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Abstract

The collision operator that appears in the equation of motion for

a particle distribution function that has been averaged over an ensemble

of random Hamiltonians is non-Markovian. It is non-Markovian in that it

involves a propagated integral over the past history of the ensemble averaged

distribution function. All formal expansions of this non-linear collision

operator to date preserve this non-Markovian character term by term yielding

an integro-differential equation that must be converted to a diffusion _

equation by an additional approximation. In this note we derive an expansion

of the collision operator that is strictly Markovian to any finite order

and yields a diffusion equation as the lowest nontrivial order. The validity

of this expansion is seen to be the same as that of the standard quasi-

linear expansion.
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A Strictly Markovian Expansion for Plasma Turbulence Theory

It has been shown by Misguich and Balescu l that the equations of motion

for i turbulent Vlasov plasma may be put in a form that is apparently Markovian.

Their result was expressed within the framework of renormalized quasi-linear

theory 
2'3'4 

and expressed in terms of highly non-linear integral equations

for the appropriate propagators.

It is the purpose of this note to show that the result of Misguish

and Balescu l may be cast in a form that is readily expandable in powers

of the fluctuating operator L 1 (t) and the unperturbed or free propagator

U
0 
and that this expansion is strictly Markovian to anyfinite order.

The lowest non-trivial order (O(L 1 2 )) in this expansion is just the usual

quasi-linear equation including the so called adiabatic approximation..

An examination of the next order correction terms (O(L 1 4 )) indicates that

in addition to the usual mode-coupling terms generated by the quasi-linear

series one obtains an additional term but one that is of the same order

of magnitude as the usual terms.

If f(t) = f(^, ,vL ,t) represents the ensemble averaged distribution function

then assuming that the fluctuations in the distribution function vanish

aL t o , f(t) satisfies the equation

a	 t
^at + L

O)f(t) = A J L 1 (t)UA (t o t
1
)L 1 (t

1
 M t l )dt l	(1)

t 

where A and U  are operators introduced by Weinstock 5 , A is the averaging

operator that ensemble averages everything to its right, and U A (t o t 1 ) is

the propagator that satisfies the operator equations
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(at + LO + (1-A)L1 (t))UA (t,t 1 ) - 0

UA
 (
t i l t 1 ) = 1.

Lo is the unperturbed, ensemble averaged Liouiville operator considered

time independent and L0 (t) i^; the time dependent, fluctuating Liouiville

operator whose statistics are assumed stationary and homogeneous.

If we employ the unperturbed propagator Uo , defined by the equation

^a + L) U (t,t ) = 0at	 0	 0	 1

and the boundary condition Uo (t l ,t 1 ) = 1 we may write (2) as

an intergral equation

t

UA ( t ,t 0 ) = U0 (t,t 0) + fU0 (t,t 1 )(A-1)L1 (t 1 )UA (t il t 0 )dt 1	(4)

0

Solving by iteration on U
0 

one arrives at the formal solution of (4)

UA (t,t 0} = TL 
nIo 

n,{ 1 (A-1)U0(t,t1)L1(t1)U0(ti,t)dt1}n

0

X U0 (t,t 0 ).	 (5)

where TL , the time ordering operator 6 '
7

' 8 , orders the operator L1 (t 1 ) from

right to left in increasing order of the variable t 

We now introduce the tilde notation for quantities propagated by U 

from the current time t to an intermediate time t l ,t, etc. For single time

o?erators

(2)

(3)
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fi

Ll(tl)	 U U ( t , t l ) L (tl)UU(rift)
1

for double time propagators

Nt l ,t 2 ) = U0(t,t1)U(tl,t2)U0(t2,t)

and for distribution functions

?( t 1 ) 7 U0(t,t1Mt1)

Employing this notation we may write for U 

t
UA (t il t 2 )	 TLexpitl(A-1)U^(tilt3)L1(t3)UD(t3.t1)dt3}

2

X U0
 (
t i l t 2)

and

LA (t il t 2 ) = U0 ( t , t 1 ) UA 
(t il t 2)U0(t290

TLexp((A-1) JZdt3L1(t3)}

t 

where we have employed the general operator relation

'	 p exp(q) = exp(pgp -1 ) p and the fact that U0 (tilt 2 ) - U01(t29t1).

(6)

(7)

We may now write (1) as

-3-



^8^ + L
Ojf(t) - A ft dt 1L

1
(tO (t,t l)Ll (t l )?(t l )	 (8)

tO

It should be noted that while b  is still a propagator its expansion to

any finite order via (7) is not, rather it is a completely local operator.

Ali propagation of other quantities is indicated by the tilde notation.

