Cost
 

processors (Bytes) Multipliers Registers (Kwatts)(Kgrams) Meters) (K$)
 

INTEL 8080 6,450 52,991 6,192 18,834 13.160 451 0,90 3,936
 
1974 Micro- 1,850 15,455 1,776 5,402 3.774 129 0.26 1,129
 
processor
 
1983 Micro- 200 1,991 192 584 0.408 14 0.03 122
 
processor
 

* Power standard same as Table 2.2.8(XVII), Table 2.2.8(XIX). 

Table 2.2.8(XXI) System Hardware Requirements for the Microprocessor
 

Processing System of Figure 2.2.8(9) Using Hardware
 

Multipliers and Eq. (2.2.8-8) Implementation
 

Total 
Number Required Number Number - - b. - Volume 
Micro- Memory of of I/0 *Power Weight (Cubic Cost 

Processors (Bytes) Multipliers Registers (Kwatts)(Kgrams) Meters) (K$)
 

INTEL 8080 5,202 57,098 4,913 22,253 8.817 418 0.84 3,441
 
1974 Micro- 1,494 16,722 1,411 6,391 2.533 120 0.24 987
 
processor
 
1983 Micro- 162 2,218 153 693 0.275 13 0.03 107
 
processor
 

* Power standard same as Table 2.2.8(XVII), Table 2.2.8(XIX). 
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x 

16 cm for pP chips. Quantity costs were considered tobe $50/pP,
 

$10/RAM, $5/ROM, $4/REGISTER, etc.
 

2.2.8.4 Hardware Organization for the Expanded Maximum Likelihood Algorithm
 

In this section we design some processors for computing the maximum
 

likelihoods given by Eq. (1.1.3-5) and the expanded version given by Eq.
 

(2.2.8-8) that are based on hardware implementations as opposed to software
 

implementations using microprocessors. This amounts to using hardware multi­

pliers and adders in an efficient arrangement for performing the required
 

computations. The first two organizations are-based on Eq. (1.1.3T5) and
 

the third organization is based on Eq. (2.2.8-8).
 

2!2.8.4.1 Serial Organization
 

In a serial computer system, we simply compute each of the 16 terms
 

•gk(ii) 	of Eq. (1.1.3-5 for 1 < 1, j < 4 one at a time. The following serial ­

pipelined-arithmetic unit (SPAU) is designed to serve the purpose. Two 

adders and two multipliers-are required in this SPAU as shown in Figure 

2.2.8(10). 

synchronizing
 

"mk " 

Adder
 
m
kf
 

synchronizing clock
 

Figure 2.2.8C10) The Serial Pipelined Arithmetic Unit (SPAU)
 

The whole serial computer, consisting of three processing elements
 

pipelined in cascade is shown in Figure 2.2.8(11). RAM stands for random­

access memory and EAPROM means electrically-alterable programmable read­
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PE1 PE2 PE3 

input Ij 

gk(,j) sum Max dk(x)}1. re Ister•~N 

. 1 lI .< M iclocks 

Figure 2.2.8(11) The Serial Computer Organization
 

Table 2.2.8(XXII) Time and Hardware Requirements for the
 
Serial Computer Organization
 

No. of Arithmetic Units No. of. Memory for Data Total Processing
 
-or 
 p-processors used Registers & Coefficients Time Required
 

2 adders, 2 multipliers & 9 for PE 4 8-bit RAM words Let t be the
frfor x pipel~ne period.

muItlexer frPE1; 2 for PE2 252 qT-bit EAPROM We need 16 t
 

1 adder of PE2 and 3 for PE3 words 1 per class and
 

1 comparator for PE3 for {!fk}1 2 16.t s 1
 

" Mk C1 - -' 12 .192 t5 for 12and classes
 

ak12s 

Total 14 

Total 7 devices registers.
 

_r 'T '"" - ___ __ ___:-'."__ __ 

only memory.
 
The hardware and time requirements are listed above in Table 2.2.8
 

(XXII).
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In Table 2.2.8(XXIII) tr = time delay of register;­

ta = time delay of adder; 

tm time delay of multiplier 

tc = time delay of comparator. 

The system speed ts = tr+ max-(ta t t). 

2.2.8.4.2 Parallel Organization
 

All of the 192 terms in Eq. (1.1.3-5) for g4(i,i) for 1_<i, i < - and
 

1 < k < 12 can be calculated in parallel. Also, the summing stage in PE 

and the comparing stage in PE3 of Figure 2.2.8(13) can be done in log2(n +1) 

='iog217 = 5 and log 2M = iog212 = 4 steps instead of 15 or 11 steps, respec­

tively. A parallel system is shown in Figure 2.2.8(14). Each PE k for 

1 < k < 12 in Figure 2.2.8(14) contains n2 = 16 copies of the SPAU1 shown in 

Figure 2.2.8(10). All of the PE2k for 1 < k = 12 are identical as shown in 
Figure 2.2.8(13a). The detailed diagram for PE3 in Figure 2.2.8(12) is 

shown in Figure 2.2.8(13b). The memory requirement is the same as in the
 
serial system. The parallel system is about 192 times faster than the
 

sera! equres971 + 2477=
ystm uit 

serial system unit requires 7 + 14 164 times more hardware cost.
 

Table 2.2.8(XXIII) Time and Hardware Requirements for the
 

Parallel Computer Organization
 

No. of computing No. of Total processing time
 
devices used registers required
 

2 x 16 x 12 = 384 adders 9x]6x]2 = 1728 in One
 
and 384 multipliers in computing stage t tr + Max(tatInt )
 
computing stage
 

for 12 classes
 
16 x 12 = 192 adders 33x12 = 726 In
 
used In summing stage sunning stage
 

11 comparators used in 23 in comparing.
 
comparing stage stage
 

Total 971 devices Total 2477
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computing summing compartng
 
stage Stage stage
 

(n=16 (Fig. dlxL d-

2 .Th OSPAU O n2.2.
 
i h in (13a)
parallel) a
 

n2t
 
iPE22
2
uFe.2.2.8
nPE 


(13b)
 
.-('9 ("1 a'x {dk( }
 

EL 1 P2,12l12 


")
2-~~~ _ (, 12Wx
 

.Lai2
a 

Figure 2.2.8(12) The Parallel Coputer Organization
 

2.2.8.4.3 The Optimal Organization
 

All of the coefficients Aki'Is in Eq. (2.2.8-8) can be computed i
 
advance., 
This implies a gain in speed of the on-board processor and a
 

reduction in hardware.
 
In Figue.2.2.8(l4) the first pipeline stage PE1 
contains m=12 identi­

cal otimal pipelined arithmetic units (OPAU) as in Figure 2.2.8(15). The
 

comparing stage PE2 is identical with that shown in Figure 2.2.8(13b). In­
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g (l,1)
 

gk(1,2) 

*k~ 3)
~~ 
gk(1,4)
 

gk(2,1) 
gkC2,2) 

" [ (x)
 

+ 

gk (4,3) 

gk(4,4) adders 

Figure 2.2.8(13a) The Parallel Summing Stage PE2k for 1 < k < 12 

CC 

d(x) 

2 (x)1d 

k- 1 

comar s 12 -

Figure 2.2.8(13b) The Parallel Comparing Stage PE3 

Table 2.2.8(XXIV), we summarize the complexity associated with such an
 

optimal system.
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Table 2.2.8(XXIY) Time and Hardware Requirements for the
 

Optimal Computer Organization
 

No. of Computing 

devices 


24x12=288 

multipliers 


14x12=168 

adders 


11 comparators 


Total
 
467 devices
 

Table 2.2.8(XXV) 


Organization Total 
Computing 
Devices 

(a) 

Serial Computer 
(cheap but 7 
slow) 

Optimal Computer 
(medium 467 
cost and 
fast) 

'arliel Computer 

(expensive
but fast) 

971 

No. of Registers 

used 


59 x 12 + 23 

731
latches 


Memory Require- Total Process­
ment for coeff's Ing Time reqld.
 
and data
 

4 8-bit RAM One unit
 
words for x t =tregister
-- srgse
 

15x]2+12=192 +Max(tadder,
 
8-bit EAPROM tutli
 
words for the
 

coefflcienis to
 

Comparison of the Three Computer Organizations
 

Total 
Processing 
Time* 

()) 

Total 
Memory 
Requirement 

Performance-
Efficiency 
Measure 

(a.'o) 

192 tw 
256 8-bit 

words 
7 x 192= 1074 

.1t 
s 

196 8-bit 

words 
467 x 1 467 

1 t 
s 

256 8-bit 

s 
words 

971 x 1 = 971 

ts = tlatches + Max. (tadder, tmultiplier, tcomparator)
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input 

PE1 (Fig. 2.2.8(15)) 

OPAU dlx) 

x 2 t 

•A,,OU---

A£1A1,15 A 2 

OPAU 

OA, 

!OPAU 

dL 

< 

P E 

PE1,2-Bnr 

aa 

Maxr 

a 

'igure 2.2.8(14) The Optimal Computer Organization
F: 


f the Three Computer Organizations
2.2.8..4 Comparison 


In Table 2.2.8(XXV), we summarize the processing time and hardware re­

quirements for the three computer organizations. A performance efficiency
 

measure is defined as the product of the number of time units and the num­

ber of hardware devices required according to the current level of techno­

logy. From Table 2.2.8(XXV), we conclude with 
the following remarks:
 

(i) The serialorganization would cost 
the least in hardwar& at the
 

expense of intolerable slowness.
 

(2) The parallel system is very costly 
because of excessive hardware. 

constant coeffi­
(q) The memory requiement for storing input data and 

The syn­
forall the three organizations.

cients is relatively the same 

chronizing registers (latches) required in each organization 
is roughly 

proporional to the required device numbers.
 

() The optimal organization offers an improvement 
over the other two
 

Its performance measure is roughly 2 times better than the 
organizations. 

strictly parallel system and 2.3 times 
better than the serial system.
 

A Hardware Table Look-Up Processor
2.2.8.5 


A hardware implementation of the TLU algorithm using currently avail­

able TTL and M0S technologies is shown in Figure 2.2.8(16). The timing
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multipliers adders
 

xA 

2
 

x3J 
x2
 
2 k + 

x4
xi' 

x3A 

k6 
 + Nt hth 

X4 A-k-._+ 

N kls.
 

Figure 2.2.8(15) The Opitimal Pipelined Arithmetic Unit (OPAU). 

generator is shared between parallel units (one for each pattern class) and
 
contributes insignificantly to the overall IC count and power dissipation.
 
Two TTL IC's are required for each of the digital comparators;the total
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gen.n comparator 1. comparator 2 surmmer 

in0O96 bit 1
 

memory
 

Figure 2.2.8(16) A Hardware Table LockupaProcessor
 

dissipation in each of the processors would be approximately one watt. The
 

processing delay encountered in the comparator stage amounts to no more'than
 

six gate delays. A twelve-bit, full carry, look-ahead adder may be imple­

mented in three TTL IC's requiring 1.6 watts and performing a sixteen bit
 

addition in eight gate delays or approximately 60 nanoseconds. The memory
 

address and data input latches may comprise three TTL IC's which dissipate
 

a total of one watt and introduce an additional 15 nanoseconds processing
 

delay.
 

The time required to generate and latch the new address is 75 nano­

seconds; the time required to process each feature dimension is this time
 

plus the memory access time. For currently available NMOS RAM's, the
 

memory access time is in the neighborhood of 500 nanoseconds, so the real
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processing delay in this type of processor is caused by memory access delays..
 

An estimated 4096 words of length 24 bits are required for each of the
 

classes the processor must recognize. Using current memory density and
 

dissipation figures, the number of memory IC's required is about 24 per
 

processor and these IC's dissipate about 12 watts.
 

The.total IC count for a twelve-class, six-bit-resolution computer is
 

approximately 400, and the total dissipated power is roughly 200 watts.
 

