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SOLAR ENERGY MONITOR IN SPACE (SEMIS)* 

M. P. Thekaekara 

NASA/Goddard Space Flight Center 

Greenbelt, Maryland 20771 

ABSTRACT 

Measurements made at high altitudes from aircraft have resulted in the es-

tablishment of standard values of the solar constant and extraterrestrial solar 

, spectral irradiance. They have been adopted as the engineering standard by the 

(American Association of Testing and Materials (ASTM) and as design values for 

the NA:SA Space Vehicles Design Criteria. These standard values and other solar 

spectral curves which were derived from these for practical applications are de-

scribed. The problem of possible variations of the solar constant and solar 

spectrum and their influence on the Earth-atmosphere system and weather re-

lated phenomena is examined. It is shown that the solar energy input parameters 

should be determined with considerably greater accuracy and precision than has 

been hitherto possible. A measurement program which is currently being planned 

for this purpose and the instrumentation which is being developed will be de-

,scribed. The instrument package is designed as a compact, low weight solar en-

ergy monitor in space (SEMIS). Preliminary measurements will be made at 20 km 

,altitude from the U-2 aircraft. More advanced Versions of the SEMIS will be 

flight-tested on balloons and aircraft for installation eventually in the Space Shuttle. ' 

*Paper presented at the Symposium on "Solar Radiation Measurements and Instrumentation," 
Smithsonian Institution, Radiation Biology Laboratory, Rockville, Md., Nov. 13 to 15, 1973. 
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1. THE SOLAR CONSTANT AND THE SOLAR SPECTRUM 

We shall present first the data on the solar constant and solar spectrum 

which have been developed in recent years in the United States. This will show 

the inadequacy of available data and the need for a program such as the SEMIS. 

Since the advent of satellites and high altitudes research aircraft several 

attempts we~e made to measure the solar constant from above all or almost all 

of the Earth's atmosphere. An ad hoc committee on Solar Electromagnetic Ra

diation was appointed by the NASA Space Vehicles Design Criteria Office and by 

the Institute of Environmental Sciences to study this question. The Committee 

made a detailed survey of all available information and recommended standard 

values for the solar constant and the extraterrestrial solar spectrum. The solar 

constant was evaluated from nine series of measurements, all made from high 

altitude platforms, namely, Convair 990 and B-57B jet aircraft, X-15 rocket 

aircraft, balloons and Mariner Mars probe. 

These nine values are shown in Table L Each one of these is the result of 

many series of measurements. The uncertainties claimed by the authors are 

shown in the last column. The values are referenced to three different radiation 

scales: the International Pyrheliometric Scale of 1956 (IPS 56), the Absolute 

Electrical Units Scale (AEUS) and the Thermodynamic Kelvin Temperature Scale 

(TKTS). The differences in values may be due to baSic differences in radiation 

scales, calibration errors of each instrument, errors in extrapolation to air 

mass zero, window transmittance, scattered light and other causes. The 

1 



Table I 

High Altitude Determinations of the Solar Constant 

Platform Detector 
Reference Scale Solar Constant 

Estimated 

of Radiometry Wm-2 Error 
:l:Wm-2 

Balloon(l) Normal incidence 
U. of Denver Expt. pyrheliometer 

IPS 56 1338 6 

CV990(2) 0 

GSFC Expt. 
Angstrom 6618 IPS 56 1343 26 

CV 990(2) 0 

GSFC Expt. 
Angstrom 7635 IPS 56 1349 40 

CV990(2) Hycal 
t,;) GSFC Expt. pyrheliometer 

TKTS 1352 22 

Mariner 6 and 7 Cavity 
Spacecraft, JPL(3) radiometer 

AEUS 1353 10 

Balloon, U. of U. of Leningrad 
Leningrad Expt. (4) actinometer 

IPS 56 1353 14 

CV 990(2) 
GSFC Expt. 

Cone radiometer AEUS 1358 24 

CV990, B-57B, X-15 Eppley. 
Eppley-JPL Expt. (5, 6, 7) pyrheliometer 

. IPS 56 1360 13 

Balloon, Active Cavity 
JPL Expt. (8) radiometer 

... AEUS 1368 7 

Standard Value 1353 21 



Goddard experimenters had also another value obtained by integrating the value 

under the spectral curve, 1352 W m-2• That this was so close to the average was 

assumed to be fortuitous rather than warranted by the accuracy of the spectral 

data. So this value was not included in the list selected for averaging. The 

detectors included Angstrom pyrheliometers, cavity radiometers, and normal 

incidence pyrheliometers of different types and manufacturers. The value of the 

solar constant derived from these measurements was 1353 W m-2 or 1. 940 cal 

cm-2 min-I. 

