
MESH GENERATION FOR TWO-DIMENSIONAL REGIONS USING THE TEKTRONIX

DVST (DIRECT VIEW STORAGE TUBE) GRAPHICS TERMINAL

Verlan K. Gabrielson

Sandia Laboratories, Livermore

ABSTRACT

This paper describes the code DVMESH and the use of the Tektronix
DVST graphics terminal for applications of preparing mesh data for use
in various two-dimensional axisymmetric finite element stress analysis
and heat transfer codes.

/

INTRODUCTION

The use of direct view storage tube (DVST) terminals, such as the
Tektronix U002A and tol4-l,. for various graphics and interactive applica-
tions has expanded greatly during the past few years. This is due to their
relatively low cost and their adaptability to the terminal networks used
on most computer systems.

At Sandia Laboratories, Livermore (SLL), the DVST terminals are being
distributed throughout the laboratory. These terminals are interfaced
to a Control Data Corporation 6600 computer and are accessed via CDC's
Intercom software system. The accessibility, ease of use, and adequate
display area of the terminals make this graphic system effective for
interactive applications which do not require large data bases or high
rates of data transfer. (This does not imply that such applications
cannot be implemented, but they increase the time between interactive
responses. The time the user waits for a response is a primary considera-
tion in any interactive application and becomes more sensitive in a
system like SLL's since the data and programs are processed and stored
on a host computer which is servicing a large number of users.)

To support this expansion of graphics facilities, a number of
programs have been coded to evaluate applications for which interactive
graphics can be used most effectively. The DVMESH code uses the DVST
terminal to prepare mesh data for various finite element stress analysis
and heat transfer codes. The project was designed to evaluate techniques,
attributes, and limitations of the DVST terminal for this type of appli-
cation.

587



The need is quite real; designing finite element models is normally
one of the more time-consuming tasks of the structural engineer. The
task of designing the proper mesh for an analysis is quite dependent on
having an adequate pictorial display of the mesh. Thus design time
depends on the speed with which graphic displays can be created, changed,
and verified. For this reason, a mesh code designed around the capa-
bilities of the terminal for problems requiring a lot of graphics veri-
fication should become a very useful tool for the structural engineer.

The design parameters and goals of the DVMESH code have been to:

(a) Make it applicable to two-dimensional regions

(b) Allow its input data to come from various sources

(c) Implement available interactive features of the DVST, with special
emphasis on data sets entered at the terminal keyboard

(d) Design a standard output data set which will allow the mesh to
be designed in modules

(e) Design for approximately 25,000 words of memory

(f) Provide necessary intermediate files in order to recover after
abnormal or normal interruptions

The following sections describe the Tektronix terminals, details of
DVMESH and its implementation on a sample problem, and some general
comments concerning the DVST terminal for this type of application.

THE TEKTRONIX TERMINAL

The DVST terminals use the CDC Intercom software system which
resides on the CDC 6600. Applications programs are written in FORTRAN,
using system subroutines for displaying text, constructing line vectors,
and initiating the cross-hair cursor. The display screen is a write-only
display which can be refreshed only by erasing the entire screen.

The U002A terminal being used has a display screen of 1024 (X) by
780 (Y) viewable points and space for thirty-nine lines of alphanumeric
text. The terminal has a standard keyboard and an interactively driven
cross-hair cursor. These features can be seen in Figure 1.

Features of the system which are attributes in graphics applications
are:

(a) An easy-to-use keyboard in which all entries are displayed in a
scratch area on the screen for verification of the line of data
as it is being keyed.

588



(b) Hard copy prints of any display are easily obtainable.

(c) Using the Intercom system as the interface between the terminal
and the computer allows the user to communicate directly with the
SCOPE operating system on the 6600. This provides access to the
mass storage devices on the 6600 and permits the use of the UPDATE
and file processing programs, plus the Intercom text editor program.

Features which are limitations in graphics applications are:

(a) A minimum of interactive hardware is provided. All displays have
to be designed by the program residing on the host computer. Such
features as windowing, rotation, etc., are done by the user's
program.

(b) The system cannot permit a selective erase. Thus more effort is
required in programming the displays for prompting messages, data
verification, and modifications to subregions of the display.

(c) In effective interactive processing the wait time between operations
should be minimized. This time depends on the rate of data transfer
and the size of the data buffer. With the Intercom system, it also
becomes a function of the number of users on the network and the
workload on the 6600.

