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(VOLUME IT)
TRANSPORTATION AND VEHICLE ANALYSIS
1.0 SYSTEMS ANALYSES

This document presents additional details supporting the results reported in Volume I. It is intended
that this volume be of great utility in supporting trade and variational studies of the transportation
systems covered in this study. It therefore places considerable emphasis on assumptions,

methodology, and working data.

The transportation mass requirements developed for each mission and transportation mode were
based on vehicle systems sized to fit the exact needs of each mission (i.e., “rubber’ vehicles). The
parametric data used to derive ‘the mass requirements for each mission and transportation mode are
presented in this volume to enable accommodation of possible changes in mode options or payload
definitions. In addition, the vehicle sizing and functional requirements used to derive the parametric

data are described.
1.1 GENERAL

1.1.1 Requirements and Guidelines
Requirements were identified to cover the space transportation options covered in Volume 1. Since
many system design requirements apply to several or more transportation options, the requirements

have been collected under the following categories:

A. Applicable to all OTVs and LTVs.
B. Applicable to only OTVsor LTVs.
C. Applicable to type or propellant.

Requirements applicable to staging methods are included under categories A and B. The system

design requirements are presented in Table 1-1.

Mission oriented requirements influencing the transportation system design include payload mass
and c.g., duration and delta V's. Payload and duration requirements used for initial vehicle sizing are

summarized in Table 1-2.



OF PooR

QU.

D180~-19201-2

Table 1-1(a). System Design Requirements and Guidelines

Astenisk items sre working assernpions stbpct 10 10vi80n 1f Lost/perfonmay & impravemients tesalt

ALOTY and LTV
1. Technolugy Sese 1900 +
2. Sizing philosophy For nayloads requiring greatest number of flights, .
3. Paviosds Menned snd unmanned,
4. Detign lite
Expendable Varies with mission duration,
Reussbile 20 Round trips or B yeers.
8. Esrthlsunch Protect «d by shroud, if tasunched by vehicle other
than Shuttie.
6. Maximum stags dismeter 7.93M (26 fost) 0.D. with HLLV,
4.42M (14.5 teat) 0.0, with Shuttle.
7. Propeliant conteinment Seperate funl/oxidizer tanks
8. Tank shape 0.7 Eftiptical haads with cylinder. If less than stege
dismater, then use 0.7 heeds.
9. Utlege
Storeble »
10.  Maximum thrust/weight
Initisl 039
Burnout <30g
11.  Engine characteristics >160
Expension ratio Not uniess necessery
Nozzle retraction 20.6 MN/ME {3,000 peia)
Chamber pressure F >220.000 N (50,000 ib,}
10.3 MN/MZ (1500 pris) ] LOy/LH,
F <220.000 N (50,000 toy)
10.3 MN/M? (1,500 psis) LO./MMH
NPSP <7 kNMZ (1 pni) LO,, <14 KNME (2 psit LMy
12, Launch fosde
Shuttle + 2.0g. -3.3g (x-axis)
HLLY ~3%
13.  Crash loade
Shuttie only +9.0g. -1.5¢ {x-axis)
14.  Metsoroid protection '0 ~ 0.97 for 5 yesrs.
15.  Resorves FPR=2%of totst AV
APS » 10% of totat Wp
Fuel cwii reactants = 10%
Propetisnt bissing » TBD
16. Docking Radhal misstignment (Q ) : O - 0.30M (1.0 feet}
Anguisr misalignment: 0 - 5.0 degrees
Longitudinal (sxisi) closing rete: 0.03-0.2 M/S (0.1 - 1.0 fpe)
Lateral (trontverse) closing rate: 0-0.00 M/S (0.3 fps)
Anguisr (relstive) closing rate: 0-0.5 degres/seconds
17.  Waight growth 25% on dry waight.
18. Relisbility 0.95 Par flight {initislly inciude redundsncy on mission
criticel systems/components.)
19.  In-orbit refurb, concept Fluid transter
“Black box" replacement (no repan).
20. Refusling Fuel transter while under low "g".
21. Sindo toge Docking provisions for payloads.
Fusl trenstar provisions {uniess expendable}
2. 1-%Stage
Drop tank Wil be expendablia
Oniy include propellant snd reguited pressunzativr, system
and thermal protectn.
No special meteorose shielding.
Main stage Provide dacking provisions for paviosds and drop 1anks

Provide provisins for tuel transto

2
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Table 1-1 (b).
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System Design Requirements and Guidelines

OTV’s only

Operating mode
Engine characteristics

Common stage

1-% Stage
© Mair: stage

® Drop tunks

Nuclear LH: stage
o Engine
® Aft bulkhead
© Tank diameter
¢ Radiation shielding

Nuclear electric stage
e Reactor
® Conversion
© Radiation shialding
@ Thrusters

Solar electric stage
Application

® Subsystemns will be included to allow operation
independent of payloads.

® Throttling to limit maximum axial acceleration
to 3g's.

@ Return first stage to LEO.

o Second stage interfaces with payloads.

@ Ability to dock stages together or with other proprrly
equipped space systems.

® Both first and second stage capable of operating independent
of payloads.

® Propeliant obtainad from orbital tanker (not from oversized
drop tanks).

® Should not remain in destination orbit.

© 330 000N (75,000 Ibg) Nerva type.

® 0.7 Elliptical (not 10° - 15° conical due to length).
©7.93m (26 feet) O.D..... not launched within shroud.
o Shadow tvpe.

® Heat pipe cooled.

® 30,000 hours design life

® Brayton cycle

® Reactor and conversion system fully enclosed.
o Kaufmann type or Argon UPD.

o Power satellite transfer to GeO,

IEF-487
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Table 1-1. (C) System Design Requirements and Guidelines

LTV’s only

Operating mode

Payload handling

Landing condition

Engine characteristics

1-% Stage

Main stage
Drop tank(s)

@ Power and avionic: subsystems will be common
for the CEM and propulsion system.

@ The CEM will not be separable from propulsion system.
@ The ability to deliver, deploy and :eturn payloads to
lunar orbit.

@ Engine clearance = 0.75m (2.5 feet). .
Tip-over ratio = 1.2 (landing gear radius/c.g., height).

@ Throttling = 10% - 100%.

@ Propeliant obtained from drop tanks.
@ Sized to include propeilant for main stage operation.

@ Tanks to be separated at end of braking maneuver and
allowed to crash on surface up range of landing site.

1EF-488




Table 1-2. Mission Requirements Summary

Payload D Active operating
Mission Delivered Returned duration
{days)
103k6 | 10%w | 103kc | 10%® >
GSS - OTV 26 55 15 33 7
GSMS — OTV 6.6 145 6.6 14.5 9
ILss - oTvV I 30.1 86 7.3 16 40/30 [
LTV 11.8 26 7.3 16 15
oLs- oTv > 50 130 7 16 e >
LTV 15.9 35 1.4 26 28
Ls8 - oTv > 7.4 167 73 16 2/ T
LTV 217 61 6.4 14 4
M.p. [T=>- T™I, MOI, TEI 100.8 241 50.45 M 450/1,000
MS.S.R. (= - INJSTG 5.6 124 0.14 0.21 1
J.B.P. — INJSTG 24 53| — —_ 1
G.L. — INJSTG 5.9 13 — — 1
NW.D. = -~ INJSTG 3.2 71| — —_— 1
S.ES. - P.V. - OTV 23,640 52,000 _ —_ 100
T.E.—OTV 16,360 36,000 —_— —_— 100
P.V. Pilot plant — (OTV) 760 — —_— 360
(= Per fiight (= Direct earth landing - slow return.
D Excludes LEO assembly time. Dﬂefined waste - each package.
[ For single stg LO,/LH, LTV. [E=Function of landing site.
DOpposition/conjuncﬂon class. Dﬂctum to E.O. constraint/no constraint.

LEF-400

¢-10761-081a
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A study of tank diameter criteria was made as illustrated in Figure 1-1. Three aeroshell options were
considered as shown in Figure 1-2. The hammerhead option was selected. Sizing groundrules for the
point designs are depicted in Figure 1-3. The 1% stage LO7/LH) OTV for the GSS mission was sized
with twe sets of drop tanks because a single set restlted in *rop tanks longer than the main stage,
posing operational problems and restrictions. The first set of tanks provides propellant for ti:z boost
maneuver. They are separated just prior to circularization at apogee, where a small separation delta
V will result in tank disposal by atmosphere :ntry and burnup. The second set of tanks provides
propellani for circularization. The: are not separated until after deorbit, when a small separation

delta V will again result in tank disposal.

A trade study was run to ascertain the benefits of common bulkheads. Two sizes of OTVs were
examined. The results showed. in one case, a very slight mass advantage and, in thc other, a very
slight mass disadvantage (Table 1-3). Therefore, as they are simpler to design and construct,
separate-tank configurations are used except in those instances where the shorter common bulkhead

configuration is a significant advantage.

1.1.2 Technology Assumptions

The following technology definitions and selections were developed as working groundrules.
Structures

®  Graphite-plastic matrix composites are assumed 1cv unpressurized main structures in reusable

vehicles; aluminum skin/stringer is assumed for expendable vehicles or expendable tanks.
®  Aluminum is assumed for main propellant tanks with integral stiffening as required.

®  FElevated temperature materials are assumed where normal working temperatures for aluminum
or composites are exceeded. Frr example, structural elements of the nuclear electric tug would

be titanium due to thermal radiation from hot parts and the heat rejection radiator.

®  High temperatures and associated environments are limited to knowi capabilities of known

engineering materials.

®  Reusable heat shields will assume shuttle technology where applicable; water cooled or other
special heat shields will be used where circumstances merit a departure from shuttle

technology. For example, multiple-pass aerobraking maneuvers may use aluminum, titanium,
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LARGE SINGLE STAGE OTV

guu—

AEROSHELL  2.5-5cm
(1-2 INCHES)
DYNAMIC 15-20 cm

CLEARANCE  (6-8 INCHES)

e — — — — EXTERNAL  15-20cm
—-— — - EQUIPMENT {6-8 INCHES)
—~ APS
l>: @ :<l PROP LINE
— 33-45 cm
{13-18 INCHES)
INNER 38cm
TANK USE (15 INCHES)
WALL
. . s 1EF-400
Figure 1-1.  Tank Diameter Criteria
STO AEROSHELL
HAMMERHEAD
Wio," 197 TONS (436510 AEROSHELL/ AEROSHELL
LOCAL BUMPS )
wmz-nmusm"ﬁ —_—

\""?'7

(0

NN

| e ]
(27 FEET)

ALLOW.TANK DIAMETER 1.7M (254 FEET)
D TANK LEN (LOy/LH,) 0
D TANK WEIGHT (POUNDS) 0
O ASWEIGHT (POUNDS) 1

8.23M

S~

L— e
(27 FEET)

7.5M (24.5 FEET)

0.5/1M (+1.7/3.3FEET)

?
?

™" (28.3 FEEM)

8.23M
27 Fssn"".

8.2M (27 FEET)
0/ (0/-3.1 FEET)

?
? "ran

Figure 1-2. Allowable Tank Diameter L0 5/LHo Single Stage GSS Mission

7
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D TANK
L
oTV's ‘ H2 l

[ T
h | 0.30M (12.0")
e ELLIPSOIDAL TANK HEADS -
{th = 0.707r) |
Ln, TANK o= 0.089M (3.5")
o CLEARANCESAS SHOWN CYL WALL
STAGE
LENGTH
W/O ENGINE 0.46M (18.0)
Lygp TANK !
CYL WALL Q ‘
1
o,_o TANK 0.61M (24.0%)
0.30M (12.0")
DROP TANKS i
e ELLIPSOIDAL TANK HEADS
(h + 0.707r)
e NO EXTERNAL WALL/BUMPER 0.30M (12.0")
T
e CLEARANCES AS SHOWN .
0.30M (12.0”)

IEF-462
Figure 1-3.  Point Design Sizing Ground Rules
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Table 1-3. Common Bulkhead Weight Study

Two tank Common bulkhead
Large OTV 7.62M (25.0 feet) diameter configuration configuration
LH, Tank bulkheads 1,530LBy, 694 KG 765 LBy, 347 KG
LHz Tank cycle wall 3,210 1,456 4420 2,005
LOz Tank bulkheads 1.630 694 765 347
L02 Tank cycle wall 395 179 396 179
Common butkhead _ —— 1,670 758
Body shell 8,120 3,683 1,220 3,275
Tank insulation 2,265 1,027 2,040 925
Total variable weight 17,050 LBy, 7,733 KG| 17,265 L8y, 7.836 KG
Medium OTV 4.42M (14.5 feet) diameter o nation i o
LH, Tank bulkheads 290 LBy, 132 KG 145 LBy, 86 KG
LHz Tank cycle wall 1,216 551 1,420 644
L02 Tank bulkheads 290 132 145 66
L02 Tank cycle wall 305 138 305 138
Common bulkhead —_ e 290 132
Body shell 2,645 1,653 3,345 1,517
Tank insulation 1,040 472 990 449
Tota: variable weight 6,785 LB,, 3,078 KG 6,640 LB,, 3,012 KG

1EF-483
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or superalloy metal heat shields; the low cost space freighter for power satellite application
may merit a water cooled metal re-ntry heat shield to minimize refurbishment and

turnaround time.

Avionics

LSl circuit chip technology is assumed available for data processing hardware; data bus

techniques are assumed to minimize wire mass.

Communications and GN&C systems assume shuttle and full-capability tug technology levels.

Laser radar is assumed available for rendezvous as required.

Electric Power

Fuel cells and batteries are assumed for electric power except for electric propulsion primary

power.

Fuel cells tailored to the application, based on shuttle technology, are assumed. Batteries are

assumed to be Ni-Cad.

Nuclear-electric power technology assumptions pertinent to the nuclear electric tugs are
summarized in the discussion of the nuclear-slectric tug point designs. paragraph 1.2.3 of this

volume.

Main Propulsion

Main engine characteristics will be derived from parametric performance based on Space
Shuttle Main Engine (SSME) technology. Expander cycles are assumed for engines below 220
KN (50,000 1b) thrust. Engine performancé assumptions were included in the guidelines data

of paragraph 1.1.1.

During the Phase Il study effort, cost benefits associated with use of off-the-shelf or modified

engines will be analyzed.

Auxiliary Propulsion

The use of hydrazine monopropellant has been baselined, since gains associated with more
advanced technology are minimal in the cases analyzed to date (see Subsystems task discussion
below). Storable bipropellant and advanced O2/Hy auxiliary propellant technologies are

assumed available as needed.

10
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Thermal and Meteoroid Protection

®  Multilayer metallized plastic tilm (MLI) insulation is assumed for thermal protection of all
main propellant tanks. A metal skin, non-structural for vehicles with integral tanks, is assumed
external to the MLI and is to be thick enough so that, in conjunction with the MLI, it provides

sufficient meteoroid protection.

1.1.3 Predevelopment Technology Requirements

Technologies for which basic feasibility is not yet demonstrated, e.g.. laser-fusion propulsion, were
not assumed in this study. A number of technical capabilities were assumed that have not been
flight-demonstrated. In these cases a predevelopment technology program is appropriate. Recom-

mended technology programs are tabulated versus transportation options in Table 1-4.
1.2 Point Designs and Analyses

1.2.1 Heavy Lift

Preliminary analyses of heavy lift options were performed during Phase 1. These options were
selected as representative of the two classes of heavy lift systems for which potential needs were
recognized. A wide }ange of classes and options are presently under separate study, the Heavy Lift
Launch Vehicle (HLLV) study. The FSTSA study will rely principally on data from the HLLV
study during Phase II.

1.2.1.1 Shuttle-Derived Systems

Two options were investigated and are depicted in Figures 1-4 and 1-5. The SRB/ET vehicle can use
either 2 or 4 SRB’s. The all-SRB option is based on 2 JSC contiguration; performance data for this
option have ‘been obtained from JSC internal note 74-FM-80 dated November 20, 1974.

Performance for the othér options was calculated. Data are summarized in Table 1-5.

Representative trajectory data for the SRB/ET vehicles are shown in Figures 1-6 through 1-9.

1.2.1.2 Low Cost Heavy Lift
The task of transportation to low orbit of many millions of kilograms {pounds) per year for power

satellites at low cost is a significant challenge. needing a low cost heavy lift vehicle (LCHLV).

Figure 1-10 shows how a significant performance parameter, the ratio of gross lift off weight

(GLOW) to payload delivered relates to GLOW itself. for many of the launch vehicles which have

11
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Table 1-4.  Predevelopment Technology Developments

Technology development

Transportation options

LO,/ LH, Single stage

L02/LH2 Common stage X X

LO,/LH, 1% Stage X X

LO,/MMH Single stage X X

L02/MMH Common stage X X X

Nuclear LH, X

Nuclear electric X X

Solar/chemisal hybrid X X X X
(L:g;r/ lt-r.::?:mrt vehicles: X X x
:_38; ht‘raa”n':;;ort vehicles x | x x X
Low cost space freighter X X

IEF-464
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Table 1-5.  Heavy Lift Options

Performance to 100 n.mi. Orbit, East Launch

Vehicle Glow ™™ Max. Q Staging Weight Payload Propeliant
106 KG liftoff KN/M2 velocity | in kg (Ib) left with
(106 1b) (psf) m/sec kg (ib) Orbit no payload

{ft/sec)

All-SRB, 397 38 1615 78 000 71000 | Not

(5SRB 1st| (8.75) 177 (800) (5,300) | (172,000)| (156.000) | applicabie

stage)

2SRB/ET | 202 31 1340 152 000 79 000 68,000
{4.45) 1.49 (650) (4,400) | (336,000)| (175,000) | (150,000)

4SRB/ET | 321 48 2060 193000 | 120000 | 104 000
(2.07) 1.711 | (1,000) {6.760) (425,000) | (265,000) | (230,000)

IEF-471
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been built or studied. Despite the many type variations (liquid/solid, low specific impulse/high
impulse, two stage/three stage, etc.), all expendable rockets fall within a fairly narrow band. It is
clear that increasing size leads to an increase in the percentage of payload carried. Also shown is a
line corresponding to a “massless rocket,” i.e., one in which there is no inert weight and which

consists initially of only payload and propellant (LOX/LHz, I.,, = 455 sec). This represents a lower

sp
limit for expendzble rockets with this propellant. A sizing curve for an idealized vehicle is also
“shown in figure 1-10. Note that the curve generally parallels but lies below the historical expendable

band.

Reusable rockets are heavier than expendables since the return/recovery system must be carried in
addition to the payload. Many of the reusable vehicles studied, plus the current Space Shuttle, are
also shown in the figure. Again a band is indicated: when the inert weight of the idealized rocket is

increased by 70 percent and 100 percent of that the two boundary curves shown are produced.

