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SUMMARY

This report is concerned with development and extension of a computer
program for the study of mission performance of spacecraft using solar electric
propulsion. The code is designed for analysis of the NASA /Lewis SERT-C design
which involves attitude constraints, however, it hag been generalized to consider
any of the following configurations: (1) yaw motion only (SERT-C), (2) yaw and

roll only, (3) unconstrained motion.

The code calculates time optimal or nearly time optimal geocentric tra-
jectories. It uses the method of averaging to reduce computer time by orders of
magnitude compared to a precision integrated trajectory. The averaged rates of
change of the mean values of the state and costate are found by numerical quadrature.
The differential equations for the mean state and costate may then be integrated in
large time steps (typically days). A set of nonsingular orbital elements is used to
avoid numerical difficulties for eccentricities and inclinations at or near zero.

The radiation model is analytic to reduce run time. Included in the code are
options for consideration of oblateness, solar motion, shadowing with or without
a delay in thruster startup, an analytic radiation and power degradation model, and

an initial nigh thrust stage of one or two impulses of specified V.

A costate formulation of the problem yields a two point boundary value
problem which is solved by a Newton iteration on the initial costate and value of
transfer time. Initial values of the unspecified states and costates and a guess
for the transfer time are chosen. An optimal trajectory is then generated by
integrating the averaged state and costate using a Runge-Kutta method. A Gaussian
quadrature averages the state and costate derivative over an orbit. Thnis will
generate an optimal trajectory to the wrong terminal state. A sensitivity matrix is
then generated by varying the initial conditions and running a set of neighboring
trajectories. A Newton iteration on the initial conditions is then used to drive the
terminal errors to witnin specified bounds. The final converged trajectory is a
minimum time trajectory (nearly minimum time for attitude constraints) for the

specified velocity increment in the nigh thrust phase (if included).

iv



The attitude constraint causes power to become a function of thrust direction
and sun direction, and the time optimal thrust direction becomes a complex function
of primer vector direction. The analysis for the attitude constrained case is

considerably more complicated than for the unconstrained case.

For the zero roll and pitch case a suboptimal control is developed which is
nearly time optimal, uses less fuel than the time optimal, and is obtained from the
solution of a cubic equation. The solution may yield discontinuous changes in the
thrust direction. The time delay in thruster startup is modeled as a guadratic
function of time in shadow. The proton and electron radiation field is modeled as
equivalent ] MEV particle flux as a function of spacecraft altitude and latitude as
well as tne solar cell shield thickness. The power loss function is modeled as an
analytic function of fluence, cell thickness and base resistivity. Spacecraft

parameters such as yaw angle and sun incidence angles may be displayed.

Numerical results were obtained for many SERT-C and other type missions.
Attitude constraints increase flight times by a few percent for SERT-C type missions.
Power degradation can be quite severe at lower altitudes nearly doubling transfer

time, compared to a no degradation case,






SECTION 1

INTRODUCTION

The use of time optimal trajectories can save considerable flignht time in
low thrust missions (days, weeks or even months). As a result there has been
considerable use of optimization theory in the analysis of low thrust trajectories
and missions. Recent advance in the state of the art have made possible routine
calculation of geocentric optimal trajectories considering more representative
environmental constraints and influences. It has recently been proposed(l) that

optimal trajectory computer programs form the basis of a guidance technique.

Most of the geocentric trajectory analyses for solar electric spacecraft
have assumed fully articulated spacecraft where the solar array and the thrust
vector can both be pointed in their respective optimum direction(z_S). The
serT-C®

constraints whereby the spacecraft was permitted to rotate only about an axis

spacecraft study performed at NASA-Lewis introduced attitude motion

parallel to the Earth radius vector. This design constrains the thrust vector to

lie in a plane perpendicular to the radius vector. The solar panels can rotate about
an axis that is orthogonal to both the radius vector and the nominal thrust vector.
Although the constraints simplified the SERT-C design and reduced the attitude

(6), the constraint couples the power developed to the thrust

sensor requirements
direction, Most thrust orientations do not allow maximum power to be developed.
The flight time is increased both because of this coupling and because of the thrust

direction constraint.

The present study, performed for the NASA Lewis Research Center, was
undertaken both to provide software for the evaluation of the SERT-C design with
attitude constraints and to provide a basis for the proposed guidance scheme. The
effort described in this report builds on the work of References 2, 7, and 9. For
that effort a computer program was developed which calculated minimum time
trajectories for unconstrained solar electric and nuclear electric propulsion. Also
an initial nigh thrust stage of specified AV with one or two impulses and a final
impulse C(O;lé()i be included. The low thrust stage uses Kryloff- Bogoliuboff

averaging of both the state and the costate. The averaged rates of change of

the mean values of the state and costate are found by numerical quadrature. The



differential equations for the mean state and costate may then be integrated in
large time steps (typically days). A set of nonsingular orbital elements, the

equinoctial elements(11 , is used to avoid numerical difficulties. The method of
(12, 13) has used

averaging to calculate analytic solutions for special cases of optimal low thrust

averaging has been used extensively in recent years. Edelbaum

trajectories, and others have used averaging when considering effects such as

(14, 15, 16) (3)

oblateness, third body perturbations and non-optimal thrusting Jasper
utilizes equinoctial orbital elements and averaging in recent low thrust optimiza-
tion work, An interesting feature of his work is numerical comparisons of
averaging with integration of the full state and costate. He does not include the
effects of perturbing forces, other than thrust, on the costate.

The first stage high thrust optimization is based on a very efficient computer

program developed by Huntington Small(”’ 18).

This program uses a special set
of variables and form of the switching conditions developed by Small. The initial
orbit is assumed circular with specified semimajor axis and inclination, while the
final orbit has specified semimajor axis, eccentricity, and inclination. During the
high thrust phase an inverse square gravitational field is assumed. Because the
initial orbit is circular, it was possible to constrain the initial costate to the region
that yields solutions. This program rapidly calculates either one or two impulse,
minimum-fuel, time-open trajectories. Because this transfer always requires
less than a full revolution, its time is negligible compared to the low thrust phase
and is not considered. A summary of the high thrust analysis is given in Appendix A,
The utilization of high and low thrust in combination has been considered by a

number of authors(lg’ 20,21, 22, 23).

The effect of oblateness is included by analytically adding its associated
rate of change of the mean state and costate to that due to thrust. The effects of
shadowing are calculated by assuming that thrust is turned off in shadow. The
shadow entrance and exit times are calculated analytically by solving a quartic
equation, The effects of radiation degradation are calculated by modeling equiva-
lent 1 MEV electron flux as a function of radius and latitude. The power is then
expressed as a function of the total accumulated particle fluence. The model in the
first version of the program was valid for one cell and shield thickness, A new
model, developed herein, is valid for a variety of cell thickness, shield thicknesses
and base resistivities. As for all perturbations, the effect of radiation degradation
on the costate as well as the state is calculated.

Thne overall trajectory is optimized by a shooting method. Initial values of
the unspecified states and costates are chosen at the initial time. An optimum high



and low thrust trajectory is then generated by integrating the state and costate
tnrough both stages. This will generate an optimal trajectory to the wrong
terminal state. A sensitivity matrix is then generated by varying the initial condi-
tions and running a set of neighboring trajectories. A Newton iteration on the
initial conditions is then used to drive the terminal errors to within specified
bounds. The final converged trajectory is a minimum time trajectory (nearly
minimum time for attitude constraints) for the specified velocity increment in the

high thrust phase.

The principle modifications and additions performed under this contract to
the earlier work are: nearly time optimal trajectories can be generated for the
attitude constrained case of zero roll and pitch or zero pitch and free roll as well
as the unconstrained case; the shadow model has been modified to include the effect
of a delay in thruster turn-on after leaving the shadow; a new, more accurate and
more general solar array degradation model is developed; and additional spacecraft
parameters may be calculated and displayed. All of the options of the earlier code

are included except that the final impulse option has been removed.

The problem, then, which is considered in this report is the calculation of
time optimal or nearly optimal geocentric transfers using solar electric space-
craft which may nave attitude counstraints and an optional initial high thrust stage.
For the low thrust phase the initial and final orbits are general ellipses. An inverse
square gravity field with oblateness is assumed. Thrust is assumed proportional
to power with constant specific impulse and efficiency. The effect on power of
solar distance may be included. The thrusters may be assumed to be off whnile the
spacecraft is in Eartis shadow and for a start-up delay time which corresponds to
the sum of the time for the solar array to achieve operating temperature and the
time for the thruster to achieve full thrust after the solar array power is applied
to the power processor. The Van Allen radiation is modeled analytically and its

effect on power degradation included.

For the attitude constrained case the class of spacecraft modeled is indicated
in Figure 1-1 where the roll axis lies in the orbit plane and is perpendicular to the
Earth-spacecraft radius vector; the yaw axis is parallel to the Earth radius vector
directed toward the Earth; the pitch axis is perpendicular to the orbit plane and
directed south. For the nominal attitude the principle body-centered axes are
aligned witn this coordinate system. The ion thrusters are mounted on the negative
roll face of the spacecraft and directed parallel to the roll axis. The solar arrays
are flat panels and are capable of rotation about their longitudinal axis, which is
aligned with the spacecraft pitch axis. The required low thrust directions are

achieved entirely by the spacecraft attitude rotations.



+ PITCH

Figure 1-1 Spacecraft Configuration

The thrust vector must have no component along the vector from Earth to
spacecraft. The thrust direction is determined by one control variable, the yaw
angle. Since pitch and roll are constrained to be zero, the orientation of the axis
of the solar panels is determined by the yaw angle. The panels are allowed to
rotate about this axis, resulting in one more control variable. Power is assumed to
be proportional to the cosine of the angle between the normal to the panels and the
line to the sun. The initial state is given and it is desired to reach a final subset
of the state at some, unspecified, final time. Although the original aim was to
derive the time optimal control, instead, a particular suboptimal control, which is
nearly time optimal, is derived. A costate formulation is used along with the method
of averaging to set up a two point boundary value problem which can be solved by
using a Newton method to iterate on the unknown initial costate and value of the final

time in order to meet the desired final conditions on the state and costate.

Tne computer program developed is used to assess the increase in flight
time and fuel consumption due to introducing the attitude constraints and other

perturbations. A User's Manual which contains listings and descriptions of the
(24)

subroutines and a description of the use of the code is published separately

Two papers have been presented based on the material in this report(zs' 26).

Reference 25 has been accepted in modified form to be published in The .Journal of

Spacecraft and Rockets.




SECTION 2

GENERAL TECHNIQUE

2.1 Introduction

Three areas of general technique are discussed in this section. One is the
method of averaging, essential to the running of a program which generates many
trajectories in a reasonable amount of computer time. Second is discussed the
method of generation of the final trajectory. A time optimal or nearly optimal
trajectory is desired. A state and costate formulation is used which results in a
two point boundary value problem which can be solved by a Newton iteration
procedure, Finally some comments on numerical techniques are made. Later
sections give details of the dynamical equations, calculation of the control, and the

effects of perturbations on an individual trajectory.

2.2 Averaging

A great savings in computer time can be effected by considering a first
approximation to the state and costate. Short period variations in the state and
costate are eliminated by the averaging technique. When low thrust propulsion is
utilized and the other perturbations to the inverse square motion are small and
when the state includes the five slowly varying orbital elements which indicate the
size, shape and orientation of an orbit and possibly other slowly varying quantities,
then averaging may be used. Spacecraft mass and the accumulated particle fluence
(both slowly varying) were also averaged. The orbital element indicating the
position of the spacecraft in the orbit is eliminated by the averaging process.

The averaged Hamiltonian can be defined as

H dt (2.1)

where H is the unaveraged Hamiltonian and T is the orbital period. When calcu-
lating this integral the state and costate are held fixed. The motion of the space-
craft is assumed to vary in a manner described by Kepler's equation over the
averaging integration. The approximate state and costate satisfy the canonical

equations



xT - 28 (2.2)
dX
xT - .2 (2.3)

where the overbar indicates the approximate quantities,

In what follows the averaging integral for oblateness (12) is solved analyti-
cally; otherwise a numerical quadrature formula is used. The differential equations
can then be solved numerically using a time step which is much larger than but

unrelated to the number of orbital revolutions.

2.3 Optimal and Suboptimal Trajectories

The original aim was to calculate time optimal trajectories for the constrained
problem as well as the unconstrained problem. However in the course of the
analysis, which is described more fully in Section 3, it was decided to use a slightly
suboptimal control for the constrained case of zero roll and pitch. The suboptimal
control chosen is nearly time optimal, saves on fuel, and it is easier to calculate.
The controls considered for the zero pitch but free roll case and the unconstrained
case are time optimal. Transversality conditions for the time optimal contro! are
used for all cases. In the following discussion the words '"optimal trajectory" will
be used to refer to both the optimal and suboptimal trajectories. In all cases the
method used to generate a low thrust trajectory is to develop the Hamiltonian, to
calculate a control (the thrust direction), either optimal or suboptimal, and to write
the canonical equations for the state and costate. Some or all of the initial state
and costate are specified. Application of transversality conditions for the time
optimal problem yield additional specifications on the state and costate. Thus a two
point boundary value problem results which must be solved to obtain the requisite
trajectory. When these equations are solved, an extremal trajectory will result
which is usually locally optimal. No attempt is made to investigate generalized
Jacobi-type conditions to establish local sufficiency. Also, in common with other
nonlinear problems, there may be more than one extremal meeting the same end
conditions.” The very difficult question of global optimality is not considered.

The single trajectory generation portion of the code is coupled with a
Newton iterator to solve the two point boundary value problem. The unknown initial
conditions and value of the final time are iterated on in order to meet the final
conditions which are functions of the final state and costate (usually a specified



semimajor axis, eccentricity, and inclination and the appropriate transversality
conditions). The partial derivative matrix of final conditions with respect to the
initial costate is obtained numerically by calculating neighboring trajectories to

a nominal.

When only low thrust is included the initial orbit is specified as well as the
mass of the spacecraft, A seventh state variable, the equivalent 1 MEV electron
fluence is also specified. At the unknown final time either five orbital elements
can be specified or three: the semimajor axis, a, the eccentricity, e, and the
inclination, i. Transversality conditions require that the adjoint to the mass and
fluence be zero at the final time. If the final line of nodes () and argument of
perigee () are free, then their adjoints are zero (AQ =0, )\w = 0), In either
case the final value of the Hamiltonian must be unity.

If initial high thrust is included, the necessary conditions for minimum time
low-thrust transfer with specified high thrust velocity increments can be derived
by considering each phase separately as a variational problem. The cost of each
phase can then be expressed as a function of its terminal states and costates. The
proper interface conditions for each phase can then be derived by considering the
parameter optimization problem of minimizing the time of the low thrust phase for
fixed velocity increments in the high thrust phases. This minimization is carried

out over all the free states and costates at the interfaces between high and low thrust.

The flight time for the high thrust stages is assumed to be negligible
compared to the low thrust stage flight time. At the beginning of the first high
thrust stage a, e, i are assumed given (eccentricity is set to zero). Transversality

conditions then require AQ = 0 and )tw = 0,

For the high thrust phases only an inverse square gravity field is assumed.

A is a constant of the motion and therefore X remains zero during the initial
high thrust phase if Qis fixed., A single extremal is generated in the following
fashion (it does not necessarily reach the desired final conditions). Values for >‘a’
Aes A and ware picked, Values for A AN ty are also picked but not used until
after the first high thrust stage, Since the initial orbit is circular we are assuming
that the first impulse occurs at u = f + wwhere f = 0 and so wjust indicates the loca-
tion in the orbit of the first impulse. From the standpoint of maximizing the primer
vector magnitude, the iocation on the orbit at wh ich an impulse occurs is arbitrary,
since for a circular orbit one position cannot be distinguished from another.
Optionally, the user may specify the initial line of nodes. There is then an impulse
in the direction of the primer vector. The magnitude of the aV will be equal to the
maximum for an optimal one impulse transfer if that maximum is less than the
specified total initial aV, or otherwise equal to the specified total initial aV. If



the maximum one impulse aV is less than the total AV available, then a second
impulse occurs at the next maximum of the Hamiltonian, again in the direction of the
primer vector. The program requires that all remaining initial high thrust aV be
used for this impulse. This may not be optimal, as one or more additional impulses

may be optimal. Generally, for practical cases one or two impulses will be optimal.

After the one or two initial impulses there is a resultant orbit a, e, i, 0,
w and values for )‘a’ )‘e' A )‘Q’ xw. The high thrust program scales the costate
so that the magnitude of the primer vector is 1 at the impulses. At the beginning
of the low thrust stage they may need to be rescaled so that final transversality
conditions will be met. This scaling factor, the picked values of A )LN and the
values of )‘a’ >‘e’ )\.L, ) A kw from the high thrust stage are then used as input to
the low thrust equations of motion. These are essentially Egs. (2. 2) and (2. 3).
They are integrated to the picked final time, tf. The final orbit is then reached,
This is an extremal trajectory, though possibly not arriving at the desired final

orbit.

We desire to reach a specified a, e, i. Transversality conditions require
that XQ, xw, )‘m’ XN be zero and that H = 1, If we have not met these final con-
ditions a Newton iteration on the free initial conditions and time of flight is used in

order to meet the final conditions to within some tolerance.

The actual calculations of the initial high thrust stage uses code developed
by H. Sma1i {12 13)
low thrust code uses equinoctial orbital elements rather than classical orbital

which uses a special set of variables. (See Appendix A.) The

elements. This stage is discussed in detail in Section 3.

The Newton method works by first guessing values for the iteration parameters,
call them x and tf, and then running a nominal trajectory which will yield final
conditions y which in general are not equal to the desired final conditions, pAT
Revised values for x, tf may then be obtained by calculating a sensitivity matrix or
partial derivative matrix, A, which is generated by varying slightly, one at a time,
each of the iteration parameters, x, and running a new, neighboring, trajectory.
Differencing the resulting values of the final conditions with the nominal values
yields a ay for each ax.. In addition % can be calculated analytically except perhaps
for %}% which can be approximated numerically by varying te slightly and evaluating
the corresponding H, differencing this with the nominal H and dividing by Atf- Then
A is an approximation for the partial of y with respect to X, tf.

A = _=_
' (2. 4)




A revised estimate of the iteration parameters can then be obtained by the formula

X X -1
[F] = [t_] - A Ty (2.5)
f f
NEW O1.D

A new nominal trajectory can then be generated and the procedure continued until
the final conditions are met to within some tolerance. In the event that the new
X, tf do not yield a reduction in the norm of the final coudition errors, the change
in (x, tf) is reduced in magnitude by factors of 2. Also there is an option of using
a modified Newton-Raphson procedure wherein the A matrix is not always recalcu-
lated at each iteration by running neighboring trajectories, but instead a new A
may be approximated using the old A and the values of the changes in x, tf .
We will now specify more precisely the initial and final conditions. Since the
low thrust code uses equinoctial elements, they will be defined here in terms of

the classical elements,
a = a
h = esin(gyw+N)
k = ecos(ywt) (2.86)
p = tan(%) sinQ)

tan % cos

q

These are five of the seven state variables. The other two are mass, m, and

particle radiation fluence, N.

The Newton iteration scheme iterates on a vector x to drive a vector y to
zero, where now we are usingy tomeany - ¥4 2s used above, SeparatelyT:oded is
the iteration variable tf, the final time, X is a function of the unknown state or co-
state elements at the initial time; y is the error in the final conditions, a function of

the state and costate at the final time and the Hamiltonian at the final time,

Two final conditions options are considered., In the first, all five orbital

elements are specified at the final time. Thus,

y = r_a(tf) - adq
h(tf) - h
Kt = kg (2.7)
p(tf) - Py ’
Q(tf) - 9y
xm(tf)
>\N(tf)
_H(tf) -1 J




where the subscript d indicates the desired value.

For the second option only three orbital elements (a, e, i) are specified.
The adjoints to Q(tf) and w(tf) must then be driven to zero. They are given in

terms of the equinoctial state and costate.

pY = + - 2.8
Q xw qxp pxq (2. 8)

(2.9)

A k)

o KAt b

k

The eccentricity and inclinations are given by

e = JuZ - k° (2.10)
i = 2tan" ! fp2 4 q (2.11)
For this case, then, let ~ _
a(tf) - ay
Y 5 | Vel - Kot -
h (tf) k (tf) €4

ST T Iy
p (tf) +q (tf) - tan—y

h(tA, () = Kt (t,) (2.12)
P, (1) - Qi (1)

A, (te)

xN(tf)
H(tf) -1

L .

