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SUMMARY

Th_s report is concerned with development and extension of a computer

program for the study of mission performance of spacecraft using solar electric

propulsion. The code is designed for analys/s of the NASA/Lewis SERT-C design

which involves attitude constraints, however, it has been generalized to consider

any of the following configurations: (1) yaw motion only (SERT-C), (2) yaw and

roll only, (3) unconstrained motion.

The code calculates time optimal or nearly time optimal geocentric tra-

jectories. It uses the method of averaging to reduce computer time by orders of

magnitude compared to a precision integrated trajectory. The averaged rates of

change of the mean values of the state and costate are found by numerical quadrature.

The differential equations for the mean state and costate may then be integrated in

large time steps (typically days). A set of nonsingular orbital elements is used to

avoid numerical difficulties for eccentricities and inclinations at or near zero.

The radiation model is analytic to reduce run time. Included in the code are

options for consideration of oblateness, solar motion, shadowing with or without

a delay in thruster startup, an analytic radiation and power degradation model, and

an initial high thrust stage of one or two impulses of specified _V.

A costate formulation of the problem yields a two point boundary value

problem which is solved by a Newton iteration on the initial costate and value of

transfer time. Initial values of the unspecified states and costates and a guess

for the transfer time are chosen. An optimal trajectory is then generated by

integrating the averaged state and c0state using a Runge-Kutta metrLod. A Gaussian

quadrature averages the state and costate derivative over an orbit. This will

generate an optimal trajectory to the wrong terminal state. A sensitivity matrix is

then generated by varying the initial conditions and running a set of neighboring

trajectories. A Newton iteration on the initial conditions is then used to drive the

terminal errors to within specified bounds. The final converged trajectory is a

minimum time trajectory (nearly mimmum time for attitude constraints) for the

specified velocity increment in the high thrust phase(if included).
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The attitude constraint causes power to become a function of thrust direction

and sun direction, and the time optimal thrust direction becomes a complex function

of primer vector direction. The analysis for the attitude constrained case is

considerably more complicated than for the unconstrained case.

For the zero roll and pitch case a suboptimal control is developed which is

nearly time optimal, uses iess fuel than the time optimal, and is obtained from me

solution of a cubic equation. The solution may yield discontinuous changes in the

thrust direction. The time delay in thruster startup is modeled as a quadratic

function of time in shadow. The proton and electron radiation field is modeled as

equivalent 1 MEV particle flux as a function of spacecraft altitude and latitude as

well as the solar cell shield thickness. The power loss function is modeled as an

analytic function of fluenee, cell tt_ickness and base resistivity. Spacecraft

parameters such as yaw angle and sun incidence angles may be displayed.

Numerical results were obtained for many SERT-C and other type missions.

Attitude constraints increase flight times by a few percent for SEP_T-C type missions.

Power degradation can be quite severe at lower altitudes nearly doubling transfer

time, compared to a no degradation case.

V





SECTION 1

INTRODUCTION

The use of time optimal trajectories can save considerable flight time in

low thrust missions (days, weeks or even months). As a result there has been

considerable use of optimization theory in the analysis of tow thrust trajectories

and missions. Recent advance in the state of the art have made possible routine

calculation of geocentric optimal trajectories considering more representative

environmental constraints and influences. It has recently been proposed (1) that

optimal trajectory computer programs form the basis of a guidance technique.

Most of the geocentric trajectory analyses for solar electric spacecraft

have assumed fully articulated spacecraft where the solar array and the thrust

vector can both be pointed in their respective optimum direction (2-5). The

SERT-C (6) spacecraft study performed at NASA-Lewis introduced attitude motion

constraints whereby the spacecraft was permitted to rotate only about an axis

parallel to the Earth radius vector. This deskgn constrains the thrust vector to

lie in a plane perpendicular to the radius vector. The solar panels can rotate about

an axis that is orthogonal to both the radius vector and the nominal thrust vector.

Although the constraints simplified the SERT-C design and reduced the attitude
(S)

sensor requirements , the constraint couples the power developed to the thrust

direction. Most thrust orientations do not allow maximum power to be developed.

The flight time is increased both because of this coupling and because of the thrust

direction constraint.

The present study, performed for the NASA Lewis Research Center, was

undertaken both to provide software for the evaluation of the SERT-C design with

attitude constraints and to provide a basis for the proposed guidance scheme. The

effort described in this report builds on the work of References 2, 7, and 9. For

that effort a computer program was developed which calculated minimum time

trajectories for unconstrained solar electric and nuclear electric propulsion. Also

an initial nigh thrust stage of specified ,_V with one or two impulses and a final

impulse could be included. The low thrust stage uses Kryloff-Bogoliuboff

averaging (10) of both the state and the costate. The averaged rates of change of

the mean values of the state and costate are found by numerical quadrature. The



differential equationsfor themeanstate and costatemay ttaenbe integrated in
large time steps(typically days). A set of nonsingular orbital elements, the

equinoctial elements (11) is used to avoid numerical difficulties. Tlaemethod of
$

averaging has been used extensively in recent years. Edelbaum(12,13) has used

averaging to calculate analytic solutions for special cases of optimal low thrust

trajectories, and others have used averaging when considering effects such as

oblateness, third body perturbations and non-optimal thrusting (14'15'16) Jasper(3)

utilizes equinoctial orbital elements and averaging in recent low thrust optimiza-

tion work. An interesting feature of his work is numerical comparisons of

averaging with integration of the full state and costate. He does not include the

effects of perturbing forces, other than thrust, on the costate.

The first stage high thrust optimization is based on a very efficient computer

program developed by Huntington Small (17' 18) This program uses a special set

of variables and form of the switching conditions developed by Small. The initial

orbit is assumed circular witla specified semimajor axis and inclination, wlaile the

final orbit has specified sere[major axis, eccentricity, and inclination. During the

high thrust phase an inverse square gravitational field is assumed. Because the

initial orbit is circular, it was possible to constrain the initial costate to the region

treat yields solutions. This program rapidly calculates eittaer one or two impulse,

minimum-fuel, time-open trajectories. Because this transfer always requires

less ttaan a full revolution, its time is negligible compared to the low thrust phase

and is not considered. A summary of the nigh thrust analysis is given in Appendix A.

The utilization of nigh and low [thrust in combination has been considered by a

number of autlaors (19' 20, 21, 22, 23)

The effect of oblateness [s included by analytically adding its associated

rate of change of ttae mean state and costate to that due to thrust. The effects of

staadowing are calculated by assuming that thrust is turned off in shadow. The

shadow entrance and exit times are calculated analytically by solving a quartic

equation. The effects of radiation degradation are calculated by modeling equiva-

lent 1 MEV electron flux as a function of radius and latitude. The power is then

expressed as a function of the total accumulated particle fluence. The model in the

first version of the program was valid for one cell and shield thickness. A new

model, developed herein, is valid for a variety of cell thickness, shield thicknesses

and base resistivittes. As for allperturbations, the effect of radiation degradation

on the costate as well as the state is calculated.

The overall trajectory is optimized by a snooting method. Initial values of

the unspecified states and cos[ares are chosen at the initial time. An optimum high



and low thrust trajectory is then generated by integrating the state and costate

through both stages. This will generate an optimal trajectory to the wrong

terminal state. A sensitivity matrix is then generated by varying the initial condi-

tions and runninga set of neighboring trajectories. A Newton iteration on the

initial conditions is then used to drive the terminal errors to within specified

bounds. The fLnal converged trajectory is a minimum time trajectory (nearly

minimum time for attitude constraints) for the specified velocity increment in the

alga thrust phase.

The principle modifications and additions performed under this contract to

the earlier work are: nearly time optimal trajectories can be generated for the

attitude constrained case of zero roll and pitch or zero pitch and free roll as well

as the unconstrained case; the shadow model has been modified to include the effect

of a delay in thruster turn-on after leaving the shadow; a new, more accurate and

more general solar array degradation model is developed; and additional spacecraft

parameters may be calculated and displayed. All of the options of the earlier code

are included except that the final impulse option has been removed.

The problem, then, which is considered in this report is the calculation of

time optimal or nearly optimal geocentric transfers using solar electric space-

craft whLcn may have attitude constraLnts and an optional initial high thrust stage.

For the low thrust phase the initial and final orbits are general ellipses. An inverse

square gravity field with oblateness is assumed. Thrust is assumed proportional

to power with constant specifLc impulse and effLciency. The effect on power of

solar distance may be included. The thrusters may be assumed to be off while the

spacecraft is in Eartr_s shadow and for a start-u p delay time which corresponds to

the sum of the time for the solar array to achieve operating temperature and the

time for the thruster to achieve full thrust after the solar array power is applied

to the power processor. The Van Allen radiation is modeled analytically and its

effect on power degradation included.

For the attitude constrained case the class of spacecraft modeled is indicated

Ln Figure 1-1 where the roll axis lies in the orbit plane and is perpendicular to the

Earth-spacecraft radius vector; the yaw axis is parallel to the Earth radius vector

directed toward the Earth; the pitch axis is perpendicular to the orbit plane and

directed south. For the nominal attitude the principle body-centered axes are

aligned with this coordinate system. The ion thrusters are mounted on the negative

roll face of the spacecraft and directed parallel to the roll axis. The solar arrays

are flat panels and are capable of rotation about their longitudinal axis, which is

aligned with the spacecraft pitch axis. The required low thrust directions are

achieved entirely by the spacecraft attitude rotations.
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Figure l-I Spacecraft Configuration

The thrust vector must have no component along the vector from Earth to

spacecraft. The thrust direction is determined by one control variable, the yaw

angle. Since pitch and roll are constrained to be zero, the orientation of the axis

of the solar panels is determined by the yaw angle. The panels are allowed to

rotate about this axis, resulting in one more control variable. Power is assumed to

be proportional to the cosine of the angle between the normal to the panels and the

line to the sun. The initial state Ls given and it is desired to reach a final subset

of the state at some, unspecified, final time. Although the original aim was to

derive the time optimal control, instead, a particular suboptimal control, which is

nearly time optimal, is derived. A costate formulation is used along with the method

of averaging to set up a two point boundary value problem which can be solved by

using a Newton method to iterate on the unknown initial costate and value of the final

time in order to meet the desired final conditions on the state and costate.

The computer program developed is used to assess the increase in flight

time and fuel consumption due to introducing the attitude constraints and ott_er

perturbations. A User's Manual which contains listings and descriptions of the

subroutines and a description of the use of the code is published separately (24).

Two papers rmve been presented based on the material in this report (25' 26)

Reference 25 has been accepted in modified form to be published in The Journal of

Spacecraft and Rockets.



SECTION 2

GENERAL TECHNIQUE

2.1 Introduction

Three areas of general technique are discussed in this section. One is the

method of averaging, essential to the running of a program which generates many

trajectories in a reasonable amount of computer time. Second Ls discussed the

method of generation of the final trajectory. A time optimal or nearly optimal

trajectory is desired. A state and costate formulation is used which results in a

two point boundary value problem which can be solved by a Newton iteration

procedure. Finally some comments on numerical techniques are made. Later

sections give details of the dynamical equations, calculation of the control, and the

effects of perturbations on an individual trajectory.

2.2 Averaging

A great savings in computer time can be effected by considering a first

approximation to the state and costate. Short period variations in the state and

costate are eliminated by the averaging technique. When low thrust propulsion is

utilized and the other perturbations to the inverse square motion are small and

when the state includes the five slowly varying orbital elements which indicate the

size, shape and orientation of an orbit and possibly other slowly varying quantities,

then averaging may be used. Spacecraft mass and the accumulated particle fluence

(both slowly varying) were also averaged. The orbital element indicating the

position of the spacecraft in the orbit is eliminated by the averaging process.

The averaged Ham[itonian can be defined as

-- H dt (2. I)

-- T t____

where H is the unaveraged Hamiltonian and T is the orbital period. When calcu-

lating this integral the state and costate are held fixed. The motion of the space-

craft is assumed to vary in a manner described by Kepler's equation over the

averaging integration. The approximate state and costate satisfy the canonical

equations



-_T _
x = -- (2.2)
- __I

iT _ 5H (2.3)

where the overbar indicates the approximate quantities.

In what follows the averaging integral for oblateness (12) is solved analyti-

cally; otherwise a numerical quadrature formula is used. The differential equations

can then be solved numerically using a time step which is much larger than but

unrelated to the number of orbital revolutions.

2.3 Optimal and Suboptimal Trajectories

The original aim was to calculate time optimal trajectories for the constrained

problem as well as the unconstrained problem. However in the course of the

analysis, which is described more fully in Section 3, it was decided to use a slightly

suboptimal control for the constrained case of zero roll and pitch. The suboptimal

control chosen is nearly time optimal, saves on fuel, and it is easier to calculate.

The controls considered for the zero pitch but free roll case and the unconstrained

case are time optimal. Transversality conditions for the time optimal control are

used for all cases. In the following discussion the words "optimal trajectory" will

be used to refer to both the optimal and suboptimal trajectories. In all cases the

method use0 to generate a low thrust trajectory is to develop the Hamiltonian, to

calculate a control (the thrust direct[on),either optimal or suboptimal, and to write

the canonical equations for the state and costate. Some or all of the initial state

and costate are specified. Application of transversality conditions for the time

optimal problem yield additional specifications on the state and costate. Thus a two

point boundary value problem results which must be solved to obtain the requisite

trajectory. When these equations are solved, an extremal trajectory will result

which is usually locally optimal. No attempt is ma0e to investigate generalized

Jacobi-type conditions to establish local sufficiency. Also, in common with other

nonlinear problems, there may be more than one extremal meeting the same end

conditions.' The very difficult question of global optimality is not considered.

The single trajectory generation portion of the code is coupled with a

Newton iterator to solve the two point boundary value problem. The unknown initial

conditions and value of the final time are iterated on in order to meet the final

conditions which are functions of the final state and costate (usually a specified



semimajor axis, eccentricity, and inclination and the appropriate transversality
conditions). Thepartial derivative matrix of final conditionswith respect to the
initial costate is obtainednumerically by calculating neighboringtrajectories to
a nominal.

Whenonly low thrust is included the initial orbit is specified as well as the

mass of the spacecraft. A seventh state variable, the equivalent 1 MEV electron

fluence is also specified. At the unknown final time either five orbital elements

can be specified or three: the sere[major axis, a, the eccentricity, e, and the

inclination, L. Transversality conditions require that the adjoint to the mass and

fluence be zero at the final time. If the final line of nodes (_) and argument of

perigee (u_) are free, then their adjoints are zero (kf_ = 0, Xu_ = 0). In either

case the final value of the Hamiltonian must be unity.

If initial high thrust is included, the necessary conditions for minimum time

low-thrust transfer with specified high thrust Velocity increments can be derived

by considering each phase separately as a variaLionat problem. The cosL of each

phase can then be expressed as a function of its terminal states and costates. The

proper interface conditions for each phase can then be derived by considering tr_e

parameter optimization problem of minimizing the time of the low thrust phase for

fixed velocity increments in the high thrust phases. This minimization is carried

out over all the free states and costates at the interfaces between high and low thrust.

The flight time for the high thrust stages is assumed to be negligible

compared to the low thrust stage flight time. At the beginning of the first high

thrust stage a, e, i are assumed given (eccentricity is set to zero). Transversality

conditions then require ki2 = 0 and X = 0.W

For the high thrust phases only an inverse square gravity field is assumed.

XD is a constant of the motion and therefore k o remains zero during the initial

high thrust phase if _ is fixed. A single extremal is generated in the following

fashion (it does not necessarily reach the desired final conditions). Values for Xa,

)re" %i' and ware picked. Values for kin, %N" tf are also picked but not used until

after the first high thrust stage. Since the initial orbit is circular we are assuming

that the first impulse occurs at u = f + wwhere f = 0 and sowjust indicates the loca-

tion in the orbit of the first impulse. From the standpoint of maximizing the primer

vector magnitude, the location on tne orbit at _ ich an impulse occurs is arbitrary,

since for a circular orbit one position cannot be distinguished from another.

Optionally, the user may specify the initial line of nodes. There is then an impulse

in the direction of the primer vector. The magnitude of the AV will be equal to the

maximum for an optimal one impulse transfer if that maximum is less than the

specified total initial _V, or otherwise equal to the specified total initial _V. If



the maximumone impulse &Vis less than the total &Vavailable, thena second
impulse occurs at thenext maximumof the Hamlltonian, again in the direction of the
primer vector. Theprogram requires that all remaining initial high thrust aVbe
usedfor this impulse. This may not beoptimal, as oneor more additional impulses
may beoptimal. Generally, for practical casesoneor two impulses will be optimal.

After the one or two initial impulses there is a resultant orbit a, e, [, _,

u: and values for ka, ke, ki, kO , ku _. The high thrust program scales the costate

so that the magnitude of the primer vector is 1 at the impulses. At the beginning

of the low thrust stage they may need to be rescaled so that final transversality

conditions will be met. This scaling factor, the picked values of kin, kN and the

values of ka, ke, ki, kf_, k from the high thrust stage are then used as input to
the low thrust equations of motion. These are essentially Eqs. (2.2) and (2.3).

They are integrated to the picked final time, tf. The final orbit is then reached.

This is an extremal trajectory, thoughpossibIy not arriving at the desired final

orbit.

We desire to reach a specified a, e, i. Transversality conditions require

that k O, ku_, km, kNbe zero and that H = 1. If we have not met these final con-

ditions a Newton iteration on the free initial conditions and time of flight is used in

order to meet the final conditions to within some tolerance.

The actual calculations of the initial high thrust stage uses code developed

by H. Small (12' 13} which uses a special set of variables. (See Appendix A. ) The

low thrust code uses equinoctial orbital elements rather than classical orbital

elements. This stage is discussed in detail in Section 3.

The Newton method works by first guessing values for the iteration parameters,

call them x and tp and then running a nominal trajectory which will yield final

conditions y which in general are not equal to the desired final conditions, Yd'

Revised values for x, tf may then be obtained by calculating a sensitivity matrix or

partial derivative matrix, A, which is generated by varying slightly, one at a time,

each of the iteration parameters, x, and running a new, neighboring, trajectory.

Differencing the resulting values of the final conditions with the nominal values
5Y

yields a_yforeach_x i. In addition _ can be calculated analytically except perhaps5H
for _ff which can be approximated numerically by varying tf slightly and evaluating

the corresponding H, differencing this with the nominal H and dividing by &tf. Then

A is an approximation for the partial of_y with respect to x, tf.

&yT

_x

5y T

5tf

(2.4)



A revised estimate of the iteration parameters can then be obtained by the formula

NEW OLD

(2.5)

A new nominal trajectory can then be generated and the procedure continued until

the final conditions are met to within some tolerance. _n the event that the new

x, tfdo not yield a reduction in the norm of the final condition errors, the change

in (x, tf) is reduced in magnitude by factors of 2. Also there is an option of using

a modified Newton-Raphson procedure wherein the A matrix is not always recalcu-

Lated at each iteration by running neighboring trajectories, but instead a newA

may be approximated using the old A and the values of the changes in x, tf .

We will now specify more precisely the initial and final conditions. Since the

low thrust code uses equinoctial elements, theywillbe defined here in terms of

the classical elements,

a = a

h = e sin (a_+O)

k = e cos (tn+O)

p = tan(2) sLn D )

i
q = tan_ cosG

(2.6)

These are five of the seven state variables. The other two are mass, m, and

particle radiation fluence, N.

The Newton iteration scheme iterates onavector x to drive a vector y to

zero, where now we are usingy_ to mean_y- -Yd as used above. Separately coded is

the iteration variable tf, the final time. x is a function of the unknown state or co-

state elements at the initial time; y is the error in the final conditions, a function of

the state and costate at the final time and the Hamiltonian at the final time.

Two final conditions options are considered.

elements are specified at the final time. Thus,

y = a(tf) - a d

h(tf) - h d

k(tf) - k d

p(tf) - Pd

q(tf) - qd

km(t f)

kN(t f)

H(tf)- 1 _

In the first, all five orbital

(2.7)



where the subscript d indicates thedesLredvalue.
For the secondoptiononly three orbital elements (a, e, i) are specified.

Theadjoints to f_(tf) and _o(tf)must thenbedriven to zero. Theyare given in
terms of theequinoctial state andcostate.

