General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA CR- 144500 E7.6-10.15.4

EXPERIMENTAL EVALUATION OF ATMOSPHERIC **EFFECTS ON RADIOMETRIC MEASUREMENTS USING THE EREP OF SKYLAB**

176-17463

Unclas 00154

63/43

CSCL 20F

Final

RADIOMETRIC EREP OF SKYLAB Research and

USING THE

EASUREMENTS ATMOSPHERIC E76-10154)

20

\$

EFFECTS

(Environmental

Sesearch

\$5

UH

p.

03

Technology)

Report

1

40

EVALUATION

EXPERIMENTAL NO

11

ERT Document No. 0410-F **Final Report**

"Meda evaltable under NASA sponsorship in the interest of early and wide dissemination of Earth Resources Survey Program information and without liability for any use made thereot."

December 1975

Contract No. NAS 9-013343

RONALD G. ISAACS DAVID T. CHANG

> prepared for PRINCIPAL INVESTIGATOR OFFICE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LYNDON B. JOHNSON SPACE CENTER HOUSTON, TEXAS 77958

ENVIRONMENTAL RESEARCH & TECHNOLOGY, INC.

696 VIRGINIA ROAD, CONCORD, MA. 01742 (617) 369-8910

EXPERIMENTAL EVALUATION OF ATMOSPHERIC EFFECTS ON RADIOMETRIC MEASUREMENTS USING THE EREP OF SKYLAB

ERT Document No. 0410-F Final Report

December 1975

Contract No. NAS 9- 13343

RONALD G. ISAACS DAVID T. CHANG - PRINCIPAL INVESTIGATOR

شيوري

 $\frac{1}{1}$

prepared for PRINCIPAL INVESTIGATOR OFFICE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LYNDON B. JOHNSON SPACE CENTER HOUSTON, TEXAS 77958

Original photography may be purchased from: Enal Jata Center 16th and Dakota Avenue Sicux Falls, SD 57198

ENVIRONMENTAL RESEARCH & TECHNOLOGY, INC.

696 VIRGINIA ROAD. CONCORD. MA. 01742 (617) 369-8910

ORIGINAL CONTAINS COLOR ILLUSTANTIONS

ABSTRACT

The objective of the study was to study the effects of the atmosphere on remote sensing of Earth Resources. In particular, the study made use of the Skylab/EREP measurements, especially those obtained by the S192 Experiment, as base for comparison with model calculations.

Four test cases over two target areas of Skylab data were selected for analysis. The target areas were (1) in the vicinity of the Great Salt Lake and (2) in the vicinity of the Salton Sea. Comparisons of Skylab measurements with computation values suggests that, for the purpose at hand, the model adequately represents the measurement situation.

Using the "calibrated" model, computations were made on the effects of the atmosphere on certain radiometric parameters commonly used in earth resources studies. These parameters include radiance, surface reflectance, reflectance contrast, spectral contrast, and other derived parameters. Graphs to assist in the correction of atmospheric effects are also provided.

TABLE OF CONTENTS

	Page	
ABSTRACT	iii	
TABLE OF CONTENTS	iv	
LIST OF ILLUSTRATIONS	v	
LIST OF TABLES	vii	
1. INTRODUCTION	1-1	
2. ATMOSPHERIC EFFECTS	2-1	
3. SIMULATION OF SKYLAB RADIANCES	3-1	
3.1 The Direct Surface Reflected Component	3-1	
3.2 The Atmosphere Reflected Component	3-3	
3.3 Total Band-Weighted Radiance	3-8	
4. ANALYSIS OF SKYLAB DATA	4-1	
4.1 EREP Sensor Summary	4-2	
4.1.1 S190A Imagery	4-2	
4.1.2 S190B Imagery	4-2	
4.1.3 S191 Digital Tapes	4-2	
4.1.4 S192 Digital Tapes	4-3	
4.2 EREP Test Site Documentation	4-3	
4.2.1 Bonneville Salt Flat-Salt Lake Desert (Site No	•(547220)	4-5
4.2.2 Salton Sea-Sonoran Desert (Site No. 547119)	4-9	
4.3 Technique for Handling EREP S192 Digital Data	4-14	
5. COMPARISION OF DATA WITH MODEL CALCULATIONS	5-1	
6. ATMOSPHERIC ATTENUATION IN SKYLAB DATA	6-1	
6.1 "Atmosphereless" Calculations	6-1	
6.2 Equivalent Changes in Surface Reflectance	6-2	
6.3 Contrast Modification Ratio	6-3	
6.4 Band Ratio Modification	6-4	
7. DISCUSSION OF COMPUTATION RESULTS	7-1	
7.1 Magnitude of Atmospheric Effect	7-1	
7.2 Surface Reflection Correction Curves	7-13	
7.3 Atmospheric Modification of Scene Contrast	7-21	
7.4 Effects on Band Radiance Ratios	7-23	
8. REFERENCES	8-1	
APPENDIX	A-1	

LIST OF ILLUSTRATIONS

Figure		Page
2.1	Relationship between S192 Bands and Atmospheric Extinction	2-2
2.2	Atmospheric Effects on In-coming Solar Radiation	2-4
3.1	Schematic of Computation Geometry	3-2
3.2	J-value (Atmospheric Reflectance) for a Midlatitude Summer Atmosphere	3-7
4.1	Location of S192 Data Segments over the Bonneville Salt Flat- Salt Lake Desert	4-6
4.2	Topography of the Great Salt Lake Target Area	4-8
4.3	Mineralogy of the Great Salt Lake Target Area	4-10
4.4	Surface Reflectance Curves for Deserts and Water	4-12
4.5	Location of the S192 Data Segment over the Salton Sea Region	4-13
4.6	Topography of the Salton Sea Target Area	4-15
4.7	Mineralogy of the Salton Sea Target Area	4-16
5.1	Model Computations Comparison with EREP S192 Bands at Site B	5-3
5.2	Comparisons for Site "C" near the Great Salt Lake	5-4
5.3	Comparisons for Site "D" over the Great Salt Lake	5-5
5.4	Comparisons for Site "E"	5-7
7.1	S192 Radiance Spectra for Absence of an Atmosphere	7-2
7.2	Effects of the Atmosphere on Band 1 Radiance Computed for a Midlatitude Atmosphere. Corresponding Radiance Computed for no Atmosphere is shown for Comparison	7-4
7.3	Effects of the Atmosphere on Band 3 Radiance Computed for a Midlatitude Atmosphere. Corresponding Radiances Computed for no Atmosphere are shown for Comparison.	7-5
7.4	Effects of the Atmosphere on Band 5 Radiance Computed for a Midlatitude Atmosphere. Corresponding Radiances Computed for no Atmosphere are shown for Comparison.	7-6
7.5	Effects of the Atmosphere on Band 7 Radiance Computed for a Midlatitude Atmosphere. Corresponding Radiances Computed for no Atmosphere are shown for Comparison.	7-7

LIST OF ILLUSTRATIONS (cont.)

Figure		Page
7.6	Effects of the Atmosphere on Band 8 Radiance Computed for a Midlatitude Atmosphere. Corresponding Radiances Computed for no Atmosphere are shown for Comparison.	7-8
7.7	Effects of the Atmosphere on Band 10 Radiance Computed for a Midlatitude Atmosphere. Corresponding Radiances Computed for no Atmosphere are shown for Comparison.	7-9
7.8	Effects of the Atmosphere on Band 12 Radiance Computed for a Midlatitude Atmosphere. Corresponding Radiances Computed for no Atmosphere are shown for Comparison.	7-10
7,9	Effects of the Atmosphere on Surface Reflectance Computed for a Midlatitude Summer Atmosphere.	7-11
7.10	Effects of the Atmosphere on Surface Reflectance Computed for a Desert Atmosphere.	7-12
7.11	Surface Reflectance Correction Curves-Midlatitude Summer Atmosphere.	7-15
7.12	Surface Reflectance Correction Curves-Midlatitude Winter.	7-16
7.13	Surface Reflectance Correction Curves-Desert Atmosphere.	7-18
7.14	Surface Reflectance Correction Curves for Site "D".	7-19
7.15	Summary of Reflectance Correction Expressed as Slope Values.	7-20
7.16	Effects of the Atmosphere on Surface Contrast, Expressed as Auparent Contrast C_{t} , for selected surface pairs, e.g. C_{t} (i, .9, .3) is the Apparent Contrast for Surface Pair with Surface Reflectances $r_{1}=.9$ and $r_{2}=.3$. Computations are Based on Midlatitude Summer Atmosphere as viewed in the i th Band.	7-22
7.17	Surface Reflectance Contrast Modification for Selected Surface Reflectance Pairs computed using Midlatitude Summer Atmosphere, where C(i, .9, .3) is the Contrast Modification Ratio for Surface Pair with reflectances r_1 =.9 and r_2 =.3 as viewed in the i th Band.	7-24
7.18	Spectral Contrast Modification Computed for Selected Band Pairs using a Midlatitude Atmosphere Assuming that the Inherent Contrast between the Band Pairs i, j, is unity.	7-25
A.1	Processed Image Matrix for Site A (See Text)	A-1
A.2	Processed Image Matrix for Site B (See Text)	A-5
A.3	Processed Image Matrix for Sites C and D (see Text)	Δ-8

LIST OF TABLES

Table		Page
3-1	Sample LOWTRAN 2 (Selby and McClatchy, 1972) Computations Results using Summer Midlatitude Atmosphere with Visual Range of 23 Km	3-4
3-2	Characteristic Values of Single Scattering Albedo and Optical Depth at Three Wavelengths	3-5
4-1	EREP S192 Digital Data Segments for Selected Surface Target Sites	4-19
4-2	Channel/SDO Band Tabulation	4-19
A-1	Ephemeris Data for Site A	A-2
A-2	Calibrated S192 Radiances for Site A (Southern Salt Flats)	A-3
A-3	Calibrated S192 Radiances for Site A (Northern Salt Flats)	A-4
A-4	Ephemeris Data for Site B	А-б
A-5	Calibrated S192 Radiances for Site B	A-7
A-6	Ephemeris Data for Sites C and D	A-9
A-7	Calibrated S192 Radiances for Site C	A-10
A-8	Calibrated S192 Radiances for Site D	A-11

1. INTRODUCTION

Techniques for monitoring earth resources using multispectral sensors at visible and near-infrared wavelengths rely on the observer's ability to establish a one-to-one correspondence between the spectral properties of the surface and those of the reflected solar radiation measured at the spacecraft. Unfortunately, the atmosphere between the spacecraft sensor and the surface target is an integral, though generally uncontrollable, part of the total measurement system. Atmospheric gases and particles absorb, emit, and scatter solar radiation in a unique and spectrally structured manner. Consequently, the sensor responds not only to the radiant energy reflected by the target surface, but also to the radiative processes of the atmosphere within its field of view. In the context of resource monitoring, these latter contributions to the measured intensity constitute a source of system introduced noise which may effect spectrum matching techniques of surface type classification.

The intensity of the atmospheric noise is dependent on a number of factors including the wavelength of measurement, solar elevation angle, sensor viewing geometry, and composition of the atmosphere. For most measurement situations, the geometric factors are known or can be readily determined. The composition of the atmosphere at the time of measurement, however, is generally unknown. To the extent that this is unknown, the quantitative interpretation of the remote measurements must remain ambiguous.

In the past, a number of techniques have been proposed and investigated to provide atmospheric correction factors to measurements from spacecraft sensors. These have ranged in scope from radiative transfer computations to the use of strictly empirical correction factors derived from actual measurements. In this study, evaluations have been made of the atmospheric effects influencing measurements using the SKYLAB EREP S192 MSS providing high spatial-resolution, quantitative, line scan data on the solar radiation that is reflected in twelve spectral intervals in the visible and nearinfrared and emitted radiation in one thermal band covering those regions most extensively used in aircraft surveys of earth resources.

Theoretical calculations have been performed utilizing a simple surface-atmosphere geophysical model and the SKYLAB EREP S192 band spectral response functions to reproduce synthetic radiance spectra characteristic of given viewing configurations and surface types. Analogous spectra for the hypothetical case of no atmosphere are also calculated to provide a calibration of the atmospheric correction. The spectral character of the results are dependent upon: (1) the atmosphere's transmission and scattering properties; (2) the surface reflectance spectrum; and (3) the sensor response characteristics. The surface is assumed to be a Lambert reflector (usually a good assumption at high solar elevation angles) and the atmosphere diffuse reflected solar radiation (path radiance) is interpolated from exact radiative transfer calculations. Computations of atmospheric transmissivities require a thorough knowledge of the abundances and vertical distributions of radiatively active gases (primarily H_2O and O_3 in this spectral region) in addition to temperature structure and aerosol content. This information is input in the form of a finite number of model atmospheres.

Synthetic radiance values computed using nearby radiosonde data are compared with actual S192 digital data measured over selected test sites. These include the Salton Sea Desert (#547119) and the Great Salt Lake-Bonneville region (#547220). Ground truth assembled for the latter site include in situ reflectance and incident radiation measurements in addition to basic meteorological parameters. For each test site maps were prepared to appropriate scale from S190B earth terrain photography to document the relative surface homogeneity of the particular area to be investigated and serve as base maps. Overlays were prepared to scale which delineate the surface distribution of mineralogical species and relate regions of relatively uniform topography. Minerological information (to indicate reflectance properties) has been extracted from appropriate USGS, state, and local maps which are available. A geological analysis was prepared for each site to accompany and explain the map overlays. These reports discuss surface minerology, uniformity, and morphology in addition to containing a key to the overlay. Specific S192 digital data elements are ground? correlated using a two level density slicing technique on chosen S192 MSS raw channel counts. Calibrated radiances for specific scan lines and pixels are then obtained. Comparison between actual and synthetic radiances enables an assessment to be made regarding the accuracy of the model calculation.

2. ATMOSPHERIC EFFECTS

This study is concerned with the potential effect of the atmosphere in degrading the quality of earth resources data obtainable from spectral data in the visible and near-infrared regions covered by the EREP S192 MSS. To achieve this goal and to obtain synthetic radiance spectra from model calculations due consideration must be taken of those processes influencing the reflection of incident solar radiation from the earth-atmosphere system. This section will discuss the particular influence of the atmosphere on radiation of visible and near-infrared wavelengths.

The atmosphere is composed primarily of nitrogen, oxygen, and traces of carbon dioxide, water vapor, inert gases, and aerosol. As incident solar radiation interacts with these atmospheric constituents the transmission of the beam is selectively modified as a function of wavelength due to the spectral character of the interaction mechanisms. These include both molecular absorptions at specific wavelengths (removal of photons from incident beam) and molecular and aerosol scattering (redirection of photons in incident beam).