The 	volume of the unit is approximately 1/2 cubic foot.
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2.3 	 ON-BOARD PROCESSOR ENVIRONMENTAL EFFECTS
 

The components of an on-board processor can be divided into several
 

classes. Each class will contain a particular type of component, and each
 

-class will be affected differently by the space environment. The majority
 

of the components will be made up of four classes: (1) the electronically­

alterable programmable read-only memory (EAPROM); (2) the random-access
 

memory (RAM); (3) the microprocessor chip (12); and (4) the hardwired logic
 

chip. The environmental effects on each class of components is heavily
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dependent upon the spacecraft orbit and the spacecraft environment.
 

2.3.1 Orbit
 

For earth-resources missions there are two types of orbits. One is the
 

earth-synchronous orbit in which the spacecraft continuously views a given
 

area of the earth's surface, and the other is the sun-synchronous orbitin
 

which the spacecraft crosses the equator at the same time of day.
 

2.3.1.1 Earth-Synchronous Orbit
 

In order that the sDacecraft remain at a fixed point with respect to
 

the earth's surface, the spacecraft orbit must be equatorial, circular, and
 

at an altitude of 35,870km. Such an orbit would provide opportunities for
 

viewing of short-lived events while they occur, or at the first cloud-free
 

opportunity, and/or monitoring time-variable environmental phenomena.
 

The major potentially-damaging effect at synchronous altitude is space
 

radiation due to the trapped electrons in the Van Allen belts. The electron
 

flux can be enhanced by a magnetic storm which raises the quiet-day flux
 

more than an order of magnitude. The quiet-day flux is around 106 electrons
 

per square cm per sec. [i. Of more importance is the dose received by the
 

spacecraft during the transfer orbit when the radiation belts are pene­

trated. The major spacecraft damage is to the solar cells since they are
 

on the outer surface. The spacecraft shell provides some shielding for the
 

electronics. Metal-oxide silicon field-effect transistors (MOSFET) are more
 

susceptible to the effects of radiation than are bi-polar transistors. An
 

evaluation of the effects of radiation received during a penetration through
 

the Van Allen belts can be made by observing the radiation data taken on
 

MOSFETs with various thicknesses of shielding. In previous NASA tests, ten
 

orbits of penetrating the Van Allen belts each orbit (four days) produced
 

a 30-mV shift in the gate threshold for one-quarter gram per square cm of
 

aluminum shielding (one thickness of spacecraft skin). One-gram and two­

grams-per-square-cm shielded MOSFETs showed no deterioration. For the
 

types of components projected at present, there appears to be no problem
 

with space radiation at synchronous altitude when normal shielding pre­

cautions are taken.
 

Another area of concern in spacecraft environmental system design is
 

the temperature control. At synchronous orbit altitudes the spacecraft is
 

almost always in the direct sunlight except for brief periods When the sun
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is eclipsed by the earth. The temperature can be controlled fairly accurately
 

and maintained at a value which provides good safety margins. Based on the
 

operating temperature range of the existing components in the four classes
 

above, no temperature problems are anticipated at synchronous orbit.
 

At the time of writing this report, ATS-6 had experienced a year's
 

exposure [2] to the synchronous orbit environment. The spacecraft carries
 

two small generai-purpose digital computers for use in the altitude-control 

system. These computers show no effect to this environment. The tempera­

ture of the Service Module has varied from 220C to 260 C which is well within
 

the 5°C to 350C temperature specification.
 

2.3.1.2 Sun-Synchronous Orbit
 

The typical earth-resources mission has been flown at-900-km altitude.
 

The spacecraft crosses the equator at the same local time each revolution;
 

LANDSAT-l crbssed the equator at approximately 9:40 a.m. each orbit. The
 

relationship of the ERTS-orbital plane to the centers of the earth and the 

sun remains constant while the earth rotates beneath the observatory [2]. 

At this altitude the earth is completely covere& in 18 days. 

- The 900-km earth-resources orbit is just below'the proton and the elec­

tron trapped-radiation belts. The flux from magnetic storms does not pene­

trate to this altitude. Since considerable experience has already been
 

gained for operation of field-effect transistors at this altitude, the
 

present indication is that normal chassis covers-provide sufficient shield­

ing against space radiation for MOSFET devices.
 

Currently, NASA is experiencing problems with CMOS devices at higher
 

altitudes. While early CMOS devices were sufficiently immune to radiation
 

effects, the process line was changed and later devices show a greater sus­

ceptibility to radiation. This is a temporary problem, and based on past
 

performance, it is safe to predict that during the 1980's the CMOS devices
 

will once again be sufficiently immune to radiation effects.
 

2.3.2 Spacecraft Environment
 

During the 1980's the method of launch of an earth-resources spacecraft
 

will be by the space shuttle. The shuttle can place a 6000-kg payload in a
 

620-km sun-synchronous orbit; however, it can only place a 600-kg payload
 

into a 900-km sun-synchronous orbit. A small decrease in orbital altitude
 

results in a large increase in orbited payload weight.
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To be cost-effective, the shuttle requires a large number of users and
 

a large weight-carrying capability. This can be achieed-at the lower alti­

tudes. Utilization of a higher weight payload usually results in a lower
 

cost for the payload. Redundancy can be incorporated plus additional
 

shielding so that lower cost components can be used. The additional weight
 

cai also be used to control the payload environment so that environmental
 

testing can be reduced. Based on present-day technology and the successes
 

in flying payloads in both earth-synchronous and sun-synchronous orbits,
 

the on-board processor designer should have no trouble in meeting the
 

spacecraft environmental specifications for either sun-synchronous or earth­

synchronous orbits.
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3 TECHNOLOGY FORECAST AND ASSESSMENT
 

The ability of the on-board processors designed in Section 2 to imple­

ment the algorithms described in Section 1 in real time for the required
 

throughput data rates depends on the components that will be available at
 

the time of system design. The lead-time required for design, procurement,
 

fabrication, checkout, and launch is about 5 years, so that 1980-1990
 

launches will utilize 1975-1985 technology. Consequently, we require ac­

curate component and system technology forecasts for the next 10 years.
 

Section 3.1 deals with performance measurement criteria.
 

Section 3.2 contains a survey of the electronic component technology
 

available in 1975. Future improvements in component technology from 1975
 

to 1985 are projected.
 

In Section 3.3 we review the computer system technology available in
 

1975 and we forecast future system technology using both manufacturers'
 

estimates and a technology forecasting model.
 

Section 3.4 contains a survey of existing satellite on-board computers
 

and a discussion of future on-board processor technology.
 

- In Section 3.5 we develop a forecast feedback system that allows the 

incorporation of the projected component and system technologies into the 

on-board.processor architectures. The results are then used to obtain a 

better estimate of projected performances. 

Finally, Section 3.6 contains a discussion of a component and system
 

technology that is in its infancy, but which, with sufficient stimulation,
 

could make a significant impact on on-board processors toward the end of the
 

1980-1990 decade.
 

3.1 PERFORMANCE MEASUREMENT CRITERIA
 

Many measurement performance criteria have been proposed to evaluate
 

hardware structures, algorithmic processes, and computer systems. See,
 

e.g., bibliographies on performance evaluation by Buchholz [21 and Miller
 

[3]. An interesting trend can be discerned from the historical literature
 

on performance measures.
 

Skalansky [41 suggested a measure to evaluate the hardware performance
 

characteristics of several binary adders. The evaluation criteria was
 

defined in terms'of the add~rts efficiency n = R/I. The value of R was
 

taken as the number of bits in each operand. Several formulas for generating
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values of I were proposed using the gate - normalized addition time and the 

number of two-input AND gates and OR gates.
 

In an effort to compare the efficiency of algorithms in processing
 

matrices and linear equations, Householder [5] indicates that the number of
 

numerical operations plus the number of recordings of intermediate resulTs
 

generate an overall measure of the efficiency of the computational process.
 

If a benchmark such as time were used as the measure for evaluating each
 

system's performance, the affect of the system's instruction set and archi­

tectural hierarchy would be integrated by the execution of the computational
 

task and provide a significant indication of system performance.
 

A method for evaluating the computing power of various systems known as
 

throughput [6-8] is defined in terms of the specific task to be performed.
 

The task might be the compilation of a FORTRAN statement or the execution of
 

an I/0 statement. In this context, throughput is measured in jobs per unit
 

time. An interesting aspect of this measure is that the operating system,
 

compiler, and data management affect the measure as well as the hardware
 

architecture and memory hierarchy. This method of evaluation has been pro­

posed and used for large, complex digital systems in multiprocessing, multi­

programming, and real-time environments.
 

Other meaningful measures for performance measurement and evaluation
 

of complex computing systems are based upon workload characteristics [9],
 

utility functions [101, hardware monitoring [11], and data base of perfor­

mance [12,131.
 

Anacker and Wang [14] presented a method for performance evaluation of
 

computing systems with memory hierarchies in which the degradation of per­

formance due to system architecture and data flow paths in the CPU and
 

memory were taken into consideration by calculating the sum of instructions
 

plus data words processed or manipulated per unit time by the system in
 

carrying-out a given task.
 

Leis [15] introduced a parameter called "setup" and explored its rela­

tionship to processing power and instruction set in evaluating hardware
 

design. A computer architecture was identified as the set of constraints
 

the system imposes on the user in executing his computational task; setup
 

is a measure of the amount of data manipulation performed prior to the
 

system's execution of an instruction identified as a step in the algorithm
 

being executed. For instance, if a system architecture is organized
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around a single address instruction format, setup is required to access one
 

of the operands prior to the execution of an arithmetic operation. A system
 

organized around a two- or three-address instruction format does not require
 

the same amount of setup. Changes in setup are measured in terms of over­

head. The more setup required in a given application points to a lower per­

formance.
 

Trends are toward the development of performance measures which inte­

grate all the operating characteristics of the computing system. This study
 

incorporates these considerations by taking into account both the hardware
 

organization (system architecture) and the software overhead (number of
 

microprocessor cycle times) required to optimize and implement the algorithms
 

discussed in Section 2.
 

3.2 COMPONENT TECHNOLOGY
 

3.2.1 1975 Component Technology
 

Some 1975 micro-electronic technology families are listed in Table
 

3.2.1(I), and a qualitative comparison.of some MOS circuit techniques are
 

listed in Table 3.2.1(11).
 

Table 3,2,lCo Some 1975 Component Technologies 

LSI ON-CHIP 
DENSITY POWER-DELAY PRODUCT, pJ SMALLEST' 

FAMILY GATES/mm2 15v 5V IV' DELAY, ns 

SCHOTTKY BIPOLAR 30-40 r 5 - 2 
CMOS 30-40 50 .5 - 10 
STATIC NMOS 80--120 50 5 - 20 
CMOS/SOS 
12L BIPOLAR 

80-120 
100-120 

25 3 
5 

-

1 
3 

10 

The reliability of these components is illustrated by the statistics 

listed in Table 3.2.1(111). The mean time between failure (MTBF) of 103 ­

105 hours for a 1000 component system is marginal for an on-board processor. 

Present LSI technology allows up to several thousand gates per chip.
 

The maximum power dissipation per chip ranges from 0.5-2.0 W; very few
 

dissipate more than 1 W.
 

Two present day memory technologies are illustrated in Table 3.2.1(IV).
 

Both are 8,000 bits. The charge coupled device (CCD) has a faster transfer
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Table 3.2.1CII) Qualitative Comparison of MOS Circuit Techniques
 

Circuit 
Technique Speed Power Density Advantages Disadvantages 

Static 
Logic 

Cr2 
MHz 

5 mW 
Per 
Gate 

200-300 Runs at any frequency d.c. 
Gates to max. No external clocks 
Per Chip required. Easiest of PMOS 
Readily types to interface with hi-
Obtained polar. Simplest to use for 

system design. 

Slowest. Highest 
Power. Higher cost 
than 2$ or 4$ 
(larger chip area 
per function). 

I 
2 S 10 Kc- Lower Higher Lower Power. Higher Speed. Minimum Frequency 
Dynamic 5 MH |Power Density Better Noise Immunity than of Operation. Ex­

than than Static Logic. ternal clocks must 
Static Static be supplied, there-

Logic Logic. fore more system
 

(depending upon noise and complica-

Frequency and Pulse tion.
 