= + qXp- pkq (2.8)X X

k = kkh - hk k (2.9)lJ0

The eccentricity and inclinations are given by

For this case, then, let

y =

e : (2. 10)

i -- (2, 11)

h _ k 2

2 tan -1 jp2 + q2

m

a(tf)- a d

_/h2(tf)_ k2(tf) - e d

id
_p2(tf) + q2(tf) - tan--,/

h(tf)kk(t f) - k(tf))_h(t f)

p(tf)kq(tf) - q(tf)kp(tf)

)'m(tf)

).N(tf)

H(tf)- 1

(2.12)

When id = 0 driving the above y to zero is equivalent to driwng p and q to zero and

not considering PXq - kkp. When calculating small errors near [d- 0, the above_y
expression cannot distinguish between positive or negative inclinations. This can

lead to numerical problems, so when id = 0, the code sets the third component of

y to p(tf) and the fifth component to q(tf) in the SEP code. A similar situation exists

if e d = 0, so in this case the second component is h(tf) and the fourth component

k(tf). If both e d = 0 and id • 0, then both options are equivalent in the SEP code.

10



For low thrust only, the initial state must be specified, and therefore x Ls

just the initialcostate. When initial impulses are included either W and O are

free or just oa is free. Since the initial orbit is circular for this ease, o2 indicates

the location of the first impulse. Thus lw(t o) = 0. If D(t o ) is free, k_(t o) = 0.

It is shown in Appendix A that for the _ (t o ) specified case, setting the initial

u_ determines the initial kO. Thus w is used as the iteration variable. The high
thrust code requires special input variables and these variables must be within

specific bounds if a circular parking orbit is assumed (Appendix A). Taking into

account these bounds let t_l, /:2' _3 be the first three iteration parameters where

Small's special variables are given by

T = (2. 13)
2

2 j_÷_i

k = cosT (. 75 +. 25 {2 ) (2. 14)

= (l+kcos T )_cos T-k $3

cos T+k '/_3

(2.15)

This transformation allows _ I' _ 2' and _3 to be unbounded.

In order to interface the high and low thrust stages a correspondence or

scale factor is needed to relate the respective eostates where

_tf

_ VHIGH

(2.16)

and tf and _VHIGH refer to the respective costs for the two stages. Then

LOW HIGH

(2. 17)

The iteration parameters are then

X

_2

_3

c

[_orw

Xm

XN

(2.18)



and recall that the initial a, e, [, )'t_ and u_ or f_ are specified.

If roll is free so that the panels can always face the sun and if shadowing

is not included, then the perturbations on the spacecraft are axially symmetric.

The perturbations modeled are oblateness and the Van Allen radiation. The latter

was forced to be axial symmetric by the particular model used. Therefore, ).
n

is theoretically constant and varying 0 at the initial time will only affect _ at

the final time. Tilus if f) at the final time is not specified, the sensitivity matrix

will be singular. For this case the D should be specified.

The sensitivity matrix is calculated by varying each x i by a small amount

and comparing the resulting error in the final conditions with the nominal.

_._.Z_Z_ Z(x+__x) -y(x)

_x[ _x i

(2. 19)

Except for 3(H-1) the partial of y with respect to tf can be calculated analytically

since the aer_tvfatives of the state and costate are known at the final time. For

example

(2.20)

The other partials are obtained similarly except for the partial of the Hamiltontan.

For SEP the time dependence of the Hamilton[an derives from the shadow

effect and solar distance and direction and therefore an analytical evaluation

is difficult. Therefore, the partial was obtained numerically by varying tf

slightly and re-evaluating the state derivative (holding the state and costate constant)

and then evaluating the Hamiltonian. Thus

bH(tf) _kT(tf) (x(tf+A if) - :_ (tf),xtf)
- - (2.21)

tf At f

2.4 Numerical Methods

A Newton-Raphson iterator [s used which calculates the sensitivity matrix

by running neighboring trajectories by changing slightly the initial values of the

iteration parameters, one at a time. The size of the change in the iteration

variables ts chosen by the user and can affect the accuracy of the matrix. A

Modified Newton-Raphson tterator uses basically the same technique but many of

the iterations make use of a modified sensitivity matrix rather than calculating a

new one by running neighboring trajectories at each iteration.

12



The low thrust differential equations are integrated using a fourth order

[_unge-Kutta method. The time step is selected by the user. This is fixed for

one subroutine supplied or may internally be changed if the IBM Scientific Subroutine

version is used (27). in which case error weights and an upper error bound must be

supplied by the user. Cutting the size of the time step can increase the accuracy

of the trajectory but rapidly increase run time.

Numerical averaging utilizes a Gaussian quadrature. The number of points

sampled on an orbit can largely be determined by the user. Again_more points

increase accuracy at the expense of run time.

13



SECTION3

LOWTHRUSTEQUATIONS

3.1 Introduction

This sectiondevelopes most of the new analytic results. Some of these new

results are based on previous work, whicU is included in summary form, often

in appendices. The new results include the derivation of the attitude constrained

thrust control, tt]e effect of a delay in thruster turn-on after leaving the shadow,

tue new solar array degradation model and the calculation of several spacecraft

parameters.

3.2 Equinoctial Orbital Elements

By using equinoctial orbital elements the singularities that occur for zero

eccentrEctty or inclinations of zero or ninety degrees when using classical orbital

elements are avoided. (For inclinations near 180 ° retrograde equinoctial orbital

elements can be used, although we will not consider that case in this report.) The

formulas given in this section are taken from Reference 16 except for the costate

transformations.

The direct equinoctial orbital elements are defined in terms of the classical

orbital elements, a, e, i, D, and W by the formulas

a = a

h : esin(w+OJ

k = e cos (u_ +C_)

p = tan(_)sln

q = tan(_)cos

(3.1)

In Reference 16 the sixth orbital element is the mean longitude at epoch. In this

paper we will consider the eccentric longitude, E, as the sixth element, defined by

F = E+ w +O (3.2)

14



where E is the eccentric anomaly. This element will be eliminated from the

dynamical equations by the averaging process.

The inverse relationships are defined by

a : a

e = (h 2 + k2) 1/2

i 2tan-l(Jp2 +q2) (3.31
-1

D = tan (p/q)

w = tan-l(h/k) - tan-l(p/q )

The equinoctial coordinate frame is c_efined by the basis vectors _, , w,

which are given below with respect to an earth equatorial coorciinate frame.

l - p2 + q211+ +q
- 2pq

i 2pq 1
1 l+p2 2

g-- p2 2 - q1+ +q
2q

(3.4)

E2P 11 -2q
_- p2 2
-- 1 + + q 1 _ p2 _ q2

This coordinate frame is illustrated in Figure 3-

orbital plane.

The equinoctial orbital elements can be calculated from position and

velocity. The semimajor axis is given by

l!1

1 where {v is normal to the

(3.5)

15



z ORBITALPLANE

/

Y

x UNIT

Figure 3-1. The equinoctial coordinate frame.

The eccentricity vector is given by

e = - _ -

The vector normal to the orbital frame is given by

{v =

Then

(3.6)

(3.7)

x
p -

l+_-
z

q = Y

1+C,
z

(3.8)

(3.9)
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From the values of p and q and Eq. (3.4) f and g may be computed. Then

(3. I0)

Further relationships include the position coordLnates X I, Y1 with respect

to the f, g, x$ frame,

X 1 = r._

Y1 = r.g

(3. II)

and the eccentric longitude, F, where

cosF = k+

sinF = h+

(i - k213)Xl - hk_Y 1

ajl - h 2 - k 2

(3.12)

where

= I (3.13)

i +Jl - h 2 - k 2

The mean longitude is defined by

k = M+ _ +¢1 (3.14)

The eccentric longitude, F, was clef[ned in Eq. (3.2). Kepler's equation in terms

of ). and F is then given by

I = F - ksinF + hcosF (3.15)

We will not make use of the true longitude

L = v+ 00 +fl (3.16)

17



M, E, v are the mean, eccentric, and true anomalies, respectively.

Posit[on and velocity are given by

^ ^

_.r-- Xlf+ Yl_g

• A

r_" = X1 [_+ Ylg

(3.17)

(3.18)

where

X 1 = a[(1-h2_)cosF + hk_sinF - k] (3.19)

Y1 = a[(1-k2.8)sinF + hkR cosF - h] (3.20)

2

:X1 = na [hkBcosF (1-h 2- B) sinF] (3.21)

Y1 - ha2- _[(1-k2_)cosF - hkRsLnF] (3.22)

and

n = a_ (3.23)

r
-- = 1 - kcosF - hsLnF (3.24)
a

bt Ls the earth gravitational constant.

The adjoLnts to the classical and the equinoctial orbital elements are related.

Let _.k represent the adjoints to a, h, k, p and q, and let tp represent the adjoints to

a, e, i, 12 and t_. Then

Xa

kh

)'k

),p

kq

1

0

= 0

0

0

0 0 0 0

s in(w+i2 ) 0 0 cos (u_+D )/e

cos(_+C_ ) 0 0 -sLn(w+ O )/e

0 2sin D c°s 2 i /tan½ - cost2-_ cos O /tan

0 2COSOCOS 2[_ -sinf_/tan_ sint'l/tan _
el

(3.25)
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This canbewritten [n terms of equinoctial orb{tal elements

Xh

I k

kp

_kq.

0 0 0 0 0

0 h 0 0 k

= 0 k 0 0 -h

_/h2+k ]_

0 0 2p q -q

0 0 2q -p p

jp-_q (l+p2+q 2) _ p-_q _

(3.26)

Note that some of the elements of this matrix are undefined Lf e or i are zero.

The inverse relationship can also be written. In terms of classical

orb[taletements, the classical costate is given in terms of the equinoctial costate

by the following relatLon,

i a

_e
I

I

)

1 0 0 0 0

0 sin(_+O) COS(_o+O) 0 0

1 2i . 1 2i
0 0 0 -_sec -_stn$1 _sec -_cosn

0 ecos(_o+O) -esLn(w+O) [ [ "tan-_ cos_ - tan_ sm_l

L0 ecos(_o+D) -esin(_o+O) 0 0

1ka

I. h

I.k

Xp I

×q t

(3.27)

or in terms of equinoctial orbital elements

J 7Sa 7 1 0 0 0 0

_be 0 h k 0 0

t
' (l+p2+q 2) 1 (l+p2+q 2)

.I--o o o n J
@_ 0 k -h q -p

I 0 k -h 0 0

ka

kh

I

_q_J

(3.28)

19



Certain elements are undefined if e or i are zero.

3.3 The State Equations

The unaveraged state differential equations are

2P
z - M(z, F)
-- mc

(3.29)

2P
rh = --'5

C

(3.30)

where z represents the five equinoctial orbital elements (a, h, k, p, q), m is

spacecraft mass, P is thruster beam power, which is assumed given by

1

P = _PoD(N) R---2- cos
S

(3.31)

where Po i.s a constant knit[al maximum array power at 1 A.U., _ is the total

constant power efficiency factor, D(N) Ls a damage factor which is a function of the

fluence, N, and has a maximum value of 1 (this function is derived in Section 4.3),

_ is the distance to the sun in A. U. 's and _ is tt_e angle that the normal to the
s

panels makes with the spacecraft - sun vector. For the unconstrained attitude case

cos _ = 1. For tr_e attitude constrained case it is a function of spacecraft pos£tion

and the thrust direction. The constant exhaust velocity is g[venby

c = Isp go
(3.32)

where lsp is the specific impulse and go is the acceleration of gravity at the equator.
The thrust direction is given by the unit vector G. We define the 5x3 matrix

_Z

M(z,F) = _ (3.33)
- _r_"

The elements of this matrix are listed in Table B-1 of Append£x B. In addition to

the quantities defined in Section 3.2 the partials of X 1 and Y1 with respect to h and

k are required. These are listed in Table B-2. These partials differ from

Reference 16 since we consider F as an orbital element rather than as a function of

h and k; thus when partials are taken, F is held constant. This assumption also

affects the appearance of the expressions given in Table B-1 when compared with

Table 3 of Reference 16. However, if the expressions are written out in detail

they are seen to be identical. The code utilized the form shown in Ref. 16.
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That form of M was also usedwhencalculating andcoding_M for the costate
equations. An algebraically simpler form of this matrix is'given in a later work{28)
butwasnot utilized in the codingof our program, althougha variation of it is
discussedin AppendixC.

The highenergyparticle fluenceis also includedas the seventhstate variable.
It is a function of position, but the exact form is developedin Section4.2. For
thepresent discussion assume

1_/: f(z, F) (3.34)

Whenmass flow rate is given by Eq. (3.30) andexhaustvelocity is constant,
for arbitrary powerhistory, the AVis givenby

(3.35)

3.4 The Canonical Equations

To simplify the analysis we will first consider only the costate elements

z, m. The effect of fluence can be considered later. For simplicity also assume

= = 1. Then beam power is given bythat in Eq. (3.31) that 1,1 1 and R s

P = P cos _ {3.36)
o

The method used to get the canonical equations is to form a Hamiltonian,

H, then average it, from which a first order approximation to the actual state and

costate is obtained. (This does not necessarily yield the averaged costate. )

Let H represent the unaveraged Hamiltonian and x the full state, then the

averaged Hamiltonian is

(3.37)

where T is the orbital period, and the overbar indicates approximate quantities.
o

The _" dependence refers to time dependence which is independent of spacecraft

motion such as Earth motion around the sun. In practice integration with respect
dt

to F is more convenient. The expression _ can be obtained from the equinoctial

version of Kepler's equation (Eq. (3.15)). It is given by
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dt To
- (i - ]_cos F - hsin F) (3.38)

dF 2'ff

For convenience define

s(z,F) - 1 dt (3.39)
T dF

o

Then the canonical equations for the approximation to the state and costate are given

by

b_ T
T

- _ - [ s (3.40)
,,ff

= s + H bsT- _ dF (3.41)

___ -_ L- __

Note that inside the averaging integral the state and costate are held constant.

the definition of s the only non-zero elements of bs are

From

___s = _ _I sinF

5_ 2,,

bs _ 1 cosF (3.43)

_k 2_

b___._His just the unaveraged state equations with the dependence on the state and

  state held constant over the averaging interval. The expression -_ is just

the unaveraged costate equation, )_. Most of the remainder of this section will be

involved in obtaining the unaveraged Hamiltonian and its partial derivative with

respect to the state for the attitude constrained case. Those equations reduce

simply for the pitch constrained or unconstrained cases. Only the state variables

z and m will be included; shadowing and oblateness will not be included.

One method of including the constraints is to write h directly as a function

of a single control angle, _b, which lies in a plane perpendicular to the radius

vector. Let

T1 = [e--1 ' _2 "] (3.44)
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where _6 1 and _2 are any two unit vectors orthogonal to the radius vector and each

other (the transformation T 1 is thus dependent on the spacecraft position and thus

the orbital elements). Then

_ _ _ F) [cos: 2P(z,F,$) M(z,F ) Tl(z, [_sin$ ] (3.45

2P (z, F, _) (3.46r_ = --2--
C

The Hamilton[an is given by

cos @] _ ), 2P (3.47H = -zkT 2-_P MT1 stn$ mT
mc c

The costate equations are

i : __rt, xT 2P _M, _Ti_Fcos¢ _
-z _ P - -- _ _-_- rl + M _=_ Lsin * J (3.48

_, = kT 2P [cos:]--rn -z --'-2--MTI sin (3.49
m c

The elements of expression _M are given in Tables B-3 to B- 7 of Appendix B along
bz

with subsiciiarypart[als in Tagles B-8 to B-9.

Another method is to use a constraint formulation (which is the form coded).

Then

: 2__.PPM _ (3.50)
me

2P (3.51)rh = -2
C

but there is a constraint equation

C r T^= u = 0 (3.52)

which insures that the thrust direction is orthogonal to the spacecraft radius vector.

The Harn[lton[an is

T^ 2P
H = xT 2P Mu + _r u ---_ k (3.53)

--Z rne -- 1TI
C
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with the additionalmultiplier, U . Then the costate equations are

(3.54)

: xT 2P_. M_ (3.55)
-m -z £ -

m c

Again, _M is given in Appendix B. If we assume that r is the r,xdius vector divided
_z - _:_1 _xl _Y1 _Y1

by the seFnimajor axis then the only nonzero partials of r are _, _-_ o _--_ , _ ,

which are given in Table B-2. Thus the term b--r-----Tis a little easier to evaluate than
_z

_T and also this form is more useful for the ca'ses of zero pitch but free roll and
_z '
x_thout constraints. However, U must be evaluated. Rewrite the Hamiltonian

mc c
/xT 2.__PPM + l/r T_ TT T u_--_X m (3.56)
\--z mc - /__..,J c

I

where

T = [e I e 2 33 (3.57)

and

Now TTu_ is just the control in the _1' e--2' _3 coordinate system.

(3.58)

It can be written

U-T = jsin _) cos (3.59)

Ls

where g is the angle between *uw and the _1 - e--2 plane, and $ is the angle between

the projection of _W onto t_ae -el" *--e2 plane and "e 1 . Note that as yet we have not

taken into account the constraint equation. Rewriting Eq. 3.56

I,.0o,H = -- MT+ T--"2 )'m
mc ¢

Writing this out in detail

H = --2P -zxT M[._I cos $ + e 2^
mc

_c T M__3sin ¢ ] cos _ + !z 2P- ulrl sin_ ----,2 Xm
c

(3.61)
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The longitudinal axis Of the panels is parallel to the piLch axis. Therefore,

the orLentation of the panels can be defined tnclependently of the pitch angle. Thus

P is not a functton of pLtch. Then to solve for the optimal E set

_-_-_ = 0 (3._2)

Or

tan
! 2P T e-3

m.._._Ek_._2P T M_e_ 1 cos _ + e-2 sin _b

(3.63)

Now the constraint can be taken into account. Rewriting Eq. (3.52) as

C = r T TT T fi = 0 (3.64)

since TT T is ,just the identity matrix. From Eqs. (3.57) and (3.59) the constraint

reduces to sln_ = 0. So Eq. (3.63) is also zero. Thus

^

2Y' xT Me 3 _ /,t Irl = 0 (3.65)
me z

or (using Eq. (3.58))

2PX_zT M _r__l (3.66)mc

When roll is free, power ts no longer a function of _. For the pitch = 0

case Eq. (3.52) is still valid, and the optimal __ is easy to calculate as is bt. The

Hamiltonian is

.: • (3. 67)
- - -2- km

me c

Since P is not a function of __, to maximize H set

T

(z __ T)
u = _k _ M + Dr (3.68)
w

Ik--zT mc2P M + DrTI
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^T
The constraint C =u r = 0 yields

xT 2P M r + _rTr = 0
--z mc -- -- --

(3.69)

or

kT r- _2PM_

-z mc I_12

the same as Eq. (3.66).

When there is no constraint D = 0 and

MT_Xz

- IMT_I

is the optimal thrust direction.

In summary the approximating canonical equations are

w

_. _ 17 (2P(-g, fi) '¢[(_,F)+ t_rT)t] S(_,F)dFZ _ _ _ _

-11" [Tac

=-_ 2 s(z_-,F)aF
-'_' C

m

• 7r {bP(z,h) _ - - M(z,F)a -Xz =- -_ _z- mc - c
+_

_Z
mc _ b-_

(3.70)

(3.81)

(3.72)

(3.73)

(3.74)

where

= _ X _(z,X,u)s(z,F)dF
Xm m -_r --z

_ _T 2P(_2,_) M(_,F)
-z _c -

r

I£12

(3.75)

(3.76)
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if pitch is constrainedto zero.
are given in AppendixB. Also

If there are no constraints, tt = 0.

_S _ 1

b_ 2,T

0

- sinF

- cos F

0

0

If r is interpreted as the radius vector divided by the semimajor axis,

the equinoctial coordinate frame

M and 8M
bK

(3.77)

then in

(3.78)

so that

T
_r

_Z

0 0 0

0 0 0

0 0 0

(3. 79)

where the nonzero partials were given in Table B-1.

_P
In the case of free roll, P is not a function ofzand so_-{ = 0. For the

zero pitch and roll case this partial depends on the actual form'of P which has

not yet been specified. For the unconstrained case and for the case with zero pitch

but free roll, the canonical equations are completely defined. It remains to

calculate the power equation and the control for the zero pitch and roll case.

3.5 Geometry and Power

In this section we define a useful coordinate system in which it is convenient

to calculate the thrust vector direction and the equation for power. It is shown that

we can calculate the panel orientation angle in terms of the thrust direction angle,
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thus leaving only one control variable for the problem. Power will then be a function

of the thrust angle and the angle between the radius vector and the direction to the

sun.