When id = 0 driving the above y to zero is equivalent to driving p and q to zero and

not considering PXq - kxp. When calculating small errors near i

h 0, the abovez

expression cannot distinguish between positive or negative inclinations. This can

lead to numerical problems, so when i, = 0, the code sets the third component of

d
y to p(tf) and the fifth component to q(tf) in the SEP code. A similar situation exists
if ey~ 0, so in this case the second component is h('tf) and the fourth component

k(tf). If both e, " 0 and id = 0, then both options are equivalent in the SEP code.

10



For low thrust only, the initial state must be specified, and therefore X is
just the initial costate. When initial impulses are included either ( and O are
free or just 4 is free. Since the initial orbit is circular for this case, s indicates
the location of the first impulse. Thus xw(to) =0, If p(to) is free, XQ(tO) = 0,

It is shown in Appendix A that for the Q(to) specified case, setting the initial

w determines the initial )‘O' Thus ¢ is used as the iteration variable. The high
thrust code requires special input variables and these variables must be within
specific bounds if a circular parking orbit is assumed (Appendix A). Taking into
account these bounds let Eys £o s £3 be the first three iteration parameters where

Small's special variables are given by

r - 1 b (2.13)
2 1+ g2
£
£
K = cosT<.75+.25 ——2——) (2. 14)

/1+€2§

= £
j = (1+kcosT) [0S TK 3 (2.15)
cos T+k ‘ /1+€3?

This transformation allows ¢ 1+ &9 and gg to be unbounded.

In order to interface the high and low thrust stages a correspondence or

scale factor is needed to relate the respective costates where

ate
c 5 —_— (2.16)
38 VHIGH
and tf and AVHIGH refer to the respective costs for the two stages. Then
A, = e, (2.17)
LOW HIGH

The iteration parameters are then

X =1 &

c (2.18)




and recall that the initial a, e, i, xw and ( or () are specified.

If roll is free so that the panels can always face the sun and if shadowing
is not included, then the perturbations on the spacecraft are axially symmetric,
The perturbations modeled are oblateness and the Van Allen radiation. The latter
was forced to be axial symmetric by the particular model used. Therefore, X
is theoretically constant and varying © at the initial time will only affect Q at
the final time. Thus if O at the final time is not specified, the sensitivity matrix

will be singular. For this case the ) should be specified,

The sensitivity matrix is calculated by varying each X by a small amount

and comparing the resulting error in the final conditions with the nominal.

3 yx+px) - ylx)

(2.19)
oX; 4%,

Except for a—(Ht—_—ll the partial of y with respect to tf can be calculated analytically
since the der'wfatlves of the state and costate are known at the final time. For
example

¥y .

-—=£ = h(tf) (2.20)

17

The other partials are obtained similarly except for the partial of the Hamiltonian.

For SEP the time dependence of the Hamiltonian derives from the shadow
effect and solar distance and direction and therefore an analytical evaluation
is difficult. Therefore, the partial was obtained numerically by varying tf
slightly and re-evaluating the state derivative (holding the state and costate constant)

and then evaluating the Hamiltonian., Thus

T .
Mt At (xttgraty - &(tot,)

(2.21)
at; btg

2.4 Numerical Methods

A Newton-Raphson iterator is used which calculates the sensitivity matrix
by running neighboring trajectories by changing slightly the initial values of the
iteration parameters, one at a time, The size of the change in the iteration
variables is chosen by the user and can affect the accuracy of the matrix. A
Modified Newton-Raphson iterator uses basically the same technique but many of
the iterations make use of a modified sensitivity matrix rather than calculating a
new one by running neighboring trajectories at each iteration.

12



The low thrust differential equations are integrated using a fourth order
Runge-Kutta method. The time step is selected by the user. This is fixed for
one subroutine supplied or may internally be changed if the IBM Scientific Subroutine
version is used(27), in which case error weights and an upper error bound must be

supplied by the user. Cutting the size of the time step can increase the accuracy

of the trajectory but rapidly increase run time.

Numerical averaging utilizes a Gaussian quadrature, The number of points
sampled on an orbit can largely be determined by the user. Again more points

increase accuracy at the expense of run time.

13



SECTION 3

LOW THRUST EQUATIONS

3.1 Introduction

This section developes most of the new analytic results. Some of these new
results are based on previous work, which is included in summary form, often
in appendices. The new results include the derivation of the attitude constrained
thrust control, the effect of a delay in thruster turn-on after leaving the shadow,
the new solar array degradation model and the calculation of several spacecraft

parameters.

3.2 Equinoctial Orbital Elements

By using equinoctial orbital elements the singularities that occur for zero
eccentricity or inclinations of zero or ninety degrees when using classical orbital
elements are avoided. (For inclinations near 180° retrograde equinoctial orbital
elements can be used, although we will not consider that case in this report.)} The
formulas given in this section are taken from Reference 16 except for the costate

transformations.

The direct equinoctial orbital elements are defined in terms of the classical

orbital elements, a, e, i, O, and by the formulas

1

a a

h = esin(y+Q)
= ecos(ytQ) (3.1)

p = tan(-ié-)sinQ
q = tan(%)COSQ

In Reference 18 the sixth orbital element is the mean longitude at epoch. In this

paper we will cousider the eccentric longitude, F, as the sixth element, defined by

F = E+tu+t0 _ (3.2)

14



where E is the eccentric anomaly. This element will be eliminated from the

dynamical equations by the averaging process.

The inverse relationships are defined by

a = a
1/2
e = (b2 +k?)
o -1
i = 2tan (’p2+q2> (3.3)
o - tan'l(p/q)

w tan-l(h/k) - tan-l(p/q)

The equinoctial coordinate frame is defined by the basis vectors f, g, w,

which are given below with respect to an earth equatorial coordinate frame.

-
1 - p2 + q2
[ 2pq
1+p~ +gq
-2pq
" 2pq 7
gz—%———T 1+p2—q2 (3.4)
1+p +q
L 29 J
- 2p -
1+p° +q 9 9
L1-p" -q" ]
This coordinate frame is illustrated in Figure 3-1 where ”ﬂ is normal to the
orbital plane.
The equinoctial orbital elements can be calculated from position and
velocity. The semimajor axis is given by
72
- (L 2= ) (3.5)
Irf w
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Figure 3-1. The equinoctial coordinate frame.

The eccentricity vector is given by

£ (exE)xr
e = - = - (3.6)
x| B
The vector normal to the orbital frame is given by
n Ixr
w = . (3.7
lrxr |
Then
V?’x
p = - (3.8)
1+w
z
g = —L— (3.9)
1+ w,
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From the values of p and q and Eq. (3.4) tf_ and é_ may be computed. Then

ho=e-g
k=e-f

(3.10)

Further relationships include the position coordinates Xl‘ Y1 with respect

to the f_, é, _\gr_ frame,

Xl =r .£
Y, = r-g

and the eccentric longitude, F, where

2
(1 -k"g)X, - hkg¥
cosF = k+ 1 1

a/l -h” -k

2
(1 - k%8)Y, - hkgX
sinF = h+ 1 !

where

a,/1 -h2 -k
1

1+ /1-h"-k
The mean longitude is defined by

A= M+ 43 +t0

(3.11)

(3.12)

(3.13)

(3.14)

The eccentric longitude, F, was defined in Eq. (3.2). Kepler's equation in terms

of A\ and F is then given by
A = F -ksinF + hcosF
We will not make use of the true longitude

L =vtwtQ

17
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M, E, v are the mean, eccentric, and true anomalies, respectively.

Position and velocity are given by

= xf+vg (3.17)
Poexfevgg (3.18)
where
X, = a{(1-h®g)cosF + hkgsinF - k] (3.19)
Y, = a[(1-k’g)sinF + hkp cosF - h] (3. 20)
> na2 2
X, = ——[hkgcosF - (1-h"g)sinF] (3.21)
: na2 2
Y, = —[(1-k"g)cosF - hkpsinF] (3.22)
and
n o= |k (3.23)
a
g- = 1-kcosF - hsinF (3.24)

u is the earth gravitational constant.

The adjoints to the classical and the equinoctial orbital elements are related.
Let ) represent the adjoints to a, h, k, p and q, and let 3 represent the adjoints to

a, e, i, ) and . Then

(] [t 0 0 0 0 I
Ap 0 sin(w+n) 0 0 cos(ywtn)/e e
A | =] 0 coslwt) 0 0 -sin( g+ )/e !P.l
Ap 0 0 2sinQ cosz% cosQ /tani—2 -cosQ /tan% wa
! Aq ] I 0 0 2cosQ COSZ% -sinQ /tan% sing /tan% I L ‘bw__
(3. 25)
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This can be written in terms of equinoctial orbital elements

N o 0 0 0 o [ 7
a a
>‘h 0 - 0 0 —Z-k_'Z' Ve
h+k
/h%+k
| = |0 k 0 0 2| Ly, | G20
3 he+k
/b
2p q -q
A 0 0 ¥
p — 57 3.7 Q
/P +a (1+p2+g%) P *a P +q
29 -p p .
by 0 0 7 v,
L7l L Z. 2 pPiq?  poagcl L«

Jpo+q 2 (14p24q?)

Note that some of the elements of this matrix are undefined if e or i are zero.

The inverse relationship can also be written. In terms of classical
orbital elements, the classical costate is given in terms of the equinoctial costate

by the following relation,

“a— (1 0 0 0 0 [, |
Yo 0 sin(u+n) cos(wt0) 0 0 Ay,
W =10 0 0 %secz-igs‘mg —;-sec2%cosg | B 27)
wQ 0 ecos(y*n ). -esin{y+Q )' taniz-cosg - tan-'lz-sinQ Ap
ww 0 ecos{ytn) -esin(y+n) 0 0 Aq
L L JL J

or in terms of equinoctial orbital elements

2, 2 2 2
v | =] o 0 0 _é_p(_l-#p_tg_)_ %qﬂi&) Ak (3.28)
Jp2+q2 JP +q2
¥q 0 k -h q -p Xp
0 Kk - 0 0
v, ] L h IR
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Certain elements are undefined if e or i are zero.

3.3 The State Equations

The unaveraged state differential equations are

2 = 2 M@, F) (3. 29)
- mc
= --2-1; (3. 30)
C

where z represents the five equinoctial orbital elements (a, h, k, p, q), m is

spacecraft mass, P is thruster beam power, which is assumed given by

P = P D(N) = cos# (3.31)
S

where P is a constant initial maximum array power at 1 A.U., 7 is the total
constant power efficiency factor, D(N) is a damage factor which is a function of the
fluence, N, and has a maximum value of 1 (this function is derived in Section 4. 3),
R is the distance to the sun in A.U.'s and # is the angle that the normal to the
panels makes with the spacecraft - sun vector. For the unconstrained attitude case
cos # = 1. For the attitude constrained case it is a function of spacecraft position
angd the thrust direction. The constant exhaust velocity is given by

c= Isp g, (3.32)
where Isp is the specific impulse and g, is the acceleration of gravity at the equator.
The thrust direction is given by the unit vector .fl We define the 5x3 matrix

3z
M(z,F) = — (3. 33)

dr

The elements of this matrix are listed in Table B-1 of Appendix B. In addition to
the quantities defined in Section 3.2 the partials of X1 and Y1 with respect to h and
k are required. These are listed in Table B-2. These partials differ from
Reference 16 since we consider F as an orbital element rather than as a function of
h and k; thus when partials are taken, F is held constant. This assumption also
affects the appearance of the expressions given in Table B-1 when compared with
Table 3 of Reference 16. However, if the expressions are written out in detail
they are seen to be identical. The code utilized the form shown in Ref. 16,
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That form of M was also used when calculating and coding g_li\g for the costate
equations. An algebraically simpler form of this matrix is given in a later work(28)
but was not utilized in the coding of our program, although a variation of it is

discussed in Appendix C.

The high energy particle fluence is also included as the seventh state variable.
It is a function of position, but the exact form is developed in Section 4.2. For

the present discussion assume
N = f(z,F) (3.34)

When mass flow rate is given by Eq. (3.30) and exhaust velocity is constant,

for arbitrary power history, the aV is given by

AV =c¢ln (m(c:)> (3. 35)
m

3.4 The Canonical Equations

To simplify the analysis we will first consider only the costate elements
z, m. The effect of fluence can be considered later. For simplicity also assume

that in Eq. (3.31) that = 1 and RS = 1, Then beam power is given by

P = Po cos @ (3. 36)

The method used to get the canonical equations is to form a Hamiltonian,
H, then average it, from which a first order approximation to the actual state and

costate is obtained. (This does not necessarily yield the averaged costate.)

Let H represent the unaveraged Hamiltonian and x the full state, then the

averaged Hamiltonian is

TO
t+
e T
ﬁ(i,i,r)=_1—§ - H(;zi,t",F(t).um(m)dt:l_( H@,X.T.F,G(F))icm
- T ~,__o T~ T J-m © ~ /aF
[0} t"T (o]
(3.37)

where To is the orbital period, and the overbar indicates approximate quantities.
The t dependence refers to time dependence which is independent of spacecraft
motion such as Earth motion around the sun. In practice integration with respect
to F is more convenient. The expression %E.- can be obtained from the equinoctial

version of Kepler's equation {Eg. (3.15)). It is given by
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T
4t - 9 (1 -KcosF - hsinF) (3.38)
dF 27

For convenience define

s(z, F) = at (3.39)

Then the canonical equations for the approximation to the state and costate are given
by

. ~T ” T
% - ari - S afi s dF (3.40)
3 -7 B
. ~T ” T T
5 - - . _g (@suqé.s?)dp (3. 41)
3X -7 dX oX

Note that inside the averaging integral the state and costate are held constant. From

the definition of s the only non-zero elements of 28 are

ax
33 . .1 sinF
dh 29
38 - - LosE (3. 43)
ok 27
:—E— is just the unaveraged state equations with the dependence on the state and
céstate held constant over the averaging interval. The expression -% is just

the unaveraged costate equation, l Most of the remainder of this section will be
involved in obtaining the unaveraged Hamiltonian and its partial derivative with
respect to the state for the attitude constrained case. Those equations reduce
simply for the pitch constrained or unconstrained cases. Only the state variables
z and m will be included; shadowing and oblateness will not be included.

One method of including the constraints is to write G directly as a function
of a single control angle, ¥, which lies in a plane perpendicular to the radius
vector. Let

T, = (&, &5 (3.44)
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where _é_] and §2 are any two unit vectors orthogonal to the radius vector and each
other (the transformation T1 is thus dependent on the spacecraft position and thus

the orbital elements). Then

5os 2PEEY) MEF) Ty DS (3. 45)
Ih = _E?(E’F'lb) (3.46)
C

The Hamiltonian' is given by

- T2P cos ) _ 2P -
H —-—-MT{San} )\m?——- (3.4{)

mec

The costate equations are

P H T 2P AM 1\ cOSs
x = -FfH T + M —— ¥ 3.48
a2 B_Z_ P 5'7 mc ag rl 1\& 3z r {va‘k ( )
{ - yT 2P cos Y
Am Ez _—2_ MTl[sin;b (3.49)

The elements of expression STM are given in Tables B-3 to B- 7 of Appendix B along

with subsidiarypartials in Tables B-8 to B-9,

Another method is to use a constraint formulation (which is the form coded).

Then
;= 22 Mg (3. 50)
—_ me —
. 2p
m o= -y (3.51)
c
but there is a constraint equation
c=rld =0 (3.52)

which insures that the thrust direction is orthogonal to the spacecraft radius vector,

The Hamiltonian is

_ 5T 2P .~ Ta 2P
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with the additional multiplier, 4 . Then the costate equations are

A T
CL Pr,T 2 N m T 2P (aM ar ~

= .02 - )Y + B = .

A, BE_{AZmCMI—‘l— = : _ch{ uaz}g (3.54)
_ 4T 2P N
Am T —)Ez -5 Mu (3. 55)
m ¢
Again, %% is given in Appendix B. If we assume that r is the &adm% vector divided
3

by the semimajor axis then the only nonzero partials of r are = —-El a—? a—él,

which are given in Table B-2. Thus the term a—z is a little eaSLer to evaluate than

—a% , and also this form is more useful for the cases of zero pitch but free roll and

without constraints, However, U4 must be evaluated. Rewrite the Hamiltonian

2P T 2P T

H= () —2£M+ur Voo 2P s (0 M) 1T A 20 G.568)
c mc —_ c
1
where
T = (&, &, 2,] (3.57)
and
&, = - = (3.58)
Iz
Now TTQ is just the control in the él R §2 s éS coordinate system. It can be written
cos Y cos ¢
QT = ( siny cos¢ (3.59)
s'mE

where ¢ is the angle between ET and the é—l - §_2 plane, and y is the angle between

the projection of fi,, onto tne _?_31 - 32 plane and §1 . Note that as yet we have not

=T
taken into account the constraint equation. Rewriting Eq. 3.56

T
2P)
T\~ 2P
H = 2 MT + pr T)i, - 55 A (3. 60)
(mc = )—T ;2' m
Writing this out in detail

=£)«TMLlcosw +e sm:b]cosg+[mpx Me "u|r|_|smp —-2)\
mc

(3.61)
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The longitudinal axis of the panels is parallel to the pitch axis. Therefore,
the orientation of the panels can be defined independently of the pitch angle. Thus

P is not a function of pitch. Then to solve for the optimal ¢ set

.a_I;I_ = 0 (3.'52)
of
or
r2p | T A
— A\ Me, - ulr
tang = (de 25 ME5 - ulrl) (3. 63)
2P T A PO
e A Mfe cos¥ +§_zsm¢]

Now the constraint can be taken into account. Rewriting Eq. (3.52) as

C=rlTrhg = 0 (3. 64)

since TTT is just the identity matrix. From Egs. (3.57) and (3. 59) the constraint

reduces to sing = 0. So Eq. (3.63) is also zero. Thus

2P T ..~ _ )
or (using Eq. (3.58))
TR 5 NS ¥ G- (3. 66)
me x|

When roll is free, power is no longer a function of §. For the pitch = 0
case Eq. (3.52) is still valid, and the optimal g_ is easy to calculate as is . The

Hamiltonian is

. (,T 2P T\s _ 2P
H (_):ZmCM+u_£>\_A_ 7 Am (3.67)

Since P is not a function of {i, to maximize H set

T
T 2P T
A —— M+ ur

- (—z mc - ) (3. 68)

T 2P T
12, me M*ur|

Is>
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T

The constraint C =0 "r = 0 yields
T 2P T
AZ—H-I—EM_I:+#§_£— 0 (3.69)
or
B -AE—Z—EM =y (3.70)
me |z}
the same as Eq. (3.66).
When there is no constraint g = 0 and
.My,
u = (3. 81)
T
M7, |
is the optimal thrust direction.
In summary the approximating canonical equations are
- " (2PE, 0 TE -
z S (2222 u@,F) + pr' i s(Z F)aF (3.72)
-7 fc -7
. cn2PEE
i =-{  —5 = s@ Fiar (3. 73)
-m
- " — T e —_ _ - — = —
3, 0o\ PEED(T 2Pz, 8) M@, Fa - &) +x ZR(Z (M2 F)
-7’z mc c Z  He 3%
ar L(Z,FNTY o = = 5 %) 08, F)
+u_:__=’_>g}S(E,F) +HE, A0 2727 ]dF (3.74)
3z 3z
.._ 1 T _ —_——
X © = S_ﬂ X, iz X.8)s(z,F)aF (3. 75)
where
N (z,a r
po= -xL 2220 ve ) (3. 76)
-z e - 2
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if pitch is constrained to zero. If there are no constraints, ¥ = 0. M and i_llﬁ

Z
are given in Appendix B. Also o0z
0 -
-sinF
a_S__ = .l_ -cosF (3.77)
32z 27
- 0
0

If r is interpreted as the radius vector divided by the semimajor axis, then in

the equinoctial coordinate frame

Xl/a
r = Yl/a (3.78)
0
so that
r 0 0 0
Fia M
ah 3h
arT IX Y
r . 1/a 1/a
0 3.79
32 3k a2k ( )
0 0 0
L o 0 0 |

where the nonzero partials were given in Table B-1.

In the case of free roll, P is not a function of z and so g—ZF-) = 0. For the
zero pitch and roll case this partial depends on the actual form of P which has
not yet been specified. For the unconstrained case and for the case with zero pitch
but free roll, the canonical equations are completely defined. It remains to

calculate the power equation and the control for the zero pitch and roll case.