Width.
 

4 - 10 Kc- Only Higher Still Lower Power. Higher Minimum Frequency. 
Dynamic 10 MH jReac- Density speed than 2 0. Better Noise of operation. Ex-
Logic tive than 2$ Immunity than Static Logic ternal Clocks re-

IPower, Dynamic r 2$ quired, therefore
 
so total power is Logic more system noise
 
less than static and complication.
 
or 2$ Dynamic
 
Logic. Microtatt
 
d.c. power dissi­
pation
 

Comple- 0-25 tMicro- Lower Lowest System Power. Highest Largest MOS Chip
 
mentary MHz watt Density jSpeed, Good Noise Immunity. Area. More pro-

MOS Logic d.c. than- Single Power Supply. Low cessing steps re­

power Static kutput Impedance in both quired. Highest
 
dissi- Logic, Mirections. Wide Power MOS die cost.
 
pation Approx. upply Variations.
 

300 Gate
 
_Per 
 Chip.!
 

Table 3,2.1(III) 1975 Component Reliability
 

Ch4s passing die sort electrical test 100
 
Chips passing visual inspection of lead bonds 98
 
Components passing all tests after packaging 80
 
Components operable at first system test 78
 
Components operable after 18 hour burn at
 
maximum temperature. 76
 

Subsequent failure rate of surviving components in
 
normal service .001--.01 per 1,000 hours
 

Lab or computer room severe environment .01-0.1% per 1,000 hours
 
MTBF for 1,000 component system 103-105 Hours
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Table 3.2.1(IV) Comparison of RAM and CCD for Bulk Storage
 

8K RAM (IBM, 1973) 8KCCD (Bell-Northern, 1974)-

Die Size (MILS) 145 x 201 (29K MIL
2 ) 168 x 178 (30K MIL ) 

Access Random to 64 b Blocks Random to 256 b Blocks-
Bit Transfer Rate 1.8 x 106 b/s 106 b/s 
Active Power (MW/8K) 22.5 15 
Standby Power(MW/8K) 
Technology 

2.5 
Std. P-SI Gate 

1 
2-Level N-SI Gate 

rate but slower access time because it is a dynamic shift register device so 

that, like a'disc memory, readout is delayed until the data comes past the ­

readout electronics.
 

3.2.2 1975-1985 Component Technology
 

The equivalent number of gates per IC package (Chip) increased two
 

orders of magnitude from 1960 to 1970 (from about 5 to about 500), and
 

another order of magnitude between 1970 and 1975 (about 5,000 by the end of
 

1975). Three more orders of magnitude remain before the optical diffraction
 

limit is reached. Figure 3.2.2(1) illustrates this evolution from SSI
 

(small scale integration) through MSI (medium scale integration) to LSI
 

(large scale integration) [203. All indications are that the number of
 

gates/chip will increase by another two orders of magnitude between 1975
 

and 1985.
 

For some IC's the number of pins on the package must increase in order
 

to effectively utilize the increased number of gates. The pin count per
 

package has increased exponentially over the past 15 years. A less than
 

exponential increase is predicted for the next 10 years.because of problems
 

in manufacturing, assembly, seal, and testing. The insertion yield and
 

repairability will also tend to slow the growth. A fast 16-bit CPU would
 

require 100-150 pins. This appears feasible as illustrated in Figure
 

3.2.2(2).
 

Future memory technology is projected in Table 3.2.2(I). For the 7
 

year span that is shown it is expected that cell area, power/bit, and MTBF/
 

bit will improve by about one order of magnitude. Storage capacity and
 

cost increases approach one-and-a-half orders of magnitude. Some experts
 

are predicting a 128K bit chip by 1980. All indications suggest between
 

one and two orders of magnitude improvement between 1975 and 1985. Power
 

requirements are directly proportional to cycle time, but only to the
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-Table 3.2.2(I) Possible Trends in Dynamic M0S RAM Pu 500 ns Cycle Time
 

Storage Capacity IK' 4K 16K 64K
 
Date Introduced 1972 1974 1976 1979
 
Cell Area, Mil2 6 2 1 0.5
 
Chip Area, In2 .02 .03 .04 .06
 
Power/Bit, .W
 
Active 300 100 20 4
 
Standby 4 1 0.5 0.2
 

0 l0I
MTBF/Bit, Hr. oll
 
Component Mfg. Cost/Bit, 2 yr. After Intro. -€ 0.3 0.1 .03 .01
 
Memory System Price/Bit to OEM -€ 1.2 0.4 .12 .04
 

square-root.of storage capacity (Power u vWbits * access 'time) and are not 

expected to pose any problems., 

Present prices of microprocessor components reflect an attempt by sup­

pliers to recover some of their development costs. The factory cost of a
 

microprocessor (or any manufacturable LSI component) is under ten dollars.
 

Rapid decreases in the price of microprocessor components are likely over
 

the next few years. Memory, input-output devices, and power supplies may
 

well be more important factors in the total cost of a system.
 

The engineering cost of a microprocessor chip is substantial, perhaps
 

on the order of 0.5 to 1 million dollars. This is a significant barrier to
 

the development of custom microprocessors for single users.
 

The performance, cost, and reliability of many microcomputer systems
 

is determined by memory. Continued rapid decrease in the cost of memory is
 

likely. Charge-coupled device memories and bubble memories are not likely
 

to challenge the dominance of conventional semiconductor memory techniques.
 

Eventually.read-write memory and mask-programmed read-only memory will
 

approach the same cost, while electrically programmable read-only memory will
 

continue to be more costly.
 

It should be possible to build highly reliable microcomputer systems
 

through use of well-planned but relatively cheap testing, screening, and
 

burnin procedures.
 

Some 1980 LSI costs projections are presented in Table 3.2.2(11) aloi
 

with some of the parameters governing'costs.
 

3.3 SYSTEM TECHNOLOGY
 

System technology is progressing at a rate comparable to component
 

technology. Some 1973 and projected 1978 minicomputer and microcomputer
 

system characteristics are illustrated in Table 3.3(I).
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Table 3.2.2(11) Projected 1980 LSI Component Prices
 

MOS BIPOLAR
 
2 2
0.6 cm
 

Chip size for 30% yield 1.5 cm2 


Cost/good Chip $9.00 $3.60
 
'Number of devices/chip 106 105
 

104
105
Number of gates/chip 

Factory cost of package $28.00 $17.00
 
Factory cost/gate .03 .17€
 
Selling price/gate .06t- .35€
 

Table 3.3(I) Comparison of Minicomputer/Microcomputer Characteristics 

1973' 1978 

Minicomputer Microcomputer Minicomputer Microcomputer 

Execution time (pS) 
Word Length (bits) 
Number of Instructions 
'Technology 

0.5-2.0 
8-32 

100-200 
Core 

2.0-25.0 
4-8 
20-60 
MOS 

0.1-2.0 
8-32 

150-250 
Bipolar/MOS 

0.1-10.0 
4-16 

100-200 
Bipolar/MOS 

3..3.1 . Technology Forecasting.Model 

Under the Apollo program [16] NASA developed a system to forecast space
 

vehicle weight .and performance based upon trend forecasting. Because of the
 

success of this technique and the excellent documentation available, it was
 

adapted to the forecasting of computer performance.'
 

As illustrated in the preceeding sections, component and system para­

meters are progressing at an exponential rate. Consequently, our model is
 

based on the logarithm of the NASA linear maximum likelihood model.-


The computation and plotting routines of the linear maximum-likelihood
 

model were modified to accept the logarithm of the input data. To make a
 

projection that would be good to the year 1990, input data over the range
 

of 1960 to 1975 was needed. The periodical, Computers and Automation,
 

publishes a monthly survey of computers along with their first date of in­

stallation. Every few years, beginning in 1960, the periodical has published
 

a digital computer specification survey. This survey includes cycle time,
 

add time, multiply time, etc. Using the monthly survey and the specifica­

tion survey, data versus :time can be extracted for use in the prediction
 

program.
 

Figure 3.3(1) resulted,from using input data taken from minicomputer
 

surveys for the years 1970 to 1975 to predict computer cycle time; A
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Figure 3.3.1(1) Computer Cycle Time Forecast
 

more meaningful result was obtained by taking minicomputer add times for
 

the years 1970 to 1975 and combining it with the add times of computers 
from
 

1960 to 1970.' The resulting prediction is shown in Figure 3.3(2). The
 

The small
 
expected value for the computer add time in 1983 will be 

100 ns. 


circles and asterisks represent the 80% confidence limits. 
This curve is
 

Even today there are machines with add times
based upon expected values. 


These com­
of 100 ns, but the average or expected value today 

is 800 ns. 


puter generated projections are in close agreement to 
the predictions made
 

by experts in the electronics industries discussed 
in Section 3.2 and 3.3.
 

-3.4 ON-BOARD'PROCESSOR TECHNOLOGY 

- NASA is at present in a program for standardizing its on-board com­

puters.- The-Goddard Space Flight Center has developed the Advanced 
On-


Board Processor (AOP) [21]which had its first flight on OAO-3 
21 August
 

an on-going program to reduce size and power consumption
1972. There is 
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of this computer so that it can be used on smaller spacecraft. The machine 

has an 18-bit word length and a 4-microsecond add time. 

The Marshall Space Flight Center is sponsoring several versious of on­

board computers: The Hybrid Technology Computer (HTC) by IBM, the Space 

Ultra-reliable Modular Computer (SUMC) by RCA, and the Hughes Aircraft Long-

Life Fault-Tolerant System. The RCA SUMC is being made of Silicon-on-Sap­

phire CMOS. 

Technology requirements for the on-board processor differ from computer 

system technology because of space, power, weight, reliability, environment 

and cost constraints. Many of these parameters, e.g., space qualification 

and check out time and costs, increase as the square of the number of com­

ponents. Experience has shown that, while the number of transistors or 

gates in a logic system-has increased by orders of magnitude, the number of 

integrated circuit packages has remained essentially constant. To support 
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this theory, the advice of an expert in digital logic design, D. R. Lokerson
 

of NASA/GSFC furnished the data shown in Figure 3.4C1). This figure shows
 

the number of IC packages and the number of transistors or gates for the tele­

metry encoding system for the Interplanetary Monitoring Platform (IMP) space­

craft over the ten year period 1965-1975. The IMP telemetry encoder in­

creased in computational power over the past decade. It used the newest
 

technological developments; it was the first spacecraft to use integrated
 

circuits and the first spacecraft to use MOS transistors. Nate that the
 

number of IC's remained essentially constant while the equivalent number of
 

gates increased by two orders of magnitude over the 10 year period. It is
 

the opinion of Lokerson that systems with more than 1,000 packages become
 

increasingly difficult to test. While the number of gates in the packages
 

may continue to rise, testing, checkout, and reliability of pin connections
 

will dictate a maximum system size of approximately a 1,000 packages per
 

system for the next ten years.
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Figure 3.'4(l) Numbers of IC Packages and Gates for the IMP Spacecraft
 



The constraint of 1,000. chips is based mainly on cost. The technology
 

is available for building larger processors; however, the cost to design,
 

test, and check out a processor goes up with the number of packages much
 

fasterthan linearly. We will, of course, investigate the sensitivity of
 

our results to variations in this data point.
 

In summary, we conclude the following for the on-board processor for
 

1975-1985:
 

(1) The maximum allowable number of IC packages will stay constant at
 

1,000.
 

(2) The add time will increase by one order of magnitude.
 

(3) The number of gates per IC package will increase by one-to-two
 

orders of magnitude.
 

(4) The data throughput capability will increase by two-to-three orders
 

of magnitude. (This follows from-items 1, 2, and 3.)
 

3.5 FORECAST FEEDBACK SYSTEM
 

Because of the complex interrelations between on-board processor re­

quirements, architectures; etc., a systematic'approach based on a feedback
 

model was developed. The object of the forecast feedback system is to help
 

give the best estimate of on-board processor architecture organization and
 

performance. The forecast feedback system block diagram is shown in
 

Figure 3.5(1).
 