The thrust vector is constrained to a plane which is perpendicular to the

radius vector. In this plane the yaw is usually measured from a basis vector in the

orbital plane, which it is for the printed output of our program. However, because

of the power dependence on sun direction, another coordinate system will be useful.

This is the e-l'--e2'-_e3 system where

^ A

e 3 = -_r (3.80)

and_el is in the plane defined by the radius vector and the Earth-sun vector

(assumed equivalent to the spacecraft-sun vector). In particular,

and

e I = e 2 x 3 (3.82)

In this system the sun direction is defined by the angle B where

1_ = cos B e3 + sin _] _ 1 (3.83)
--S

= _T^
(In the equinoctial system cos;9 - _ R_s . ) The thrust acceleration vector direction

is constrained to the _1 - e-2 plane and given in terms of the angle _) with respect to

the _-1 axis by the unit vector

G_ = cos _1 + sin _b*_e2 (3.84)

(See Fig. 3-2).

The power yield of the solar panels is proportional to the cosine of the angle

between the normal to the panels and the vector pointing toward the sun. The panels
^ ^

can rotate about an axis which Es in the e I - e 2 plane and is assumed to be perpen-

dicular to fi (recall Fig. 1-1). The normal to the panels can be defined tn terms

of _b and an angle of rotation, B, about this axis in the _1 - e-2 - e-*3 system, namely:

I_ = sinecos_b_ 1 + sin0stn$e 2 + cos__e 3 (3.85)
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Fig. 3-2 CoordinateandAngle Definition

The cosineof the anglebetweenthenormal and the sunvector is given by

cos$ =_IqTRs_ = sin_sin0cos_ + cos_cos/_ (3.86)

For a given 8 it is possible to maximize this expression with respect to e and so

eliminate e from cos¢, which will then be a function only of $ and _. The

maximizing 8 is given by

sine
= sin _ cos _ (3.87)

2t_ + sin2t_cos2_b

cos8
= cos 8 (3.88)

Jcos2B + sin28cos_b

and thus

cos$ = Jcos2_] + sin28cos2_b = ,/i - s[n2_s[n2_b (3. 89)
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It is interesting to look in the _1 - _2 plane at the locus of the vector pointing

along the thrust direction with magnitude equal to cos ¢. For each B there is a curve

in the _1 - e-2 plane as _ varies from 0 to 360 degrees. These curves ave symmetric

about both axes and repeat for every _ interval of 90 clegrees. Note that for ]cos/_ ]

< f2-/2 they are convex (see Fig. 3-3). Since power is a function of thrust clirection,

this curve will be important in determining the desired control angle, _b, which

specifies the thrust direction.

B : 450

B= 0°

B : 900

Fig. 3-3 P/Po Locus

_P
In Eq. (3.74) for the costate derivative we needed __.

calculated. Power is given by

P = PoC°S¢ = Po Jl - sin2Bsin2_b

This can now be

(3.90)
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so that

)-1/2 25 bcosR (3.91)_P = Po 1 - sin2_sin2_b sin sinBcosp _---_

--S
So

bcos__ = __ . R +__e3bz _z s "
(3.92)

where

^

_e 3

_z i

- X1Y 1
\Xl _z i 5z i /

-X1Y

bXl + 2 bYl I

 z-T

0

where the semtmajor axis drops out of e--3 and so we only need the partials of X 1

and Y1 with respect to h and k which are given Ln Table B-2 of Appendix B. _s

is a function of only p and q and the partials are given in Appendix D.

(3.93)

3.6 Thrust Direction

Let us rewrite the Hamiltonian given in Eq.

of P on $.

(3.47) but including dependence

t-I = ° JI-sin2,sin2$ (k__zTMT [ " J-_ SL:$ - (3.94)

In the definition of the transformation, T, we are using the unit vectors defined

previously in Eqs. (3.80), (3.81), {3.82). The quantity TTMTxz is just the primer

vector given in the __1-__2-_3 system and will be des ignated _kv with com,onents Xvl, kv2,

kv3. Eq. (3.94) can be rewritten as

k v kv

2P°_A-sin2_sin2$ (--_-cosS + "2 sins __._c ) (3.95)H=_ m
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For a minimum time solution this Hamiltonianmust bemaximizedwith respect
to $. If this is done by setting _H/b_b = 0 and converting all sin $ to cos _b, a

sixth order polynomial in cos $ results. Let

m)- m kv 2
( - , tan(_ = -- (3.97)

C)'v 1 Av I

Then

2P
.2 2_

H = _cm kv 1 _/c°s2B + sin /gCOS _P (COS@ + tan_sin_ - ()

This can be maximized with respect to $ by setting

(3.98)

5H _ 0 (3.99)
_S

5H _
-1/2

cm kv 1

(cos2 . . 2 2 .... oos,) 0+ _+sm /_cos $) _-sm_+tanct =

2PoX v
1

Divide by , then

(3. 100)

, 2 . . 2 2 )1/2cm_cos _*sm /_cos ¢

- sin 28cos S sin S (cos$+tan_sin_b+E) + (cos28+sin28cos2_b)(-sin$+tanotcos_b ) = 0

(3. 101)

or

_ sin2pcos2Ssin S _ 2 2sin Btan_cos_sin2@- (sin2Bcos_bsin_)- cos Bsin$

2 3
+ cos2Btanacos_ - sin2/_cos2$sin$ + sin Ntan_cos _b = 0

Rearranging

2 2 2
sin$(2sin2Bcos @+cos _+_sin Bcos@)

(3. 102)

= (cos 2 _-sin 2 B )tan_os_) +2sin2_ tant_ cos3@

(3. 103)
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Squaring

2 2 2 2 2 2
(1-cos2_))(4sin4Bcos _+4s[n Bcos _cos2_+cos4_+2es[n2_(2sin _cos _b+cos _)

2 2 2
+c2s[n4Rcos2 $ = (cos2_-sin2_) tan _cos _b+4sin2Btan2_(cos28-sin2_)cos45

+ 4sin4/_tan2c_cos6_b (3. 104)

Rearranging, finally,

4s[n4R (tan2a +l)cos6_ - 4( sinpcos5$

+ 4J-sin 2 2 2 . 2 . 4 . 2 2 E2sin4B_cos4 $L _tan e_(cos B-sin _)-sm R+sm Bcos B-

+ C(4sin4B - 2sin2/_cos2B)cos3$

2 4 7
++ [(cos2@-s[n2R)2tan2_-4sin2Bcos @ cos _+_2sin4__jcos2$

+ 2Esin2_cos28cos$- cos4/_ = 0 (3.105)

Is the minimum time solution really desirable for this problem ? We think

not. If power were not a funct[onof the control, the opt[real thrust direction

would just line up with the project[on of the primer vector on the _1 - _-2 plane.

But for the Hamilton[an of Eq. (3.95) _) becomes a function of km. ThLs has the

effect of biasing the control so that the thruster is operating in a region on the

curves of Fig. 3-3 where cos¢ is greater than it would be if k m were not included.

This reduces the mass of the spacecraft by throwing fuel away in order to reduce

the flight time. In fact, if fuel could simply be dumped overboard instead of going

through the thruster, the time optimal requirement would be Lo dump fuel until

k = 0. SLnce the formulation here does not allow separate dumping of mass, a
m

bias on the control is required to reduce mass. Although minimizing time is

important, dumping fuel to do so seems undesirable.

So what happens if the part of the HamHtonian containing )'m is ignored and

instead we maximize

2P

H' = --'-2°cm"/lisln2Rs[n2$ (kvlc°s$ + kv2Sin@) _ (3. 106)

In the _1 - e--2 plane one can see that this is equivalent to maximizing the projection

of the vector (cos S, sln@)Jl-sin 2Nsin2$ onto the _1 - e--2 components of the primer
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().Vl , kv2). The locus of the fLrst vector Ls just that shown in Fig. 3-3. Geomet-

rLcally, a typical solutLon is shown in Fig. 3-4. The maximization of H' can be

carried out usLng analytic geometry by considering the cos_) curve as a parametric

function of $ and noting that Lts slope must be Lhe negative of the inverse of the

slope of Lhe XVl - Xv2 vector. Thus, if

Jl-sin2B sin2$ (3. 107)

then

d__yy _v1
d._Z = d$ = _ _ = _ _ (3.108)

dx dx tan_ kv 2aS

,,/[Xvl]
; v2J

Fig. 3-4 Geometric Calculation of $

where

dx = (-l+sln2_sin2$-sLn2_cos2_b)sin@

d$ (1-sin 2Psin2@)l/2

(3.109)
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and

Thus

d.ff_y : (1-2sin2Bsin2_))cosS
d$ 1/2

(1-sin 2 Rsin2S)

(3. 110)

Using

tane_ : 1-sin2Bsin2S+sin2Rc°s2S tans (3.111)
1-2sin2 Rsin2 S

tan 2 g_
sin2S -

l+tan 2 _
(3. 112)

and

then

or

cos2S = 1 (3. 113)
l+tan2_

tan{_ = l+sin2R+c°s2fltan2_ tans

l+tan@ -2sin 2 8 tan2 _b
(3. 114)

cos2Btan3S+(2sin2t_-l)tantytan2_b + (l+sin2_)tanS-tan_ : 0 (3. 115)

2
Dividing through by cos f_ yields

tan3$ + (tan2_-l)tan_tan2_b + (2tan2B+l)tanS - (l+tan21_)tanl_ -- 0 (3. 116)

It is also possible to obtain the control by setting _H___' = 0. The procesure

is the same as resulted in Eq. (3. 105) and in fact an equation in cos_b can be

obtained directly from Eq. (3. 105) by setting c = 0. Thus the coefficients of all

odd powers of cosS are zero. The resulting equation is

2+ 6+ 2
4sin4_(tan _ 1)cos _b 4sin 0(tan2_-l)(cos2_-sin2R)cos4 S

+F/cos2__sin22L_, 2 2 2 4_) tan _-4sin _cos _+cos _)cos2@-cos4_ = 0 (3. 117)
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Thecubic equationin tans of Eq. (3.115) canbeshownto be equivalent

to the cubic in cos25 of Eq. (3.117)by substituting tan_ = Ji'-c°s2_ into
COS_

Eq. (3. 115), then removing the square foot, rearranging and squaring. Collecting

the terms and making certain trlgonmetric identifications yields Eq. (3. 117).

This control does not dump fuel to minimize time, and it is much easier to

calculate since the solution to the cubic can be obtained analytically, unlike the

solution to the sixth order polynomial. Analysis of the worst case example (see

Appendix E) indicates that the time penalty in using this suboptimal control is

small while resulting in a fuel savings. Since it is also much easier to calculate

and thus saves computer time, it was decided to use this control law for the present

study.

This control law has some interesting characteristics. Fig. 3-5 shows

curves of constant _ superimposed on the curves of Fig. 3-3 for one quadrant.

Thus for a given @ (sun angle) and et (primer vector angle) the resulting $ is

just the angle made by the line from the origin to the intersection of the appropriate

and B curves. Note that in this quadrant _3 is always less than e_ except for

B = 0 when $ = _, or for B < 45° and et = 90 ° when also $ = 90°: when _ = 90 °,

-, 45 ° as _ -* 90 °. For R > 45 ° as _ crosses the *_e2 axis there is a jump in $

to a symmetrical position in the adjoining quadrant. If _ remained aligned with

the _2 axis for a finite time a singular arc results. Since it would be nonoptimizing

(in terms of H' ) to operate on the concave portions of the curves, a chattering

solution is required as _1 jumps back and forth in the two quadrants in infinitesimal

time yielding a resultant thrust vector along the _-2 axis. In practice this solution

will probably never be required (as well as being impossible to implement if it

were). Jumps in the control direction can and do occur however. The locus of

points on Fig. 3-5 at whichajump occurs is given by an arc of a circle of radius

J'_/2 and center at the origin. This radius represents the minimum power. The

_b at which a jump occurs is related to _ by the relation

sin2R 1

cos25 = -_ (3.118)
sin2B

In practice, then, 8 and _ are calculated and the coefficients of Eq. (3. 117)

are obtained. The cubic equation can then be solved analytically. Appropriate

modifications must be made if the tangents are very large or infinite.

There are three roots to the cubic equation and if all three are real

they correspond to six possible values of $ in a 360 ° range. These

correspond to various maxima and minima. By inspection of the form of
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the figures producedby Eq. (3. 107)there is apparentlyonly one solutionwhich
can lie in the samequadrantas (_andat the same time maximize the projection

onto (kv1 , ),v2 ). Thus we can obtain the control angle $ which can then be

substituted into the equations of motion. This calculation must be made at each

quadrature point on an orbit.

B=O
a=90°

I ct=75o

a=60 °

_:90°

a=15 °

0 .5 1.0

Fig. 3-5 Lines of Constant Primer Angle (c_)

and Sun Angle (B)

There are certain special cases of values of (_ and B that must be considered.

If tanm = 0 the cubic reduces to tan3S "+ (2tan2R+l)tan_ = 0. The correct root is

then tans : 0 and thus S = eL. If tanc_ is infinite, first divide Eq. (3. 115) through

by tane_, then set tane_ equal to infinity, which yields

(2sin2B-1)tan2ab- 1 = 0 (3. 119)
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or

tan2$ = 1 (3. 12 0_
2sin2R-1

or

cos2_ 2sin2B -1
= 2 (3.12 1)

sin R

1
This is valid if sin28 >-_. Otherwise tan_b equal to infinityis the correct root

of Eq. (3.115)and $ = _ (= 90 °or 270°). If cos2_ = 0, then Eq. {3.115) reduces to

tan_tan2$ + 2tan_) - tan_ = 0 (3. 122)

From the binomial theorem

_ - 1 / 1 1
tan_ :t_rl-tan2_ - tan_ , - cot _ (3.123)

tan_

1
If -90 °< e_ < 90o, the first root is correct and _ =-_e. If 90 °< e <270 ° , the

1
second root is correct and $ =1 + 900 if 90 ° < e < 180 ° and _b = _e - 90 ° if

180 ° < e < 270 ° . If cos2B = 1 then tans = lane is the correct root and $ = e.

Because of the numerical inaccuracy of using a quadrature over a region

which contains a discontinuity in the [ntegrand, it is best to calculate possible

jump points and thendo separate quadratures between these points. A jump in the

thrust direction occurs when the projection of the primer vector onto the

_1 - _2 plane passes from one side of _2 to the other. At the time of crossing

the projection is perpendicular to e--l" and also perpendicular to --Rs" Thus the

condition for a jump can be written

T^

An actual jump occurs only if the constant 0 curve Ls concave, i.e.,

(3. 124}

loos I<A -2.
For the results given in this report the method used to find the values of F for

which a jump might occur was to divide the 3600 range of F into small equal

intervals and then to check to see if there was a sign change of Eq. (3. 124) from

one side of an interval to the other side. If so, the exact F within the interval

for which Eq. (3. 124) was zero was found by using a nonlinear function root

finding routine (an IBM scientific subroutine using a Muel.ler's iteration (27).
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The equation for the jump points can be obtained as a sixth order poly-

nomial in cosF. This equation is very tedious to derive algebraically and in any

case must be solved by an [terative procedure and the roots tested. Thus it seems

reasonable to use the search procedure. The sixth order polynomial in cosF can

be obtained by writing a form of Eq. (3. 124) in _, s, _vcoordinates where _ is

along the spacecraft radius vector, {v is perpend/cular to the orbit plane and

_s = _ x _. If k s and k w are the components in the __ and _{v directions respectively,

then

Y1 X1 _ .
- RxT + RyT_ks + Rz )'w = 0

(3. 125)

where I_ T
-s = (Rx, %, R z) is the sun's _irection Ln equinoctial coordinates and X 1

and Y1 are the spacecraft pos[tLon in the equinoctial frame, and r is the radial

distance. Using the results of Appendix C

k s 2aJi'h2-k2 k- (rX1 GY1 (rT_ 1 + -_= nr a - "7-- + (3. 126)

(kk h-hkk) (l+p2+q2) (XPYI+)'q xl)kw = G (qYI-PXI) + G
(3. 127)

The quantities XI, YI" XI' YI" r all contain cos F and sin F. Substituting into

Eq. (3. 125), multiplying through by r and eliminating sinF by rearranging and

squaring results in the sixth order polynomial in cos F. Three of the roots are

introduced by squaring so there will be at most 6 values of F for which there may

be jumps.

If the eccentricity is zero, h = k = 0, and aquartic results. In that case

X s = 2 _--_vb_"./--= _{aXa + XhSinF + kqCOSF_ (3. 128)

(l+p2+q 2)

kw = ',/_ 2 (kpSinF + kqCOSF)
(3. 129)

There are at most four values of F at which there may be jumps. If in addition

to h = k = 0 also )'h = )'k = 0, then there is a further simplification and Eq. (3. 125)

reduces to

K), +R

tanF = q Y (3. 130)

KXp- R x
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where

Rz(l+p2+q 2)
K =

4ak
a

Thus there can be at most two jumps which are 180 ° apart for this case.

(3. 131)

3.7 Oblateness

In the previous sections we have considered only perturbations to the

inverse square motion caused by thrusting. In this section the effect of oblateness

(l 2) is considered. Oblateness was considered in Ref. 2 and the equations are

included here for convenience. Oblateness does not directly enter the power and

mass derivatives so only its effect on the orbital element derivatives will be shown

in this section.

The single-averaged perturbing potential due to 12 has been calculated in

terms of equinoctial coordinates in Ref. 16 and is repeated in Appendix F. R is
e

the equatorial radius of the earth and 12 is set to .001827. These formulas enter

the averaged Hamiltonian as coefficients of the costate (outside the integral since

the averaging effect has already been accounted for).

If _--a indicates the perturbation due to thrust as given in Eq. (3.72),

then the Hamiltonian is given by

= ),Tz + XTz (3. 132)
- -J2 - -a

The state equation is

z = z + z (3. 133)
- J2 --a

The costate equation is

_ - _r _z _

(3. 134)

The partials indicated by 5zj2/Sz-- in the above expression are given in Appendix F.
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3.8 The Shadow Effect

For SEP missions, the thrusting will be shut off while the spacecraft is in

the earth's shadow. The entry and exit angles are needed in order to perform the

averaging integral. In calculating these angles the followLng assumptions are made.

The shadow is cylindrical; the earth revolves around the sun in an elliptical orbit;

and over one spacecraft revolution, the sun's direction is fixed. The time of

thruster turn-on can either be immediately upon exit from the shadow or after a

delay following the exit from the shadow. The delay time calculation will be

considered in the next section. Calculation of the entry and exit eccentric longitudes

was considered in Ref. 2. The pertinent equations are summarized in AppendixG.

Let F 2 refer to the eccentric longitude at entry to the shadow and F 1 at

exit (or the thruster turn-on time if a delay is included). That part of the Hamiltonian

proportional to thrust is then

F 2

'_ = _ H s dF (3.135)

F 1

Thus

F2.

- I -x = x s dF (3. 136)
"F 1

and by Leibnitz* rule

_[ = _ _ F2(_H s + H bs dF dF (3. 137)

The calculation of _ is discussed in Appendix G and the modification needed if

F 1 includes a delay-_ffect is discussed in the next section.

3.9 Dela 7 in Thruster Start-Up After Leaving Shadow

Some orbits of the spacecraft may pass through the shadow of the earth.

During this period the thrusters are assumed to be turned off. The shadow entry

and exit points are derived as the solution of a quartic equation and given in

Appendix G under the assumptions of a cylindrical shadow and stationary sun over

one orbitalperiod. It was assumed in Refo 2 that the thrusters were turned on

immediately upon leaving the shadow. A more accurate model is to include a delay

in turn on time. This delay time is the sum of the time for the solar array to
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achLeve operating temperature and the time for the thruster to achieve full thrust

after the solar array power is applied to the power processor.

The model used is taken from Ref. 29. The thruster start-up time is

modeled as a quadratic function of time in shadow. The solar array temperature

adjustment is modeled as a constant of 2 minutes. The total delay is then just

2
_rT a* + be + c (3. 138)

where • is the time in shadow. If • and _T are in minutes, then

1
a = "TTD-g

-15
b = _ (3. 139)

c = 12

ThLs function is plotted in Fig. 3-6.

17.

