
DESIGN AND IMPLEMENTATION OF A MEDIUM SPEED COMMUNICATIONS

INTERFACE AND PROTOCOL FOR A LOW COST, REFRESHED DISPLAY COMPUTER

By James R. Rhyne and Mart D. Nelson

The University of Houston
Department of Computer Science

INTRODUCTION

Refreshed displays have several advantages over storage tube displays, but
the primary advantage is the ability to selectively delete or alter portions of
a display without having to re-draw the entire display [1]*. When such displays
are used in conjunction with a large scale computer system, interaction with a
computer program has new dimension of ease and flexibility. Because such dis-
plays must re-draw the entire picture several times each second to prevent it
from flickering or fading from view, quite a bit of processor power can be tied
up in the task of keeping the picture visible.

Some displays have a special processor, called a display processor, which
refreshes the picture on the screen at regular intervals, thus removing a sub-
stantial processing load from the large scale computer system. It is possible
to buy a display system with a built-in display processor for under $20,000,
and recent advances in LSI technology indicate that more such display systems
will be available in the future. Most of these low cost displays have been
used either as stand-alone systems or have been connected with a large scale
computer system by low speed, asynchronous communication lines.

DESIGN CRITERIA

We were curious to see what difficulties and benefits would result from
using a 40,000 bit/second communication line as the connecting link between an
IMLAC PDS 1-D display computer [2] owned by the Department of Computer
Science and the University of Houston's Univac 1108 computer system. The
obvious benefit is a relatively high speed for data transfers between the 1108
and the IMLAC which permits rapidly changing displays. The main difficulty lies
in designing a hardware and software interface which would meet the design cri-
terion of 40,000 bit/second communication without being expensive. This paper
describes the hardware and software system which resulted.

Figure 1 shows a block diagram of the IMLAC. It consists of two inde-
pendent processors which share a common memory. The display processor generates
the deflection ana beam control currents as it interprets a program contained
in the memory; the minicomputer has a general instruction set and is responsible

Numbers in brackets indicate references.

521

for starting and stopping the display processor and for communicating with the
outside world through the keyboard, teletype, light pen, and communication line.

We began the investigation with a study of the feasibility of communicating
at the design goal rate of 40,000 bits/sec. The hardware of both the IMLAC and
the Univac 1108 were capable of operating at this speed, but it was not clear
that the IMLAC software could handle data coming in at the projected rate. The
IMLAC minicomputer has a very limited set of operations; for example, in a
single instruction, the accumulator can be shifted only one, two or three bit
positions. We identified various design questions which would have to be
answered and resolved to answer them all in a manner which would involve the
least IMLAC processing time.

We found that we could not guarantee that an overspeed condition at the
IMLAC would never take place; certain programming techniques cause the display
processor, which has priority in memory access over the minicomputer, to lock
the minicomputer from accessing memory over extended periods of time. The
communications protocol would have to be capable of detecting and correcting
loss of data due to overspeed, as the hardware has no means for detecting loss
of data. Furthermore, communication links are subject to occasional error and
failure, and loss of data on account of these error conditions must also be
corrected.

There are two general techniques for error detection and correction in
communications links: the message in error may be re-sent, or enough redun-
dancy may be supplied in the message to allow the errors to be corrected after
receipt. The second of these alternatives was rejected because error-correct-
ing codes involve a loss of effective transmission speed due to redundancy, and
they require a great deal of processing of the message as it is received. We
expected a very low error rate so that the alternative of re-sending messages
found to be in error is plausible, and it has the advantage of requiring only
minimal processing of the received message.

One typical data transmission technique uses vertical and horizontal parity
bits to detect loss of data. The data is sent as seven bits out of eight, with
the eighth bit containing the parity of the other seven. . We expected that loss
of data due to overspeed would occur much more frequently than loss of one or
more bits through a transmission error. In an overspeed condition, the vertical
parity bit appended as the eighth bit of each group of seven data bits serves no
useful function because the entire group of eight bits is lost.

Furthermore, the IMLAC memory is composed of sixteen bit words, and three
groups of seven data bits would be required to completely fill a memory word,
with five bits of the final group being ignored. The effective transmission
rate would then be 67% of the actual transmission rate. The other alternative,
of sending 16 groups of seven bits which would exactly fill seven sixteen bit
words,was rejected as requiring too much processor time in the minicomputer,
especially in view of the limited range of shift instructions noted previously.