Figure 2.1 illustrates the relationship between EREP S192 band response and the fundamental atmospheric extinction (= scattering + absorption) properties. Atmospheric transmittance [= $\exp(-\tau)$, where τ is the total atmospheric optical path or the extinction per unit length integrated along the geometric path] from sea level to space is plotted against wavenumber [wavenumber (cm⁻¹) = 10⁵/wavelength (µm)] for a summer midlatitude atmosphere (Selby and McClatchey, 1972). Along the upper part of the figure are overlapping wedges delineating the spectral response regions for each of the EREP S192 visible and near-infrared bands. Rather than using the nominal band responses [i.e. band 1 (.41-.46 µm), band 2 (.26-.51 µm)] which are only approximate, maximum sensitivity has been plotted at a response weighted mean wavenumber for each band:

$$\overline{v}_{i} = \int_{0}^{\infty} v \phi_{i}(v) dv / \int_{0}^{\infty} \phi_{i}(v) dv$$
(2.1)

where ϕ_i is the spectral responsivity of the ith band (NASA-JSC, 1973). Upper and lower limits are set where response falls to less than approximately 1.0%. As can be seen there is considerable overlap between the bands. In this manner true spectral sensitivity of each band to an atmos-

Figure 2.1 Relationship between S192 Bands and Atmospheric Extiction

10

<u>ن</u>.

¢3

Ċ

 $\xi_{\alpha}^{(i)}$

¢.

pheric extinction mechanism can be seen. Plotted along the middle of the figure are the location of significant interaction mechanisms.

As can be seen from the figure, water vapor bands are plentiful in this spectral region (.40-2.50 μ m:25000-4000 cm⁻¹). Bands in the visible are relatively weak ground state transitions while those in the near-infrared are quite strong and completely black out the solar spectrum (Goody, 1964). The near-IR bands are commonly identified by the Greek letters: Ω , Ψ , Φ , ρ , σ , τ . Approximate band centers are located by arrows. When transmittance is much less than one, very little information concerning the surface can be obtained. Although EREP S192 bands were chosen to be in "window" or relatively transparent regions in the near-IR, it can be seen that some band "wings" may be affected by atmospheric absorptions due to the strong H₂O bands.

In the visible region there is some weak absorption due to the Chappuis bands of ozone between 15,000 and 18,000 cm⁻¹, however, by far the most important interaction mechanisms are those due to scattering by molecules and aerosol. These processes produce the continuum extinction upon which the molecular absorptions are superimposed. As can be seen, attenuation due to scattering increases markedly at higher wavenumbers (shorter wavelength). Thus, we expect the visible S192 bands to be most critically affected.

Figure 2.2 illustrates the spectral modification of incoming solar radiation by the atmosphere whose transmittance is plotted above. Also included are a set of measurements of the attenuated direct solar beam gathered as ground truth during one of the EREP passes (Salt Lake Desert, EREP pass 5, Ground Track 34, Rev. 318/319, 6-5-73). Agreement is quite good. The reduced solar beam which reaches the surface is available for back-reflection to space by the surface. Since it is this back-reflected component which is measured, information concerning the surface (as manifested in its reflection properties) is coupled with the atmosphere's effect on both the incoming solar beam and the exiting reflected beam. Note that scattering (in the visible) and molecular absorption (in the near-IR) decrease the available energy by a factor of approximately two.

Figure 2.2 Atmospheric Effects on In-coming Solar Radiation

. ÷

507037

3. SIMULATION OF SKYLAB RADIANCES

A suitable technique was desired to simulate SKYLAB EREP radiances over selected target surfaces while taking into account the complicated atmospheric attenuation mechanisms in a relatively simple parameterized calculation. This tool could then be used to predict the degree of atmospheric effect over a wide range of surface and atmosphere models. For this purpose, a simple surface-atmosphere system was adopted (see Figure 3.1). The measured surface reflected solar radiation (sun at elevation angle 0o) at wavelength λ , $R_{T}(\lambda)$ [watts cm⁻² μ m⁻¹ str⁻¹] will be dependent on: (1) the transmission properties of the atmosphere as defined by the total optical depth, τ^* ; (2) the surface reflectance properties defined by the surface reflectance spectrum $r(\lambda)$; and (3) the spectral response function $\phi_i(\lambda)$ of the ith EREP S192 band. In the simplified geometry illustrated the S192 sensor is considered to view nadir and therefore the angular dependence inherent in the conical scan sequence is not modeled. The solar irradiance, $I(\lambda)$, is taken from Thekaekara (1970) and modified by an appropriate factor to correct for variation from the mean solar distance. Since solar elevation angles are high for all EREP passes, the viewing geometry reduces azimuthal dependence to a minimum. The treatment of potential paths available to photons reaching the sensor from the surface-atmosphere system is limited to two sources: a direct surface reflected beam, R_s and a path radiance, R_a. The total measured radiance is the product of the sum of these source radiances and the sensor response as indicated in Figure 3.1.

3.1 The Direct Surface Reflected Component, R

The direct surface reflected radiance, R_s , is computed in the following manner. The available monochromatic solar flux (watts cm⁻² µm⁻¹) at optical depth $\tau = 0$ for a sun at elevation angle 00 is given by: $I(\lambda)\sin00$. The attenuated solar flux at the surface after interaction with an atmosphere of optical depth τ^* is: $I(\lambda)\sin00\exp(-\tau^*/\sin00)$ or $I(\lambda)\sin00T_{00}(\lambda)$. The amount of energy reflected from the surface is determined by the surface reflectance spectrum, $r(\lambda)$. The amount of incident flux reflected from the surface is given by: $r(\lambda)I(\lambda)\sin00T_{00}(\lambda)$. Assuming Lambert reflectance (equal intensities in all upward directions), the intensity reflected to the sensor direction is: $r(\lambda)I(\lambda)\sin00T_{00}(\lambda)/\pi$ (watts cm⁻²µm⁻¹str⁻¹).

Figure 3.1 Schematic of Computation Geometry

507043

Finally, additional attenuation occurs as the beam exits the atmosphere by a factor: $T_{z}(\lambda) = \exp(-\tau^{*})$. The monochromatic direct surface reflected beam at the sensor is therefore given by:

$$R_{s}(\lambda) = \frac{r(\lambda)I(\lambda)\sin\theta_{0}}{\pi} \exp(\frac{-\tau^{*}}{\sin\theta_{0}}) \exp(-\tau^{*})$$
(3.1)

[The implicit assumption to neglect the surface incident diffuse solar radiation will introduce a small (\sim 10%) error in the shorter wavelength spectral regions which is compensated for by the path radiance term.]

Atmospheric transmissivities for the sun-target and target-sensor paths are calculated using the LOWTRAN 2 computer code (Selby and McClatchey, 1972). This program is designed to compute transmittances at low spectral resolution between 350 and 40000 cm^{-1} . Specifiable parameters include the model atmosphere (pressure, temperature, water vapor, ozone, and aerosol distributions), type of path traversed (such as that from surface to space at a given angle), and spectral resolution. A sample transmittance table is illustrated in Table 3.1 below. A resolution of 50 cm^{-1} was used for all calculations. The model atmosphere used to generate the table was a standard summer midlatitude case (LOWTRAN model atmosphere 2). In performing ground truth correlated EREP simulations, nearby radiosonde data of temperature and water vapor vertical distribution were employed. For all cases, the aerosol distribution corresponds to Deirmendjian's (1963) Haze Model C with a number density vertical distribution corresponding to the model of Elterman (1968, 1970) yielding a ground level visibility of approximately 23 km. In general, the accuracy of these computed transmissivities is on the order of 10% placing an identifiable limit to the accuracy of the simulated radiance values. The LOWTRAN 2 program was specially modified to compute transmissivities in the format required for this study in addition to performing calculations of independent absorber optical depths, total optical depth, and single scattering albedo as a function of optical depth.

3.2 The Atmosphere Reflected Component, Ra

This component of the sensor incident radiance is often called the "path" radiance and is essentially the intensity of the scattered (by molecules and aerosols) or diffuse solar radiation. As described in Section 2, a continuum due to scattering crosses the entire region of the EREP S192's

FREQ	WAVELENGTH	TOTAL	H20	C05+	OZONE	NO CONT	100 CONT		10000
6州十1	MICRUNS	TRANS	TRANS	TRANS	TRANS	TDANS	TRANS	MUL SLAF	ALRUSUL
19000	0,5263	0.6771	1.0000	1.0000	0.9824	1 0000	1 0000	A BOLD	IKANS
19050	0,5249	0,6763	1.0000	1.0000	0.9830	1 0000	1 0000	0 80712	0.7733
19100	0.5236	0,6755	1.0000	1.0000	0.9837	1.0000	1 0000	0.0701	0.7720
19150	0.5222	0.6747	1.0000	1.0000	0.9843	1.0000	1 0000	0.0070	0.7724
19200	0.5208	0.6739	1.0000	1.0000	0.9849	1 0000	1 0000	0 00/7	0,7719
19250	0,5195	0.6750	1.0000	1.0000	0.9855	1.0000	1 0000	0 4657	0.7715
19300	0.5181	0,6721	1.0000	1.0000	0.9860	1.0000	1 0000	0 88/14	0.7704
19350	0.5168	0.6713	1.0000	1.0000	0.9866	1.0000	1.6000	0 8825	0,7700
19400	0,5155	0,6704	1.0000	1.0000	0.9871	1.0000	1 0000	0.00000	0.7/02
19450	0.5141	0.6692	1.0000	1.0000	0.9875	1 0000	1 0000	0,0023	0.7071
19500	0.5128	0.0661	1.0000	1.0000	0.9874	1.0000	1 0000	0.0012	0.7695
19550	0.5115	0.5669	1.0000	1.0000	0.9876	1.0000	1.0000	0 8780	0 7600
19000	0.5102	0.6657	1.0000	1.0000	0.9877	1.0000	1 0000	0 4777	0.7004
19650	0.5089	0.6645	1.0000	1.0000	0.9878	1 0000	1 0000	0.0777	0.7680
19700	0.5076	0.6633	1.0000	1.0000	0.9878	1 0000	1.0000	0,0/05	0,7675
19750	0.5063	0.6620	1.0000	1.0000	0.9879	1 0000	1 0000	0.0705	0./6/1
19600	0.5051	0.6607	1.0000	1.0000	0.9879	1.0000	1 0000	0.0741	0.7565
19850	0.5038	0.6599	1.0000	1.0000	0.9886	1.0000	1.0000	0,0729	0.7662
19900	0.5025	0.6591	1.0000	1.0000	0 0802	1.0000	1,0000	0.0/1/	0.7657
19950	0.5013	0.6582	1.0000	1.0000	0,0000	1,0000	1.0000	0.8705	0.7653
20000	0.5000	0.6574	1.0000	1 0000	0 0007	1,0000	1.0000	0.0693	0,7649
20050	0.4988	0.6565	1.0000	1.0000	0 0014	1.0000	1,0000	0.0681	0.7644
20100	0.4975	0.6556	1.0000	1 0000	0 0020	1,0000	1.0000	0.8558	0.7640
20150	0.4963	0.6548	1.0000	1.0000	0 0027	1.0000	1.0000	0.8656	0,7636
20200	0.4950	0.6539	1.0000	1.0000	0 002/	1.0000	1.0000	0.8643	0,7631
20250	0.4938	0.6527	1,0000	1 0000	0 0036	1.0000	1.0000	0.8631	0,7627
20300	0.4926	0.6515	1.0000	1.0000	0 0024	1,0000	1,0000	0.8618	0,7622
20350	0.4914	0.6503	1.0000	1.0000	0 00/10	1,0000	1.0000	0.8605	0.7618
20400	0.4902	0.6491	1.0000	1 0000	0 00/12	1,0000	1.0000	0,8593	0.7614
20450	0.4890	0.6477	1.0000	1 0000	0 00/13	1.0000	1.0000	0,8580	0.7609
20500	0.4878	0.0463	1.0000	1.0000	0 00/11	1.0000	1.0000	0,8567	0.7605
20550	0.4866	0 6449	1.0000	1.0000	0 90/10	1.0000	1.0000	0.8554	0.7601
20000	0.4854	0.6435	1.0000	1 0000	0 00%0	1.0000	1.0000	0,8541	0.7596
20650	0_4843	0.6422	E 0000	1 0000	0 00/11	1,0000	1.0000	0.8527	0,7592
20700	0.4831	0.6410	1.0000	1.0000	0 00/12	1.0000	1.0000	0.8514	0,7588
20750	0.4819	0.6397	1,0000	1 0000	0.7743	1,0000	1.0000	0.8501	0.7583
20000	0.4808	0.6385	1.0000	1 0000	0 00/17	1.0000	1,0000	0,8487	0,7579
20850	0.4/96	0.6373	1.0000	1.0000	0 0061	1,0000	1.0000	0.8474	0.7575
20900	0.4785	0.6362	1.0000	1 0000	0 0055	1,0000	1.0000	0.8460	0.7570
20950	0.4773	0.6351	1 0000	1.0000		1,0000	1,0000	0.8447	0.7566
21000	0.4762	0 6330	1 0000	1.0000	0.7959	1.0000	1,0000	0,8433	0.7562
21050	0.4751	0.6327	1 0000	1.0000	0.9905	1.0000	1.0000	0.8419	0,7557
21100	0.4739	0.6315	1 0000	1 0000	0 0040	.1.0000	1.0000	0.8405	0.7555
21150	0.4728	0.6303	1 0000	1,0000	0.0070	1.0000	1,0000	0.8391	0,7549
21200	0.4717	0 6201	1 0000	1.0000	0.0074	1.0000	1.0000	0.8377	0.7544
21250	0.4706	0.6277	1 0000	1.0000	0,77/3	1,0000	1,0000	0.8363	0.7540
21300	0.4695	0 6251	1 0000	1.0000	0.9911	1.0000	1.0000	0.8349	0.7536
21350	0.4684	0. 2264	1 0000	1.0000	0.9978	1,0000	1.0000	0.8335	0.7532
21400	0.4677	0.5247	1 0000	1.0000	0.000	1.0000	1.0000	0,8320	0.7527
21450	0 1443	0. 6331	1,0000	1.0000	0.9981	1,0000	1.0000	0.8306	0,7523
u. 4. 77 (J. 17	V. HU02	APRET .	. 1 * ∩ ∩ 0 0	1.0000	0,9979	1.0000	1.0000	0.8292	0.7519

Table 3.1 Sample LOWTRAN 2 (Selby and McClatchy, 1972) Computations Results using Summer Midlatitude Atmosphere with Visual Range of 23 km

ORIGINAL PAGE IS OF POOR QUALITY spectral sensitivity being strongest in the shortwave visible (Rayleigh's scattering law) and dropping off into the near-IR where aerosols are the predominant scattering species. Solution of the radiative transfer equation for distributions of aerosols at individual wavelengths, and with varying vertical temperature and moisture structures is complex and time consuming. Additionally, the number of calculations required to simulate the twelve EREP S192 bands prompted adoption of a highly parameterized scheme.