16-

15-

_.. 14-

Q

12

11

I I t I _ I I t I I

I I I I I I I t I I
10 20 30 40 50

TIME IN SHADOW (minutes)

Fig. 3-6 Delay in Thruster Turn-On as Function
of Time in Shadow
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The shadowentry andexit eccentric longitudesare known. From these the
time in shadowis obtainedfrom Kepler's equation. In equinoctial elernentsthe
time in shadowis

• = I(Fex- Fen)-k(sinFex-kinFen)+h(cOSFex- cosFen)_ 1
(3. 140)

where

n = _3 (3. 141)
a

The shadow delay time can then be calculated. We desire to know the eccentric

longitude at which the thrusters are turned on, thus given the exit angle and the

delay time, Kepler's equation must be solved for the eccentric longitude F¢ at

turn-on. If

-- o
Co n¢ T + Fe x - ksinFex -_ hcosFex (3 142)

Then the required angle satisfies

F = C + ksinF - hcosF (3. 143)
•r o "r 'i"

This transcendental equation can be solved by an iterative procedure. Let

F = C (3. 144)
O O

- h cos F (3. 145)
Fn+ 1 = C O + ksinF n n

This iteration will converge since k2+h2<l. The iteration can be halted when

1Fn+l - Fnl < ¢
(3. 146)

where c is some small number which we set to 10 -12 .

rude at thruster turn-on is obtained.

(iF
For the costate equation, Eq. (3. 137), _ is needed at turn-on.

dF
en

and _ were already obtained (App. G). F¢ satisfied Eq. (3. 143) so

dF_ 1 dC 0

dz
-- 1 -keosFt-hsinF t dz

Thus the eccentric longi-

dF
ex

dz

(3. 147)
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dF
dCo = bn _tT -hsinF ) ex
dz _'_ tT + n _ + (1-kcOSFex ex d_"'7

Since tT = a,2+bv+c

5t T
- (2a'r +b) 5---_-_

_E _z_

From the definition of "r in Eq. (3. 140) is obtained

(3. 148)

(3.149)

_5,r _1 [ dFexB---z= n (1-kc0SFex-hsinFex) dz
m

(1- kcosFen - hs tnFen

Inserting these partials into Eq. (3.147) yields

dF

m

______n(3. 150)
n _z

dF dF

_( endFt _ 1 2a,r+b+l)rex ex (2a" +b)ren

dz r T dz dz

(3. 151)

where

r T = 1 - kcosF T - hsinF T

r = 1 - kcosF -hstnF
en en en

rex = 1 - kcosFex - hsinFex

(3.152)

(3.153)

(3.154)

and since n is only a function of semimajor axis by Eq.

element of _n is
_z

5n _ 3 n
_a _"

(3. 141), the only nonzero

(3. 155)

3.10 Power and Fluence: The Damage Function

Power degrades as a function of accumulated fluence which is represented

by a damage function, D(N). This damage function is given in Section 4. To

calculate the costate equation, its partial derivative is needed. The damage

equation is stated here.
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= + C2(lOglon}12" (3. 156)

where N is the accumulated equivalent 1 MEV electron fluence and C 1 and C 2 are

constants for any particular spacecraft, but are functions of cell thickness and

base resistivity as indicated in Section 4.3 [n Eqs. (4.5) and (4. 6). Then

_D 121°gl0e
_N N C2(l°gl0 N)I 1D{N) (3. 157)

This form of the damage function can cause numerical difficulties at the

initial orbit if the initial N(t o) is set at too small a value and the integration time

step _s large since _I._3 looks like a gamma function with very high values for

N < 1010 BN• Typically, a value of AN for a low orbit would be around 1012, so that

it would be reasonable to pick a starting value greater than i010 . In the coding

for the program, if the initial N [s zero, then a revised initial N is calculated

which is the "average"of the amount of fluence encountered on the first orbit, i.e.,

N(t o) • T O
N(t}o - 2 (3.158)

where T O is the orbital period. Facility also exists for inputing a nonzero initial

value for N.

3.11 The Flux Equations

An analytic equation for the flux as a function of spatial coordinates is

constructed in Section 4.2. It is repeated here, with slightly different notation.

5

I_1 = exp(i_ 1 A i S i-l)
(3. 159)

where flux (I_) is in equivalent 1 MEV particles,

S = In(R- 1) (3.160)

where R is the radial distance from the Earth's center in units of Earth radii, and

5 2

= T K LATJ-IsH m (3. 161}
Ai j_l m=0 t, j+5m
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where LAT is geographic latitude in degrees, SH is shield thickness in mils and

the Ki, j+5m are coefficients given in Tables 4-4, 4-5. The total flux is a sum of

up to four equations like Eq. (3. 158), two for the front shielding, two for the

back shielding, one of the two for electrons, one for protons. If the back shielding

is infinite then the sum will have only two members. If the front and back shielding

are equal only one equation like Eq. (3. 158) need be calculated for protons and one

for electrons and then to get total flux, their sum would be doubled. In the

remainder of this section we will consider only a single equation like Eq. (3. 158).

Since the shield thickness does not vary for a particular spacecraft the sum

involving SH can be done once initially and Eq. (3. 161) can be rewritten

5
A = _ _.. w j-1 i = 1 ..... 5 (3. 162)

L j=l LJ

where

2

Kij = [m=_0 KL, j+5mSHm_/(DTR)J-1 i = 1 ..... 5 j = 1 ..... 5 (3.163)

Here w is latitude in radians, DTR is the degree to radian conversion factor.

Thus Eq. (3. 159) can be calculated at any point on the spacecraft orbit as a function

of latitude, radial distance, and the constant coefficients of Eq. (3. 163). The

radial distance is just

2R = X + Y1 (3. 164)

where X 1 and Y1 were given in Eq. (3.19) and (3. 20). The latitude is the arcsine

of _he angle between the vector pointing through the north pole and the spacecraft

radius vector. This is given by

^

R
(3,165)

"t3 and g3 are the third components of the unit vectors given in Eq. (3.4) .where

They are functions only of p and q whereas X1, Y1 (and R) are functions of a, h

and k.
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In order to calculate the costate equations the partial of flux with respect

to the orbital elements must be known.

5 _A[ ui+l ui - bu
b--_-_N -- N_" Z _ +ZA t 2(t-1)_ _ (3.166)

-- _:1 - -- •

where

5 bw
_A_ = F K.-wJ-2(J 1)--

bz j=2 U bz

Let

(3. 167)

Then rewrLting Eq. (3. 166),

5

E. = y K.. wj-2(j-l) (3. 168)

t j=2 LJ

b_q : l_l _f[ 5 t.,.ii_l._;:_W__ ,5 u[_2(i_l)] (3. 169)

Now

_z (R-I)R

For h and k, --
3X1 _YI

and were given in Appendix B. For the semimajor axis, a,

b._._u= R (3. 171)
_a (R- 1 )a

Latitude is not a function of a (the a's in the numerator and in the denominator

cancel out LnEq. (3.165))so that_ = 0. For the other elements

bX 1 ^ + bYl BF 3 bg 3
b.._ww_ I _'_-- f3 "_z'- 93 +Xl'_z" +YI"_ -
bz Rcosw ....

bY I •
(Xlf3+Ylg3) (X BXI __. '_h)I"

R2 I _-_--_+YI _
(3. 172)
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where X 1 and Y1 are functions only of hand k and the partials of _ and _ were given

in Appendix D. Here the necessary components are

5[3 = 2 (qg3 + ¢v3)
b---P- l+p2+q 2

(3. 173)

^

bf3 = 2p ^

_---q 1+p2+q2 g3
(3. 174)

_g3 2q

bp l+p2+q2 [3
(3. 175)

^

_g3 = 2 ^

(- Pf3 + w3)1+p +q 
(3. 176)

This completes the terms given in Eq. (3. 105).

3.12 Summary of State and Costate Equations

In this section the full seven dimensional state and costate equations are

summarized. We will assume that we have analytic functions for flux and the

damage function without specifying their exact form. Only thrusting in an inverse

square field will be considered. The effect of oblateness is easily included by

adding z J2 to the orbital element equations and - k T _ to the orbital element
-z BE

adjotnt equations, where these expressions were giveF in Section 3.7 and App. F.

We can consider a seven dimensional state composed of five orbital elements,

mass, and accumulated particle flux.

x = (3. 177)

Since m and N are varying slowly the fir.st approximation of these quantities as

well as the orbital elements can be consiciereci. The uuaveraged state equations

are

2P
z_" = _(x, t,F,u_) M(z,F)fi. (3.178)

• 2P ^

m = - --a--(x, t,F,u) (3. 179)
c
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lq = f(z,F) (3.180)

and

P D(N)
p _ o eos[¢(z, fi)] (3. 181)

R2s(t)

For a particular orbit P is assumed to be zero for eccentric longitudes between

F 2 and F 1 where F 2 is the eccentric longitude at entry into the earth's shadow

and F 1 is the eccentric longitude either at exit from the shadow or after a turn-

on delay time after leaving the shaaow.

The unaveraged Hamiltonian is

= _ _ = +H +H NH xT_ H z m (3. 182)

where

= xT_.
Hz --z-

H : kmrh
m

H N = XNIW

(3. 183)

(3. 184)

(3. 185)

The averagea Hamilton[an is

• 'rr _N_](_ ' F)s(h,[, F)dF+ k,F)dF+

(3. 186)

The state equations are

F2_ (_, =__ F2

= ._FI__ _, F;_)s(h, [,F)dF_ _nc2 °F_ 1PCx'_" F'_-)M(z--' F)S(['k' F)dF

(3. 187)
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rn = --

aXm
i-,F, u)s (_, 1_,F)dF I 2 p(_, _, F,u) s (_,_, F)dF

F1 c-_ 1 -- (3. 18q)

where

bkN _-_r -

The averaged Hamiltonian can be broken up into three parts

(3.189)

+ H + H (3. 190): Hz rn N

The costate derivatives are

= _Tz (3.791)
Z --Z --

N

H = X rn (3. 192)
m m

HN = YN _ (3. 193)

F2 ^

- z 8z_- F 1 5z --

+ (__Tz_" (x-,'[, F, _ ) + _mr_(_x,i-. F,u ) as _,I_. F)),d F
5z

- F 2

+ dFj [ zZ(X,_,Fa,u) +
dz

-- F 1

o

(3.194)
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This canalso bewritten

_T-z
F2 _

')F 1 5_ -- - z' -

+ Hm (__,_m,K,F,_u)_s(_,[,F)dF
d_

ciz
-- F 2

+ dF (HzCX,L,T,_1,_1
F 1

Next

¢t
s(_,]_, F) + I_, F) 5s(_,!_, F)_dF

___ - _ J

F 2

i = _ _U = ___,2__5H 2 r --kz-TP(_. K. F. _)M (,_-.F)s (,_.1_.F)aF_ _ _

-m 8m m c F 1

('3. 195)

('3, ] 96)

but this just ytelas

• Hz
X m

m
('3. 197)

Finally

F -T

...... . - - . - - _,_.F_,_ (,,3.198)
_1_ c F 1 _N m '

The dependence of P on N comes from the D(N) factor, the damage function.

Thus s [mplifying

_N = - _D(N) (Hz + Hm )

5N D(N)
(3. _ 99)
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3.13 Spacecraft Parameter Output

It was desired to have the option of printing various spacecraft parameters

at various points on an orbit. These parameters and the method of calculating

them are discussed in this section. The parameters include: in-plane and out-of-

plane thrust angles, yaw, pitch, and roll angles, the panel orientation angle, the

sun incidence angles on the panel and the three contiguous sides of the center body.

A nominal x-y-z body centered coordinate system was defined earlier and

illustrated in Fig. 1-1. The yaw axis, _z' is pointed along the radius vector toward

the earth, the pitch axis, _ is normal to the orbit plane in a "downward" direction,
--y

the roll axis, _ is in the orbit plane perpendicular to the radius vector in the
--X

forward hemisphere. In terms of the equinoctial orbital frame _, }, ___,

= - _ _+--g (3.200)
--X r --

= -_V
_y __ (3.201)

X1 Y1
- f g (3 202)-z F - - -"F'-_

The thrust acceleration direction is available in the equinoctial coordLnate

system. Using the above transformation it can be obtained in the _x' e--y' e-z system.

The in-plane angle, el, and the out-of-plane angle, eoO are related to the unit

thrust acceleration direction by
^ ^ -

u = cos e° cos @iex - sin ec_ey cos eo sin @ie2 (3. 203)

which is illustrated in Fig. 3-7, where_r _ = - -z_ and _eh = - -y_--

_h

-r

Fig. 3-7

I

.- ..

--.J

In-plane and Out-of-plane Angles
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Then eo and 8 i can be calculated from

sin _o - u Y
(3. 204)

cos 0[

U
X

cos _o

(3. 205)

sin _i

U
Z

cos 8o

(3. 206)

If pitch and rollare constrained to be zero then 8i = 0.

The Euler angle order is yaw, pitch, and roll. The thrust acceleration

direction as given in terms of yaw, {)y, and pitch, 8, by

^ ^

: cos 8 cos Sye x + cos 8 sin _byey - sin 8 e (3. 207)--Z

which is illustrated in FLg. 3-8. Note that the axes are not the same as in Fig. 3-7.

--Z

_y "-- --. .J

,

e
--x

^

_- e
-y

Fig. 3-8 Yaw and Pitch Angles
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Since__is known_y and e canbe calculatedfrom

sLne : -u z lel _i_ (3. 208)

u
x

COS _." = --

cos 0

(3. 209)

u
=

sin Cy Y (3. 210)
cos 0

For the pitch constrained case O = 0 and Cy = e o-

For the constrained case roll is assumed to be zero. If there is no roll

constraint, then bY a roll rotationand bya panel rotation about their longitudinal

axis the panels can be faced directly at the sun to produce maximum power. If the

roll is accomplished before the panel rotation, then the roll angle should be such

that the panel axis is perpendicular to the sun line. The vector along the panel

axis (also the pitch axis) after the yaw, pitch, and roll rotations should have an

inner product with the vector pointing toward the sun of zero. Thus

(RsYZ)T [¢y]T [e]T [a]T = 0 (3.2ll)

where the yaw rotation matrix is

cos¢ sin¢ !1[$y] = sine cos¢ (3. 212)

0 0

The pitch rotation matrix is

[e]

and the roll rotation matrix is

cos 0

= 0

sin O -SinO eelcos

(3.213)

[_]
i

= 0

0

0

cos

-sin

0

sin

cos(_
] (3. 214)
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Since _y

and then

and _ are already known let

[e] [ yl yz  3.215>

Let

R'cos_ +R_slna = 0 (3.216)
y z

_ I

tan _ : -R; (3.217)

R'
Z

with a 360 ° range.

We assume the panel orientation angle ls zero when the normal to the panel

is pointed in the z direction. Since for the roll free case the panel axis is perpen-

dicular to the sun direction after roll, the panel can be facea directly at the sun.

If roll is constrained to be zero, the panel will be rotated to minimize the angle

between the normal to the panels and the direction to the sun. Let

: --s (3.218)
/Ry_ [¢] [0] [@] I_xyz

L ;J
which is the sun direction in the rotated coordinate frame.

panel is nominally along the z airection it must be rotated by an angle given by

cos_ = R" (3,219)
Z

Since the normal to the

for the unconstrained case. The sun incidence angle will then be zero. For the

constrained case, we want to maximize the cosine of the incidence angle. This is

given by

cos ip cos _ R" + sin _ R"Z X

(3.220)

which is maximized by setting

cos

all

= z (3. 221)

Rx2 + R "2
Z
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a #

sLn_ = x (3,222)

and then

ip = cos + (3. 223)

The above three formulas are valid for the unconstrained case also since then

Ry" = 0 and i = 0 °.
P

After the three Euler rotations the direction of the sun in the rotated system

ts just IR" R" R"). These are the cosines of the angle between the normal to
" x" y" Z

the sides of the spacecraft and the spacecraft sun vector and thus yield the incidence

angles on the spacecraft surfaces.

Some additional quant[ttes are also calculated such as the sun angle in x-y,
^

i. e., the angle which the projection of the sun vector on the ex, _y plane makes

with the_x _ axis and the thrust angle _b defined as $ = _by - sun angle. This is the

control angle used in Section 3.6.
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SECTION 4

RADIATION AND POWER LOSS MODEL

4.1 Introduction

Solar cell degradation models are an integral part of low thrust solar electric

spacecraft trajectory calculations. For these missions the thrust magnitude decays

as the solar cell power is degraded by exposure of the cell to energetic trapped

particles. Solar electric spacecraft trajectory computer programs include both

codes that accurately simulate a mission and codes that optimize trajectories. An

example of the former is the program SEOR (5) which uses a detailed radiation

degradation calculation based upon the models of Obenschain {30). The code described

in this report and its predecessor in Ref. 2 are examples of trajectory optimiza-

tion codes. These two types of codes place different requirements on the model used

for radiation degradation calculations. For simulations the computational goal is

maximum realism so that an accurate assessment of the mission requirements

can be made. For optimization codes the goal of maximum realism is maintained,

but the constraint of maintaining tractable run times imposes severe limitations on

the degradation calculations.

There are two basic types of degradation models which have been constructed:

Those that recall basic NSSDC (National Space Science Data Center) subroutines for

the magnetic field and spectral flux and determine the degradation integral at each

trajectory sample point; and those which establish a data file of orbital average

degradation. An example of the former is the highly accurate and comprehensive

degradation calculation used in SEOR (5). The SEOR type procedure whereby the

fluence is calculated during the trajectory integration via the calling of several

NSSDC subroutines would be excessively time consuming when used in an optimiza-

tion program. For an orbit of 18 sample points, and for 15 energy bands, the

NSSDC subroutines INVARA and MODEL combined with a simple energy integration

code require a computation time of 0.2 seconds/orbit on an IBM 360. A typical

trajectory optimization run with SECKSPOT may comprise some 50 separate

trajectories and iterate the solar cell degradation calculation 50,000 times. There-

fore several hours of machine time would be required if these calculations were

made by the standard codes. Thus efficiency demands an approach for the degrada-

tion model used in optimization codes different than that frequently used in simulations.
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To achievethis efficiency most degradationmodelsusedin optimization
programs are of thedata file type. Themodel in theGEOTOP(31)program is of

this type and is based on a table look up approach allowing only limited values of

orbit parameters between which interpolation is used. Entries in the table are

total 1MEV equivalent fluence for one orbit, and the table arguments are apogee,

perigee, and inclination. The maximum orbital inclination of the GEOTOP model

is 30 °. A simpler model than the GEOTOP model has been used in optimization

codes such as MOLTOP (4). This model is restricted to a single inclination and has

no provisLon for changing cell characteristics.

The degradation model presented in this paper extends the latitude range,

provides a continuous and smooth representation of the flux field, and provides for

changing the cell characteristics. And the deficiencies of the above data file models

have been avoided without sacrificing computational speed; a typical trajectory

fluence calculation requires only a fraction of a minute for thousands of sample

points. Further, the model is extremely simple to code, with all required informa-

tion presented in this section. It is based upon two analytic expressions: D(N, BR, TH)

which describes solar cell power degradation as a function 1MEV equivalent fluence

(N), cell base resistivity (BR) and thickness (TH), and f (R, L, SH) which describes

a spatial field of 1MEV equivalent electron flux. The parameter R is distance from

the earth's centrotd, L is latitude, and SH is cell shield thickness. When the flux

f is time integrated over a sequence of trajectory time steps the result is a fluence

value N which is entered into the degradation equation D(N, BR, TH) to obtain the

fractional power loss. By constructing the model in an analytic format it is possible

to make computation time minimal, and also to allow analytic differentiation of the

flux and power loss for computation of adjoint variables for optimization studies in

codes like SECKSPOT. The analytical expressions for D and f contain a number

of coefficients derived externally from the trajectory optimization code using the

NSSDC codes. A major advantage of this approach is that the coefficients can be

altered to reflect new cell damage data or radiation belt data with minimal effort.

1MEV flux values are averaged over one day in the model. Although this is not a

requirement for the construction of this type of model it eliminates the requirement

for integration time steps that are a small fraction of a day. The flux field is

defined in geocentric coordLnates to eliminate the need for a series of transformations

from geomagnetic to geocentric coordinates. A model dividing the problem into the

same two sub-models was previously constructed by Ires (32), however, the Ires

model was tabular in format, limited to equatorial orbits, and did not contain cell

characteristics as parameters.
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4.2 1MEV Equivalent Electron Flux Field Model

Construction of the 1MEV flux analytical model is a two step procedure.

In the first step a space of discrete values of 1MEV flux is generated from particle

spectral flux data, and from data concerning the conversion of spectral flux to

1MEV flux. The second step consists of fitting the array of discrete points with

analytic expressions by means of a multivariate regression analysis.