SPROGRAM CONSTRINTS 
COMPONENT HISTORY DATA -.
 
.STIMULUS TO INDUSTRY I OTU 

OTPU
 
ON-BOARD MAGEMENT COMPUTER 
COMPUTER ALGORITHM DECISION STRATEGY ARCHITECTURE 

REQUIREMENTS APPRAISALS TRADE-OFFS AND 
ORGANIZATION 

WEIGHTING OF COREADSTPEFRAE 

PARAMETERS DATA-CONDITIONING P 

Figure 3.5(1) Forecast Feedback System Model
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3.5.1 Input Data
 

Data is fed into the loop in two inputs. The primary input is the on­

board computer requirements data. These-are the data requirements generated
 

in Section 2.1 of this study. To generate the first set of data, typical
 

applications were selected in the fields of agriculture, geography, meteoro­

logy, and oceanography. On-board processor requirements were generated to
 

satisfy the spatial and spectral requirements. They are fed into the loop
 

by means of the block in Figure 3.5C1), labelled Algorithm Appraisals. Here
 

the appropriate algorithm is selected or indicated. In the first iteration
 

of the loop there is no feedback to perturb the algorithm appraisal. The
 

algorithms are then passed on to the block.labelled Management Decision
 

Strategy Trade-Offs. The second set of inputs occur in this block. These
 

inputs are the program constraints, the component history data and any sti­

mulus to industry which may affect the rate with which technological ad­

vances are made. NASA management, along with the members of the study team,
 

made the decisions and trade-offs required to select the appropriate algo-­

rithms consistent with the program constraints. The algorithms are then
 

passed on to the computer architecture designer (box labelled Computer
 

Architecture and Organization).
 

3.5.2 Output-Data
 

The'output from the feedback system is taken from the box of Figure
 

3.5(1) labelled Computer Architecture and Organization. The output is two
 

computer designs, one a general-purpose computer and the other a hardwired
 

special-purpose computer. Each is based upon using present-day technology
 

without benefit of a technology forecast.
 

3.5.3 Feedback Loop
 

The component parameters required for the implementation of the two
 

designs are fed into the technology forecasting program for a projection of
 

the expected performance in the 1980's. The parameters were ranked and
 

weighted; processor add time was deemed the most meaningful and useful
 

'parameter. This information was passed to the Algorithm Appraisal box
 

where the selection between the maximum-likelihood and the table look-up
 

algorithm occurred. Two new designs resulted, one based upon using a set
 

of general-purpose computers and the other on the use of hardwired logic.
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A.second and third iteration around the'loop produced the final processor
 

architectures described in-Section 2.
 

3.6 OTHER TECHNOLOGIES
 

There are some new approaches that show promise for drastically in­

creasing the computational power of an on-board processor, e.g., the tse
 

computer and the Josephson tunneling circuits. Both would require consi­

derable stimulation to develop them to their full potential.
 

3.6.1 The'tse Computer
 

Image information is two-dimensional. Two-dimensional data processing
 

is usually executed as a sequence of serial computations by a word-oriented
 

machine. Several parallel-processing architectures [22-24] have been pro­

posed in which the processor organization is an array of processing elements
 
capable of operating on a number of words simultaneously. Most of these
 

systems have not reached an operational status because of the prohibitive
 

cost involved in their construction.
 

Some forms of.optical computing operate at speeds exceeding those of
 

digital techniques. Optical computing has generally been limited to optical
 

analog devices based upon the mathematical concepts of coherent or Fourier
 

optics and holography. Optical analog computing derives power from the fact
 

that the computing systems are relatively simple and that parallel pro­

cessing is a natural property of the lens [25J. The area of optical digital
 

devices is not as Well-developed. Strong[26,271 has explored the feasibility
 

of performing-logical operations on binary images using coherent and non-co­

herent optical techniques. This research indicates that a two-dimensional
 

computer architecture using coherent and non-coherent optical devices has
 

attractive image processing capabilities.
 

A program at the Goddard Space Flight Center has removed the ground
 

rules with which conventional computers are designed and a'new design philo­

sophy and concept has emerged. Schaefer and Strong [28,29], Earth Observa­

tion Systems Division, NASA/GSFC, have proposed a family of two-dimensional
 

logic devices capable of performing simple, parallel logical operations
 

simultaneously on one or two binary images. The following summarizes a'
 

small part of their research.
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Consider an image composed of a 512 x 512 rectangular 

array of picture elements in which the gray level Qf each element 

is quanti~ed to six bits. One way to visualize the digitized 

inage is as six binary image planes, each plane containing 512 

x 512 bits. The binary image plane or bit plane is a two­

dimensional binary data array called a "tse" which comes from the
 

word for the Chinese writing characters. Just as one tse repre­

sents many English letters, one binary tse represents many binary
 

bits.
 

A family of tse.logic devices which utilize electro-optical
 

technology to perform simple, parallel logical operations simul­

taneously on one or two tses has been proposed. Figure 3.6.1(1)
 

illustrates a tse gate capable of ANDing two binary image planes.
 

The irterleaver is a passive element which combines corresponding
 

positional elements in the image A and the Image B inputs to the
 

integrated electro­
optic device
 

Image A OUTPUT
 

INPU /A B• AND 

INPUT 

Image B,
 

fiber optic interleaver
 
(COMBINER)
 

SaLOGICAL 1 0 -LOGI CAL 0 

Figure 3.6.J(1) .A Two tse Input, Digital AND Gate
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same elemental position at the interface of the electro-optical
 

device.' The electro-optical device is an active integrated 

circuit which converts the optical inputs -into electrical sig­

nals which are logically ANDed in a conventional manner. The 

output electrical signals are converted'to an optical output by an 

e!hctro-luminescense-process; Since the fan-out of the active circuit 

is one, an interleaver must be used in reverse to duplicate the output
 

image and to increase the effective fan-out. Each output from the"
 

duplicator must interface to a REFORMATOR which is an active tse buffer
 

device to restore the proper optic signal levels. Figure 3.6.1(2)
 

demonstrates how the effective fan-out from the AND gate can be
 

increased to four.
 

- Four Fan-Out 
interleaver as Image A AND'B 
COMBINER 

Image A -

INPUT -.OUTPUT
 

Image B 

interleavers as
 
DUPLICATORS
 

EJ tse AND - tse REFORMTOR 

Figure 3.6.1(2) Use Qf DUPLICATORS to Increase'Effective Fan-Out 

Of a tse Device to Four 

Other elementary tse operations are OR, Exclusive-OR,
 

NEGATE, and SLIDE opetations. These primitive operations and
 

the results of performing them on typical images are depicted
 

in Figure 3.6.1(3). All of these operations, with the exception
 

of the SLIDE operation, represent conventional logical operations.
 

The SLIDE operation performs an image translation-either up,
 

down, right, left, or"coinations of these directions. Con­
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Image A Image B
 

A OR B A EX-OR B
 

.NEGATE-- .. .----- SLIDE B RIGHT-


LOGICAL 1 -I LOGICAL 0.
 

Figu'e 3.6.1(3) An Example of Elementary tse
 

Operations on Typical Images
 

ceptually, this operation is generated by interfacing two fiber
 

optic bundles with a physical offset between the bundles. There­

fore, when a tse is transmitted along the optic data path of one
 

bundle, the tse at the output of the second bundle is transmitted
 

with the same physical offset. Positions in the output path
 

which are not interfaced to an input because of the offset are
 

masked in such a way that they contribute logical zero in the
 

output image.
 

A tse "contractor" device is a control device to indicate
 

the presence of a 1-element in any position of the tse. If
 

there are no 1-elements in any position of the binary image,
 

the'butput of the device is logic-0; otherwise, the output is
 

logic-l. This device is different in that the input is a data
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plane, but the-output is a single logic signal. A device-of
 

this type is very.necessaryfor implementing conditional image
 

operations.
 

Tse devices can.be interconnected in much the same manner
 

as conventional digital logic gates to'implement special purpose
 

architectures for executing specific algorithms. As they are
 

interconnected to organize more complicated structures, methods
 

for controlling the devices are essential. All'active tse de­

vices are assumed to have a one-bit control line,for turning
 

them 	on or off. In the off state the output tse is a zero-tse
 

(all elements in the array are logic-0).
 

An example of a system organization with tse components is the LOGICAL
 

OPERATIONS UNIT of Figure 3.6.1(4). This unit is a subsystem in a larger
 

tse computer organization [30]- for executing Strongt s parallel counting
 

algorithm [28].
 

Although tse components are still in an early developmental stage, the
 

paralielism produced by these devices readily projects a system structure
 

which allows for the parallel, concurrent, or simultaneous execution of
 

,processing tasks. Future advances in integrated circuit and optical tech­

nologies in the next 5-10 years are expected to provide effective computer
 

architectures for processing two-dimensional data.
 

3.6.2 	 Josephson Tunneling Devices
 

For over twenty years, attempts have been made to utilize the principles
 

of superconductivity in the building of computers. If the extremely low
 

losses of the superconductive state could be utilized in a logic element,
 

then a very low-power computer could be built. In 1956, D. A. Buck [311
 

demonstrated the "cryotron," which was capable of performing both logic and
 

memory functions. This device was not competitive with semiconductor com­

puting elements in speed; therefore, it has not made an impact in the com­

puting field. In 1962, B. D. Josephson predicted [32] that supercurrent
 

could flow through an insulator sandwiched between two superconductors.
 

The predictibn was later confirmed, and his work spawned a whole host of
 

investigations into devices'utilizing this principle. The promise of ex
 

tremely fast switching speeds at very low powers is now being realized
 

with the implementation of the Josephson Tunneling Logic CJTL).
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Figure 3.6.1(4) Organization of the tse Logical Operations Unit
 

The first measurements [33J of the speed-power product of this device
 

showed an improvement of three orders of magnitude over that of the fastest
 

semiconductor logic. This represents a speed capability of a single
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processor which,'if it were built as an on-board processor, could do the
 

multispectral scanner'processing job serially in real time.
 

As reported by W. Anacker [34], the basic gate is made bp of two super­

conductors, a and b, with an oxide; c,'etween them as shown in Figure 3.3.2
 

(1). Control lines, d, e, and f, insulated from the gate, supply the input
 

def

! "l. "'-h "a z, 

Figure 3.6 .-2Cl) Basic Josephson Tunneling Gate
 

control signals. Each gate is supplied with a gate current, Ig, in and out
 

through strip lines, h and i, respectively. For the JTL to be operative,
 

this current must be present. With Ig present, and with no control-line
 

currents present, maximum current flows through the gate, and the gate vol­

tage is zero. With the application of a control current in one of the con­

trol lines and in the direction of the gate current, the gate current will
 

switch to a low value and the voltage will rise to a quantum level. This
 

sends a pulse down the output strip lines, j and k, which are terminated in
 

their characteristic impedance with a resistance 2R . The current in one of
o 

.the output strip lines is used to control the next Josephson tunneling gate.
 

Depending upon the ratio of the gate line width to the control line width,
 

the gain, VIg/VIc can be made greater than"unity. This allows the direct
 

interconnection of nnits with no need for amplification of signals. The OR
 

operation is formed by a current on any of the three control lines, d, e,
 

and f. The AND operation is accomplished by using the opposite-sense cur­

rents in the control lines. The opposite-sense currents must be present in
 

all three control lines for the devices to switch. Since the gate output
 

strip lines 'are the control for the next gate, the use of one of the lines
 

will set up an OR operation, and the use of the other will set-up the AND
 

operation. A NOT operation'is also available, but it must be performed in
 

a time sequence. Once a gate has switched, it can only be brought back to
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the initial state by removing the gate current. Memory cells have also been
 

built using three gates per-cell; The direction of the current in the stor­

age loop is a measure of the stored bit value. The memory is non-destructive
 

readout.' A switching time of-600 ps-has-been achieved [35], which indicates
 

access rates'of 1.5 GHz. The write cycle approached 1 ns.
 