In general, the significance of atmosphere scattered intensity components will be a function of geometry, wavelength, optical depth, and single scattering albedo. This last parameter is a measure of the importance of scattering (relative to absorption) as an attenuation mechanism (e.g. $0 < \omega 0 < 1.0$, $\omega 0 = 1.0$ complete scattering, $\omega 0 = 0.0$ complete absorption). The scattered intensity is directly proportional to the single scattering albedo. The magnitude of these intensities will be of greatest significance in spectral regions where $\omega_0 \rightarrow 1.0$ and $\tau^* > 1.0$. The EREP S192 spectral interval suggests a single scattering approximation since this condition is never fulfilled. The table below (Table 3.2) illustrates the point. In the near-infrared when the single scattering albedo is large (e.g. at 1.0 µm), the optical depth is very small. Conversely, a large optical depth (e.g. at 2.0 µm) is due almost entirely to molecular absorption and the scattered contribution is minimal. Even in the worse case, the short wavelength visible (e.g. at .40 µm), the optical depth is a respectible .65. (These values were calculated for the summer-midlatitude atmosphere described above.) Exact multiple scattering radiative transfer calculations at visible and near-IR wavelengths indicate that total surface-atmosphere reflected radiance will be a near linear function of surface reflectance (Malila and Nalepka, 1973). Since the direct surface reflected component varies linearly with surface reflectance, one expects the path radiance to exhibit complementary behavior. In fact, this result is exact if single scattering alone is considered. Based on the discussion above, the assumption of single scattering and, therefore, linear dependence on the surface reflectance appears valid for the spectral region under

Table 3.2 Characteristic values of Single Scattering Albedo and Optical Depth at three wavelengths

λ(µm)	$v(cm^{-1})$	ωο	τ*
0.4	25000	1.00	.65
1.0	10000	.85	.07
2.0	5000	.02	1.00

discussion except for absorption regions. Based on these considerations, the following parameterization of the path radiance term is adopted;

An "atmospheric reflectance", J, is defined as the ratio of the outward path radiance and the incident solar radiance. Its dependence on single scattering albedo is modeled as a function of optical depth as described above, i.e.

 $J(\lambda, 00, r, \omega_0, \tau^*) \rightarrow J(\lambda, 00, r, \tau^*)$

For large optical depths, the single scattering albedo is assumed to be small and the path radiance negligible. For small optical depths, the single scattering albedo is presumed to be near unity and a linear dependence of path radiance on surface reflectance is computed. This dependence is also assumed in the visible region ($\lambda < 0.7 \mu$ m) where scattering predominates. A smooth transition is assumed between these limits, the upper value being taken at $\tau^* = 0.4$ and the lower at $\tau^* = 0.1$.

 $J(\lambda, \Theta_0, r, \tau^*) = \beta \{ J(\lambda, \Theta_0, 0, \tau^*) + r[J(\lambda, \Theta_0, 1, \tau^*) - J(\lambda, \Theta_0, 0, \tau^*)] \}$

(3.2)

where
$$\beta = 1.0$$
 $\tau^* < 0.1$ or $\lambda < 0.7 \,\mu\text{m}$
= $\frac{0.4 - \tau^*}{.3}$ $\tau^* \leq 0.4$
 ≥ 0.1
= 0.0 $\tau^* > 0.4$

Values of $J(\lambda, r = 0.0)$ and $J(\lambda, r = 1.0)$ are interpolated in wavelength from exact radiative transfer calculations by Plass and Kattawar (1968) at .40 µm (25000 cm⁻¹), .70 µm (14286 cm⁻¹) and 1.67 µm (5988 cm⁻¹). Interpolation is not extended beyond the 1.67 µm data point. Calculations characterize the size and vertical distributions of Diermendjian and Elterman, respectively, referenced above. Outside of molecular absorption regions, wavelength interpolation is valid, as attenuation coefficients for both molecular and aerosol scattering are smooth functions of wavelength. The values for interpolation are obtained by subtracting the respective direct reflected component at each wavelength. Figure 3.2 demonstrates J values computed by Equation 3.2 for a midlatitude summer atmosphere. The values are generally valid for solar elevation angles greater than 50° since the exact calculations cited exhibit smooth dependence at high solar elevation angles.

Figure 3.2 J-value (Atmospheric Reflectance) for a Midlatitude Summer Atmosphere

3-7

The atmosphere reflected component, R_a , is the product of the atmospheric reflectance defined above (Eq. 3.2) and the incident solar intensity $I(\lambda)/\pi$:

$$R_{a} = \frac{I(\lambda)J(\lambda, 00, r, \tau^{*})}{\pi}$$
(3.3)

3.3 Total Band-Weighted Radiance

The total monochromatic sensor incident radiance is given by the sum of the direct surface reflected component, R_s and the path radiance, R_a given by equations 3.1 and 3.3, respectively, i.e.:

$$R_{T}(\lambda) = \frac{I(\lambda)}{\pi} [r(\lambda)T_{\Theta O}(\lambda)T_{Z}(\lambda)\sin\Theta + J(\lambda, \Theta O, r, \tau^{*})]$$
(3.4)

Monochromatic radiances, $R_T(\lambda)$, computed above must be band pass weighted to simulate EREP S192 data. At each wavelength the product of the monochromatic radiance and the band pass response function for the ith EREP S192 band is formed. Integrating in wavelength over limits of the ith band yields the weighted radiance:

$$R_{T}(i) = \frac{\int_{\Delta\lambda i} R_{T}(\lambda) \phi_{i}(\lambda) d\lambda}{\int_{\Delta\lambda i} \phi_{i}(\lambda) d\lambda}$$
(3.5)

where $\phi_i(\lambda)$ is the spectral response function of the ith EREP S192 band [NASA-JSC, 1973] and $\Delta\lambda_i$ is the wavelength interval of non-zero response in the ith band, and is therefore the inferral of the integration.

In this report the monochromatic expression (3.4) will be used for data comparison while band-weighted calculations (3.5) will be reported as theoretical results. In the following sections (4 and 5) SKYLAB EREP S192 data will be used to verify the validity of the model.

4. ANALYSIS OF SKYLAB DATA

Data from the SKYLAB EREP instruments sensing in the visible, nearinfrared, and thermal infrared was obtained to assist in carrying out this study. Imagery from the S190A Multispectral Photographic Camera and S190B Earth Terrain Camera were utilized primarily to document the areal homogeneity of surface targets and to provide real time base maps upon which to portray sensor scan lines, aircraft ground truth data locations, and surface ground truth targets. Information potentially obtainable from the S191 Infrared Spectrometer long wavelength (LWL) data (6.6 - 16 µm) was to have been used to deduce ground truth data of the atmospheric structure over selected test sites. However, instrumental problems encountered degraded that segment of the required data such that inference of atmospheric vertical structure was not deemed feasible. Of significant impact in this regard was the incidence of off-band radiation contamination in strongly absorbing regions. Ideally, atmospheric vertical structure (i.e. temperature-water vapor profiles) should be obtainable by inverting radiance measurements in the 6-7 μm water vapor and 14-15 μm carbon dioxide absorbing regions. The stability and accuracy of inversion procedures, however, are extremely sensitive to noisy data. A statement describing "S191 Thermal Infrared Radiance Accuracies" (NASA-JSC, TF 6-74-10-38; November 1974) states that in profiling spectral regions, radiance accuracies are "uncertain enough to frustrate attempts at inversion for atmospheric profiles". Based on these assessments, it was decided to substitute nearby conventional radiosonde profiles for S191 remotely-sensed inversions. It is believed that any potential accuracy advantage of simultaneous inversion over conventional sounding is cancelled by the cited noise problem.

The primary source of SKYLAB EREP data for this study has been the S192 Multispectral Scanner (MSS). This instrument provided measurements in twelve bands in the visible and near-infrared regions corresponding to those wavelengths most widely utilized in earth resource monitoring applications. The MSS data available in the form of computer compatible tapes of calibrated aperture radiances provides measured spectra of solar radiation reflected from the earth-atmosphere system. A primary task of this study is to evaluate the effect of the atmosphere in these measurements.

4.1 EREP Sensor Summary

A considerable amount of data, both in imagery format and computer compatible digital tapes, was received in order to carry out this study. The following subsections catalog the data received and analyzed.

4.1.1 S190A Imagery

Pass	Magazine	Frame	Description
2	01/02	113/120	1 ea. Pos/1 ea. neg.
· •	03/04	129/126	
	05/06	113/120	
5	07/12	001/010	1 ea. Pos/1 ea. neg.
20	25/26	186/189	1 ea. Pos/l ea. neg.
20	28/30	186/189	
37	37/38	140/150	1 ea. Pos/1 ea. neg.
57	39/40	140/150	1 ea. Pos
	41/42	140/150	1 ea. Pos/1 ea. neg.
30	37/38	196/205	
39	39/40	196/205	(Same)
	41/42	195/205	
17	37/38	329/335	
45	39/40	329/335	(Same)
	41/42	329/335	
4 -	41/42	052/058	
45	45/44	052/058	(Same)
	45/40	052/058	

4.1.2 S190B Imagery

Pass	Magazine	Frame	Description
E	81	001/014	1 each Pos.
20	85	002/005	1 each Pos.
20	86	321/333	1 each Pos.
37	88	010/017	1 each Pos.
39 17	87	110/116	1 each Pos.
45 45	88	093/101	1 each Pos.

4.1.3 S191 Digital Tapes

These data were received in two batches: (a) initial processing (I) received prior to a letter of 23 April 1974 describing problems in both SWL and LWL data; (b) reprocessed data (R) received in second go-round.

Pass	Output Tape No.	Remark (I or R)
2	909166/909167	I
	909344/909345	Ī
	926534/926535	R
5	906332/906333	Ι
	926488/926489	R
12	906225/906/226	I
	916219/916220	R
20	906367/906368	T I I I I I I I I I I I I I I I I I I I
	917747/917751	R
37	906400/906401	Ī
	916694/916695	R
	918136/918137	R
39	906402/906403	T
	916689/916617	R
43	907217/907219	I
	916692/916693	$\overline{\mathbf{R}}$
94	922754/922955	R

4.1.4 S192 Digital Tapes

Pass	Output Tape No.	SDO's
2	921002/921003	A11
	932866/932867	1-14, 17-20, 22
5	920042/920043	A11
	920044/920045	
	921006/921007	
39	934524	15, 16, 21
	934525	15, 16, 21
	934526	15, 16, 21
	934828/934831	A11
43	932720/932721	A11

4.2 EREP Test Site Documentation

Validation of atmospheric models and simulated radiance computations is to be achieved by comparison with actual EREP S192 measurements within the context of a "controlled" experiment. By this is meant documentation of as many of the variables as possible which enter into the simulation calculations. Potentially, these include such measurable ground truth elements as surface reflectance and atmospheric structure to be correlated with S192 MSS data at the time of overpass. Based on the availability of ground truth and screening of S190 imagery two specific test sites were selected. These areas were (1) Salton Sea-Sonoran Desert (Site #547119) and (2) Great Salt Lake-Salt Lake Desert (Site #547220). Each of these

sites provided the following desirable characteristics:

- (a) ease of site acquisition from spacecraft altitudes
- (b) topographical uniformity within definable limits
- (c) a high response (reflectivity) target
- (d) a nearby low response (reflectivity) target
- (e) relative surface areal homogeneity within the target surface
- (f) ground truth and/or correlative aircraft data

Test site surface characteristics were documented in the following manner:

Base maps were prepared to appropriate scale from S190B Earth Terrain imagery. Overlays were prepared to scale which delineate the surface distribution of minerological species and regions of relatively uniform topography. Minerological information was extracted from available appropriate USGS, state, and local maps. A geological analysis was prepared for each site to explain the map overlays and discuss surface minerology and morpho-These exhibits were prepared to help choose the surface spectral logy. reflectance curves within the EREP S192 MSS bands appropriate to the given surface.

Concurrent S192 MSS data for each test site was located by viewing appropriate screening film products [Product No. S055-2] of individual MSS channels. Based on the screening film, specific GMT segments of digital S192 MSS data [Product No. S051-3] were ordered. These correspond to EREP passes 2 and 43 for site #547119 and 5 and 39 for site #547220. Data ordered is cataloged below:

EREP Pass 2 (2 June 1973)

2.

GMT Time Interval: 200822.0 - 200828.0 GMT 33.5 N, 116.0 W (Salton Sea) Location: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 Channels: EREP Pass 5 (5 June 1973)

1. Segment A 175737.0 - 175742.0 GMT GMT Time Interval: 40.7 N, 113.8 W (Bonneville Salt Flat) Location: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 Channels:

Segment B 175810.0 - 175814.0 GMT GMT Time Interval: 39.3 N, 11.4 W (Wasach Range) Location: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 Channels:

EREP Pass 39 (13 September 1973)

1. Segment A

GMT Time Interval:	193404.3 - 193407.0 GMT
Location:	40.7 N, 113.8 W (Bonneville Salt Flat)
Channels:	2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
2. Segment B	
GMT Time Interval:	193421.7 - 193424.2 GMT
Location:	41.25 N, 112.6 W (Great Salt Lake)
Channels:	2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
3. Segment C	
GMT Time Interval:	193416.8 - 193418.9 GMT
Location:	41.1 N, 113.0 W (Desert)
Channels:	2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

EREP Pass 43 (15 September 1973)

1. Segment A		
GMT Time Interval: Location: Channels:	180504.7 - 180505.9 GMT 33.3 N, 115.9 W (Salton Sea) 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,	12
2. Segment B		
GMT Time Interval: Location: Channels:	180501.5 - 180503.7 GMT 33.2 N, 116.1 W (Desert) 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,	12

In selecting these digital segments account was taken of the S192 instrument's circular scan mode, specifying start and stop GMT's based on the correlating time scale on the screening film product. A base map overlay of the corresponding S192 field-of-view was prepared for each pass using the GMT correlated latitude/longitude grid points of the scan line center and two end points. Special techniques were developed to identify and calibrate S192 digital data pixels(Section 4.3).