Generation of the 1MEV equivalent electron field points is accomplished by

a series of integrations. The complete procedure is illustrated in Fig. 4-1. A

symbolic guide to the flow diagram is given below in Table4- 1.The process begins

by calling the NSSDC code [NVARA (33) which converts a set of geocentric coordinates

to the magnetic coordinates B and L. B is the magnetic field intensity, and L is the

magnetic invariant associated with particle momemtum along the magnetic field

lines. Seven choices of a model for the magnetic field are available within the code

INVARA. For the work here the IGRF (International Geophysical Reference Field)

option has been selected. This option was recommended by E. G. Stassinopoulas

(in a private communication) of NSSDC as an often used reference model. The time

selected for the field was 1978.
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Flow Diagram for SEP Degradation Calculation

S art

Call

Model

Call ]
l_egress

Fig. 4-1 Flow Diagrams for Flux Field Calculations



Table 4-1 Legend for Figure 4-1

Key: [ Do x, Y I

Definitions:

Code s:

©

R

0

B

L

EE, FP

F

SH

• 1 ME%

INVAHA

MODt{ L

MAIN

DAM 1_

DAM ]'

REGRESS

=

=

=

=

=

r.

=

=

s

=

Indicates code, activity

Input Function

Branch point

Results

Radius, i. e,, dist. from center o£ earth

Latitude

Longitude

Magnetic field intensity

Magnetic inva riant

Electron and proton energy array.

Particle flux (spectral)

Shield thickness

Equivalent 1 MEV particle flux

From NSSDC, magnetic field code

From NSSDC, flux code

Calling code, input output, etc.

Electron damage subroutine

Proton damage subroutine

IBM code for muitivariate regression
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The magnetic coordinates B and L are entered into the subroutine MODEL

which computes proton and electron flux within a selected energy interval. This is

done for the entire range of important energies. MODEL (34) ts a standard particle

flux code produced by NSSDC, and the fluxes it produces are based upon smoothed

satellite data. The data in MODEL is in block form, and interpolation is used

between defined points. MODEL data is based upon satellite measurements made

in the period 1964-1967. It represents a solar cycle maximum. The energy

intervals selected for flux evaluation are dictated in part by the MODEL code. The

code allows energy increments which vary over the total energy range. Practical

upper limits on energy are set by flux values which are less than unity. Lower

energy limits are set both by MODEL and by shielding considerations. For protons,

the lower energy cut-off is related to shield thickness (SH) by the relationship

66
EP (MEV) = 1.53 (SH)"

which was obtained by a fit to the data of Rasmussen (35). For both electrons and

protons fifteen energy steps have been used. The proton energy range is 0 to 40

MEV with the lower end adjusted by the above formula. For electrons the range

used was 0.2 to 4.8 MEV.

Spectral flux values produced by subroutine MODEL are averaged over

longitude to give a one day mean flux. The aim of this averaging is to avoid keeping

time of day in the trajectory optimization code. Retaining time would require

additional coordinate transformations and would add another dimension of complexity

to the field fitting problem. Variation of the flux field with longitude is considerable.

An example of the range of flux values is shown below in Table 4-2 for protons in

the energy range 4-5 MEV.

Table 4-2 Longitudinal Variation of Proton Flux
(par tLcles/cm 2/sec)

Longitude 0° 600 120 °

Flux .135E06 .540E06 .871E06

Longitude 180 ° 240 ° 300 °

Flux .393E06 .794E04 .449E03

These values have been obtained near the proton peak at 2.2 earth radii, and at a

North latitude of 21.5 o. The average value is . 330E06. Variations with longitude

are caused by two effects, namely the non-dipole asymmetry Ln the magnetic field,

and the non-alignment of the magnetic pole with the geodetic pole. Generally

asymmetry effects dominate.
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Thesevalueshavebeenobtainednear theproton peakat 2.2 earth radii, andat a
North latitude of 21.5°. Theaveragevalue is .330E06. Variations with longitude
are caused by two effects, namely the non-dipole asymmetry in the magnetic field,

and the non-alignment of the magnetic pole with the geodetic pole. Generally

asymmetry effects dominate.

Orbital fluence calculations are little affected by the longitud[nai averaging

since the rotation of the earth and the consequent rotat[on of the radiation belts

does effectively average the fluence.

The next step in the field model construction [s an integration which converts

the azimuth-averaged spectral flux data to an equivalent 1MEV electron flux. This

is accomplished with aweighting function [na Fredholm integral. Using the

Figure 4-1notation, the inte_ralffor electrons) is

F'(SH) = I F(EE) DAME(EE, SH} dEE

where EE is the electron energy and SH is the shield thickness, DAME is the

electron weight function and F' is the spectral, longitude averaged flux. The

function DAME was constructed from data taken from the curves of Rasmussen (35)

however because of the inaccuracy of this type of data transfer the data had to be

restructured. It can be argued by analogy w[th optical extinction processes that

the relationship between shield thickness and the weight function should be

exponential, i. e. ,

logl0DAME = - m(EE)SH + logl0DAME ]
SH=0

This function was found to fit the data very closely and thus was used for the

restructuring. The functional form for m(EE)was found to be

logl0m(EE) = m'.EE + C

where m' and C were obtained by regression. In terms of energy and shield

thickness, the function DAME can thus be written

DAME = B(EE) I0-(10m''EE+C)SH

The coefficient B(EE) Ls the appropriate DAME function for SH=0. Again, by a

regression analysis, B(EE) was found to be (to +_3%}

B(EE) = 10 (1/2. 30)(1" 84+13"169/_/EE+6" 92/EE - 22" 6/EE" 7)
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The equivalent IMEV flux for protons is computed by the Fredholm integral

F '(SH) = _'DAMP(EP, SH) F(EP)dEP
.)

where EP is proton energy. The weighting function for protons (OAMP) was also

obtained from the curves of Rasmussen (351
In addition to the cut-off energy

described above, the function DAMP Ls defined by

I10-0"721°g10 EP+4"13 EP0 _Ep < ll MEV1

DAMP = /2200! 11 <EP<46 MEV /
L10-1" 1 l°gl0 EP+5" 26 46 < EP MEV _J

Computation of the weight integrals completes the process of generating raw

data for the field model. The raw data Ls a collection of 1MEV equivalent electron

values defined at discrete spatial points with solar cell shield thickness as a parameter.

Graphical examples of the flux field data are shown in Figures 4-2 and 4-3. Points are

generated at 10 o latitude increments for the radii listed in Table 4-3. ]MEV flux

was computed for four values of shield thickness, namely 3, 10, 20, 30 mils. The

various combinations of latitude, radii, and shield thickness yield approximately

2500 flux values.

A
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-J
u.

ILl
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O
.J

0

LATITUDE

0

7O 6O 5O

1 2 3 4 5 6 7 8
RADIUS (earth radii)

9

Fig. 4-2 Electron ContrLbution to Total Flux vs.

Radius, SH=10 mils

I0

64



A
tJ

E
{J

¢-
O

v

X

.J
tl.

>
UJ

LATITUDE

0

O

0
_J

1 2 3 4 5 6
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Fig. 4-3 Proton Contribution to Total
Flux vs. Radius, SH=10 mils

Table 4-3 Defined Radial Points for
radii with R=I. 0 at earth I

For Protons For

1.10 1.80 1.10

1.15 1o 90 1. 15

1. 18 2.00 1. 18

1o 20 2.25 1.20

1.25 2.50 1.25

1.30 3.00 1.30

1.40 4.00 1.40

1° 50 5.00 1.50

Flux Field (in earth
s surface)

Electrons

1.70 3.50

1.80 4.00

1.9O 5.00

2.00 6° 00

2.25 7. OO

2.50 8.00

2.75 9.00

3.00 10.00
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The second part of the flux generating process consists of fitting these discrete

points with analytic functions. A multivariate regression (subroutine STEPR) (27) was

used as the vehicle for the data fitting, anda two step process was used for protons

and electrons separately. In the first step the radial flux points were fit for each

latitude and shield thickness. Since the electron data has two peaks at the inner

and outer Van Allen belts, quartic functions of radius were used. To reduce the

dynamic range of the flux, ln(flux) was used as the dependent variable. Finally

to force the flux to zero as radius approaches unity, the radial variable S = ln(R-1)

was used. Thus the radial functions are of the form

4
ln(F) = _ A.S _ (4.1)

i=O t

where the coefficients A i are functions of latitude and shield thickness. These

coefficients were then fit with a function of latitude and shield thickness, vis.,

4 2

A i = _ _ (BijSHJ}CikLAT k.
k=0 j=0

(4.2)

Substituting (4.2) in (4.1) for A i and taking the exponent thus yields a single analytic

expression for the 1MEV equivalent electron flux as a function of latitude, radial

distance and shield thickness. There are four separate Eq. 4. l's, one for protons

and one for electrons for both the front and the back shielding, and the fluxes from

these are added to obtain the complete flux. The coefficients used are tabulated in

Tables 4-4 and 4-5, however the regression analysis yields directly products of

B and C, and therefore the products are listed instead of B and C. We redefine A.
t

as follows :

5 2

= _ j+5m LATJ- 1SHm
Ai j=_l m=0 Ki' (4.3)

This field model is not completely general. In the latitude region 50 ° to

60 ° it is valid only for R>l.5 earthradLi. In the region 60 ° to 75 ° A is

restricted to R > 2.5. The restrictions stem from functLon fitting problems and

not from the data. Hopefully they can be removed with improved function choices.

Above a latitude of 75 ° the field is set to zero in accord with the zero flux output

from subroutine MODEL.
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Table 4-4 Expansion Coefficients for IMEV Electron Contribution to

Total Flux (Second line starts with K(6) etc. )

i--O
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Table 4-5 Expansion Coefficients for Proton Contribution to
Total Flux
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0.67337154E-04

-0.35822610E-04

0._6657764ff-05

0.34298608E-03

-0.28896892E-05

-0.12907069E-02

O.g6654170E-04

-O.14RI3049E-05

-O.46991365E-O&

0.76804465E-05

-0.31467960E-06

-O.ROO54349E-04

0.46947443_-05

-0.51577029E-07

-0.22752400E-04

0.26791058E-05

-O.g7217196£-07

-O.g3aBgl6qE-O6

O.q2325706E-07
-O.gSgO635RF-O8

-0.10357207F-05
0.22_37672E-OR
O.11504Rq7E-OR

0.I0776569E-06

O.IW15B641F-OR

-O.IISgq322E-OR
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Over the defined region of R, LAT, SH space the field accuracy is as follows:

For protons the mean deviation of the value predicted by Eq. (4-3) from the MODEL

value at the defined R,LAT points is 5.6%. The average of the absolute value of

the deviations is 28%. For electrons the mean deviation is 1.2% and the average

absolute deviation is 25%.

4.3 Power Loss Model

The second part of the two-part analytical model is an expression relating

1MEV fluence to fractional power loss. The data for this expression is provided

by the curves of Carter and Tada (36), and it can be fit closely by an expression of

the form

12
In D : C 1 + C2_logl0_N ] (4.4)

Here D is the fractional power loss after the cells have been subjected to fluence
2

:_N (:_N in units of 1MEV equivalent electrons/cm /sec and [s summed over front

and back shielding and electrons and protons). Constants C 1 and C 2 are functions

of cell thickness, and a simple quadratic has been found to adequately represent

this variable. Although variations in cell base resistivity have a relatively small

effect on the degradation function, the effect ts represented in the Carter and Tada (36)

data. Two sets of degradation curves are presented, one for base resistivity 1 to

3_cm, the other for 7 to 13ocm. We therefore provide two sets of functions for

C 1 and C 2, TH[s the cell thickness tn mils.

C 1 = [0.22647+ 0.05217 TH- 0.00443 (TH)2_0.1

1-3_ cm (4.5)

C 2 = [% 05151+.03641TH-. 00144(TH)2](-10 -14)

C 1 = E0. 04914+ 0. 07056 TH- 0. 00435 (TH2] 0.1

7-13_cm (4.6)

C 2 = [-0. 05118 +0. 04517 TH- 0. 00156 (TH}2](-10 "14)

The C values are defined for cell thickness in the range 4 to 14 rail, and D is valid

for fluence values above 1011 (>0.1% degradation).

68



4.4 Conclusions

Since trajectory optimization normally involves the evaluation of several

quantities which are functions of spatial coordinates at a sequence of time steps,

it is a simple matter to apply the analytic degradation model described here. At

each sample point in the trajectory the flux functiorl (4.3) is evaluated. Multiplication

of the resultant flux by the sample time step yields an incremental fluence, and

these are simply summed up to a given sample time to provide a total fluenee which

is used in (4.4) to find the power loss. Since this process involves the evaluation

of only two analytic expressions it requires very little computation time. Modeling

of the IMEV flux field as a separate entity allows simple consideration of both

front and back shielding. The various coefficients in the analytic expressions

relate to specific cell damage data, however having established the general

analytical characteristics of the model, it is a simple matter to update the co-

efficients using the latest cell damage data.
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SECTION 5

NUMERICAL RESULTS

Two sets of cases will be discussed in this section. The first, which assumes

an inverse square gravity field and thrusting with no oblateness, degradation, or

shadowing was also reported previously (25). This set includes both attitude

constrained and unconstrained examples. The second set includes the new degrada-

tion model reported in Section 4 as well as other perturbations. All examples in

this set include attitude constraints. All cases were run on an IBM 360/75 computer.

The code ts in Fortran IV using double precision.

5.1 Examples Without Power Degradation

Several SERT-C type cases were run. All of these assume only the inverse

square gravitational field with or without attitude constraints. No oblateness,

shadowing or power degradation due to radiation are assumed. Comparisons are

made between the unconstrained case and attitude constrained cases while varying

launch date and time. A particular constrained example is looked at in greater

detail.

Table 5-1 summarizes the characteristics of the SERT-C type cases. The

final orbit is geosynchronous. These cases were run with a 10 day time step and

averaged around an orbit using either two 4 point or two 8 point quadratures. The

variation in resulting flight times and AV's from using sets of 4 or 8 point

quadratures was less than . 5%.

Table 5-1 SERT-C Example Data

Initial a = 9528.16 km

Initial e = 0.

Initial i = 28.3 °

Initial mass = 849.6 kg

Maximum power = 4. 828 kw

Specific Impulse = 2900 sec

Final a = 42164. km

Final e = 0

Final i = 0°
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The effect of varying the time of launch during a day for the constrained case

can be shown by varying the inEtial longitude of the ascencling node. Changing the

launch time affects the sen-spacecraft geometry and therefore the resulting

trajectory. This effect is illustrated in Fig. 5-1 for alaunch date of March 21.5, 1980.

The flight time (tf) and &V are plotted versus initial longitude of ascending node.

The dotted line indicates the unconstrained value. The flight time varies by about

18 days with a minimum of 130 days around O = 135° compared to the unconstrained

value of 124 days. The range of increased flight time over the unconstrained case

is from about 5 to 20%. The unconstrained _V is 4, 65 km/sec and the constrained

cases vary from less than 1% to about 12% greater. In the minimum case about

15% of the initial mass was consumed. This was only about . 6 kg more than the

unconstrained case.

150

140

130

4J

2O

10

0 90 180 270 360

LONGITUDE OF ASCENDING NODE (o)

5.2

5.0

4.8

4.6

aV

(Kmls)
<

o:2

Fig. 5-1 Flight Time and _V Versus Nodal Angle
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Four cases of the attitude constrained example were run varying the date of

launch. The initial longitude of ascending node was 0 °. The percent increase in

flight time and _V over the unconstrained case is shown in Fig. 5-2. For any date

of launch a curve such as shown in Fig. 5-1 would result. Although an absolute

minimum time would occur on a particular day, it is expected that by varying the

time of launch during the day that a nearly minimum flight time would be found.

In summary, for this example, for appropriate selection of launch date and time the

attitude constrained case results in as little as a 1% increase in _V and a 5% increase

in flight time over the nonconstrained case.

2°t15%

tf

5%

Dec.
21.5

Mar. Jun.
21.5 21.5

Sept.
21.5

Fig. 5-2 Flight Time and AV for Various Launch Dates

The (_ = 135 ° case which results in the lowest flight time and AV will be

looked at in greater detail, including further comparisons wEth the unconstrained

case. The semimajor axis and inclination histories for these two cases are

plotted in Fig. 5-3. The maximum yaw angle is plotted in Fig. 5-4 for the two

cases. The yaw deviates from zero by plus and minus approximately this same

amount over one orbit. For the unconstrained case the maximum yaw occurs when

the spacecraft Es at the line of nodes. As the spacecraft nears geosynchronous

orbit the maximum yaw increases to over 90 ° for the constrained case, but to

somewhat less, 73 o, for the unconstrained case. Since only discrete points every

15 ° were printed out, the actual maximum may have been slightly higher than

plotted. For this circle to circle transfer the pitch angle for the unconstrained

case is always zero.
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Fig. 5-5 showsyawplotted as a function of eccentric longitudefor the initial
and the final orbits. Becauseof the couplingwith power, the maximum doesnot
occur at exactly the line of nodes(whichwouldbe 135° and315°) as in the uncon-

strained case. There are two jumps in yaw of about 60 ° for the final orbit. This

will be discussed further.

I00

8O

YAW

(o) 4O

-4O

-80

""_.. \ / FINAL

\

l \\!_

0 60 120 180 240 300 360

ECCENTRIC LONGITUDE (o)

Fig. 5-5 Yaw for Initial and Final Orbits

Fig. 5-6 shows a plot of the ratio of power to maximum power versus

eccentric longitude for the initial and final orbits. For the initial orbit the power

is near maximum for nearly the entire orbit, dropping to a minimum of . 91 but

with an average of . 98. For the final orbit the minimum reaches . 707 which is the

absolute minimum possible and which occurs at a jump point of the control. Even

so, the average power ratio is over . 9. The two other relative minimums for each

orbit occur near to the minimum and maximum of the primer vector angle (or) (and

also the thrust angle, @).

I.I

1.0

.9

P/Po.8

.7

_INITIAL ORBI_I , .
l t •

• I I l _'
I l I

I 1 I

/k-FINAL l I\ ORBIT _ '
V \,.]

L i i i i 1 i i | i i i

0 60 120 180 240 300 360

ECCENTRIC LONGITUDE (o)

Fig. 5-6 Ratio of Power to Maximum Power for
Initial and Final Orbits
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In Fig. 5-7 are plotted theprimer vector angle (t_), the thrust angle ($),
and thesunangle (_) for the initial orbit. Theseanglesare defined in the_81- e--2
- _--3system defined inSection 3.5 andwere illustrated [nFlg. 3-2 and Fig. 3-4.
The sunangle is the anglebetweentheradius vector and theline to the sun, and
canvary by at most 180° dependingon the orientation of theorbit. For the initial
orbit the variation is approximately 140° . The thrust angle is a function of ct and

and is equal to t_ at _ = 0° and 180 ° . For this orbit _b = 90° when c_ = 90°. Since

B _ 157° and 23 ° for the two positions at which _ = 90 ° there is no jump in _b (for a

jump 45°< _ < 135°).

\

THRUST ANG[

SUN ANGLE -_/,

#

/
/
t

/
PRIMER
ANGLE

Q 60 120 180 240 300 360

ECCENTRICLONGITUDE (o)

Fig. 5-7 Primer Angle (o_), Thrust Angle ($)
and Sun Angle (_) for Initial Orbit

The primer vector angle (_), thrust angle (_b), and sun angle (_) are plotted

for the final orbit in Fig. 5-8. Obviously for this orbit there is a jump in _b when

¢_ = 90 ° . Note that at thispoint R _ 124° for the first jump and 8 _ 56 °for the

second. For these values of B the jump in _b is approximately 600 . It is interesting

to note that after the first jump $ decreases slightly even as c_ increases (_b in-

creasing as ,v decreases after the second jump) as the changing _ allows a closer

alignment with the primer vector at less power loss penalty, lumps in $ occur

during about the last 20 days of the trajectory.
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Fig. 5-8 Primer Angle (_), Thrust Angle (_)
and Sun Angle (B) for Final Orbit

The panel or[entation angle (defined in Eq. (3.85) is plotted in Fig. 5-9

for the initial and final orbits. In both cases there is a rotation through a full 360 o .

For the final orbit there are discontinuities at the point where there are discontinuous

changes in the thrust direction. Both jumps are about 80 ° (note panel angles of 180 °

and -180 ° are equivalent).
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In summary, for the attitude constrained and unconstrained cases compared

here, flight time and trajectory histories differed only somewhat. The main

differences are the discontinuities in thrust direction and in solar panel orientation

which occur during the last 20 days of the constrained case. Average power levels

were at most 10% less than the unconstrained case. Since these were circle to

circle transfers the effect of a zero pitch constraint is not illustrated.