Considering cost indicators, a very large expendable, typified by “X” on figure 1-10. would have the

following characteristics:

MASS
ITEM 109 KG 100 LB
Payload 45 1.00
N GLOW _
Inert Wt, Engines 22 0.48 ( PAYLOAD - 23)
Inert Wt, Other .63 1.38
Propellant 9.14 20.14
Glow 10.44 23.00

Employing D. Koelle’s cost model wherein all costs are in terms of direct hours, based on his
analysis of 68 space vehicle projects, a prediction of the recurring cost of the inert weight and
engines was derived. The hardware cost of the engines and other inert weight contributed $425/kg
(8193 per pound) of payload, without consideration of propellant costs, amortization of

development, etc.
The predicted reusable vehicle of GLOW = 10400 metric tons (23 MLB) has a payload of only
approximately 227 000 kg (500,000 1Ib). In effect the payload is decreased by the addition of the

recovery system.

In estimating the recurring cost of this vehicle, it was assumed that the basic airframe lasts for 1,000

flights, and that the engines last 100 flights per set. Eliminating the airframe learning factor and
20
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increasing its complexity factor by fifty per cent, the stage cost distributed over 1.000 flights is
$5.64 per kg (52.56 per pound) of payload for hardware amortization. indicating that a large
reusable may attain the nominal target of $45/kg ($20/Ib).

Several possibilities were suggested for vehicle configuration. Drop tanks and expandable payload
housings appear too expensive. No significant down payload is required, and a cross range capability
of 320 km (200 miles) would probably suffice. The payload bay should be of the greatest feasible
volume. A large single stage, ballistic recovery (VTOVL) vehicle was selected as a representative

concept for power satellite use with nominal payload capability of 225 000 kg (500,0C0 Ib).

This is a vertical take-off/land system, with a general shape similar to the Gemini or Apollo
Spacecraft. The take-otf is accomplished with the thrust of the LO,/LH, main engines (ME) and
the LO»/hydrocarbon auxiliary engines (AE). The AE burn approximately 70 seconds. Total burn
time for the ME until injection into the initial orbit is 110 seconds. Acceleration is limited to four
g’s. Immediately after orbit insertion the payload door opens and the payload and a small “tug
type” propulsion system is released. This “kicker™ propulsion system raises the payload to the 500
km (270 N.M.) assembly altitude. Thus the mass of the LCHLV is not taken to the higher orbit.
greatly increasing the payload capability. Figure 1-11 shows an inboard profile of the LCHLV and
“kicker.” After payload separation the payload bay is closed and the AE are used to raise the
LCHLYV orbit to 185x185 km (100 x 100 N.M.). The deorbit maneuver is performed by the AE.
Reentry heat transferred to the vehicle is absorbed by a watercooled thermal protection system
(TPS). The resultant steam is used to cool the engine bells.
The rationale for the water TPS is as follows: it is much heavier, possibly as much as 40 000 kg
(90,000 Ib) more than ecither an ablative or metallic reradiative TPS. However reradiators require
refurbishment and an ablative TPS would of course require replacement. An associate has noted
that if transport aircraft required even such a simple operation as the application of a single coat of
paint between tlights that it would double the cost of airline tickets. Along these lines. we estimate

that approximately 0.1 kg (0.2 Ib) of ablator would have to be replaced per flight per pound of
payload, and that the production and installation cost of ablator panels would be at least $88/kg

(840 per pound), adding up to $17/kg (S8 per pound) of payload to the operational cost of the
vehicle. an increase of perhaps 25 to 50 percent, at a payload increment of only approximately

20 percent.

The LCHLYV could be targeted initially for a landing approximately 160 km (100 miles) off shore of
the Cape. After a safe trajectory is assured, the flight path could be depressed for a landing in the

recovery basin. In prior flight programs, spacecraft were consistently rccovered within 3 km (2
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miles) of the target point without control from the ground, and despite parachute drift with the
wind. With ground control, we might expect better accuracies. A basin diameter of 4600 m (15,000
feet) is believed adequate. Aeromaneuvers would be accomplished using an off-set center of gravity
and roll control to position the resultant lift vector. Terminal descent velocity is approximately 100
m/sec (300 ft/sec). A weight optimization of the landing rocket system indicates a minimum total
weight for the engines propellant and associated tanks with a deceleration of four to five g’s.
Consequently, the braking activity does not begin until an altitude of approximately 460 m (1,500
feet) is reached. The LO4/hydrocarbon engines used will have a thrust to weight ratio of perhaps
110 to 120, compared to the 60 to 70 of LO,/ LH, engines. These landing engines are used at liftoff
to provide a major portion (approximately one third) of the total thrust with a corresponding
savings in ME weight. The AE must be throttable to perform the landing maneuver. During ascent,
this capability serves for attitude control, to AE cutoff. After that the ME provide control.
Gimballed engines are not used; the gimbal points would be too near the c.g. to be effective, and the

fixed engines are easier to thermally protect.

1.2.2 High Thrust Orbit Transfer Vehicles (OTV’s)

1.2.2.1 Large Single-Stage LO;/LH, OTV Point Design
This point design is applicable to the following missions:

®  Geosynchronous Space Station (GSS)

®  Independent Lunar Surface Sortie (ILSS)

®  Orbiting Lunar Station (OLS)
®  Lunar Surface Base (LSB)
®  Manned Planetary Exploration (requires clustering and multistaging)

® Automated Planetary Exploratio. (modified mass properties due to unmanned expendable

use)

The configuration inboard profile as drawn (Figure 1-12) was sized to be applicable to the GSS
mission; performance analysis using the mass properties developed for the point design resulted in
tailored sizes for all applicable missions as reported in Volume 1. Table 1-6 presents a detailed mass
properties estimate for the point design as drawn; Mass properties parameter variations about the
nominal point resulted in scaling equation factors tabulated on Figure 1-13. The boiloff mass rate

was estimated on the basis of cryogenic tank surface area and typical insulation performance.
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Table 1-6. Single Stage LO2/LH2 OTV Weight Details Large Size Point Design [T

(LBM) {KG}
Structure and Mechanisms (17,120} (7,770}
Body Shell 3,200
Fuel Tank 7,910
Oxidizer Tank 3,460
Thrust Structure 650
Stage/Payioad Interface 900
Secondary Structure 1,000
Landing Gear -
Main Propulsion (6,270) {2,840)
Main Engines 2,860
Accessories 740
Pressurization & Vent 1,100
Prooellant System 1,230
Gimba. Gystem 340
Auxiliary Proputsion (1,160) (630)
Thrusters 360
Tanks 290
Pressurization & Vent 160
Propellant System 350
Avionics {570} {260)
Nav Guid & Control 160
Data Management 160
Communications 70
Instrumentation 140
Rendez & Docking 40
Electrical Power (1,050) (480)
Fuel Celis 200
Batteries 160
Tarkage 110
Processing & Control 140
Wiring Harnesses 440
Thermal Control ' (2.450) {1,110}
Main Tank Insulation 1,660)
Insuation Purge 230
Equ pment Control 150
Base Protection 250
Paint & Sealer 160
Weight Growth (15%) {4,300} (1,950)
Total Tank Dry Weight 32,820 14,940
D Based upon 230,400 kg {508,000 Ibm) impulse propeilant 1EF-212
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Figure 1-13 presents the mass properties buildup parametrics. These inay be used to develop mass
properties summaries for this vehicle type over the applicable range of main impulse propellant

loading. Use of the parametrics is illustrated below.

Example Use of Mass Properties Buildup Parametrics

Problem: Develop mass properties for large single-stage OTV sized for 50-man geosynchronous

station.

From discussion in Volume I, this OTV was sized at 306 000 kg (675,000 !b) with an impulse
propellant loading of 281 000 kg (620,000 Ib).

1. For 620,000 ib read the following values from Figure 1-13, sheet 1.

Item kg Ib Category
Str and Mech 8 935 19,700 1
Main Propulsion 3265 A 7,200 1
Thermal Cont 1 250 2,750 1
APS propellant 3400 7,500 3
Unusable LO2 720 1.500 2
Unusable LHy 885 1.950 2

Using APS propellant, read
APS dry 725 1.600 |
APS reserves and unusables 388 850

[§%)

.From Sheet 2, assuming an average power of 2 kw, and a mission duration of 5 days. read

Avionics 285 630 1
EPS Fixed 430 950 l
EPS Variable dry 545 1.200 N
Reactant 1 090 2.400 2
Boiloff @ 325 Ib/day 740 1.625 3

Assuming six burns, and 900 KN (200.000 Ib) thrust,
Start/stop losses

@ 175 Ib per burn 475 1.050 3

The mass properties statement may now be constructed. observing categories. Note the addition of

contingency to Ary mass.
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Item kg b
Category 1: Dry mass
Structures and Mech 8 93§ 10,700
Main Propulsion 3265 7,200
Thermal Control 1250 2,750
Auxiliary Propulsion 725 1,600
Avionics 285 650
EPS 975 2,150
Contingency (15%) 2315 5,105
Total Dry 17 750 39,135
Category 2: Unusable Fluids and EPS reactants
LO> 720 1,580
LH, 885 1,950
APS 385 850
EPS reactant 1 090 2.4001
Total Bumout 20 830 45915

Category 3: Inflight Expendable.

Boiloff 740 1,625
Start/stop losses 475 1,050
APS impulse propellant 3400 7.500
Main Impulse Propellant 281 000 620.000
Total Start burn 306 445 676.090

The result checks the value read from the stage-level curve within 0.2%. The length of the vehicle

may be estimated from Figure 1-13 sheet 3;

Tank length as drawn
(508,000 b impulse propellant) 18.14 59.5
Tank length @ 620,000 Ib 69.5

to
to

The delta length is 3.05 m (10 ft). The vehicle as drawn was 25.05 m (82.2 1t) in length. The resized
vehicle is therefore approximately 28.1 m (92.2 ft) in length. assuming outside diameter is

unchanged.



ot

MASS (103)

MASS (103)

KG
85K

8ol

251

70

KG

1.3

1.2

1.1

1.0

LBy KG 1By KG
19 32¢ 7 - .
STRUCTURE & | MAIN
8k MECHANISMS ) PROPULSION 30}
29} ’
17 - - 6 - SRR
26}
16 ' 25}
15 23F l
400 500 LBy 600 400 500 g, 600 400 500 g, 600
| L 1 1 1 1 1 1 1 i i L
200 220 240 260 200 226 240 260 200 220 240 260
KG KG KG
MAIN IMPULSE PROP (103) MAIN IMPULSE PROP. (103)
LBy KG LBy KG LBy
3 ‘ 15
THERMAL sl UNUSABLE LH,* APS INERT
CONTROL 1.7 r-MA|N PROP. ’//ﬁY/’
4k 5+
- 15 1.0
6} 13 RES.JUNUSE.
“°INCL. BIAS 3l
2 i SL 11 l 5 i
400 500 g, 600 400 500 LB, 600 5 6 LBy 7
1 1 1 1 1 1 1 i 1 L
200 220 240 260 200 220 240 260 25 3.0 KG
KG KG
MAIN IMPULSE PROP. (103) AFS PROP. {103)
SCALING EQUATION FACTORS: A =5650 KG (12,456 LB) B =0.0460 C=0 D =0.1725
Figure 1-13. Subsystem Parametrics — LO o/LH, Single Stage OTV IEF-2

(Sheet 1)

7-10261-0810C



D180-19201-2

MASS (103)

MASS (103)

KG

KG

15 -

A0

L8 K LB KG LB
51 1.1 = 8 3
ELEC. POWER 3 5 ELEC. POWER .
[72)
4 g N
x
s 2T S
.. ( =
3F 5 Q
g -
w 2
. a .1 s
2t
X 1 1 i 3 1 1 L L
0 200 40C 600 1B 0 200 400 600 LB
L L - N L 1 i
0 100 200 300 KG 0 100 200 300 KG
MAIN IMPULSE PROP. (103)
—y
™
LB KG |B “G 18
BOILOFF LOSSES START/STOP
PER DAY i LOSSES PER BURN
N LO2/LH2 ’ 3
N Y e LO2/MMH
LO2/MMH | :
" 02 05 LO2/LH
L | 1 A ol- 1 1 1
0 200 400 600 L 0 10C 200 LBg
L A de 1 1 i 1
0 100 200 300 NG O 200 400 600 800 N

MAIN IMPULSE PROP. (10-9)

TOTAL STARTBURN THRUST (103)

Figure 1-13.  Subsystems Parametrics — General For All OTV’s (Sheet 2)

1EF 2



D180-19201-2

!

LARGE SIZED LO,/LH, OTV

1.74M
(25.4 FEET DIAMETER)

8

TOTAL TANK LENGTH

/

ELLIPSOID LO, TANK

-
L]

400 500 600 103 LBM

1 1 1 1 i 1

180 200 220 240 260 280 103kG
IMPULSE PROPELLANT

1IEF-476
Figure 1-13.  Tank Length Versus Impulse Propellant Mass  (Sheet 3)

32



D180-19201-2

1.2.2.2 Intermediate Single-Stage LO2/LH) OTV Point Design

This point design is applicable to the following missions:

®  Geosynchronous Satellite Maintenance Sortie (GSMS)

®  Automated Planetary Exploration (modified mass properties due to unmanned expendable

use)

The configuration inboard profile as drawn (Figure 1-14) was sized to be applicable to the GSMS
mission; performance analysis using the mass properties developed for the point design resulted in
tailored sizes for all applicable missions as reported in Volume 1. Table 1-7 presents a detailed mass
properties estimate for the point design as drawn; Mass properties parameter variations about the

nominal point resulted in scaling equation factors shown on Figure 1-15.

Figure 1-15 presents the mass properties buildup parametrics. These may be used to develop mass
properties summaries for this vehicle type over the applicable range of main impulse propellant

foading. L

1.2.2.3 Small Single-Stage LO»/LH, OTV Point Design

This point design is applicable to the following missions:

®  Automated Planetary Exploration (modified mass properties due to unmanned expendable
use)

®  Nuclear Waste Disposal

The configuration inboard profile -as drawn (Figure 1-16) was sized to be applicable to the
Ganymede Lander mission; performance analysis using the mass properties developed for the point
design resulted in tailored sizes for all applicable missions as reported in Volume I. Table 1-8
presents a detailed mass properties estimate for the point design as drawn; Mass properties
parameter variations about the nominal point reSulted in scaling equation factors shown on Figure

1-17.

Figure 1-17 presents the mass properties buildup parametrics. These may be used to develop mass
properties summaries for this vehicle type over the applicable range of main impulse propellant

loading.

1.2.2.4 1% Stage LO2/LH; OTV Point Design
This point design is applicable to the following missions:
®  Geosynchronous Space Station (GSS)

® Independent Lunar Surface Sortie (ILSS)

33



D180-19201-2

®  Orbiting Lunar Station (OLS)
®  Lunar Surface Base (LSB)

The configuration inboard profile as drawn (Figure 1-18) was sized to be applicable to the GSS
mission; performance analysis using the mass properties developed for the point design resulted in
tailored sizes for all applicable missions as reported in Volume 1. Table 1-9 presents a detailed mass
properties estimate for the point design as drawn; Mass properties parameter variations about the

nominal point resulted in scaling equation factors shown on Figure 1-19.

Figurc 1-19 presents the mass properties buildup parametrics. These may be used to develop mass
properties summaries for this vehicle type over the applicable rance of main impulse propellant
loading.

i.2.2.5 Large Common-Stage LO7/LH> OTV Point Design

This point design is applicable to the following missions:

®  Gecsyuchronous Space Station (GSS)

®  Independent Lunar Surface Sortie (ILSS)

®  Orbiting Lunar Station (OLS)

®  Lunar Surface Base (LSB)

The configuration inboard profile (Figure 1-20) as drawn was sized to be applicable to the GSS
mission; performance analysis using the mass properties developed for the point design resulted in
tailored sizes for all applicable missions as reported in Volume I. Table 1-10 presents a detailed mass
properties estimate for the point design as drawn; Mass properties parameter variations about the
nominal point resulted in scaling equation factors shown on Figure [-21. The boilotf mass rate was

estimated on the basis of cryogenic tank surface area and typical insulation performance.

Figure 1-21 presents the mass properties buildup parametrics. These may be used to develop mass
properties summaries for this vehicle type over the applicable range of main impulse propellant

loading.

1.2.2.6 Intermediate Common-Stage LO2/LH2 OTV Point Design
This point design is applicable to the following missions:
L GeosynchronouS Satellite Maintenance Sortie (GSMS)

®  Nuclear Waste Disposal (NWD)

The configuration inboard profile as drawa (Figure 1-22) was sized to be applicable to the GSMS

mission; performance analysis using the mass properties developed for the point design resulted in

34
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Table 1-7. Single Stage LO2/LH2 OTV Weight Details Mediumn Size Point Design D

37

{LBM) {KG)
Structure and Mechanisms {8,390) (4,260)
Body Shell 1,940
Fuel Tank 3,670
Oxidizer Tank 1,780
Thrust Structure 350
Stage/Payload Interface 1,000
Secondery Structure 650
Landing Geer -
Main Propulsion (3,080) {1,400)
Main Engines 1,250
Accessories 320
Pressurization & Vent 660
Propeliant System 690
Gimbal System 160
Auxilisry Propulsion {800) (360}
Thrusters 240
Tonks 360
Pressurizstion & Vent 50
Propsiiant System 150
Avionics (500} {230)
Nav Guid & Control 160
Dats Management 160
Communications 70
Instrumentation 70
Rendez & Docking 40
Etectrical Power (800) (360)
Fuel Celis 160
Batteries 80
Tankage 160
Processing & Control 70
Wiring Harmesses 330
Thermal Control {1,620) (750)
Main Tank Insulation 1,040
insulation Purge 120
Equipment Control 150
Base Protection 200
Paint & Sealer 110
Weight Growth (15%) {2,430) (1,100)
Total Tank Dry Weight 18,620 8,450
> Based upon 107,000 kg (236,000 ibm) impulse propellant IEF-113
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tailored sizes for applicable missions as reported in Volume 1. Table 1-11 presents a detailed mass
properties estimate for the point design as drawn; Mass properties parameter variations about the

nominal point resulted in scaling equation factors shown on Figure 1-23.

Figure 1-23 presents the mass properties buildup parametrics. These may be used te develop mass
properties summaries for this vehicle type over the applicable range of main impulse propellant

loading.

1.2.2.7 Large Common-Stage LO»/MMH OTV Point Design
This point design is applicable to the following missions:

®  Geosynchronous Space Station (GSS)

® Independent Lunar Surface Sortie (ILSS)

®  Orbiting Lunar Station (OLS)

®  Lunar Surface Base (LSB)

The configuration inboard profile as drawn (Figure 1-24) was sized to Le applicable to the GSS
mission; performance analysis using the mass properties developed for the point design resulted in
tailored sizes for all applicable missions as reported in Volume I. Table 1-12 presents a detailed mass
properties estimate for the point design as drawn: Mass properties parameter variations about the
nominal point resulted in scaling equation factors shown on Figure 1-25. The boiloff mass rate was

estimated on the basis of cryogenic tank surface area and typical insulation performance.