4.2.1 Bonneville Salt Flat-Salt Lake Desert (Site No. 547220)

Location of EREP S192 data segments selected from the Bonneville Salt Flat-Salt Lake Desert are portrayed in Figure 4.1. The instrument fieldof-view for EREP passes 5 (SL2) and 39 (SL3) is delineated by plotting the locus of right most (R), left most (L), and center (C) scan pixels against a base map (scale \sim 1:1,000,000) prepared from consecutive S190B frames (Pass 39, Roll 88, Frames 021/013). Four specific surface target pixel subsets

Figure 4.1 Location of S192 Data Segements over the Salt Flat - Salt Lake Desert

C. .

0

O

C

are designated as sites A, B, C, D, respectively. These sites were isolated using the binary slicing technique described in the following section and have the following properties:

Site	Pass #	Surface Target	GMT	<u>S192CCT</u>	Elevation	Remarks
A	5	Salt Flat	156:17:57:40.6	920042	62.65	High response target
В	5	Desert	156:17:57:45.0	921006	62.96	Ground truth collected
C	39	Desert	256:19:34:20.7	934829	52.57	High response target
D	39	Salt Lake	256:19:34:23.9	934829	52.45	Low response target

Three surface types (salt flat, desert, water surface) are represented within this set and concurrent ground truth exists for site B. The character of the surface targets selected has been investigated by a literature search of relevant geological information. The Bonneville Salt Flats of northwestern Utah lie in the central western portion of the Great Salt Lake Desert which extends to the western edge of the Great Salt Lake. Like most of the salt flats around the Lake, they are composed of lake bed sediments with a good deal of clay and high salt content. Trench-like salt evaporators form a pattern of curves and rectangles in the center of the Bonneville Salt Flats as a means of extracting potash. The main geological features outside of the Desert itself, are the Wasatch National Forest and Cedar Mountains on its eastern side, the Desert Range in the west, the Pilot Range in the northwest, and the Hogup and Promentory Mountains to the north. Finally, northeast of the Desert, lies the Great Salt Lake bordered by salt flats, the remnant of a larger ancient lake. The Great Salt Lake Desert and the area immediately surrounding the Great Salt Lake share a fairly level terrain ranging from about 3,000 to 5,000 feet above sea level. The mountainous areas tend to have an elevation of approximately 7,000 to 10,000 feet (Figure 4.2). The mineralogy of the region is considerably homogeneous; mostly salty lake bed sediments (Figure 4.3). The lake bed sediments of the Desert and salt flats contain a significant amount of clay and have very high salt content. Immediately surrounding the Desert, the sediments contain clay or rust and enough salt to prohibit agriculture. Sand dunes are scattered through a few parts of the Desert. Some spots among the salt

Figure 4.2 Topography of the Great Salt Lake Target Area

ORIGINAL PAGE IS OF POOR QUALITY flats and an area south of the Salt Lake are marshlands. Mostly colluvium and alluvium surround the Cedar Mountains and the Pilot and Desert Ranges. A mineral analysis of the Bonneville Salt Flats and Great Salt Lake Desert shows a large quantity of clay and calcite and a number of salts: .66% calcium, .89% magnesium, 1.67% potassium, 2.74% sulfur and, the prime components, 35.65% sodium and 58.39% chlorine as given in weight percents (personal communication, Geology Department, University of Utah). The region of the Bonneville Salt Flats and Great Salt Lake Desert has a relatively level terrain and uniform composition characterized by a great deal of salt and clay.

Surface reflectances are difficult to characterize based on a knowledge of surface minerology alone. For this reason recent ground truth measurements were used in model calculations when possible. Figure 4.4 demonstrates three surface reflectance curves typical to sites B, C, D. Curve 1 is concurrent with EREP pass 5 for site B [NASA, JSC, (1972) - MSC-05531]. Curve 2 corresponds to the same site some months later (EREP pass 39) and demonstrates a "wet" desert reflectance [NASA, JSC, (1974) - MSC-05537]. Curve 3 is the spectral reflectance of an "inland water body" extracted from the literature (Krinov, 1947). These data will be used to evaluate model calculated synthetic EREP radiances.

4.2.2 Salton Sea-Sonoran Desert (Site No. 547119)

Figure 4.5 demonstrates location of the S192 data segment selected in the Salton Sea region. Since line straightened data was correlated with the left (L) pixel GMT, segments ordered on the basis of the non-straightened data (taking account of the instrument's circular scan mode) were effectively shifted back along the ground track. Therefore, our digital data for pass 45 did not reach the Salton Sea as expected. Site E was selected in a region of homogeneous alluvium as close to the originally intended area as possible. The base map was prepared to a scale of approximately 1:250,000 from an S190B frame (Pass 43, Roll 87, Frame 112). Digital data is selected from pass 43, output tape #932720. The GMT is approximately 258:18:05:02.7 with a solar elevation angle of 52.49°.

On the whole, the region of the Salton Trench is a homogeneous one of nonmarine sand, silt, and clay with a relatively level terrain.

Figure 4.3 Mineralogy of the Great Salt Lake Target Area

ORIGINAL PAGE IS OF POOR QUALITY

Legend for Mineralogical Map of the Bonneville Salt Flats Area

MADIN/KANDAR

Ü

U

<u></u>

ي ا

9

0

**

1

1

lake bed sediments, mostly clay, high salt content dunes, colitic, silicious, gypsiferous alluvial surfaces lake bed sediments, enough salt to prohibit agriculture, clay or rust marshland, mostly fresh water colluvium and alluvium rhyolite quartzite, schist, dolomite quartzite, schist, limestone quartzite, limestone, dolomite, sandstone, shale shaley limestone, dolomite, silty sandstone, gypsum dolomite, silty dolomite, chert dark grey limestone, shaley limestone quartzite - relatively pure, sandstone, some conglomerate lake shore features, gravelly and sandy lava salt flats

Figure 4.5 Location of the S192 Data Segement over the Salton Sea Region

ORIGINAL PAGE IS OF POOR QUALITY

Figure 4.6 Topography of the Salton Sea Target Area
The 35-mile long Salton Sea, all that remains of a broader ancient lake, lies in Southern California's Imperial Coachella Valley which occupies the elongate Salton Trough that extends northwest from the Gulf of California. The trough is fairly uniform in elevation and composition (Figure 4.6).

Fairly uniform elevation of about 100 to 200 feet below sea level characterize the surface encircling the sea. The valley approaches sea level at the foot of the Chocolate Mountains and the Superstition Hills. Only here do the contour lines begin to become complex.

The major geological features in or around the valley (Figure 4.7) include cultivated fields of the southeast, the Superstition Hills in the south, the Santa Borrego Desert in the southwest, the Santa Rosa Mountains in the west. The cultivated fields are cut by two rivers: the Alamo and the New River. The Salton Creek flows from the northeast and the San Felipe from the southwest. A number of faults run through the area, notably the southern part of the San Andreas which is nearly lost beneath the sediments of the Salton Trench.

Immediately surrounding the almost kidney-shaped Salton Sea are quaternary lake deposits of claystone, sand and beach gravel, and silt on the west side. Proceeding further from the sea's banks, there is a great deal of alluvium including peat interbedding the alluvial sand, silt, and clay on the west side.

4.3 Technique for Handling EREP S192 Digital Data

It was desired to formulate an efficient method to ground-correlate selected EREP S192 data segments from within the instrument's gross fieldof-view. S192 data was supplied in the form of channel counts accompanied by corresponding calibration equations to convert to engineering units. In handling computer compatible tapes (CCT's), it was not economically feasible to perform digital-to-radiance conversions for entire ordered GMT segments (see Section 4.2) due to the high data rate of the instrument. Therefore, a pre-selection procedure based on analysis of channel counts was employed. For a given surface target site (Sites A-E above), calibrated radiances were obtained in the following manner:

(a) Digital counts were read from the appropriate CCT (listed by number for each site in Section 4.2) corresponding to the relevant GMT time interval which includes the desired test site pixels for a preselected S192

Figure 4.7 Mineralogy of the Salton Sea Target Area ORIGINAL PAGE IS OF POOR QUALITY

Legend for Mineralogical Map of the Salton Sea Area

	_	 	 -
÷ .			
			- 4
			 - 4

recent alluvium-alluvial sand, silt, clay, and gravel, including interbedded peat on west side, some older alluvium, recent flood plain silt and clay of the Colorado River

quaternary lake deposits-claystone, sand and beach gravel, silt on west side

quaternary nonmarine terrace deposits-local stream terrace deposits

tertiary lake deposits - tan gray clay, shales, and low grade sandstone, interbedded siltstone on west side tertiary volcanic-rhyolite, andesite, basalt, pyroclasts pleistocene nonmarine sedimentary deposits - older allu-

vium and fanglomerate, red gray clay, sandstone, and pebble gravel, some boulder gravel on west side

pliocene pleistocene nonmarine - conglomerate, schist, breccia, arkose, siltstone, sandstone and red claystone on west side

undivided pliocene nonmarine sedimentary rocks - pink gray laminated sandstone, and red clay on west side, grayish red to yellowish brown basal conglomerate, overlain by yellowish gray arkose and arkose conglomerate, shale on west side

stone, conglomerate, and sedimentary breccia oligocene nonmarine sediment - conal sandstone, breccia, mudstone, evaporate rocks, siltstone and claystone on west side

undivided miocene nonmarine - reddish brown arkose sand-

mesozoic granitic - undifferentiated granite precenozoic granite and metamorphic - foliated migmatites,

including schist and quartz diorite bodies precretaceous metasedimentary - quartzite schist with thick beds of gypsum and anhydrite

igneous metamorphic complex andesitic basalt intrusive channel (SDO). The choice of SDO (1-22) was subjectively based on S190A multispectral imagery and/or S192 screening film products to correspond to that spectral interval which provided the required image contrast to delineate surface features with which to ground correlate the digital data. This choice will in general depend on surface type.

(b) A threshold value, D_t , was selected within the interval $0 \le D_t \le 255$ to facilitate a binary slicing of the individual raw data counts, $D_{p,s}(i)$, to form an image of the field-of-view, $I_{p,s}(i)$, according to the condition:

$$D_{p,s}(i) \leq D_t, \quad I_{p,s}(i) = 0$$
 (4.1)

$$D_{p,s}(i) > D_{t}, I_{p,s}(i) = 1$$

where $D_{p,s}(i)$ is the digital value at scan line s and pixel p and $I_{p,s}(i)$ is the reconstructed image matrix for the chosen SDO. Operationally, a hard copy image is printed by assigning a decimal point to all non-zero image elements.

(c) The scan line-pixel correlated image produces a means of locating specific surface target pixels within the instrument field-of-view by recognition of available readily identifiable surface features. Once accomplished, calibrated radiances for each of the required channels can be computed using the appropriate conversion equation of the form:

$$R_{p,s}(n) = A_{o,n} + D_{p,s}(n)A_{1,n}$$
(4.2)

where R(n) is the radiance (engineering units) in the nth S192 channel, D(n) is the raw digital count, and $A_{o,n}, A_{1,n}$ are calibration constants provided on each CCT.

The procedure outlined above has been found to be extremely efficient. Typically a GMT time segment of \sim 7 seconds yields \sim 10⁷ raw digital values. By employing the intermediary binary slicing technique for one SDO, conversion calculations need be performed for only \sim 10²-10³ pixels. This represents a considerable savings in computation time.

Table 4.1 below summarizes the parameters used in retrieving S192 radiances for the selected sites (the figure number refers to the image matrix corresponding to each site). Table 4.1 EREP S192 Digital Data Segments for Selected Surface Target Sites

<u>Site</u>	EREP Pass #	S192 Output Tape #	Figure #	SDO/Band	Dt	Scan lines (sfield)	Pixels (pfield)
Α	5	920042	4.7	19/8	250	533/547	725/771
B	5	921006	4.12	19/8	150	360/200	233/734
С	39	934829	4.16	O	100	3007 390	//0/829
D	39	934820	A 10	4/4	100	80/100	582/602
С	A 17	004029	4.16	4/4	100	400/403	375/610
L	43	932720	4.21	19/8	100	330/340	236/393

Examples of S192 digital data products are given in the Appendix. For each selected site, the following are given:

(a) an image matrix for the appropriate GMT correlated CCT using parameters given in Table 4.1.

(b) ephemeris data as a function of scan line within the instrument field-of-view given by the image matrix.

(c) conversion equations for each site by SDO provided on the appropriate CCT.

(d) a sample of radiance data in engineering units (watts $cm^{-2} \mu m^{-1}$ str⁻¹) corresponding to the selected site for each S192 band. (Table 4.2 provides an SDO/Band conversion chart. Output is generated by SDO, but results are plotted by band.)

Table 4.2 Channel/SDO-Band

R _{p,s} .(i)	R _{p,s} (n)
i = 1	n = 22
2	18
3	1, 2
4	3,4
5	5,6
6	7,8
7	9, 10
8	19
9	20
10	17
11	11, 12
12	13, 14

In plotting S192 radiances in the following sections, data will be referenced to site, scan line, and pixel. These data elements may be located within the field-of-view by referring to the appropriate figure designated in Table 4.1 and/or utilizing the given ephemeris data.

5. COMPARISION OF DATA WITH MODEL CALCULATIONS

3

Calibrated radiances for the twelve SKYLAB EREP S192 bands have been extracted from available data tapes using the technique described above (Section 4.3) for the cited test site areas (Section 4.2). These measurements are compared with simulated EREP radiances calculated using the model described in Section 3. For each test site a mean value is determined for each EREP S192 band by a simple averaging of the calibrated pixel radiances corresponding to the given surface target. Additionally, high and low values within each site are selected to characterized the variability of the data. Thus, for each site, the plotted radiances for the ith band are:

$$R_{\max}(i) = \max[R_{p,s}(i)]$$

$$\overline{R}(i) = [(p_2 - p_1 + 1)(s_2 - s_1 + 1)]^{-1} \sum_{\substack{p=p_1 \ s=s_1}}^{p_2 \ s_2} R_{p,s}(i)$$

$$R_{\min}(i) = \min[R_{p,s}(i)]$$
(5.1)

where R p,s (i) = calibrated radiance for the ith EREP S192 band for pixel p and scanline s (given by image matrix coordinates).

 (p_1, p_2) = initial and final pixels in target surface.

 (s_1, s_2) = initial and final scan lines in target surface.

max, (min) = operation of taking maximum (minimum) absolute value.

Radiances are plotted at the response weighted mean wave number (centroid) for each band [see Equation 2.1] and upper and lower band limits as defined in Figure 2.1 are indicated.

Model calculations are performed using Equation (3.4) to produce monochromatic reflected radiances. In each case, atmospheric temperatures and humidity profiles from nearby radiosonde ascents and solar elevation angle are input to the atmospheric transmittance programs. Path radiance is approximated as described in Section 3.2. The necessary surface reflectance spectrum is available only for site B. For other cases, calculations are performed for a set of surfaces with constant reflectance characterizing the site target surface as given in Figure 4.4. Since only a finite variety of surface types (i.e. desert or water) were examined, this generalization is deemed acceptable. The results of these comparisons are summarized in Figures 5.1-5.4.

In Figure 5.1 EREP S192 digital data for bands 3, 7, 8, 9, 10, 11, and 12 are compared with a model calculation based on (Eq. 3.4). Bands 1, 2, 4, 5, and 6 were saturated during this GMT interval, and so, no data is available. However, the respective saturation levels in these bands fall below the radiances predicted by the model, indicating a degree of consistency. Since the ground truth surface reflectance spectrum was not measured beyond 1.3 μ m (7700 cm⁻¹), meaningful comparisons are not possible using bands 11 and 12. Examining the fit of the simulated spectrum to the remaining EREP bands indicates the following:

- (a) Mean pixel values lie within + 3.5% of the calculated model values in bands 8 and 10 consistent with model accuracy.
- (b) If data variability is considered, bands 3 and 7 will be within 10% of the calculated value consistent with model accuracy.(c) In band 9, the mean pixel radiance is overestimated by the model
 - (\sim 28%), however, the \pm 10% error bars on the calculation bring it to within 3% of the data value.

Based on this comparison it may be concluded that the data is generally consistent with the adopted model to within the accuracies inherent in the model and in the data analysis. The correlation between model and data is certainly very good.

Although simultaneous ground truth is not available for other test sites, the general trends indicated by the site B comparison are confirmed. Characteristic surface spectra (see Fig. 4.4) may be used to compare the model calculations to data in other sites.