5.2 Examples With Power Degradation

Several cases were run to illustrate the use of the final version of the code.

Most of the cases were oEa SERT-C type, although some GEOSEPS-type missions

and some cases which originated in an elliptical orbit were run. All of these cases

included oblateness and the new power degradation model. Unless otherwise noted,

all assumed that pitch and roll were constrained to be zero. The constants in the

coeffi.clents of the power loss function for these runs were slightly different than

those given in Eqs. 4, 5 and 4.8.

The SERT C cases are discussed first. Table 5-2 lists conditions on the

initial and final orbits and the spacecraft.
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Table 5-2 SERT-CExampleData

Initial a = 9528 km

Initial e = 0

Initial [ = 28.30

Mass = 850 kg

Maximum initial jet power = 4. 828 kw

Specific Impulse = 2900 sec

Final a = 42104 km

Final e = 0

Final i = 0°

Cases with other final orbits were also run.

_or the cases discussed in this section a four-point quadrature was used

between the points where the primer vector angle, _, crossed +_90 ° (see

Section 3.5). For the initially circular cases there were two intervals per orbit.

A ten day time step was generally used, although some cases had a 15 day time

step. A Newton-Raphson iterator and a four step Runge-Kutta integrator without

accuracy controls were used.

The characteristics of one set of runs are listed in Table 5-3. Launch

date, launch time (determined by the initial longitude of ascending node, f_ ) and

solar array parameters were varied. Shadowing was not included. A 10 ohm-cm

solar cell base resistivity was assumed. If additional values for launch date and

time were run then a curve such as in Fig. 5-1 could be drawn. For the limited

number of runs shown in Table 5-3, the variations in transfer time and _V are

small. The power degradation which is near 56% increases transfer time

significantly compared to the constant power case discussed previously. Without

infinite back shielding transfer time is increased by 14% as the degradation factor

decreases an additional . 08. Increasing the cell thickness changes the shape of

the degradation versus flux curve. The increase from 6 to 10 mils caused a final

damage factor decrease from . 56 to .41 and a 30% increase in transfer time.

The case shown in the first column will be illustrated in more detail.

Fig. 5-10 is a time history plot of semimajor axis, inclination, and the longitude

of the ascending node. The change in the latter is largely due to oblateness which

is strongest at lower altitudes and high inclinations. The semimajor axis actually

overshoots the final value somewhat. This overshoot comes about because initially

greater effort is put into reaching higher altitudes at higher inclinations where the

flux is less. As the higher altitudes are reached, effort is expended to reduce

inclination.
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Fig. 5-10 Semimajor Axis, Inclination, and
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Launch date

Longitude of node

Cell Thickness (mils)

Front Shield Thickness (mils)

Back Shield Thickness (mils)

AV (km/sec)

Transfer Time (days)

mf/m o

Damage factor

Initial Costate

Table 5-3

(i0 ohm-cm base resistivity)

Mar 21, 5

0 o

6

6

[nf J.n[ te

4,89

236•

• 842

• 563

3657, 3

121, 6

298, 0

-6072, 8

-35259•

-33428,

-106, 87

SERT C Example Results

Dec 21,5

0o

6

8

infinite

4, 82

231•

• 844

.564

4331, 1

97,6

263, 7

-6300, 6

-33507,

-31866,

-87,53

Mar 21, 5

45 °

S

6

infinite

4, 92

236•

,841

•571

8366, 5

286, 5

86,6

-25714,

-24085•

-37246,

-121, 89

Dec 21, 5

45 °

6

6

infinite

4•91

237,

• 841

,569

4797, 6

350, 0

71,7

-26335,

-19704,

-31619,

-89, 73

Mar 21, 5

0 o

6

6

6

4, 85

269,

• 843

• 482

2545, 9

170, 7

441• 1

-8327•

-31798,

-35878•

-52,31

Mar 21, 5

0o

10

6

infinite

4,83

308•

• 844

,412

6074, 5

238, 6

615,6

-8408, 9

-29438,

-46571

-174, 51
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Fig. 5-11 showstheyaw angle for the initial and final orbits. For the initial

orbit the variation is fairly smooth, with a range of about 60 ° either side of the

orbit plane. The final orbit contains two jumps in the yaw angle; one at 1.3 ° and

one at 180.3 °. On each orbit of this trajectory there were two points at which the

primer vector angle was _+ 90 ° (see Section 3.5), but the sun angle was between 45 °

and 135 ° (thus causing a jump in yaw) for the first time at about 105 days. The

final yaw angle has a range of 125 ° either side of the orbit plane. The thrusting at

yaw magnitudes greater than 90 ° causes a decrease in semimajor axis near the end

of the trajectory as illustrated in Fig. 5-10.
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I I I I _ I I I t 1 I t I

7. ]  Orbit /'
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I \\ I ./ Initial
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Fig. 5-11 Yaw for the Initial and Final Orbits

Fig. 5-12 shows the power variations caused by the inability of the panels

to directly face the sun at all times on the initial and final orbits, where the

maximum is unity. For the initial orbit power decreases to . 90 of its maximum,

and the average is . 954. For the final orbit power decreases to . 707 of the maxi-

mum at the jump points and the average is 0.88.
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In Fig. 5-13 are plotted the primer vector angle, _, the sunangle, B, and

the thrust angle $ for the final orbit (see Section 3.5, especially Fig. 3-3 and 3-4).

The pcimer vector angle and thrust angle coincide at 0 ° or 180 °. When et crosses

-90 ° there are jumps of about 36 ° when :_ = 48 ° and R = 132°.

----+-_-+---

7 %
60- / \

/

20-

-,°4 [/

,ool-!

22{}

240 300 360

Eccentric Longitude (o)

÷

Fig. 5-13 Primer Vector Angle (_), Sun Angle (B),
and Thrust Angle (_) for the Final Orbit

The equivalent of 1 MEV fluence is plotted in Fig. 5-14 for three cases.

Power versus time is shown for the same cases in Fig. 5-15. The case with infinite

back shielding and a cell thickness of 6 mils (first column of Table 5-3) has the

lowest accumulated fluence and the least degradation (to . 56) and the lowest transfer

time. With a six roll back shield the total fluence is doubled and power degrades to

• 48. With infinite back shielding and a cell thickness of 10 mils (6th column of

Table 5-3) the fluence curve coincides with the 6 rail case through 60 days, then

increases somewhat more since at that time in the flight it Ls at lower altitudes and

thus in a stronger radiation field. Its power curve Ln Fig. 5-15 falls the fastest to

a final value of . 41. Note that most of the fluenee is encountered during the first

80 clays or so and that power drops off sharply initially and reaches an essentially

constant value after 80 or 100 days.
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In order to further illustrate the effect of various array parameters, several

cases of considerably shorter transfer time are listed in Table 5-4, These have the

same initial data as shown in Table 5-3, but terminate at a = 12800 kin, i = 25 ° .

The third, fourth, and fifth columns correspond to shorter versions of the cases

shown in the first, fifth, and sixth columns of Table 5-3.

Table 5-4

Launch Date

Longitude of node

Cell Thickness (mils)

Front Shield Thickness (mils)

Back Shield Thickness (mils)

Base Resistivity (ohm-cm)

AV

Transfer Time

Mf/M o

Damage factor

Short SERT-C Example Results

Mar 21.5

0o

6

20

infinite

10

1.03

35.4

.965

• 797

Mar 21.5

0o

6

6

infinite

2

1.03

46.5

• 964

.516

Mar 21.5

0 o

6

6

infinite

10

1.03

41.9

• 964

• 611

Mar 21.5

0 o

6

6

6

10

1.03

46.1

• 904

.533

Mar 21.5

0 o

I0

6

6

I0

1.03

50.6

.964

.462

The case shown in the first column has a very thick front array shield of 20 mils.

The degradation is about one half of that for the 6 rail shield listed in the third

column. The aV's are the same but flight time decreases by 15%. The case in the

second column assumes a base resistivity of 2 ohm-ore rather than 10 ohm-cm which

was used for all other cases. This assumption affects the power versus fluence

curve resulting in a greater degradation (an extra 10%) when compared to column 3.

To further illustrate these five cases fluenee is plotted in Fig. 5-16 and

power in Fig. 5-17. The accumulated fluence does not vary with changes in cell

thickness or base resistivity on the scale shown by the plot. After 40 days, the

case with infinite back shieiding and 20 rail front shielding has about 10% as much

fluence as the case with 6 rail front shielding and 5% as much fluence as the 6 rail

front and 6 rail back shielded case. Power variations diverge for the five cases,

some of which reach near-steady state values in 40 days. However, the 20 rail

shielded case is at a much higher power level. The 10 rail cell thickness case

results in the greatest degradation.
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Fig. 5-17 Power Degradation Histories
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No complete SERT-C cases with shadowing were run, although some shorter

cases were. A case similar to that listed in the third column of Table 5-4, but

with the [tnal a = 13200 km (rather than 12800) and i = 25.3 ° (rather than 25°), took

83 days with shadowing and delay (compared to 42 without shadowing). The initial

orbit has a period of 2. 6 hours. The time in shadow is 36 minutes and the delay

time is 14 minutes. Together they are almost one third of the orbital period. Thus

for lower orbits, shadowing and delay in thruster turn-on can considerably lengthen

the flight time, at higher altitudes proportionally much less time is spent in shadow;

Since the spacecraft spends more time at lower altitudes, the power degradation

is more severe, also lengthening flight time.

Four GEOSEPS-type cases were run. Table 5-5 lists conditions for these

cases.

Table 5-5 GEOSEPS Example Data

InitLala = 29378 km

Initial e = 0

Initial i = 7 °

Initial mass = 2796 kg

Maximum initial jet power = 13 kw

Specific impulse = 2900 sec

Finala = 42164 km

Final e = 0

Final [ = 0°

These cases assumed attitude constraints, power degradation, oblateness, and

shadowing. A five day time step and a 4-point quadrature between jumps points

and shadow entrance and thruster turn-on points. Jump points were calculated.

The launch date was March 21.5, and two initial nodal angles were considered. For

each, cases with and without delay were run. Table 5-6 summarizes the results.

A change [n the line of nodes of 45 ° results tn a 6% decrease in transfer time, the

addition of a delay in thruster turn-on time causes only about a 2% increase tn flight

time. Not all orbits of these transfers enter the shadow and because of the high

altitude the time in shadow and the delay time is small compared to the orbital

period (unlike the early orbits of a SERT-C mission). There is little variation in

_V for these cases. Because of the initially high orbit, power degradation is less

than 6%, more than half of which occurs during the first orbit.
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Table 5-6 GEOSEPSExampleResults

Longitude of the node

Delay

_V (km/sec)

Transfer time (days)

rnf/rnO

Damage factor

Initial costate

0

yes

.887

37.9

.969

• 946

1179• 1

-184. 7

-882.2

12643.

-44386.

-1512.8

-1517.2

0

no

•885

37•3

,969

.947

1161.2

15•9

-661.4

13003.

-44125.

-1510.7

-1533•8

45 °

yes

.876

35.4

.970

.947

1033.3

-101.1

-464,6

-23487•

-27212.

-1292.1

-1304•3

45 °

no

.874

34.9

.970

.947

1023.0

-23.0

-345.4

-23858.

-26826.

-1290.1

-1318.4

The semimajor axis and inclination history are plotted in Fig. 5-18• Their

changes are monotonic. Fig. 5-19 shows the yaw for the initial and final orbits.

The yaw for the initial orbit varies fairly smoothly 60 ° either side of the orbit plane.

The spacecraft thrusters are off for eccentric longitudes between 168 and 201 °

because of the shadow. The yaw for the final orbit varies 90 ° either side of the

orbit plane and there are two jumps in the yaw angle, one at 151, 6 ° and one at

317.4%

a

(103 km)

Time (Days)

lii

Fig. 5-18 Semixnajor Axis and Inclination Histories
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Fig. 5-19 Yaw for the Initial and Final Orbits

The power variation over the initial and final orbits is shown in :Fig. 5-20.

For the initial orbit power reaches . 855 of the maximum with an average of. 938.

For the final orbit the minimum of. 707 is reached at the jump points. The

average [s .853.

o.o

P/Pmax-

T

! \ t \

\ I \ ,
\

".. //I \.\ .. J/i/J-

Eccentric Longitude (o)

Fig. 5-20 Power Variation for the Initial and Final Orbits
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The primer vector angle, _, sun angle, B, and thrust angle, $ are plotted

for the final orbLt in Fig. 5-21. The sun angle varies between 13 and 167 ° . The

thrust angle and primer vector angle coincide at 180% When C_ passes through 90 °

there is a jump in $ of 78 ° when R = 64° (at F = 151.670 and a jump oE 87 ° when

= 101 o (at F = 317.4°).

---+---+--_- _ --) -_----t- -+----+--_-- _ - t-- 7
I

i "..+_, / 1" I

1
L I I + I I -- _---- i i l _ I I O I

0 6o 1_ 1_ 240 3oo 3_

Eccentric Longitude (o)

Fig. 5-21 Primer Vector Angle (c_), Sun Angle (_),

and Thrust Angle (_) for the Final Orbit

Fig. 5-22 plots the time in shadow and the corresponding delay time (added

to shadow time) versus the flight time. Time in shadow reaches a maximum of

about 59 minutes. Delay is always at least 12 minutes when thrusters shut down.

=

_9

...d

0 _o 2o 3o

Time of Flight (Days)

Fig. 5-22 Shadow and Delay Times
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Two other cases were considered that had initial elliptical orbits. One case

assumed zero pitch but free roll and terminated at an equatorial geosynehronous

orbit. The other had both roll and pitch constrained, but was a shorter transfer.

The spacecraft parameters were the same as for the SERT C cases without

shadowing discussed previously. Table 5-7 summarizes the initial and final orbits

and transfer characteristics.

Table 5-7 Elliptical Orbit Examples

Roll free constrained

Initial a 10400 km 10400

initial e .378 .378

Initial i 28.3 ° 28.3

Initial i'_ 0° 0

initial u_ 90 ° 90

Final a 42164 km 18100

Final e 0 .3

Final i 0 ° 22.2

Final AV 4.46 km/sec 1.72

FLnal tf 181.3 days 72.0

Final __me/m° .855 .941

Final damage factor .627 .638

Initial eostate 9947.3 9612.4

4365.8 7945.8

-767.1 -470.9

-718.2 -1162.5

-16925. -I9673.

-26014 -10090,

-112.22 -77.15

Fig. 5-23 shows the semimajor axis, eccentricity, and inclination histories

for the free roll example. There was also a rotation of D from 0o to -70 ° and a

rotation of O0 from 90 ° to 217 o, primarily caused by earth oblateness, although

some perLcenter rotation may have been caused by an effect to avoid intense radia-

tion, thus lowering power and increasing transfer time. Power dropped from

4,828 kw to 3.03 kw; most of the drop occurred durLng the first 70 days as in previous

examples.
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Fig. 5-23 Semimajor Axis, Eccentricity , and
Inclination His tot ies

Fig. 5-24 shows the yaw for the initial and final orbits.

Yaw (o)
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\ I
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0 60 120 180 240 300 380

Eccentric Longitude (o)

Fig. 5-24 Yaw for the Initial and Final Orbits
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Oneof the interesting characteristics of the pitch and roll constrained example

was that there were two points per orbit at which the primer vector projection was

perpendicular to the sun vector (iv = +_90 °) except very close to the end of the

trajectory where there were four such points. There were no jumps in the thrust

direction for the orbits with only two such points since the sun angle, B, was not

between 45 ° and 135 °. The yaw angle Ls plotted Ln Fig. 5-25 for the initial and

final orbits and for a segment of an orbit at 66 days. There are two jumps during

the final orbit but none for the orbit at 66 days or for earlier orbits. Fig. 5-26

shows the primer vector angle, e_, the sun angle, t_, and the thrust angle, $, for

the final orbit. The primer vector angle crosses the 900 point four times, but for

the first two, B is not in the 45 to 135 ° range. Then the primer vector angle

briefly goes above the 90 °line between F = 286 ° and F = 336 °, At F = 226 °,

B = 48°, and there is a 30 ° jump in _5. At F = 336 °, 8 = 85° and there is nearlya

90 ° jump in $. For the 66 day orbit the primer vector curve looks very similar

but it does not quite reach the 90 ° line in this orbit segment and these two jumps

do not occur.

Yaw

(o)

I

/- 66 i
//-'._- Day_

_iI". _ --/

° Ec'cent_'_[cL'_)ngit'[ide_o)

Fig. 5-25 Yaw for the Initial, 66 Day, and Final Orbits

¢-

it, / /

/ \ /

or, B , Ib " _ /

(o) \

\ / x\
\ / .,

\ i I

Xk /

Eccentric LongLtude _%)

Fig. 5-26 Primer Vector Angle (if), Sun Angle (B),
and Thrust Angle (0) for the Final Orbit

91



5.3 Run Time and Accuracy

Some of the additions to the new version of the program have contributed to

greater run time, although averaging and the analytic radiation model cause the

run time to be orders of magnitude shorter than a precision trajectory calculation.

Many trajectories are run for one optimization, however. Shadow calculations

cause an increase in run time and the resulting trajectory often requires a shorter

integration time step to maintain the accuracy needed to obtain convergence. The

new thruster turn-on delay calculation requires additional time. The constrained

thrust direction c alculation requires additional calculations which must be performed

at every quadrature point of every orbit for every trajectory. Calculation of possible

jumps points in the control greatly increase run time. For accuracy a separate

quadrature may be used between jump points and shadow entrance and exit points.

With no shadowing and two jump points there will be two quadrature intervals.

With shadowing, and if there are two jump points not in the shadow, then there are

three intervals. There may be up to 6 jump points (for non-circular orbits). (Tump

points refers to points where et = +_ 90. There may or may not be an actual jump

in _ depending on the value of A. ) Some cases were run without calculating jump

points and just arbitrarily dividing up the orbit into two quadrature intervals. The

loss of accuracy adversely affects convergence and the increase in the number of

trajectories calculated may increase total run time. For the results in this section

a four-point quadrature was used. For higher order quadratures run time is

greater. A smaller time step increases the run time of a trajectory.

The results in this section were generated on an IBM 360/75 computer. The

program is coded in Fortran IV on the H compiler. These runs took several minutes

each. To get a rough idea of the time needed, the approximate CPU time per

"time step" was calculated. With oblateness, degradation and attitude constraints,

two 4-point quadratures per orbit and jump points calculated the value was . 025

rain. Thus for a trajectory 250 days long with a 10 day time step there were 25

steps or . 625 minutes per trajectory. Four iterations of the Newton-Raphson

iterator generate at least 26 trajectories (4 nominals, 3 sensitivity matrices and

one time history), requiring 16.25 minutes. Without calculating the jump points

the CPU/time step was approximately . 018 so the same case would take 11.7 minutes.

The shadow cases in this section had similar CPU/time step, often one of the jump

points was inside the shadow, and so not calculated precisely, reducing computation

t ime.

Experience indicates that using higher order quadratures and smaller time

steps than used for the results in this section change _V and transfer time very

little, perhaps 1 or 2%. However, the initial costate may be changed on the order

of 10 or 20%. For mission comparisons and to obtain approximate trajectory
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characteristics less accuracy maybe accpetable. If costatehistories are to be
usedfor guidance, increasedaccuracy andtherefore smaller time steps and
additionalpoints per orbit must beused.

More complexandlonger casesrequired better initial guessesto obtain
convergence. Suchcasesusually required an iterat[ve procedure involving
convergingto successivepoints alonga reference trajectory.
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SECTION6

CONCLUDING REMARKS

The program discussed in this report is a generalization of a previously

developed code which calculated time optimal geocentric trajectories for solar

electric propelled spacecraft with an optional high thrust stage. The new code continues

the use of the method of averaging and an analytic radiation and degradation model in

order to reduce computation time. A nonsingular set of orbital elements is utilized.

Oblateness, shadowing and solar motion may be included. For the new code, attitude

constraints may be included, a delay in thruster turn-on upon leaving the shadow Ls

modeled, and the radiation and power loss model is revised and generalized to

various solar array parameters.