3.5 Geometry and Power

In this section we define a useful coordinate system in which it is convenient
to calculate the thrust vector direction and the equation for power. It is shown that
we can calculate the panel orientation angle in terms of the thrust direction angle,
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thus leaving only one control variable for the problem. Power will then be a function

of the thrust angle and the angle between the radius vector and the direction to the

sun.

The thrust vector is constrained to a plane which is perpendicular to the
radius vector. In this plane the yaw is usually measured from a basis vector in the
orbital plane, which it is for the printed output of our program. However, because
of the power dependence on sun direction, another coordinate system will be useful.

~

This is the él’ e é3 system where

Lo &
&3 = -r (3. 80)
and —é—l is in the plane defined by the radius vector and the Earth-sun vector
(assumed equivalent to the spacecraft-sun vector)., In particular,
e, = €3 xR /leg xR, (3. 81)
and
&, 7 &, xé; (3. 82)
In this system the sun direction is defined by the angle g where
R_ = cosﬁés+sin3§1 (3.83)
(In the equinoctial system cosg = - E'_Tlis .) The thrust acceleration vector direction

is constrained to the él - §2 plane and given in terms of the angle { with respect to

the §_1 axis by the unit vector

a = cosype, +sinye, (3.84)

(See Fig. 3-2).

The power yield of the solar panels is proportional to the cosine of the angle
between the normal to the panels and the vector pointing toward the sun. The panels
can rotate about an axis which is in the §1 - éz plane and is assumed to be perpen-
dicular to § (recall Fig. 1-1). The normal to the panels can be defined in terms

of Yy and an angle of rotation, §, about this axis in the él - éz - §_3 system, namely:

ﬁ = sing coswél + sing simbé2 + cosac'é3 (3. 85)
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Fig. 3-2 Coordinate and Angle Definition

The cosine of the angle between the normal and the sun vector is given by

cosg = i\T_TES = singsing cosy + cosgcosg (3. 86)
For a given g it is possible to maximize this expression with respect to ¢ and so
eliminate ¢ from cosg, which will then be a function only of Y and g. The

maximizing ¢ is given by

sing = sin g cos ¥ (3.87)
/coszg + s'ngcoszw
cosp = cos 8 (3. 88)
Jcoszg + s'ngcos'l)
and thus
cosg = ﬁoszg + s'ngcosqu = A/l - sinzgsinzlb (3.89)
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It is interesting to look in the él - §2 plane at the locus of the vector pointing
along the thrust direction with magnitude equal to cos ¢. For each g there is a curve
in the El - §2 plane as § varies from O to 360 degrees. These curves are symmetric
about both axes and repeat for every g interval of 90 degrees. Note that for |cosg|
< ﬂ/Z they are convex (see Fig. 3-3). Since power is a function of thrust direction,
this curve will be important in determining the desired control angle, ¥, which

specifies the thrust direction.

-_;’L;D>

Fig. 3-3 P/P0 Locus

In Eq. (3.74) for the costate derivative we needed g—g . This can now be
calculated. Power is given by -
) . 2
P = Pocos¢ = Po ﬁ- sngsm $ (3.90)
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so that

-1/2
P _ L2 .2 L2, . cos
—gz = - Po(l - sin”gsin a,b) sin“¢ sinpcospa aa_z_ R (3.91)
But cosg = §3 'gs So
2€ 3R
dcosg . -3 | . s
3z 5z RS teq 52 (3.92)
where
—/ 2 0% oY, ]
\Yl 3z, - XY 3z, )
€ aX Y
= 1 1 2 1 >
= - +
= - (- x,v, St X1 (3. 93)
|r|
|
0
L -

where the semimajor axis drops out of éB and so we only need the partials of X1
and Y1 with respect to h and k which are given in Table B-2 of Appendix B. BS
is a function of only p and q and the partials are given in Appendix D.

3.6 Thrust Direction

Let us rewrite the Hamiltonian given in Eq. (3.47) but including dependence
of Pon .

9p cos{ X
H-= CO /1-s'migs'm21b (_X_EM—IE siny --%n) (3.94)
0

In the definition of the transformation, T, we are using the unit vectors defined
previously in Egs. (3,80), (3,81), (3, 82)., The quantity TTMT}_z ig just the primer
vector given in the _é_'1-§2-§3 system and willbe designated _}Vwithcomponents AvysAvos
Ayz. EQ. (3. 94) can be rewritten as

2P Ay Ay

H =—E_O 1-sin”gsin“¥Y (Tnl-coszb +__nT2s'mzb - 2‘-?-) (3. 95)
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For a minimum time solution this Hamiltonian must be maximized with respect
to . If this is done by setting 3H/3¥ = 0 and converting all sind to cos ¢, a
sixth order polynomial in cos ¥ results. Let

mh Ay
-y tang = 2 2 (3.97)
vy vy
Then
2P, 5 T3
= e i i / i -
H ey )\Vl Jcos“g + sin“gcos™ Y (cosy + tangsind - €) (3.98)

This can be maximized with respect to ) by setting

aH
- =90
3% (3.99)
2P -1/2
aH _ o) _ 2 .2 2 .2 . .
_BTb- _ﬁkvl{ <cos 3+sm gcos ;p) sin ﬁcoslbsml,b(cos;p+tanasmq,+€)
2 2 g \l/2
+ (cos ,3+s'm gcos lb) (-sindHtanacosqb)} =0 (3. 100)
2P°)‘V1
Divide by , then

cm(coszg+s'mzﬁcosz¢ /2

- s'mzpcosws‘mzp(cosw+tanasinw+e) + (cosz_3+s‘m23coszab)(-sin¢+tanacos¢) =0

(3.101)
or
.2 2, . .2 .2 .2 . 2 .
- sin“pgcos”YPsind - sin” gtangcosyPsin®y - esin”gcosPsiny - cos” gsiny
+ 2 .2 2, .. .2 K I
cos” gtangcosy - sin”gcos“Psing + sin“gtangcos Y = 0 (3.102)
Rearranging

simb(25'm23c052¢b+coszﬁ+€sin23cosw) = (c052B-Sinzg)tanacosa,b+25inzptanacos31b
(3.103)
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Squaring
(l—coszd) )(4sin45coszd)+4sin23cosz3coszzb+cos43+2e sin23(2sinzﬁcoszzp+coszfa)
+ezs'm4gcoszz,b = (cos2ﬁ—sinzﬁ)2tan2a cos2¢p+4sin23tan2a (coszg-sinzp)cos42b

+ 4sin® gtangcos®y (3. 104)

Rearranging, finally,
4sin49(tan2a+1)coss¢ - 4de s'mpcossw
+ 4Esin23tanza(cosgﬁ-sin2 5)—s'm4g+s'm23c0523-e2sin4B]cos4w
+ e(4s'm43 - 2s'1r125c0525)c:osSl»'J
+ [(coszﬁ-sinzR)Ztanzq-fls'mzBcoszﬁ+cos43+s 2sin4a_! coszlb
+ .2 2 4 _
2esin"gcosgeosy - cos'g = 0 : (3.105)

Is the minimum time solution really desirable for this problem? We think
not. If power were not a function of the control, the optimal thrust direction
would just line up with the projection of the primer vector on the él - §2 plane.
But for the Hamiltonian of Eq. (3.95) § becomes a function of Xm’ This has the
effect of biasing the control so that the thruster is operating in a region on the
curves of Fig. 3-3 where cosg is greater than it would be if >‘m were not included.
This reduces the mass of the spacecraft by throwing fuel away in order to reduce
the flight time. In fact, if fuel could simply be dumped overboard instead of going
through the thruster, the time optimal requirement would be to dump fuel until
)‘m = 0, Since the formulation here does not allow separate dumping of mass, a
bias on the control is required to reduce mass. Although minimizing time is

important, dumping fuel to do so seems undesirable.

So what happens if the part of the Hamiltonian containing >‘m is ignored and
instead we maximize
2P
o

H’ = = - 1-sin“gsin”Y (lecosw + szsinlb) ? (3.106)

In the él - §2 plane one can see that this is equivalent to maximizing the projection

of the vector (cosy, siny) /l-s'ngs'm ¥ onto the _5;1 - :13_2 compounents of the primer
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(xvl B )‘VZ)' The locus of the first vector is just that shown in Fig. 3-3. Geomet-
rically, a typical solution is shown in Fig. 3-4, The maximization of H’ can be
carried out using analytic geometry by considering the cosy curve as a parametric
function of ¢ and noting that its slope must be the negative of the inverse of the
slope of the )\V1 - sz vector, Thus, if

x(¥) cosy 55—
: J1-sin®gsiny (3.107)
y{) siny
then
9% 1 XV1
g.z = d = T e
dx dx tane X (3.108)
dy V2
Fig. 3-4 Geometric Calculation of %
where
ax (-1+s'mzﬁs'm21b-sin23c052§b)s'm{b (3. 109)
dy 5 .

(l-sinzgsinzd))
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and

dy . (1—Zsln235in2¢)cos;,b (3.110)
d 5 5 172 .
(1-sin“Rsin“yP)

€©-

Thus
.2, .2 .2 2
tang = ~ZSin Bsin visin Rcos y (3.111)
1-2sin”gsin™ ¥
Using
siny = —-——2—tan2“" (3.112)
1+tan“d
and
coszzb = —-1—2-— (3.113)
1+tan™yP
then
.2 2 2
tang = 1+sin R+coszptan2¢ tand (3.114)
1+tanyp -2sin” Btan™ P
or
2 3 .2 2 .2 _
cos Btan"P+(2sin“g-1)tanatan”yP + (1+sin”r)tanyd - tane = 0 (3.115)

Dividing through by coszfe yields
3 2 2 2 2 _
tan"y + (tan” f-1)tanetan™y + (2tan“B+1)tanyd - (1+tan"B)tane = 0 (3,116)
'

It is also possible to obtain the control by setting g_I—_I_ = 0. The procesure
is the same as resulted in Eq. (3.105) and in fact an equation in cosy can be
obtained directly from Eq. (3.105) by setting ¢ = 0. Thus the coefficients of all
odd powers of cosy are zero. The resulting equation is

4sin4B (tan2a+1 )cosszp+4s'm2 R (tanza— 1 )(coszﬁ -s'm2 A )cos4zb

+[(coszﬁ-sinzﬁ)ztan2a-4sin23c0323+cos43)cos2w—cos48 =0 (3.117)
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The cubic equation in tany of Eg. (3.115) can be shown to be equivalent

to the cubic in COSZ{D of Eq. (3.117) by substituting tany = yl-cos p into

cOSy
Eq. (3.115), then removing the square root,rearranging and squaring. Collecting

the terms and making certain trigonmetric identifications yields Eqg. (3.117).

This control does not dump fuel to minimize time, and it is much easier to
calculate since the solution to the cubic can be obtained analytically, unlike the
solution to the sixth order polynomial. Analysis of the worst case example (see
Appendix E) indicates that the time penalty in using this suboptimal control is
small while resulting in a fuel savings. Since it is also much easier to calculate
and thus saves computer time, it was decided to use this control law for the present
study.

This control law has some interesting characteristics. Fig. 3-5 shows
curves of constant ¢ superimposed on the curves of Fig. 3-3 for one quadrant,
Thus for a given g (sun angle) and ¢ (primer vector angle) the resulting $ is
just the angle made by the line from the origin to the intersection of the appropriate
@ and g curves. Note that in this quadrant § is always less than & except for
B = 0 when y = o or for g < 45° and ¢ = 90° when also ¢ = 90°; when g = 90°,
b~ 45°as g — 902, For R > 45° as & crosses the §2 axis there is a jump in ¥
to a symmetrical position in the adjoining quadrant. If & remained aligned with
the §2 axis for a finite time a singular arc results, Since it would be nonoptimizing
(in terms of H’) to operate on the concave portions of the curves, a chattering
solution is required as § jumps back and forth in the two quadrants in infinitesimal
time yielding a resultant thrust vector along the 32 axis, In practice this solution
will probably never be required (as well as being impossible to implement if it
were). Jumps in the control direction can and do occur however. The locus of
points on Fig. 3-5 at which a jump occurs is given by an arc of a circle of radius
J2/2 and center at the origin, This radius represents the minimum power. The
p at which a jump occurs is related to g by the relation

9 sinZR -%—
cos" P = — (3.118)
sin“g

In practice, then, 8 and ¢ are calculated and the coefficients of Eq. (3.117)
are obtained. The cubic equation can then be solved analytically. Appropriate
modifications must be made if the tangents are very large or infinite,
There are three roots to the cubic equation and if all three are real

they correspond to six possible values of § in a 360° range. These
correspond to various maxima and minima, By inspection of the form of
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the figures produced by Eq. (3.107) there is apparently only one solution which
can lie in the same quadrant as ¢ and at the same time maximize the projection
onto ()Wl ) )‘VZ)' Thus we can obtain the control angle  which can then be

substituted into the equations of motion. This calculation must be made at each

guadrature point on an orbit.

Fig. 3-5 Lines of Constant Primer Angle (&)

and Sun Angle (g)

There are certain special cases of values of ¢ and g that must be considered.

If tana = 0 the cubic reduces to tan3¢v + (2tan2ﬂ+1)tanzb = 0, The correct root is

then tany = 0 and thus ¢ = . If tang is infinite, first divide Eq. (3.115) through
by tan& , then set tang equal to infinity, which yields

(2sing-1)tan?6 -1 = 0 (3. 119)
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or

tanzz,b = ———12—— (3.120
2sin"R-1
or
2 2sin®g-1
cos" Y = (3.121)
sin" R

This is valid if sinza >% . Otherwise tanid equal to infinity is the correct root
of Eq. (3.115) and y = g (= 90° or 270°). If cos?R = 0, then Eq. (3.115) reduces to

tanatanzd) + 2tany - tanee = O (3,122)

From the binomial theorem

S—
tany = Z1lg/l7tane 1 otly (3. 123)
taneg 2 2

If -90° < & < 90°, the first root is correct and P = % o. If90° <« & «270°, the
second root is correct and = %a +90° if 90° <« & < 180° and g = % o - 90°if
180° <« & < 270°, If 00523 = 1 then tany = tana is the correct root and § = a.
Because of the numerical inaccuracy of using 3 quadrature over a region
which contains a discontinuity in the integrand, it is best to calculate possible
jump points and thendo separate quadratures between these points. A jump in the
thrust direction occurs when the projection of the primer vector onto the
-é-l - _é_2 plane passes from one side of _?32 to the other. At the time of crossing
the projection is perpendicular to §_1, and also perpendicular to gs' Thus the

condition for a jump can be written
L
|z

An actual jump occurs only if the constant B curve is concave, i.e., |cosB |<-“12Z .

(Mha] - M =) & -0 (3. 124)

2

For the results given in this report the method used to find the values of F for
which a jump might occur was to divide the 360° range of F into small equal
intervals and then to check to see if there was a sign change of Eq. (3. 124) from
one side of an interval to the other side. If so, the exact F within the interval
for which Eq. (3.124; was zero was found by using a nonlinear function root
finding routine (an IBM scientific subroutine using a Mueller's iteration(27).
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The equation for the jump points can be obtained as a sixth order poly-
pomial in cosF. This equation is very tedious to derive algebraically and in any
case must be solved by an iterative procedure and the roots tested. Thus it seems
reasonable to use the search procedure. The sixth order polynomial in cosF can
be obtained by writing a form of Eq. (3.124) in _f;, _'é_, :\Kcoord'mates where g is
along the spacecraft radius vector, Ev_ is perpendicular to the orbit plane and
§=w xk. If A and X are the components in the § and W directions respectively,
then

Y X
[—R L 4R —r}—]x +R A =0 (3.125)

X r y s z "w
where _R;r = (RX, Ry’ RZ) is the sun's direction in equinoctial coordinates and X1
and Y1 are the spacecraft position in the equinoctial frame, and r is the radial

distance. Using the results of Appendix C

2 .2 GY., 2 GX, (A
_2a/1-h%-k . 1\ . 1\ Ak
R SIS Y <rX1 - — >__“ + ("Y1 + >_“ (3.126)
(k) , -h, ) 2. 2 ,
- h Tk _ (1+p~+q7)
Ay T g @Y PX]) F g (YA X ) (3.127)

The quantities Xl’ Yl' Xl’ Yl' r all contain cos F and sin F. Substituting into
Eq. (3.125), multiplying through by r and eliminating sinF by rearranging and
squaring results in the sixth order polynomial in cosF. Three of the roots are
introduced by squaring so there will be at most 6 values of I for which there may

be jumps.

If the eccentricity is zero, h=k =0, and a quartic results. In that case

_ a .
)‘s = 2 /; {a)\a + thlnF + )\qcosF} (3.128)
= )R (Wpa®) (\ Liow 4 cos) (3. 129)
W o 2 p q )

There are at most four values of F at which there may be jumps. If in aadition
to h = k = 0 also )‘h = lk = 0, then there is a further simplification and Eq. (3.125)

reduces to

K\ +R
tanF = - —3 7 (3.130)
K, - Ry
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where

RZ(1+p2+q2)
K s ——— (3.131)

4a) a

Thus there can be at most two jumps which are 180° apart for this case,

3.7 Oblateness

In the previous sections we have considered only perturbations to the
inverse square motion caused by thrusting. In this section the effect of oblateness
(12) is considered. Oblateness was considered in Ref. 2 and the equations are
included here for convenience. Oblateness does not directly enter the power and
mass derivatives so only its effect on the orbital element derivatives will be shown

in this section.

The single-averaged perturbing potential due to T, has been calculated in
terms of equinoctial coordinates in Ref. 16 and is repeated in Appendix F. Re is

the equatorial radius of the earth and J, is set to .001827. These formulas enter

2
the averaged Hamiltonian as coefficients of the costate (outside the integral since

the averaging effect has already been accounted for).

If Za indicates the perturbation due to thrust as given in Eq. (3. 72),
then the Hamiltonian is given by

H - xTEJ +Az (3.132)
The state equation is
z = -Z-J2+Z‘-a (3.133)
The costate equation is
~ d3Z .
. BH _ =J T dZ
R A L= g (3. 134)
2z az - 3z oz

The partials indicated by aZJ /3z in the above expression are given in Appendix F.
o =
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3.8 The Shadow Effect

For SEP missions, the thrusting will be shut off while the spacecraft is in
the earth's shadow. The entry and exit angles are needed in order to perform the
averaging integral. In calculating these angles the following assumptions are made.
The shadow is cylindrical; the earth revolves around the sun in an elliptical orbit;
and over one spacecraft revolution, the sun's direction is fixed. The time of
thruster turn-on can either be immediately upon exit from the shadow or after a
delay following the exit from the shadow. The delay time calculation will be
considered in the next section. Calculation of the entry and exit eccentric longitudes

was considered in Ref. 2. The pertinent equations are summarized in Appendix G.

Let F2 refer to the eccentric longitude at entry to the shadow and F1 at
exit (or the thruster turn-on time if a delay is included). That part of the Hamiltonian

proportional to thrust is then

F
N 2
fi-( HsarF (3. 135)
e
Thus
s Fz_'_
x = xsaF (3. 136)
[ Fl
and by Leibnitz' rule
Fa
x-- (iﬂs+H§§>dF-[d_F_Hs] +[% us] (3.137)
- YF | a% 3X dx F, ~dx F

The calculation of g—g is discussed in Appendix G and the modification needed if

F1 includes a delay ®ffect is discussed in the next section.

3.9 Delay in Thruster Start-Up After Leaving Shadow

Some orbits of the spacecraft may pass through the shadow of the earth.
During this period the thrusters are assumed to be turned off. The shadow entry
and exit points are derived as the solution of a quartic equation and given in
Appendix G under the assumptions of a cylindrical shadow and stationary sun over
one orbital period. It was assumed in Ref. 2 that the thrusters were turned on
immediately upon leaving the shadow. A more accurate model is to include a delay

in turn on time. This delay time is the sum of the time for the solar array to
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achieve operating temperature and the time for the thruster to achieve full thrust

after the solar array power is applied to the power processor.