Figure 1-25 presents the mass properties buildup parametrics. These may be used to develop mass
properties summaries for this vehicle type over the applicable range of main impulse propellant

loading.

1.2.2.8 Intermediate Common-Stage LO2/MMH-

This point design is applicable to the geosynchronous satellite maintenance sortie (GSMS) mission.

The configuration inboard profile as drawn (Figure 1-26) was sized to be applicable to the GSMS
mission; performance analysis using the mass properties developed for the point design resulted in
tailored sizing for this mission as reported in Volume 1. Table 1-13 presents a detailed mass
properties estimate for the point design as drawn: Mass properties parameter variations about the
nominal point resulted in scaling equation factors shown on Figure 1-27. The boiloff mass rate was

estimated on the basis of cryogenic tank surface area and typical insulation performance.

Figure 1-27 presents the mass properties buildup parametrics. These may be used to develop mass
properties summaries for this vehicle type over the applicable range of main impulse propellant

loading. 40
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Table 1-8. Single Stage LO2/LH2 OTV Weight Details Small Size Single Burn Point Design D

(LBM) (XG)
Structure and Mechanisms (2,740) (1,240)
Body Shell 920
Fuel Tenk 680
Oxidizer Tank 420
Thrust Structure 130
Stage/Payload Interface 370
Secondary Structure 220
Landing Gear =
Main Propulsion {1,200} {550)
Main Engines 400
Accessories 140
Pressurization & Vent 260
Propetlant System 330
Gimbal System 80
Auxilisry Propulsion (220) (100}
Thrusters 80
Tanks 10
Pressurization & Vent 50
Propellant System 80
Avionics {400) (180}
Nav Guid & Control 160
Data Management 4 130
Communications 60
Instrumentation 50
Rendez & Docking -~
Electricel Power (340) {150)
Fuel Celis 80
Batteries 50
Tankage 10
Processing & Contrcl ' 40
Wiring Harnesses 150
Tharmal Contro} (330) (150)
Main Tank Insulation 170
fnsulation Purge -
Equipment Control 50
Base Protection 50
Paint & Sealer 60
Weight Growth (16%) (780) (350}
Total Tank Dry Weight 6,010 2,720

1EF-217
D Based upon 29,500 kb (65,000 ibm) iinpulse propellant ’
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Table 1.9 1-1/2 Stage LO2/LH2 OTV Weight Details Point Design—Main Stage (Sheet 1) [1>

{LBM) (KG)
Structure snd Mechanisms {4.090) {1,860)
Body Shell 970
Fuel Tank 1.040
Oxidizer Tank 480
Thrust Structure 350
Stage/Psyload Interface 660
Secondary Structure 590
Landing Gear -
Main Propulsion {4,110) (1.870)
Main Engines 2,000
Accessories 480
Pressurization & Vent 540
Propeliant System 850
Gimbal System 240
Aunxiliary Propulsion (850) (380)
Thrusters 360
Tanks 210
Pressurization & Vet 110
Propeliant System 170
Avionics {600) (270)
Nav Guid & Control 160
Data Management 160
Communications 70
Instrumentation 170
Rendez & Docking 40
Electrical Power (770} (350}
Fuel Cells 200
Batteries 120
Tanksge 110
Processing & Control 140
Wiring Harnesses 200
Thermal Control (1,220) (550}
Main Tank Insulstion 750
Insulation Purge 130
Equipment Control 150
Base Protection 110
Paint & Sealer 80
Weight Growth {15%) {1,750) (790)
Total Tenk Dry Weight 13,390 6,070

1EF-220
D Based upon 33,660 kg (74,000 'bm) impulse propeliant in main stage
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Table 1-9. 1% Stage LO,/LHz OTV Weight Details Point Design — Drop Tanks (Sheet 2)

(LBM) (KG) (LBM) (KG)
Structure and Mechanisms (2.730) {1.240) (1,900} (860)
Body Shell 630 460
Fuel Tank 860 410
Oxidizer Tank 360 220
Thrust Structure - -
Stage/Payload interface 850 660
Secondary Structure 30 150
Landing Gear - -
Main Propulision (320) (140) (240) (110)
Main Engines - -
Accessories - -
Pressurization & Vent 100 70
Propellant System 220 170
Gimbal System - -
Auxiliary Propulsion - -
Thrusters - -
Tanks - -
Pressurization & Vent - -
Propeliant System - -
Avionics (60) (30} (50) {(20)
Nav Guid & Control - -

Data Management - -
Communications - -
Instrumentation 60 50
Rendez & Docking

Electrical Power (40) (20) (30) (10)
Fue! Cells - -
Batteries - _
Tankage - -
Processing & Control - -
Wiring Harnesses 40 30

Thermal Control (360) (160) (300) (140)
Main Tank Insulation 330 280

Insulation Purge -
Eguipment Control —
Base Protection _

Paint & Sealer 30 20
Weight Growth (15%) (520) (240) (370) (170)
Total Tzirk Dry Weight 4,030 1,830 2,890 1,310

. IEF-221
D Values are for one tank containing 38,100kg {84,000 ibm) impuise prop. Two tanks required

D Values are for one tank containing 15,900kg (35,000 Ibm) impulse prop. Two tanks required
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Table 1-10. Common Stage LO/LH2 OTV Weight Details Large Size Point Design [1>

1st Stage 2nd Stage
(LBM) (KG) (LBM) (KG)
Structure and Mechanisms {8,470) (3,840) {8,830) {4,000)
Body Sheli 1,940 2,160
Fue! Tank 3,270 3,270
Oxidizer Tenk 1,470 1,470
Thrust Structure 460 280
Stage/Payload Interface 900 1,000
Secondary Structure 430 650
Landing Gesr - -
Main Propulsion (4,270} {1,940} (3,100} (1,410)
Main Engines 2,130 1,070
Accessories 560 280
Pressurization & Vent 460 460
Propeliant System 640 1,060
Gimbal System 480 240
Auxiliary Propulsion {510} (230} (810) (370)
Thrusters 240 300
Tanks 70 260
Pressurization & Vent 50 50
Propeliant System 150 200
Avionics (500) (230) (520) (240)
Nav Guid & Control 160 160
Data Management 160 160
Communications 70 70
Instrumentation 70 90
Rendez & Docking 40 40
Electrical Power {640) {290) {800) {360)
Fuel Cells 160 160
Batteries 80 80
Tankage 30 160
Processing & Control 70 70
Wiring Marnesses 300 330
Thermat Control (1,220) (550) {1,460) {660)
Main Tank insulstion 640 880
tnsulation Purge 120 120
Equipment Control 150 150
Base Protection 200 200
Paint & Sealer 110 110
Weight Growth (15%) (2,340) (1,060} {2,330) {1,060}
Total Tank Dry Weight 17,950 8,140 17,850 8,100

IEF-219
D Based upon 82,100 kg {181,000 !bm) impulse propellant in each stage
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Table 1-11. Common Stage LO2/LH2 OTV Weight Details Medium S:ze Point Design D

D Based upon 36,700 kg (81,000 ibm) impulse propellant in each stage

63

1st Stage 2nd Stage
(LBM) (KG) {LBM) (KG;
Structure and Mechanisms (3,580) (1,760} (4,140) (1,880)
Body Shel! 910 1,050
Fuel Tank 1,240 1,240
Onxidizer Tank 550 550
Thrust Structure 260 160
Stage/Payload Interface 580 680
Secondary Structure 340 460
Landing Gear - -
Main Propulsion (2,550} {1,150) {(1,940) (880)
Main Engines 1,000 500
Accessories 320 160
Pressurization & Vent 590 590
Propetlant System 440 590
Gimbal System 200 100
Auxiliary Propulsion (410) i190) (680) (310)
Thrusters 160 200
Tanks 40 230
Pressurization & Vent 60 60
Propeliant Systein 150 190
Avionics (500) (230) (500} (220}
Nav Guid & Control 160 160
Data Management 160 160
Communications 70 70
Instrumentation 70 0
Rendez & Dccking 40 40
Electrical Power (510} {230) (700) {320)
Fuel Cells 160 160
Batteries 50 50
Tankage 30 210
Processing & Control 90 90
Wiring Harnesses 180 190
Thermal Control (850) (380} (1,000) 1450)
Main Tank Insulation 390 540
insulation Purge 130 130
Equipment Control 150 150
Base Protection 100 100
Paint & Sealer 80 80
Weight Growth (15%) {1,310) (600) (1,340) (610)
Tota! Tank Dry Weight 10,010 4540 10,300 4670
1EF-215
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Table 1-12. Common Stage LO2/MA’H OTV Weight Details Large Size Point Design D

1st Stage 2nd Stay 2
(LBM) (KG) {(LBM} (KG)
Structure snd Mechanisms (4,900} {2,220) (5,140) (2,330)
Body Sheil 1,100 1,310
Fuel Tank 1,110 1,110
Oxidizer Tank 1,110 1,110
Thrust Structure 550 310
Stage/Payioad Interface 640 750
Secondary Structure 390 550
Landing Gear - -
Main Propulsion (6,700) (3.040) (4,550) (2,060)
Main Engines 2,950 1,460
Accessories 650 320
Pressurization & Vent 1,090 1,090
Propellant System 1,310 1,380
Gimbal System 600 300
Auxiliary Propuision (570} (260) (890) (400)
Thrusters 180 240
Tanks 90 270
Pressurization & Vent 80 160
Propeliant System 220 220
Avionics (580) {260} (580) (260)
Nav Guid & Control 160 16C
Data Management 160 160
Communications 70 70
Instrumentation 150 150
Rendez & Docking 40 40
Electrical Power (850) (390) £1,050) (480)
Fuel Cells 200 200
Batteries 140 140
Tankage 30 200
Processing & Controt 110 110
Wiring Harnesses 370 400
Thermal Control (660) {300) {740) (340)
Main Tank Insulation 250 330
Insulation Purge 80 80
Equipment Control 160 150
Base Protection 100 100
Paint & Sealer 80 80
Weight Growth (156%) 140 {970) {1,940) {880)
Total Tank Dry Weight 16,400 7,440 14 390 6,760

D Based upon 136,500 kg (301,000 Ibm) impulse propeliant in each stage IEF-214
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Table 1-13. Common Stage LO2/MMH OTV Weight Details !edium Size Point Design [1>

1st Stage 2nd Stage
(LBM (KG) {LBM) (KG)
Structure and Mechanisms (3.400) (1.542) (3.830) (1,740)
Body Shell 1,100 1,310
Fuel Tank 510 510
Oxidizer Tank 590 590
Thrust Structure 280 280
Stage/Payload Interface 580 680 -
Secondary Structure 340 310
Landing Gear - 150
Main Propulsion {2,860) (1,297) {1,980} {900)
Main Engines 1,140 570
Accessories 320 190
Pressurization & Vent 410 410
Propeliant System 510 570
Gimbal System 480 240
Auxiliary Propulsion {460} (209) {790} (360)
Thrusters 160 210
Tanks 40 ’ 240
Pressurization & Vent RO 160
Piopeliant System 180 180
"Avionics (500} (227) {500) (220)
Nav Guid & Control 160 160
Data Management 160 160
Communications 70 70
Instrumentation 70 70
Rendez & Docking 40 40
Electrical Power (510) (231} (700) (320)
Fuel Cells 160 160
Batteries 30 60
Tankage 30 210
Processing & Control 90 90
Wiring Harnesses 170 200
Thermal Control (620) (.81) (720} (220)
Main Tank Insulation 260 360
insulatior Purge 70 70
Equipment Control 150 150
Base Prote~tion 70 70
Paint & Sealer 70 70
Weight Growth (15%) {1750) (567) (1,280) 1580)
Total "~k Dry Weight 9,600 4,355 9,800 4,450

IEF-216
D Based upon 51,77 ~ x4y /114,000 lbm) impulse propeitant in «ach stage
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1.2.2.9 Nuclear LHy OTV Point Design

This print design is applicable to the following missions:
®  Geosynchronous Space Station (GSS)

®  Orbiting Lunar Station (OLS)

®  Lunar Surface Base (LSB)

®  Manned Planctary Exploration (requires ciostering and multistaging)

The configuration inboard profile as drawn (Figure 1-28) was sized to be applicable to the GSS
mission; performance analysis using the mass properties developed tor the point design resulted in
tailored sizes for all applicable missions as reported in Volume 1. Table 1-14 presents a detailed mass
properties estimate for the point design as drawn: Mass properties parameter variations about the
nominal point resulted in resulting scaling equation tactors snown on Figure 1-29. The boiloftf mass

rate was estimated on the basis of civogenic tank surlace area and typical insulation performance.

Figure 1-29 presents the mess propertizs buildup parametrics. These may be used to develop mass
£ I ) L
properties summaries for this vehicle type over the applicable range of main impulse propellant

loading.

1.2.3 Low Thrust OTV’s

Recent studies of electric propulsion have emphasized solar photovoltaic panels as a source of
electric power. Solar electric propulsion system (SEPS). aided by a chemical rocket boost to Earth
escape. were shown to have significant potential for ditficult mterplanetary missions such as
cometary intercepts. More recently. SEPS vehicles have been :tudied for use as low orbit to
geosynchronous orbit tugs. They are expected to cxperience problems operating in the high tlux
regions ot the van Allen radiation beits due to decradation of solar cells. Accordingly. studies of
SEPS systems have emphasized chemical propulsion to a SEPS initiation altitude ot about 13 000
km (7015 nm). For transfers trom low Earth orbit to synchronous orbit or lunar orbit. however, the
transfer to 13 000 km (7015 nm) represents roughly 70 percent of the mussion AV. This reduces the
benefit of the high specific impulse performan:e of SEPS. In this study. for those missions requiring

delivery of large pavioads. nuclear-electric tugs and sclar-thermal SEPS have been considered.

1.2.3.1 Performance Characteristics of Electric Propulsion for Orbit Transfer
Efectric propulsion systems are characterizod by two myjor ditferences from high-thrust chemical or

nuclear systems:
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Table 1-14.  Nuclear LH., OTV Weight Derails Point Design [7

(LBM) {KG) (LBM) (XG)
Structure and mechanisms {24,820) {11,260)
Body shell 1,410
Fuel tank 21,080
Oxidizer tank —
Thrust structure 800
Stage/payload interface 230
Secondary structure 600
Landing gear —
Main propulsion (31,950) (14,490
Main engine 25,800
Shielding 4,000
Pressurization and vent 880
Propellant system 500
Gimbal system 770
Auxiliary propuision { 1,360} {62u)
Thrusters 360
Tanks 540
Pressurization and vent 1o
Propetlant system 350
Avionics (570) (260)
Nav guidar - and control 160
Data manayement 160
Communic.tions 70
'nstrumentation 140
Rendez and docking 40
Electrical power ( 800} (360)
Fue! cells 160
Baitertes 50
Tank . 210
Processing and control 90
Wiring harnesses 290
Thermal control { 3,240) ( 1.470)
Main tank insulation 1,860
Insulation purge 180
Equipment control 150
Base protection _
Paint and sealer 50
Weight growth (15%) [> ( 5,540 (2,510
Total stage dry weight 68,280 30,970
IEF-333

D Based upon 100,000 KG (220,000 L.BM) impuise propeilant.
(> Weight growth 15% of dry weight less main engine.
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1. Jet velocity (Isp) is not limited by temperature or propellant energy because the propellant is
accelerated by electrostatic or electromagnetic body forces on the propellant fluid. Thus any

Isp within the practical range of interest (1000-10,900 sec) may be obtained.

2. Attainable *hrust level is limited to comparatively low values by limits on available power. The
equivalent power in the jet is NT pe where N is thruster efficiency, typically in the range 0.3

to 0.8, and p, is electrical power input to the thruster.

Jet power may be exprzssed as pj = mu:/l and thrust as f = mu. Thus pj = fu/2 and =2 pj/u.
Typical values are:

100 watts

24 500 m/sec (Isp = 2500)

=
il

u

Then thrust is 81.6 newtons = 18.4 Ib. Assuming a 5077 thruster efficiency and hence 2 megawatts
electric power. and power generation system mass of 20 kg/kw, (44 Ib/kw,), the power generation
mass is 40 000 kg (88,000 Ib) and the upper limit on acceleration (f/m) is 0.002 m/sec-. about 2 x
104 g’s. The Earth’s gravitational acceleration is 9.8l m/sec= (32.18 ft/sec=) at sea level and 0.22
m/sec2 at geosynchronous orbit . . . always at least 100 times the acceleration available from tie

electric propuision system.

Under these conditions the effect of electric propulsion is to slowly perturb the space vehicle orbit
from its starting condition to some end condition. Thrust is generally applied continuously. For
high thrust systems. instantaneous velocity changes (impul ‘ve maneuvers) with unpowered coasting
orbits between maneuvers provide a good approximation for flight mechanics analysis. In contrast,
tor low thrust maneuvers. it is 5 good approximation to consider the thrusting force as a vanishingly

small perturbing force on a path represented by relationships for unpowered orbits.

As an example. consider the approximation of the equivalent delta V for increase in altitude of a

circular orbit (without plane changes) by electric propulsion.

The energy of a circular orbit is F = -um/2r where u is the gravitational potential and r is orbit

radius. If the orbit is perturbed.
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By conservation of energy. the rate of change of energy is equal to the rate of doing work by the

perturbing force. The latter is

.d_Ez F.dé = Fv .—_dm uv

dt dt dt

where dm/dt is mass flow rate of the thruster, u is effective jet velocity, and v is orbit velocity.

Equating energy rates,

dm v =m&_ dr
a VT Mow gy

Cancelling di’s provides a differential equation. Invoking now the circular orbit condition (in effect

saying that the perturbing thrust is vanishingly small),

2 A . _ A
ve= + ZVdV = "adr
solving for dr, dr = -..vrde/p. Substituting in the above energy eauation.

=mA [-2Vridv
uy = m<=. v’ d)
dmuv 2r* A )

Simplifying,

when integrated, the result is the classical rocket equation with AV replaced by the difference in
orbit velocities. Therefore, the equivalent delta V for a low thrust coplanar ascent is approximately
the difference in orbit velocities. As a numericai example. consider orbit transter between a 500 km
(270 n mi) orbit and a geosynchronous orbit, without plane change. The high thrust delta V
(impulsive) is a Hohmann transfer at 3 817 m/scc (12.523 ft/sec) whereas the low-thrust delta V is

1538 m/sec (14,888 ft/sec).