Writing [ A as the series indicated by (7) and inserting in (8) produces

the standard, non-Markovian quasi-linear series.

To proceed we note that we may rewrite (8) as a function of T for

t  < T < t by means of the relation

_ 0(t'T) = U O (t,T) L0 = LOUO(t.T)

as

DT f
(T) = A jdt I'1 (T)^A (T , t 1 ) L 1 ( t 1 )L(t 1 )	 (9)

t 

there the tilde still implies propagation backward from t not from T.

If f(t) is now considered a boundary va g ue (9) may be integrated immediately

to give an integral equation for 2(T)

?(T) = f(t) + A Jdt l j1dt2LI(-COA(tl,t2)LI(t2)L(t2)
t	 t0

	= f(t) + D(t;T)I(T)	 (10)

where D(t;1) is the integral operator defined in (10).

In (10) t is to be understood as a fixed parameter and f(t) as a fixed

boundary value; the integral operator only integrates over the running

varlahid T.
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r
With this in mind we may now solve (10) by iteration to obtain the

formal solution

t
W

T(T) -	 { D(t;T))nf(t)
n-0

- {1 - D(t;T)}-1f(t)
	

(11)

Inserting (10) into (8) we now obtain

( at + LO)f(t)

t

(A fdtOtIL1(tOA(t,tl)L1(t1){1-D(t;tI)}-11 f(t)1

where the operator in curley brackets contains no explicit Propagators

and is local in time to any finite order. Since D is 0(L 2 ) and b - 1 +

O(L2 ) we have to lowest order

t

(at + LO)f(t) - {A fdt1L1(t)Ll(t1)}f(t)
tO

which is just the usual quasi-linear expression including the Markovian

or adiabatic approximation.

We see, therefore, that if one considers lowest order quasi-linear

theory one may include the Markovian approximation in a rigorous manner,
ti

the error involved being formally of a higher order and hence rightly neg-

lected. We shall see in fact that the correction obtained by including

D to lowest order is of the same order of magnitude as those obtained by

the correction to the propagator ^A to the same formal order.
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Before examining the first correction terms to the "collision" operator

in (12) (they will be of 0(L4 ) since odd order terms are assumed to vanish

under the action of the averaging operator A) we shall examine the full Vlasov

propagator and the phase space trajectorys generated by them. The Vlasov

propagator U satisfies the equation

(- + LO + L
1
 (0)U(t,t0) . 0	 (14)

with the buundar, -ondition U(t 
o p t 0 ) - 1. From the similarity to (2) (only

the A operator is missing) it is easy to see that

t
U(t,t 0 )	 TLexp{- fdt I L

.1
(t l )}U0 (t,t0 )	 (15)

t0

and

,N t l , t 2 )	 TLexp{- t1 dt 3L l (t 3 )}	 (16)
t2

We now introduce the phase functions 5'9'

^'(x,t,T) F U0(t,T)k

Q,t,T) _ U(t,T),

where ^ is a point in n (usually 6) dimensional phase space These functions

may be onc I rstood as the phase space,.position at a previous time,?, of

a particle that was at the point Z at the current time t and which moved

,n the intervening time according to the unperturbed or full l.ioulville

operator respectively.
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The difference between the full Vlasov trajectory	 and the unperturbed

trajectory k° is given by

- (ib(t,T) - 1)Z O (k,t,T)	 (11)

If one expands L according to (16) it is straightforward to write L^ as

a series of terms

Ak - 
1k (1) + q (2) + A

Z 
(3) + . . . .

where

t

0,^(1)(t,T) - - jdt1L1(t1)k°(tl,T)

T

t

(2) (t,T) - - Jdt 1L1 ( t 1 ) 6^	 (t l .T)	 (18)
T

etc. where we have omitted the argument ^. Since to leading order ^Z is

0(Ll):

Since any function of Z0 or	 satisfies the same equations as z0

or ,^ respectively we have

F Q (t,T)) - l(t,T)F(Z°(t,T)) .	 (19)

But F(k ) must also he related to N O ) by a Taylors series, ie.
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F(Z-) + A.F(Z') + 2(AZ)2
(a^')ZF(^°) 

+	
.

so we may relate the expansion of b to a given order to the Taylors series

to the same order in ab eg.

	

t	 (1) a

	

- fdtlLl(tl) 	
aZ°

T

fdt L(c ) f ldt L(t ) - AZ (2)a , 
+ 1(aZ(1))2(a o)2

1	 ^.	 2	 2	 az	 Z	 az 1

	

T	 T

	

= 0{AZ2 (a Z) 2}
	

(20)

etc.