Therefore, it was decided that the data would be sent as an eight out of
eight bit code, requiring two groups of data bits to fill each IMLAC word.
Error checking would be accomplished by using a function which computed a check-

522

sum for the entire message and appended this checksum to the end of the message.
This led to another problem, which is that most communication protocols make
use of special codes which signal the beginning and end of messages; in partic-
ular, one special code, a synchronization character, is necessary for the hard-
ware to correctly reassemble the serial bit stream into groups of eight bits.
If all eight bits of the code are used for data, then these special characters
can be found in the message on occasion, and this must not disrupt the communi-
cations protocol.

There are currently two proposed standards for communication protocols
which use an eight out of eight bit code: the DDCMP protocol developed by the
Digital Equipment Corporation [3] and the SDLC protocol proposed by IBM [4].
The SDLC protocol was rejected because it would have required the construction
of a special interface which eliminates certain sequences of bits by insertion
of a single 1-bit as the message is transmitted and deleting these inserted
bits as the message is received. The DDCMP protocol could be implemented with-
out hardware changes to either the Univac 1108 or the IMLAC.

In the DDCMP protocol, messages are of two types: protocol and data.
Each data message is divided into two parts: a fixed length header which con-
tains the length of the second part of the message and other error detection
and synchronization information, and the body of the message which is variable
in length and which follows the header. Both parts of the data message have
error check codes appended to them, so that the length can be checked for error
prior to receipt of the body of the message. And, since the length of the body
of the message is known before the message body is received, there is no need
for a special end-of-message character.

Two fields in the header of a data message indicate the sequence number of
the data message and the sequence number of the last message correctly received
by the sending station. Loss of an entire message can be detected by finding a
message which has a sequence number two or more greater than the number of the
last message correctly received. The second sequence number field tells the
receiving station what messages have so far been correctly received by the send-
ing station and thus eliminates the need for a special message which acknow-
ledges the receipt of each message (the acknowledge, or ACK, message).

The main use of the protocol message, which has a fixed length that is the
same as the data message header, is to notify the sending station that a mess-
age was received which is in error and to cause the sending station to re-send
the data message. If station A sends a data message with sequence number 15 to
station B, and B does not receive the data message correctly (i.e. the computed
check data is not the same as the check data appended to the message), then B
sends a negative acknowledge (NAK) protocol message to A which contains the
sequence number 14. Station A, upon receiving the NAK message from B, immedi-
ately re-sends all messages having a sequence number greater than 14. Other
protocol messages correct sequence number synchronization errors and allow for
initial startup of the communications link.

The DDCMP protocol has two disadvantages which we felt should be corrected
for our application: one, it is designed to be used with input and output

523

buffering techniques and although the Univac would have no difficulty in
managing input and output buffers, we doubted that the IMLAC would have suffi-
cient processing power for this task; and, two, the DDCMP protocol uses a CRC-
16 polynomial to generate the error check code. The CRC-16 check polynomial
computation involves a shift and an addition operation for each bit of the data
message, and it was clear to us that the IMLAC would not be able to compute
this polynomial at the target data transmission rate.

The first disadvantage was overcome by making the Univac 1108 responsible
for buffer management in the IMLAC; this implies that the Univac must know where
each message is to be stored in the IMLAC memory and that it must specify the
IMLAC memory address for each message sent to the IMLAC as a part of the message.
The memory address was incorporated in the header part of data messages by
extending the size of the header by two bytes. The check code for the header
thus verifies the correctness of both the message length and the message
address. The IMLAC message processor software is given the message length and
the memory address at which the message should be placed before the body of the
message is received; as the body of the message is received it is placed direct-
ly into the predetermined locations in the memory. A data message coming from
the IMLAC to the Univac 1108 contains the starting address of the message body
in the IMLAC memory, so that the Univac can be aware of where the message orig-
inated in the memory of the IMLAC.

We also decided on a sixteen bit sum function with end-around carry as the
appropriate choice for an error check code generating function. This function
is reasonably simple to compute and is secure enough for our environment.

IMPLEMENTATION

Having made these design decisions, the software for the IMLAC was designed
for our modified version of the DDCMP protocol. Some timing computations were
made assuming that the display processor would be running continuously in incre-
ment mode; in this mode, it steals every other memory cycle and slows the mini-
computer to half its normal operating speed. At the target data rate of 40,000
bits per second, the IMLAC would be being interrupted 5,000 times per second to
process eight bit data groups, giving 200 microseconds as the maximum time to
process each data byte. The effective rate for memory cycles for the minicom-
puter is one cycle every 3.6 microseconds, allowing a maximum of 55 memory
cycles for the processing of data interrupts for both input and output.