This type of analysis was extended in the FSTSA study to find the appropriate AV to synchronous
orbit, with a plane change, for low-thrust propulsion. One suggested steering law employs a circular
coplanar ascent, for which the AV was shown to be approximately V| - Va (the difference in orbit
velocities), followed by a continuous thrusting plune change with 909 yaw or pitch angles
alternating evory half orbit. Tie AV is casily shown to be #/2 y Vo where y is the plane change in
qadians. For an initial orbit at 500 km altitude (270 n mi) (r = 6 878 km) and 28-1/2 degrees

inclination. Vi is 7 612 m/sec. Vais 3 075 m/sec, (19.323 n mi) and the total delta Vis 4 538 +

£o
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2403 = 6 941 m/sec (21,300 ft/sec). Alternative more efficient values on the order of 6 500 m/sec

(21.300 ft/sec) have also been suggested with no specific steering law specified.

It should be recognized that if discontinuous thrusting and a very long trip time are acceptable,
delta V's as low as about 4 200 m/scc (13,780 ft/scc) could be achieved by approximating the
impulsive maneuvers with many short thrusting periods. Trip times would be at least 6 to 8 times

longer than with continuous thrusting and therefore gen.rally unacceptable.

There are excellent reasons to believe that the continuous thrusting law stated above is inefficient.

The present investigation has indicated a better one of the form
R=tan'(x r sin )

where 8 is angle along the orbit path. measured trom a point 909 from the node. ris instuntaneous
orbit radius, @ is a constant sclected to give desired total plane change. and 8 °s viaw thrusting angle.

3/

(Note that if 6 is measured from e node. the law is = tan! (a r3/2 cos 8). Pitch thrusting angle is

always zero. Note that this law puts most of the plane change at higher altitude.

This steering law results in quite large yaw angles at higher altitudes. Typical yaw profiles are shown
in Figure 1.2-1. Delta V versus plane change is shown in Figure 1.2-2. For the reference case
described above. ideal AV is approximately § 775 m/sec (18,950 ft/sec). Prosently for FSTSA
analyses, an orbit transfer AV requirement of 6 000 m/sec (19.685 ft/sec) is being used. allowing 27
for flight performance reserves and 1.9 for thrust vector losses. Self-powered operation tor power
satellite transfer includes an additional 10% for thrust vector losses associated with gravity gradient

torques.

It 1s cautioned that this steering law may not be practical for some vehicles in view of the farge yaw

angle requirement.

A comparison with optimal transfers for relatively high starting altitudes indicates this steering law
to be near optimal (Figure 1.2-3). With low starting altitudes. there should be some advantage to
allowing the orbit to pass through an elliptic phasc. a condition excluded by assumption in the

above analysis. Low starting altitude optimal data were not available for comparison,

Parameterization of vlec propulsion systems is guite complex even for a fixed mission delta V,

since nonlinear relationships among several parameters are invoived:

-
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Specific impulse

Thruster/power processor efficiency

Power generation specific power
Relationship of delivery and return payloads

Trip time

Size of the power generation system

A provisional approach follows; improved techniques are in work.

1. Stuhlinger and others have shown that the optimum specific impulse for power limited systems

u= vcct

where a is specific power of the propulsion system in watts of jet power/Kg, t is total (round) trip

is approximated by

time in seconds, and u is jet velocity in m/sec. Ghosh and Huson (AlAA 69-275) give an equation:
2[Cu-Nu ] _ t
— - =&
u AV 2
for optimum specific impulse; the factor in brackets is roughly unity for cases of practical interest
so that this equation is not markedly different than the Stuhlinger equation. Neither of these
equations consider variation of thruster efficiency with Isp or differences in delivery/return

payloads. The Stuhlinger equation is plotted in Figure 1.2-4.

The optimum Isp plot serves as a guide to Isp selection. Valid reasons often exist not to use the

optimum; the following data do not depend on the selected Isp being optimum.

The factor u, mass ratio of initial mass to final mass, is given by
AV
AL=XP\C

where AV is ideal AV and u is jet velocity, equal to g Isp where g is 9.8066 m/sec (32.174
(ft/sec2). A typical mission for an electric OTV is a trip from a 500 km (270 n mi) orbit at 28-1/2
degree inclination to a 35 786 km (19,323 n mi) geosynchronous orbit at 0° inclination. The
required ideal delta V is approximately 6 000 m/sec (19,680 ft/sec) using a plane change thrusting

law described previously. Figure 1.2-5 shows u versus propulsion Isp for this delta V.
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Ghosh and Huson also srovide a time equation, it can easily be shown to be:

g = (DT M,
2 Mo

where ¢ is specific mass in KG/watt of jet power and M l/M(j is ratio of payload mass plus propulsive
stage mass to propulsive stage along mass. This equation is plotted in Figure 1.2-6 with {M/Mg

expressed in kg/kw.

The following example is provided: Suppose an ascent payload of 38 950 kg (85.900 1b) and a
return payload of 7 600 kg (16,800 Ib) are desired. Further suppose that the specific mass of the
propulsion system is 60 kg/kw and that a round trip time of 160 days is desired. As a preliminary

estimate, ascent and return trip times of 110 days and 50 days may be estimated.
From Figure 2.1-4, Isp = 1550 sec
From Figure 1.2-5, u = 1.47

From Figure 1.2-6, { M|/Mg for return trip is about 75.

The propulsion system mass is M, = (—————————XMl ) M,
S
_ 9 _ (1600) = 30 400kq (67,0001b)
- 15-60

The propellant for return is (- 1) mj
= .47 (30 400 + 7600) = 17 860 kg (39,400 1b)

The total ascent payload includes return propcllént and is therefore equal to 56 810 kg (125,243
Ib). The value for ascent & M{/Mq is 172 and ascent trip time is 110 days from Figure 1.2-6. The
total initial mass includes ascent propellant and is 130 950 kg (288,500 1b).

1.2.3.2 Nuclear-Electric Tug Concept
During the July NASA/Boeing working session, discussions were held with Mr. John Stearns of JPL
on the subject of nuclear-electric tugs (NET’s). Sizing and performance estimating data were

obtained as reflected in the analyses described below.
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Argon MPD Thruster—Experiments at Princeton have vsed argon magneto plasmadynamic (MPD)
devices to create plasmas for plasma physics experiments. Analyses of similar devices used as
thrusters indicates that desirabie performance characteristics may be obtainable. Table 1.2-1

indicates representative target values:

These performance figures have not been confirmed by test, but are judged to be reasonable when

associated with a system like the NET requiring a major development effort.

Reactor Power Generation Systems—The reactor design approach. suggested by Mr. Steamns,
employs a high temperature, fast spectrum reactor cooled by heat pipes. Either thermionic or high

temperature Brayton conversion systems are potentially practical.
Reactor core assumptions are given in Table 1.2-2,

Power and efficiency budgets are given in Table 1.2-3 and 1.2-4 for the thermionic and Brayton

systems.

The thermal power and efficiency assumptions were used to derive the reactor parametrics shown in
Figures 1.2-7 and 1.2-8. Figure 1.2-9 illustrates the fuel form concept for the thermionic system

including heat pipe. Dimensions shown are representative.

The thermionic system requires only a single active loop, for heat rejection. The cycle concept is
shown in Figure 1.2-10. Also shown is the Brayton cycle schematic with a primary liquid metal loop
coupled to the typical closed Brayton cycle. Radiator area requirements are shown in Figure 1.2-11.
Itis anticjpated that the Brayton cycle system will require emergency heat removal radiator in the
primary loop. The emergency heat removal is required only to handle after-heat and the radiator

could be quite simall.

Gamma shield dimensions are given in Figure 1.2-12. For the Brayton system the gamma shield
encloses the entire primary loop to minimize radiation from neutron activation of the primary loop
fluid. Figure 1.2-13 shows outer gamma shield specific mass assuming 100 g/cm3 (205 1b/ft2)
shielding. The gamma shielding is intended to allow unimpeded manned operation around the NET
with the reactor shut down. The shielding allowance is a rough estimate; the manned operation
assumption was arbftrary but appears reasonable for the intended mission use. Very little neutron
shielding is provided; the unshielded standoff distance for manned operations with the reactor at

full power will be on the order of 10 km (5.4 n mi).
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Table 1.2-1. Performance of Hypothetical
MPD Thruster

Specific impulse — 2,500 seconds  (jet velocity is
24,500 m/sec; 80,400 ft/sec)

Efticiency - 45%
Specific mass — 0.1 kg/kw (0.22 Ib/kw)

size — 105 m3/kw (3.5 x 104 #3/kw) for 1 megawatt

and larger

Power - 200 voits DC

Propellant feed pressure — 1 atm or less

1EF.83

Table 1.2-2. Reactor Performarce Assumptions

Thermal power density 25 mw/m3 . (0.708 mw/ft3)
Mass density 7,500 kg/m3 (470 1b/t3)
Reactor life 30,000 hrs
Maximum heat pipe length 1.2m (3.94 1)
Heat pipe diameter 1cm (0.4in.)
Heat pipe spac:ng (hex pattern) 2cm (0.8in.)
Heat pipe heat exchanger

Heat transfer area 91 m2/m3 (27.74 ftzlfts)
Heat pipe temperature 1,600 K (2,420°F)
Neutron reflector thickness 20 cm {(7.9in.)

|EF-84

Table 1.2-3. Thermionic Power Budget

OF Pogp QU

96

Efficiency Power in megawvatts

Thermal power 15.6 39 78

to .15

DC power 2.34 5.85 11.7

to .95

conditioned power 2.22 5.5 1

to 45

beam power 1 25 5

Overall efficiency = 6.4%
1EF-88
R ISINAL, oG 1o
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Table 1.2-4. High Temperature Brayton Power Budget

Efficiency Power in megawatts
Thermal power 1.27 18.2 36.4
to 35
shaft power 2.55 6.37 12.73
to 97
AC power 2.47 6.18 12.36
to .90
conditioned power 2.22 5.5 1.1
to A5
beam power 1 2.5 5

Overall efficiency = 13.7%

1EF.88
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Specific mass estimates for other items are given in Table 1.2-5 and 1.2-6. The Brayton power
processing mass is greater than that tor thermionics because AC/DC conversion is required. The
thermionics radiator is estimated heavier per unit area because it includes a complete liquid loop;

the Brayton gas radiator includes gas inventory and containers.

A mass growth allowance of 25% was applied for connecting structure. auxiliary propulsion,
avionics, controls, and unidentified items. The completed specific mass estimates, excluding main

propellant tankage, are shown in Figure 1.2-14.

Performance and Design Point Selection—These specific mass estimates were used to develop the
performance estimates shown in Figures 1.2-15 and 1.2-16. Mass of main propellant tankage was
estimated as 5% of the imain propellant (argon) required. Since all the power generation systems

were similar in specific mass, average values were used for the performance calculations.

The geosynchronous space station delivery mission requires delivery of 61 000 kg (135,000 1b). The
2 megawatt (jet power) tug can perform this delivery in about 75 days, or can deliver the entire

station as a single payload in about 110 days.

Reactor disposal can be accomplished by sending the NET to solar system escape (no payload).
Propellant required for the 2 MWj NET is 120000 kg (265.000 Ib): this requirement sizes the
propellant tank. 2 MWj with a single-ended reactor and high temperature Brayton cycle was
arbitrarily selected for a point design, The double-ended thermionic system is essentially equivalent
in performance; a tradeoff beyond the scope of the FSTSA study would be required to make a

selection. Design data are sum:arized in Table 1.2-7,

The point design is shown in Figures 1.2-17 and 1.2-18. A mass estimate for this point design is

provided in Table 1.2-8.

1.2.3.4 Solar Thermal Electric Tug Concept

Solar electric tugs (SEPS) have received considerable attention for a variety od missions. The SEPS
vehicl.s studied have generally used solar photovoltaic conversion, but this restricts system
operations to altitudes above the intense portions of the van Allen belts because of radiation

degradatica of the solar calls.
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Table 1.2-5. Thermionics Mass Items

kg/kwi tb/kwj

Thermionics heat exchanger and 15 33
generator
Heat rejection loop (radiator @ 4.42 9.74
30 kwyh /m2 and 10 kg/m2)
Power processor 1.5 33
Thrusters 0.1 0.2

Total 75 16.5

1EF-94

Table 1.2-6. Brayton Mass Estimate _

kg/kwj Ib/kwj

Primary loop 1.3 29
Turbomachines and generators 49 10.8
Heat rejection loop (radiator @
13 kwyp/m2 and 7 kg/m2) 26 5.7
Power processor 3 6.6
Thrusters 1 2

Total 11:9 26.2

EF-95

Table 1.2.7. Net Point Design Data

Reactor thermal power 14,600 kw
Reactor diameter 1.2m (3.93 ft)
Electric power 4,940 kwe
Inert mass 67,600 kg {149,000 1b)
Radiator area 750 m2 (8,073 12)
IEF-96

DRIGINAL PAGE I
OF POOR QUALITY
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Table 1.2-8. Nuclear-Electric OTV Mass Estimates

STRUCTURES & MECHANISMS
BODY STRUCTURE
PROPELLANT TANKS
SECONDARY STRUCTURE
MAIN PROPULSION
ELECTRIC THRUSTERS
PROPELLANT FILL, DRAIN, VENT & FEED

AUX(LIARY PROPULSION
THRUSTERS
TANKS
PRESSURIZATION & VENT
PROPELLANT SYSTEM

AVIGNICS

ELECTRICAL POWER
REACTOR, REFLECTOR, & CONTROLS
PRIMARY LOOP & HEAT EXCHANGERS

TURBOGENERATOR & RECUPERATOR
OUTER GAMMA SHIELD
MAIN RADIATOR & SUPPORT STRUCTURE

GENERATOR COOLING LOOP
POWER PROCESSOR

FOWER PROCESSOR COOLING LOOP
POWER DISTRISUTION

AUXILIARY POWER (FUEL CELLS & BATT‘RIESJ

THERMAL CONTROL
CONTINGENCY
TOTAL DRY MASS

KG LB
DRY MASS 84,700 142,560
UNUSABLE MAIN 2,400 5,300
PROPELLANT
UNUSABLE AUXILIARY 326 720
PROPELLANT
ELECTRICAL POWER . 450 990
REACTANTS
BURNOUT MASS 87,875 149,570
MAIN PROPELLANT® 120,000 264,600
(MAXIMUM CAFACITY)
AUXILIARY PROPELLANT 2,950 6,500
GROSS MASS 190,826 420,670

KG LB
3,100 6,800
1,600 3,500
1,000 2,200
500 1,100
700 1,540
200 440
500 1,300
$30 1,160
165 360
130 - 200
75 160
160 350
260 670
47,000 103,600
10,200 22,500
2,600 5,700
9.800 21,600
11,500 25,360
5,250 11,600
250 550
6,000 13,200
250 550
200 440
950 2,100
1,110 2,450
12,000 26,450
64,700 142,560

* MAIN PROPELLANT LOAD
VARIES WITH MISSION.
CAPACITY SELECTED TO
ALLOW DISPOSAL OF SPENT
VEHICLE TO SOLAR SYSTEM
ESCAPE,

IEF—-109
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Figure 1.2-14. Overall Specific Mass 1EF.97
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Figure 1.2-16. Nuclear Electric Tug Mass Requirements (lsp = 2 600 Seconds)
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This problem could be avoided in principle if a thermal concentrator/heat engine electric tug were
used; a “Solar Thermal Electric Propulsion System,” STEPS. A STEPS .concept was briefly
investigated for cargo delivery from low Earth orbits to geosynchronous orbits. Preliminary analyses

indicated a jet power of about 1 megawatt might be suitable.

Sizing was based on the efficiency budget estimate of Table 1.2-9 leading to a pair of 60 m (197 ft)
dishes for collectors. Table 1.2-10 shows the mass estimate and the estimating basis. Figure 1.2-19

shows the configuration concept.

The use of argon MPD or ion thrusters is assumed. with an Isp ot 2500 sec. The argon tank shown is
sized for 85000 kg (187.000 Ib) payload up to geosynchronous orbit with zero down. Figure
1.2-20 shows up trip time for the baseline system versus payload. assuming an up trip delta V of

6 000 m/sec (19,680 ft/sec).

The STEPS vehicle shown is believed to be compatible with launch and assembly in orbit by the
shuttle. Orbit decay due to air drag will limit operations to altitude of 500 km (270 n mi) and
above; even at 500 km, an orbit trim will be required every 10-30 days to avoid excessive decay.
Figure 1.2-21 shows the STEFS vehicle adjacent to the Shuttle: Figure 1.2-22 illustrates an assembly
operation. At present, it is unclear whether an assembly support vehicle (as illustrated) would be
required. The concentrator panels are sized to fit in the Shuttle payload bay. They are molded to
paraboloidal sector shape on a .precision mold, fabricated from graphite epoxy face sheets and
aluminum honeycomb core. The reflective face is aluminum coated. Each panel is adjustable for

collimation.

1.2.4 Lunar Transport Vehicles
The lunar transport vehicles (LTV) differ from the orbit transfer vehicles (OTV) in that they require
structural and functional accommodations for lunar landing. These include landing iegs structure for
- crew egress, payload support payload handling, and avionics and software. Whereas the OTV’s are
mated to the crew transfer vehicles (CTV) by docking structures. the LTV’s are fixed to the
crew/equipment modules (CEM). A thrust-to-weight ratio of 0.3 was selected for the parametric
analysis. It is assumed that the guidance, navigation and primary communications and power
componenis are in the crew/equipment module rather than the LTV. All the LTV’s are considered

applicable to the three manned lunar missions (ILSS. OLS. znd LSB).
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Table 1.2-9. Solar/Thermal Electric Propulsion System (STEPS)

Power snd efficiency budget
Efficiency Power per Total
module (kw) | (kw)
Solsr flux 3,818 7,636
to 0.85
snergy in cavity 3,245 8,489
to 0.89
thermal power 2,888 8,778
to 0.40
shaft power 1,156 2,310
to 0.98
electric power 1,132 2,264
to 0.95
conditioned power 1,076 2,161
to 0.45
jot power 484 068
IEF-101

Table 1.2-10. Solar/Thermal Electric Propulsion System
Mass Estimate, Less Propellant System

Reflectors Skg/m?  28,300kg (2)
Cavity 0.3 kg/kwt 1,750 kg (2)
Turbogenerator 1.5 kg/kwe 3,400 kg (2 sets)
Radiator 2.5 kw/kwe 5,700 kg
Power conditioner
and thrusters 2.6 kg/kwe(c) 5,600 kg
Structure less tanks 2,000 kg
APS 50C
Avionics 500

47,750
Contingency (20%) 9,550 kg

57,300 kg

= 60 kg/kwj
IEF-102
P POOR QU
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RADIATORS

DISHES ARE ASSEMBLED IN ORBIT

Figure 1.2-19. Two-MWe Solar Thermal Electric Tug
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Figure 1.2-20. Baseline Solar Thermal Electric Tug
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Figure 1.2.21 STEPS Vehicle Adjacent to Shuttle
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1.2.4.1 Shuttle Compatible Single-Stage LO3/LH7 LTV Point Design

The configuration inboard piofile as drawn (Figure 1.2-23) was sized to be applicable to the OLS
mission; performance analysis using the mass properties developed for the point design resulted in
tailored sizes for all applicable missions as reported in Volume 1. Table 1.2-11 presents a detailed
mass properties estimate for the point design as drawn. Mass properties parameter variations about
the nominal point resulted in the scaling equation factors shown in Figure 1.2-24. The boiloff mass

rate was estimated on the basis of cryogenic tank surface area and typical insulation performance.