The model used is taken from Ref. 29, The thruster start-up time is
modeled as a quadratic function of time in shadow. The solar array temperature
adjustment is modeled as a constant of 2 minutes. The total delay is then just

at?tbr +c (3.138)

iy

where T is the time in shadow. If v and Topare in minutes, then

_ 1
a =
. -15
b 7700 (3.139)
c = 12
This function is plotted in Fig. 3-6.
4 i $ 1 4 i i 'l N J
H ¥ T T T L] 1 1 L4 T
174 4

DELAY TIME (minutes)

114 -
I L 5 ! 1 $ l
} " -+

10 20 30 40 50

-~

4

TIME IN SHADOW (minutes)

Fig. 3-6 Delay in Thruster Turn-On as Function
of Time in Shadow
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The shadow entry and exit eccentric longitudes are known. From these the
time in shadow is obtained from Kepler's equation. In equinoctial elements the

time in shadow is

N o . . 1
T = l:(Fex - Pen) - k(smFex - kmFen) + h(cosFex - cosFen)]H (3.140)

where

n o= /4 (3.141)

The shadow delay time can then be calculated. We desire to know the eccentric
longitude at which the thrusters are turned on, thus given the exit angle and the
delay time, Kepler's equation must be solved for the eccentric longitude F_ at

turn-on. If

C = n1tF

. 1 + Fox - ksinFgy + hcosF gy (3.142)

Then the required angle satisfies

L

F = C_+ ksinF_ - hcosF (3.143)
(o) T T

This transcendental equation can be solved by an iterative procedure. Let

F =C (3.144)

F = C_+ ksinF_ - hcosF (3. 145)
o) n n

n+l
This iteration will converge since k2+h2<1. The iteration can be halted when

|F .- F,l <€ (3. 146)

n+l

12

where € is some small number which we set to 10~ Thus the eccentric longi-

tude at thruster turn-on is obtained.

dF
For the costate equation, Eg. (3.137), g—g- is needed at turn-on, dgx
dF - -
and zen were already obtained (App. G). F,_ satisfied Eq. (3.143) so
dF dC
el L —2 (3. 147)

1—kcosFt—hsinFt dz
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dC atT dF

o _ 3n _ e ex
az _BE tT +n —B_Z_ + (1 kcosFex hsmFex) z (3.148)
. _ 2
Since tT = ar +bT+c
at
T _ 37
—a? (2aT +b) -a—z (3. 149)

From the definition of v in Eq. (3. 140) is obtained

dF
ex

[eY]
n
= R

dp
_ b \ . . en-_T3n
l:(l kc’osFex hsmFex, (1 kcosFen hsmnFeq) dz ] n 3z (3.150)

Inserting these partials into Eq. (3.147) yields

dFt 1 dFr X dp
—L = 2 [2artbtlirg, - (227 +b)r %+ (tp-ar+p)r ) )] 3.151)
en T
d_z_ rT d_z_ dE 3z
where

rpo S 1 - kcosFT - hs'mFT (3.152)
en © 1- kcosFm1 - hs‘mFen (3.153)
Foy = 1- kcosFex - hs'mFex (3.154)

and since n is only a function of semimajor axis by Eq. (3. 141), the only nonzero

element of 20 s
9Z

(3.155)

pis

- _3
3a P

3.10 Power and Fluence: The Damage Function

Power degrades as a function of accumulated fluence which is represented
by a damage function, D(N). This damage function is given in Section 4. To
calculate the costate equation, its partial derivative is needed. The damage

equation is stated here,
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DV = explc, + c2(10g10N>121 (3.156)

where N is the accumulated equivalent 1 MEV electron fluence and C1 and C2 are
constants for any particular spacecraft, but are functions of cell thickness and

base resistivity as indicated in Section 4.3 in Egs. (4.5) and (4.6). Then

i2log, e
aD 10 11
N N C2(1°g10N) D(N) (3.157)

This form of the damage function can cause numerical difficulties at the
initial orbit if the initial N(t ) is set at too small a value and the integration time
step is large since QK looks like a gamma function with very high values for

N < 1010. Typically, a value of pN for a low orbit would be around 101 , so that

it would be reasonable to pick a starting value greater than 10 . In the coding

.,

for the program, if the initial N is zero, then a revised initial N is calculated

which is the ''average'' of the amount of fluence encountered on the first orbit, i.e.,

Nt ). T
= o (3.158)

ZI
o=
T

where TO is the orbital period. Facility also exists for inputing a nonzero initial

value for N.

3.11 The Flux Equations

An analytic equation for the flux as a function of spatial coordinates is

constructed in Section 4. 2. It is repeated here, with slightly different notation.

N = exp( ¥ A si’l) (3. 159)

g o

i=1
where flux (N) is in equivalent 1 MEV particles,
S = In(R~1) (3.160)

where R is the radial distance from the Earth's center in units of Farth radii, and

5 2 .
A = T K .. LAT lsg™ (3.161)
i i,j*5m
i® =1 m= 0
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where LAT is geographic latitude in degrees, SH is shield thickness in mils and

the Ki, +5m

up to four equations like Eq. (3.158), two for the front shielding, two for the

are coefficients given in Tables 4-4, 4-5, The total flux is a sum of

back shielding, one of the two for electrons, one for protons. If the back shielding
is infinite then the sum will have only two members. If the front and back shielding
are equal only one equation like Eq. (3, 158) need be calculated for protons and one
for electrons and then to get total flux, their sum would be doubled., In the
remainder of this section we will consider only a single equation like Eq. (3. 158).

Since the shield thickness does not vary for a particular spacecraft the sum
involving SH can be done once initially and Eq. (3.161) can be rewritten

5 g
A = % wi i=1,...,5 (3.162)
i & ij
j=1
where
K. = [ X SHm]/(DTR)j_l i=1 5 j=1 5 (3.163)
i m§0 i, j+5m yeens j heres .

Here w is latitude in radians, DTR is the degree to radian conversion factor,
Thus Eq. (3.159) can be calculated at any point on the spacecraft orbit as a function
of latitude, radial distance, and the constant coefficients of Eq. (3.183). The

radial distance is just
R = X7+Y (3.164)

where X, and Y1 were given in Eq. (3,19) and (3. 20), The latitude is the arcsine
of the angle between the vector pointing through the north pole and the spacecraft
radius vector. This is given by

w = sm’l(fs X, téeg Yl) (3. 165)
R

where §3 and §3 are the third components of the unit vectors given in Eq. (3,4).
They are functions only of p and q whereas Xl' Y1 (and R) are functions of a, h
and k.

46



In order to calculate the costate equations the partial of flux with respect

to the orbital elements must be known.

Y 5 3A . .
aN | i i+l i-2,. _;y3u ~
z Nji§1€;;—u +T A 04 1)—3-—2} (3.166)
where
A 5 .
i _ j-2,. AW
—_— = K..w -1) = 3.1867
Y3 E‘z i § )BE (3.167)
J
Let
5 9
E = y K. w1 (3.168)
i L i]
j=2
Then rewriting Eq. (3. 166),
A i [ > E w2z 4 2 A w22 (3.169)
dZ ' 'L;Zl i 3z i=g | 3% ¢ ’
Now
3 3Y
au - L _(x Ly __1_> (3.170)
2 (DR 1oz 1
3%y aYl
For h and k, Y and 5z were given in Appendix B. For the semimajor axis, a,
au . R (3.171)
aa {R-1)a

l.atitude is not a function of a (the a's in the numerator and in the denominator

cancel out in Eq. (3.165))so that %‘;’— = 0, For the other elements

3X, . aY¥y ., af a8
dw . _ 1 { 1 5t 1g3+X1-——3-+Y1-—-§
32  Rcosw 0% dZ 9z 32
(X, f,4Y,8,) , 03X Y
1°3 “1°3 1 1
2 (%, — +Y1-a—5—>} (3.172)
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where X, and Y, are functions only of hand k and the partials of _f_ and g were given
in Appendix D. Here the necessary components are

?‘% il ;;fz%?(qéf Wa) (3.173)
Ea% = -l—fg;g g5 (3.174)
;g;? i} lszz(i—q*z‘Eg (3.175)

aaéq3 ) 1+p§+q7 (- pfy + Wy) (3. 176)

This completes the terms given in Eq, (3.105),

3.12 Summary of State and Costate Equations

In this section the full seven dimensional state and costate equations are
summarized. We will assume that we have analytic functions for flux and the
damage function without specifying their exact form. Only thrusting in an inverse
square field will be considered. The effect of oblatengss is easily included by
adding 212 to the orbital element equations and - Lz %:z;_Jz_ to the orbital element

adjoint equations, where these expressions were given in Section 3, 7 and App. F.
We can consider a seven dimensional state composed of five orbital elements

2

mass, and accumulated particle flux.

(3.177)

e
1l
Zz g In

Since m and N are varying slowly the first approximation of these quantities as
well as the orbital elements can be considered. The unaveraged state equations

are
z = %E(z. t, F,u) M(z, F)i (3.178)
_ _2P .
R A (3. 179)
C
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L

N = f(z,F) (3.180)
and

n PO D(N)

P = e cos[g(z,0)] (3.181)
S

For a particular orbit P is assumed to be zero for eccentric longitudes between
F2 and Fl where F‘2 is the eccentric longitude at entry into the earth's shadow
and F, is the eccentric longitude either at exit from the shadow or after a turn-

on delay time after leaving the shadow.

The unaveraged Hamiltonian is

H = \x = H +H_+Hy (3. 182)
where
H, = A% (3. 183)
Hm = A_m (3. 184)
Hy = AN (3, 185)

The averaged Hamiltonian is

~ m . a — — ™ _ —_——
H-(" HE&XELFWsEEFar = (" 2@ B F, 0
o il 12
(3.186)
_- . - = 2 N | S, - —
+3%_mx,t, F,u)s(h,k, F)dF +§ A N(z, F)s(h, k, F)dF
m = = : g N -
The state equations are
~T _F L F : _
- AL -V %E T F, Dsm, K FaF - 2 C 2pg, T F,OM@E Fs, k, F)aF
a-’ﬁz : F1 mc F1
(3.187)
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¥

@ =28 = ( 20E T F, DsE K FIaF - - —lgngp(g,EF,@sm,E.F)dF
Mym  F ¢ vF, (3.1883)
71 -~ .
N-2H - \ N, F)s@,k, F)dF (3.189)
BAN .‘)_ﬂ

The averaged Hamiltonian can be broken up into three parts

H=H+H +@ (3. 190)
Z m N

where

5 - %'y (3.191)
z —z -

q = = (3,192
H_ Xmm )
. = L.N 3,193)
HN >‘NN (

The costate derivatives are

F2 .
T . _3H . _ g 3T22 g tFrw . shEF)
3z Fy 3z

+ <XTi(3E,'E,F,G) +3_ & LED2E GE PR
—z == - m = - ;

X EE T Fy D)+ X_mE,T, F,u) s K F,)

+2 ) hEEE, D+ Y& LR |sEEF)

” . .
-0 B E @ FsEE R + X NG F) 2 BE VA (3,504
-1 dZ oz
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This can also be written

F .
L2 _ 32 ~ -
sT-.0 (VM ZEnrDs®EP)+H &)Y ,LFW
-7 ) sz - = - z "2z -
+H_ (E.Km.T.FE’] ——'——-BS(E'E_’F)dF
dz
dF — = - s — 2
- = (8,EX,. LF, 0+ H & LF0sBEFy
ZF
2
dF - - S — 2~
+El (HZ@,LZ,LFI,E) 4 Hm(i,im,t,F,u)>s(ﬁ,E,F1)
Z'F
1
3N(Z, F) .
Txd T2 sGE R e nE m 0D Ve (3105)
Jom oz 2z
Next
~ F,
_ _ 2 r ~T — o —_ —
A - o= =5\ X, P&, T, F,uM(z, F)s(h, k, F)dF (3,196)
am m ¢ F1
but this just yields
il _ Hz
Am T — (3.197)
m
Finally
R 2 2RPEREERD UMEFE X, oo
= - 2 - 'E§ { -_c_}sm,k,F)dF (3. 198)
3N “Fy aN m ’

The dependence of P on N comes from the D(N) factor, the damage function.
Thus simplifying
_ dD(N) (H + I_Im)
aN D(N)

'):N (3. 199)
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3.13 Spacecraft Parameter Output

It was desired to have the option of printing various spacecraft parameters
at various points on an orbit. These parameters and the method of calculating
them are discussed in this section. The parameters include: in-plane and out-of-
plane thrust angles, yaw, pitch, and roll angles, the panel orientation angle, the

sun incidence angles on the panel and the three contiguous sides of the center body.

A nominal x-y-z body centered coordinate system was defined earlier and
illustrated in Fig. 1-1, The yaw axis, éz’ is pointed along the radius vector toward
the earth, the pitch axis, _é_y is normal to the orbit plane in a 'downward'' direction,
the roll axis, éx is in the orbit plane perpendicular to the radius vector in the

~

forward hemisphere. In terms of the equinoctial orbital frame f, _é_, w,

Y X
e = --Li+lp (3.2
—X r — r B . 200)
-~ - _{\N
C w (3. 201)
X Y
e, = -—Li-Lg 202
e, L T & (3.202)

The thrust acceleration direction is available in the equinoctial coordinate
system. Using the above transformation it can be obtained in the & e, éz system.
The in-plane angle, Si, and the out-of-plane angle, eo, are related to the unit

thrust acceleration direction by

u = cos eo cos °£x - sin eogy - cos eosm 9i§-2 (3, 203)
which is illustrated in Fig. 3-7, whereé = -¢& ande, =-e¢e_.
~r —Z =<h -~y
e
A-h
a
l
-
! - O
. |

1>

Fig. 3-7 In-plane and QOut-of-plane Angles
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Then 8o and e.l can be calculated from

s'meD = —u‘y ) ‘901 5-121 (3.204)
u
cos g, * X (3. 205)
cos ao
u
sing, = - —2 (3.206)
cos eO

If pitch and roll are constrained to be zero then 8 * 0.

The Euler angle order is yaw, pitch, and roll. The thrust acceleration
direction as given in terms of yaw, ¥_, and pitch, @, by

1=>

cosgcosd e +cosgsiny & - singe (3.207)
] %by_x ] !by_y oe,

which is illustrated in Fig. 3-8. Note that the axes are not the same as in Fig. 3-7.

>

Fig. 3-8 Yaw and Pitch Angles
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Since 4 is known :py and ¢ can be calculated from

sing = -u,  |o| sy (3.208)
= uX
cosy_- = (3.209)
y CcOSs §
u
siny, = — (3. 210)
M coSs @

For the pitch constrained case g = 0 and d’y = eo.
For the constrained case roll is assumed to be zero. If there is no roll
constraint, then by a roll rotationand by a panel rotation about their longitudinal
axis the panels can be faced directly at the sun to produce maximum power. If the
roll is accomplished before the panel rotation, then the roll angle should be such
that the panel axis is perpendicular to the sun line. The vector along the panel
axis (also the pitch axis) after the yaw, pitch, and roll rotations should have an

inner product with the vector pointing toward the sun of zero. Thus

0
T T T
®RgY)T (4,1 (01" [o] = 0 3. 211)
0
where the yaw rotation matrix is
cosp sind O
[aby] = |-singy cosy O (3.212)
0 0 1
The pitch rotation matrix is
cosg 0 -sing
(6] = 0 1 0 (3.213)
sing 0 cosg
and the roll rotation matrix is
1 0 0
[#] =| © cos ¢ sing (3.214)
0 -singo cosgo
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Since zpy and 8 are already known let

RI

X
R’ |= RXYZ (3.215)
5 |7 o1t IRg
RI
Z
and then
R}jcosU*»Rz's'mc = 0 (3. 218)
Let
_Rl
tang = —3 (3.217)
RI
Z

with a 360° range.

We assume the panel orientation angle is zero when the normal to the panel
is pointed in the z direction. Since for the roll free case the panel axis is perpen-
dicular to the sun direction after roll, the panel can be faced directly at the sun.

If roll is constrained to be zero, the panel will be rotated to minimize the angle

between the normal to the panels and the direction to the sun. Let
Rl/
X

Ro | = [l (0] W] Ry (3.218)

RI/
Z
which is the sun direction in the rotated coordinate frame. Since the normal to the
panel is nominally along the z direction it must be rotated by an angle given by

cosy = R (3.219)

for the unconstrained case, The sun incidence angle will then be zero. For the
constrained case, we want to maximize the cosine of the incidence angle. This is

given by

cosip © COS R, + sing Ry (3.220)

which is maximized by setting

RH
B - — (3.221)

/RI/ 2 + R// 2
X z
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R//
sinp = —_ (3.222)

,R’/E + Rllz
X A

and then

H = -1 " "
lp = cos /RX +Rz (3.223)

The above three formulas are valid for the uncongtrained cage also gince then
“=0andi_ = 0°,
RY P ,
After the three Euler rotations the direction of the sun in the rotated system
is just (R}';, R;,, Rg). These are the cosines of the angle between the normal to

the sides of the spacecraft and the spacecraft sun vector and thus yield the incidence

angles on the spacecraft surfaces.

Some additional quantities are also calculated such as the sun angle in x-y,
i.e., the angle which the projection of the sun vector on the :é_x, éy plane makes
with the _'é_x axis and the thrust angle § defined as ¢ = zpy - sun angle., This is the
control angle used in Section 3. 6.
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SECTION 4

RADIATION AND POWER LOSS MODEL

4,1 Introduction

Solar cell degradation models are an integral part of low thrust solar electric
spacecraft trajectory calculations. For these missions the thrust magnitude decays
as the solar cell power is degraded by exposure of the cell to energetic trapped
particles. Solar electric spacecraft trajectory computer programs include both
codes that accurately simulate a mission and codes that optimize trajectories. An
example of the former is the program SEOR(s) which uses a ?:Seé?iled radiation

degradation calculation based upon the models of Obenschain . The code described
in this report and its predecessor in Ref, 2 are examples of trajectory optimiza-
tion codes. These two types of codes place different requirements on the model used
for radiation degradation calculations. For simulations the computational goal is
maximum realism so that an accurate assessment of the mission.requirements

can be made. For optimization codes the goal of maximum realism is maintained,
but the constraint of maintaining tractable run times imposes severe limitations on

the degradation calculations.

There are two basic types of degradation models which have been constructed:
Those that recall basic NSSDC (National Space Science Data Center) subroutines for
the magnetic field and spectral flux and determine the degradation integral at each
trajectory sample point; and those which establish a data file of orbital average
degradation. An example of the former is the highly accurate and comprehensive

degradation calculation used in SEOR(S).

The SEOR type procedure whereby the
fluence is calculated during the trajectory integration via the calling of several
NSSDC subroutines would be excessively time consuming when used in an optimiza-
tion program. For an orbit of 18 sample points, and for 15 energy bands, the
NSSDC subroutines INVARA and MODEL combined with a simple energy integration
code require a computation time of 0.2 seconds Jorbit on an IBM 360. A typical
trajectory optimization run with SECKSPOT may comprise some 50 separate
trajectories and iterate the solar cell degradation calculation 50, 000 times. There-
fore several hours of machine time would be fequired if these calculations were
made by the standard codes. Thus efficiency demands an approach for the degrada-

tion model used in optimization codes different than that frequently used in simulations.
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To achieve this efficiency most degradation models used in optimization
programs are of the data file type. The model in the GEOTOPGI) program is of
this type and is based on a table look up approach allowing only limited values of
orbit parameters between which interpolation is used. Entries in the table are
total 1IMEV equivalent fluence for one orbit, and the table arguments are apogee,
perigee, and inclination. The maximum orbital inclination of the GEOTOP model
is 30°. A simpler model than the GEOTOP model has been used in optimization
codes such as MOLTOP(4).

no provision for changing cell characteristics.