We minimized the processing time associated with each data byte by design-
ing the input and output processes as finite state machines which automatically
sequence from each state to the next state. This design was especially easy to
implement on the IMLAC because of certain memory locations which are automati-
cally incremented each time they are referenced. These indexing memory locations
address a table of jump instructions which allow the proper processing routine
to be entered in only three memory cycles.

The interrupt processing routine places interrupts from the communica-
tions interface as the highest priority, with light pen, keyboard, asynchronous

524

communications interface, and display refresh interrupts at a lower priority
level. After carefully coding each process for message receipt and transmission,
we were able to verify that messages could be sent at full speed over both lines
of the communication link without overspeed. Less than ten percent of the pro-
cessor is available for handling other interrupt conditions when this is occur-
ring, so the display may flicker slightly under these worst case conditions.

The format for the revised DDCMP protocol is shown in the appendix and
Figures 2 and 3 show the state diagrams for the input and output processes
respectively.

Having established the feasibility of communication at the target rate, we
investigated various means of connecting the IMLAC to the Univac. Modems which
can send data at 40,000 bits per second are quite expensive, so we decided to
hard wire the IMLAC to the Univac. One of us (Nelson) designed and built a
clock source and we acquired 200 feet of special, low capacitance, computer
grade cable. Anticipating that some applications might be able to tolerate a
lower data rate on the IMLAC to Univac side of the communications link in return
for additional interrupt processing power in the IMLAC minicomputer, the clock
source was made so that the transmission rates could be set by means of switches
which give a range of speeds from 75 bits per second to 40,000 bits per second.
After some difficulties with the Univac hardware, the hardware connection was
made operational in February, 1975.

Since that time, we have run several tests of the communication link and the
IMLAC software; in one test, a block of known data was circulated between the
Univac and the IMLAC for over an hour at 40,000 bits per second without error;
so we feel that the hardware connection is quite stable and error free.

A realtime communications handler was developed for the Univac 1108 so
that it could send and receive messages over the communications link to the
IMLAC. Under EXEC-8, communications handlers must be realtime programs and they
are never swapped from memory. It is not feasible to have a large program
locked into memory, as this would very seriously degrade the performance of the
system. The 1108 software was designed so that only the handler program, which
is about 4K words, needs to be locked into memory; the user program which creates
display files runs as a regular conversational program and may be swapped.

EXEC-8 did not provide a mechanism which would allow the communication
handler to pass messages to the user program and vice versa. Only an extremely
small number of operating systems provide such a mechanism to the general user.
We determined that two approaches to implementing a message passing facility
were possible: an executive routine could.be written to allow one program to
send another program a message, or the two programs could share a common area of
memory. The former method was felt to be less desirable than the latter because
it would require implementation of a new executive function, with the attendant
system maintenance difficulties, and because it would have required a substantial-
enlargement of the resident executive part of EXEC-8.

The implementation of the message passing facility proved to be an interest-
ing exercise in design. Message traffic in one direction can be visualized as a

525

two stage producer/consumer problem. One program places a message in the common
area and then notifies the other program via a semaphore that a message is avail-
able. The other program becomes eligible for processor time and eventually
removes the message from the common area. Since messages are passed in both
directions simultaneously, four activities are required to transfer messages.

If one thinks of each activity as a message pump, then it is immediately
apparent that each activity has the same function as the other activities, dif-
fering only in the location from which it obtains its input and to which it sends
its output. Figure 4 illustrates this. With this in mind, we designed the pump
program as a general, re-entrant routine, and it is located in the common area
where it is executed by all four activities simultaneously.

The software and communications link has been functioning for over three
months now, and we have been able to successfully demonstrate simple animations
of stick figures. The animations are created by the 1108 and demonstrate the
ability of the 1108 to rapidly alter a display program running in the IMLAC via
the high speed communications link.

All of the difficulties which we have encountered thus far have been with
the Univac software and hardware. In the message passing facility, we have
uncovered what is apparently a design flaw in EXEC-8 that causes occasional
system crashes, and we expect that the Univac personnel who have been helping
us will have this problem fixed shortly.

The next stage in the development of the graphics subsystem will result in
an increase in hardware sophistication and in the implementation of a display
file compiler that is designed for implantation in the FORTRAN and COBOL
libraries, and in special versions of the LISP, APL, and BASIC interpreters.
The hardware development will place the communications protocol handler in an
outboard microprocessor which will transfer data to and from the IMLAC memory
directly, thus freeing the minicomputer in the IMLAC of the burden of commu-
nications processing and facilitating the response of the IMLAC to the light
pen and other devices (Figure 5).