Figure 1.2-24 presents the mass properties buildup parametrics. These may be used to develop mass
properties summaries for this vehicle type over the applicabie range of main impulse propellant

loading.

1.2.4.2 Large Diameter Single-Stage LOy/LH) LTV Point Design

The configuration inboard prefile as drawn (Figure 1.2-25) was sized to be applicable to the OLS
mission; performance analysis using the mass properties developed for the point design resulted in
tailored sizes for all applicable missions as reported in Volume L. Table 1.2-12 presents a detailed
mass .propcrties estimate for the point design as drawn. Mass properties parameter variations about
the nomiaal point resulted in the scaling equation factors shown in Figure 1.2-26. The boiloff mass

rate was estimated on the basis of cryogenic tank surface area and typicul insulation performance.

vigure 1.2-26 presents the mass properties buildup parametrics. These may be used to develop mass
properties summaries for this vehicle type over the applicable range of main impulse propellant

ling.

1.2.4.3 1% Stage LO2/LH3 LTV Point Design

The configuration inboard profile as diawn (Figure 1.2-27) was sized to be applicable to the OLS
mission; performance analysis using the mass properties developed for the point design resuited in
tailored sizes for all applicable missions as reported in Volume 1. Table 1.2-13 presents a detailed
mass properties estimate tor the point design as diawn. Mass properties parameter variations about

the nominal point resulted in the scaling equation factors shown it Figure 1.2-28,

Figure 1.2-28 presents the mass properties buildup parametrics. These may be used to develop mass
properties summuaries for this vehicle type over the applicable range of main impulse propellant

loading.
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1.2.4.4 Single-Stage LO2/MMH LTV Point Design

The configuration inboard profile as drawn (Figure 1.2-29) was sized to be applicable to the OLS
mission; performance analysis using the mass properties aeveloped for the point design resulted in
tailored sizes for all applicable missions as reported in Volume 1. Table 1.2-14, presents a detailed
mass properties estimate for the point design as drawn. Mass properties parameter variations about

the nominal point resulted in scaling equation factors shown in Figure 1.2-30.

Figure 1.2-30 presents the mass properties buildup parametrics. These may be used to develop mass
properties summarics for this vehicle type over the applicable range of main impulse propellant

loading.

1.2.4.5 1'% Stage LO»/MMH LTV Point Design

The configuration inboard profile as drawn (Figure 1.2-31) was sized to be applicable to the OLS
mission; verformance analysis using the mass properties developed for the point design resulted in
tailored sizes for all applicable missions as reported in Volume 1. Table 1.2-15 presents a detailed
mass properties estimate for the point design as drawn. Mass properties parameter variations about

the nominal point resulted in scaling equation factors shown in Figure 1.2-32.

Figure 1.2-32 p -:sents the mass properties buildup parametrics. These may be used to develop mass
properties summaries for this vehicle type over the applicable range of main impulse propellant

loading.

1.2.5 Crew Vehicles
Parametric mass data were developed for three types of crew vehicles: a crew transport vehicle. a

direct-entry Apollo-shape crew vehicle. and a crew and equipment module for lunar missions.

1.2.5.1 Crew Transport Vehicle (CTV)
The CTV is applicable to short-duration crew transfer missions such as geosynchronous orbit or
lunar orbit crew rotation. It includes an optimal emergency 400 m/sec (1.300 ft/sec) propulsion

systent. needed for lunar crew rotation missions.

Parametric mass data are shown in Figures 1.2-33 and 1.2-34. Values shown are not cumulative:i.e..
total mass is derived by summing indicated masses for inert, crew and reserves, propellant. and
consumables mass. The CTV's were assumed 4.4m (14-1/2 ft) diametc for compatibility with

shuttle launch to orbit.
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Figure 1.2-23 Single Stage LOa/LHy LTV Configuration (Sm Dia) Point Design [>
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Table 1.7-11. Small Diameter Single Stage LO2/LH2 LTV Weight Details Point Design [T

{Lbm) (Kg)
Structure and mechanisms (7,950) 3.606
Body shell 2,100
Fuel tank 1,030
Oxidizer tank 440
Thurst structure 450
Stage/payload interfaces 1,020
Secondary structure 210
Landing gear 2,700
Main propulsion {1,850} 839
Main engines 880
Accessories 180
Pressurization and vent 300
Propeliant system 360
Gimbal system 130
Auxiliary propulsion (490) 222
Thrusters 180
Tanks 150
Prassurization and vent 50
Propellant system 100
Avionics [T (240 (109)
Nav. guid and control 80
Data management 40
Communications -
Instrumentation 120
Rendez and docking )
Electrical power b (340) (154)
Fuel cells 852
Batteries 0
Tankage
Processing and control 1_80
Wiring harnesses
Thermat control (830) (376)
Main tank insulation 70
Insulation purge 40
Equipment control 30
Base protection 30
Paint and sealer 20
Waight growth (15%) _{1.760) (798)
Total stage dry weight 13,460 6.105

Based upon 32,200 kg (71,000 ibm) impuise IEF177

propellant
Remainder in crew:/equipment module
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Table 1.2-12. Large Diameter Single Stage LO2/LH2 LTV Weight Details Point Design [T

{Lbm) (Kg)
Structure and mechanisms (9,410) 4,268
Body shell 3,490
Fuel tank 780
Oxidizer tank 550
Thurst structure 310
Stage/payload interfaces 1,330
Secondary structure 730
Landing gear 2,220
Main propulsion (2,060) (934)
Main engines 880
Accessories 180
Pressurization and vent 360
Propellant system 510
Gimbal system 130
Auxiliary propulsion (490) (222)
Thrusters 180
Tanks 160
Pressurization and vent 50
Propellant system 100
Avionics [Z>> (240) (109)
Nav. guid and contro! 80
Data management 40
Communications -
Instrumentation 120
Rendez and docking -
Electrical power [2>> (340) {154)
Fuel cells 80
Batteries 50
Tankage 30
Processing and control -
Wiring harnesses 180
Thermal control {930} {422)
Main tank insulation 810
Insulation purge 40
Equipment control 30
Base protection 30
Paint and sealer 20
Weight growth (15%) (2,020) (916)
Total stage dry weight 15,490 (7,026)

[T==> Based upon 32,200 kg (71,000 1bm) impulse
propellant

Remainder in crew/equipment module
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Figure 1.2-28.  Sheet 3
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Table 1.2-13. 1-1/2 Stage LO2/LH2 LTV Weight Details Point Design

Main stage b Orop tank D
{Lbm) (Kg) (Lbm) {Kg)
Structure snd mechanisms (5,970) (2,708) (2,650) {1,202)
Body shell 1,460 670
Fuel Tank 600 770
Oxidizer tank 310 360
Thrust structure 280 -
Stage/payload interface 950 800
Secondary structure 280 50
Landing gear 2,090 -
Main propulsion (1,570) (712) (810) {367)
Main engines (2) 720 -
Accessories 140 -
Pressurization and vent 260 340
Propellant system 340 470
Gimbal system 110 -
Auxilisry propulsion (520) (236} -
Thrusters 200 -
Tanks 170 -
Pressurization and vent 50 -
Propellant system 100 -
Avionics (240) (109) (70) (32)
Nav., guid and control 80 -
Data management - -
Communications - ~
Instrumentation 120 30
Rendez and docking 40 40
Electrical Power (340) (154) (110) {50}
Fuel cells 80 -
Batteries 50 50
Tankage 30 -
Processing and control - -
Wiring harnesses 180 60
Thermal control (760) {345) (340) (154)
Main tank insulation 640 290
Insulation purge 40 30
Equipment control 30 -
Base protection 30 -
Paint and sealer 20 20
Weight growth (15%) (1.410) (640) {6C0) (272)
Total stage dry weight 10,810 4,903 4,580 2,077
1 Based upon 11,300 kg(24,800 Ibm) impulse propeilant VEF-175
[> Remainder in crew equipment module mm PAGE IS
D Based upon 25,100 kg (55,400 Ibm) total LTV impuise propellant OF POOR QUALITY
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Table 1.2-14. Single Stage LO2/MMH LTV Weight Details Point Design [T

(Lbm) {Ka)
Structure and mechanisms (6,650) (3,016)
Body shell 1,730
Fuel tank 470
Oxidizer tank 470
Thurst structure 460
Stage/payload interfaces 1,020
Secondary structurs 200
Landing gear 2.300
Main propulsion (2,040) (925)
Main engines 840
Accessories 170
Pressurization and vent 510
Propellant system 380
Gimbal system 140
Auxiliary propulsion (540) (245)
Thrusters 200
Tanks 180
Pressurization and vent 50
Propeilant system 110
Avionics b (240) (109}
Nav. guid and control 80
Data management 40
Communications -
Instrumentation 120
Rendez snd docking -
Electrical power [7>> (330} (150)
Fuel cells 80
Batteries 50
Tankage 30
Processing and control -
Wiring harnesses 170
Thermal control {480) (18)
Main tank insulation 370
Insulation purge 30
Equipment control 30
Base protection 30
Paint and sealer 20
Weight growth (15%) (1,540) (699)
Total stage dry weight 11,820 5,362
D Based upon 32,200 kg (71,000 1bm) impulse 18r178
propetlant
Remainder in crew/equipment module
ORIGINAL PAGR 18
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Table 1.2-15, 7-1/2 Stage LO2/MMH LTV Weight Details Point Design

Main stage [T— Drop tank P
‘Lbm]) (Kg) {Lbm) {<g)
Structure a7id mechanisms (5.480) (2,486) (2,490) {1,129)
Body shell 910 680
Oxidizer tank 340 480
Thrust structure 310 48Q
Stage/payload interface 950 -
Secondary structure 390 800
Landing gear 2,240 50
Main propulsion {(1,490) {676) {570) (259}
Main engines (2) 790 -
Accessories 150 -
Pressurization and vent 200 270
Propellant system 220 300
Gimbal system 130
Auxiliary propulsion {530) {240) —
Thrusters 200 -
Tanks 170 —
Pressurization and vent 50 -
Propellant system 110 -
Avionics [ (240) (109) (70) (32)
Nav., guid and control 80 _
Data management 40 -
Communications - -
Instrumeritation 120 30
Rendez and docking - . 40
Electrical Power [> (330) (150) {100) (45)
Fuel cells 80 -
Batteries 50 50
Tankage 30 -
Processing and control - _
Wiring harnesses 170 50
Thermal control {320) (145) {420) (191)
Main tank insulation 210 360
Insutation purge 30 40
Equipment control 30 _
Base protection 30 -
Paint and sealer 20 20
Weight growth (15%) {1,260) (572) (550) (249)
Total stage dry weight 9,650 4,377 4,200 1,905
[£=> Based upon 16,500 kg (36,400 Ibm) impuise propellant IEF-174

D Remainder in crew equipment module

[> Based upon 38,700 kg(85,300 Ibm) total LTV impulse propeliant
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Figure 1.2-32.  Sheet 3
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1.2.5.2 Direct-Entry Vehicle
Mass parametrics for an Apollo-type direct entry vehicle, capable of geosynchronous altitude or

lunar retumn direct entry, are shown in Figure 1.2-35.

1.2.5.3 Crew and Equipment Module (CEM)

The CEM is similar to the CTV except that much longer missions are considered and it does not
include a propulsion system. The CEM is not capable of controlled flight on its own: it must be
attached to a propulsion vehicle (usually lunar lander). Mass parametrics are shown in Figures

1.2-36, 1.2-37, and 1.2-38.

1.2.6 Satellite Energy Systems

All of the orbit transfer vehicles described in paragraphs 1.2.2 and 1.2.3 are potentially applicable
to power satellite orbit transfer, if separate-power transfer is used (see discussion of Satellite Energy
Systems. section 3.10. in Volume 1), and to crew transfers to and from geosynchronous orbit. Crew
transfer requirements are not well understood at present. Satellite module self-powered orbit
transfer presently seems to be the most attractive method. If this is adopted. it leads to a unique
propulsion system. not generally applicable to alternate uses. A concept of such a system is

described in section 3.10. Volume L.
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1.3 SUBSYSTEMS ANALYSES

Subsysiems analyses resulted in the technology assumptions and choices stated in paragraph 1.1.2

D180-19201-2

of this volume. and in the subsystems descriptions in Volume I. Most of the subsystems choices

were established on the basis of study precedeﬁt or prior use on existing systems or in earlier

studies. These choices are summarized in Table 1.3-1.

A tradeoff was conducted to evaluate existing versus advanced technology for auxiliary propulsion.

An advanced O)/H7 APS system was evaluated for the LO2/LH2 OTV. The schematic is shown in

Figure 1.3-1. Tanks are initially filled with liquid propellants and then thermally pressurized to

maintain a nominal working pressure of 1.4 Mn/M2 (200 psia). The temperature equalizing cooling

jacket on the thruster assures gas delivery to the combustion chamber. with the two gases at

approximately equal temperatures, maintaining mixture control. Pumps and accumulators are

assumed not required. The following assumptions were made:

Isp

Mixture Ratio
Pressurization
Residuals

Thrustors

LO>/LH»
400

4.5
Thermal

20%

Comparison results are as follows:

Impulse Propellant
Tanks

Thrusters

Press and Vent
Propellant Feed
Residuals and Reserve
Endburn mass
Effective inert

mass (includes

1/3 of impulse
propellant)

LO2/LH>
kg
1622
285
163
27
159
34¢
974
1515

Equal mass

153

N2H4

220

Monopropellant

GHe

10%

N-Hy4

kg b

2948 6.500
132 290
163 360

73 166

159 350
327 720
854 1,830

1 837 4,047



Table 1.3-1 Subsystems Selections

8T qOvd 'IVNIQM

ALITVAd "ood 4o

A

Vehicles oTV B LTV
LO,-LH, Lo,MmH]  nuc LO,/LH, LO,/MMH
1% Stage | 1Stage | 1 Stage 1% Stage 1% Stege
1 Stage sage f‘fn:'“" LHy | Elec. [442m |B.23m 1 Stage
Subsysterns Core | Tanks {(14% feet} (27 feet)| Core | Tank Core | Tank
ftem Alternatives
Structures & mechanism

Integral - % X X X X X X X X X X
Main tenks suspended X X X
Body shel) Aluminum skin-stringer X X X X

Composite honeycomb X X X X X X X X X X
Dacking International standard X X X X X X X x X X X X X

wecialized = ===

Main propulsion
High pressure ambient He X X X
o Cold H_ & heat axchanger MMH MMH | MMH

Pressurization e 0, 0 o

Engine tap off X X X 2 X x X X 2 2

Flash boiling X

Auxiliary propuision

Hydrazine X X X X X X X X X X x
Propeilant Bipropellant storable

0/H,

Staridird GNAE package X x X X x |I[B> «x X x x X
Optional GN&C equipment

Star tracker X X X X X X

Sun sensor X X X X X X X X X X X

Landmark tracker X X X X X

Horizon senso- X X X X X X

Radar altimeter X X X X X
[ Tanks rotate into position atter docking [ stage-tostage b Low-thrust software required IEF-491

¢-T10Z6T-08T4
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The LO)/LH> system is lighter by 322 kg (710 1b.), as compared to an effective stage inert mass of
about 20 000 kg (44,000 1b.). This small savings was considered not to be sufficient valuc to justify

the risk and cost of the advanced system.

LH, FILL
PRESSURE SWITCH
SHUTOFF VALVE
Hy HEATER N
THRUST
CONTROL
eLECTRIC | POWER Lo, FILL VALVES
PRESSURE SWITCH
.
SHUTOFF VALVE TYPICAL
THRUSTER
<]
' TEMPERATURE
ECUALIZING
COOLING
| JACKET
1EF.492

Figure 1.3-1. Advanced LOy/LH5 Auxiliary Propulsion Schematic
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1.4 COST ANALYSES

Cost analyses were based on the Boeing PCM methodology described in Section 2.3 of Volume L.
Results of the cost analyses were used to develop the higher level model reported here. Figure 1.4-1
~diagrams the procedure for buildup of costs using high level CER’s. The CER’s are shown in Figure
1.4-2. The CER’s include off-the-shelf (OTS) and modified existing hardware (MOD) factors for
DDT&E flight hardware developnient cost estimates as defined for the point estimates used to
develop the CER’s Plot points shown on the CER plots are point estimates developed by the PCM

model for the various vehicles studied - they are not historical experience points.

Mass properties statements used as inputs to costing by this model will generally include an
unallocated mass contingency. Representative historical cost growth is included in the CER’s; they
correlate experienced cost with experienced system element mass. The mass contingency allowance
in the mass properties statements is based on historical experience and is applied to identified mass
properties to project aciual experience mass properties. s cost equivalent must therefore be
reflected in the cost statement. Sheet 14 of Figure 1.4-2 can be used to determine the percent of

DDT&E and it cost totals that should be added in as cost equivalent of the mass contingency.

1.4.1 Cost Element Definitions

Progrum Management—This element includes that etfort relating to the technical and business
management of the Program. It includes the contractor’s effort of directing and assuring that
approved plans are implemented by the responsible organizations: and controlling the program in a

cost-effective and technically excellent manner.

Specific areas of effort are:

Planning and Controls

Finance Management

Configuration Management

Data Management

Facility Coordination

Personnel Training and Certification
System Engineering and Integration—This clement includes the activities directed at assuring a
totally integrated engineering effort. It includes the effort to estublish system, subsystem. GSE and
Test requirements and criteria. to define and integrate technical intertaces to optimize total system

definition and design. to allocate performance parameters to the subsystem level. to identify. define
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and control interface requirements between systews elements, to monitor design and equipment to
determine CEl compliance, to provide and maintain system mass properties analyses, support and
documentation, to develop and maintdin system specification to provide parts, standards and
materials and processes surveiilance and to integrate product assurance activities. Fundamental to
“this WBS element is the documentation of system-level design requirements as derived from
ASA-established requirements and guidelines and through functional analyses.

Specific areas of effort are:

System Design and Integration

Configuration

Flight Hardware Requirements

Operations Requirements

GSE Requirements

System Test Requirements

Mass Properties

Interfaces

Materials. Processes, and Standards

Product Assurance

Service and Maintenance Requirements

Software--This element includes the costs of the design, development. production. checkout.
maintenance and delivery of computer software. Included are test. on-board and mission or flight

software.

GSE—This element includes the costs to design, develop. fabricate, assemble. test, and deliver all
ground support equipment. Also included under GSE are mockups and simulators where required.
Cost of development of test procedures and reports associated with the acceptance and qualification

of GSE are included.