The DVMESH code was designed and implemented on the above system,
but recent deliveries of l*OlU-l displays with their ̂ 906 (X) by 3120 (Y)
viewable points and up to sixty-four alphanumeric line capability will
enhance the capabilities of the program. In addition, the PLOT-10
software package available from Tektronix will be implemented on the
system.

THE DVMESH CODE

The DVMESH code applies to two-dimensional regions. These regions
may have irregular boundaries, material interfaces, voids, etc. The
ability to create an adequate mesh over the regions depends on the user's
skill in using the functions available in DVMESH, and the restrictions
imposed by the stress analysis or heat transfer code for which the data
is being pjjjpared. In all of these codes the meshing problem is similar
to those described in the survey paper on mesh generation (reference l).

A space is subdivided into quadrilateral elements consistent with
the needs of the problem and the type of analysis. The mesh data required
are the coordinates of the nodes defining the corners of the quadri-
lateral element. The DVMESH code is designed to produce mesh data for
finite element codes which require that all the nodes be mapped onto
a unit grid, such that each node can be identified by an integer pair
(i» «J) denoting specific rows and columns in the grid. Figures 2

589



and 3 illustrate this mapping. This procedure, which is common in
many finite element codes and creates difficult problems in meshing
irregular regions, defines the connectivity of the mesh and simplifies
the problem of matrix storage and boundary definitions. For this type
of application, in which data preparation and graphics verification are
very time-consuming, the interactive capabilities of the DVMESH code have
been quite useful.

DVMESH interactive capability is implemented in three phases:
input boundary definition, mesh development, and output generation.
The following sections give a brief description of each phase. The code
uses only the hardware features of the keyboard and cross-hair cursors.
"Functions" in the following descriptions refer to programmed routines
in the DVMESH code which can be used by entering special keywords at
the terminal.

INPUT BOUNDARY DEFINITIONS

The input data set consists of coordinates of points, line segments,
and circular arcs which define the basic boundaries of the regions to be
meshed. An illustration of a sample data set is shown with the sample
problem. Four input options have been implemented, providing considerable
flexibility to the user for data preparation. The options include:

(1) Data sets entered at the terminal

(2) Punched card records stored on disk file

(3) Data sets generated by digitizers

(k) Data sets extracted from large data bases generated by the APT
(automatic programming tool) processor used for automatic drafting
purposes

The input data records are identified by line numbers and can be
displayed and edited by entering functions at the terminal with the line
identifiers. These functions, which are used in an interactive mode,
include inserting, changing, and deleting specified lines in the input
data set and displaying selected data sets.

A graphics display of the boundary data set can be obtained at any
time during input; this provides a means to verify, correct errors, and
make adjustments to the data at the terminal. The user iterates on
these operations until the boundary data set is properly defined.
Functions used in the interactive mode include plotting the data within
given min-max values and "windowing" by contracting or expanding the
plot about a point which is identified with the cross-hair cursors.

590



MESH DEVELOPMENT

The meshing algorithm is quite simple. The mesh is designed as
a rectangular array of quadrilateral elements having (m) rows and (n)
pointing. Each node of an element is uniquely identified by an integer
pair (i, J) representing its row-column location in the grid, and the
coordinates of the nodes are stored at equivalent locations in their
respective arrays. The user defines the nodes at selected locations on
the boundary data shown on the display by use of a special function and
assigns to each its (i, j) location. The entire mesh can be defined by
the user, but normally only a minimum set of nodes need be identified.
All nodes not defined by the user are computed by linear interpolation
along each row or column. This is illustrated in the sample problem.

INTERACTIVE PROCEDURE

When the meshing code is initiated, the boundary data set which
exists within the current min-max values is displayed and the maximum
size of the mesh arrays for the given problem is entered at the terminal
by the user. The user proceeds by defining nodes on the perimeter of
the boundary data. When a sufficient number have been defined, a mesh
is constructed within the defined nodes. By observing the mesh the
user proceeds by selecting the necessary functions to accomplish various
tasks. The result of each function is displayed and a mesh can be
reconstructed at any step in the process. This interactive procedure
is continued until a satisfactory mesh is developed over the given
boundary data set.