The performance [33] of the JTL device is depicted in Figure 3.6.2(2).
 

The measured speed-power product of several gates in series showed an average
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Figure 3.6.2(2) Performance Comparison,-for Logic Gates [33]
 

speed-power'product of 5 "femtojoules. This is thiee. order of magnitude 

improvement over conventional semiconductor logic:circuits. 

The main disadvantage of the Josephson Tunneling devices is the fact 

that they have to be supercooled. It can be adapted, however, to space 

133
 



flight use, since the space vacuum can-be used to prevent heat-losses into
 

the 	supercooled-system. Likewisefthe space shuttle provides the capability
 

of insuring that the cryogenic systems can be orbited-atlow cost.
 

A rule-of-thumb by'J. K..Hulm E36] states that the'improvement using
 

cryogenics, to.be worthwhile,'must generally be a factor of at least 1,000.
 

Using this rule; there will be no sudden"rush to the use of Josephson Tunnel­

ing 	devices; however,'the-results'of Figure 3.-6.2(2) were obtained using
 

non-optimum devices. If improvements in JTL technology are made faster than
 

in semiconductor technology, then this sytem may have a practical applica­

tion 	for space flight use. Because bf.the handicap of the low operating
 

temperature, the devices will probably never enjoy mass production. There­

fore, there will be substantial economic reasons to continue to use semi­

conductor logic circuits.
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4 FEASIBILITY, TRADE-OFF, AND SENSITIVITY ANALYSIS
 

This section identifies the pertinent performance parameters, isolates
 

the independent and necessary parameters, and relates these parameters to
 

the system requirements for each of the user requirements discussed in the
 

preceding sections. This will allow us to determine the feasibility of on­

board processing for each user type in the 1980-1990 time frame and to per­

form a tradeoff analysis to determine 'the sensitivity of our results to each
 

of the important system parameters.
 

The significant parameters related to the performance of the on-board
 

processor are tabulated in Table 4(I).
 

Table 4(I) On-Board Processor Performance Parameters
 

R data bit rate (bits/sea)
 
n number of spectral bands (channels)
 
b number of bits per resolution element per spectral band (bits)
 
S swath width (meters)
w 

RL resolution along a scan line (meters)
 

v satellite ground track velocity (meters/sea)
 
R resolution along scan path (meters)
p
 
M number of classes
 
c system cost (dollars)
 
p system power (watts)
 
w system weight (kilograms)
 
V system volume (meters

3 )
 

T time (years)
 
n number of components
c 

NA number of additions
 

NM number of multiplications
 

r pixel rate (resolution elements/sec)

X. - system constants (i=0,1) 

ki system constants (i=0,2,3,4,5)
 

Pi System Complexity function (i=1,2,3,4)
 

From Section 1.1.2.4, the incoming data bit rate is:
 

R = Sw/% x /R p x n x b r x n x b (4-1) 

where
 

r S /RLx v/R (4-2)

wt p 
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The pixel rate r, the number of ground resolution elements per second ob­

seried'by the MSS, has been determined for each user requirement. One could
 

choose any three independent parameters from the relation in equation (4-1).
 

we chose the set R, n, and b to specify system performance. The number of
 

classes M is also an independent parameter.
 

Since each of the processors investigated achieve their speed by dis­

tributing the processing load between many similar sub-processors, the cost,
 

power, weight, and volume are all essentially proportional to the number of
 

units required to satisfy the design.- For example, a doubling of the data
 

rate R requires doubling the number of parallel processors which corresponds'
 

to a doubling of the power, weight, etc. We now define i system complexity
 

function P. for each of the four processors i = 
1 1,2,3,4 that relates the
 

effects of the various parameter requirements. By proper choice of the
 

system scale constants ki the functions Pi are synonymous with "cost",
 
"power",- "weight", "volume", or "number of components". 

4.1 'COMPLEXITY FUNCTION DEPENDENCE ON M, n; r, b, and R.
 

In this section we define a domplexity-function for each of the four pro­

cessor implementations descr~bed*in Section 2 in-terms of the parameters de­

fined in Table 4(I). The'dependence on the-time T is discussed in Section 4.2.
 

"4.1.1"The'Microprocessor Maximum Likelihood Method (1PML)
 

The circuit complexity required for both the matrix equation (Sectiod
 

2.2.8.1) and the reduced form equation (Section 2.2.8.3) is determined by
 

the number of multiplication operations. For-the classification of a single
 

resolution element the minimum number of multiplications and additions in
 

terms of the number of channels n and the number of classes M is given in
 

Table 4.1.1(I).
 

Table 4.1.1(I) Mathematical Operatiofis for Classification
 

Operations Reduced Form Matrix Form
 

2
NA M(3n+n 2 ) /2 M(n + n + 2)
 

NM (n2/2 n/2) (M+I) + Mn M(n2 + n +i)
 

Regardless of how'these operations are distributed throughout the pro­

cessing system, for a given data rate the system complexity is proportional
 

138
 



-6 the processing time per pixel. Table 4.1.1(I) shows that for either
 

formula the processing time per pixel is proportional to M(n2 + n) since
 

multiplication time greatly exceeds addition time. A higher data rate can
 

be achieved by increasing the number of processing elements over which the
 

proqessing is distributed so that system complexity increases proportionally
 

to the pixel rate.
 

The sensitivity to the number of bits per pixel depends on the multipli­

cation method used in the processor. The example architectures in Section
 

2.2 use the Intel 8080 microprocessor unit but other manufacturers produce
 

bitwise expandable units. For these units the complexity of each processing
 

element is essentially proportional to the number of bits processed in
 

parallel by the microprocessor array. If the multiplications are done by
 

ROM table-look-up the amount of ROM required varies drastically with the
 

number of bits in the words to be multiplied, e.g., to generate a (b+2)-bit
 

product from two b-Bit inputs requires
 

ROM bits = (b+2) 22b (4.1.1-1) 

For b > 6 the processor complexity is dominated by the ROM requirements, and 

system complexity increases exponentially with the number of bits. On the 

other hand, if a PLA or hardware multiplier is used, the circuit complexity 

is proportional to the number of bits (at least for b < 16); we conclude thit 

the system complexity is proportional to b. 

The resulting system complexity function for the microprocessor-based 

maximum-likelihood classifier (pPML) is 
= _2' ' P1 k M(n t n) - r - b = k 1M(n + 1) R (4.1.1-2)
 

where k is a system normalizing constant to be determined.
 

4.1.2 Hardware Maximum Likelihood Method (HML)
 

The primary difference between the hardware and microprocessor methods
 

is that the multiplications and additions that were handled by software in
 

the microprocessor method are here replaced one-for-one by hardware units.
 

The relationship of total system complexity to the parameters M, n, b, and
 

r remain-essentially the same. However, the optimum pipeline processing
 

unit has a data rate which exceeds that required by many users and system
 

complexity can be reduced by time-sharing some of the processor arrays.
 

Time-sharing requires additional circuitry to multiplex the shared pro­

cessors and this increases the complexity function as the inverse of the
 

product of the oixel rate r and the number of channels n. The additional
 

hardware complexity for time sharing is proportional to the word length b.
 

139
 



Th4 system complexity function for this method is,.therefore,
 

P2 = [k2 M(n+l)R + k5 b2/R] (4.1.2-l)
 

For all systems of interest in this study k2M(ntl) R >> k5 b2/R, i.e.,
 
for any realistic data rate, the reduction in complexity by time-sharing pro­

cessing subsystems swamps the additional multiplexing complexity. Conse­

quently, the complexity function for the hardware maximum likelihood pro-' 

-cessors is given by 

P2 = k2 M(n+l) R (4.1.2-2) 

4.1.3 Microprocessor Table Look-Up (VPTLU)
 

Relative to the previous meThods, the table look-up algorithm trades
 

arithmetic hardware for memory storage. The system complexity depends
 

almost entirely upon the memory required to store the feature space decisi6n
 

boundaries which depends largely upon the training sample statistics an&I the
 

classification algorithm used. For most situations, the bulk of the memory
 

is used to make comparisons'in the last dimension searched. Boundaries must
 

be stored for each point in the projection of the decision volume on to
 

the space spanned by the previously searched dimensions. Examination of
 

equati6ns (1), (2), (3), and (4) of Section 2.2.8.2.1 indicates, at least-for
 

uncorrelated spectral measurements, that the memory requirement increases
 

expbnentially With the number of dimensions (channels). The empirical re­

sults of Table 2.2.8(XIII) for a typical agricultural classification problem
 

may'be used in conjunction with Eq. (2.2.8-7) to tabulate the-storage re­

quirements versus number of dimensions used, as illustrated in Table 4.1.3(I).
 

F(n) is a simple mathematical function that is a reasonable model of the
 

number of memory bytes required as a function of n.
 

Table 4.1.3(I) Table Look-Up'Memory Requirements 

No. of Spectral Bands (n) 1 2 3 4 5 

Memory Requirements (Bytes) 18 342 4824 61,000 1,050,000 

F(n) = 1.38 (15) n 21 311 4666 70,000 1,050,000 

An increase in the number of channels n also causes a proportional in­

crease in execution time since the additional dimensions must also be
 

searched. To maintain the same pixel rate the system complexity is in­
creased to handle the additional processing load.
 

If the number of bit6 per channel is increased while keeping the
 

system dynamic range donstant, the number of pointers which must be stored
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is increased. The new memory requirements may be expressed in terms of the 

old memory requirements by the relation 

2( n - )NB new = 4 N [1+2VbN + V NN + ('0.5)2nV Nn (4.1.3-1)
B ne 1 n-2 n-1
 

Equation (4.1.3-1) is a modified version of Eq. (2.2.8-7), Ni, "'. N*n 

are for the original system, NB is for the bit-increased system, n 

the number of channels, and Vb is the word-size change in bits. In any . 

practical system most of the memory is used to store the last dimension
 

boundaries, so that the last term in equation (4.1.3-1) predominates.
 

- Equation (4.1.3-1) reflects only the increase in memory words (bytes)' 

required to store the pointers and boundaries. The word length in fact must 

also change, perhaps even past the byte level. Pointer length must be 

changed to handle the added memory; increasing the word length by Vb will 

handle both the boundary and pointer requirements. 

Increases in the pixel rate are handled by multiplexing identical sys­

tems so that the total system complexity is directly.proportional to the -. 

pixel rate r. Changing the number of classes M changes the total execution 

time proportionately regardless of the distribution of the processing load. 

The number of parallel systems must therefore be increased proportionately
 

to maintain the same pixel throughput rate.
 

Taking all of the above factors into account the system complexity
 

function for microprocessor table look-up (pBTL) is given by
 

P k Mr b nX nb k M R Xlnb (4.1.3-2)
 

where k3 and 1 are system constants.
 

4.1.4 Hardware Table Look-Up (HTLU)
 

The system complexity for the microprocessor system is equally valid
 

for the hardware approach except for the normalizing constant, i.e., the
 

complexity function-for hardware table look-up (HTLU) is given by
 

P k MR b (4.1.4-1)
4 4 1 

4.2 COMPLEXITY FUNCTION DEPENDENCE ON TIME
 

It was shown in Section 3 that computer cycle times, memory access
 

times, and logic propagation delays in newly available equipment decrease
 

exponentially with time. To project the complexity functions into the
 

future, therefore, each complexity function requires a multiplicative
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factor of the form
 

f(t) = A (4.2-1) 

where A is the normalized yearly decrease in processing delays and T is the
 
0 

number of years into the future. It is implicitly assumed that A is approach­
0 

independent, i.e., the rate of these decreases will occur equally for each of
 

the four processor architectures. This assumption is reasonable since each
 

of the four processor architectures utilize the same semiconductor technology.
 