The solar spectral irradiance was obtained mainly from measurements 

made by NASA GSFC experimenters at an altitude of 11. 6 km from a Convair 990 

jet aircraft. (2) In Table II are listed the spectroradiometric instruments used 

on the CV 990. Along with each instrument is shown the disperser, the aircraft 

window material, the energy detector, and the wavelength range. The main 

standard of calibration was a set of five 1000 W quartz iodine lamps calibrated 

at the National Bureau of Standards or the Eppley Laboratory. These were sup

plemented in the long wavelength range by two blackbody sources operating at 

1200 K and 3000 K. As shown in Table II, there were two large prism mono

chromators, a filter radiometer (33 filters, each 100 A bandwidth) and two inter

ferometers. The spectral irradiance curve obtained from these detailed meas

urements was modified slightly in the visible range with the aid of data from the 

multi-channel filter radiometers flown by the Eppley-JPL Team under the direc

tion of A. J. Drummond. (5, 6, 7) The GSFC results cover the spectral range 
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Table II 

Spectral Irradiance Instruments on board CV 990 NASA 711 Aircraft 

- Spectral 
Aircraft 

Wavelength 
Instrument Window Energy Detector 

Dispersion by 
Material 

Range 

Perkin-Elmer Lithium 
Sapphire 

1 P 28 Phototube 0.3 - 0.7(1.m 
monochromator fluoride prism Thermocouple 0.7- 4.0 (1.m 

~ Leiss double Two quartz Dynasil EM! 9558 QA Tube 0.3 - 0.7(1.m 
prism monochromator prisms quartz PbS tube 0.7 - 1. 6 (1.m 

Filter 33 Dielectric Dynasil RLA type 917 
0.3 - 1.2(1.m 

radiometer thin film filters quartz phototube' (S-l) 

P-4 polarization 
Soleil prism 

Infrasil 1 P 28 or R136 Tube 0.3 - 0.7(1.m 
type interferometer quartz PbS tube 0.7 - 2.5 (1.m 

1-4 moving mirror Michelson 
Intran 4 

Thermistor 
2.6-15.0(1.m 

type interferometer mirror bolometer 



0.3 to 15Mm which contains nearly 99 percent of the Sun's energy. Data from 

other sources were added for the two extreme ends of the spectrum, from 

Heath(9) and Hinteregger(10) for the UV and from Shimabukoro and Stacey(ll) 

for the IR beyond 15 Mm. 

The spectral curve which was derived from the GSFC data and the Eppley-

JPL data is shown in Figure 1. The wavelength range is 0.2 to 2.6 J.1.m. The 

solar spectral irradiance values for the wavelength range 0.115 to 1000J.1.m is 

given in Table III. The columns are wavelength, spectral irradiance EA., area 

under the curve 0 to A and % area. The values of EA. are averages over 100A 

for most of the range. 

2400.-------------~------------.-------------,---~--------~ 

";' 
E 

2000 

N~1600r_--~----~--~------------_+--------------r_------------~ 

'E 

~ 1200 
u 
z 
« 
o 
« 
e:: 
e:: 

400 

0.4 0.6 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 
WAVELENGTH (11m) 

Figure 1. The NASA/ASTM standard curve of extraterrestrial solar spectral 
irradiance, 0.2 to 2.6 J.1.m. 
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Tabl~ Ill. Solar Spectral Irradiance - Standard Curve 
A - Wavelength in micrometers 

E). - Solar spectral ~rradiance averaged over small bandwidth centered at )., in W m-2 ~m-l 
EO _ A -" Integrated solar irradiance in the wavelength range 0 to )., in W m-2 

Do _). - Percentage of solar constant associated with wavelengths shorter than A 

Solar constant - 1353 W m-2 

Note: line's indicate change in wavelength interval of int.egration' 