This model is restricted to a single inclination and has

The degradation model presented in this paper extends the latitude range,
provides a continuous and smooth representation of the flux field, and provides for
changing the cell characteristics. And the deficiencies of the above data file models
have been avoided without sacrificing computational speed; a typical trajectory
fluence calculation requires only a fraction of a minute for thousands of sample
points. Further, the model is extremely simple to code, with all required informa-
tion presented in this section. It is based upon two analytic expressions: D(N, BR, TH)
which describes solar cell power degradation as a function 1MEV equivalent fluence
(N), cell base resistivity (BR) and thickness (TH), and f(R, L, SH) which describes
a spatial field of IMEV equivalent electron flux. The parameter R is distance from
the earth's centroid, L is latitude, and SH is cell shield thickness. When the flux
f is time integrated over a sequence of trajectory time steps the result is a fluence
value N which is entered into the degradation equation D(N, BR, TH) to obtain the
fractional power loss. By constructing the model in an analytic format it is possible
to make computation time minimal, and also to allow analytic differentiation of the
flux and power loss for computation of adjoint variables for optimization studies in
codes like SECKSPOT. The analytical expressions for D and f contain a number
of coefficients derived externally from the trajectory optimization code using the
NSSDC codes. A major advantage of this approach is that the coefficients can be
altered to reflect new cell damage data or radiation belt data with minimal effort.
1IMEV flux values are averaged over one day in the model. Although this is not a
requirement for the construction of this type of model it eliminates the requirement
for integration time steps that are a small fraction of a day. The flux field is
defined in geocentric coordinates to eliminate the need for a series of transformations
from geomagnetic to geocentric coordinates. A model dividing the problem into the

same two sub-models was previously constructed by Ives(32)

, however, the Ives
model was tabular in format, limited to equatorial orbits, and did not contain cell

characteristics as parameters.
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4.2 1MEV Equivalent Electron Flux Field Model

Construction of the IMEV flux analytical model is a two step procedure,
In the first step a space of discrete values of IMEV flux is generated from particle
spectral flux data, and from data concerning the conversion of spectral flux to
IMEV flux. The second step consists of fitting the array of discrete points with

analytic expressions by means of a multivariate regression analysis.

Generation of the IMEV equivalent electron field points is accomplished by
a series of integrations. The complete procedure is illustrated in Fig. 4-1. A
symbolic guide to the flow diagram is'given below in Table 4- 1, The process begins
by calling the NSSDC code INVARA(SS) which converts a set of geocentric coordinates
to the magnetic coordinates B and L. B is the magnetic field intensity, and L is the
magnetic invariant associated with particle momemtum along the magnetic field
lines. Seven choices of a model for the magnetic field are available within the code
INVARA. For the work here the IGRF (International Geophysical Reference Field)
option has been selected. This option was recommended by E. G. Stassinopoulas
(in a private communication) of NSSDC as an often used reference model. The time
selected for the field was 1878,
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Flow Diagram for SEP Degradation Calculation’
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Fig. 4-1 Flow Diagrams for Flux Field Calculations
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Table 4-1 Legend for Figure 4-1

Key: Do X, Y Indicates code, activity

@ Input Function
@ Branch point

( e, )° Results

Definitions: R = Radius, i.e., dist. from center of earth
6 = Latitude 7
(] = Longitude
B = Magnetic field intensity
L = Magnetic invariant
EE, FP . = Flectron and proton energy array -
F = Particle flux (spectral) .
SH = Shield thickness
"1 MEV = FEquivalent 1 MEV particle flux
Codes: INVARA = From NSSDC, magnetic field code
7 MODEL = ‘From NSSDC, flux code
MAIN = Calling code, input output, etc.
DAM 12 & Electron damage subroutine
DAM J? = Proton damage subroutine
REGRISS = IBM code for multivariate regression
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The magnetic coordinates B and L are entered into the subroutine MODEL
which computes proton and electron flux within a selected energy interval. This is
done for the entire range of important energies, MODEL(34) is a standard particle
flux code produced by NSSDC, and the fluxes it produces are based upon smoothed
satellite data. The data in MODEL is in block form, and interpolation is used
between defined points. MODEL data is based upon satellite measurements made
in the period 1964-1967. It represents a solar cycle maximum. The energy
intervals selected for flux evaluation are dictated in part by the MODEL code. The
code allows energy increments which vary over the total energy range. Practical
upper limits on energy are set by flux values which are less than unity. Lower
energy limits are set both by MODEL and by shielding considerations. For protons,
the lower energy cut-off is related to shield thickness (SH) by the relationship

EP (MEV) = 1.53 (SH) 56

which was obtained by a fit to the data of Rasmussen(Bs).

For both electrons and
protons fifteen energy steps have been used. The proton energy range is 0 to 40
MEV with the lower end adjusted by the above formula. For electrons the range

used was 0.2 to 4.8 MEV.

Spectral flux values produced by subroutine MODEL are averaged over
longitude to give a one day mean flux. The aim of this averaging is to avoid keeping
time of day in the trajectory optimization code. Retaining time would require
additional coordinate transformations and would add another dimension of complexity
to the field fitting problem. Variation of the flux field with longitude is considerable.
An example of the range of flux values is shown below in Table 4-2 for protons in
the energy range 4-5 MEV.

Table 4-2 Longitudinal Variation of Proton Flux
(particles/cm2 /sec)

Longitude 0o 60° 1200
Flux .135E06 . 540E06 .871E06
Longitude 180° 2400 300°
Flux .393E086 . T94E04 .448E03

These values have been obtained near the proton peak at 2. 2 earth radii, and at a
North latitude of 21.5° The average value is .330E06. Variations with longitude
are caused by two effects, namely the non-dipole asymmetry in the magnetic field,
and the non-alignment of the magnetic pole with the geodetic pole. Generally
asymmetry effects dominate.
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These values have been obtained near the proton peak at 2. 2 earth radii, and at a
North latitude of 21.5° The average value is .330E06. Variations with longitude
are caused by two effects, namely the non-dipole asymmetry in the magnetic field,
and the non-alignment of the magnetic pole with the geodetic pole. Generally

asymmetry effects dominate.

Orbital fluence calculations are little affected by the longitudinal averaging
since the rotation of the earth and the consequent rotation of the radiation belts

does effectively average the fluence,

The next step in the field model construction is an integration which converts
the azimuth-averaged spectral flux data to an equivalent IMEV electron flux, This
is accomplished with a weighting function in a Fredholm integral. Using the

Figure 4-1notation, the integral for electrons) is
re(sH) =  F(EE) DAME(EE, SH) dEE

where EE is the electron energy and SH is the shield thickness, DAME is the
electron weight function and ¥’ is the spectral, longitude averaged flux. The
function DAME was constructed from data taken from the curves of Rasmussen(SS)
however because of the inaccuracy of this type of data transfer the data had to be
restructured. It can be argued by analogy with optical extinction processes that
the relationship between shield thickness and the weight function should be

exponential, i.e.,

log;DAME = - m(EE)SH + log, ;DAME lSH-O

This function was found to fit the data very closely and thus was used for the

restructuring. The functional form for m(EE) was found to be

loglom(EE) = m’.EE+C

where m/ and C were obtained by regression. In terms of energy and shield
thickness, the function DAME can thus be written

m’.EE+C)

DAME = B(EE) 1

The coefficient B(EE) is the appropriate DAME function for SH=0. Again, by a
regression analysis, B(EE) was found to be (to + 3%)

B(EE) 10(1/2. 30)(1. 84+13. 169/,/EE+ 6.92/EE - 22.6 /EE" 7)

63



The equivalent IMEV flux for protons is computed by the Fredholm integral
F/(SH) = \)DAMP(EP, SH) F(EP)dEP

where EP is proton energy. The weighting function for protons (DAMP) was also
(35

obtained from the curves of Rasmussen . In addition to the cut-off energy
described above, the function DAMP is defined by

10-0.72log, EP+4.13 EP, < EP < 11 MEV

DAMP = | 2200 11 <« EP < 46 MEV
lo—l.llogloEP+5.26 46 < EP MEV

Computation of the weight integrals completes the process of generating raw
data for the field model. The raw data is a collection of IMEV equivalent electron
values defined at discrete spatial points with solar cell shield thickness as a parameter.
Graphical examples of the flux field data are shown in Figures 4-2 and 4-3. Points are
generated at 10° latitude increments for the radii listed in Table 4-3, 1MEV flux
was computed for four values of shield thickness, namely 3, 10, 20, 30 mils. The
various combinations of latitude, radii, and shield thickness yield approximately

2500 flux values.

e
-
-,
L
3
o
-+~

=2}

LATITUDE

FLUX (electrons/cm2/sec)
F-S

1MEV

4

L0910

o

a5 6 7
RADIUS (earth radii)

-—
N

Fig. 4-2 Electron Contribution to Total Flux vs,
Radius, SH=10 mils
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1 MEV FLUX (protons/cmZ/sec)

LOQ10
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—
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7...
| LATITUDE
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5.
41
34
]

b 6
RADIUS (earth radii)

-l

Fig. 4-3 Proton Contribution to Total
Flux vs. Radius, SH=10 mils

Table 4-3 Defined Radial Points for Flux Field (in earth
radii with R=1.0 at earth's surface)

For Protons For Electrons

1.10 1.80 1.10 1.70 3.50
1.15 1.90 1,15 1.80 4.00
1.18 2.00 1.18 1.90 5.00
1.20 2.25 1.20 2.00 6.00
1.25 2.50 1,25 2,25 7.00
1.30 3.00 1,30 2.50 8.00
1.40 4,00 1,40 2.75 9.00
1,50 5.00 1.50 3.00 10, 00
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The second part of the flux generating process consists of fitting these discrete
points with analytic functions. A multivariate regression (subroutine STEPR) was
used as the vehicle for the data fitting, and a two step process was used for protons
and electrons separately. In the first step the radial flux points were fit for each
latitude and shield thickness. Since the electron data has two peaks at the inner
and outer Van Allen belts, quartic functions of radius were used. To reduce the
dynamic range of the flux, 1n(flux) was used as the dependent variable. Finally
to force the flux to zero as radius approaches unity, the radial variable S = In(R-1)
was used. Thus the radial functions are of the form
i

i (4.1)

4
In(F) = ¥ A.S
i=0

where the coefficients A.l are functions of latitude and shield thickness. These
coefficients were then fit with a function of latitude and shield thickness, vis.,

4 2 . K
A, T T (Bi.SHJ)CikLAT . (4.2)
k=0 j=0 Y

Substituting (4. 2) in (4. 1) for A.l and taking the exponent thus yields a single analytic
expression for the IMEV equivalent electron flux as a function of latitude, radial
distance and shield thickness. There are four separate Eq. 4. 1's, one for protons
and one for electrons for both the front and the back shielding, and the fluxes from
these are added to obtain the complete flux. The coefficients used are tabulated in
Tables 4-4 and 4-5, however the regression analysis yields directly products of

B and C, and therefore the products are listed instead of B and C. We redefine Ai

as follows:

5 2

A = ¥ T K .
L j=1 m=0 i, j+om

LA lsp™ (4.3)

This field model is not completely general. In the latitude region 50° to
60° it is valid only for R - 1.5 earth radii. In the region 60° to 75° A is
restricted to R > 2.5. The restrictions stem from function fitting problems and
not from the data. Hopefully they can be removed with improved function choices.
Above a latitude of 75° the field is set to zero in accord with the zero flux output
from subroutine MODEL,

66



i=0

i=2

i=4

Table 4-4 Expahsion Coefficients for IMEV Electron Contribution to
Total Flux (Second line starts with K(6) etc,)
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Table 4-5 Expansion Coefficients for Proton Contribution to
Total Flux
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Over the defined region of R, LAT, SH space the field accuracy is as follows:

For protons the mean deviation of the value predicted by Eq. (4-3) from the MODEL
value at the defined R,LAT points is 5.6%. The average of the absolute value of

the deviations is 28%. For electrons the mean deviation is 1. 2% and the average
absolute deviation is 25%,

4.3 Power Loss Model

The second part of the two-part analytical model is an expression relating
1IMEYV fluence to fractional power loss. The data for this expression is provided
by the curves of Carter and Tada 6 , and it can be fit closely by an expression of

the form
InD = C, +C,[log }:,lez (4. 4)
1 2 10 *

Here D is the fractional power loss after the cells have been subjected to fluence
¥ N (£ N in units of IMEV equivalent electrons/cmz/sec and is summed over front
and back shielding and electrons and protons). Constants C1 and C2 are functions
of cell thickness, and a simple quadratic has been found to adequately represent
this variable. Although variations in cell base resistivity have a relatively small
effect on the degradation function, the effect is represented in the Carter and Tada
data. Two sets of degradation curves are presented, one for base resistivity 1 to
3 cm, the other for 7 to 13()cm. We therefore provide two sets of functions for

C1 and C2. TH is the cell thickness in mils.

C, = [0.22647 +0.05217 TH - 0, 00443 (TH)?70. 1
1-3pcm (4.5)
[+ 05151+, 03641 TH-., 00144 (TH)27(-1071%)

Q
"

[0.04914+0, 07056 TH- 0, 00435 (TH2] 0.1
7-13Qcm (4.6)
[-0.05118+0. 04517 TH - 0, 00156 (TH)2}(-10"1%)

@]
I

Q
M

The C values are defined for cell thickness in the range 4 to 14 mil, and D is valid
for fluence values above 10! (>0,1% degradation).
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4.4 Conclusions

Since trajectory optimization normally involves the evaluation of several
quantities which are functions of spatial coordinates at a sequence of time steps,
it is a simple matter to apply the analytic degradation model described here. At
each sample point in the trajectory the flux function (4, 3) is evaluated, Multiplication
of the resultant flux by the sample time step yields an incremental fluence, and
these are simply summed up to a given sample time to provide a total fluence which
is used in (4.4) to find the power loss. Since this process involves the evaluation
of only two analytic expressions it requires very little computation time. Modeling
of the IMEV flux field as a separate entity allows simple consideration of both
front and back shielding. The various coefficients in the analytic expressions
relate to specific cell damage data, however having established the general
analytical characteristics of the model, it is a simple matter to update the co-

efficients using the latest cell damage data,
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SECTION 5

NUMERICAL RESULTS

Two sets of cases will be discussed in this section. The first, which assumes
an inverse square gravity field and thrusting with no oblateness, degradation, or
shadowing was also reported prev'Lously(ZS). This set includes both attitude
constrained and unconstrained examples. The second set includes the new degrada-
tion model reported in Section 4 as well as other perturbations. All examples in
this set include attitude constraints. All cases were run on an IBM 360/75 computer.

The code is in Fortran IV using double precision.

5.1 Examples Without Power Degradation

Several SERT-C type cases were run. All of these assume only the inverse
square gravitational field with or without attitude constraints. No oblateness,
shadowing or power degradation due to radiation are assumed. Comparisons are
made between the unconstrained case and attitude constrained cases while varying
launch date and time. A particular constrained example is looked at in greater
detail.

Table 5-1 summarizes the characteristics of the SERT-C type cases. The
final orbit is geosynchronous. These cases were run with a 10 day time step and
averaged around an orbit using either two 4 point or two 8 point quadratures., The
variation in resulting flight times and AV's from using sets of 4 or 8 point

quadratures was less than . 5%.

Table 5-1 SERT-C Example Data

H

9528.16 km
Initiale = 0,
Initial i = 28.3°
Initial mass = 849.6 kg

Initial a

Maximum power = 4, 828 kw
Specific Impulse = 2900 sec
Finala = 42164.km
Finale = 0
Finali = 0°
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The effect of varying the time of launch during a day for the constrained case
can be shown by varying the initial longitude of the ascending node. Changing the
launch time affects the sun-spacecraft geometry and therefore the resulting
trajectory. This effect is illustrated in Fig. 5-1 for a launch date of March 21.5, 1980.
The flight time (tf) and pV are plotted versus initial longitude of ascending node.

The dotted line indicates the unconstrained value. The flight time varies by about
18 days with a minimum of 130 days around  * 135° compared to the unconstrained
value of 124 days. The range of increased flight time over the unconstrained case
is from about 5 to 20%. The uncounstrained pV is 4.65 km/sec and the constrained
cases vary from less than 1% to about 12% greater. In the minimum case about
15% of the initial mass was consumed. This was only about .6 kg more than the

unconstrained case.

[l 'l 1
T T T

-+

i + I
L] L] ] )

0 90 180 270 360

LONGITUDE OF ASCENDING NODE (©)

Fig. 5-1 Flight Time and jpV Versus Nodal Angle
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Four cases of the attitude constrained example were run varying the date of
launch. The initial longitude of ascending node was 0°. The percent increase in
flight time and pV over the unconstrained case is shown in Fig. 5-2. For any date
of launch a curve such as shown in Fig. 5-1 would result. Although an absolute
minimum time would occur on a particular day, it is expected that by varying the
time of launch during the day that a nearly minimum flight time would be found.

In summary, for this example, for appropriate selection of launch date and time the
attitude constrained case results in as little as a 1% increase in AV and a 5% increase
in flight time over the nonconstrained case.

20% ¢+

15% ¢+
te

1021

5% -+
by

Dec. Mar. Jun. Sept.
21.5 21.5 21.5 21.5

Fig. 5-2 Flight Time and aV for Various Launch Dates

The o = 135° case which results in the lowest flight time and pV will be
looked at in greater detail, including further comparisons with the unconstrained
case. The semimajor axis and inclination histories for these two cases are
plotted in Fig. 5-3. The maximum yaw angle is plotted in Fig. 5-4 for the two
cases. The yaw deviates from zero by plus and minus approximately this same
amount over one orbit. For the unconstrained case the maximum yaw occurs when
the spacecraft is at the line of nodes. As the spacecraft nears geosynchronous
orbit the maximum yaw increases to over 90° for the constrained case, but to
somewhat less, 73°, for the unconstrained case. Since only discrete points every
15° were printed out, the actual maximum may have been slightly higher than
plotted. For this circle to circle transfer the pitch angle for the unconstrained

case is always zero,
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Fig. 5-5 shows yaw plotted as a function of eccentric longitude for the initial

and the final orbits. Because of the coupling with power, the maximum does not

occur at exactly the line of nodes (which would be 135° and 315°) as in the uncon-

strained case. There are two jumps in yaw of about 60° for the final orbit. This
will be discussed further,

100
80 4 \\\ FINAL
vaw N
(©) 4 - N\
/ \
01 / INITIAL
v/ ORBIT
-40 3,7
- ,’
-80 + ,,’
P

: 3 4 : 4 : 3 . I
0 60 120 180 240 300 360

-+

ECCENTRIC LONGITUDE (°)

Fig. 5-5 Yaw for Initial and Final Orbits

Fig. 5-6 shows a plot of the ratio of power to maximum power versus
eccentric longitude for the initial and final orbits. For the initial orbit the power

is near maximum for nearly the entire orbit, dropping to a minimum of . 91 but

with an average of . 98. For the final orbit the minimum reaches . 707 which is the

absolute minimum possible and which occurs at a jump point of the control. Even

50, the average power ratio is over .9. The two other relative minimums for each
orbit occur near to the minimum and maximum of the primer vector angle (g) (and
also the thrust angle, ).

1.1
Lo INITIAL ORBIT

9 f \ ’ - “ ! att

PP \ / \ /
0 \\ Y [} 4
- \ ’/I\-FINAL ORBIT N
\ BN
7 + - - 4

0 60 120 180 240 300 360
ECCENTRIC LONGITUDE (0)

Fig. 5-6 Ratio of Power to Maximum Power for
Initial and Final Orbits
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In Fig. 5-7 are plotted the primer vector angle (&), the thrust angle (),
and the sun angle (g) for the initial orbit. These angles are defined in the _é‘_zl - éz
- §3 system defined in Section 3.5 and were illustrated in Fig. 3-2 and Fig. 3-4.
The sun angle is the angle between the radius vector and the line to the sun, and
can vary by at most 180° depending on the orientation of the orbit. For the initial
orbit the variation is approximately 1402, The thrust angle is a function of ¢ and
g and is equal to ¢ at @ = 0° and 180°, For this orbit j, = 90° when ¢ = 90°. Since
B ~ 157° and 23° for the two positions at which ¢ = 90° there is no jump in y (for a

jump 45° < g < 135°).

’
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PRIMER ANGLE, THRUST ANGLE, SUN ANGLE (©)

0 60 120 180 240 300 360
ECCENTRIC LONGITUDE (©)

Fig. 5-7 Primer Angle (a), Thrust Angle (})
and Sun Angle (g) for Initial Orbit

The primer vector angle (g), thrust angle (y), and sun angle (g) are plotted
for the final orbit in Fig. 5-8. Obviously for this orbit there is a jump in § when
& = 90°, Note that at this point g =~ 124° for the first jump and g ~ 56° for the
second. For these values of gthe jump in § is approximately 60°. It is interesting
to note that after the first jump § decreases slightly even as ¢ increases (y in-
creasing as & decreases after the second jump) as the changing g allows a closer
alignment with the primer vector at less power loss penalty. Jumps in § occur

during about the last 20 days of the trajectory.
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Fig. 5-8 Primer Angle (&), Thrust Angle (¥)
and Sun Angle (g) for Final Orbit

The panel orientation angle (defined in Eq. (3. 85) is plotted in Fig. 5-9
for the initial and final orbits. In both cases there is a rotation through a full 360°,
For the final orbit there are discontinuities at the point where there are discontinuous
changes in the thrust direction. Both jumps are about 80° (note panel angles of 180°

and -180° are equivalent),
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Fig. 5-9 Panel Orientation Angle for
Initial and Final Orbits

In summary, for the attitude constrained and unconstrained cases compared
here, flight time and trajectory histories differed only somewhat. The main
differences are the discontinuities in thrust direction and in solar panel orientation
which occur during the last 20 days of the constrained case. Average power levels
were at most 10% less than the unconstrained case. Since these were circle to

circle transfers the effect of a zero pitch constraint is not illustrated.