Flight Hardware—This element includes the costs to design, develop. fabricate. assemble, and test all
flight article subsystems, the assembly of these subsystems and the test and checkout of the flight
article. Included are the costs associated with all test nrocedures and reports preparation and the
Quality Control inspection effort. Also included are costs of operation/test-unique support
equipment (including factory support and special test equipment). and the vost of handling and

transportation of items between operation/test locations.



D180-19201-2

Ground Test Hardware—This clement inciudes the cost of enginecring liaison, fubrication, assembly
and test of ground test hardware. Ground test hardware includes the static. dynamic, theraal und

firing (if required) test articles. Excluded is engineering subsystem design eftort.

_Flight Test Hardware—This element includes the fabrication, assembly 2nd checkout of the flight

test vehicle(s) including spares to support the test.
Test Labor--This clement is the manpower to conduct the ground and flight tests.

Tooling—This element includes (a) initial and (b) production (it required) tooling jigs.and tixturcs.
Initial tooling is that needed to fabricate and assemble the test hardware and first unit. This is
“soft” tooling. Production tooling is **hard” tooling designed for repetitive use in fabricating and
assembling recurring nroduction units. Production tooling inctudes sustaining and replenishment

tooling.

Spares—This element includes the costs of developing and documenting requirements for. and the
tabrication, assembly, test, storage. delivery. and accountability of spare components, asseniblies. or
subsystems to be used as test. production or mussion support spares. kxcluded are production

spares. such as fasteners. electronic parts, ete.

DDT&E (Non-Recurring Cost)—This element consists of ihe “‘one-time™ cost of designing,
developing, testing, and evaluating an item. Specifically it includes: development engineering and
develorment support. major test hardware. captive and ground test. flight test. ground support
equipment, tooling and special test equipment: manufacturing, test, mission control or launch site
activation (if required), initial spares and other program peculiar costs not associated with repetitive

production.

First Unit Cost (Recurring Cost)—This is the {irst production-contigured flight or mission article in a
hardware production program. If there is only one designated tlight or mission article in the
program. this would be called the first unit as differentiated from any developmental hardware such
as a prototype. First unit cost is that cost associated with producing the first flight or mission article
through acceptance of the hardware by the government and “wcludes all costs associated with: (1)
the fabrication, assembly and checkout of flight or mission hardware. (2) ground test and factory

checkout of flight or mission hardware.

NOTE: Initial spares are priced in DDT&E and cover the support of the first unit: additional spares
would be a function of a production program for the vehicle and would be mcluded in recurring
production costs for spares. Maintenance of tooling und special test equipment would also be part

of production recurring costs.
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2.0 METHODOLOGY NOTES

2.1 WEIGHT GROWTH PREDICTIONS FOR FUTURE
SPACE TRANSPORTATION REQUIREMENTS

- The following presents an examination of the weight growth approach applied to Future Space
Transportation Systems Analysis (FSTSA) requirements. The information presented responds to an
action item levied at the October 24 working-session review of FSTSA by the NASA study
management team. Parameters that affect weight growth, past weight histories, and the current stzte
of future space-mission design are discussed. Weight growth factors of from 10 pércent to 41
percent have been derived for various missions or vehicles as currently *~fined in the FSTSA study.
The growth percentage to be used depends upon the probability desired for not exceeding the

selected weight growth.

2.1.1 APPROACHES TO WEIGHTS GROWTH PREDICTION

With few exceptions (Mariner Mars *71 and smaller Earth satellites), positive weight growth has
always been present in aerospace programs. Values from the start of the program definition phase
(phase B) range from 8.7 percent (Saturn SIC) to 57.0 percent (Apollo lunar module) for recent
programs. In the case of aircraft, boosters, and missiles, weight growth has been accommodated by
increased propellant and thrust to maintain constant performance. However, the high energy
requirements of future space missions, high costs of major desigr changes, accuracy of weight
prediction required for shuttle payloads, and traffic model analyses motivate accurate prediction of

expected weight grbwth for each possible space mission.

Past weight growth studies have taken one of two approaches. One is to chart growth versus time
for known vehicles and average the data. If the historical vehicles are closely correlated with the
vehicle (and design phase) in question, this method gives an average and indicates some weight

extremities that may be encountered.

A more recent approach has been to consider as many applicable growth factors as possible and plot
them as cumulative distributions or frequency distr;butions. A ““probability-of-not-exceeding” value
is then chosen and applied to the expected wcight growth. This method was used to arrive at

expected space shuttle weight growth.

The raethod used in this st 'v “*<es both approaches. Vehicles used for growth data are correlated 23
to technology (airplanes, ...anned spacecraft, boosters, etc.), generation (first-of-the-line or

follow-on), and phase relationship (where in the piogram the weight estimate is made). In addition,
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new or expected technology advances not considered at the time of the mission studies used as
sources were analyzed for weight effects. Also, the amount of weight detail in the mission studies
was examined for possible omissions or overs.mplification. Adjustments to the expected weight

- growth arrived at by analytical/empirical means are identified.

Since the purpose of the FSTSA Study is to forecast future requirements, weight growth
“probabilities of rot exceeding” of 50% were used as indicative of most probable weight growth.
Higher confidence levels, up to 90%. are often used to match specific transportation systems to
specific requirements. Most probable growth is appropriate tc the general requirements predictions
of this study since the mission implementations are representative and are not firm system or Jesign

selections.

2.1.:.1 Definition of Weight Growth

Two factors have been generally applied to basic identified Wcights early in acrospace vehicle desiam.
These have been “contingency’ and/or “growth allowance.”” Contingency is the weight allowance
included for deficiencies in identified weight resulting from lack of detail in design definition.
Grox;/th allowance is the weight allotted for effects of ¢« .. hanges. “In-scope” growth is due to
changes required to meet original specifications and “out-of-scope” growth is due to specification
changes. (The term “margin’ often used in studies only applics to the difference between identified
weight plus contingency/growth and a delivery system capability.) Figure 2-1 shows a typical weight

history.

It is impractical to establish a precise separation between contingency and growth allowance weights
when analvzing past program weight histories. The weight growth allowance considered in this
study will include contingency, inscope growth, and out-of-scope growth, but it will n~. include

number of crew, major change in time ot mission, or other sizeable mission requirement changes.

2.1.1.2 Parameters That Atvect FSTSA Weight Growth

The following parzmeters affect the value of weight growth allowance that should be placed upon
FSTSA study_ missions or vehicles:

®  Type of spacecraft (manned. unmanned, rovers, ctc.)

®  Generation of the spacecraft

®  Program phase

®  Completeness of weight estimates us-d

L Remaining configuration options

®  Dusign definition completeness
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A first generation spacecrait is the first of its kind and. as such, would be expected to have a higher
weight growth han a second or third generation spacecraft such as ballistic entry vehicle or
propulsion stage. Most of the manned missions considered in the FSTSA study are first generation,

-although some second-generation vehicles are used.

With the possible exception of the space station and the space tug (1US or tug), the missions being

considered by FSTSA studies can be considered as at the start of program phase B.

In zeneral, the completeness and detail of weight estimates for past studies fall short of what is
desired. An exception is the Lunar Surface Base Study that included many weight details. Most of
the configuration options have been exercised in the studies to arrive 1t optimum subsystems.
considering state-of-the-art (SOA) technology development. Lower cost might dictate heavier
subsystems in some areas (metabolic supply): however, advancements in SOA not foreseen a! the
time of the mission studies may offset such considerations. An example is the large-scale integrated

(LSI) circuits now in development that will reduce weight. volume, and powc r requirements.

2.1.1.3 Past Weight Histories
Figurcs 2-2 through 2-6 show a summary of weight histories of acrospace vehicles that represens the
engineering technologies that will be involved in FSTSA missior vehicle designs. These are--

Jet aircraft

Transportation vehicles

Manned spacecraft

Unmanned spacecraft

New concepts

In general, weight histories show a rapid increase in estimated weight during phase B or early phase
C (design definition). Reported weight histories need to be evalvated with use of detailed weight
estimates from as carly in the program as possible. Since it is contingency-plus--rowth allowance
that is being examined. any such factors in the early weight hist iries used for empirical data must
be known. Most of the vehicles used for data in this study are Boeing products or Boei:ig evaluated
(Apollo Teciinical Evaluation and Integration Contract). The Boceing products have been used for
three reasons: (1) Detailed hisiorical weight data are readily available, (2) the vehicle designs span
the technologies applicable to FSTSA missions. and (3) the weight estimating procedures use fairly

consistent and rigorous methodology.
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Weight histories can be reviewed by several methods. Most commonly used are plots from a “‘start”
weight (start plots). This method was referred to by Rockwell in SD 70-155-1, “*Summary Report
for the Space Station Program.” A difficulty with these plots is that the start weight is generally
ambiguous- it may be a phase B weight, phase A, back-of-the-envelope, or a specification weight.
Unless the weights can be correlated to a common point in the design phase, no correlation can be

established.

L

Another method is to plot weight change backwards from an end date that can reflect a common,
final actual weight (end plois). These were used in figures 2-2 to 2-6. When plotted as a percent (X)
of final weight. the growth indicated at any point back in the program is (100-X)/X. For purposes
of this study. these plots were examined for possible regrouping of vehicles into common
populations for use as samples in program phase versus growth distribution plots. As an example, jet
airplaites indicated fair commonality regarding phases, with the exception of the Concorde. For this
reason. Concorde was put into the new concept category. although it could well be placed in either
category. The tunar orbiter was placed in both the new concept and unmanned spacecraft categories

and the Burner Il in booster and in unmanned spacecraft since it is designed for both roles.

Table 2-1 summarizes the result from review and correlation of the various past aevospace vehicles.

2.1.2 METHOD FOR DETERMINING FSTSA EXPECTED WEIGHT GROWTH

Common “‘start” dates have been chosen for cach historical program as end of phase A and end of
phase B. periods spunning those of the FSTSA missions design status. The growth of each of tne
vehicles in a given technology population is then plotted for growth trom phase A and from phase B
with each vehicle given equal rank in a distribution plot. Figure 2-7 illustrates the method. Plots for

each technology are shown on figures 2-8 and 2-9.

The FSTSA mission vehicle designs had to draw from the various acrospace disciplines represented
by these pest technologies. The next step in FSTSA growth analysis wis to assign a fraction of each
technology to the FSTSA design being evinuated and combine these into an FSTSA growth
distribution. This is illustrated in figure 2-10. Figure 2-11 shows the resultunt expected growth

distribution for the low Earth-orbit space station.

Similar plots were used for each FSTSA mission. A value ot probability-of-not-exceeding is chosen
to arrive at weight growth trom the program phase of the mission in question. This may be phase A,
phase B, or in between. For requirements-forecasting purposes, a 50 percent probability of not
exceeding was used.
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Table 2-1. Summary of Weight Growth

% GROWTH
ENDOF [ END OF
TECHNOLOGY PHASE A | PHASE B

JET AIRCRAFT UNMANNED SPACECRAFT

72722 14.7 23 MM 71 17 08

737-100 232 7.2 LUNAR ORBITER 9.6 27

74721 14.1 0.3 MM ‘69 13.1 74

XB-47 6.1 6.1 MVM ‘73 16.7 5.3

B-47A (1) 29 BURNER Il 20.8 14.0

B-478 (1) 39 LUNAR ROVER 27.6 20.0

XB-52 28 2.1

B-52A & 6.0

KC.135 . o5 | NEWCONCEPTS

CONCORDE 46.9 2.9

BOOSTERS SRAM 215 120

SATURN §-1C 8.7 8.7 IM-99A 25.4 31

SATURN S-11 19.5 19.6 HiBEX na2 -20

SATURN S-IVB 288 288 MERCURY 285 2.4

MM WING | 23.6 69 LUNAR ORBITER 9.5 1.3

BURNER II 21.0 12.8 X-20 68.0 33.0
MANNED SPACECRAFT

GEMINI 15.0 9.7

APOLLO CM 53.4 49.4

APOLLO SM 52.0 30.0

APOLLO LM 57.0 16.8

| -

185



981

[ 1% GROWTH (D) EXAMINE PAST PROGRAMS

PHASE 8 p— s @ CHECK PROGRAM VALIDITY
WEIGHT * IDENTIFY PHASE
CERTIFICATION ® IFY PHASES
- ’ (.____D_ﬁ_G_.S___] CORRELATED
WEIGHT (3) REMOVE IDENTIFIED GROWTH
GO-AHEAD HISTORIES
T (®) CATEGORIZE VEHICLES BY TECHNOLOGY
@ PLOT PROBABILITY DISTRIBUTION
FUNCTIONS FOR EACH CATEGORY
9 AND PROGRAM PHASE
100%
GROWTH FROM .
PHASE B START
DATA | GROWTH DISTRIBUTION PLOT
NOT (OF NINE VEHICLES HERE)
EXCEEDING
GROWTH
l AIRCRAFT
5 | .

% GROWTH

Figure 2-7. Vehicle Development and Weight History Evaluation and Derivation of Growth Distribution Plots

-10261-081d



(81

PERCENTAGE NOT EXCEEDING

100%

60%

40%

20%

JET
NEW
F -
AIRCRAFT CONCEPTS _ﬂ\/ -
— -
/
BOOSTERS ~ MANNED
7 SPACECRAFT
i 1 1 1 1 1 1 i

-10% 0 +10% 20% 30% 40% 50% 60%

WEIGHT GROWTH FROM PHASE B START

Figure 2-8. Past Program Growth Distribution

Z-10761-0814



<

881

PERCENTAGE NOT EXCEEDING

100%

80%

60%

40%

20%

JET
BOOSTERS MANNED
AIRCRAFT ] SPACECRAFT
l,
NEW I
CONCEPTS !
/
/
L. 1 i i 1 1 ] i
-10% 0 10% 20% 30% 40% 60% 60%

WEIGHT GROWTH FROM PHASE C START

Figure 2-9. Past Program Growth Distribution

Z-10261-081a



681

N

TECHNOLOGY
CONTRIBUTION

N

AIRCRAFT

D

BOOSTERS

APOLLO
SPACECRAFT

UNMANNED
SPACECRAFT

N

NEW
CONCEPTS

N

GROWTH

)

10%

40%

0

30%
=/

FSTSA STUDY
MISSION DESIGN

100%

PROBABILITY

o
R

Figure 2-10. FSTSA Mission Weight Growth Synthesis

FSTSA MISSION

EXPECTED WEIGHT
GROWTH VS PROBABILITY
FOR EACH DESIGN PHASE

PHASE A

WEIGHT GROWTH

T-10Z61-0810



06T

PROBABILITY OF NOT EXCEEDING

100%

80%

40%

0%

PHASE B
COMPLETED

75% o um s ow on m e s e s 5 e e e me oo o e e = e m» e - - - -

B09% o ow ww - - - - D S G I GED ST W GRS S

1 . i 1 1 i L

PHASE A
COMPLETED

0 10% 20% 30% 40% 50%
EXPECTED WEIGHT GROWTH

Figure 2-11. Expected Weight Growth for Earth Orbital Space Station (EOSS)

Z-T0Z61-081d



D180-19201-2

2.1.3 RESULTS

Table 2-2 shows the results for the major FSTSA missions or vehicles. Values of probability-of-not-
exceeding of 50 percent and 75 percent are shown. Note that a reasonable determination of the
program phase is necessary. The EOSS has essentially completed phase B, so 50 percent probability
weight growth of only 14.9 percent would be expected based solely on historical data. However, the
lack of design detail and detailed weight estimates in the EOSS reports indicates that a step further
back in the phase relationship may be necessary for weight-estimating purposes. If EOSS were at the
end of phase A (phase B start), a value of 33.2 percent would be found. An adjustment that splitg
the difference between phase A and B appears reasonable. Since the OLS is a direct derivation of

the EOSS, this approach was used for the OLS expected weight growth also.

Table 2-2. FSTSA Mission Expected Weight Growth

EXPECTED WEIGHT GROWTH
ASSUMED WITH 50% WITH 75%
MISSION PHASE PROBABILITY OF | PROBABILITY OF
COMPLETION NOT EXCEEDING | NOT EXCEEDING

EARTH ORBITAL SPACE STATION 1/28B 24% 32%
ORBITING LUNAR STATION 1/28 24% 32%
.LUNAR SURFACE BASE A 33% 37%
GEOSYNCH SPACE STATION A 33% 37%
SPACE BASE A 37% 41%
INDEPENDENT LUNAR SORTIE B 20% 27%
AUTOMATED LUNAR A 20% 26%
AUTOMATED PLANETARY A 20% 26%
SOLAR POWER STATION A 20% 24%
MANNED PLANETARY A 34% 38%
MANNED SPACE PROPULSION A

CHEMICAL A 15% 33%

NUCLEAR A 3% 36%
L IMANNED SPACE PROPULSION

CHEMIC/ L B 10% 19%

NUCLEAR A 19% 26%
MANNED LAUNCH VEHICLE A 27% 29%
UNMANNED LAUNCH VEHICLE B 12% 20%
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2.2 PERFORMANCE

Geosynchronous Missions, High Thrust OTV’s

Ideal impulsive delta V’s were based on transfers from a 28.75 degree 500 km (270 n mi) orbit to a
00, 35 786 km (19 323 n mi) orbit. Ideal delta V’s were computed using a simple point-mass Earth
with gravitational potential strength of | 398 601.2 km3/sec? (1.407596X1016€t3/sec2) and
equatorial radius of 6 378 km (20,925,000 ft). The perigee burn includes 2.25° plane change for an
ideal AV of 2,394 m/sec (7,854 ft/sec); the apogee burn includes 26.5 degrees plane change at 1,773
m/sec (5.816 ft/sec). Figure 2,2-1 shows sensitivity of the ideal delta V to starting altitude and
inclination. Actual delta V budgets included a nominal 100 m/sec (328 ft/sec) gravity loss on the
first burn, a total of 50 m/sec (164 ft/sec) for each rendezvous and docking, 10 m/sec (33 ft/sec)
ascent and return midcourse corrections. and small delta V’s for orbit wait and standoff maneuvers.
(Standoff is a separation and coast maneuver used to achieve a distance of several km between an
OTV and a service vehicle or facility prior to initiating main engine firing.) A flight performance

reserve of 2% of ideal delta V was applied to each mission.

Low Thrust OTV’s

Performance methods were discussed in paragraph 1.2.2.

?.unar Missions, High Thrust OTV’s.