A 
, 

E). Eo _). D A E). E
O

_
A 

D A EA E D O-A 0-). O-A O-A 

.1\~ .001 .0025 .0001 .sto H,62 324.'l2G 24.015 1.0;5 267 lH6.10'l 87.665 

.120 .900 .0046 .0,003 .515 18 ~3 B4.214 24.701 1.60 245 11 'l6. 909 88.611 

.125 ,.007 .0070 .0005 .520 1~~3 343.37'l 25.37'l 1.f>5 223 1210.60'l 8Q."75 

.130 .007 .0071 .0005 .52'i 1652 352.5'l1 26.05'l 1.70 202 1221.234 '30.261 

.1 .. 0 .030 .0073 .0005 .5~0 1642 361.626 26.742 1.n 180 1230.784 'l0.'l67 

.150 .070 .0076 .0005 .5~5 1618 370.'l76 27.418 1.80 159 1239.25'l 91.5'l3 

.160 .230 .00'13 .0006 .540 1763 37Q.Q7'1 28.08" 1'.85 i42 1246.784 'l2.1"'l 

.170 .1)30 .0136 • n,O 10 .545 1754 H8.821 23.737 1.'l0 121) 1253.46" '12.644 

.180 1.250 .0230 .0016 .550 1725 3'lr.51'l 29.360 1.'l5 11 .. 125'l."64 93.086 

.190 2.710 .0 .. 28 .0031 .555 1720 406.131 30.017 2.00 103 126".90'1 'l3."8'l 

.?OO 10.7 .10'l8 • 00,81 .560 16'15 "14.&1)'1 30.6"8 2.1 90 127".55'1 'l1t.202" 
• 210 22.'l .2778 .0205 .565 1705 423.16'1 31.276 2.? 79 1283.00'! 94.8269 
.220 57.5 .1)798 .0502 .570 1712 431.711 ~1.'l07 2.~ ~'l 12'10.409 95.3739 
.225 64.9 .9S58 .0726 .575 1719 .... 0.289 32.5"1 2." 1)2 12'l6.,'l5'l' 95.~580 
.230 66.7 1.31"8 .0971 .580 1715 .... e. 67 .. 33.176 2.5 55 1302.609 96.2903 
.235 59.3 1.62911 .120 .. .585 1712 .. 57 ..... 1 33.809 2.1) .. 8 1307.95'l <)&.&710 
.Z~O 63.0 1.935& .1~30 .5~0 17 00 "&5.<)71 3 ..... 39 2.7 .. 3 1312.509 97.0073 
.2 .. 5 72.3 2.2736 .1&80 .5<)5 11)62 It? ..... 2& ~S.OI)" 2.~ 39 1316.60'l 97.3103 
.?50 70.4 2.&30& .1'l .... .&00 11)H "82.7'l& ~5.1)83 2.<) ~5 1320.309 97.5836 
.255 10 ... 0 3.066& .22&& .605 16 .. 7 .. 91.07'! 36.2'l5 3.0 01 1323. &09 97.8277 

.2EO 130 3.1)51& .2&9 .61 11)35 4<)9.264 ~6.'l02 3.1 26.0 132" ... 59 98.0363 

.265 165 ..... 3'l1 .328 .1)2 1&02 51S."&'l 36.098 3.2 22.6 132B.889 96.217'l 

.?70 232 5."816 ... 05 ofJ:! 1570 531.329 3'l.270 3.1 19.2 1330.979 98.372" 

.275 20 .. I).S71& ... 85 • 6" 1S .... 5 .. 6.8'l'l .. 0 ... 21 3.4 16.6 1332.71)9 98.50 .. 7 

.2~0 222 7.&366 .5&4 .f;t; 1511 %2.17 .. ~1.S50 3.5 14.6 133".32'l 98.6200 

.265 315 8.'l7'l1 .663 ."6 1 .. S6 577.15'l "2.657 3.6 13.5 1335.73" 98.7238 

.2~0 .. 82 10.'1716 .610 .67 1 .. 56 5<)1.869 "3.7"~ 3.7 12.3 1337.02" 98.8192 
• 2'15 58 .. 13.6366 1.007 .6e 1 .. 77 606.28~ ..... ~10 3.8 11.1 1338.19 .. 96.9056 
• 300 51 .. 16.3816 1. ?to ."'9 1 .. 02 620 ... 29 ~5.855 3.9 10.3 1339.26 .. 'l8.96"7 
.305 603 1'1.17"1 1."17 • 70 13E<3 63".284 4&.879 4.0 'l.5 13 .. 0.25 .. 'l'l.0579 

.1 t 0 689 22.4041 1.G55 .71 1344 647.849 "7.882 4.1 8.70 1341.16"1 <3q.12521 

.315 16 .. 26.03&6 1.'l2" .72 1314 661,13'l 48.B6" ... 2 7.60 13 .. 1.'l8'l1 99.18618 

.320 830 30.0(11) 2.216 .7? 1290 67".159 49.626 ... 3 7.10 1342.73"1 99.2 .. 124 

.325 '175 3 ... 53"1 2.552 .74 12~0 686.909 50.71)9 ..... 6.50 1343 ... 141 <)<)',29150 

.330 105<3 3'l.61'l1 2.926 .75 1235 69'l.36" 51.691 ... 5 5.92 134 ... 0351 9<).337"0 
• 33'3 1061 ..... <)6'l1 3.323 .76 1211 711.1)14 52.595 ".6 5.35 13"4.5986 99.37905 
• 3 .. 0 107 .. 50.35"'6 3.721 .77 1185 723.594 53."80 ".7 ".66 13 .. 5.1091 99."1678 
.345 1069 55.7141 ".117 .7~ 1159 735.314 54.3 .. 6 ... 8 ..... 7 13 .. 5.5757 99. "'5127 
.350 10<)3 61.11'11 ... 517 .7'3 1134 746.77'1 55.19" ... <) ... 11 1346.0049 99.48299 
.155 1083 66.5591 4."19 ," 0 1109 757.'l94 5fi.023 5.0 3.7'1 13 .. &.39'1'l 99.51219 