With this in mind we now turn to the terms in the collision operator

that are 0(L4 ). They are

t	 t	 t
C4 - zA f dt 1L1 (t)TL (A-1) f dt 2L 1 (t 2 )(A-1) f dt3L1(t3)L1(t1)

t 0 	t 	 t1

	+ A f dt1L1 (t)L1 (t 1 )A f l	 2dt 2 fdt 3L1 (t 2 )L1 (t 3 )	 (21)

	

t 0 	t	 t0

where the first term on the right hand side arises from corrections to

the propagator and the second term is due solely to the Markovian formulation.

Noting that A operating on an odd number of L 1 's gives zero, taking

account of the effects of T L explicitly and relabeling some of the integration

variables gives
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i

C	 AL (t) f dt L (t ) f ldt L2 1 (t 2 ) f 2 3 1 314	 1	 1 1	 dt L (t )
t 0 	t0	 t0

- At (t)f dt ILI (t I )A fldt 2Ll (t 2 ) f2dt3L1(t3)

4	 t0	 t0	
t0

2- ALI (t) f dt 1LI (t I )A f dt 2L I (t 2 ) fdt 3L1 (t 3 )	 (22)

t 0 	t1	 t0

We wish to compare these terms with

t

C2 - ALl (t l ) f dt1Ll(tl)
t0

Since we have seen that

t

- fdt lL(t I )	 ^,^ (l) (, ,t,T) -	 (20)
T

we shall estimate the size of such terms by a factor

6^(T)/z
c 
where AZ(T) is the deviation of the Vlasov orbit from the unperturbed

orbit during some effective time T and z
c 

is a characteristic scale in

phase space. Since the derivative operators operate on everything to their

right we should consider z  to be characteristic of either the random force

field or the distribution function whichever gives a smaller value.

In the following we shall assume that the characteristic scale of the random

force, the correlation length, is much smaller than the scale of variation

of the distribution function.

i	 In estimating the effective time T over which the orbit deviation

is relevant the averaging operators play a crucial role. We shall here

assume that there exists a characteristic correlation time T
c 

for the propagated

operators LI (t) whether due to their being propagated in phase space or
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due to an intrinsic time variation such that if two of these operators

are averaged together this average is non-zero only when the two times,

eg. t  and t 2 are within a T  or so of each other. This limits the effective

range of many of the integrals in (22).

The first term in (22) is a four point correlation; if we nssume

that L 1 is a Gaussian process this term may b y expressed as the sum of

the product of all possible (three in this case) pair correlations with

unit weight 10 . one of these terms will just be cancelled by the second

term in (22). This is an example of the non-appareance of It

diagrams" discussed by Thomson and B- 11 ord 11 however, this is only true

if L  is a Gaussian process. If terms like this do not vanish then a

pure secularity appears since an examination of the second term in (22)

reveals that the integration over t 2 is not limited by any correlation

and hence grows with t. Such secularities growing as higher powers of

t will appear in all higher orders 12 . If such terms do not appear it is

straightforward to verify that all other time integrations are limited

to range of a few T b y interlocking or nested correlations and we may
c

estimate 'r = T	 With this apprc:citnatiun and not:nb further that
c

L 1 = lim ^^(A^(t,T))' dz = L^(t,t - ! )/(T C ZC)
T-+ t

we obtain C2 = T-1(P_^(TC) /zc)2

and all terms of C^^ = r	 (AZ(t`)/zc)4

(A^(T 1 )/Z C ) 2 C 2 where AZ(T C ) = AZ(t,t-TC).
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The effective expansion parameter for this theory is just the ratio AZ(TC)/zc.

For a more quantitative discussion of this ratio see Jones 13.

We see therefore that the correction terms generated by the Markovian

formulation are not only of the same formal order in L 1 as the correction

terms to the usual quasi-linear approximation but are of the same order

of magnitude. There is therefore no a-priori reason to prefer the integro-

differential equation of the usual approach over the far simpler Markovian

or adiabatic approximation that is often brought in as a further approximation.

Ore mad :; :ice that the Markovian formulation generates more terms

for any order above the lowest and hence might involve greater absolute

error to any order than the non-Markovian approach. .,uch a conclusion is

not justified in general, for if one assumes, in addition to ha.ing a Gaussian

process, that the L1 operators may be freely commuted it is straightforward

to detronstrate that the additional term in (22) exactly cancels the other

terms to make C
/4 

exactly zero. This is just a detailed example of the

general case shown by Jones anJ Birmingham  namely that Gaussian statistics

together with the commutability of the L, operators at different times

leads to exactly soluble nor-.ls whose solutions are just those given by

the quasi-linear approximation with the Markovian or adiabatic approximation.

-11-
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