THE PICK FUNCTION

The basic meshing function is PICK, which is used to define node
locations by use of the cross-hair cursor. This function, entered at
the keyboard by the user, displays the cross-hair which can be inter-
actively moved to any location on the display. The cursor is turned
off by a keyboard interaction. When the cursor is turned off, the user
records the node's location in the mesh by entering at the terminal its
(i, j) coordinates. Following this entry, an X is displayed at the point
selected by the program for this node and the cross-hair is reinitiated
for further processing.

Interaction involving the cross-hair cursor requires the use of the
system subroutine LOG. When the cursor is turned off, the function
returns the coordinates of the cross-hair intersections and the keyboard
entry used in the interrupt. This provides a valuable programming tool,
since each key can represent a functional response. In this application

591



the keys N, P, and L provide alternatives in the location of the node
at the cross-hair intersection. The N option locates the point at the
cursor and the X option transfers control out of this procedure. The
P and L options provide a means to locate the node on the boundary data
set. P implies that the node is located at the point in the boundary
data set nearest the cross-hair, and L implies locating the node on the
nearest line segment.

SPECIAL FUNCTIONS

After an initial mesh has been constructed from the nodes defined
by the PICK function, further development of the mesh can be done by use
of the following functions. These functions are illustrated in the sample
problem.

CIRP is a function for locating nodes on a circular arc by iden-
tifying three nodes on the arc vhich have been previously
defined.

BFIT is a function similar to PICK which moves each node along a
given row or column to the nearest point in the boundary data
set.

VOID is a function which permits regions in the mesh to be defined
as voids on subsequent displays.

INIT is a function providing a means to reinitialize the entire
grid or parts of it when errors have to be corrected or
adjustments made.

SHFT is a function which allows nodes of a given row or column
to be located as normal translations from a defined row or
column. This is very useful in obtaining accurate defini-
tions in meshing structures composed of layered materials,
interface gaps, etc.

Nodes not defined by the above functions can be generated by one
of the grid functions:

GRDI displays the mesh by interpolating between defined nodes on
each row of the grid, then interpolating between defined nodes
on each column.

GRDJ similar to GRDI, except nodes are defined on each column,
then on each row.

GRIJ used for defining nodes within a section of the grid having
convex or concave boundaries which may not mesh properly
using GRDI or GRDJ. It requires that all nodes on the
boundary of the section be specified prior to use.

592



ERAS In practice, several iterations will be required to obtain
the desired mesh. This may require many erasures of the
display. The ERAS function provides this capability. The
display is erased and the boundary data set plus the status
of the defined nodes are reset to the definitions prior to
the erase. The defined nodes include all that have been
defined by the above functions except those computed by
interpolation in the GRDI and GRDJ functions.

OUTPUT PREPARATION

The output data file prepared by the DVMESH code consists of problem
identifiers and the coordinates of the nodes identified by a specific row
and column. This array, stored on disk file, is the standard output
file which can be implemented by the various analytical codes. It also
provides a restart capability for DVMESH.

Interactive features at this level permit the mesh to be viewed
in detail and allow location of a given node by (x, y) and(i, j) coor-
dinates; this may be useful for boundary and material identifications in
the finite element analysis.

With a memory allocation of 25,000 words, meshes of over 2,000
nodes can be developed by DVMESH. For the case of large problems, the
code output file is designed so that the mesh can be developed in
sections.

SAMPLE PROBLEMS

The following sequence of figures illustrates how a mesh is developed
using DVMESH at an interactive terminal. The procedure illustrates only
one of many possible procedures to obtain a mesh.

Input data options:

TYPE INPUT FILE AND PROBLEM HEADER
••--TYPED INPUT
4I--PUNCHED CARD INPUT
2C--DICITIZED DATA F I L E
4J-- APT DATA flLE

13--RESTART DATA FILE

593



All displays shown in this section were prepared from hard copy prints
of displays on the terminal. For example, input data entries from terminal
proceed as follows:

61 SAMPLE PROlLCn
TYPE DATA CARD

DATA 1 1 1
TTPE DATA CABD

SIDE 1 13 ». I. 2. 4.2 .2
TTPE DATA CARD

SIDE 213 t. .$ 2.5 .5 2.5 .7
TTPE DATA CARD

SIDE 212 !.• .7 I.I .5
TTPE DATA CARD

ARC 412 t. 4. 2.6 27». 340.
TTPE DATA CARD

ARCP 612 1.9 1.6 2.4 2.15 2.8 3.1
TYPE DATA CARD

ARCP 712 1.9 1.6 1.8 1.4 2.2 1.1
TTPE DATA CARD

ARCP 711 2.2 1.1 3.1 1.15 4.2 1.3
TYPE DATA CARD

Procedure is completed when END is typed.