Figure 5.2 examines site C, a desert region near the Great Salt Lake (see Fig. 4.1). Data was collected for EREP pass 39. Curve 2 in Figure 4.4 indicates that calculations at r = 0.2, 0.4 should bracket the data points. This behavior is satisfied. Qualitatively, we expect the reflectances manifested by the data to increase from bands 1 through 4 and then decrease into the rear TR. Although this behavior is indicated, the magnitude of the effect in bands 1, 2, and 3 is questionable, where data values appear to be low for consistency with the surface reflectance curves in Fig. 4.4.

This discrepancy is confirmed in Figure 5.3 for test site D over the Great Salt Lake. This site provides a test of the model over a low response target where earlier studies (Fraser, 1973) have suggested that atmospheric effect will be most pronounced. The true surface reflectance curve will

Figure 5.1 Model Computations Comparison with EREP Bands at Site B

Figure 5.2 Comparisons for Site "C" near the Great Salt Lake

1:0100

Figure 5.3 Comparisons for Site "D" over the Great Salt Lake

approximate that given by Krinov (1947)) (See Fig. 4.4) for an inland water body. Surface reflectance will be less than 0.05 for bands 4-12 and near the 0.00 curve for the near IR where water absorbs significantly. Reflectances greater than 0.05 are expected only in bands 1, 2, and 3. Again, these bands fall below the expected radiance levels while the others are consistent with the model as allowed by calculation error and data variability.

The essential features discussed are confirmed in Fig. 5.4. Bands 1, 2, and 3 values appear to anomolous compared with 4-12. These latter values are at least consistent with the desert surface reflectance spectra typified in 6.4, although it appears to be generally brighter. Based on examination of the set of figures 5.1 - 5.4, the ability of the model to simulate EREP S192 band radiances may be summarized in the following way:

- (1) Radiances are seriously overestimated in bands 1, 2, and 3 if the calibrated radiances are valid. However, "EREP Sensor Performance Report Vol. III, S192" [NASA JSC, 1974] indicates that prelaunch lamp values in these bands are lower than those derived from lunar and ground truth calibrations. This is confirmed in these comparisons. Therefore, the calibrated radiance data should be larger in magnitude in these bands and more consistent with the model.
- (2) Fit for the low response target (site D) appears satisfactory. However, the variability of the data may mask inaccuracies. Examining the set of figures 5.1-4 further, it is noted that the variability of the data is an important factor in determining the fit of the model, particularly for the low response target. In
- (3) Although simultaneous ground truth is available only for site B, EREP pass 5, Figures 5.1-5.4 indicate a healthy comparison between EREP S192 calibrated digital radiance values and model simulated spectra calculated as described in Section 3 of this report.

1

•

00100

Ť

Figure 5.4 Comparisons for Site "E" Near Salton Sea

6. ATMOSPHERIC ATTENUATION IN SKYLAB DATA

The model described in Section 3 and examined experimentally in Section 5 may be used to simulate EREP S192 band radiances for various model atmospheres and surface reflectance types. A primary objective of this study is to quantitatively define the magnitude of possible atmospheric attenuation effects in remote sensing of earth resources using this sensor and therefore, a suitable definition of atmospheric effect is required.

Monitoring of earth resources requires that an inherent property of the surface be identifiable in a one-to-one manner from the reflected solar radiation in a particular MSS band. The physics of the problem indicates that this property should be the surface spectral reflectivity, $r(\lambda)$, but as Eq. 3.4 indicates, a space-based radiance measurement will not be simply proportional to the surface reflectance. The space-based sensor responds not only to the radiant energy reflected by the target surface, but also to the radiative processes of the atmosphere within its field-of-view. Not only will the magnitude of the surface reflectance determined from a radiance measurement in a single MSS band differ considerably from the true value, but ratioing radiances between adjacent bands will not remove the effects since atmospheric gases absorb, emit, and scatter solar radiation in a spectrally structured manner. This discussion of atmospheric effects will define three fundamental parameters: (a) the equivalent change in surface reflectance, Δr_* ; (b) the contrast modification ratio, ΔC ; and (c) the band ratio modification, $\Delta_q(i, j)$. The first two effects are definable with a given band, i, while the last pertains to interband (i vs. j) effects.

6.1 "Atmosphereless" Calculations

Fundamentally, simulation of space-sensor incident aperture radiances will not provide an indication of the effect of the atmosphere unless a suitable calibration radiance spectrum is introduced. This calibration continuum should be characteristic of available reflected intensities from the target surface without the modifying effect of the intervening atmosphere. Once defined, the difference between the simulated measured spectrum and the hypothetical atmosphereless spectrum will provide a quantitative determination of the atmospheric effect at a given wavelength or within a particular MSS band. 5-8

PRECEDING PACE ELANK NOT FILMED

5-8

PAGE/INTENTIONALLY FLANK

Examining Eq. 3.4, as the atmosphere becomes more spectrally transparent (i.e. $\tau^* \rightarrow 0.0$), the total measured radiance approaches the limit:

$$R_{\star} (\lambda) = \lim_{T^{\star} \to 0.0} R_{T}(\lambda) \rightarrow \frac{r(\lambda)\sin\theta oI(\lambda)}{\pi}$$
(6.1)

This defines the "atmosphereless" radiance which is simply proportional to the available solar radiation and the surface reflectance. Integrated over MSS band i, this quantity is (in analogy to Eq. 3.5):

$$R_{\star}(i) = \frac{\int_{\Delta \lambda i} R_{\star}(\lambda) \phi_{i}(\lambda) d\lambda}{\int_{\Delta \lambda i} \phi_{i}(\lambda) d\lambda}$$
(6.2)

6.2 Equivalent Change in Surface Reflectance, Δr_*

Although it may be desirable to determine the magnitude of the surface reflectivity $r(\lambda)$ from a space-based sensor, the atmosphere will in general alter the emergent beam as indicated in Section 2. A quantitative measure of this effect is given by the difference between the simulated measured radiance, $R_{\rm T}$, and the atmosphereless radiance defined above:

$$\Delta R_{\star}(\lambda) = R_{T}(\lambda) - R_{\star}(\lambda) =$$
(6.3)

$$\frac{I(\lambda)}{\pi} [r(\lambda) \sin\theta_0 (T_z T_{\theta_0} - 1.0) + J(\lambda, \theta_0, r, \tau^*)]$$

Depending upon the particular properties of the atmosphere, this quantity may assume positive, negative, or zero values as a function of wavelength. Since by definition $T_z T_{\theta} \leq 1.0$, the first term within the brackets is at most zero and usually negative. In absorbing regions, where transmissivities are small, the atmosphereless radiance may be larger than the measured radiance, $\Delta R_* < 0.0$. Conversely, since J is positive definite, in scattering regions and/or where surface reflectivity is low, path radiance may be the dominant contribution (i.e. $\Delta R_* > 0.0$). In spectral regions where scattering is the primary extinction mechanism, a decrease in transmissivity may be compensated for by a like increase in path radiance so that the atmospheric effect is minimal (i.e. $\Delta R_* \sim 0.0$).

A particularly useful parameter is the equivalent change in surface reflectance corresponding to the radiance change defined by Eq. 6.2. The equivalent reflectance, r_T , corresponding to a simulated radiance, R_T will be given by:

$$\mathbf{r}_{\mathrm{T}}(\lambda) = \frac{\pi R_{\mathrm{T}}}{\mathrm{I}(\lambda) \sin \theta o}$$
(6.4)

By Eqs. 6.1 and 6.3 above this reduces to:

÷, ÷

$$r_{T}(\lambda) = r(\lambda) + \frac{\pi \Delta R^{*}}{I(\lambda) \sin \theta o} = r(\lambda) + \Delta r_{*}(\lambda)$$
 (6.5)

This expression defines the equivalent change of surface reflectance, $\Delta r_*(\lambda)$. This quantity is the increase (decrease) in surface reflectivity necessary with no atmosphere present to yield a radiance value equivalent to that measured. A positive (negative) value of Δr_* corresponds to a measured radiance of greater (lesser) magnitude than would be measured if no atmosphere were present. In analogy to Eq. 3.5, the equivalent change in surface reflectance may be averaged for the ith S192 EREP band.

6.3 Contrast Modification Ratio, AC.

The inherent contrast between two surface types with different reflectance properties within a given spectral region may be altered by the atmosphere. The inherent contrast between surface reflectivities r_1 and r_2 in band i is given by:

$$C_{*}(i, r_{1}, r_{2}) = \frac{R_{*}(i, r_{1}) - R_{*}(i, r_{2})}{R_{*}(i, r_{2})} = \frac{r_{1} - r_{2}}{r_{2}}$$
(6.6)

The apparent contrast from space will be given by the corresponding radiance ratio:

$$C_{T}(i, r_{1}, r_{2}) = \frac{R_{T}(i, r_{1}) - R_{T}(i, r_{2})}{R_{T}(i, r_{2})}$$
 (6.7)

A normalized measure of the atmospheric effect in altering scene contrast is the contrast modification ratio:

$$\Delta C(i, r_1, r_2) = C_T(i, r_1, r_2) / C_*(i, r_1, r_2)$$
(6.8)

As indicated by the expressions above, both absorption and scattering may modify the inherent contrast, as well as the individual surface type reflectivities.

6.4 Band Ratio Modification, Δq .

Ratioing MSS bands is a common means of differentiating between surface types. Indeed, if no atmosphere were present, the ratio of radiances in bands i and j would be directly proportional to the ratio of surface reflectances in these bands:

$$q_{\star}(i, j) = const(i, j) \frac{r(i)}{r(j)}$$
 (6.9)

where the constant is simple the ratio of available solar fluxes [= I(i)/I(j)]. This quantity would provide a considerable amount of information regarding the surface spectral type.

However, the corresponding ratio of space-based radiances is in general modified by the atmosphere:

$$q_{T}(i, j) = \frac{R_{T}(i)}{R_{T}(j)} = \text{const}(i, j) \left\{ \frac{r(i) \sin\theta_{0}T_{z}(i)T_{\theta}(i) + J(i)}{r(j) \sin\theta_{0}T_{z}(j)T_{\theta}(j) + J(j)} \right\}$$
(6.10)

A normalized measure of the modification of the interband ratio will be given by the quotient of these expressions:

$$\Delta q(i, j) = \frac{q_T(i, j)}{q_*(i, j)} = \frac{T_z(i)T_\theta(i) + J(i)/r(i)\sin\theta_0}{T_z(j)T_\theta(j) + J(j)/r(j)\sin\theta_0}$$
(6.11)

As the atmospheric effect approaches zero $(\tau_* \rightarrow 0.0)$, the band ratio modification Δ approaches unity. Note that even target surfaces with constant surface spectral properties [i.e. r(i) = r(j)] will yield values of Δq differing from this limiting value due to the spectral nature of atmospheric transmissivity.

7. DISCUSSION OF COMPUTATION RESULTS

Calculations were performed for a set of atmospheric models corresponding to the test sites denoted in Section 4 in addition to standard models for summer and winter midlatitude atmospheres with respective integrated water vapor amounts of 2.40 gcm⁻² and 0.90 gcm⁻². Each atmosphere contained an "average" amount of continental [Deirmendjian 1963] aerosol. Computations are valid for high solar elevation angles as is the case of most SKYLAB EREP passes. The atmospheric attenuation quantities defined in Section 6 were computed in addition to simulated EREP S192 radiances.

7.1 Magnitude of Atmospheric Effect

Figure 7-1 demonstrates simulated S192 radiance spectra computed by Equation 3.5 and atmosphereless radiances defined by Equation 6.2 for surfaces with constant reflectances of r = 0.1, 0.5, and 1.0 in each of the twelve EREP bands. Curves are piecewise connected between bands for clarity. The values of $R_T(i)$ calculated represent both spectral and magnitude modifications of the incident solar radiation. (For comparison, each of the R* curves is proportional to the weighted incident solar spectrum in each band.) Within a given band, i, the magnitude of the measured radiance is a strong function of the surface reflectance, T.

For these calculations, note that the simulated measured radiances are lower than the atmosphereless values, indicating negative values of equivalent surface reflectance (Equation 6.5). In comparing between bands, curvature modifications are introduced by selective, spectially dependent atmospheric effects. For example, there is a change of slope in bands 1, 2, and 3 due to enhanced scattering toward the blue (shorter wavelength) end of the spectrum. This is especially evident for the lowest surface reflectance value (r = 0.1) where path radiance is proportionally large. Large path radiance contributions (see Figure 3-2) increase the measured energy in these channels above the expected attenuated solar continuum. Similarly, the effect of atmospheric water vapor absorption is apparent in the near IR EREP S192 bands, particularly band 8, where a significant absorption feature can be seen, appreciably reducing the measured intensity.

ŧ

ŧ.,

Figure 7.1 S192 Radiance Spectra for Absence of an Atmosphere

¢.,

Dependence of measured radiance on surface reflectance for selected EREP S192 bands is demonstrated in Figures 7-2 through 7-8. Calculations here are performed for the summer midlatitude atmosphere. Individual calculations are piecewise connected for clarity. Also indicated are the corresponding atmosphereless radiances $R_{\star}(i)$. (Since a radiance which is identically zero cannot be plotted on these axes, the curve for $R_{\star}(r \rightarrow 0.0)$ is extrapolated.) The general behavior indicated from comparison of the two curves ($R_{\rm T}$ and $R_{\star})$ in each band denotes a variation of the simulated radiance dependence on surface reflectance from the direct proportionality predicted for the atmosphereless radiance [see Equation 6-1]. This is most pronounced in the visible bands (see Band 1, Figure 7-2) where the slope of the two curves differ considerably. In the near IR bands, although the curves in general differ in magnitude, the slopes are similar. The difference between these curves (i.e., Equation 6-3) is a fundamental measure of the atmospheric effect. Behavior of the atmospheric effect as the surface reflectance approaches zero is indicated by the limits:

$$\lim_{\substack{\mathbf{R}_{\star}(\mathbf{i}) \to 0.0 \\ \mathbf{r} \to 0.0 \quad \mathbf{R}_{T}(\mathbf{i}) \to \frac{\mathbf{I}(\mathbf{i}) \quad \mathbf{J}(\mathbf{i}, \boldsymbol{\theta}_{0}, \mathbf{r} = 0, \tau^{\star})}{\pi}}{\pi}$$
or
$$\lim_{\substack{\mathbf{R}_{\star}(\mathbf{i}) \to \frac{\mathbf{I}(\mathbf{i}) \quad \mathbf{J}(\mathbf{i}, \boldsymbol{\theta}_{0}, \mathbf{r} = 0, \tau^{\star})}{\pi}}{\pi}$$

Therefore, the atmospheric effect will always be positive in the limit of extremely low reflectance where the measured radiance is characteristic of the atmosphere only and the atmospheric effect is maximum.