5.2 Examples With Power Degradation

Several cases were run to illustrate the use of the final version of the code.
Most of the cases were of a SERT-C type, although some GEOSEPS-type missions

and some cases which originated in an elliptical orbit were run. All of these cases

included oblateness and the new power degradation model. Unless otherwise noted,
all assumed that pitch and roll were constrained to be zero. The constants in the
coefficients of the power loss function for these runs were slightly different than

those given in Eqs, 4.5 and 4.6.

The SERT C cases are discussed first, Table 5-2 lists conditions on the

initial and final orbits and the spacecraft.
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Table 5-2 SERT-C Example Data

Initial a = 9528 km
Initiale = 0
Initial i = 28,3°
Mass = 850 kg
Maximum initial jet power = 4,828 kw
Specific Impulse = 2900 sec
Finala = 42104 km
Finale = 0
Finali = 0°

Cases with other final orbits were also run,

For the cases discussed in this section a four-point quadrature was used
between the points where the primer vector angle, o, crossed + 30° (see
Section 3.5). For the initially circular cases there were two intervals per orbit.
A ten day time step was generally used, although some cases had a 15 day time
step. A Newton-Raphson iterator and a four step Runge-Kutta integrator without
accuracy controls were used.

The characteristics of one set of runs are listed in Table 5-3. Launch
date, launch time (determined by the initial longitude of ascending node, p) and
solar array parameters were varied. Shadowing was not included. A 10 ohm-cm
solar cell base resistivity was assumed. If additional values for launch date and
time were run then a curve such as in Fig. 5-1 could be drawn. For the limited
number of runs shown in Table 5-3, the variations in transfer time and aV are
small, The power degradation which is near 56% increases transfer time
significantly compared to the constant power case discussed previously. Without
infinite back shielding transfer time is increased by 14% as the degradation factor
decreases an additional .08, Increasing the cell thickness changes the shape of
the degradation versus flux curve. The increase from 6 to 10 mils caused a final

damage factor decrease from .56 to .41 and a 30% increase in transfer time.

The case shown in the first column will be illustrated in more detail,
Fig. 5-10 is a time history plot of semimajor axis, inclination, and the longitude
of the ascending node. The change in the latter is largely due to oblateness which
is strongest at lower altitudes and high inclinations, The semimajor axis actually
overshoots the final value somewhat. This overshoot comes about because initially
greater effort is put into reaching higher altitudes at higher inclinations where the

flux is less. As the higher altitudes are reached, effort is expended to reduce
inclination.
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Fig. 5-10 Semimajor Axis, Inclination, and
Longitude of Node Histories

Launch date

Longitude of node

Cell Thickness (mils)

Front Shield Thickness (mils)
Back Shield Thickness (mils)
aV (km/sec)

Transfer Time (days)

m./m_
Damage factor
Initial Costate

Table 5-3 SERT C Example Results

(10 ohm-cm base resistivity)

Mar 21.5

0o

6

6
infinite
4,89
236.
. 842
.563
3657.3
121.6
298.0
-6072.8
-35259,
-33428.
-106. 87

Mar 21.5| Dec 21.5 | Dec 21.5
45° 0e 45°

5 6 6

6 5 6
infinite infinite infinite
4,92 4,82 4.91
2386. 231. 237.
. 841 . 844 . 841
.571 .564 . 569
8366.5 4331.1 4797.86
286.5 97.6 350.0
86.6 263.7 71.7
-25714, -6300.6 -26335.
-24085., -33507. -19704.
-37246. -318686, -31619.
-121. 89 -87.53 -89.73
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OO

6

6

6
4.85
269.
. 843
.482
2545, 9
170, 7
441.1
-8327.
-31798.
-35878.
-52,31

Mar 21.5

0o

10

6
infinite
4,83
308.
. 844
.412
6074.5
238.6
615.6
-8408.9
-29438.
-46571
-174.51



Fig. 5-11 shows the yaw angle for the initial and final orbits. For the initial
orbit the variation is fairly smooth, with a range of about 60° either side of the
orbit plane. The final orbit contains two jumps in the yaw angle; one at 1. 3° and
one at 180, 3°,
primer vector angle was + 90° (see Section 3.5), but the sun angle was between 45°
The
The thrusting at

On each orbit of this trajectory there were two points at which the

and 135° (thus causing a jump in yaw) for the first time at about 105 days.
final yaw angle has a range of 125° either side of the orbit plane.
yaw magnitudes greater than 90° causes a decrease in semimajor axis near the end
of the trajectory as illustrated in Fig. 5-10,

A=
<" Initial
Orbit

+

4

N + bttt
a & 1 180 40 00

Eccentric Longitude (°)

Fig. 5-11 Yaw for the Initial and Final Orbits

Fig. 5-12 shows the power variations caused by the inability of the panels
to directly face the sun at all times on the initial and final orbits, where the
maximum is unity. For the initial orbit power decreases to . 90 of its maximum,
and the average is .954. For the final orbit pov;rér decreases to . 707 of the maxi-

mum at the jump points and the average is 0, 88,
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‘T‘“'i.g. 5-12 Power Variation for the Initial and Final Orbits
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In Fig. 5-13 are plotted the primer vector angle, g, the sun angle, g, and
the thrust angle § for the final orbit (see Section 3.5, especially Fig. 3-3 and 3-4).
The primer vector angle and thrust angle coincide at 0° or 180°, When & crosses

-90° there are jumps of about 36° when g = 48°and g = 132°.
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Fig. 5-13 Primer Vector Angle {a), Sun Angle (8),
and Thrust Angle (y) for the Final Orbit

The equivalent of 1 MEV fluence is plotted in Fig. 5-14 for three cases.
Power versus time is shown for the same cases in Fig. 5-15. The case with infinite
back shielding and a cell thickness of 6 mils (first column of Table 5-3) has the
lowest accumulated fluence and the least degradation (to .56) and the lowest transfer
time. With a six mil back shield the total fluence is doubled and power degrades to
_48. With infinite back shielding and a cell thickness of 10 mils (6th column of
Table 5-3) the fluence curve coincides with the 6 mil case through 60 days, then
increases somewhat more since at that time in the flight it is at lower altitudes and
thus in a stronger radiation field. Its power curve in Fig. 5-15 falls the fastest to
a final value of .41, Note that most of the fluence is encountered during the first
80 days or so and that power drops off sharply initially and reaches an essentially

constant value after 80 or 100 days.
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In order to further illustrate the effect of various array parameters, several
cases of considerably shorter transfer time are listed in Table 5-4. These have the
same initial data as shown in Table 5-3, but terminate at a = 12800 km, i = 25¢°
The third, fourth, and fifth columns correspond to shorter versions of the cases

shown in the first, fifth, and sixth columns of Table 5-3.

Table 5-4 Short SERT-C Example Results

Launch Date Mar 21.5| Mar 21.5 | Mar 21.5| Mar 21,5| Mar 21.5A
Longitude of node 0° 0° 0° 0° 0e°
Cell Thickness (mils) 6 6 6 6 10
Front Shield Thickness (mils) 20 6 6 6 6
Back Shield Thickness (mils) | infinite infinite infinite 6 6
Base Resistivity (ohm-cm) 10 2 10 10 10

avV 1.03 1.03 1.03 1,03 1.03
Transfer Time 35.4 46.5 41.9 46.1 50.6
Mf/M0 . 965 . 964 . 964 . 904 . 964
Damage factor L7977 .516 . 611 .533 .462

The case shown in the first column has a very thick front array shield of 20 mils.
The degradation is about one half of that for the 6 mil shield listed in the third
column. The aV's are the same but flight time decreases by 15%. The case in the
second column assumes a base resistivity of 2 ohm-om rather than 10 ohm-cm which
was used for all other cases. This assumption affects the power versus fluence

curve resulting in a greater degradation (an extra 10%) when compared to column 3.

To further illustrate these five cases fluence is plotted in Fig. 5-16 and
power in Fig. 5-17. The accumulated fluence does not vary with changes in cell
thickness or base resistivity on the scale shown by the plot. After 40 days, the
case with infinite back shielding and 20 mil front shielding has about 10% as much
fluence as the case with 6 mil front shielding and 5% as much fluence as the 6 mil
front and 6 mil back shielded case, Power variations diverge for the five cases,
some of which reach near-steady state values in 40 days. However, the 20 mil
shielded case is at a much higher power level. The 10 mil cell thickness case

results in the greatest degradation.
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Fig. 5-17 Power Degradation Histories
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No complete SERT-C cases with shadowing were run, although some shorter
cases were. A case similar to that listed in the third column of Table 5-4, but
with the final a = 13200 km (rather than 12800) and i = 25.3° (rather than 25°), took
83 days with shadowing and delay (compared to 42 without shadowing). The initial
orbit has a period of 2.6 hours. The time in shadow is 36 minutes and the delay
time is 14 minutes. Together they are almost one third of the orbital period. Thus
for lower orbits, shadowing and delay in thruster turn-on can considerably lengthen
the flight time, at higher altitudes proportionally much less time is spent in shadow.
Since the spacecraft spends more time at lower altitudes, the power degradation

is more severe, also lengthening flight time.

Four GEOSEPS-type cases were run, Table 5-5 lists conditions for these

cases.

Table 5-5 GEOSEPS Example Data

Initial a = 29378 km
Initial e = O
Initial i = T7°

Initial mass = 2796 kg

Maximum initial jet power = 13 kw
Specific impulse = 2900 sec
Finala = 42164 km
Finale = O
Finali = 0°

These cases assumed attitude constraints, power degradation, oblateness, and
shadowing. A five day time step and a 4-point quadrature between jumps points

and shadow entrance and thruster turn-on points. Jump points were calculated.
The launch date was March 21, 5, and two initial nodal angles were considered. For
each, cases with and without delay were run. Table 5-6 summarizes the results,

A change in the line of nodes of 45° results in a 6% decrease in transfer time, the
addition of a delay in thruster turn-on time causes only about a 2% increase in flight
time. Not all orbits of these transfers enter the shadow and because of the high
altitude the time in shadow and the delay time is small compared to the orbital
period (unlike the early orbits of a SERT-C mission). There is little variation in
AV for these cases. Because of the initially high orbit, power degradation is less

than 6%, more than half of which occurs during the first orbit.
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Table 5-8 GEOSEPS Example Results

Longitude of the node 0 0 45° 45°
Delay yes no yes no
sV (km/sec) . 887 . 885 . 876 .874
Transfer time (days) | 37.9 37.3 35.4 34.9
mf/mo . 969 . 969 . 970 .970
Damage factor . 946 . 947 . 947 . 947
Initial costate 1179.1 1161.2 1033.3 1023.0
-184.7 15.9 -101.1 -23.0
-882.2 -661,4 -464, 6 -345.4
12643. 13003, -23487. -23858.
-44386, -44125, -27212. -26826,
-1512,8 | -1510.7 | -1292.1 | -1290.1
-1517.2 | -1533.8 | ~1304.3 | -1318.4

The semimajor axis and inclination history are plotted in Fig. 5-18. Their
changes are monotonic. Fig. 5-19 shows the yaw for the initial and final orbits,
The yaw for the initial orbit varies fairly smoothly 60° either side of the orbit plane.
The spacecraft thrusters are off for eccentric longitudes between 168 and 201°
because of the shadow. The yaw for the final orbit varies 90° either side of the

orbit plane and there are two jumps in the yaw angle, one at 151, 6° and one at
317, 40,

(103 km)

Time (Days)

Fig. 5-18 Semimajor Axis and Inclination Histories
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Fig. 5-19 Yaw for the Initial and Final Orbits

The power variation over the initial and final orbits is shown in Fig. 5-20.
For the initial orbit power reaches . 855 of the maximum with an average of . 938.
For the final orbit the minimum of . 707 is reached at the jump points. The
average is .853.
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Fig. 5-20 Power Variation for the Initial and Final Orbits
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The primer vector angle, o, sun angle, g, and thrust angle, ¥ are plotted
for the final orbit in Fig. 5-21. The sun angle varies between 13 and 167°. The
thrust angle and primer vector angle coincide at 180°, When o Passes through 90°
there is a jump in § of 78° when R =64°(at F = 151.67° and a jump of 87° when
B = 101° (at F = 317.49),

0{: 2
G

Eccentric Longitude (°)

Fig. 5-21 Primer Vector Angle (), Sun Angle (8),
and Thrust Angle (¢) for the Final Orbit

Fig. 5-22 plots the time in shadow and the corresponding delay time (added
to shadow time) versus the flight time. Time in shadow reaches a maximum of

about 59 minutes. Delay is always at least 12 minutes when thrusters shut down.
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Fig. 5-22 Shadow and Delay Times
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Two other cases were considered that had initial elliptical orbits. One case

assumed zero pitch but free roll and terminated at an equatorial geosynchronous

orbit. The other had both roll and pitch constrained, but was a shorter transfer.

The spacecraft parameters were the same as for the SERT C cases without

shadowing discussed previously. Table 5-7 summarizes the initial and final orbits

and transfer characteristics.

Table 5-7 Elliptical Orbit Examples

Roll

Initial a
Initial e
Initial i
Initial
Initial ¢
Final a

Final e

Final i

Final AV
Final tf

Final rnf/mO
Final damage factor
Initial costate

free

10400 km

. 378

28, 3°

0o

90°

42164 km

0

00

4,46 km/sec
181.3 days

. 855

. 627

9947.3
4365.8
-767.1
-718.2
-16925,
-26014

-112,22

constrained
10400
.378
28.3

0

90
18100
.3

22,2
1,72
72.0

. 941

. 638
9612.4
7945.8
-470.9
-1162.5
-19673.
-10090.
-77.15

Fig. 5-23 shows the semimajor axis, eccentricity, and inclination histories

for the free roll example.

There was also a rotation of ( from 0°to -70° and a

rotation of ¢ from 90°to 217°, primarily caused by earth oblateness, although

some pericenter rotation may have been caused by an effect to avoid intense radia-

tion, thus lowering power and increasing transfer time.
4.828 kw to 3.03 kw; most of the drop occurred during the first 70 days as in previous

examples.
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Fig. 5-24 shows the yaw for the initial and final orbits,
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Fig. 5-24 Yaw for the Initial and Final Orbits
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One of the interesting characteristics of the pitch and roll constrained example
was that there were two points per orbit at which the primer vector projection was
perpendicular to the sun vector (g = +90°) except very close to the end of the
trajectory where there were four such points. There were no jumps in the thrust
direction for the orbits with only two such points since the sun angle, g, was not
between 45° and 135°, The yaw angle is plotted in Fig. 5-25 for the initial and
final orbits and for a segment of an orbit at 66 days. There are two jumps during
the final orbit but none for the orbit at 66 days or for earlier orbits. Fig. 5-26
shows the primer vector angle, &, the sun angle, g, and the thrust angle, y, for
the final orbit. The primer vector angle crosses the 90° point four times, but for
the first two, g is not in the 45 to 135° range. Then the primer vector angle
briefly goes above the 90° line between F = 286°and F = 336°. AtF = 226¢°,

8 = 48°, and there is a 30° jump in . At F =336°, g~ 85° and there is nearly a
90° jump in . For the 66 day orbit the primer vector curve looks very similar
but it does not quite reach the 90° line in this orbit segment and these two jumps

do not occur.
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Fig. 5-25 Yaw for the Initial, 66 Day, and Final Orbits
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Fig. 5-26 Primer Vector Angle (o), Sun Angle (B),
and Thrust Angle () for the Final Orbit
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5.3 Run Time and Accuracy

Some of the additions to the new version of the program have contributed to
greater run time, although averaging and the analytic radiation model cause the
run time to be orders of magnitude shorter than a precision trajectory calculation,
Many trajectories are run for one optimization, however. Shadow calculations
cause an increase in run time and the resulting trajectory often requires a shorter
integration time step to maintain the accuracy needed to obtain convergence. The
new thruster turn-on delay calculation requires additional time. The constrained
thrust direction calculation requires additional calculations which must be performed
at every quadrature point of every orbit for every trajectory. Calculation of possible
jumps points in the control greatly increase run time. For accuracy a separate
quadrature may be used between jump points and shadow entrance and exit points,
With no shadowing and two jump points there will be two quadrature intervals,
With shadowing, and if there are two jump points not in the shadow, then there are
three intervals. There may be up to 6 jump points (for non-circular orbits). {Tump
points refers to points where & = + 90. There may or may not be an actual jump
in y depending on the value of g.) Some cases were run without calculating jump
points and just arbitrarily dividing up the orbit into two quadrature intervals. The
loss of accuracy adversely affects convergence and the increase in the number of
trajectories calculated may increase total run time. For the results in this section
a four-point quadrature was used, For higher order quadratures run time is

greater. A smaller time step increases the run time of a trajectory.

The results in this section were generated on an IBM 360/75 computer. The
program is coded in Fortran IV on the H compiler. These runs took several minutes
each. To get a rough idea of the time needed, the approximate CPU time per
"time step” was calculated. With oblateness, degradation and attitude constraints,
two 4-point quadratures per orbit and jump points calculated the value was . 025
min. Thus for a trajectory 250 days long with a 10 day time step there were 25
steps or . 625 minutes per trajectory. Four iterations of the Newton-Raphson
iterator generate at least 26 trajectories (4 nominals, 3 sensitivity matrices and
one time history), requiring 186. 25 minutes. Without calculating the jump points
the CPU/time step was approximately . 018 so the same case would take 11.7 minutes.
The shadow cases in this section had similar CPU/time step, often one of the jump
points was inside the shadow, and so not calculated precisely, reducing computation

time.

Experience indicates that using higher order quadratures and smaller time
steps than used for the results in this section change pV and transfer time very
little, perhaps 1 or 2%. However, the initial costate may be changed on the order
of 10 or 20%. For mission comparisons and to obtain approximate trajectory
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characteristics less accuracy may be accpetable. If costate histories are to be
used for guidance, increased accuracy and therefore smaller time steps and

additional points per orbit must be used.

More complex and longer cases required better initial guesses to obtain
convergence. Such cases usually required an iterative procedure involving

converging to successive points along a reference trajectory.

93



SECTION 6

CONCLUDING REMARKS

The program discussed in this report is a generalization of a previously
developed code which calculated time optimal geocentric trajectories for solar
electric propelled spacecraft with an optional high thrust stage. The new code continues
the use of the method of averaging and an analytic radiation and degradation model in
order to reduce computation time. A nonsingular set of orbital elements is utilized.
Oblateness, shadowing and solar motion may be included. For the new code, attitude
constraints may be included, a delay in thruster turn-on upon leaving the shadow is
modeled, and the radiation and power loss model is revised and generalized to

various solar array parameters.

A suboptimal control for the attitude constrained case of zero roll and pitch
which is nearly time optimal without wasting fuel has been developed. Because of
the constraints the panels may not always directly face the sun, and power becomes
a function of spacecraft orientation. The resulting control strategy may call for
discontinuous jumps in the yaw and panel orientation angles. The minimum possible
power during an orbit which occurs at a jump point is . 707 of the maximum, although
the average is usually . 9 or higher, ‘

The code is computationally fast due to averaging and the analytic radiation
model compared to precision code (although unlike most precision codes, many
individual trajectories are run in order to converge to the desired final conditions).

The code is applicable to general orbits, spacecraft and solar array characteristics.

The radiation and power loss model represents a close approximation to
actual data. The analytic format is easy to code and computes rapidly. Partial
derivatives, necessary for the costate equations, are easy to obtain, The
coefficients in the mathematical models can easily be altered for new data. Shield
thickness, solar cell thickness, and cell base resistivity may be varied,

The time step for the integrator and the number of points calculated per orbit
for the averaging quadrature affect accuracy and computation time. Experience
with a limited number of examples indicates that using 8 points per orbit or 16,
or halving the time step from 10 to 5 days in an over 100 day trajectory may change

AV and flight time by 1 or 2%, but the initial values for the costate may change
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on the order of 10% or more. In order to obtain convergence for complex cases
better initial guesses and more accuracy is requ ired. It may be necessary to obtain
a nominal trajectory from a more simple case and then to converge to various
points along that nominal, at each stage using the initial values from the previous

stage as initial guesses for the later stage.