ACKNOWLEDGEMENTS

The authors wish to acknowledge the support of this project by The Energy
Institute of The University of Houston, and by the Computing Center of the
University of Houston. The development of further software and applications is
being supported by the National Science Foundation, Grant number, DCR 74-17282.

526

REFERENCES

1. Newman, William M., and Sproull, Robert F., Principles of Interactive
Computer Graphics. McGraw-Hill, 1973.

2. IMLAC Corporation "IMLAC PDS-1D Programming Guide," 1973.

3. Wecker, Stuart "A Message-Oriented Protocol for Interprocessor
Communication," Digital Equipment Corporation, May 1974.

4. IBM Corporation "IBM Synchronous Data Link Control General Information,"
Form Number GA27-3093-0, March 1974.

527

APPENDIX

PROTOCOL MESSAGE DESCRIPTIONS

Data Message Description and Format

The elements in a data transmission are as follows:

SOM, device address, flags and count, response, message number, memory
address, check 1, data, check 2

Note: Preceding the SOM character, sync words are transmitted
(octal word 026). These characters cause the receiving port
hardware to synchronize to the incoming data so that each
successive 8-bit word will be correctly received.

SOM - the Start Of Message character (8-bits). This, or DLE, must
be the first non-sync character to insure that the receiving
port has not started due to a false sync word.

device - the 8-bit quantity used to specify which device a message is
address for in a multi-device system

flags and - the 16-bit quantity containing a 13-bit count of the number of
count 16-bit words in data and three bits used as control flags, if

required

response - the response from a device giving the number of the last
received error-free message

message - the number (in modulo 256) which is assigned consecutively to
number each transmitted message

memory - the 16-bit address in PDS-1 memory at which the received
address message storage is to begin or from which a transmitted message

reading began

check 1 - the 16-bit checksum of the message header formed by adding
each successive 16 bits with end-around carry

data - the 16-bit data elements, the number of which was specified in
flags and count

check 2 - the 16-bit checksum of the data elements

Non-data or Protocol Message Descriptions and Formats

Protocol messages are header-only messages which are used for system control
and error recovery. The three types of messages are: (1) message acknowledge-
ment or ACK, (2) erroneous message acknowledgement or NAK, and (3) a general pur-
pose message or MES.

The elements of an ACK message are as follows:
DLE - the Data Link Escape character. This indicates that a header-

only message follows.

ACK type - identification of an ACK message

528

fill 1 - 8-bit fill word

fill 2 - 16-bit fill word

check - message check word

The elements of a NAK message are as follows:

DLE, device address, NAK type, error, response, message number, fill 2
check

NAK type - identification of NAK message

error - the type of error found, if required

The elements of a MES message are as follows:

DLE, device address, MES type, message, response, message number, fill 2
check

MES type - identification of MES message

message - 8-bit field conveying the required message

529

fT
Asynchronous
output
control

Asynchronous
input
control

i i
i i

Synchronous
output
control

Synchronous
input
control

1 1 1

ElA DATA

Keyboard
control

i
Modified
ASCII
keyboard

General Purpose Processor

A
I
i

Interrupt
Control

8K Word Memory
16 bit word size

Display processor

Light
Pen

Display
halt &
40Hz
sync

Information
flow

»
Control
flow

Figure 1.- IMLAC PDS-1D organization.

530

sync word
received

SOM received

first byte of
message length
eceived

device address
eived X

4

second byte of
message length
received

response byte message number byte
received

second byte of message check
word received and error detected

first byte of second byte of
message check
.word received

message address
.received

first byte
of message
address
received

second byte of message
check word received
and no errors detected

first byte of
message word
received

'second byte of
message word
received (not
last word)

second byte of
last message
\word received

second byte of message check word
received and error check made

first byte
of message
check word
received

Figure 2.- Receive state transition diagram.

531

oSend SYN Send SYN

Send SYN

Send SOM Send SYN

Send Device Address

O
Send first
length byte

•0-
Send Second
length byte

Send first memory
address byte

Send
response
number

Send message
number

•0

^ Send second memory
address byte

Send first
checksum byte

113 J — X 14

Send second
checksum byte

Send second
checksum byte

Figure 3.- Send state transition diagram.

532

HANDLER
REGION

COMMON
REGION

USER
REGION

Communications ^
Handler /*

~̂

pui

pui

»p% *pu:

'P «N |T
pu:

Program

JPĴ

Figure 4.- Interprocess communication scheme,

1108
Synchronous Link

DMA
Link

IMLAC
Memory

Figure 5.- Proposed data link hardware.

533