Expressed in terms of the equivalent change in surface reflectance Δr_* (Equation 6-5), these results become most apparent. Figures 7-9 and 7-10 demonstrates the percent change in equivalent surface reflectance above the true surface reflectance, i.e., plotted is $[\Delta r_*(i)/r(i)] \times 100\%$ for each EREP S192 band. The level of zero atmospheric effect is denoted by the dotted line. (The absolute value of the equivalent change in surface reflectance is available by multiplying the plotted values by r(i)/100.) Confirming earlier conclusions, the effect is greatest in

Figure 7.2 Effects of the Atmosphere on Band 1 Radiance Computed for a Midlatitude Atmosphere. Corresponding Radiance Computed for no Atmosphere is shown for Comparison.

Figure 7.3 Effects of the Atmosphere on Band 3 Radiance Computed for a Midlatitude Atmosphere. Corresponding radiances Computed for no Atmosphere are shown for Comparision.

Figure 7.4 Effects of the Atmosphere on Band 5 Radiance Computed for a Midlatitude Atmosphere. Corresponding Radiances Computed for no Atmosphere are shown for Comparision.

Figure 7.5

507032

Ŷ

÷.

્રે

5 Effects of the Atmosphere on Band 7 Radiance Computed for a Midlatitude Atmosphere. Corresponding Radiances Computed for no Atmosphere are shown for Comparison.

Figure 7.6 Effects of the Atmosphere on Band 8 Radiance Computed for a Midlatitude Atmosphere. Corresponding Radiances Computed for no Atmosphere are shown for Comparison.

6

Surface Reflectance (r)

Figure 7.7 Effects of the Atmosphere on Band 10 Radiance Computed for a Midlatitude Atmosphere. Corresponding Radiances Computed for no Atmosphere are shown for Comparison.

507039

Figure 7.8 Effects of the Atmosphere on Band 12 Radiance Computed for a Midlatitude Atmosphere. Corresponding Radiances Computed for no Atmosphere are shown for Comparison.

507040

Ĵ

507058

Ì

.

Figure 7.10 Effects of the Atmosphere on Surface Reflectance Computed for a Desert Atmosphere.

all bands at low surface reflectances where the percent error in determining surface spectral properties becomes considerable. At higher surface reflectance values, there is a fundamental difference between the behavior of the visible bands and near infrared bands. Most interesting is the differing dependence of the visible (1,3,5) and near IR (7,8,10,12) bands on surface reflectance. While the latter bands are almost constant at all but the lowest (< 0.1) surface reflectances, the visible bands possess a distinct curvature approximating an r^{-1} dependence which becomes stronger as wavelength decreases. This suggests an effect due to scattering which can be verified by the theoretical expression:

$$\frac{\Delta r_{\star}}{r} = (T_{z}T_{\theta} - 1.0) + J/r \sin \theta_{0}$$
(7-1)

12

The first term above is independent of surface reflectance and will dominate where path radiance is small (i.e., the near IR at moderate surface reflectances). However, where path radiance is a significant fraction of the measured radiance (visible and at low surface reflectances), a distinct r^{-1} behavior will be evident whose magnitude is determined by the leading constant term in the expression for J (see Equation 3-2). This term is largest in the lowest visible EREP S192 bands and decreases into the near IR. Behavior at the lower surface reflectance values (r \leq 0.1) is verified in Figure 7-10 calculated for the desert atmosphere corresponding to site D (Section 4.2.1) with integrated water vapor of \sim 0.5 gcm⁻². Again, as the surface reflectance approaches zero, the percent error in determining the magnitude of the surface reflectance approaches large positive values. In this low reflectance region where path radiance is important, the largest positive atmospheric effects are in the shortest wavelength visible bands decreasing into the near IR. The least affected bands are adjacent to water vapor absorption features in the near IR (e.g., 8 and 11).

7.2 Surface Reflection Correction Curves

÷ 3

The results of the previous section may be expressed in a practical manner by plotting curves of equivalent reflectance (Equation 6-4) which are directly proportional to band radiances vs. the true surface

reflectance. These surface reflectance correction curves would have unit slope if there were no atmospheric effect, but differ substantially from unity due to attenuation by atmospheric gases and particulates.

Figure 7-11 is drawn from calculations for the summer midlatitude atmosphere. Plotted are selected EREP bands (1,3,5,7,8,9,10,11,12). For a given solar evevation angle, the vertical axis of this figures is directly proportional to the raw S192 band digital counts (0-255) with unique scales for each respective band. As an example of the utility of these curves, consider the following. If atmospheric conditions coincident with an EREP pass were characterized by the midlatitude summer atmosphere described and a reflectance value of 0.50 was determined from a radiance measurement in band 7, the true surface reflectance would be 0.83, i.e., we would significantly underestimate based on the uncorrected radiance alone. (Note in Figure 7-9 that the predicted error is \sim -40% in band 7 at v = 0.80. From above, the error is (0.50 - 0.83)/(0.83)x 100% = 39.75%). In a like manner, the reflectance spectrum determined from space can be reduced to a corrected spectrum by applying a similar procedure in each EREP S192 band. The magnitude of the correction applied may be quantified by the variation of each correction curve from the "no atmosphere" curve. The least correction for this atmospheric model need be applied in band 12, and the greatest in band 8 (which is particularly sensitive to water vapor). Intermediate corrections are necessary in bands 1,2,3,4,5,6,7,9,10, and 11, the most severe being in the short wavelength visible and decreasing in magnitude into the near IR. Note that all curves intersect the no atmosphere curve at low reflectances where the sign of the correction changes due to path radiance effects (i.e., surface reflectances are over determined due to scattering enhancement.

Similar results for a midlatitude winter atmosphere are demonstrated in Figure 7-12. The basic change is a decrease in the integrated water vapor amount to 0.9 gcm⁻². Note particularly the shift in <u>all</u> IR bands toward smaller correction values. Band 8 in particular becomes less affected by atmospheric effects than most of the visible bands when water vapor is diminished. Th's result indicates that although the near IR band filters were chosen to be in spectrally

Figure 7.11 Surface Reflectance Correction Curves-Midlatitude Summer Atmosphere

Figure 7.12 Surface Reflectence Correction Curves-Midlatitude Winter

507066

transparent windows, there remains a marked residual dependence of radiance response to atmospheric water vapor. No doubt these effects are due to the wings of the water vapor rotational bands described in Section 2. It must, therefore, be concluded that in this sensor configuration careful note must be taken of the atmospheric water vapor to interpret results in the near IR bands. Returning to the figure, note that the visible bands are not responsive to the change in atmosphere at all.

As an example of a particularly "clean" atmosphere, Figure 7-13 illustrates analogous results corresponding to the desert atmosphere of site B (Section 4.2.1) with a still lower value of the integrated water vapor ($\sim 0.5 \text{ gcm}^{-2}$). The essential difference between this case and the earlier two, however, is the surface altitude. Here, the surface is located at 1.3 km, contrasting with previous sea level atmospheres. As a consequence, integrated absorber amounts are smaller for all atmospheric constituents, including the integrated density itself which determines the magnitude of the scattering effect in the visible bands. Note in the figure that the corrections in the visible region are markedly decreased, as are all other bands.

Corrections at lower reflectances are considerably different than those at moderate levels as earlier results indicate. In Figure 7-14, sample correction curves are illustrated for the site D atmosphere (Section 4.2.1). Note that for the most part, reflectances based on EREP radiances must be adjusted down in magnitude to account for atmospheric back-scattering. Even when the actual surface is completely absorbing (i.e., water in near IR), there is a finite determinable equivalent surface reflectance due to scattering, whose magnitude decreases with increased wavelength (see Section 7.1 for this limit).

Consequences of these results are summarized in Figure 7-15 where the slope of each curve in Figures (7-11 through 7-14) is plotted. The following conclusions may be drawn:

 The visible bands (1,2,3,4,5,6,7) are generally insensitive to absorption by atmospheric water vapor. However, since scattering is significant in these spectral regions, corrections to be applied to radiance data will be sensitive to integrated density (i.e., surface altitude).

Figure 7.13 Surface Reflectence Correction Curves-Desert Atmosphere

Figure 7.14 Surface Reflectence Correction Curves for Site "D"

Figure 7.15 Summary of Reflectence Correction Expressed as Slope Values

2

Ā

- 2) All of the near IR bands (8,9,10,11,12) are sensitive to atmospheric water vapor absorption with band 8 most affected. Since the continuum absorption in this region is largely due to scattering, these bands will also be affected by the surface altitude.
- 3) In general, corrections applied to EREP S192 radiance data will be extremely sensitive to the atmospheric conditions concurrent with the measurement as the diversity of points in Figure 7-15 indicates. As a minimum, the integrated water vapor and surface height above sea level should be known.

7.3 Atmospheric Modification of Scene Contrast

Neighboring surface area elements with distinctly different spectral reflectance properties within a given band will be distinguishable by their inherent contrast. Viewed from a space-based platform, the nature of this contrast may be modified as atmospheric effects alter the apparent measured surface reflectivities as discussed in the previous section. Calculations based on the definitions of inherent contrast, $\rm C_{\star},$ apparent contrast, $\rm C_{T},$ and the contrast modification ratio $\rm \Delta C$ (see Section 6.3) were performed for the summer midlatitude atmosphere. Results are illustrated in Figure 7-16 where apparent contrasts are plotted as a function of EREP S192 band for three values of the inherent contrast $C_* = 2,4,8$. These correspond to neighboring surface area elements, which are three, five, and nine times more reflective than each other, respectively. Two apparent contrast curves are plotted for the $C_* = 2$ case, one for neighboring low reflectance surfaces (0.1 and (0.3) and one for neighboring high reflectance surfaces (0.3 and 0.9). The shape of each apparent contrast curve, $C_T(1,r_1,r_2)$ is similar. Contrast is most altered in the visible bands with the magnitude of the effect decreasing with increasing wavelength. In the near infrared, contrast modification appears to be minimal in all bands. Based on the spectral dependence of the effect, it is expected that scattering is the primary cause. It is expected, therefore, that contrast modification will be a function of surface reflectance itself and most pronounced at low reflectances. This is confirmed comparing the $C_{T}(i,.9,.3)$ and

7-21

Figure 7.16 Effects of the Atmosphere on Surface Contrast, Expressed as Apparent Contrast CT, for selected selected surface pairs, e.g. $C_T(i, .9, .3)$ is the Apparent Contrast for Surface Pair with Surface Reflectances $r_1 = .9$ and $r_2 = .3$. Computations are Based on Midlatitude Summer Atmosphere as viewed in the *ith* band.

41.47 48_24

507017

 $C_{T}(i,.3,.1)$ curves. Note that the effect is more pronounced in the latter curve, especially in the visible region.

These results are made most apparent by examining the contrast mosification ratio for the cases described above. In Figure 7-17, the ratios of the respective curves for C_T and C_* depicted in Figure 7-16, are plotted on the same axes. A characteristic curve for the case $r_1 = 0.5$, $r_2 = 0.1$ is drawn by piecewise connecting the computed value in each band. In the near IR (bands 7,8,9,10,11,12) most points cluster closely. Here the contrast reduction is negligible (\sim 5%) for the cases calculated. In the visible, however, the degree of contrast modification is a strong function of band ranging from \sim 15% in band 6 to a maximum value of \sim 48% in band 1 when surfac \sim reflectances are low ($r_1 = 0.3$, $r_2 = 0.1$). Contrast reduction in these bands will be weakly dependent on surface reflectance and the maximum effect in band 1 can be reduced to \sim 25% when both surfaces are moderately high reflectances ($r_1 = 0.9$, $r_2 = 0.3$).

7.4 Effects on Band Radiance Ratios

The ratio of radiances in different spectral bands is often used in earth resources remote sensing investigations to make quantitative assessments regarding surface target properties. If there is no atmospheric effect, band ratios will be proportional to the ratio of target spectral reflectances and a constant defining the solar continuum ratio (Equation 6-9). Band ratios using space based measurements will be modified by the atmosphere yielding values either higher or lower than the corresponding atmosphereless quantities depending on both surface reflectance, atmospheric properties, and the particular bands utilized. Figure 7-18 plots calculated values of the band ratio modification $\Delta q(i,j)$ given by Equation 6-11 for surfaces with constant reflectances in each band [i.e., r(i) = r(j)]. These values are representative of a midlatitude summer atmosphere. Values are given for (i,j) pairs (1,3), (3,5), (5,7), (7,9), (9,11) and (3,8). These particular band ratios were chosen to include bands in spectral regions with similar atmospheric extinction properties [e.g., (1,3) the visible and (9,11) in the near IR] and diverse properties [e.g., (3,8)]. The level of zero atmospheric effect is indicated.

7-23

EREP SI92 Band

Figure 7.17 Surface Reflectance Contrast Modification for Selected Surface Reflectance Pairs computed using Midlatitude Summer Atmosphere, where C(i, .9, .3) is the Contrast Modification Ratio for Surface Pair with reflectances $r_1=.9$ and $r_2=.3$ as viewed in the ith Band.

ç j

Ŧ

Surface Reflectance (r)

Figure 7.18 Spectral Contrast modification Computed for Selected Band Pairs using a Midlatitude Atmosphere Assuming that the Inherent Contrast between the Band Pairs i,j, is unity.

507019

As might be expected, ratio modification is greatest when surface reflectance is low. In the visible bands where the sloping continuum of molecular and aerosol scattering determine atmospheric extinction, band ratio modification is a strong function of surface reflectance. Values range from greater than unity (r $\stackrel{<}{_{\sim}}$ 0.6) to less than unity r $\stackrel{>}{_{\sim}}$ 0.6. In general this is due to the larger proportional path radiance contribution at lower surface reflectances for the shorter wavelength visible bands. In the near IR where absorption dominates, the band ratio modification tends to be independent of surface reflectance [e.g., $\Delta q(7,9)$, $\Delta q(9,10)$] depending only on the fundamental transmissivity differences between Whether this "constant" value is greater than or less than one bands. will depend on the relative transparence of the particular bands. For example in the figure, since band 9 is more spectially transparent than either 7 or 11, the "constant" value of $\Delta q(i,j)$ changes sense depending on whether band 9 is in the numerator or demoninator.