Ideal impulsive delta V’s were based cn transfers from a 31.6 degree 528 km (285 n mi) Earth orbit
toa 11l km (60 n mi) polar lunar orbit. The selected Earth orbit has a repeating ground track and
its nodal regression is synchronized with the moon’s motion such that orbit/moon configurations
repeat every 2 lunar sidereal months (55 days). Non-symmetric transfers (90 hours translunar and
110 hours transEarth) provide a favorable mission profile in that a reasonable stay time at the moon
(15 days) is obtained with small plane changes at lunar orbit insertion and departure. The round trip

requires a total of 23% days. Principal ideal delta V’s are:

m/sec ft/sec
Transluna'lr injection (TLI) 3.115 10,219
Lunar Orbit Insertion (LOI) 915 3,001
TranSEarth Injection (TEI) 860 2,821
Eurth Orbit Insertion (EOI) 3,115 10,219
(total) 8,005 26,260
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Figure 2.2-1. Idea/ Delta V One-Way Geosynchronous Transfers
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Assigned additions were 100 m/sec (328 ft/sec) gravity loss for the TLI maneuver, 30 m/sec (9
ft/sec) for translunar and transEarth midcourse and coast, 50 m/sec (162 ft/sec) total for each
rendezvous and docking, 3 m/sec (10 ft/sec) for standoffs, and 2% of ideal delta V flight

performance reserve.

Lunar Landing, LTV’s
Lunar landing used a typical Apollo deltz V budget for descent from and ascent to a 111 km (60

n mi) circular lunar orbit. Principal delta V’s were as follows:

m/sec ft/sec
Powered Descent Initiation (PDD) 22 72
Braking 1,620 5,314
Landing 492 1,614
Ascent 1,846 6.056
Rendezvous & Docking 175 573
TOTAL 4,155 13.629

Other Missions
Delta V’s for manned and unmanned planetary missions were taken from various references. Delta
V’s for nuclear waste disposal missions were taken from NASA TMX 2911 ar calculated from

mission requirements.
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2.3 PROPULSION
PROPELLANT PERFORMANCE SUMMARY

PERFORMANCE ACHIEVABLE
PROPULSION SYSTEM PARAMETER BY DATE
1980 1990 2000

Liquid Boosters

O>+Ha, Isp vac. 455 458 4606
Isp S.L. 303 373 410
O>+RP-1, Isp vac. 340 354 362
Isp S.L. 270 285 320

O3z+Ho. Isp vac. N.A. 490 490
Isp S.L. N.A. 403 403

Chemical Space Engines

N204+A-50. Isp vac. 325 338 338
0>+RP-1, Isp vac. 305 362 362
O>+MMH. Isp vac. 359 366 366
FLOX + CHgy. Isp vac. 413 421 421
OF>+B~Hg,. Isp vac. 439 451 451
On+H», Isp vac. 453 462 462
Fa+Ha, Isp vac. 471 479 479
F2+N>Hg. Isp vac. 419 425 425
Fa+Li+Ho. Isp vac. 513 523 523
O>+Bo+H~. Isp vac. N.A. 552 552

Theoretical Kinetics Values (Ivac) at p. = 1500 psia and Ae = 200 supplied by Philip A. Masters of

Lewis Research Center

Propellant O/F Isave (kinetic)
Ha/F7 11.0 497.0
CH,4/Flox 5.5 438.3

(82.6% F»)

N204/A-50 20 354.0
MMH/O» 1.3 . 3836
OF»/BsHg 35 473.8
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CHAMBER PRESSURE: 500-1,500 PSIA
THRUST: 10,000-50,000 LBF

DELIVERED VACUUM SPECIFIC IMPULSE (LBF-SEC/LBM)

02+Be+H2

/ F2+Li+H2
03+H2
F2+H2
ME

OF2 + By Hg

FLOX + CHg

02 + MMH
02 + RP-1

//

© SRM

'S L o

50 100 150 200
NOZZLE AREA RATIO
1EF-4923

Figure 2.3-1. Chemical Space Engine Performance
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OXYGEN-HYDROGEN BOOST PROPELLANT CHARACTERISTICS

Oxidizer: Oxygen — O

Fuel: Hydrogen — Hj

Mixture Ratio: 6

Bulk Density: 22.54 1bs/ft3

Property O2 H
Molecular Weighit 32 2.0l6
Stored Density — lbs/ft3 71.3 4.42
Freezing Point — OR 97.8 24.8
Normal Boiling Point — ©OR 162.3 36.5
Stability Stable Stable

Performance Factors

Well developed technology for hydrogen oxygen engines has demonstrated specific impulse
efficiency of 96.3% for the 15,000 pound thrust RL-10. Booster thrust class hydrogen oxygen
engines such as the Shuttle main engine are expected to achieve approximatzly 97.6% specific

impulse efficiency.

Summary

Vacuum Specific
Date Engine Impulse Lbf-Sec/Lbm
1975 J-2 426
1975 SSME 455
1980 SSME 455
1990 New 458

2000 New 466
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Figure 2.3-2. Oxygen Hydrogen Boost Engine Performance
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OXYGEN-RP-1 PROPELLANT CHARACTERISTICS

Oxidizer: Oxyéen - 07

Fuel: RP-1 — H/C = 2.0

Mixture Ratio: 2.6

Bulk Density: 63.75

Property 0> RP-1
Molecular Weight 32 163
Stored Density Ibs/ft3 71.3 49.94
Freezing Point — OR 97.8 Below 420
Norma! Boiling Point — ©R 162.3 851.8
Stability Stable ‘ Stable

Performance Factors

The F-1 engine using oxygen and RP-1 propellants developed 90.2% vacuum specific impulse
efficiency. The gas generator cycle and low combustion efficiency contributed to the low specific
impulse efficiency. Use of a pre-burner cycle with reasonable combusion efficiency improvement

could provide 94.5% specific impulse efficiency.
Summary .

Vacuum Specific

Date Engine Impulse Lbf-Sec/Lbm
1975 F-1 305
1980 F-1 305
1990 New 362
2000 New 362
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Figure 2.3-3. Oxygen RP-1 Boost Engine Performance
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NITROGEN TETROXIDE--AEROZINE 50 PROPELLANT CHARACTERISTICS

Oxidizer: Nitrogen Tetroxide — N2O4

Fuel: Aerozine 50 — 50/50 Mixture of hydrazine —
N>Hy and unsymmetrical dimethylhydrazine —
(CH3)2 NoH»

Mixture Ratio: 2
Bulk density: 74.67 1bs/ft2
Property N->O4 A-56
Molecular Weight 94.016 41.8
Stored Density — Ibs/ft3 89.52 56.06
Freezing Point — 9R 471.5 478.5
Normal Boiling Point — ©R 529.8 6i7.9
~ Stabiiity Stable Stable at room

temperature

Pertormance Factors

Nitrogen tetroxide—Acrozine 50 propellants have been used for several primary propulsion and
reaction control engines. Specific impulse increases above current engines deper.d primanly on
operation oi higher pressures and thrusts. Ablative chamber materials iinprover ents to permit

higher pressures are needed to provide specific impulse gains.

Summary

Vacuum Specific
Date Engine Impulse Lbf-Sec/Lbm
1975 SPS 314
1680 New 325
1990 New 338
2000 New 338
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OXYGEN-MONOMETHYL HYDRAZINE PROPELLANT CHARACTERISTICS

Oxidizer: Oxygen — O

Fuel: Monomethyl hydrazine - (CH3) NoH3

Mixture Ratio: 1.3

Bulk Density: 62.91 Ibs/ft3

Froperty 0)) (CH3)N2H3
Molecular Weight 32 46.074
Stored Density — lbs/ft3 71.3 54.56
Freezing Point — OR 97.8 397.7
Normal Boiling Point — ©°R 162.3 649.7
Stability Stable Stable

Below SOO0OF

Performance Factors
The use of oxygen instead of nitrogen tetroxide as oxidizer for the hydrazine fuels provides
approximately 8% specific impulse increase. The performance expected fcr oxygen and methane is

the same as the oxygen monomethyl hydrazine.

Summary

Vacuum Specific
Date Engine Impulse Lbf-Sec/Lbm
1980 New 359
1990 New 366
2000 New " 366
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THRUST: 10,000-50,000 LBF
CHAMBER PRESSURE: 500-1,500 PSIA
PROPELLANTS: N,04 + A-50
MIXT:.RE RATIO: 2

SPECIFIC IMPU_GE EFFICIENCY: 0.945
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Figure 2.3-4. Nitrogen Tetroxide—Aerozine 50 Space Engine Performance

THRUST: 10,000-50,000 LBF

CHAMu =R PRESSURE: 500-1,500 PSIA
PROPELLA.!TS: O — (CH3) NaH3
MIXTURE RATIO: 1.3

SPECIFIC IMPULSE EFFICIENCY: 0.945
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Figure 2.3-5. Oxygen—Monomethy! Hydrazine Space Engine Performance
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FLOX—-METHANE PROPELLANT CHARACTERISTICS

Oxidizer: FLOX 82.6% Fy + 17.4% O

Fuel: Methane — CHg

Mixture Ratio: 5.5

Bulk Density: 63.54

Property FLOX CHg
Molecular Weight 36.88 16.042
Stored Density — Ibs/ft3 86.67 25.75
Freezing Point — OR 96.4 163.2
Normal Boiling Point — CR 154.9 201.2
Stability Stable Stable

Performance Factors

Flox methane testing conducted by Pratt and Whitney demonstrated high combustion efficiencies

and lower than expected kinetic losses.

Summary

Vacuum Specific
Data Engine Impulse Lbf-Sec/Lbm
1980 New 413
1990 New 421
2000 New 421
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OXYGEN DIFLUORIDE-DIBORANE PROPELLANT CHARACTERISTICS

Oxidizer: Oxygen Difluoride — OF»

Fuel: Diborane — ByHg

Mixture Ratio: 3.5

Bulk Density: 61.07 lbs/ft3

Property or» BoHg

Molecular Weight 54 27.69

Stored Density — lbs/ft3 94.8 27.2

Freezing Point — OR 88.9 193.8

Normal Boiling Point — °R 231.1 3253

Stability Slow Slow
Decomposition Decomposition

Performance Factors
Chamber cooling is 2 major development problem because fuel decomposition limits regenerative
cooling capability. Ablative or transpiration cooled chambers may be required. Low pressure

engines with low thrust have reduced efficiency due to kinetic losses.

Summary

Vacuum Specific
Date Engine Impulse Lbf-Sec/Lbm
1980 New 439
1990 New . 451
2000 New 451
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THRUST: 10,000-50,000 LyF

CHAMBER PRESSURE: 500-1,500 PSIA
PROPELLANTS: FLOX (0.826 F2 + 0.174 O2)-CHg
MIXTURE RATIO: 5.5

SPECIFIC IMPULSE EFFICIENCY: 0.95
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Figure 2.3-6. Flox—Methane Space Engine Performance
THRUST: 10,000-50,000 LBF
CHAMBER PRESSURE: 500-1,500 PSIA
PROPELLANTS: OFp—B2 Hg
MIXTURE RATIO: 3.5
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Figure 2.3-7. Oxygen Difluoride—Diborane Space Engine Performance
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OXYGEN-HYDROGEN PROPELLANT CHARACTERISTICS

Oxidizer: Oxygen — Oy

Fuel: Hydrogen — Hj

Mixture Ratio: 6

Bulk Density: 22.54 Ibs/ft3

Property 07 Hjy
Molecular Weight 32 2.016
Stored Density — 1bs/ft3 71.3 4.42
Freezing Point — ©R 97.8 24.8
Normal Boiling Point — °R 162.3 36.5
Stability Stable Stable

Performance Factors

Well developed technology for hydrogen oxygen engines has demonstrated specific impulse
efficiency of 96.3% for the 15,000 pound thrust RL-10. Booster thrust class hydrogen oxygen
engines such as the Shuttle main engine are expected to achieve approximately 97.6% specific

impulse efficiency.

Summary

Vacuum Specific
Date Engine Impulse Lbf-Se¢/Lbm
1975 RL-10 444
1980 New 453
1990 New 462
2000 New 462
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FLUORINE-HYDROGEN PROPELLANT CHARACTERISTICS

Oxidizer: Fluorine — F»

Fuel: Hydrogen — H»>

Mixture Ratio: 1

Bulk Density: 34.95 lbs/ft3

Property Fr Hp
Molecular Weight 38 2.016
Stored Density — lbs/ft3 93.96 4.42
Freezing Point — °R 96.4 249
Normal Boiling Point — OR 153.1 36.7
Stability Stable Stable

Performance Factors
Fluorine hydrogen engines provide the highest specific impulse available from stable bi-propellant

combinations. Low pressure engines with low thrust have reduced efficiency due to kinetic losses.

Summary

Vacuum Specific
Year Engine Impulse Lbf-Sec/Lbm
1980 New 471
1990 New 479
2000 New 479
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THRUST: 10,000-50,000 LBF

CHAMBER PRESSURE: 500-1,500 PSIA
PROPELLANTS: O2—-Ha

MIXTURE RATIO: 6

SPECIFIC IMPULSE EFFICIENCY: 0.965

SSME
2,970 PEIA CHAMBER PRESSURE
470,000 LBF THRUST

8

’L _’.—d

v L—]

RL-10

DELIVERED VACUUM
SPECIFIC IMPULSE
{LBF-SEC/LBM)

8
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NOZZLE AREA RATIO 1EF. 501

Figure 2.3-8. Oxygen--Hydrogen Space Engine Performance
THRUST: 10,000-50,000 LBF
CHAMBER PRESSURE: 500-1,500 PSIA
PROPELLANTS: Fa—Hp
MIXTURE RATIO: 11
SPECIFIC IMPULSE EFFICIENCY: 0.956
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Figure 2.3-9. Fluorine—Hydrogen Space Engine Performance
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FLUORINE-HYDRAZINE PROPELLANT CHARACTERISTICS

Oxidizer: Fluorine — F»

Fuel: Hydrazine — NoHg

Mixture Ratio: 2.2

Bulk Density: 81.23

Property Fr N-oHy
Molecular Weight 38 32.048
Stored Density - Ibs/ft3 93.86 62.68

Freezing Point — ©R 96.4 494.2

Normal Boiling Point — ©R 153.1 695.1

Stability Stable Stable

Performance Factors
Fluorine hydrazine specific impulse is maximum at approx:mately the stoichiometric mixture ratio

of 2.37. High flame temperatures indicate need for ablative chamber materials developments.

Summary

Vacuum Specific
Date Engine Impulse Lbf-Sec/Lbm
1980 New 419
1990 New 425
2000 New 425
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FLUORINE -LITHIUM-HYDROGEN PROPELLANT CHARACTERISTICS

Oxidizer: Fluorine ~ F
Fuel: Lithium — L;

Hydrogen — H»
Mixture Ratio: 53.19/Fj, 19.4% L;, 27.58% Hj
Bulk Density: 13.56
Property Fy L Hy
Molzcular Weight 38 6.941 2.016
Stored Density — lbs/ft3 93.86 33.1 4.42
Freezing Point — OR 96.4 813.9 249
Normal Boiling Point — °R 153.1 2862 36.7
Stability Stable Stable Stable

Performance Factors
Satisfactory combustion of this tripropellant was demonstrated by Rocketdyne under NASA

contract. Handling and maintaining lithium in the liquid state is feasible with current technology.

Summary

Vacuum Specific
Date Engine Impulse Lbf-Sec/Lbm
1980 New 513
1990 New 523
2000 New - 523
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THRUST: 10,000-50,000 LBF
CHAMBER PRESSURE: 500-1,600 PSIA
PROPELLANTS: Fy—NgH,
MIXTURE RATIO: 2.2

SPECIFIC IMPULSE EFFICIENCY: 0.96
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Figure 2.3-10. Fluorine—Hydrazine Space Engine Performance
THRUST: 10,000-50,000 LBF
CHAMBER PRESSURE: 500-1,500 PSiA
MIXTURE RATIO: 53.1% FZ' 19.4% Li, 27.5% Ho
SPECIFIC IMPULSE EFFICIENCY: 0.95
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Figure 2.3-11. Fluorine —Lithium—Hydrogen Space Engine Performance
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OXYGEN-BERYLLIUM-HYDROGEN PROPELLANT CHARACTERISTICS

Oxidizer: Oxygen — O3
Fuel: Beryllium — Be

Hydrogen - Hj
Mixture Ratio: 46.9% 09, 26.6% Be, 26.5% H;
Bulk Density: 14.6 1bs/ft3
Property 0, Be Hy
Molecular Weight 32 9.0122 2.016
Stored Density — lbs/ft3 71.3 57.69* 442
Freezing Point — OR 97.8 2792 24.8
Normal Boiling Point — ©R 162.3 5837 36.5
Stability Stable Stable Stable

*Taken as one-half solid density

Performance Factors
Satisfactory methods of handling beryllium have not been developed. Efficient combustion and

recovery of the available energy has not been demonstrated.

Summary

Vacuum Specitic
Date Engine Imr alse Lbf-Sec/Lbm
1990 New 582
2000 New 552
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THRUST: 10,000-50,000 LFB

CHAMBER PRESSURE: 500-1,500 PSIA
MIXTURE RATIO: 46.9% Oy; 26.6% Be; 26.5% Hz
SPECIFIC IMPULSE EFFICIENCY: 0.95
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Figure 2.3-12. Oxygen—Beryllium—Hydrogen Space Engine Performance

Table 2.3-1. Rocket Engine Comparison (From JSC Propulsion an.d Power Division)

r

Engine Oxidizer/ | Thrust vac. g::'l",:' ':'r‘::m Weight I:.';::’ Cycle
name fuel (ibf) (psia) ratio (ibm) {Ib¢Abe) time

H-1 LOX/RP-1 230,000 765 8:1 1,997 115.2 Gas generator
LR91-AJ3 LOX/RP-1 80,000 682 25:1 1,115 7.2 Gas generat.:
LR8-AJ3 | LOX/RP-1 344 400 587 8:1 2,704 127.4 Gas gerarator
F-1 LOX/RP-1 1,748,000 280 16:1 18,740 94:6 Gas w:nerator
F-1 LOX/RP-1 1,663,000 280 101 16,5687 100.3 Gas generator
LR91-AJS N204/A-50 100,000 827 492:1 1,041 96.9 Gas generator
LRB1-AJ11 N204/A-50 100,850 827 492:1 1,258 80.2 Gas generator
LR87-AJ5 N204/A-50 ' 474 500 790 8:1 3,792 125.1 Gas generator
LR87-AJ11 | NjO4/A-50 520,000 808 15:1 4,133 126.8 Gas generator
Agena IRFNA/UDMH 16,000 500 45:1 290 65.2 Gas generator
J2 LOX/ LH2 230,000 718 22:5 3.454 66.6 Gas generator
J2s Lox/ LH2 265,000 1,200 10:1 3.800 69.7 Gas tap
SSME LOX/LH, 470,000 | 3,000 7751 6,339 74.1 Staged comb
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JSC Propulsion and Power Division
Comments on Boeing Propulsion Data from April 7, 1975 memorandum
(2-5730-0000-139)

® The maximum chamber pressure reasonable with RP-1 regenerative cooling is limited
to approximately 2000 psia. This is caused by the very high coolant velccity and corresponding
pressure drop required to prevent coking the coolant tubes (need to keep the coola.t wall

temperature below 800 to 1000°F).