Editor Phase options are PLOT-CHG-INS-DEL-LIST.
Display of data entered at terminal using LIST function:

t DATA 1 1 t
2 SI»C I 13 •• •• 2- 4.2 -2
3 SIDE 2 1 3 1 . .5 2 .5 .5 S .S .7
4 S I P C 212 1 •« • ' ! • • - 5
f AftC « 1 2 •. 4. 2.6 27i. 34*.
« KBCP 6 1 2 1.9 l.E 2.4 2. IS 2.3 3.1
7 ARCP 712 1.3 l .S 1.8 1.4 2.2 1.1
I ARCP 711 2.2 1.1 3.1 1.15 4 .2 1.3
9 END

TTPC -PLOT-CHC- INS-DEL-L ls r -

Example of changing data entry 2:

CMC 2
TYPE DATA -- FOR INS USE LAST TO END

SIDE 1 1 3 * . • •• .2 4.2 .2
TTPE -PLOT-CMS-INS-DEL-L1ST-

594



The entry PLOT displays the data graphically:

I.T. t 1 I
• IK 1 I
•IK
IIII lit I
*tc • I • •.

Plotting phase functions available at this phase of problem:

TYPE - SCAN-ZOOM-QUIT-MESH-PLOT-APT-PKXY

Transfer is made to the meshing program when the MESH function is
entered.

Before meshing proceeds, the user must have some insight into the
size of grid desired and relative locations of the maximum and minimum
(i, j) node identifiers. This can be done by drawing a rough sketch
of the desired mesh as a guide to the interactive development.

The maximum row and column is entered when the MESH function is
typed. All references to node identifiers in the mesh code must be
within these bounds.

The following illustrates the available functions for mesh
development:

HCSH size
IJ7

PICK

. Trpe--pic«-t»»s
SMfT-lXIT-l

460J-«oi-Pi.oT-iriT-s»ui-imT-woii-
uCP-»«xi-firi>-co«e-<:i»P-«»M

This example illustrates the use of some of these functions for
developing a mesh over the above boundary data set. The first function
used is PICK in which the cross-hair cursor is moved to the lower-left
corner of the boundary data. When P is typed the node is located at the
end point of the line segment and identified by entering the (i, j) values
of (1, 1).

595



The interaction continues by use of the cross-hair and the PICK
function until a set of nodes is defined on the perimeter of the
boundary data set. For this case the PICK entries are defined in a
counterclockwise direction. The following displays these nodes:

.1

The nodes defined above are a sufficient set for constructing a mesh
over the region.

The following display results when GRDI is entered.

At this point the functions BFIT and CIRP are used to locate given
rows and columns on the boundary data set. In this example row 21 is
located on the circular arc passing through nodes (21, l), (21, 10), and
(21, 25). The node (21, 10) is located on the circular arc by the BFIT
or PICK function. From this data the nodes (21, 2), ..., (21, 2U) are
defined on the circular arc in equal angular segments by the function entries:

BFIT 21 10
CIRP 21 1 21 10 21 25 1

596



In like manner node points between (l6, lU) - (l6, 25), (10, lU) -
(10, JO), and (10, lU) - (16, Ik) are located on their respective circular
arcs:

BFIT 16 20
CIRP 16 lU 16 20 16 25 1
BFIT 10 20
CIRP 10 lU 10 20 10 30 1
BFIT 12 111
CIRP 10 lU 12 Ik 16 lit -1

The X's on the boundary sets in the figure illustrate how the
functions are verified on the display.

To redisplay the mesh, the ERAS function is used followed by GRDI,
which interpolates new values for all nodes not defined by the special
functions. The following display results:

ll.lt.41. II •) "I t—'U »t«HC

597



This display also shows the result of defining four nodes about the
rectangular region using the PICK function.

To remove nodes which lie in regions defined as voids the following
entries are made:

VOID 11 15 15 25
VOID 68 7 IT

These nodes are verified on the display, then ERAS and GRDI functions
are entered, resulting in the following mesh-

To illustrate the use of the SHFT function the figure shows where
nodes are located when the following entries are made:

SHFT 21 1 21 25 .8U -1 0
SHFT U 7 !* 18 0. -.3 -3 0

The first relocates row 20 a . OU normal distance from row 21. The second
entry relocates selected columns of row 1 a fixed distance from row k.