[e.g., in the near IR $\Delta q(i,j) \sim \frac{T(i)}{T(j)}$ (see Equation 6-11)

since path radiance is small. Since

T(9) > T(7) and T(9) > T(11), $\Delta q(7,9) = \frac{T(7)}{T(9)} < 1.0$

but

$$\Delta q(9,11) = \frac{T(9)}{T(11)} > 1.0$$
]

In general, the ratio of two MSS bands will be modified by an intervening atmosphere unless the right hand side of Equation 6-11 is identically unity. Since the information required to compute this term is dependent upon the atmospheric parameters describing fundamental absorption and scattering, it will not be possible to specify MSS band locations beforehand to insure no atmospheric effect. However, it may be possible particularly in the near IR to specify band locations in such a manner so as to minimize modifications of band ratios by insuring that extinction properties in each band are similar. This can be done by appropriately adjusting band filters between window and absorption areas to yield similar integrated extinction properties. ź

- Deirmendjian, D. (1963): <u>Scattering and Polarization Properties of</u> <u>Polydispersed Suspensions with Partial Absorption</u>, Proc. of the <u>Interdisciplinary Conf. on Electromagnetic Scattering</u>, Potsdam, New York, Milton Kerker, Ed., Pergamm on Press.
- Elterman, L. (1968): UV, Visible, and IR Attenuation for Altitudes Up to 50 km, 1968, AFCRL, Environmental Res. Paper No. 285, AFCRL-68-0153.
- Elterman, L. (1970): <u>Vertical-Attenuation Model with Eight Surface</u> <u>Meteorological Ranger 1-13 Kilometers, 1970</u>, AFCRL Environmental Res. Paper No. 310, AFCRL-70-0200.
- Fraser, R., (1973): Computed Atmospheric Effects on ERTS Observations. NASA ERTS Symposium, Washington, D.C.
- Fraser, R. (1973): "Computed Atmospheric Effects on ERTS Observations", Symposium on Significant Results Obtained from the Earth Resources Technology Satellite, Vol. 1, Sec. B, NASA SP-327.
- Goody, R. M. (1964): Atmospheric Radiation, Clarendon Press, London.
- Griggs, M., (1973): Determination of Aerosol Content of the Atmosphere. NASA ERTS Symposium, Washington, D.C.
- Hunt, G. R., J. W. Salisbury, C. J. Lenhoff, (1970-1974): Visible and Near Infrared Spectra of Minerals and Rocks. I-IX. Modern Geology.
- Krinov, E. L. (1947): "Spectral Reflectance Properties of Natural Formations" Laboratoriia Aerometodov, Akad. Nauk SSSR Moscow.
- Malila, W. A. and R. F. Nalepka (1973): "Atmospheric Effects in ERTS-1 Data and Advanced Information Extraction Techniques", <u>Symposium on</u> <u>Significant Results Obtained from the Earth Resources Technology</u> Satellite, Vol. 1, Sec. B, NASA SP-327.
- Murray, W. L. and J. G. Jurica (1970): "The Atmospheric Effect in the Remote Sensing of Earth Reflectivities" LARS Information Note 110273 Purdue Univ.
- NASA-JSC (1972): Ground Truth Data for Test Sites SL-2. MSC-05531 L. B. Johnson Space Center, Houston, Texas.
- NASA-JSC. (1973): <u>Skylab Instrumentation Calibration Data</u>. MSC-07744 Johnson Space Center, Houston, Texas.
- NASA-JSC (1974): "Sensor Performance Report Vol. III (S192) Engineering Baseline, SL2 and 3 Evaluation" MSC-05528, L. B. Johnson Space Center Houston, Texas.

8-1

NASA-JSC (1974): Ground Truth Data for Test Sites (SL-3), MSC-05537, L. B. Johnson Space Center, Houston, Texas.

Plass, G. N. and G. W. Kattawar, (1968): <u>Calculations of Reflected and</u> Transmitted Radiance for Earth's Atmosphere. Ap. Op. 7.6.

- Selby, J. E. A. and R. A. McClatchey, (1972): Atmospheric Transmittance from 0.25 to 28.5 µm: Computer Code LOWTRAN 2. AFCRL Environmental Research Papers, No. 427, AFCRL 72-0745.
- State of California, The Resources Agency, Geologic Map of California Areas Sheet, SM Salton Sea Sheet, 1:250,000, Compilation by Charles W. Jennings, 1967.
- State of California, SM Santa Anna Sheet, 1:250,000, Compilation by Thomas H. Rogers, 1965, United States Geological Survey, Salton Sink, California, 1:500,000, reprinted 1921, California State Conservation Service.
- Thekaekara, M. P. (ed), (1970): The Solar Constant and the Solar Spectrum Measured from a Research Aircraft. NASA TR R-351, Goddard Space Flight Center, Greenbelt, Maryland.
- United States Geological Survey, NK 12-Great Salt Lake, NK11-Owhee River, NJ12-Grand Canyon, 1:1,000,000, 1959.
- University of Utah, College of Mines and Mineral Industry, Northwestern Utah, 1:250,000, Compiled by W. L. Stokes.

University of Utah, Geology Department.

Figure A.1 Processed Image Matrix for Site A (See Text)

VERSION 0.0 (0/ 0/ 0 PAGE) SCAN LINE IHOUR LONG 20 2 20 1 20 1 IMIN SECONDS SUBSAT LAT SUB SAT SUN ANGLE FIRST 41 PIXEL LAT 35 LONG 35.2062 35.3118 35.4176 35.5233 ø -114 -114 120 62 105 125 125 125 Ø -114ΞÕ ã 59 59 -113 Ξõ 203 -114 168 -113 4.1 -114 41 109 -113 60 35.6287 35.7336 35.8392 58 -114**พลุพพลพุพพลพุพพลพลพลพุพพ**ล 55 -113 7 -113 -114 236 -114 194 -113 53 176 57 35.9449 184 -114 127 -114 140 -113 ēð 36,0506 4Ø $\begin{array}{c} 170 & -113 \\ 81 & -113 \\ 28 & -113 \\ 215 & -113 \\ 167 & -113 \\ 167 & -113 \end{array}$ 41 36.1561 75 -114 23 -114 ā 205 36.3674 217 -114 41 165 -114 113 -114 56 -114 36.4720 36.5777 140 114 -113 23 120 61 -113 3 -113 36.6834 36.7889 ĩğ 4 -114 190 -113 142 -113 89 -113 37 -113 36.8947 198 -114 149 ğ 202 37.0003 146 -114 37.1051 94 -114 172 37.2109 37 -114 120 27 41 219 -113 32.3162 235 -114 6.9 166 -113 22.0 179 -114 122 -114 70 -114 37.4110 -10 118 -113 240 37.5272 57 -113 36 167 37.6326 37.7391 38 -ŠØ 1 -113 195 -113 57 57 57 18 -114 ĩõ 37.8439 211 -114 134 -113 79 -113 24 -113 37.9495 159 -114 · ĝ 1.98 38.0552 107 - 114205 **้**ยั9 33.1600 50 -114 ē 203 -113 ທຸດທຸດທຸດທຸດທຸດ 238 -114 38.2664 8 148 -113 320 330 38.3713 191 -114 231 99 -113 140 -114 38.4769 44 -113 224 -113 38.5819 83 -114 36 -114 -33 180 38.6877 175 -113 $\begin{array}{r} 224 & -114 \\ 172 & -114 \\ 115 & -114 \end{array}$ 57 57 38.7933 38.8990 លលា -53 186 121 -113 370 380 67 -113 39.0047 7 -113 39.1102 40 63 -114 193 -113 94 238 132 132 39.2156 51 11 -114 **ฯ**400000111 139 -113 39,3205 204 -114 91 -113 37 -113 77 39.4261 152 -114 39.5318 100 - 114ŝ **พยพพพพพพพ**พพพ 224 -113 39.6375 43 -114 41 41 165 -113 112 -113 39.7430 231 -114 -42 187 39,8478 184 -114 132 -114 156 64 -113 39.9534 . 40 10 -113 80 -114 23 -114 57 57 57 57 57 57 40.0592 50 49 49 49 41 197 -113 40.1649 ō 139 -113 -99 233 40.2703 40 211 -114 Ø 86 -113 40.3758 40 41 159 -113 9 112 163 33 -113 40.4816 112 -113 225 -113 172 -113 119 -113 57 57 49 49 40.5853 ŽØ -113 -113 -113 62 60 -113 40.6920 -113 8 40.7977 190 -113 42 40.9031 -113 -113

Table A.1 Ephemeris Data for Site A

A-2

OF

POOR

QUALITY

ORIGINAL

PAGE

	0	0					VERS	ION 0.0	0 ()			01-01	Ø PAGE 24
	Χ ;;;;;;; Πάτα		CREASER AND AND AND A	***************************************	CKXXXXXXXXX	*****	ck:****:***	eexector a	******	****	******	*****	*********
	PIXEL	ZDATA FI	IR SDO(S)										
	NUMBER	1	3	5	7	9	11	13	17	18	19	20	22
	•												
OF POOR QUALITY	5557259012274566785012345678900120345572990120245678900120245678901202456789001202456789001202455567890012024555678900120245556789001202455567890012024555678900120245556789001202455567890012024555678900120000000000000000000000000000000000	$\begin{array}{c} 2.1532\\ 2.1332\\$	4999 50000000000000000000000000000000000	-737391.1.1771EEE.474747474747474747474747474747474747	$\begin{array}{c} 1.406E - \\ 2.1.406E - \\ 1.406E - \\ 1.107E - \\ 1.074E - \\ 1.074E - \\ 1.074E - \\ 1.062E -$	1.757E 1.952E 1.955E 1.	11777777777777777777777777777777777777	3 2.920E 3 3.272E 3 3.252E 3 3.2569E 3 3.674E 3 3.071EE 3 3.071EE 4 1.0152EE 4 1.012EE 4 1.0262E 4 1.012E 4 1.0262E 5 9.609E 5 9.609E 5 9.609E 6 9.102E 6 9.102E 7.599E 8.604E 9.609E 9.102E 8.101E 9.102E 8.101E 9.102E 8.101E 9.102E 8.101E 9.102E 8.101	$\begin{array}{c} -4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 $	$\begin{array}{c} 1.244E \\ 1.268E \\ 1.268$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7.012EE 7.012EE 7.012EE 7.012EE 7.012EE 8.092E 7.012EE 8.1245EE 8.125EE 8.125EE <t< td=""><td>ង់ដល់សំសំសំសំសំសំសំសំសំសំសំសំសំសំសំសំសំសំសំ</td></t<>	ង់ដល់សំសំសំសំសំសំសំសំសំសំសំសំសំសំសំសំសំសំសំ

6

(in)

Table A.2 Calibrated S192 Radiances for Site A (Southern Salt Flats)

A-3

1.1

1.4

PINEL / DATA FOR SDD(5) NUMBER / 13 5 7 9 11 13 17 18 19 20 22 6 42 2121E - 2 7, SWHE -3 1.171E - 2 1.476E -2 1.577E -2 1.234E -3 1.755E -4 4.375E -3 1.244E -2 8.676E -3 5.259E -3 9.545E 6 43 2.679E -2 7, SWHE -3 1.171E -2 1.476E -2 1.577E -2 1.234E -3 1.755E -4 4.375E -3 1.244E -2 8.676E -3 5.259E -3 9.545E 6 44 2.155E -7 7, SWHE -3 1.171E -2 1.476E -2 1.577E -2 1.234E -3 1.6644E -4 4.575E -3 1.244E -2 8.676E -3 5.259E -3 9.545E 6 44 2.155E -7 7, SWHE -3 1.171E -2 1.476E -2 1.577E -2 1.234E -3 1.6644E -4 4.575E -3 1.244E -2 8.676E -3 5.259E -3 9.545E 6 44 2.155E -7 7, SWHE -3 1.171E -2 1.476E -2 1.577E -2 1.234E -3 1.6644E -4 4.575E -3 1.244E -2 8.676E -3 5.259E -3 9.545E 6 44 2.155E -7 7, SWHE -3 1.171E -2 1.476E -2 1.577E -2 1.234E -3 1.6644E -4 4.575E -3 1.244E -2 8.676E -3 5.559E -3 9.551E 6 44 2.155E -7 7, SWHE -3 1.171E -2 1.476E -2 1.577E -2 1.234E -3 1.6644E -4 4.57E -3 1.244E -2 8.676E -3 9.551E 6 47 2.157E -2 7.554E -3 1.171E -2 1.476E -2 1.577E -2 1.127E -3 1.644E -4 4.57E -3 1.244E -2 8.676E -3 9.551E 6 47 2.157E -2 7.554E -3 1.171E -2 1.476E -2 1.777E -2 1.127E -3 1.644E -4 4.57E -3 1.244E -2 8.676E -3 9.551E 6 5 2.237E -2 7.554E -3 1.171E -2 1.465E -2 1.777E -2 1.127E -3 1.645E -4 4.157E -3 1.244E -2 8.652E -4 9.551E -3 9.553E 6 5 2.237E -2 7.554E -3 1.171E -2 1.465E -2 1.777E -2 1.178E -3 1.645E -4 4.157E -3 1.244E -2 8.652E -4 9.5552E -9 9.553E 6 5 2.237E -2 7.554E -3 1.171E -2 1.465E -2 1.777E -2 1.178E -3 1.645E -4 4.157E -3 1.244E -2 8.652E -4 9.553E -4 9.553E 6 5 2.237E -2 7.554E -3 1.171E -2 1.465E -2 1.777E -2 1.178E -3 1.645E -4 4.157E -3 1.244E -2 8.652E -4 9.553E -4 9.553E 6 5 3.2452E -2 7.554E -3 1.171E -2 1.172E -2 1.177E -2	r¥	0 *.1** * * * DRTA	0 XIXIIII FOR SCAP	CICKKICK I LINE	5:62:7:7: NU[18]	CXXXX CR	жжж 535	****	iacia-ka	KKKKK	****	ki:i:*	UEI CKKXCKX40	KSIO KKKK	ч 0.(КККРКЮ	8 (*****	(גיאראלג	ckak	k*x****	k****	oktoriteko	0 *>>>*	1/ 0/ (*****	0 Pi KX:1240	AGE 3 Kali takik	1 KKX
2.121E 2.7,504E 79 1.171E 74 1.237E 79 1.244E 78 78 1.244E 79 5.605E 79 9.501E 6433 2.105EE 74 1.237E 79 1.244E 78 8.435E 79 1.244E 79 5.605E 79 9.501E 6443 2.105EE 74 1.237E 79 1.244E 78 8.435E 79 1.244E 79 1.644E 79 9.501E 6443 2.105EE 74 1.435E 79 1.644E 74 4.35EE 79 1.644E 79 1.644E 79 9.501E 6445 2.105EE 74 4.415E 79 1.644E 74 4.425E 79 79 5.64E 79 79 5.64E 74 4.425E 79 79 5.64E 74	N	PIXEL UMBER/	ZDATA FC	IR SDO	(S) 3		5		7		9		11		13		17		18		19		20		22	
	化基本化学 化分子子 化分子子分子子 化分子子 化合金合金 化合金合金 化合金合金合金合金合金合金合金合金合金合金合金合金合金	 447449467899674094566666666666666666666666666666666666	ESSERVICE SERVICES SE	มานั้นที่มีที่มีที่มีที่มีที่มีที่มีที่มีที่ม	44444444444444444444444444444444444444		EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	ւխծանանանան անվերություն որություն ո Անվերան որություն որու	EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	นั้นไปนั้นไปนั้นไปนั้นไปนั้นไปนั้นไปนั้นไปนั้นไปนั้นไปนั้นไปนั้นไปนั้นไปนั้นไปนั้นไปนั้นไปนั้นไปนั้นไปนั้นไปนั้น มายานานานานานานานานานานานานานานานานานานา	75577577777777777777777777777777777777	សេសសសសសសសសសសសសសសសសសសសសសសសសសសសសសសសសសសសស	1.234£ 1.234£ 1.237£ 1.277£ 1.277£ 1.277£ 1.1776£ 1.1776£ 1.1776£ 1.27325 1.277£ 1.277£ 1.277£ 1.277£ 1.277£ 1.277£ 1.277£ 1.277£ 1.277£ 1.277£ 1.277£ 1.277£ 1.277£ 1.277£ 1.275£ 1.276£ 1.234£ 1.234£ 1.234£ 1.234£ 1.234£ 1.234£ 1.234£ 1.235£ 1.255£ 1.235£ 1.255£ 1.	<u>៨៦៨៦៨០៨០៨០៨០៨០៨០៨០០៨០០៨០០០០០០០០០០០០០០០</u>	1.755E 1.865E 1.664E 1.855E 1.614E 1.955E 1.614E 1.955E 1.614E 2.765E 2.016E 2.065E 2.167E 2.065E 1.95E	<u>+++++++++++++++++++++++++++++++++++++</u>	4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	៲៤៦៤៤៤៤៤៤៤៤៤២៥២៤២៤២៥២២៥២៥២៥២២២២២២២២២២២២២	$\begin{array}{l} 1.244 \\ 4.244 \\ 1.244 \\$	เน้นไม่นี้นนั้นนั้นนั้นนั้นนั้นนั้นนั้นนั้นนั้น	.076E .117E .237E .403E .237E .403E .2394E .321E .199E .323E .199E .323E .199E .323E .199E .323E .158E .158E .158E .321E .239E	សេដដល់សង់សង់ដង់សង់សង់សង់សង់សង់សង់សង់សង់សង់សង់សង់សង់សង	26928E62E62E62E62E62E62E62E62E62E62E62E62E62E	ាល់សំយ៉ង់សំសំសំសំសំសំសំសំសំសំសំសំសំសំសំសំសំសំសំ	9.361FE 9.361E	ាន់សំលើដល់ដល់ដល់ដល់ដល់ដល់ដល់ដល់ដល់ដល់ដល់ដល់ដល់ដ