We must also take into account the fact that the components increase in
 

complexity and computational power with time. The system designer deals with
 

these components on a macroscopic level and the design complexity which he
 

must face is essentially independent of the microscopic complexity; it de­

pends only on the total number of components used in the design and not on
 

whether they are SSI, MSI, or LSI chips. Figure 3.4(1) illustrates the
 

evolution of the data processing systems for the IMP series of spacecraft
 

over the 10-year period 1964-1974. This is a spacecraft data handling and
 

telemetry system, but the design techniques are comparable to our on-board
 

processor designs and, indeed, the later systems utilized a computer-like
 

processor. All designs were near the feasibility limits for a reliable
 

spacecraft system at the time of design. Note that the number of components
 

stayed nearly constant between 750 and 1000, while the gate count increased
 

exponentially (two orders of magnitude in less than 10 years). Figure 3.Z.2
 

(1) gives a semiconductor manufacturer's projection of the number of com­

ponents on an LSI chip for 1975-1985. The projection indicates a tenfold
 

increase over the next ten years.
 

If the per IC power dissipation, cost, weight, design effort, etc. 

remain fairly constant over this period as they have over the last 10 years, 

then the complexity functions P should reflect the savings due to increases 

in the computational power of the components, i.e., the increase in the 

equivalent number of gates per IC. This requires an additional exponential 

term in each of the system complexity functions. Alternatively, the value 

of A
0 

in Eq. (4.2-1) can be modified to accommodate this additional factor. 

The resulting complexity functions are summarized in Table 4.2(I). 

4.3 EVALUATION OF SYSTEM CONSTANTS
 

In Sections 4.1 and 4.2 we determined the manner in which the complexity
 

functions for each of the four processor architectures depend on the system
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Table 4.2(1.) On-Board Processor Complexity Functions
 

Processor Complexity Function
 

Microprocessor Maximum Likelihood (PPML) P1 = k M(n+l) R A -T
 

Hardware Maximum Likelihood (HML) P2 = k2 M(n+l) R A
 

Microprocessor Table Look-Up (pPTLU) P3 k3 M R 1 n A°-0
inb °-T
 
P= k M R A o
Hardware Table Look-Up (HTLU) 


4 4 1 o
 

parameters M, n, b, r, R, and T. The remaining problem is to determine the
 
system constants A0 , A1' k,, k k and k
 

4.3.1 Evaluationof A
0
 

In Section 4.2"'we described two factors that contribute to the expohen-­
-T
 

tial term A ; (1) the exponential increase in processor speed due to de­o 
creases in computer cycle times, memory access times, and propagation delays;
 

and (2) the exponential increase in the number of gates per IC.
 

From the technology forecast results of Section 3 we conclude that com­

puter cycle times,'memory access times, and propagation delays will decrease
 

by one order of magnitude from 1974 to 1984. We further conclude that the
 

equivalent number of gates per IC chip will increase between one and two
 

orders of magnitude during the same period; we choose to use the more conser­

vative number. Consequently, we choose A° to allow two order of magnitude
 

improvement in system complexity (one order of magnitude for speed and one
 

for the number of gates per IC, i.e., we set
 

-10 - .01 (4.3.1-1)
o 

so that 

A = 1.58 (4.3.1-2) 

4.3.2 Evaluation of.Al
 

X can be accurately evaluated from the empirical results of Table 

2.2.8(XIII) and Table 4.1.3(I). That is, for table look-up crop classifica­

tion for agricultural data with b = 6 bit data words we can equate the Ainb 

term in Eqs. (4.3.3-2)'and (4.1.4-1) with the-F(n) function of Table 4.1.3­

(I) to obtain
 

S
nb = (15)n (4.3.2-1)
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The scale factor 1.38 in F(n) can be absorbed into the system constants k3
 

and k4 . Setting b = 6 in Eq. (4.3.2-1) we find
 

'XI = 1.6 	 (4.3.2-2)
 

Strictly speaking, this value is valid for b = 6 and is an average
 

value for agricultural data. However, almost all users surveyed in the user
 

requirement survey summarized in Section 1 indicated b = 6 bit data words
 

and the few exceptional cases did not deviate significantly from b = 6.
 

(The maximum mentioned was b i 7.) Empirical studies of the table look-up
 

algorithm for other than agricultural data are not available. However, the
 

decision boundaries for other data have the same general characteristics as
 

for agricultural data, i.e., they can-be modeled reasonably well by second
 

order polynomials as ttested to by the fact that the Gaussian maximum like­

lihood classifier works well for other than agricultural data. Consequently,
 

the memory requirements for other than agricultural data are not expected to
 

vary significantly from the average for agricultural data. We conclude that
 

X1 = 1.6 is a reasonable value for the purposes of this study.
 

4.3.3. Evaluation of .k, k2 , k3, k4
 

The complexity functions P. are now defined except for the normalizing
 

constants ki . These normalizing constants can be obtained from the data
 

points resulting from the detailed processor designs described in Section
 

2.2.8. In that section we determined the number of IC packages, the power
 

.requirements, the weight, the volume- and the cost of each of the four pro­

cessor architectures for the base line system using 1975 technology. These
 

results along with the definition of the bbseline system are summarized in
 

Table 4.3.3(I)
 

Table 4.3.3(I) 	 Complexity Functions for the Baseline System
 
Described in Section 1.4; i.e., n=4 Spectral Bands
 
M=12 Classes, b=6 Bits, R=31.2M Bits/Sec and
 
T=0 (1975 Technology)
 

Processor 

-Complexity 

-Function 
#IC's 
(K) 

Power 
(Kw) 

Volume 
(m3 ) 

Weight 
(Kg) 

Cost 
(K$) 

pPML P 
1 

30.0 3.5 .50 250 1700 

"HML P2 .6 .3 .03 15 15 

pPTLU P3 90.0 45.0 .75 340 2250 

HTLU P4 1.2 .6 .10 36 32 
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12; b = 6, R = 31.2 x 106By setting Ao = 1.58, )i= 1.6,-n = 4, M = 

and T = 0 in each of the equations listed in Table 4.2(I) and equating to 

the values of Pi in Table 4.3.3(I) we determine the scale factors kl, k2, ks, 

and k4 for each of the'performance measure listed in Table 4.3.3(I). The re­

sulting scale factors for each performance measure are presented in Table 

4.3.3(11). 

Table 4.3.3(11) Scale Factors for the Complexity Functions 
of Table 4 .2(T) for Each Performance Measure. 

Scale Factor #IC's Power(w) Volume(m ) Weight(kg) Cost 

kI l.6xlO- 5 1.8x10-6 2.67xi0 -0 1.34xl0-7 9.08x!0 4 

- - 9-7 -7 l.6x10 II 8.01x10 8.01x10 6
 3.21xi0 1.6x10
k 2 


9 -9 2.53xi0 -14 1.15xl0- I! 7.59x0 - 8
 3.03x0 - 1.52x0
k 3 
-ll 1.21x 12 l .08xlO 9 k . 4.05x1 2.02xl 3.37x1 

4.4 SENSITIVITY ANALYSIS
 

The sensitivity of the complexity functions to the various sytem para­

meters is illustrated by the parametric curves*In Figures 4.4(1), 4.4(2),
 

and 4.4(3). These curves were obtained by setting all system parameters to
 

their baseline values n = 4 spectral bands, M = 12 classes, b ="6 bits, R = 

31.2 x 106 megabits, and T = 0 except for the parameters listed in the
 

figures which were then varied from their baseline values. Consequently,
 

these curves illustrate the deviations in the complexity functions as the
 

system parameters vary from their baseline values.
 

All of complexity functions involve the terms R X0 , i.e., all four 

complexity functions increase linearly with the bit rate R and decrease 

exponentially with the time T. Figure 4.4(1) illustrates the behavior of' 

the complexity functions as a function of T as R is varied in multiples of 

two from 7.5 megabits/see to 120 megabits/sec. -The normalized complexity 

factor, valid for all four processor architectures, is plotted on a linear 

scale. 

The ML and TLU processors differ in their dependence on the number of 

spectral bands n and the data word length b. Recall that R = r - n " b so 

that the ML processor complexity functions increase as bn(n+l). The nor­

malized ML complexity function is presented in a linear scale in Figure 

4.4(2)-as a function of n between 1 and 20 for b = 3, 4, ..., 8. Doubling 
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b doubles the complexity function whereas the dependence on n is essentially 

2as n . 

The normalized TLU complexity function is plotted on a logarithmic
 

scale in Figure 4.4(3) as a function of b and n. Except for very small
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requirements) n, M, b, R, the processor, the time T, and the definition of
 

"feasible" .' 

4.4.1 What is Feasible?
 

For a particular processor to be "feasible" at a partiuldr point in
 

time requires that it meet certain constraints on performance, complexity,
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volume, weight, power, cost, reliability, environment, etc. Each-of the four,
 

system architectures meets the performance constraint since each was designed
 

to accomplish the required task. All four processors use standard integrated
 

circuit technology and meet the data throughput rates by adding more compon­

ents (IC's) in parallel. The volume, weight, and power dissipation of inte­

grated circuits can be kept within limits by simply-keeping the number of
 

integrated circuits within limits. The radiation, temperature, and other
 

environmental constraints can be met by each processor as discussed in
 

Section 2. The limiting factors are cost and reliability which can also be
 

kept within bounds by imposing a constraint on the number of components. -. 

Consequently, we conclude that on-board processing using a particular pro­

cessor is feasible provided we constrain the number of IC's in the processor
 

to a reasonable number.
 

4.4.2 Feasibility Curves
 

In this section we plot the number of IC's as a function of the time T
 

for each of the four processors for each user application described in
 

Section 1.1. Each figure contains two graphs. The first graph is for the
 

maximum data-rate requirements listed in Table 1.1.2(I) and the second graph
 

is for the minimum requirements listed in the same Table. Each curve is
 

labeled with the user application symbol described in Section 1.1 and Table
 

1.1.2(11). The time scale shows launch date and allows for a five year lag
 

between conception and launch. Other time lags can be handled simply by
 

adding or subtracting the appropriate number of years from the time axis.
 

The parts cost of the on-board processor increases linearly as the
 

number of IC's. The costs associated with check out increase as the square
 

of the number of IC's. Limiting the number of IC's in the on-board pro7
 

cessor to about 1000 appears to satisfy all constraints, i.e., cost is
 

reasonable relative to the total systemcost (launch, sensors, telemetry,
 

etc.), reliability is pushing the limits of present day technology as dis­

cussed in Section 3, while volume, weight, and power dissipation do not
 

appear to present -serious difficulties. This is discussed in-greater detail
 

in Section 3.4. A horizontal-line is drawn on each graph at 500 IC's, 1,000
 

IC's (which corresponds to our suggestion for a reasonable (feasible) num­

ber of IC's), and 2,000 IC's.
 

Some applications are feasible in4f980, some are not feasible by 1990,
 

and some become feasible at some time between 1980 and 199 depending on
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the type of processor. For example, some of the applications requiring many
 

spectral bands (e.g., oceanography) are never feasible using the TLU pro­

cessor since the complexity (number of IC!s) goesup exponentially with the
 

number of spectral bands.- The TLU processors can handle 4 or 5 spectral
 

bands at the most.
 

A few of the curves indicate'a fraction of an IC. The reason is that
 

an IC is considered equivalent to a certain number of gates that increases
 

an order of magnitude over the ten year period. A fraction of an IC (log #
 

IC's 0) means that the on-board processing task can be accomplished with
 

fewer gates than available in the "average" IC of that year.
 

If we accept the 1000 IC definition of feasibility, then we can list ­

the year in which each user application first becomes feasible. Table 4.4.3
 

(I) indicates the first year that each processor can accomplish each of the
 

applications listed in Table 1.1.2(I) for the worst case (maximum requird­

ments) situation. The symbol N indicates not on or before 1990. All but
 

one of the maximum requirements can be met on or before 1986, and about half
 

can be met in 1980 by-the HML processor.
 

Table 4,4.3(II) is similar to Table U.4.3(I) except that the minimum
 

requirements for each application were used. The HML processor can meet all
 

but one requirement in 1980 the pPML processor can meet all but one require­

ment by 1990. The HTLU processor can meet most'requirements in 1980, but a
 

few cannot be met by 1990 due to the number of spectral bands.
 