598



To reset the nodes in the convex region of column lU the GDIJ
function is used in the region bounded by the nodes (7, 7) and (20, lU)
as shown in the display:

The final mesh in the following display shows the result of GDIJ
function plus the use of the SHFT function for defining the interfaces
along sections of row 7 and column 7. The SHFT function entries were:

SHFT 11 17 10 lU8 5 0
SHFT 17 U 7 102 .0 0 1

The data sets are now processed onto an output file which can be
used in various analytical codes. As can be observed, the procedure to
obtain a mesh is not fixed but is dependent on the user, his needs, and
his experience. The goal is to initiate a crude mesh over the region and
then refine the mesh by visual observation and the use of the various
special functions.

599



GENERAL OBSERVATIONS

The development of DVMESH provided considerable experience for
interactive meshing applications. Using a system vith a minimum of
interactive features and relatively slow response time required numerous
tradeoffs between the frequency of refreshing the display and the com-
plexity of the task for each function.

Implementing DVMESH as an interactive process implies that the user
will develop the grid visually, since it is quite inefficient to consult
notes, procedures, etc. while at the terminal. This requires instruc-
tions and prompts to be displayed, as well as verification of functions
implemented by the user. These procedures are normally used in inter-
active programs but are essential in this application, since the response
of the system is quite variable. These additional displays have the
effect of filling the screen quickly, since no selective erase (a feature
of larger graphic systems) is available.

The design of interactive programs for a DVST device requires some
special considerations associated with the erase function. Since an
erase results in a total erasure of the display, special efforts must
be implemented to reproduce meaningful data with minimum effect on time
and prior efforts. As shown in the sample problem, a number of erasures
were required to complete a problem. To minimize the effect of the erase,
a file is created which contains node definitions generated by the
functions PICK-CIRP-BFIT-VOID-INIT-SHFT, etc., prior to the erase.
Processing this file after the erase resets the meshing procedure to a
point prior to the last grid instruction from which processing can continue.
This requires that after each erase the graphics display is rebuilt, which
can be time-consuming. To reduce this time requires special programming
efforts such as minimizing axis annotation, design of mesh, etc.

Another important item of any interactive program is recovery when
erroneous data is entered at the terminal. In DVST applications the
programs must be coded to check on data consistency, proper data values,
number of entries, illegal characters, etc. The programming time spent
on this feature is worth the effort, since transmitting erroneous data
is easily done at the terminal. In DVMESH a very useful subroutine
called MASK has been used for this purpose. It provides a way to test
for data consistency and the proper number of data entries for each type
of function. It allows sill data entries to be entered in a free field
format, which is an essential feature for DVST terminal inputs.

An aspect of the DVMESH code which has proven to be quite valuable
is the ease of making modifications to existing meshes. Since most of
the meshes apply to design problems, the need to make parameter studies
by making minor adjustments to an existing mesh occurs quite often.
With DVMESH, the existing data can be retrieved from the computer data
files, adapted to the new design, and verified graphically in much less
time than by previous procedures.

600



CONCLUSION

Most of the goals noted in the introduction have been achieved in
the DVMESH code. The code is in operation and is being used as a practical
alternative at this time for constructing meshes over two-dimensional
regions having irregular boundaries. The code provides a way for a user
to design a mesh from a low-cost terminal by a visual, interactive
procedure. The time spent preparing the mesh may be similar to conven-
tional batch procedures for a given problem, but the elapsed time from
start to a verified mesh may be much less since the mesh can be verified
graphically a~t each step of the process.

The code is written in FORTRAN but requires several system routines
dependent on the graphics hardware used. It is available from the author
on request. We anticipate that the design of the code will not be
changed, but additions will be made with experience and new applications.

REFERENCE

1. Buell, W. and Bush, B.: Mesh Generation - A Survey. Transactions
of the ACME, Journal of Engineering for Industry, Feb. 1973.

601



(a) 1+002A.

(b) 401U-1.

Figure 1.- Tektronix terminal facilities.

602



Figure 2.- Grid with equally spaced
boundary points.

Figure J.- I-J grid mapping from grid
in figure 2.

603