High pressure oxygen cooling has yet to be verified in this country. The bulk temperature rise must

also be maintained below a certain level to prevent oxidation with certain chamber materials.

In summary a significant amount of technology would be required to go beyond the 2000 psia

chamber pressure.

® If propellant cost is a significant factor O2/RP-1 should be considered for a space
engine application. While the O>/RP-1 combination has 2.6% iower performance than the OoMMH,
when one considers combustion kinetics and thrust chamber cooling, the actual delivered

performance difference is expected to only be approximately 1%.

@ A new man rated FLOX/CHg4 engine could not be available by 1980, 1985 would be a

more reasonable earliest availability.

® Because of problems such as: propellant cost, reusable chamber cooling, and reusable
turbo machinery, it is recommended that OF)/BoHg only be considered for small pressure fed

propulsion modules where long life and reusability is not required.

® A new man rated'Fz/Hg engine could not be available by 1980, 1985 wouid be a

more reasonable earliest availability.

® Because of the major unsolved problems associated with the handling, storage and
cost associated with ozone, it is recommended that the earliest O3/H7 engine availability would be

2000.

® A man rated F»/Li/Hy engine could not be available by 1980, 1990 would be a more

reasonable earliest availability.

® [t is very doubtful that a man rated O)/B~/Hy eny ne could be available by 1990,

2000 would be a more reasonable earliest availability.
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2.4 Aerobraking Analyses

Introduction and Background—The idea of return to a low Earth orbit {rom the moon or from a
high orbit, employing gradual dissipation of energy through a series of elliptic passes grazing the
Earth’s atmosphere, was originally suggested by Oberth in the 1920’. In 1971-72 this technique
was studied by Boeeing for application to the space tug under contract NAS8-27501. The principal
conclusions from that study were as follows:

®  The aerobraking mode is feasible for the return of the Space Tug tfrom geosynchronous and

other high orbit missions.

® The aerobraked Tug’s payload capability is maximized by missions having 25 to 35
atmospheric passages during t'ie aerobraking phase. This corresponds to return time 3 to 6

days.

The aerobraking kit to be added included aft heat shields. aerodynamic flares, sidewall insulation,

astrionics modifications and payload adapters.

More recentiy, in 1974, aerobrak’ng was studied by LMSC under contract NAS8-28586. This study
synthesized tailored aerobraking vehicles coniigured expressly for the shuttle-launched round trip

mission to geosynchronous orbit with aercbraking.

Performance Potential-The gains that might be achieved through aerobraking are substantial. For
example, representative AV budgets for all-propulsive and aerobraking geosynchronous round trips

from a 28-1/2°. 296 km (160 n.mi.) orbit as follows (table 2.4-1).

The indicated delta V savings for acrobraking is 2226 m/sec (7302 ft/sec). For a representative
space tug of 25 000 kg (55.000 Ib) usable propellant loading an- et velocity of 4.500 m/sec (Isp =
459), a round trip payload for propulsive return is estimated as 1 354 kg (2,985 1b). and for
aerobraking return 5 036 kg (11,110 Ib). The aerobraking return “‘payload™ includes aerobraking
hardware. This comparison is based on equcl propellant weight. Comparing on equal gross weight
requires that the propellant loading of the aerobraking stage be reduced to 22 200 kg (48,900 1b).
The payload becomes 4 416 kg (9,735 Ib), again including aerobraking provisions. These in the
referenced Boeing study totaled 975 kg (2,150 Ib) in a typical casc leaving a net round trip payload
of about 3 440 kg (7,585 Ib).

The 30-pass aerobraking mission requires about five days for return to low Ecrth orbit. The

radiation dose to a crewman in a typical crew transport module without added shielding, due to
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Table 2.4-1. Delta V's for Aerobraking

Propulsive Aerobraking
m/sec - ft/sec m/sec ft/sec
Transter injection (includes 100 m/sec g loss 2,547 8.536 2,547 8,536
and 2° plane changej
Ascent midcourse 10 33 10 33
Circularize (includes 26%° plane change) 1,787 5,862 1,787 5,862
Deorbit 1,787 5.862 1,844 6,050
(28%°
plane change)
Descent midcourse 10 33 10 33
Trajectory correction during braking passes 100 328
Circularize at 1680 nmi 2,447 _ 8,028 64 210
Total 8588 28,174 6,362 20,872

IE-3507

repeated passages through the van Allen belts. would be on the order of 300 rem (10 rem per orbit).
Roughly 1 000-1 500 kg (2.200-3.300 Ib) of shielding will be required to reduce this to an
acceptable level. The remaining useful payload. 1 940 kg (4.275 Ib) is not sufficient to provide for a
manned round trip to geosynchronous orbit. Enlarging the stage to about 30 000 kg (66.000 1b)
propellant foading will provide about 3 500 kg (7.700 Ib) net usetul payload, about enough for a
2-man round trip to geosynchronous orbit. The gross initial mass is about 40 000 kg (88.000 1b):

the system could not be launched fully fueled by the shuttle.

A satellite repair and service mission is likely to require a crew of four, plus 1 000 kg (2,200 ib) or
more equipment and spares. The 1 500 kg (3.300 ib) shieiding penalty still applies leading to a total
payload of 8 550 kg (18,850 Ib) including 1 000 kg (2,200 1b) for aerobraking. The required usable
propellant is about 41 000 kg (90.000 1b). The system gross mass is 54 000 kg (119.000 Ib). The
stage and payload will réquire two shuttle launches with possibly a thizd for propellant top-off.

Stage length is ubout 13.5 m (44 ft) witiiout payload.
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Aerobraking Implementation—The referenced Boeing Study described configurations needing a
significant amount of thermal protection. In this investigation we looked for ways to reduce the
thermal protection retrofit by deploying a large drag area. The resulting low mass/CdA will reduce
heating rates while maintaining an acceptable rate of deceleration. Two potential arrangements are
shown in figures 2.4-1 and 2.4-2. The first parachute-like device may be unstable in hypersonic

flow; the second should be stable and is the recommended low mass/area approach.

Rough estimates of loads and heating were made using a method described by Kostoff in Bellcomm
paper B72-01005 dated January 19, 1972. Kostoff gives an equation (corrected here) for

deceleration due to an aerobraking pass:

\% CpA e+ 1 l/w( ChHA mHr R 1/2
v = exp]--2— p [21rr THRRS -)] AR S R e = P exD
Vo ; MoTp PR e | MO fp L2 3

where V/V0 is velocity ratio (exit from the pass)/(entry to the pass).
CpA/M is the ballistic coefficient for the vehicle in M=/kg or ft2/lbm

Pp is atmosphere density in kg/m3 or lbm/ft3 at perigee

o is perigee radius in meters or feet.

H is upper atmosphere scale height in meters or feet. approx. 7.900 m (26,000 ft.)

e is eccentricity of the initial orbit ellipse.

For the case analyzed here the correction term in the second bracket is =1 and can be ignored.

For a 30-pass mission the initial perigee velocity is 10,340 m/sec (33.923 ft/sec).and the final
perigee velociiy about 7,910 m/sec (25.950 ft/sec) (90 x 296 km: 48.5 x 160 n.mi. orbit). The
velocity reduction of 2,430 m/sec (7.970 ft/sec) requires about 81 m/sec (266 ft/sec) per pass for

30 passes. Thus, the velocity ratio is about (10,340 - 81)/10,340 = 0.992 for the first pass.

Loads—Decelerations are, to first order, independent of ('DA/M. Note that acceleration = D/M =
CDApV2/2M and that CpAp/2M is a term in the zhove equation for velocity ratio. The entire
exponent must yield-V/Vo =0.992; the exponent must be In (0.992) = -0.008.
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Therefore, <D _ -0.008

M 172
(20 H(SEL))

where rp & 6468 x 106m (3,492 n.mi.)
H = 7,900m (26,000 ft)

e = 0734 .
Peak acceleration is found to be -0.98 m/sec2 or about 1/10 g. Also, notz that the total effect is

about equivalent to the peak deceleration acting for 81/0.98 = 82 sec, a value used to estimate
heating. The mass of the example was 13 000 kg (28,660 1b). The peak deceleration load is about
13 000 n (2,900 Ib).

Heating—It is estimated that large deployable aerobrakes (if they work) could increase CDA/M- by as

much as 10 compared to the metal drag brakes depicted in the referenced study. The heating rates
4

would also b: decreased by nearly 10, leading to temperature reductions on the order of '\/TU' or

1.7. Equilibrium radiative temperature estimates are shown in table 2.4-2.

Table 2.4-2 Aerobraking Temperatures

AREA REFERENCE STUDY REDUCED

OK OF OK OF
NOSE 1303 (1886) 767 (920)
SIDEWALLS 706 (812) 416 (288)
SKIRT 633 (680) 373 Qm

Thus, aluminum sidewalls and a Nomex fabric aerobrake may be feasible. The nose temperature
appears too high for aluminum. The heating rate is approximately o4, Thus, q = 20 kw/m2 (317
Btu/hr-ft2) for 82 sec, a total of 1.64 x 10° joules/m? = 7.2 Btu/ft2. For aluminum with specific
heat 0.225 and density of 2.7 kg/1, (168 Ib/ft3),  : computed temperature rise is about 200°K
(360°F) for a 3 mm (1/8 inch) thick heat sink. An a2luminum heat sink (non load-bearing) may be
sufficient. The 3.175 mm (1/8 incn) shield will have a mass of about 130 kg (287 Ib).
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3.0 ANALYSIS OF SPACE DISPOSAL OF
TOTAL SOLIDIFIED NUCLEAR WASTE

Disposal of refined waste was described in section 3.9 of the technical report. It was shown,
concurring with earlier NASA studies, that refined waste disposal is practical using the space shuttle
and a modified full-capability tug for transportation.

Nuciear waste is presently processed to a solidified form consisting of about 25 percent fission
product oxides, less than 1 percent actinides, the remainder being ineri (noﬁmdio-active) material.
The waste is typically canned in “pots™” 0.3m in diameter by 2.4m in length (1 x 8 ft). It would be
desirable, if economically practical, to dispose of total waste in this form, eliminating completely
the need for long-term Earth storage. Accordingly, a brief study of total waste disposal was
performed.

3.1 TOTAL WASTE DISPOSAL PAYLOAD CONCEPT

This concept assumes disposal of total solidified waste, based on current waste soiidification
technology. The total waste is roughly 1/10th 2s radioactive per unit mass as the partially refined
waste discussed above. T'ie total waste package is illustrated in figure 3-1. It appears practical to
provide a portable shield for safe handling and for flight crew protection. It is unlikely, however,
that such a massive shield could be designed to survive abort entry and impact. The launch system
and operational procedures must provide protection from public exposure. The shield is assumed

returned to Earth for reuse.

Requirements are stated in table 3-1. Data shown are typical. Waste can be repackaged to some

degree in order to tailor the mass per package to capabilities of the transportation system.

i

32 TRANSPORTATION ANALYSES

3.2.1 Transportation Mode Candidates

The total waste requirement is very demanding, both in ierms of total mass and in terms of
economiics, i.e., transportation cost. Consequently, only very low cost Earth launch options were
considered. Orbit transfer options included 1-1/2 stage and common stage (slingshot mode)

L02/LH2 OTV’s and an electric propulsion option powered by decay heat of the waste itself.

The low cost Earth launch options included a low cost heavy lift vehicle (LCHLV) and a second
generation single-stage-to-orbit (SSTO) shuttle. Where the LCHLYV is used as the only Earth launch
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PRODUCT:

SPRAY MELT (TYPICAL OF CURRENT WASTE SOLIDIFICATION PROCESSES)
COMPOSITION ~ UP TO 25% FISSION PRODUCT OXIDES

DENSITY - TYPICALLY 3000 KG/M3 (190 Ib/ft2)
DECAY HEAT - 25KW/M3(0.7kW/#t3) (TEN YEARS AFTER FUEL REMOVAL FROM REACTOR).
VOLUME - 2.5 LITERS/1000 MW, = 8500 KG/GW, , = 0.088 13 /1000 MWdth

PACKAGING: 3000 KG (6,600 b} WASTE IN ONE SHUTTLE FLIGHT

TO
CREW

3.8M
(125 FT)
—T SOLIDIFIED WASTE (3009 kg) (6,600 Ib)
//’ T T SECONDARY CONTAINMENT
// - PRIMARY CONTAINMENT 1500 kg (3,300 ib)
180 s & . (SIX SOLIDIFICATION POTS) J-
ern 1/ e 7 TRANSPORT SHIELD 24000 kg (52,900 ib)

“ // \( > 4

Figure 3-1. Nuclear Waste Disposal Total Waste Packaging Option
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Table 3-1. Totsl Nuclear Waste Disposal Requirements

REPRESENTATIVE PACKAGE MASS 4500 kg (9900 L8)
REPRESENTATIVE PACKAGE SIZE (DxL) ImX3m (3FTX10FN
SHIELD MASS 124,000 kg (52,900 LB)
SHIELD SIZE 1.8m X 3.8 m(6 FT X 12,5 FT)
PACKAGES/YR TO BE
TRANSPORTED (TYPICAL) 1100

MASS/YR TO BE TRANSPORTED
PACKAGES + SHIELD TO

EARTH ORBIT 31.4 X 10° kg (70 X 10° L8)
PACKAGES ONLY TO SOLAR s ‘
SYSTEM EGCAPE 4.95 X 10° kg (10.9 X 10° 18)

option, gliders similar to the shuttle orbiter, but without main propulsion systems, delivered to
orbit by the LCHLYV, are used as wastz carriers to provide the needed intact-abort capability. The
LCHLYV is described in Appendix 2. SSTO concepts have been pu'ilished in the literature, notably
by Salkeld, and have b.een studied by Boeing on IR&D. The Boeing concept is illustrated in
figure 3-2. No effort was spent on SSTO concepts by this study.

3.2.2 Transportation Sequences

Figures 3-3 and 34 show the transportation sequences investigation for the SSE destination. The
first mode employs a LCHLV and a common-stage L02/ LH, OTV. Intact abort capability during
Earth launch is provided by the gliders shown. One shielded waste package is carried in each glider.
In orbit, the waste packages are extracted from their shields and installed on the OTV syétem. The
shields are retpmed to Earth by the gliders. The OTV’s operate in slingshot mode with the boost

stage recovered and the second stage expendéd along with the payloads to solar system escape.

The second mode employs a SSTO to launch the waste packages and small OTV/drop tank systems
to orbit. The waste package goes up last; the shield is recovered by thé SSTO. The OTV operates in
a perigee kick mode; the drop tanks contain enough L02/ LH2 to establish a one day elliptic orbit.
At first perigee the injection stage fires to SSE with the payload. All OTV elements are expended.

Table 3-2 provides a summary mission history for the 1-1/2 stage OTV system.

The LCHLV was assumed to have a low orbit payload capability of 200 000 kg (440,000 1b) as for
the power satellite progrém. The SSTO was assumed to have 30 000 kg (66,000 Ib) low orbit
capability, with return payload capability of 24 000 kg (53,000 Ib). The gliders used with the

LCHLYV were also assumed to have 24 000 kg (53,000 Ib) return payload capability.
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Figure 3-4  Nuclear Waste Transportation Sequence
Employing SSTO and 1-% Stage OTV

229/230



D180-19201-2

3.2.3 Earth Launch Summary

A summary of Earth launch and OTV requirements for the various options and modes is shown in
table 3-3. The ROM busbar surcharge values shown are in cents/kwh, 1975 dollars, and are
transportation cost only. They do not include waste processing or packaging costs. Numbers of
flights per waste package are indicated with flights per year in parentheses based on 50 and 1,100
waste packages per year, respectively.

Table 3-3. Earth Launch Requirements

orv otV
LCHLV $STO FLIGHTS FLIGHTS ROM
MODE FLIGHTS FLIGHTS (EXPENDED) (REUSED) ($/KWH)
PER YEAR  PER YEAR  PER YEAR  PER YEAR  COST

LCHLV 913 - 363 363 .0024

SSTO - 3300 1100 0 .0020

3.3 Special Study: Nuclear Waste Disposal in Space Utilization of Waste Decay Heat

It was suggested that the decay heat of nuclear fission waste products might be used to drive a
propulsion system to accomplish disposal of the waste to SSE. A typical conceptual system includes
a2 closed-cycle heat engine oper:zting from the decay heat, generating electricity to drive an electric
propulsion system (figure 3-5). Refined and total waste options are examined by the FSTSA study.
Only the total waste option appears to be a candidate for this transportation mode because (a) the
refined waste és defined by Lewis Research Center has very little thermal power, and (b) it can be
handled economically by Shuttle/FCT.

This is an energy-limited problem. The energy available in the 'waste is finite and must be sufficient
to provide the nescessary energy change to accomplish the mission. An estimate of the energy
available in solidified total waste is presented in figure 3-6, This decay is nearly a straight line on the
log/log-plot and therefore may be approximated by q = at® where q is thermal panel at time t after
core shutdown and a and b are curve-fit constants. Decay heat data were obtained from a MIT study
and adjusted for representative mass properties of solidified waste. The above expression can be
readily integrated to detefmine total thermal energy avéilable over any period t; to t,. Results are
shown in figure 3-7.
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The energy required for solar system escape from low Earth orbit at low thrust is roughly equivaient
to a delta V of 25 km/sec (82,000 ft/sec). This large delta V arises because the low thrust system
must first escape Earth at nearly the full 7.73 km/sec (25,360 ft/sec) required at infinitely low
thrust plus a large proportion of the additional 30 km/sec (98,420 ft/sec) required to escape the
solar system at infinitely low thrust. (An impulsive maneuver from low Earth orbit with no gravity

losses, can reach solar system escape with a delta V of about 8.8 km/sec (29,000 ft/sec)).

The energy required to achieve a AV of 25 km/sec (82,000 ft/sec) is a function of jet velocity (Isp)
and of the efficiency of converting thermal energy to jet energy. The required energy versus Isp has

a minimum.

This function is plotted in figure 3-8 for cycle and thruster system efficiencies of 40% and 70%.

Comparing this result with figure 3-7 and recognizing the 'uncertainties in such a brief analysis, the

following observations are made:

® There is a question as to whether enough energy for self-prepulsion is available in nuclear
waste as presently processed. Careful examination of this question and its ramifications should

precede any system definition activities.

® A system designed to utilize waste energy for disposal will be sensitive to the “quality,” i.e.,
thermal power, of the waste. It could not dispose of “old” waste and low grade wastes

(contaminated shoes, clothing, tools, etc.) except as a payldad on high quality wastes.

® The system will have to combine long life with low cost. Propulsive periods on the order of

5-10 years are required.

® A large number of vehicles will be under powered flights in various stages of the escape mission
at any one time. All would presumably require some degree of monitoring. We have not made
an estimate of the number of vehicles (the number clearly depends on the size of each) but a

number in the range between 100 and 1,000 is likely.
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