Comparisons were made for a SERT-C type mission between constrained
and unconstrained cases for an inverse square gravity field. Flight time and
AV vary for the constrained cases as a function of launch date and time of day.
A launch time can be found for which the constrained pV is less than 1%, and the
transfer time less than 5% more than the unconstrained case. Jumps in the control
did occur during the last 20 days of a 130 day mission. For the examples
considered most orbits had at most two jumps in the thrust direction. Noncircular

orbits can have up to six jump points.

The time in shadow and the delay in thruster turn-on can be a significant
proportion of the orbital period at lower altitudes. As a result the spacecraft
spends greater amounts of time in the more intense lower radiation zones, thus

power degrades faster which contributes to longer transfer times.

The inclusion of power degradation can nearly double transfer time for a
SERT-C type mission. The intense radiation at lower altitudes causes the power
to drop to about 50% of its initial value, the exact amount depending on solar cell
characteristics and the particular trajectory. Most of the degradation is in the

early portion of the trajectory.

Further refinements of the code could include extending the valid region of
the radiation model to those low altitudes between latitudes 50° and 75°, and
effects to make the program more efficient in terms of individual trajectory

calculations and convergence characteristics in order to reduce run time further.

The program offers a tool for mission performance evaluation and compar-
isons. The costate histories generated are first order approximations to precision
costate histories and with sufficient accuracy control the code can form the basis

of a guidance scheme.
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APPENDIX A

HIGH THRUST EQUATIONS

A.1 Introduction

In this appendix the details of the high thrust phase are discussed, including

(12,13) which were used

a brief description of Huntington Small's technique and code
for the initial high thrust phase. Since this code uses a special set of variables, the
transformation to the equinoctial state and costate, used in the following low thrust

phase, is presented. This appendix is a condensed version of Section 4 of Ref. 2.

A.2 The High Thrust Code

The initial high thrust phase of the program utilizes code developed by
H. Small. This code calculates time-open minimum AV trajectories in an inverse
square field. This subsection discusses the method of Small and presents certain
equations some of which will be used in Section 4.3 which considers the interface
between the high and low thrust code.

The following is taken mainly from References 12 and 13. Taking the orbital
elements as state variables and the characteristic velocity as independent variable,
the rates of change of the state variables can be written

xj’ = gj(;g,u)g i=1..,5 (A.1)
in which g, the unit vector in the direction of thrust, and u, an angular variable

in the instantaneous orbital plane are controls and the problem is to generate

extremals which minimize the independent variable between end states. The
5
Hamiltonian is H= ¢ le_ijg and is constant and can be taken equal to unity. The
i=1

optimal g = zxj 93 = —)‘-v and the optimal u maximizes H(u)z = [_)\_";(u)]z.
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Using any set of orbital elements

= A s'm(u+A2)§e_R

-V
+|:A3 + (1+pIA cos(u+A2)] I —é-L \.2)

+ A4s'm (u+/\5)/,b éh

in which éR , éL and éh are unit vectors in the radial, circumferential and out-
of-plane directions; ana § = 1 + ecosf where e is the eccentricity and f = u - o,
the true anomaly. The A's are functions of x and ) and will be defined later for

our elements.

The Hamiltonian will be maximized at some u if [)\;(u-kéu)]z > 0 yau with
equality only at gu = 27, 47 ,... . Defining t = tan(pu/2) this inequality
becomes the ratio of two sixth-degree polynomials in t. Small then reduces the

maximizing test to the form
2 2 3 4
ta to g tra gt te gt e tt) = 0Vt (A. 3)

He then develops a general test for the positive definite quartic. The require-

ments are {Eq. 4 of Ref. 13)

= 74} > 0 (A. 4a)
2, 2 2 2. 2
16a0(a2+321) z (SUI'SQOOIZ) if 3&1 > 8&od2 (A, 4b)
2 2 3 2
zll:(az-zl) + 904222] - egZy " 27z2/4 -~ 0 (A. 4c)
where
zg = 40,0, -0y
= M2 s 2 . (A. 5)
Zg T oajoy T @03 T @y%p0g .

There are other simple conditions that the o must meet such as oy > 0 but they
are all contained in Eq. (A 4). Eq. (A.4) will be violated first as the coefficients
change during a firing requiring a switch through an angle described by

: 2(a2-da o) (a2+3z,) - 4o, (92,-Boyz,) e
- A
S 2
dogoglaytdzy) +ay(92,-8a,2,)

The o, > 0 case generates an impulse.
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The Hu = 0 condition (Eq. A. 3}2 zzmd the o, are explicit functions of eight
variables in Eq. (A 2) but because Q\_",) can be scaled to 1 and u just depends on an
arbitrary reference axis, it turns out that they can be written as functions of six
independent parameters. Small chooses esinf, §, ¢, P where

)‘* = singe

A, + cosgcos Te.

L+cos;z$s'm’l‘_e_ (A.7)

R h

(illustrated in Fig. A-1, cos¢ =z 0) and two others defined by

k

Wl

[A3 + Alcos(u+A2)—| [(ycosg) (A. 8)
i = {A4 sin(u+A5)s‘m¢ + A4cos(u+A5)cos¢cosT

+ [Alcos(uﬂ\z)e sinf

- Agsinfutpgle cosf] cos¢sin’I‘} /cosz¢
[A4cos(u+A5)/cos¢ + esin fs'mT]cos’I‘

+ [tan g - kesinf]sin T (A.9)
Further manipulations yield

(jsin T + kesinf)

tang = (A. 10)
1+kypcosT
and expressions for the o
2 2 2 .2
a, - zb[l - pk” - (2+yk")tan ¢] -3
@y = 4y tang(2k-cosT) - 2e sinf(1-2 tan>g)
oy T ooy tey + 8esinftan ¢ (cos T-k)
(A, 11)

- 4(p-1)cos T-k)2 - tan2¢]

os3 o, + 8(y-1)tan #(cos T-k)
+ 4es'ml[(cos 'l“-k)2 - tan2¢]
ay = [B-pleosT - 2k [2k-cosT] - (4-Dsin®T

o
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Figure A-1. Firing angles T and ¢.

The k and j variables can also be written in terms of the radius and
velocity vectors and their adjoints,

k = h(A. « R)/h"y cos (A.12)
gh )\*

j = __*Z__z__v 128 (A. 13)
h “cos™ ¢

where h is the angular momentum magnitude and h™ is the angular momentum
magnitude at some reference orbit, , is the gravitation constant, and

K = BXLR-FYX&V (A.14)

which is a constant of motion.
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Small notes some special cases. If e=0, o) <o and oy " e, ta, 5O
that zZ,
The double maximum occurs when z'l =0att s T 2010/0;3. A second case is the

= 0 and Eq. (A.4c) reduces to z; > 0. Eq. (A.4a) is automatically satisfied.

Generalized Hohmann Transfer for which esinf = j = 0 implies tan¢2= o) %oy "
z, = 0 so Eq. (A.4c) reduces to oy > 0 and Eq. (4.4b) to 4o 0y 2 g if @y < 0. This
equation turns out not to be restrictive and the double maximum occurs when
oy " 0 at au = 180°.

Small's code works in the follow ing manner. An initial set of parameters
(e, f, T, jw-l/Z' k4)1/2
f=0, § =1 so the input is (0,0, T, j, k)). The initial h is arbitrary, just

) which satisfy Eq. (A 4) is input (for our program e = 0,

scaling ¢ = h*Av/u which is the independent variable within the code. We have set
h* = ho = 1. Then 7 is incremented by a succession of g+. The corresponding
values of o, ¥ and Eq. (A.4c) are computed until Eq. (A 4c) is zero at some s The
values of A sin{u+ Az)' A jcos(utp 2), Ags A4sin(u+A5) and A, cos(utpg) are
computed from the known values of e, £, T, j, k at s and all variables are

switched to a new peak by adding aug computed from Eq. (A.6); then the next impulse
continues by incrementing r again. The result is a series of known impulses and
coasting arcs. Since for our case the initial orbit was circular, the location of

the first impulse was arbitrary (as far as the high thrust code is concerned) and

s0 the initial £ = 0. We limited the number of impulses to two and specified

the total pAV. In this case only the remaining available AV was used on the final
impulse. The location was optimal although the AV might be less (or more) than
called for by Small's program.

A.3 Coupling of High and Low Thrust Code

In the combined high and low thrust program the output of Small's code must be
interfaced with the beginning of the low thrust code. In addition we have constrained
Small's code by 1) requiring the initial (high thrust) orbit to be circular, 2)
specifying the maximum number of initial impulses and the corresponding total AV.
The first constraint allows us to calculate the limits on the permissible input to
Small's code, i.e., the requirement that the input satisfy Eq. (A 4)

The requirement that the initial high thrust orbit be circular and the
assumption that the first impulse is in the -er, direction in order to raise the orbit,
combined with the inequalities of Eq. (A.4) yield the following requirements on T,
k and j. '

7] 3 : (A.15)
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T
Co8 < k< cosT (A.16)

cosT- X (A.17)

cos T+ k

1i] < (I1+kcosT)

These constraints guarantee that values picked for T, k, j will yield an optimal

impulse.

For a given total aV and a given set of initial conditions, a one, two, three
or more impulses optimal transfer may result. We are limiting the number of
impulses to two. If the specified total poV is less than the maximum for the first
impulse calculated by the code, that impulse is still optimal under the constraint.
If the total pV is greater than the maximum for the first impulse, then all of the
remaining pV will be used at the second impulse. If the remainder is less than or
equal to the maximum for the second impulse calculated by Small's code, then the
transfer is still optimal under the constraint. If the remainder is greater, then
the transfer is not optimal. A three or more impulse transfer could have reached
the same orbit with less aV. Usually for transfers of interest, one or two

impulses will be optimal.

For the calculations in Small's code a "first orbit' coordinate frame was
assumed. In this frame the initial orbit has zero inclination and the initial impulse
is assumed to occur at f = 0. Also = @ = O initially. The orbital elements and
their adjoints which are contained in Small's S(I, J, K) array are with respect to
this coordinate system. The elements of the S array are made up of orbital
elements and other of Small's variables. This array is calculated by Small's code
and it is from this array that we must obtain the equinoctial orbital elements and
their adjoints and other information for input to the low thrust code. In Small's
code the I in S(I, J, K) varies over different trajectories (he calculated neighboring
trajectories along with a nominal trajectory for a purely high thrust Newton
iteration). For our program I was set to 1. J varies over different orbits. For
our case J varies from 1 to 3 for a two impulse trajectory. K varies from 1 to 20

and these quantities are listed in Table A, L In what follows, for brevity, SK
will be used for S(I, J, K).
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K
1
2
3
4
5
6
7
8
9

10

“Information for J° impulse is stored in S(I, J+1, K).

+This is essentially Table D. 1 of Reference 12.

Table A-1+

S(I, J, K)

.

DT
¢-1/2tan(au/2)
(h/h*)w_l/zcos¢
¢_1/2e sinf

k 112

tan ¢
A4c0s(utAg)/cos @
P 1/zsin'l“

Y

11
12
13

14
15+

16
17
18
19
20

,bl/z(cos'r‘ - k)

cos(u + Q)
sin(u + Q)
CcOS AU

sin pu
cosi
sinicosu
sinisinu
sinicos )

sinisinQ

In our program, h** was set to one and the initial orbit is assumed circular.
Thus for each orbit (J=1, 2, 3)

h = S4JSIG /cos 8
- 2 2
a = aoh /(1-¢e%)

1
e = [(510-1)2 +S,, - sgj’z

In the "first orbit' coordinate frame,

In addition

cosi = S16
1

L. _ 2 2
sini = (Slg+520)7

S

20
tan Q =

519

tanu = SIS/SN

S5¢/S10
-1

tanf =
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(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)



w = u-f (A. 26)

i
wn

tan ¢ = S, (A.27)

(A.28)

tan T

Now the orbital elements of the first orbit are known with respect to the
inertial reference coordinate frame, a, e, 'LI, Op wr {obtaining wy is discussed
later). In the "first orbit' frame, i; =0, @, 70, @y = 0. A vector in the first
orbit frame is related to a vector in the reference frame by the transformation

- -
cos COS sin sin os i
Wi OI cos wy QI 1 “’IC SlI

- sin gy CQSi.[Si.nQI

+sin wy €O iI cos O;

I l
| !
1 |
| |
{ |
I |
a ' . 3 l . >
T - sinQ;cos : - sin wlsmnI |l COS gy Sin iy
1 |
} |
| !
1 1
| |
1 |

I
- cos ¢y cosi sino, + c0S ( COSi; COSQ
LsmxI sin O - sini jcos Q, cos i;
~t

(A.29)

The coordinate frame dependent orbital elements of the second or third
orbit are obtained in the "first orbit" frame by using the S array; call these
igr Ogr wy: The orbital elements in the reference frame, i3, O3, wgs Can be

obtained from

T, = T,T (A.30)

where T, is given by Eq. (A.29) with the subscript I replaced by 2. The elements of
T. are defined similarly. T, can then be solved for i,, Qq, waqe Let L..be the

3 th 3 3 3 3 ij
i-j element of T3. Then

sini, = /L31+L32 (A.31)

A.32
133 ( )

n

cos i
3
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sin w3 = L13/Sln 13 (A. 33)

cos g = LZB/s'm ia (A, 34)

sinp, -~ 4,31/s'm iy ‘A, 35)

cosQ, = - {,32/s'm is (A.36)
If 'L3 = 0 then w3 + 93 can be found from

cos(w3 +n3) 2P| (A.37)

sin(fwg * Q3) = 41, (A.38)

The equinoctial elements, h, k are given by

h

1l

e sin(w3 +QS) (A.39)

w
!

e cos(wg + 93) (A.40)

It is possible to get p, q directly from T3.

L

p = —31 (A. 41)
1+,{133-
-4

q = _3“2—' (A.42)
1+{,33

The A.l's are given in terms of the classical state and costate by Eq. A-8
of Ref. 12, This can be inverted to give the costate in terms of the A

Ay %\/—3(%—2)— I:A3 - eA1°°S(A2+w)] (A.43)
a’(l-e

H -
e —-—-2—)-3—[_]\1cos(/\2+w) eAs] (A, 44)

a(l-e

>
]

m : '
A —— _ SlnA
i Ja(l_eg) Ay 5 (A, 45)
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= - K i + A. 46
)\w e | T A (sin(A, w) (A, 46)

a(l-e

- \/19—2)— A4cosA5sini+)Lwcosi (A.47)
a(l-e

X
Q

However, this costate is given in terms of the 'first orbit" coordinate frame. Since
in this frame i = 0 and e = O initially, then initially A = X_ = 0. In the equatorial
reference frame if 0 and ( are free, then XQ =0 an‘c‘i) )\w = 0 initially. The Xa
and ke will be the same in the equatorial reference frame as in the 'first orbit
frame'. The form of X, at the initial time follows from the requirement that AQ=0.
This condition also yields the location of the first impulse. If in the reference frame
O is fixed initially then >‘p is free though )‘w is still zero.

In the reference frame the first impulse occurs at wy The adjoints to n
and i in the reference frame can be realted to W by the following equations derived

from results listed in Appendix B of Reference 2.

;- B ; -

A \/a— Ag SinlA g -~ wp (A.48)
0

)\éz = \/;u_ A4SiniICOS(A5 - wI) {A.49)
o

If in the reference frame, we require that )g(’) = 0, then for Ay sini # 0

_ m
AS_LUI-i’z'
or

m
wr; - Ag f—
1 5 9
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Taking the convention that )L.L’ and A‘i have the same sign determines that

T
wp © A "3 (A.50)
Then
, . [E ,
N o= 2 A (A.51)
8

If the initial o is fixed then X _ is free and not necessarily zero although
Xw is still zero. For this case it is no longer necessarily true that w1~ Ag —g ;
rather w1 is arbitrary but then determines )‘gI) and xi' through Eqs. (A. 48) and
(A.49),

The formulas for Aa and >‘e are valid at any time during the initial high
thrust phase. During the high thrust phase XQ remains constant, but )‘i and A
may change. Initially, there are some iI' Qp wp then using results from
Appendix B of Ref. 2 and the fact that k(’o =0, let

¢y = Ai’ cosQq - k&(z(:oti.lsmgI
cy = )\.L’ sinQ + A{’)cotiI cos | (A.52)
cg = Xr’z

For any set of i, Q, w in the reference frame

A, = cycosQ +cysing (A.53)

= .54

AQ cq (A.54)

A= sini(c, sing - c,cos o)+ cgcoBi (A.55)
w .

For SEP and high thrust in an axially symmetric field, the fixed o option
should be used (in which case the initial w should be driven to Ag - g 80 as to
make XQ = 0). If this option is not used and  is allowed to be free initially, then
varying ) initially will have no effect on the final conditions, and the partial deriva-
tive matrix will be singular.

Weneed Ay, Ay, Agand A, interms of S array. From Eq. (4.2), (4.7,
(4. 8) and from Table B-1 the following quantities are obtained.
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Ag = cos g(1+p)k - cos T (A.56)

Ajcos A, = cosg[cos T-kJcosu + sin g sinu {A.57)
A sinp, = -cos#[cos T-k]sinu + sin¢cosu (A.58)
Ay COS Ag = cosd(Sgcosu + ysinT sin u) (A.59)
Ag sin Ag = cOS ¢(-S8 sinu + y sinT cosu) {A.60)

In order to calculate >‘a and )\e we need the combination
S

) aley

S

A1 COS Ay COS v = Ay sin /\zsinw = sinfsing + cosfcos ¢(
af 10

where we have used u = (, + f, and where ¢ and f were derived in terms of the S

array previously. Obtaining As in terms of the S array,
_ h*
Ay 54(810'56 —Sll) (A.62)

Ay is needed only on the first orbit where u = f = ¢, = 0; on the first orbit

AyCOS Ay © Sg cos ¢ (A.83)
AgSinpAg = Sg /SIO cos ¢ (A, 64)

A4 can be obtained by taking the square root of the sum of the squares of the

above two quantities. There is an ambiguity of sign, however. The computer code
picks the sign by the criterion that if the inclination is desired to be reduced, Ay
(and thus x.l) should be negative; similarly if it is desired to increase inclination,
>‘i and Ay should be positive. This choice can be overriden by an input to the
program. Once the sign of Ay is picked, Ag can be found unambiguously (as long
as Ay # 0). )“a s >‘e’ X ; and XQ. can now be calculated.
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Finally the equinoctial costate is given, at each orbit using Eq. (3. 25),

Xa =2, (A. 65)
_ A
A = sin(wg+Q g, + cos(w3+Q3)—§@- (A.66)
. A
- cos(wa*tQ g - sin(wa+0 ) ——e‘i (A.67)
9 13 \ cosQ 4 :
A = 2singQ,cos ;b ——— (A=) (A, 68)
P 3T T anig gz 0w
_ 2'13 s'mQ3
Aq 2cos Q5 cos -—2-)~ ———--(AQ —Kw) (A.69)

tan13/2

A multiplicative scale factor may also be needed before input to the low thrust code.