Tables 4.4.3(111) and 4.4.3(IV) are similar to Tables 4.4.3(I) and
 

4.4.3(11) except that 500 IC's was used as the definition of feasible.
 

.Similarly, Tables 4.4.3(V) and 4.4.3(VI) are for the case of 2000 IC's. A
 

factor of 1.58 in the number of IC's corresponds to one year in the date the
 

processor becomes feasible. Multiplying the number of IC's by 1.58 makes the
 

processor feasible one year earlier. Or, stated the other way, waiting one
 

year means the processor can be designed with 1/1.58 = .67 as many IC's.
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Figure 4.4.2(5)A 	Number of IC!s vs. Launch Date to Implement the 1ardware
 
Maximum Likelihood (HML) Processor for the Maximum Data
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Table,4.4.2(V) For Each Application Listed in the First Column; the'Succeed­
ing Columns List.the Year that the.processor Becomes Feasible
 
(2000 *C's) for the-faximum Requirements Listed.in Table
 
1.1:2(l)0" N means Not Feasible-by.1990.
 

Micro-

processor 

Maximum 


Likelihood 

Application (UPML) 


Al 1988 

A2 1988 

A3 1988 

A4 N 

A5 1988 

Cl N 

02 N 
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C4 N' 

C5 N 
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Fl 1985 
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F4 1988 
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G2 1986 
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G5 1989 
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01 1980 
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Table 4.4.2(VI) 	For Each Application Listed Ln the First Column, the Suc­
ceeding Colurns-List the.Year.that the pocessor Becomes
 

Feasibl&.(2000 XC'stfor the Minimum Reqirements Listed in
 
-
Tabl&l.l:2U ): N.meAns Not Feasible by 1990,
 

Micro- Micro­
processor Hardwabe processor Hardware 
Makimum Maximum Table Table 

Likelihood Likelihood ... Look-Up .. - Look-Up 

Application (VIPML) (H14ML) (pPTLU) " (HTLU) 

Al 1984 1980 	 1987 1980
 
A2 1984 1980 	 1987 1980.
 
A3 1984 1980 	 1987 1980
 
A4 1983 1980 	 1985 1980
 
A5 1984 1980 	 1987 1980
 
C1 1985 1980 	 N 1990
 
02 1985 1980 	 N 1990
 
03 1985 1980 	 - N 1990 
C4 1982 1980 	 N 1986
 
C5 1982 1980 	 N 1986
 
C6 1988 1980 	 N" N
 
C7 1980 1980 	 N 1982
 
Fl 1980 1980 	 1983 1980
 
F2 1985 1980 	 1988 1980
 
F3 1986 1980 	 1988 1980
 
F4 1983 1980 	 1986 1980
 
G1 1983 1980 	 1986 1980
 
02 1983' 1980 	 1986 1980
 
G3 1980 1980 	 1983 1980
 
G4 1985 1980 	 1987 1980
 
G5 1985 1980 	 1987 1980
 
Li 1980 1980 	 1980 1980
 
L2 1980 1980 	 1980 1980
 
L3 1980 1980 	 1980 1980
 
L4 1980 1980 	 1980 1980
 
L5 1980 1980 	 1980 1980
 
L6 1980 1980 	 1980 1980
 
HI 1980 1980 	 1980 1980
 

H2 1980 1980 	 1980 1980
 
H3 1980 1980 	 1980 1980
 
H4 1980 1980 	 1980 1980
 
H5 1980 1980 	 1980 1980
 
Ml 1980 1980 	 1980 1980
 
M2 1980 1980 	 1980 1980
 
01 1980 1980 	 1980 -1980
 
02 1980 1980 	 1983 1980
 
03 1980 1980 	 1980 1980
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4.5 POSSIBLE EFFECTS OF NASA STIMULUS TO INDUSTRY
 

Landsat-l and 2 remote-sensing satellites have effectively demonstrated
 

the value of monitoring of the earth's processes and resources. Earth has
 

only a limited ability to support life, and we must continuously determine
 

our effect on the environment. To be effective, this monitoring must be
 

done on a long term basis and, while the rewards will be great, the costs
 

will not be cheap. On-board processing would be very important to reduce
 

the flow of data to the ground stations and consequently reduce the costs.
 

Under practical cost and power considerations, the technology is not here
 

today to build and fly a practical system, although one could be flown to
 

satisfy a few users.
 

It is reasonable'to assume that the technological development of cer­

tain critical components would hasten the application date of a cost-effec­

tive system. NASA funds could be set aside for the development of critical
 

components of the on-board processor. It is the recommendation of this
 

study for NASA not to stimulate industry through increased funding in those
 

areas which are receiving a natural stimulation. As an example, we feel
 

that it would be unwise for NASA to undertake the development of faster
 

memory, logic modules and microprocessor chips for on-board processors.
 

There is already considerable economic pressure on industry to develop these
 

items and improvements in their performance will occur without NASA's aid
 

to industry. This philosophy would allow NASA to spend its resources in
 

areas which receive little stimulus from outside sources and yet are vital
 

to the continuation of NASA programs. The special technologies discussed
 

in Section 3.6 are example of the type of technology which would benefit the
 

greatest through NASA stimulation and support.
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5 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS
 

This section contains an overview of the entire study reported in
 

detail in the preceding sections. Significant results and conclusions are
 

.discussed" and recommendations, for future actions by NASA are presented:
 

Section 5.1 defines the study objectives, gives a description of the
 

tasks, and a description of the significant results of each of the tasks.
 

Section 5.2 describes the overall conclusions resulting from the total
 

study.
 

Section 5.3 contains a number of recommendations to NASA as a result
 

of this study.
 

5.1 SUMMARY
 

In this section we give a brief description of the problem of on-board
 

earth resources data processing. The problem can be subdivided into a number
 

of tasks, some of which are interdependent. The procedure for carrying out
 

each of the tasks and the significant results are discussed.
 

5.1.1 Study Objective
 

Most of the past effort in the field of earth resources data processing
 

has been research oriented. Earth resources- imagery has been pro­

vided by NASA to a number of researchers who have processed the data in various
 

ways in order to determine what, if any, useful information could be extracted
 

from it. These experiments have demonstrated that useful information can in­

deed be extracted from aircraft and satellite multispectral scanner imagery
 

of the earth's surface. Economic studies have indicated potential cost
 

effective systems based on these techniques. Consequently, it is anticipated
 

that during the 1980-1990 decade earth resources satellites will be designed
 

and flown for specific purposes,-i.e., to monitor severe weather systems, to
 

monitor water pollution, to survey and monitor world fopd production, etc.
 

In these applications it may be more cost effective to process the data on­

board the satellite and transmit the data products directly to the users
 

rather than transmit the raw data to a ground processing station for genera­

ting the data products and then distributing the data products to the users
 

via another satellite system.
 

The purpose of this study was to investigate the feasibility of an on­

board earth resources data processor launched during the 1980-1990 time
 

frame. Since about five years are required to design, build, check out, and
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launch such a system, a 1980 system would be based on 1975 technology, and,-a
 

1990system would be based on 1985 technology.
 

In order to determine the feasibility of on-board processing we must
 

first define the on-board processor. This requires that we define
 

both the'technology available for use in the design and the computational
 

requirements required of the processor. The computational requirements .
 

depend on the.- algorithms that the processor must implement which in
 

turn, depend on the data products that must be extracted from the data to
 

satisfy the users. Consequently, in order to determine the feasibility of
 

on-board data processors we must start with a study of projected user appli­

cations to define the data format (data throughput rate, number of spectral
 

bands, etc.) and-the information extraction algorithms the processor must
 

implement. Based on these constraints and the constraints imposed by the
 

available technology we can design some on-board processors and evaluate their
 

feasibility. The study plan is summarized in Figure 5.1.1(1).
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figure 5.1.1(1) Study Plan
 

5.1.2 User Applications Survey
 

A number of studies to define earth resources applications areas, their
 

data requirements, priorities, etc., have recently been completed. The major
 

source and reference documents include:
 

OA - Eaith Resources Programs Summary
 

Results and Projected Applications-ERTS-l Applications and Investi­

gations
 

TERSSE volumes 1 to 8
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Advanced Scanners and Imaging Systems for Earth Resources
 

EOS - Paylord Discussion Group Report
 

EOS - Mission Review Group Report
 

Interplan Cost Benefit Study
 

Dynatrend Cost Benefit Study
 

EARTHSAT Cost Benefit Core Studies
 

From these references and from a number of personal interviews with
 

researchers at a number of government and university laboratories, we deter­

mined eight potential classes of earth resources data users: Agriculture,
 

Coastal-Zone Studies, Forestry, Geography, Geology, Hydrology, Meterology,
 

and Global Oceanography, and a number of subclasses within each of these
 

classes. For each potential user we determined the minimum and the maximum
 

resolution, the minimum and maximum field of coverage, the minimum and maxi­

mum number of spectral bands, and finally, based on these, the minimum and
 

maximum data rate out of the multispectral scanner. These results are tabu­

lated in Table 1.1.2(I). The resolutions range from a minimum of 3 m to a
 

maximum of 10 km. The fields of coverage range from 15-800 km. The number
 

of spectral bands ranges from 1-20 and the resulting data rates range from a
 

minimum of 312 bits/sec to 3470 megabits/sec.
 

Since the data requirements for the various users cover such a wide'range
 

we selected a single candidate data format for the initial effort. This candi­

date data format has a swath width of 185 km, a resolution of 40 m, a satel­

lite ground track velocity of 6500 m/sec, 7 spectral bands, and 6 bits per
 

data word. The resulting data rate from the MSS is 32 megabits/sec. This
 

data rate satisfies all but two of the minimum data rates and about half of
 

the maximum data rates suggested by the users.
 

5.1.3 Data Analysis Algorithm Survey
 

Almost all of the data users surveyed indicated that their objectives
 

could be satisfied using spectral signature analysis. Consequently, a detailed
 

survey was made of algorithms for classifying n-dimensional vectors into one
 

of M categories or classes, where ni.s the number of spectral bands. As a
 

result of this survey it was determined that four algorithms warranted de­

tailed analysis. These are clustering, maximum likelihood, perceptron and
 

table look-up.
 

Clustering is an unsupervised data analysis technique used to determine th
 

natural or inherent data classes in a set of-observations. Many such algorithms
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have been studied. All essentially make a scatter plot of a subset of the
 

data to determine the different groupings within the data. Each group is
 

assigned a label, and all of the data with this label are compared to ground
 

truth to associate each label with one of the classes defined by the data
 

user. After this training is completed, each data point is classified by
 

measuring the distance between it and each of the cluster centers and classi­

fying it according to the nearest cluster.
 

The maximum likelihood algorithm is a statistical proceedure based on
 

the probability density function of the data. For the case of Gaussian data,
 

which is a valid approximation for multispectral imagery of the earth's
 

surface, only first and second order statistics are required. Training is
 

accomplished by measuring these statistics for some data samples from known
 

classes and then assuming that all data from the same class'has these same
 

statistics. Subsequently, data are classified by comparing their statistics
 

to the statistics of each of the classes and deciding in favor of the class
 

they most closely resemble.
 

The perceptron algorithm is based on a set of decision functions which
 

are adjusted by an iterative technique to fit'training data of known class and
 

then used to classify subsequent data.
 

The table look-up algorithm essentially stores in a large table (compu­

ter memory) all possible outcomes of the data and associates with each possible
 

outcome one of the classes.. Training is required to associate one of the
 

'classes with each of the possible values of the input data. Subsequent data
 

are-then classified by using the data point to address the memory to look up
 

the classification.
 

The clustering, maximum likelihood and perceptron algorithms require a
 

significant amount of computation, mainly additions, multiplications and com­

parisons. The table look-up algorithm requires a much smaller amount of 

computation, but significantly more memory.
 