A suboptimal control for the attitude constrained case of zero roll and pitch

which is nearly time optimal without wasting fuel has been developed. Because of

the constraints the panels may not always directly face the sun, and power becomes

a functLon of spacecraft orientation. The resulting control strategy may call for

discontinuous jumps in the yaw and panel orientation angles. The minimum possible

power during an orbit which occurs at a jump point is . 707 of the maximum, although

the average is usually . 9 or higher.

The code is computationally fast due to averaging and the analytic radiation

model compared to precision code (although unlike most precision codes, many

individual trajectories are run in order to converge to the desired final conditions).

The code is applicable to general orbits, spacecraft and solar array characteristics.

The radiation and power loss model represents a close approximation to

actual data. The analytic format is easy to code and computes rapidly. Partial

derivatives, necessary for the costate equations, are easy to obtain. The

coefficients in the mathematical models can easily be altered for new data. Shield

thickness, solar cell thickness, and cell base resistivity may be varied.

The time step for the integrator and the number of points calculated per orbit

for the averaging quadrature affect accuracy and computation time. Experience

with a limited number of examples indicates that us[r/g 8 points per orbit or 16,

or halving the time step from 10 to 5 days in an over I00 day trajectory may change

_V and flight time by 1 or 2%, but the initial values for the costate may change
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on the order of 10%or more. In order to obtain convergencefor complexcases
better initial guesses and more accuracy is required. It may be necessary to obtain

a nominal trajectory from a more simple case and then to converge to various

points along that nominal, at each stage using the initial values from the previous

stage as initial guesses for the later stage.

Comparisons were made fo_ ' a SERT-C type mission between constrained

and unconstrained cases for an inverse square gravity field. Flight time and

t_V vary for the constrained cases as a function of launch date and time of day.

A launch time can be found for which the constrained bV is less than 1%, and the

transfer time less than 5% more than the unconstrained case. Jumps in the control

did Occur during the last 20 days of a 130 day mission. For the examples

considered most orbits had at most two jumps in the thrust direction. Noncircular

orbits can have up to six jump points,

The time in shadow and the delay in thruster turn-on can be a significant

proportion of the orbitalper[od at lower altitudes. As a result the spacecraft

spends greater amounts of time in the more intense lower radiation zones, thus

power degrades faster which contributes to longer transfer times.

The inclusion of power degradation can nearly double transfer time for a

SERT-C type mission. The intense radiation at lower altitudes causes the power

to drop to about 50% of its initial value, the exact amount depending on solar cell

characteristics and the particular trajectory. Most of the degradation is in the

early portion of the trajectory.

Further refinements of the code could include extending the valid region of

the radiation model to those low altitudes between latitudes 50 ° and 75% and

effects to make the program more efficient in terms of individual trajectory

calculations and convergence characteristLcs in order to reduce run time further.

The program offers a tool for mission performance evaluation and compar-

isons. The costate histories generated are first order approximations to precision

costate histories and with sufficient accuracy control the code can form the basis

of a guidance scheme.
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APPENOIXA

HIGH THRUST EQUATIONS

A. 1 Introduction

In this appendix the details of the high thrust phase are discussed, including

a brief description of Huntington Small's technique and code (12" 13) which were used

for the initial high thrust phase. Since this code uses a special set of variables, the

transformation to the equinoctial state and costate, used tn the following low thrust

phase, is presented. This appendix is a condensed version of Section 4 of Ref. 2.

A. 2 The High Thrust Code

The initial high thrust phase of the program utilizes code developedby

H. Small. This code calculates time-open minimum _V trajectories in an inverse

square field. This subsection discusses the method of Small and presents certain

equations some of which will be used in Section 4.3 which considers the interface

between the high and low thrust code.

The following is taken mainly from References 12 and 13. Taking the orbital

elements as state variables and the characteristic velocity as independent variable,

the rates of change of the state variables can be written

x:j = dj{_x,u)@ j = I,..,5 (A. 1)

in which __, the unit vector in the direction of thrust, and u, an angular variable

in the instantaneous orbital plane are controls and the problem is to generate

extremals which minimize the independent variable between end states. The
5

Hamtltontan is H = =1][_k_clj__j_ and is constant and can be taken equal to unity. TheJ

optimal __ = _D)_jdj = )'v and the optimal u maximizes H(u) 2 = [_Xv(U)_2.
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Usingany set of orbital elements

k = A1 sin(u+A2) R--V

+ A 4 sin (u+]k5)/@ e-h

in which _-R' _L and £h are unit vectors in the radial, circumferential and out-

el-plane directions;ana @-- 1 + ecosf where e is the eccentricity and f = u - _o ,

the true anomaly. The A's are functions of x and _t and will be defined later for

our elements.

maximized at some u if [k_(u+Au)] 2 > 0 VAu withThe Hamilton[an will be

equality only at Au = 2_r, 4_ ..... Defining t = tan(/_u/2) this inequality

becomes the ratio of two sixth-degree polynomials in t Small then reduces the

maximizing test to the form

t2(_o+_lt+_2t2+c_3t3+_4t4) > 0 Vt (A.3)

He then develops a general test for the positive definite quartic. The require-

ments are (Eq. 4 of Ref. 13)

_0 > 0

16ao2( 2 2 )2 22+3Zl ) >_ (3_1-8¢_o_2 if3_ I > 8ereCt2 (/%,4b)

(/L4a)

ZlE(Ct 2 )2 _ 7z22/4 >2-Zl + 9_2z21 _ 3_2z2 2 0 (A.4c)

where

z I = 4_o_ 4 - _lOt3

2 2
z 2 = (_1_ 4 +_o_3 - Cel_2_ 3 _.5)

There are other simple conditions that the _i must meet such as _4 > 0 but they
are all contaLned in Eq. (A 4). Eq. (A. 4) will be violated first as the coeffLclents

change during a firing requiring a switch through an angle described by

2(c_-4_ 2 ) (9z2_8(_ 2Zl)o_2)(ot2+3Zl - 4_o
t = {A 6)

2 ) + _ (9Zl_8_zZl)s 4_o_3(_2+3Zl 1

The '_o > 0 case generates an impulse.
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The H u = 0 condition (Eq. A. 3),and the o_i are explicit functions of eight

variables in Eq. (A. 2) but because (,_v)2 can be scaled to 1 and u just depends on an

arbitrary reference axis, it turns out that they can be written as functions of six

independent parameters. Small chooses e sinf, _ , # , T where

X = sin_eR+ cos¢cosTe_L + cosCs[nTe h (A.7)--V

(illustrated in Fig. A-l, cos¢_ m 0) and two others defined by

k - [^3+

j - _h4s[n(u+A5)s}n _ + A4COS(U+A5)Cos_eosT

+ IhlCOS(U+A 2)e sinf

- A lsin(u+h2)e c°sf] c°sCsinT} / c°s2¢

= [A4COS(U+A5)/cos¢ + esin fsinT]cosT

+ [tan ¢ - ke sin f]sin T (A. 9)

Further mantpulat£ons yield

tan¢ = (jsinT +kes[nf) (A. 10)

and expressions for the (_i

(X o

,v 1

1 + k_b cost

= $[I - sk 2 - (2+$k2)tan2¢] -j2

= 4 5 tan _(2k-cosT ) - 2esinf(1-2tan2¢)

°_2 = _o +¢_4 + 8esinftan¢(cos T-k)

0_3 = OtI + 8($-l)tan¢(cosT-k)

+ 4esinf[(cos T-k) 2- tan2_]

oY

(A. 11)
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Figure A-I. Firing angles T and ¢.

The k and j variables can also be written in terms of the radius and

velocity vectors and their adjoints.

k = h(kR_ • --R)/h*$ cos ¢ (A. 12)

Dhk
v K (A. 13)

j = h,2cos 2¢ -

7::

where h is the angular momentum magnitude and h is the angular momentum

magnitude at some reference orbit, u is the gravitation constant, and

K = R×k_ + V × X (A. 14)_ _ B v

which is a constant of motion.
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Small notes some special cases. If e = 0, (_1 = _3 and (W2 = _o + _4 so

that z 2 = 0 and Eq. (A. 4c) reduces to z 1 _, 0. Eq. (A. 4a) is automatically satisfied.

= _ 2_ °The double maximum occurs when {1 = 0 at t s /_3" A second case is the

Generalized Hohmann Transfer for which esinf = j = 0 implies tan¢2 _1 = _3 =

z 2 = 0 so Eq. (A. 4c) reduces to ev4 > 0 and Eq. (4.4b) to 4(_o¢( 4 a _2 if _2 < 0. This

equation turns out not to be restrictive and the double maximum occurs when

(_4 = 0 at Au = 180 ° .

Small's code works in the following manner. An initial set of parameters

(e, f, T • j _-1/2• k _b1/2) which satisfy Eq. (.4. 4) is input (for our program e = 0•

f = 0• _; = 1 so the input is (O, O, T,j,k)). The initial h is arbitrary, just

scaling ,_ = h*_v/_ which is the independent variable within the code. We have set

h;" = h° 1. Then "r is incremented by a succession of A,r. The corresponding

values of (_i V) and Eq. (A. 4c) are computed until Eq. (A. 4c) is zero at some • The• S*

values OfAlsin(u+A2), 1%lCOS(U+/_2 ), A3, h4sin(u+A5) and A4 cos(u+A5) are

computed from the known values of e, f, T, j, k at _s and all variables are

switched to a new peak by adding _u s computed from Eq. CA. 6); then the next impulse

continues by incrementing 'r again. The result is a series of known impulses and

coasting arcs. Since for our case the initial orbit was circular, the location of

the first impulse was arbitrary (as far as the high thrust code is concerned) and

so the initial f = 0. We limited the number of impulses to two and specified

the total /_V. In this case only the remaining available AV was used on the final

impulse. The location was optimal although the AV might be less (or more) than

called for by Small's program.

A. 3 Coupling of High and Low Thrust Code

In the combined high and low thrust program the output of Small's code must be

interfaced with the beginning of the low thrust code. In addition we have constrained

Small's code by 1) requiring the initial (high thrust) orbit to be circular, 2)

specifying the maximum number of initial impulses and the corresponding total AV.

The first constraint allows us to calculate the limits on the permissible input to

Small's code, L.e., the requirement that the input satisfy Eq. (A. 4)

The requirement that the initial high thrust orbit be circular and the

assumption that the first impulse is in the -e L direction in order to raise the orbit,

combined with the inequalities of Eq. (A. 4) yield the following requirements on T,

k and j.

IT{ _ : (A. 15)
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cos T
-"---2"--< k < cos _ (A. 16)

l,Jt < (l+kcosT) 7 c°s T- k (A. 17)
cos T 4 k

These constraints guarantee that values picked for 7, k, j will yield an optimal

impulse.

For a given total _V and a given set of initial conditions, a one, two, three

or more impulses optimal transfer may result. We are limiting the number of

impulses to two. If the specified total aV is less than the maximum for the first

impulse calculated by the code, that impulse is still optimal under the constraint.

If the total t_V is greater than the maximum for the first impulse, then all of the

remaining sV will be used at the second impulse. If the remainder is less than or

equal to the maximum for the second impulse calculated by Small's code, then the

transfer is still optimal under the constraint. If the remainder is greater, then

the transfer is not optimal. A three or more impulse transfer could have reached

the same orbit with less aV. Usually for transfers of interest, one or two

impulses will be optimal.

For the calculations in Small's code a "first orbit" coordinate frame was

assumed. In this frame the initial orbit has zero inclination and the initial impulse

is assumed to occur at f = 0. Also w -- _ = 0 initially. The orbital elements and

their adjoLnts which are contained in Small's S(I, J, K) array are with respect to

this coordinate system. The elements of the S array are made up of orbital

elements and other of Small's variables. This array is calculated by Small's code

and it is from this array that we must obtain the equinoctial orbital elements and

their adjoints and other information for input to the low thrust code. In Small's

code the l [n S(I,J,K) varies over different trajectories (he calculated neighboring

trajectories along with a nominal trajectory for a purely high thrust Newton

iteration). For our program I was set to 1. J varies over different orbits. For

our case J varies from I to 3 for a two impulse trajectory. K varies from 1 to 20

and these quantities are listed in Table A. _ In what follows, for brevity, SK

will be used for S([,J,K).
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Table A- 1_"

K S(I,J,K) ; 11 _bl/2(cosT - k)

1 • 12 cos(u + O )

2;:: D_ 13 stn(u + _)

3:I_ - I/2tan(_u/2) 14;_ cos/_u

4 (h/h_:0_-1/2co s¢ 15_':_ stn/_u

5 _b-1/2e slnf 16 cos i

8 k 1/2 17 sinicosu

7 tan ¢ 18 sin isinu

8 A4COS(u+A5)/cos ¢ 19 sin icos g$

9 _b1/2si n T 20 sin LsinO

10 $

;:Information for 5th impulse is stored in S(I, J+l, K).

_'This is essentially Table D. 1 of Reference 12.

In our program, h _',_was set to one and the initial orbit is assumed circular.

Thus for each orbit (J=l, 2, 3)

h --s4jS - 10/cos (A.IS)

a = aoh2/(1-e 2)

1

e = [(SI0-1)2 +S10 • S__

(A. 19)

In the "first orbit" coordinate frame,

cos [

(A. 20)

= S16 (A. 21)

2 2 1
sin i = (S19 +$20)_ (A.22)

$20

tan _ = _ (A. 23)

In addition

tanu = S18/S17 (A.24)

tan f - $5_/_I0 (A. 25)

$10 - 1
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0o = u - f (A.26)

tan ¢ = S 7 (A.27)

S 9
LanT - (A.28)

$11 + $6

Now the orbital elements of the first orbit are known with respect to the

inertial reference coordinate frame, a, e, i I, Oi, u_I (obtaining to I is discussed

later). In the "first orbit" frame, i 1 = 0, _1 = 0, t_ 1 = 0. A vector in the first

orbit frame is related to a vector in the reference frame by the transformation

cos u_I cos Oi cos wi sin _I sin t21 cos iI

- sin _i cos i[sinol + sin 0_icos i[cos ,0l

T I = - sin Ol cos f)I sin u_Isin 01 cos _oI sin iI

- cos_icosilsinol + cosu_icosilcosf_ I

sin i[sin f_I - sin iIcos f_I cos ii

(A. 29)

The coordinate frame dependent orbital elements of the second or third

orbit are obtained in the "first orbit" frame by using the S array; call these

i2, 02, 602 . The orbital elements in the reference frame, i 3, f_3' t_3' can be
obtained from

T 3 = T 2 T I (A. 30)

where T 2 is given by Eq. (A. 29) wi.th the subscript I replaced by 2.

T. are defined similarly. T 3 can then be solved for i3, 03, t_3.

i-6j thelement of T 3. Then

The elements of

Let 6 i_j be the

"9. ' 2 (A.31)sin i3 = 631 + 632

cos i3 : 433 (A.32)
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sin w3 = _,13/sin i3 (A.33)

cos W3 = _,23/sin i 3 (A.34)

sinf) 3 = _31/sin i3 _A. 35)

cos[2 3 = - 2,32/sin i 3 (A.36)

If L3 = 0 then w3 + [23 can be found from

c°s(w3 + [23) = $11 (A.37)

sin(u_3 + _3 ) = _12 (A.38)

The equinoctial elements, h, k are given by

h = e sin(w3 + 03) (A.39)

k = e cos(u_ 3 + 03) (A.40)

It is possible to get p, q directly from T 3.

t31
p - (A. 41)

1 + _33

- 432
q - (A. 42)

1 + _'33

.'s are given in terms of the classical state and costate by Eq. A-8The At

of Ref. 12. This can be inverted to give the costate in terms of the hi.

_'a = _. /a3(1 1__e2) IA3-eAlcOS(A2+u_)_ (A.43)

Xe = _ _ _AlCOS(h2+w)-eA3_ (A.44)
a(1-e2) 3

_-i = _ _ A4 sin h 5 (A.45)
a(1-e 2)
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= - e_ _ AlSin(A + ) (A.46)
k u_ a(l_e 2) 2 u_

l = A4C°Sh 5 sin [ + lwc°s i (A, 47)
O, a(1-e 2)

However, this costate is given in terms of the "first orbit" coordinate frame. Since

in this frame i = 0 and e = 0 initially, then initially k = ),_ = 0. In the equatorial_0

reference frame _f D and u) are free, then k = 0 and I = 0 initially. The Xa

and k will be the same in the equatorial reference frame as in the "first orbit
e

frame". The form of )'L at the initial time follows from the requirement that ll2=0.

This condition also yields the locat[onof the first impulse. If in the reference frame

D Ls fixed initially then l_ is free though k_ is still zero.

In the reference frame the first impulse occurs at u_ I. The adjoints to O

and _ in the reference frame can be realted to wi by the following equations derived

from results listed in Appendix B of Reference 2.

m

X.' = /_--_ A4 sin( A5 - u_[) (A. 48)
t _ a

o

: ^4sinizcos(^ -,,,i)
a o

(A. 49)

If [n the reference frame, we require that X_. = 0, then for A4 sin i # 0

A5-wI =-+ 2

or

?;
wl = A 5 ± --

2
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Taking the convention that k_ and A4 have the same sign determines that

w I = A5- _ (A. 50)

Then

A40
a o

(A. 51)

If the initial O, is fixed then ), is free and not necessarily zero although
O

k is still zero. For this case it is no longer necessarily true that wi = A5-_ ;
I I

rather t_ I is arbitrary but then determines kD and )'i through Eqs. (A. 48) and
(A. 49).

The formulas for )'aand )'eare valid at any time during the initialhigh

thrusL phase. During the high thrust phase k D remains constant, but _'i and _, w

may change. Initially, there are some iI, _i, wI' then using results from

Appendix B of Ref. 2 and the fact that k' = 0, let

Cl = k"c°s_I-k_c°tiIsinD'It

c 2 = l['sin_ I + _-_cotiIcosflI (A. 52)

For any set of i, 12, _ in the reference frame

X[ = c lcos_ + c 2sin
(A.53)

kfl = c 3 (A, 54)

X = stni(clstn$1 - c2coso)+c3cosi (A.55)
t_

For SEP and high thrust in an axially symmetric field, the fixed D option

should be used (in which case the initial w should be driven to A5 - _ so as to

make X_ = 0). If this option is not used and _ is allowed to be free initially, then

varying 12 initially will have no effect on the final conditions, and the partial deriva-

tive matrix will be singular.

We need A1, A2' A3 and A4 in terms ors array. FromEq. (4.2), (4.7),

(4.8) and from Table B-1 the following quantities are obtained.
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A3 = cos ¢ [(l+$ )k - cosT] (A. 56)

A1 cos A2

A 1 sin A 2

= cos ¢[cos T-k]cosu + sine sinu

= -cos ¢[cos T-k]sfnu + sin ¢cosu

A4 cos A5 =

A4 sin t%5 =

In order to calculate X
a

1%1 cos 1%2cos a_ - A 1

cos ¢(S8cosu -_ $ sinT sinu)

cos ¢(-S8stnu 4 _bsinT cosu

and X we need the combination
e

sin h2 sin to = sin f sin ¢ _ cos f cos ¢ (

(A. 59)

(A. 60)

Sll _ (A.61)

_S/_l 0 "

where we have used u = w + f, and where ¢ and f were derived in terms of the S

array previously. Obtaining A3 in terms of the S array,

= h* $4(S10 $6 _ Sll) (A. 62)A 3 -_ .

A4 is needed only on the first orbit where u = f : to = 0; on the first orbit

h4COSh5 = S 8cos¢ (A. 63)

h4sinA5 = $9_10 cos¢ (A.64)

can be obtained by taking the square root of the sum of the squares of theA4

above two quantities. There is an ambiguity of sign, however. The computer code

picks the sign by the criterion that if the inclination is desired to be reduced, A4

(and thus Xi) should be negative; similarly if it is desired to increase inclination,

)_i and ,44 should be positive. This choice can be overt[den by an input to the

program. Once the sign of A4 is picked, A5 can be found unambiguously (as long

as A4 _ 0). )'a' Xe" Xtand XD can now be calculated.
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Finally the equinoctial costate is given, at eachorbit usingEq. (3.25),

=

ka )'a (A. 65)

kh = sin(_3+_3))'e + c°s(w3+_3) kWe (A. 66)

kk = c°s(_03+_3 ))'e - sin(u_3+_3) _e (A. 67)

kp 2 sin _ 3 c°s2 i3 cosf} 3= + ()- -k ) (A, 68)
"T k L tan(i 3/2 ) f) w

sinO 3

kq -- 2cos_3cos2i_32 k i - tani3/2 (_O-kc0) (A. 69)

A multiplicative scale factor may also be needed before input to the low thrust code.