Table A.3 Calibrated S192 Radiances for Site A (Northern Salt Flats)

A-4

	0 0 *******	:Kx	********	****	*****	(* **/	体本教教教教教教教	UERSION **#1*#######	0.0 (*****	1 17 ***	******	ራ አ አ አ ት	****	\$#7\$ # #\$}	KX X I #	krakri	*****
OF POOR QUALITY	SCRY LINE 10 20 30 40 50 50 50 100 100 120 100 120 120 120 12	IHOUR 1771771771777777777777777777777777777	ទទ ក្លួលចុនម្នាល់សំពុទ្ធស្ថាលនិន្ទាស្ថាលនិន្ទាលនិន្ទាលនិន្ទាលនិន្ទាលនិន្ទាលនិន្ទាលនិន្ទាលនិន្ទាលនិន្ទាលនិន្ទាលនិ ក្រុមប្រជាពលនិន្ទាលនិន្ទាលនិន្ទាលនិន្ទាលនិន្ទាលនិន្ទាលនិន្ទាលនិន្ទាលនិន្ទាលនិន្ទាលនិន្ទាលនិន្ទាលនិន្ទាលនិន្ទាលន	593076443159333469516798201084516426444444444444444444444444444444444	H 332400000000000000000000000000000000000	<u></u> <u> </u> <u> </u>	$\begin{array}{c} \text{SJB} \text{SAT} \\ \text{SJB} \text{SAT} \\ \text{232} -113 \\ 199 -113 \\ 123 -113 \\ 171 -113 \\ 123 -113 \\ 171 -113 \\ 119 -113 \\ 119 -113 \\ 119 -113 \\ 119 -113 \\ 119 -113 \\ 119 -113 \\ 119 -113 \\ 119 -113 \\ 119 -113 \\ 119 -113 \\ 119 -113 \\ 119 -113 \\ 119 -113 \\ 131 -113 \\ 131 -113 \\ 131 -113 \\ 131 -113 \\ 131 -113 \\ 131 -113 \\ 1133 \\ 119 -113 \\ 1133 \\ 119 -113 \\ 1133 \\ 119 -113 \\ 1133 \\ 119 -113 \\ 1133 \\ 119 -113 \\ 1133 \\ 119 -113 \\ 1133 \\ 119 -113 \\ 1133 \\ 119 -113 \\ 1133 \\ 119 -113 \\ $	23 23 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	$\mathbb{Z}_{\mathbb{Z}}^{\mathbb{Z}}$ សាលាការក្លាយការក្លាយការក្លាយការការក្លាយការការការការការការការការការការការការការក	๚๛๛๚๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	FIF 114 202 122 123 123 123 123 123 123 12	₽ ₩44₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽		T9449762752699579727526894622286494924864924267592749546428932715595498642898462286295927495515428846228645548824267592749545428932715595498648288468218649488842675927495494893227155954986482846828468758824495519441414141414141414141414141414141	844000001444000000000000000000000000000		

Table A.4 Ephemeris Date for Site B

0/ 0/ 0 PAGE 2

	era para da 19	··· ORI(OF 1	INAL PAG	EIS	en negezizeren (* 1997) 1997 - Alexandre Stationer, (* 1997) 1997 - Alexandre Stationer, (* 1997) 1997 - Alexandre Stationer, (* 1997)		•	()	¢÷			
0 ≭≭≭≯≠≠≠≭≭≭ 1≠~11A	0 *1****** FUP_SCOU	- K1:X****** 111111 - 1111	CTXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	11'I'Y ***********************************	*****	UEI KKXXXXXXX	2510N 0 KKXXXXXX	.0 (*********) * <i>*</i> ********	******	0/ 0/ 0/ 0 *******) PAGE 35 3.********
PI EL NULESER/	/DATA FO. 1	R 510(5) 3	5	7	9	11	13	17	18	19	20	22
77777777777777777777777777777777777777	1.642EE 1.4491EE 1.44	4444 4444	3333333333333	2944 29544 2954 2954 2954 2954 2954 2954 2954 2954 2954 2954	955722222222222222222222222222222222222	134512 134512 144512	12200000000000000000000000000000000000		₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽		EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	ͻͻͻϧϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙ

Table A.5 Calibrated S192 Radiances for Site B

Figure A.3 Processed Image Matrix for Sites C and D (see Text)

-				l	JERSIUN C).0 (***********) ዩ <i>ዩ</i> ቶችችች	<u>{</u> **************	*****
0 (23.113.213.1 1.4483 5CAN LINE 10 30 30	LLXXXXXXXXXXXXXXXXXXXX 1HOUR 19 19 19 19 19 19 19 19 19	KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	**************************************	506 SAT 1 81 -113 38 -113 90 -113 90 -113 2 -113 91 -113 94 -113 94 -113 94 -113 22 -113 22 -113 22 -113 22 -113	JERSINN (17 + * * + * * * * * * * * * * * * * * *	(*** *********************************	} K##2##################################	IXEL LAT 21 85 -113 21 142 -113 21 194 -113 22 6 -113 22 53 -113 22 97 -113 22 97 -113 22 157 -113 23 213 -113 23 25 -113 23 27 -113 23 77 -113 23 72 -113 24 -113 24	******* LO'36 14 124 14 9 13 145 13 40 12 185 12 96 11 217 11 102 10 237 10 133 10 37
100 110 130 130 140 150 150 150 170 200 210 210 210 210	19 19 19 19 19 19 19 19 19 19 19 19	34 20, 19342 34 20, 19342 34 20, 9995 34 21, 205 34 21, 215 34 21, 422 34 21, 422 34 21, 422 34 21, 422 34 21, 423 34 21, 423 34 21, 423 34 21, 423 34 21, 633 34 21, 633 34 21, 643 34 21, 643 34 21, 645 34 21, 645 34 22, 255 34 255 35 25		$\begin{array}{c} 21 & -113 \\ -113 \\ -113 \\ -113 \\ -113 \\ -113 \\ -113 \\ -113 \\ -113 \\ -113 \\ -113 \\ -113 \\ -113 \\ -113 \\ -113 \\ -113 \\ -113 \\ -113 \\ -113 \\ -21 \\ -113 \\ -113 \\ -74 \\ -113 \\ -113 \\ -74 \\ -113 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 172 9 191 8 205 7 120 7 120 7 120 154 8 38 7 7 120 154 8 110 4 110 4 110 4 110 3 141
279 259 259 259 259 259 310 310 310 310 310 310 310 310 310 310	19 19 19 19 19 19 19 19 19 19 19 19 19 1	64 371-6 22,4192 24,49224,492 24,492 24,49224,492 24,492 24,492	3 4 4 4 5 <td>$\begin{array}{c} 131 \\ 178 \\ -113 \\ 230 \\ -113 \\ 98 \\ -113 \\ 150 \\ -113 \\ 150 \\ -113 \\ 197 \\ -113 \\ 8 \\ -113 \\ 169 \\ -113 \\ 169 \\ -113 \\ 169 \\ -113 \\ 220 \\ -113 \\ 27 \\ -113 \\ 135 \\ -113 \\ -1$</td> <td>48 184 55 44 101 84 101 84 105 140 155 1103 9 120 120 0 0</td> <td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{c} 131 \\ 178 \\ -113 \\ 230 \\ -113 \\ 98 \\ -113 \\ 150 \\ -113 \\ 150 \\ -113 \\ 197 \\ -113 \\ 8 \\ -113 \\ 169 \\ -113 \\ 169 \\ -113 \\ 169 \\ -113 \\ 220 \\ -113 \\ 27 \\ -113 \\ 135 \\ -113 \\ -1$	48 184 55 44 101 84 101 84 105 140 155 1103 9 120 120 0 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
340 400 410 470 450 450 450 450 450 550 550 550 550 55	19 19 19 19 19 19 19 19 19 19 19 19 19 1	14 24 24 24 24 24 24 24 24 24 24 24 24 24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 187 \\ -112 \\ 239 \\ -112 \\ 45 \\ -112 \\ 97 \\ -112 \\ 205 \\ -112 \\ 205 \\ -112 \\ 205 \\ -112 \\ 155 \\ -112 \\ 155 \\ -112 \\ 218 \\ -112 \\ 355 \\ -112 \\ -112 \\ 355 \\ -112 \\ -112 \\ -112 \\ -125 \\ -125 \\ -112 \\ -125 \\ -112 \\ -125 \\ -112 \\ -125 \\ -112 \\ -125 \\ -125 \\ -112 \\ -125 \\ -112 \\ -125 \\ -12$	59 156 59 63 59 63 58 197 58 219 57 115 57 156 55 188 56 52 55 188 56 188 54 120 54 121 53 146		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 56 147 41 55 41 55 55 52 55 55 52 55 53 133 52 53 133 52 53 133 52 53 133 52 53 133 52 53 233 52 133 283 12 53 233 12 54 199 12 51 89 12 50 224

Table A.6 Ephemeris Data for Sites C and D

6-V

UNIGINAL PAGE IS

0/ 0/ 0 PAGE 2

	. t. M.			1.1		2
		. C	3		ć.	
		h	5	-		
			2 1	74		
			- E		91	
	- 19 C	1.	. 5	۲.		
		- U	5	Э.	٤.	
		\sim	1	5	ê.	
- 11		$\boldsymbol{\times}$	1	Σ.		
		CD.	-			
	13263	<u> </u>	1	R) - (
1.3		-0.	1			
		· · · ·	·			
			L . 7		÷.	
	୍ କ	<u> </u>				
	-	5 6	-			
	<u> </u>	4 6	0	÷.,	1.1	
	· •	്വ	5.11			
	سر ا				. 4	2
	~	<u>ت</u> ک ۱) :		÷.,	÷
	÷.	- 21				
	17	ાન્ય	P. 1. 1			
	<u> </u>	- 7 T				
	ا الت	5				
		12				
	: 1.	- <u>1</u> -1				

	0	0					UE	RSION D.	0 ()		0/ 3/	Ø PAGE 13
	DATA	FOR SCAN L	LINE NUMBE	errener Er 90	<i>\$*****</i> *****)	KXXXXXXXXXXX	******	********	******	***********	********	*****	TREEFER THE TREEFER
	NUMBER	1	3	5	?	9	11	13	• 17	18	19	20	22 •
- せいたい いない いいけい しゅうかい かいかいせい おいし きゅうきゅうさい おお	លួលក្នុងស្រុកក្នុងក្នុងក្នុងស្រុកក្នុងស្រុកភ្លាំង ស្រុកក្នុងស្រុកភ្លាំង ភ្លាំងក្នុងស្រុកភ្លាំង សេចក្តីស្លុកភ្លាំង ភ្លាំងក្នុងស្លុកភ្លាំង សេចក្តីស្លាំង សេចក្តីស្លុកភ្លាំង ភ្លាំង សេចក្តីស្លាំង សេចក្តីស្លាំង ស	1.052E -2 1.052E -2 1.055E -2 1.045E -2 1.055E		22222222222222222222222222222222222222		-335262 -335262 -335262 -335262 -335262 -335262 -335262 -35662 -3	-797-1.662424 66524242 1.6622424 1.662244 1.652245 1.662244 1.652245 1.55255 1.65255 1.65255 1.65255 1.65255 1.65255 1.65255 1.65255 1.652555 1.555555 1.5555555 1.5555555555555	2012 2012 2012 2012 2012 2012 2012 2012	-4 3.200 -4 3.2000 -4 3.	-3 6.9208 -3 9.0578 -3 9.1148 -3 9.1148 -3 9.1148 -3 9.1248 -3 9.1248 -3 9.208 -3 9.5718 -3 9.6718 -3		20000000000000000000000000000000000000	-77.7500E -73.73.7500E -77
	601 602	1.0622 -2 1.046E -2	1.374E - 1.291E -	-2 1.195E -2 1.2-6E	-2 9.553E -2 9.610E	-3 8.527E -3 8,022E	-3 1.699E -3 1.624E	-3 3.061E -3 2.618E	-4 3.250) -4 3.479)	E -3 8.6225 E -3 8.622E	-3 5.299E -3 5.344E	-3 2.829E	-3 7.526E -3 -3 7.376E -3

Table A.7 Calibrated S192 Radiances for Site C

0 (**!+!+?*) (CF422 C4+48849	celatri i tek	+ K & F & F & F & F & F & F & F & F & F &	UEP91) ****	DN 0.0 FASEELSE	{ } }	k7.88+3.3 K1	(*** ***********	0/0/0 .7*!1***	Pime 9 XXXXXXXXXXXXX
DATA I PIXEL NUMEER/	FOR SCAN LINE NUMB /DATA FOR SDG(S) 1 3	ER: 401 5,	7	9	<u>1</u> 1	13	17	18	19	29	22
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	EEBEARANA AMAMMA AMAMA A		9 mm 3 10 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m		44444444444444444449477744444444444444		44444444444444444444444444444444444444	YPTTYYTYYTYTYTYTYTYTYTYTYT			$w_{1}, w_{2}, w_{3}, w_{3}, w_{4}, $

Table A.8 Calibrated Radiances for Site D

A-11

ORIGINAL PAGE IS OF POOR QUALITY