Since A g and therefore wg cannot be calculated unambiguously if Ay~ o,
this case can lead to difficulties in running the program. Ag~* 0ifj=T =0,
This implies a zero inclination change during the initial high thrust phase. Because
of the radiation and shadowing effects, which for SEP will generally cause an
optimal trajectory to contain some inclination variation even if the initial and final
inclinations are the same, this case will generally not arise for SEP. It could
arise for constant power and zero inclinations change and so the program may not
work for this case. The initial guesses for Tand j should not both be zero.
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APPENDIX B

THE MATRIX M AND ITS PARTIALS

Table B~-1 Elements of M

+ —_ (s'mF-hﬁ)

- -k {
Vlh -k { +——-—-—(smF -hR)
k(qYl-pXI)
naz,/l—h -k
J. 2 2 | 3X X
-hé LI (cosF-kg)
na

dh n

(

)

k
h™-k
oh n

1

22 lay, Y

1 5 1 .1 (cosF-kR)
na

- hiqX,-PX, )

na2~/1 -h"-k

(1+p2+q2)Y1
O, Myp = O My3 = —
2na“,/1-h" -k
: (1+p2+q2)X1
O, Mg, = O, Mgy *
1-h®-k
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Table B-2 Partials of X, and Y, with
Respect to h and k
[ 2,3 .
-hRcosF-(g+h"B") (hcosF-ksinF)
1-p

—

—

kBcosF-1 + hkg® (hcosF-ksinF)
1-8

hBsinF-1 - hkg® (hcosF-ksinF)
1-8

- -
-

L.

s

-kpsinF+(ﬁ+k2 §3) (hcosF-ksinF)

L 1-8 J

Table B-3 Partial of M with Respect to a

|

[

|
o0 O O w
O O O = O
SO - OO
S = O O O
- O O o O

2
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Table B-4 Partial of M with Respect to h

oMy 2 oKy My, 2 a¥y aMy
ah n"a 3h oh n“a dh 3h
oMyy 1-h”-k aX1 (sinF-hg) 1 (gth’d)
3h 1-h k2 ahak n n 1-8
oMy 1-h2 k Y1 (sinF-hp) _ ‘1 (g+h°R>)
ah 1- h2 k2 ahak  ah n n 1-8
2Myy _ BMyy (q Y, _paxl)
ah il /—“2—2 ah ah
Mszy | 1-n? k 2%, 3Ry (cosF-kp) |, 21 hkg’
ah  1-b° k2 ah®  3h n n 1-8
o 2 . -—
oMsy | _J1-n? k 3°Yy 3y (cosF- 15&+Yl hka®
5h 1- h2 k2 3h®  »h 0 n  1-p
Mgy hMgg Mz h oYy 0y
S 1n%k? n P o T en
ah - ok 2
Mgy _ o Myp o My Py LM 2
» s 2 2
ah ah ah 1-b2-k* ¥, 3h
Mg, Mg, 3Mg,  bMgy M 93X,
o, -0, L —1
ah ah ah 1-h°-k® X, oh



Table B-5 Partial of M with Respect to k

My, 3Ky aMy, Y, My, o
& o2 3k sk n’a ok ok
2 . .
aM kM 2 2 | a%X, %X, . 3
2t . a1 L J1-h = 1 2% (inrong) T3 onk

dk 1-h -k na ok 3k n n 1-8

] 2 ; -
Maa . MMap  J1n®a® [PV Yy (sinp-ng) | Y1 nkgS
3k 1-h%-k° na® 3k® 3k n n 1-8
aM ‘M,, kM Y X

23 . 23 723 1

. k ( 1)
7 .2 q - P
ok k  1-p%-k" 2 fm T ak ok

- - .

2 -
OMgy KMy Jip? | X 9%y (cosF-k5)+§_1_ (8+K°8)

ak 1-h%-k* na® akah 3k n n  1-8

—

-

ol 2 L —
Mgy _ KMy J1n2? (Y 3V (cosEcks) Y1 (g+x?p®)
7 7 v —

3k 1-h%-k na skah ok n n 1-8
2Mgg  KMgy N (q 2V, 3% )
T3 — —
3k 1-h%-k 22 2 3k 3k
Myy My My KMy My oy,
3k 3k ak 1-h%-k° Y, 3k
My o Mgy Mgy KMgy My 3%,
3k 3k 3k 1-h%-k° X, 3k
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Table B-6 Non-zero Partials of M with Respect to p

aM23 i -le
op ,/l—hg-k: na2
aM33 : th
oP J1i-h -k2 na2
Myg PYy
oP ,/1-h“-k” na
aM53 _ le
op /l-hg-k na2

Table B-7 Non-zero Partials of M with Respect to g

M kY

23 _ 1
°q f1-h2-k2 na’
Mgy -bY,
o9 /l-h -k na2
oM3 ay,
29 S1-h2-k2 pa?
Mg axX,

34 J1-07 -k na?
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Table B-8 Partials of 1;(1 and ').(1 with Respect to h and k

oX S 2 . 2.3 .

1 . a X,sinF+na (hsinF+kcosF) (R+h”g8") + hfsinF
oh r r L 1-8
ag(1 ay s'mF+na2 F-kﬁsinF-hk 3 (hsinF+kc:os}5‘)-q
—— =21 na bkg
ah r r 1-8
3% a X, cosF+na’ (ﬁ F+hk8° (hsinF+k F)—

- a3y ' Bcos B8 sin cos

dk r r 1-8
2Y : 2 [, 2.3

1 . aY,cosF+na_ -(hsinF+kcosF) (B+k“8") -~ kBcosF
dk r r 1-8

Table B-9 Second Partials of X1 and Y1 with Respect to h and k

3 2.2 2.3
= a h8 (-hcosF+ksinF) (3+h B (3—'2-@2) - ZCosF(ﬁ"'h—é—)
1-8 1-g) 1-8
3 2 2 3 3
= a ke (hcosF-ksinF') (Hh (38 -252)) +2hkB  osE
1-8 (1-R) 1-8
[, 3 2002 0a3 3
= a 28 (~hcosF+ksinF') (1+k 38 -zg )) + 2hkp sinF
LI-B (1-8) 1-8
g3 323p2-28%)\ L. _(p+kZgd)
= a L3-8 (hcosF-ksinF') ( —L‘g;) - 2sinF Btk 8
1-8 (1-p 1-8
2
¥3°X 2,.,.2 3 2.3
= 1 -4 EE?— (-hcosF+ksinF) (1+h B8 -2% )) B hkﬂB c:osF+s'mF(ﬁ+h 8")
akadh 1-8 (1-8) 1-8 1-8
2
3°Y 3 2 2 3 3 2
- 1. a hg” (hcosF-ksinF') (1+k 38 _252 )) - hkg sinF+cosF(5+k_£)
ahak 1-8 (1-8) 1-8 1-8
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APPENDIX C

AN ALTERNATE FORM OF THE M-MATRIX

¥4
In Reference 28, page 30, a new form of the M or — equation was written
’r
with respect to the equinoctial orbit frame. The partials of a, h, k, p and q are

repeated here. The "M-matrix' is just made up of the coefficients of the basis

vectors in the following expressions.
2x,f +v,g)
& —

ar na

h . 1 _ 2. = ~_ .k -

Lo S(6f+rX 31+ S raY - pX Iw

Q= =-1-[G“+r§' “]-E[qY - pX,]w (C.1)
i Xl g 1 1% .

Q_MY

w
ar 2G 1=

- (1+p2+q2)X &
e 1=

o:lol
e X3 M)

where f_, é, ﬁ are the equinoctial basis vectors defined in Section 3.2 and X1 and Y1
are the f and é components of position respectively. Also

_ 2 ~ . _ .
G = na” J1-h"-k" = Y, X, - XY, (C.2)
§ = Woxr/r = Xg-Y,D/r (C.3)
r = JX]{+Y] (C.4)
n = /4 (C.5)
a
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A useful form of

2z

for the constrained case when thrust must be orthogonal

. . . . ar . . . ~ ~ A
to the radial direction is t© write it with respect to the €. &5 Cy frame where

ér is parallel to the rad

the orthogonal triad.

Applying the inverse of

ius vector, éw is normal to the orbit frame and és completes

In terms of the equinoctial basis vectors

e, = X P+y, @)/r (C.6)
g, = Y [+X )r (C.7)
e = w (C. 8)
—.W -

z . .
this transformation to the previous %.-— equations yields
r

da _ 2 2 : R 2G -
———(X+YY)e+—2-—e
aé_ na 1 1" 1'=r nar —S
GX GY
sh . 1 1 4 A BT k ) n
af u[ &t X )8 |+ E @y - xR,
GY GX
ak - 1 1 - > 1 - _ h ~
< _[ = e, + (rYl + )esj el (qY1 pX )_e_W (C.9)
3B M
2, 2
3 . et o,
Bf‘_ 2G lI=w
2, 2
3q - 1+p +q ~
. Xlgw
or

When thrust is constrained to be orthogonal to the radius vector, the ér

terms drop out. If this
fewer calculations.

simpler.

form is used in evaluating state equations there would be

The partials needed for the costate equations would also be
The unconstrained case would still involve calculating all the terms.
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APPENDIX D

SUN-EARTH RELATION

For the solar electric program, the sun's location in equinoctial coordinates
is needed. The distance from earth to sun varies due to the ellipticity of earth's

orbit. The following is taken from Reference 2.

The sun's location in earth equatorial coordinates is given by

- cos (w+v)
=] - cos O sin (w+v) (D.1)

[F=vks

'
s
- sin O sin {(w +v)

where

O is the obliquity of the ecliptic,
w is the argument of perihelion,

v is the true anomaly of the earth at
the time of interest.
[

The true anomaly can be approximated by (see Ref. 37 , p. 55)

3
v =M+ (2e-e—)sinM + éezs'm 2M + Ee3

4 4 12

sin 3M (D.2)

andM=nt+Mo.

The orbital elements of the earth are taken from Ref, 37, p. 378, for an epoch
of Julian Date 2436935,0 (1960 Jan. 1.5.E.T.). In particular,

w = 102925253
= . 10
Mo 1990562
= ,016726
n = ,985609°/day
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The distance to the sun (in A.U.) is just

1- e2
[B| = —— (D. 3)
l+ecosv

The difference between the sun-spacecraft distance and the earth-sun distance
is assumed negligible,

In equinoctial coordinates

JT

R, o= [

[ >
loa >
I=>»
=l

s (D. 4)

where the equinoctial basis vectors were given in Eq. (3.4). In the analysis, it is
necessary to have the partials of the i and _Eg_ components of ﬁs with respect to the
equinoctial orbital elements. These two components are Xs = ﬁs . iand

~

YS = Bs . _é . Since fand g are functions only of p and q, we need

i}-(—=é-9i=--——z—2—2 @QY_+Z_)
ap - 1+p“+q
X o af 2pY

S = R .= = "“z—sz
3q ° 2 1+pTg (D. 5)
aYs i f{ . a:‘___ ) 2qu
3p S op 1+p2+g’
3Y . ag i 2(-pX  +2.)

4 - 2.2 .
3q 5 2q 1+p“+q
which utilize the formulas

£ . — o @gtw
dp 1+p“+q -
ai _ 2p FS
T T3 7 &
2q 1+p™+q

- (D. 6)
%6 . _2 £
ap 14p“4+q° —
g 2
35 0 73 (~-pf +w)
oq 1+p~+q
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APPENDIX E

WORST CASE EVALUATION OF
SUBOPTIMAL APPROXIMATION

In Section 3.6 two reasons were given for utilizing a suboptimal approxima-
tion where only part of the Hamiltonian is maximized with respect to the thrust
direction. The first reason is that it reduces the optimality condition from the
root of a 6th to a 3rd order polynomial. The latter can be solved in closed form
with consequent savings in machine time. The second reason is that it is aesthet-
ically unsatisfying to bias the control so that the desired acceleration component is
decreased while the thrust is increased. This result is mathematically time
optimal because it increases the mass flow rate and reduces the mass. While time
optimal solutions are of more practical interest than fuel optimal solution, it does

not seem desirable to simply throw fuel away.

This appendix is intended to show that the suboptimal approximation is
negligibly different from the time optimal case for practical missions by analyzing
the worst possible case. This case occurs when the radius vector to the spacecraft
is always at right angles to the Earth-sun line and the primer vector is orthogonal
to the Earth-sun line. A simple example of such a case is the coplanar enlarge-
ment of a circular orbit normal to the earth sun line. Such a case will be
characterized by a 41% increase in pV and a 100% increase in flight time as
compared to the unconstrained case. For the more practical examples treated in
the body of this report, the fuel and time penalties due to attitude counstraints are
much smaller than this. For these practical cases, the difference between the
suboptimal and minimum time solutions will be smaller than for the extreme case

treated herein,

This case may be characterized by only two state variables, the mean orbital
speed v and the mass m. The rates of change of these two variables are given
in Egs. E. 1 and E. 2,

2p

cosy siny (E. 1)
mc .
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. 2Po
m = ‘—?—COS lp (E. 2)
The Hamiltonian of this problem is given by Eq. E. 3,

2PO 2P
cos¥ sin¥d - A —0.22 cosy (E. 3)

H = -\,
mc

The value of the yaw angle § that maximizes H is given by Eq. E. 4.

m . 2 y_m '
sing = '\/( m > +%- m (E. 4)
4xvc 4xvc

The rates of change of the Lagrange multipliers are given by the canonical

Egs. E.5 and E. 6.
(E. 5)

. 2P :
= - o i
Xm X, 7 siny cosy (E. 6)

Three first integrals result from equations E.5, E.7 and E, 8, Equation E. 7

follows from the autonomous nature of the problem while Eq. E. 8 follows from

Eq. E. 3.
(E.7T)

i
o

H

dx__m . .
(E. 8)

The three first integrals resulting from these equations are given by E. 9, E. 10
The values of the integrals follow from the transversality conditions

and E. 11,
for a minimum time problem.
H = -1 (E.9)
xmm = - (t-ty) (E. 10)
m.c
)tv = Po (E.11)
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Substituting into Eq. E.4 yields E. 11

. t-t t-t
L f 1 f

siny = \/(4 Po) +§ +-———2— P0 (E. 12)
mfc 4mfc

The problem can now be solved by quadrature to yield Egs. E. 13, E. 14 and E, 15.

-Ih‘-’-’f— = 2cos2y cotd (E.13) .
vp-v = o JT- 2sing +34n SeCLT1A0E | (E. 14)
1+,/27
m c
be-t = 2; [4sind - 2cscy ] (E. 15)
(¢}

The corresponding results for the suboptimal approximation used in the paper are
given by Egs. E. 16 and E. 17,

Ves Vv T < Ln——nl (E. 186)
z m
«/ f
C2
te=t = (m - mf) (E.17)
2P,

The optimal and suboptimal cases are compared in Fig. E-1, which plots
the normalized time and mass against the normalized velocity change. The plot
shows that the difference between the two cases is negligible for mass ratios
characteristic of SERT-C (> .84). For smaller mass ratios the suboptimal
approximation will take longer but use less fuel than the minimum time case. For

practical missions the differences should be indistinguishable.
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APPENDIX F

SINGLE AVERAGED OBLATENESS EQUATIONS

In these .equations Re is the earth's radius, u is the gravitational constant, n
is the orbital angular speed, 12 the oblateness coefficient and a, h, k, p, g the
equinoctial orbital elements,

Table F-1 J2 Variation of Parameters Equations

3u32.12k[1-6(12+q2) + 3(p2+q2)2]

h =
9 2na5(1—h2-k2) (1+p2+q2)2

2.2
3uRszh[1-6(p2+q2> +3(p%49%)%)

R =

J2 2na5(1—h2-k2):2 (1+p2+q2)2
2 2 2

; ] 3uR_J,a(1-p"-q)

Jo 2na’ (1-h°-k%)% (14p°+q°)

. Suﬂisz(l-pz-qz)

q =

J2 2na5(1—h2—k2)2 (1+p2+q2)

Table F-2 Partial of J, Equations with Respect to a

2
3h . _1h
da 2 a
ok . _Tk
3a 2 a
. TP
da a
3¢ . .14
da 2a
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Table F-3 Partial of J, Equations with Respect to h

3h 4hh

oh 1-b2-12

o Lk, _ank
ah h l_h _k
3B . _4wp

ah 1-h2-K2

3 . _4ng

oh 1-h2-K2

Table F-4 Partial of Jz Equations with Respect to k

3h _ A, _ 4kh
3k _  _4kk

ok 1-h%-k?

3B . _4kp

ok 1-h2-k>

3 . _4kg

3k 1-h2-k°

Table F-5 Partial of J2 Equations with Respect to p

2
i (lzuﬂer) kp(3(p2+g2)-2)
na’ (1-h“-k%)% (14p2+q2)°

or}

o
¥l

2
ok (IZyRer) bp(3 (p24+q2)-2)
na.5 (l-hz-kz)2 (1+p2+q2)3

3P . -2p
op 1-mzm2F

3 . -4 | 1+p*g?)?
op P 1-(p2. +q2)
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Table F-6 Partial of ‘]2 Equations with Respect to q

L2
ah [ 121Red kq(3(p2+q2)-2)
3 5]
9 na

(1-h2-K%)% (1+p°+q?)°

2
ok _ [12HReTy hq(3(p2+q°)-2)
39 na’ (

Tn2-k2)? (Lepleqd)

b . b | 1rpleg%)’?
o9 4 | 1-(p"+q")
3 . 2a
o4 1-(p“+q")
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APPENDIX G

SHADOW CALCULATIONS

This appendix confains a summary of results from Ref. 2 for shadowing.
From geometrical considerations an equation can be derived which the entry and
exit angles must satisfy. Such an equation is given in Reference 38 and the equation
given in this section is essentially the same, except that it is given in terms of

equinoctial orbital elements.
The spacecraft position is given by

r = Xl_f_+Y1é (G.1)

where X1 and Y1 were given in Eq. (3.19) and (3.20), Let the unit vector from the
earth to the sun be given by

Ry = X f+Yg+zw

This is in terms of the equinoctial coordinate frame and thus depends on the
equinoctial orbital elements p and q. The calculation of the sun's direction in the
equinoctial coordinate system is discussed in Appendlx D. a, designates the

earth's radius, the cosine of the angle between r and R is glven by

Bgox  (r|?-adl/ (G.2)
Iz Iz
or,
= - 2 __21/2

XIXs + YIYs = ([5_] ae) (G. 3)

Squaring and rearranging

B} 2 _.2

S = (1- X )X + (1- Y )Y ZXSYSX1Y1 ag 0 (G. 4)

This is the shadow equation which must be satisfied by the entry and exit angles.
X1 and Y are functions of cosF, sinF, a, h, and k (see Eq. (3.19) and (3. 20)). By
further mampulatlons one can derlve a quartic equation in cosF. The coefficients
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of this quartic equation are given in Table G-1. Spurious roots can be eliminated
by the criteria that S = 0 and that R - r < 0. In addition, for the entry angle
3S/3F < 0 and for the exit angle 3S/3F > 0.

Table G-1 The Shadow Quartic Equation

b, = 1-n%p
b, = hkp
b, = 1-k°p
a, = 1—><Z
d, - 1-Y§
dy = 2Y X,
hy = d;02-b2)+ d,(3-b2) - dy(b b,-bybg)
h, = -2d kb -2d,hb,+dy (kb +hb, ) )
b = d,(b.+k2)+d, (b2+h%)-d, (b b, +hk) - Ce
3 1y 2'P3 3P2°3 2
h, - 2b1b2d1+2b2b3-d3(b§+b1b3)
hy = -2kbyd) - 2hbad, + dg(Kbgthby)
Ay - hf+h§
A, = 2hjh, +2hhg
A, = hZ+2hgh, - n2 + b2
Ay = 2hgh, - 2h,h,
A, = h2-nl
S = A cos4F+A cosBF+A cost+A cosF+A, = O
0 1 2 3 4
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Derivatives of F and S

The derivative of F with respect to Z is needed to evaluate the costate

equation. It can be obtained implicitly from the shadow equation,
dF _ 38 /38
dz 532 aF

These partials are listed in Table G-2.

(G.5)

Note that in calculating 3S/ap and 3S/3q

we have taken into account the fact that the sun's direction is given in equinoctial

coordinates and therefpre made use of the partial given in Appendix D,

Table G-2

38 _ 2 oXy
B—F 2 | (1 XS)XI XSYSY1 E. + 2
3X 9
- = a [-(l-h 5)sinF+thcosF]
oF
3Y, 2
——~ = a | -hkgsinF+(1-k" g8)cosF
3F
2
3 . 2ae
da a
aX i
S _ 2 1
8L = 2 - - -
™ (1 XS)X1 XsYsY1 5 + 2
X
25 2 1
& = 2 - - —_—
K (1 Xs)Xl XSYsYl Y + 2
~ N qY +2
5 = 4| x%x 4x,v,Y —-—z—_zs )
3p i 17s 7171 S_J..Hp +q
r~ -~ pY
38 | 2 s
~— = -4| XX +X.Y.Y -4
dq i 17s "1°71 S-J 1+p2+q2
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(1 Ys)Yl -XSYSX1

(1-Y3)y -x Y vy
871 s s

Partials of the Shadow Function

1-Y2)Y.-X Y Y
s 1 s”s

-

-

-

1
J

-—

2

Y,

X

)

—

YS+X1Y

2
YIYS+X1Y1XS

J

?Y,
1 dF

-st+ZS
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