5.1.4 Preprocessing Algorithms
 

The extremely large volume of data generated by the MSS imposes a severe
 

computational burden on the on-board processor. The possibility of using a
 

preprocessor between the sensor and the processor to reduce the bulk of data
 

by using data compression, feature selection, etc.; techniques was studied.
 

Transform coding allows a data bulk reduction by a factor of 2 to 4
 

.for most multispectral data without degrading the data quality.
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The BLOB algorithm developed at Purdue University achieves data bulk
 

reduction by a factor of 10 to 30, but requires more computation and more
 

memory than transform coding.
 

5.l.5 Algorithm Computational Requirements
 

Each of the-data analysis algorithms(clustering, maximum likelihood,
 

perceptron, and table look-up) and the preprocessing algorithms (transform
 

coding, and BLOB coding) were analyzed in detail relative to their computa­

- tional requirements, i.e., the number of additions, multiplications, compari­

sons, etc., required to implement these algorithms along with the requirements
 

imposed by the sequence of operations (,some operations can be done in parallel
 

while others follow a sequence where one operation must be completed before
 

the next can begin). These algorithm computational requirements were tabulated
 

for each of the data analysis and preprocessing algorithms.
 

Using a preprocessor to reduce the load on the processor is not a lucra­

tive alternative. Even though the preprocessor can reduce the data load by a
 

factor from 2 to 30 and thus reduce the complexity of the data processor by
 

this amount, the total system complexity is not reduced because the savings
 

in processor complexity are more than overwhelmed by the increase in the pre­

processor complexity.
 

It was further determined that the perceptron and clustering algorithms
 

require a more complex processor than the maximum likelihood and table
 

look-up algorithms for all user requirements. Consequently, we concluded
 

that only the maximum likelihood and table look-up algorithms are worthy of
 

further consideration.
 

5.1.6 Technology Forecast and Assessment
 

A detailed survey of 1975 component technologies was completed. A
 

number of 1975 microelectronics technology families are listed in Table 3.2.1(I).
 

The speeds, power, size, cost, reliability, etc., of each are tabulated.
 

Component technology was also projected from 1975 to 1985 using esti­

mates obtained from component manufacturers and other experts in the field.
 

The major conclusions are that some parameters associated with microelectronic
 

component technology are changing at rates between 1 or 2 orders of magnitude
 

every 10 years, with the result that overall component performance is changing
 

by several orders of magnitude every 10 years. In particular, the number of
 

components (gates, transistors, etc.) per chip increased by a factor of 10 

between 1965 and 1975 and is expected to increase by another factor of 10
 

between 1975 and 1985. In addition, propagation delays decreased by one order
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of magnitude between 1975 and 1985, and are expected to decrease by another
 

order of magnitude between 1985 and 1995. With the equivalent number of gates
 

in an IC chip increasing by-a factor of 10 and the processing speed increasing
 

by a factor of 10, the total number of computations per unit time Ccomputational
 

power) increases by a factor of 100.
 

Projections for computer'system technology resulted in similar estimates,
 

i.e., microcomputer cycle times; add times, etc., are projected to decrease
 

by one order of magnitude during the next 10 years as they have for the past
 

10 years. The number of bits of memory contained in a given area on an IC
 

chip are likewise projected to increase by an order of magnitude over the next
 

10 years as they have over the past 10 years. Meanwhile, the size and power
 

dissipation, per IC chip is expected to stay constant while the number of pins
 

per package which increased by a factor of four between 1965 and 1975 is
 

expected to increase by only a factor of two between 1975 and 1985.
 

We also developed a computer model that uses input data from past years
 

to predict future values of these parameters. These computer generated projec­

tions are in close agreement to the predictions made by experts from the
 

microelectronics industry.
 

5.1.7 On-Board Processor Designs
 

A number of on-board processors capable of implementing the maximum
 

likelihood and table look-up algorithms for the candidate input data format
 

were designed. In order to operate in real time at the 32 megabit/sec data
 

rate the designs are based on multiprocessor concepts using pipeline and
 

parallel arrays of subprocessors. Sufficient subsystems were added in parallel
 

to obtain the 32 megabit/sec throughput.
 

Two different design approaches were investigated in detail. One is a
 

hardware approach consisting of logic circuits designed to effi­

ciently implement the mathematical operations required by the algorithms.
 

One special purpose hardware design was done to implement the maximum likeli­

hood algorithm and another special purpose hardware design was designed to
 

implement the table look-up algorithm.
 

The second design approach uses microprocessors which allows a number of
 

different computations to be done with the same hardware under software con­

trol. Programs for implementing all of the computations were written in order
 

to determine the number of instruction cycles required to implement the
 

algorithm. This established the throughput data rate and, consequently, the
 

187
 



-number of parallel subsystems required to handle the 32 megabit/sec rate.' 

Applying both of these design approaches to both algorithms resulted in
 

four system designs. Hardware maximum likelihood (HML), hardware table look­

up (HTLU), microprocessor maximum likelihood (iPML) and microprocessor table
 

look-up (pPTLU)., For each of these designs the number of IC's, power, volume,
 

weight, and cost were determined based on 1975 technology.
 

Because microprocessors are significantly slower than TTL circuits the
 

hardware approaches require fewer IC's, less power and volume, and cost less
 

than the microprocessor designs.
 

5.1.8 Feasibility Trade-Off and Sensitivity Analysis
 

Each of the processor designs handle the 32 megabit input rate by distri­

buting the processing load between many similar subprocessors. Consequently,
 

the number of IC's, power, weight, volume; and cost are all essentially pro­

portional to the number of subprocessors. Therefore, we defined a system
 

complexity function for each of the four processors and determined its de­

pendence on the following parameters using 1975 technology:
 

R data bit rate (bits/sec) 

n number~.of spectral bands (channels) 

b number of bits per resolution element per spectral band (bits) 

M number of classes 

r pixel rate (resolution elements/sec) 

From the results-of the component and system technology forecasts we.further
 

took into account the complexity function dependence on time for 10 years into
 

the future. The resulting complexity functions are listed in Table 5.1.8(I)
 

Table 5.1.8(I) Processor Complexity Functions 

Processor Complexity Function 

microprocessor maximum likelihood (IPML) P1 = k M(n+l) R(l.5)T 
-


hardware maximum likelihood (HML) P2 = k2 M(n+l) Rl.5) T
 

= k3 M R (I.6 )nb (1 .5 )-T
microprocessor table look-up (IIPTLU) P3 


= k4 M R (i.6 )nb (1.5)-T
hardware table look-up (HTLU) P4 


The scale factors k 2,
k2, k3, and k4 were determined for each performance
 

measure (number of IC's, power, volume, weight and cost) and are listed in
 

Table 4.3.3(11).
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These models for the four design approaches were then used to determine 

the sensitivity of the complexity to the various system parameters. This was 

accomplished setting all system parameters to their baseline values n = 4, 

M = 12, b = 6,R = 32 x 10 6 , and T = 0 (the candidate baseline format) except 

for one or more parameters which were then varied from their baseline values. 

Figures 4.4(l), 4.4(2) and 4.4(3) show the sensitivity of the designs to
 

variations in the data throughput rate R, the time T, the number of bits per
 

data word b and the number of spectral bands n.
 

Any feasibility analysis depends on the definition of feasible. For a
 

particular processor to be "feasible" at a particular point in time requires
 

that it meet certain constraints on performance, complexity, volume, weight,
 

power, cost, reliability, environment, etc. Each of the four system archi­

tectures meets the performance constraint since each was designed to accom­

plish the required task. All four processors use standard integrated circuit
 

technology and meet the data throughput rates by adding more components (IC's)
 

in parallel. The volume, weight, and power dissipation of integrated circuits
 

can be kept within limits by simply keeping the number of integrated circuits
 

within limits. The radiation, temperature, and other environmental constraints
 

can be met by each processor as discussed in Section 2. The limiting factors.
 

are cost and reliability which can also be kept within bounds by imposing a
 

constraint on the number of components. Consequently, we conclude that on­

board processing using a particular processor is feasible provided we constrain
 

the number of IC's in the processor to a reasonable number.
 

The parts cost of the on-board processor increases linearly as the number
 

of IC's. The costs associated with check out increase as the square of the
 

number of IC's. Limiting the number of IC's in the on-board processor to
 

about 1000 appears to satisfy all constraints, i.e., cost is reasonable rela­

tive to the total system cost (launch, sensors, telemetry, etc.), reliability
 

is-'pushing the limits of present day technology as discussed in Section 3,
 

while volume, weight, and power dissipation do not appear to present serious
 

difficulties. Figures 4.4.3(l) through 4.4.3(12) show the number of IC packages
 

required to implement each of the four hardware designs as a function of time
 

from 1980-1990.
 

If we accept the 1000 IC definition of feasibility, then we can list
 

the year in which each user application first becomes feasible for each design
 

approach. These results asre summarized in Table 4.4.3(l) and 4.4.3(2). Sum­

mary tables corresponding to other definitions of feasibility could easily be
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generated from Figures 4.4.3(1) through 4.4.3(12). These results are sum­

marized in more compact form in Figures 5.1.8(1) through 5.1.8(3), which
 

show the percentages of user applications that can be implemented by each of
 

the four design approaches for both the minimum and the maximum user require­

.-merits.
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5.2,-CONCLUSIONS
 

Conclusions of this study are:
 

(1) 	From results of the user applications survey we conclude
 

that potential users will require a wide range of resolutions,
 

a wide range of field of coverage, a wide range of number of
 

channels, and these in turn result in a wide range of data
 

throughput rates.
 

(2) 	From the results of the survey of data analysis algorithms
 

we conclude that the maximum likelihood and table look-up
 

algorithms are superior to other known algorithms for all
 

user requirements. The table look-up algorithm is superior to
 

the maximum likelihood algorithm, except for situations re­

quiring more than five spectral bands;,
 

(3) 	From the results of the investigation of the possibility of
 

using a preprocessor to reduce the data load on the processor,
 

we conclude that the total on-board system complexity is mini­

mized with no preprocessor;
 

(4) 	From the results of the component and computer system tech­

nology forecasts and assessment, we conclude that the on­

board processor capability (the amount of throughput it will
 

be able to handle) will increase by two orders of magnitude
 

between 1975 and 1985.
 

(5) 	From the on-board processor designs and evaluations we conclude
 

that implementations utilizing specially designed hardware
 

require less hardware, power, volume, weight,'and cost less
 

than microprocessor (software) based systems.
 

(6) 	From the feasibility and sensitivity analysis, we conclude
 

that most but not all user applications could be satisfied by
 

an on-board processor sometime between 1980 and 1990.
 

5.3 	 RECOMMENDATIONS
 

5.3.1 Handling the On-Board Processor Output Data Products
 

While this study was directed towards determining the feasibility of
 

on-board processors for the 1980-1990 time frame, the question remains as to
 

how the output of an on-board processor could be treated. Now that this
 

study has established the feasibility of on-board processing, the problem of
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compressing and distributing the on-board computer output needs to be
 

addressed. It is recommended that a study be made to investigate the uses
 

of on-board processor output with particular attention paid to data rates
 

and formats.
 

5.3.2 	Dates for Cost-Effective Launches
 

Our study concludes that some users could be satisfied with a processor
 

designed today and flown in 1980. Other users cannot be satisfied until
 

1990 and beyond. These conclusions are based on,technical feasibility and
 

do not address the question of economics. It is recommended, therefore,
 

that a study be made to establish a projected time frame for the launch of
 

cost-effective earth resources missions.
 

'5.3.3 Stimulation of Industry
 

Finally, it is recommended that no stimulus be given to industry to
 

develop large-scale integration (LSI) technology for on-board earth re­

sources processors. It is recommended instead that the resources be used to
 

encourage the solution of problems peculiar to NASA which do not have a
 

parallel in industry, such as improvements in multi-spectral scanners and
 

special techniques such as parallel processing. While this philosophy may
 

he contrary to NASA's "spin-off" philosophy, stilulii from other sources
 

are already present in the LSI field and further stimulus by NASA would
 

have little effect and would be wasteful of NASA resources.
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