Since A5 and therefore a_3 cannot be calculated unambiguously if t%4 = 0,

this case can lead to difficulties in running the program. A4 = 0 if j = T = 0.

This implies a zero inclination change during the initial high thrust phase. Because

of the radiation and shadowing effects, whLch for SEP will generally cause an

optimal trajectory to contain some inclLnation variation even if the initial and final

inclinations are the same, this case will generally not arise for SEP. It could

arise for constant power and zero inclinatLons change and so the program may not

work for this case. The initial guesses for Tand j should not both be zero.
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APPENOIX B

THE MATRIX M AND ITS PARTIALS

TableB-I Elements of M

2:_I 2Y I
MI1 = -'2"--' MI2 = --2-'--' MI3 = O

na na

_h2_k 2

M21 = 2
na

_h2_k
M22 = 2

na

M23 =

k(qYI-PX 1 )

na2/l-h2-k 2

M31 = 2
na

= Jl-h2-k 2
M32 2

nst

+ -- (sinF-h@)

_ _k n

l_YI ql
-- +-- (s[nF-hB)

bk n

5XI X1 (cosF-kB)

_ bh n

_Y1 _'1 (cosF-klq

_h n

M33 =

h(q Y I-PY_ 1)

na2Jl-h2-k 2

M41 = O, M42 = O, M43 =

(l+p2+q2)Yl

2na2/1-h 2-k 2

M51 = O, M52 = O, M53 =

(l+p2+q2)X1

2na2Jl-h 2-k 2
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Table B-2 Partials of X 1 and Y1 with

Respect to h and k

Table B-3 Partial of M with Respect to a

bM _ 1

_a 2a

3 0 0 0 0

0 I 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

M

II0



TableB-4 Partial of Mwith Respect to h

5M21

_h

bM31

5h

bM32

5h

5M33

5h

5M51

_h

2 b:K 1 5M12 2 _YI 5M13
- = 0

n a 5h bh n a _h 5h

-hM21 Jl_h2_k2 [b2Xl _:I (sinF-h_) _i (B+h2p3) 1
1 h 2 k 2 + 2 [_ b-_bk + '- - na bh n n 1-_

-hM22 Jl_h2_k 2 52YI +
- ÷ 2

1 -h 2-k 2 na 5hSk _h

(s[nF-h_)_ YI_ (_-h2_3)_

n n I-_ J

hM23 k (q 3Y1

l-h2-k 2 na2jl_h 2-k 2 5h

 xl)p_
_h

I-h2-k 2 - na 2

5_i (cosF-k_! +__

5h n n 1-_

-hM32 _ Jl-h2-k. 2.

1-h 2-k 2 na 2

hM33 M33

l-h2-k 2 +--h

h

na2Jl-h 2-k 2

by 1 5X 1 )q-- -p--
5h 5h

5M42
O,

ah

= O,
aM43 hM43

bh 1-h2-k 2

M43 5Y1
+

Y1 bh

bM52
O,

5h

-= O,
5M53 _ hM53

})h 1-h2-k 2

+ M53

X 1

5X 1

_h
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Table B-5 Paz't[alof M with Respectto k

bM21

_k

2 _]kl bM12 2 bY1 bM13

n a _k bk n a bk bk

.-kM21 71_h2_k2 [-_2X1

l_h2_k 2 + na 2 L7 +

bM22 -kM22 Jl_h2_k 2
= +

_)k l-h 2-k 2 na 2

kM23• M23 + +

k

kM31

1-h 2-k 2

-kM32
=

l-h2_k 2

kM33
= ....

l_h2_k 2

= 0

5X1 (s[nF-hR) X1 hkB 3]
/

_k n n I-_ A

b2Yl b3_i (slnF-h_) 3}I hkfl31

7 + _---k- n n l-_J

k

na2Jl-h2-k 2

bY1 bX1 /
q_ -p

_k "_" /

_k n n I-_ J

Jl-h2-k 2 _b2yl bYl

- na 2 L'b--kbh bk

(cosF-k )+
n n 1- 8 J

na2J1 'h2-k 2

by 1 _X 1 )
q_ - p_

_k _k

- O,

= O,

bM42 bM43 kM43

- O, _h2k2_k _k 1

bM52 bM53 kM53
+

bk bk l-h_-k _

M43 bY1
+

Y1 bk

M53 _X 1

X 1 bk
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Table B-6 Non-zero Partials of M with Respect to p

_M23 _ -k-X 1

_P Jl_h2_k 2 na 2

_M33 hX 1
=

_P /l_h2_k 2 na 2

bM43 _ PY1

_P Jl_h2_k 2 na 2

_M53 _ PX1

_)P /l_h2_k 2 na 2

Table B-7 Non-zero PartLals of M with Respect to q

bM23 kY 1

jl_h2k2 na2

_M33 _ -hY 1

5q /l_h2_k 2 na 2

bM43 _ qY1

_q 71_h2_k 2 na 2

bM53 _ qX1

})q /l_h 2 - k 2 na 2

113



Table B-8 Partials of X1 andY1 with Respectto h andk

b_<l a XlSinF+na2 I(hsLnle+kcosF)(_+h2_3)+h_s[nF1
bh r r 1-_

_YI = a YlS[nF+na__2 _-k_sinF-hk_ 3 (hsinF+kcosF 1
_h r r L 1-8

5X 1 = a ilCOSF+na2

_k r r h_ cosF+hk_ 3 (hs inF+kcosF) 1
1-_

_}1 a Y 1 cosF+na 2

5k r r -(hs[nF+kcosF) (_+k2B 3) - k_cosF 11-_

_2X 1

_2Y 1

_2X 1

Table B-9 Second Partials of X 1 and Y1 with Respect to h and k

1_1-8 , (1-_-

(hcosF-ksinF)_(l+h2(3tg2-2_3)_(l_B)2 ] + 2hk_31-_ cOSF]

a (-hcosF+ksinF) . il-B) = ! 1-_

_2Y1 I__-_---_k =a

b2X 1 _ b2X 1 _

_h_k bk_h

_2Y 1 b2Y 1

_k_h _h_k

(hcosF-ks[nF)_/3+k2(3_2-2_3)// -
\ (1-_) _

 -hco r+ks nV  B+h2B_-_ _ _z-_) _ / _-_a cosF+sinF I.-_- J

a[__-_2 (hcosF-ksinF)_/l+k2(302-2f13)_(l_S)2 ] - hk_3s[nF+e°sF(_+k2_)]l-,1-,
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APPENDIX C

AN ALTERNATE FORM OF THE M-MATRIX

_Z

In Reference 28, page 30, a new form of the M or -- equation was written
a_

with respect to the equinoctial orbit frame. The partials of a, h, k, p and q are

repeated here. The "M-matrix" is just made up of the coefficients of the basis

vectors in the following expressions.

br_" n2a

• ^ k ^

_--Sh_ 1 [O{+rXlY ] +G[qYI - PX1]w_ u -

bk _ 1 h
(c.I)

b__P.- (l+p2+q 2) Y1 _v
br 2G --

_-_q : (I+p2+q2)x _v

where L _, __v are the equinoctial basis vectors defined in Section 3.2 and X 1

are the _ and g components of position respectively. Also

and Y1

G : na 2 Jl-h2-k 2 = T_IX 1 - :K1Y1 (C. 2)

: __x £/r : (xi_- Ylt3/r (c.3)

r

n= Jg-
a
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A useful form of ---: for the constrained case when thrust must be orthogonal

to the radial direction is t'5 write it with respect to the e-r" _s' ew frame where

is parallel to the radius vector, _w is normal to the orbit frame and _ completes
--r --S

the orthogonal triad. In terms of the equinoctial basis vectors

= (xl [ + Y1 _)/r (c.6)--r

= (- Y1 _ + X1 g)/r (C. 7)--S

^

= w (c. 8)
_W

_Z

Applying the inverse of this transformation to the previous
_r

equations yields

iY1)6r 2GBa _ 2 (_il +_ +--'2"----s
_r na -- n ar

GX1 h _ pX 1)_w+ (C. 9)

5p l+p2+q 2

hi: 2G
Yle_w

bq - l+p2+q 2 ^

br_" 2G Xlew

When thrust is constrained to be orthogonal to the radius vector, the
--r

terms drop out. If this form is used in evaluating state equations there would be

fewer calculations. The partials needed for the costate equations would also be

simpler. The unconstrained case would still involve calculating all the terms.
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APPENDIXD

SUN-EARTHRELATION

For the solar electric program, the sun's location in equinoctial coordinates
is needed. The distancefrom earth to sunvaries dueto theelltpttcity of earth's
orbit. The following is takenfrom Reference2.

where

The sun's location in earth equatorial coordinatesis given by

_Rs - cos 0 sin (_ +v) (D. I)

- sin 0 sin (oo+ v)

O is the obliquity of the ecliptic,

u_ is the argument of perihelion,

v is the true anomaly of the earth at

the time of interest.

$

The true anomaly can be approximated by (see Ref. 37 , p. 55)

3
v = M + (2e- e---)sinM + 5e2sin2M + 13e3sin3M

4 4 12
(O. 2)

and M = nt + M o.

The orbital elements of the earth are taken from Ref. 37, p. 378, for an epoch

of Julian Date 2436935.0 (1960 Jan. 1.5.E.T.). In particular,

= 102725253

M ° = - 1790562

e = .016726

n = .985609°/day
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The distance to the sun (in A. u. ) is just

2
1 -e

I_ s I =
l+ecos v

(D.3)

The difference between the sun-spacecraft distance and the earth-sun distance

is assumed negligible.

In equinoctial coordinates

I_ = [___]T _, (D.4)
--S -- S

where the equinoctial basis vectors were given tn Eq. (3.4). In the analysts, it is

necessary to have the partials of the _[ and __ components of _1_s with respect to the

equinoctial orbital elements. These two components are X = 1_ • _ and
S --S --

Ys = l_s " _" Since _f and _g are functions only ofp andq, we need

8Xs - R . 5i - 2 (qYs +Zs)
_p --s bp l+p2+q2

_Xs - 1_ • _[ = 2PYs

_q s bq l+pZ+q 2

_Ys _ i_s . bi 2qXs

bp bp 1+p2+g2

bYs _ _{ • b[ : 2(-PXs +Zs)

bq --s _q l+p2+q2

(D. 5)

which utilize the formulas

_P

A

2 (q g + w)
l+p2+q2

bp l+p2+q 2 -

_q l+pZ+q2 (-P [ + _)

(D.6)
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APPENOIX E

WORST CASE EVALUATION OF

SUBOPTIMAL APPROXIMATION

In Section 3.6 two reasons were given £or utilizing a suboptimal approxima-

tion where only part of the Hamiltonian is maximized with respect to the thrust

direction. The first reason is that it reduces the optimality condition from the

root of a 6th to a 3rd order polynomial. The latter can be solved in closed form

with consequent savings in machine time. The second reason is that it is aesthet-

ically unsatisfying to bias the control so that the desired acceleration component is

decreased while the thrust is increased. This result is mathematically time

optimal because it increases the mass flow rate and reduces the mass. While time

optimal solutions are of more practical interest than fuel optimal solution, it does

not seem desirable to simply throw fuel away.

This appendix is intended to show that the suboptimal approximation is

negligibly different from the time optimal case for practical missions by analyzing

the worst possible case. This case occurs when the radius vector to the spacecraft

is always at right angles to the Earth-sun line and the primer vector is orthogonal

to the Earth-sun line. A simple example of such a case is the coplanar enlarge-

ment of a circular orbit normal to the earth sun line. Such a case will be

characterized by a 41% increase in aV and a 100% increase in flight time as

compared to the unconstrained case. For the more practical examples treated in

the body of this report, the fuel and time penalties due to attitude constraints are

much smaller than this. For these practical cases, the difference between the

suboptimal and minimum time solutions will be smaller than for the extreme case

treated herein.

This case may be characterized by only two state variables, the mean orbital

speed v and the mass m. The rates of change of these two variables are given

in Eqs. E. 1 and E. 2.

2P
_ o cosS sins (E. 1)

mc
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rh
2P

= O

----,/-cos
C

(E. 2)

The Hamiltonian of this problem is given by Eq. E. 3.

2P 2P

0 COS_H = _ Xv__O cos@sin$ - )'m--2-
me c

(E. 3)

The value of the yaw angle $ that maximizes H is given by Eq. E. 4.

_:, _/,kmm x2 1 Xm___m

sm_ = (4-_vC) +_-4Xv c
(E.4)

The rates of change of the Lagrange multipliers are given by the canonical

Eqs. E.5 and E. 6.

kv : 0 (E. 5)

2P

: - k o sin@ cos@ (E. 6)
m v --"2"-

m c

Three first integrals result from equations E. 5, E. 7 and E. 8. Equation E. 7

follows from the autonomous nature of the problem while Eq. E. 8 follows from

EQ. E. 3.

= o (E.7)

dkmm

dt
- mi m+mXm = H (E. 8)

The three first integrals resulting from these equations are given by E. 9, E. 10

and E. 11. The values of the integrals follow from the transversality conditions

for a minimum time problem.

H : - 1 (E. 9)

kmm = (t- tf) (E. 10)

mfc
3k = (E. 11)

v Po
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Substituting into Eq. E.4 yields E. 11

t-tf
_::= (_ 1 + p (E. 12)s in_ _, t-tf po) +2 ---'-2- o

\4mfc 4mfc

The problem can now be solved by quadrature to yield Eqs. E. 13, E. 14 and E. 15.

m = 2cos25 cot_ (E. 13)
mf

vf- v = ci_- 2sin_ + 3tn sec$+ tango 1
: +j:--

(E. 14)

2

tf- t - mfc
2p ° [4sin_- 2csc_b]

(E. 15)

The corresponding results for the suboptimal approximation used in the paper are

given by Eqs. E. 16 and E. 17.

c m
v f- v = _Ln_

_/2 mf

(E. :6)

2

tf- t - c (m - mf) (E. 17)
,]"2 P

0

The optimal and suboptimal cases are compared in Fig. E-l, which plots

the normalized time and mass against the normalized velocity change. The plot

shows that the difference between the two cases is negligible for mass ratios

characteristic of SERT-C (> .84). For smaller mass ratios the suboptimal

approximation will take longer but use less fuel than the minimum time case. For

practical missions the differences should be indistinguishable.
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Fig. E-1 Normalized TLme and Mass Change Versus

Normalized Velocity Change

122



APPENDIXF

SINGLEAVERAGEDOBLATENESSEQUATIONS

In these.equationsRe [s theearth's radius, tt is the gravitational constant, n

[s the orb[talangular speed, 12 the oblateness coefficient and a, h, k, p, q the

equinoctial orbital elements.

Table F- 1 J2 VarLation of Parameters Equations

3UR2eJ2k[1-6(12+q 2) + 3(p2+q2)2_

2 2naS(1-h'2-k 2) (l+p2+q2) 2

3 tjR2J2h[1-6(p2+q 2) + 3(p2+q2) 2]
• =

kJ 2 2na5(l_h2_k2) 2 (l+p2+q2) 2

l_j
2

q J2

2 2 2
3_ReJ2q(1-p -q )

2na5(1-h2-k2) 2 (l÷p2+q 2 )

3 p.R2J2P(1-p2-q 2 )

2na5'(1-h2-k2) 2 (l+p2+q 2 )

Table F-2 PartLal of J2 Equations with Respect to a

_ 7 fl
3a 2 a

_a 2 a

ba 2 a

_a 2a
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Table F- 3 Partial OfJ2 Equationswith Respectto h

_6 4h6

bh 1-h2-k 2

_h h l-h2-k 2

bh l-h2-k 2

_ _ 4h_
bh 1 -h--'_

Table F-4 Partial of J 2 Equations with Respect to k

56 _ 4kfi

_k k I -h 2-k 2

bf¢ _ 4k_

_k l-h2-k 2

_k l-h2-k 2

bk l-h2-k 2

Table F-5 Part[at of J2 Equations with Respect to p

b-"P = na ! (l-h2-k2) 2 ii+p2+q2) 3

bl_ _ /12"R2J2 _ hp(3(p2+q2)-2)

b"-P - \ na 5 ] (1_h2_k2)2 (1+p2+q2)3

_fi _ -2_
_P 1- (p2+q2) 2

_I f1+(p2+q2)21Vp--_ LL,p._., _
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Table F-6 Partial of J2 Equations with Respect to q

kq(3 (p2+q2)_ 2)

(1_h2-k2) 2 il+p2+q2) 3

hq(3 (p2+q2)-2)

(l_h2_k2) 2 (l÷p2+q2) 3

5q q Ii+(p2+q2)1-(pZ+q2)21

b--q 1_(p2+q2) _
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APPENDIX G

SHADOW CALCULATIONS

This appendix contains a summary of results from Ref. 2 for shadowing.

From geometrical considerations an equation can be derived which the entry and

exit angles must satisfy. Such an equation is given in Reference 38 and the equation

given in this section is essentially the same, except that it is given in terms of

equinoctial orbital elements.

The spacecraft position is given by

^

r = Xl[_ + Y1 g (G. i)

where X I and Y1 were given in Eq. (3.19) and (3.20). Let the unit vector from the

earth to the sun be given by

^

k = Xs +--s -- Ys g

This is in terms of the equinoctial coordinate frame and thus depends on the

equinoctial orbital elements p and q. The calculation of the sun's direction in the

equinoctial coordinate system is discussed in Appendix D. If a e designates the

earth's radius, the cosine of the angle between r__and _I_s is given by

• r (irl 2 2,l/2- _ - - _e' (G. 2)

or,

XIX s + YIYs = - (Ir]2. - a 2"I/2e) (G.3)

Squaring and rearranging

22 2s _ 2=0 (G.4)S - (I-Xs)X 1+ (I-Y)Y - 2XsYsXIY 1 - a e

This is the shadow equation which must be satisfied by the entry and exit augles.

X 1 and Y1 are functions of cosF, s[nF, a, h, and k (see Eq. (3.19) and (3.20)). By

further manipulations one can derive a quartic equation in cosF. The coefficients
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of th_s quartic equat_onare given _n Table G-1. Spurious roots can be eliminated

by the criteria that S = 0 and that R . r < O. In addition, for the entry angle

_S/_F < 0 and for the exit angle _S/_F > O.

Table G-1 The Shadow Quartic Equation

b1 = 1_h2_

b2 -- hk_

b3 = 1-k 2

d 1 = I_X 2s

d 2 = l-y2 s

d 3 = 2YsX s

2 2 2 2
h 1 = dl(bl-b 2) + d2(b2-b3) - d3(blb2-b2b 3)

h 2 = -2dlkbl-2d2hb2+d3(kb2+hbl )
2

h3 = dl(b2+k2)+d2(b2+h2)-d3(b2b3+hk) ---2ae
a

h 4 = 2blb2dl+2b2b3-d3(b2 2+blb 3)

h 5 = -2kb2d I - 2hb3d 2 + d3(kb3+hb 2)

2+ 2
A 0 = h 1 h 4

A 1 = 2hlh 2 + 2h4h 5

2 + 2h3h I 2 2A 2 = h 2 - h 4 + h 5

A 3 = 2h3h 2 - 2h4h 5

2 2
A 4 = h 3 - h 5

S* - A 0 cos4F+A1 cos3F+A2 cos2F+A3 cosF+A 4 = O
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Derivatives of F and S

The derivative of F with respect to _ is needed to evaluate the costate

equation. It can be obtained implicitly from the shadow equation.

d__F: (G. 5)

Theseparttals are listed in Table G-2. Note that incalculattng 8S/8p and 8S/_q

we have taken into account the fact that the sun's direction is given in equinoctial

coordinates and therefore made use of the partial given in Appendix D.

Table G-2 Partials of the Shadow Function

8S

8F

_S

8a

-- + 2 (I-Y)YI-XsYsY 18F bF

8X18F - a I-(1-h2_)sinF+hk_c°sF 1

[= a -hk
8F /9sinF+ (1 - k 2 _ )cosF 1

2a 2
= e

a

8S

8h

8S

8k

8S

_P

8S

8q

- 2

= 2

= -4

-4

(1 -X_)X 1 -XsYsY 1 8Xl8h

(l-X_)X I

+2

+2

(l_Y2s)Yl_XsYsX11 BY1

I( I BY11-Y_)Y1-XsYsY1

-4
[Y_Ys+XIYIXs] [i::_2 ]

-4
[Y _Ys+X 1Y IXsl [::pX_qZ2 s ]
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