.160 1068 71.9366 5.316 .81 1065 7&8.961) 56.834 6 1.8Z00 134q.20ltq 'l9.71'l50 

.lE5 1132 77.4366 5.723 .82 1060 779.694 57.G27 7 .9900 1350.GO'l9 '3<).82335 
• 370 1161 53.21'l1 (,0150 .A3 1036 7'l0 .174 58.401 8 .58~0 1351.397 .. 'l<).681S5 
.375 1157 69.06"1 6.562 .R" 1013 800.419 S'l.156 9 .3&70 1351.6734 'l'l.'l1613 
.~80 1120 94.7566 7.003 .85 '1<)0 810 ... 3 .. 59.699 10 .2410 1352.1774 9q.93920 
.385 10'38 100.3016 7."13 .6E 968 820.22" 60.1)22 11 .16S0 1352.3804 9<).<)5420 
.1'30 1096 105.7'116 7. et9 .67 9 .. 7 829.79'! 61.330 12 .1170 1352.521" '1Q.'l6"62 
.3~5 H6'! 111.5091 6.2 .. 1 .88 '126 839.164 62.022 13 .0851 1352.622" 'l9~'l720q 
... 00 142'1 118.0541 8.725 .69 '108 6 .. 6.334 62.700 14 .0&3" 1352.1)91)7 99.'17758 
... 05 16 .. " 125.7366 9.2'13 .<)0 891 857.329 63.365 15 .0"61 1352.7524 qq.98170 

."10, 1751 13".22" 9.920 .91 880 866.18 .. 6 ... 019 16 .037100 1352.7950 '19.<)8"65 

... 1<; 177 .. 1"3.036 10.571 .92 86'1 874.929 1)1,.1)1)5 17 • 02g10 0 1352.8281 <)9.96730 

.4::0 17 .. 7 151.83'! 11.222 .q:! 858 883.564 65.30" 18 .023100 1352.6542 99.98'123 

... 25 1693 160.43'1 11.658 .94 647 892.08'1 1)5.93" 19 .016600 1352.8751' 99.99077 

."~O 163'1 168.71)<) 12." 73 .95 837 '100.50'1 66.556 20 .015200 1352.8920 99.99202 

.ft"!t; 1663 177.02" 13.083 .96 620 908.79" 67.1&6 25 .OOH70 1352.9 .. 5 .. 99.99596 

.440 1810 1~S.706 13.725 .'17 803 '111). '10'1 67.71)6 30 .002'170 1352.'1683 99.99765 

..... 5 l'lZZ 1<)5.03& lIt.415 .98 785 92".8"'1 1)8.355 35 .001600 135Z.'l797 99.99850 

.450 2006 204.8% 15.140 .'lq 767 '132.609 68.928 !to .Jln.n·U2 .1352" 'l8&D 9'l,,'1'18'l7 

... S5 2057 215.0110 15.891 1.00 748 '140.16" 6'1."811 50 .000391 1352.9927 99.9'l9"1) 

.4EO 2066 225.321 11).1)53 1.05 668 '175.58" 72.105 ~n ,nnn.onn, .352.9951) 'l9.'l'l9&7 

... e5 2048 235.601) 17.~13 1,1.0 5'33 007.109 7 ..... 35 60 .00006160 1352.9961 9'1.'39986 

... 70 2033 245.S0'l 18.1&7 1.15 535 035.309 76.51<) 10 a '~~~~i;~O 1352.9990 'l9.99992 

.475 2044 256.001 18.'121 1.20 .. 85 060.80'1 76."0" 1211 1352 ,'1'!91t 9'1.'l'l'l'lS 

.480 207 .. 266.2'11) 19.681 1.2~ .. 38 083.88" 80.109 150 .00000523 1352.'19'17 99.99997 

.485 1971) 276."21 20.1,30 1.~0 397 104.75'l 61.652 200 .0000016~ 1352.9'198 99.99'199 

... 90 l'lSO 2~6.231) 21.155 ~.35 358 123.63" 83.0"7 250 .00000070 1352.999'l 9<).<)999'1 

."'15 191;0 296.011 21.878 1.40 337 141.009 flit. 331 300 .0000003" 1352.99'lq '19. 99'l'l9 

.500 1'1102 305.761) 22.59'1 .45 312 157.23" 85.530 400 .00000011 1352.999'3 9'1.99999 

.'lOC; 1'120 315 ... 21 23.312 ~.50 288 172.23" 86.639 1000' .00000000 1353.0000 100.00000 
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The whole of the solar electromagnetic spectrum from 10 A to 10 m is 

shown in Figure 2. There are 10 decades on the wavelength scale. The irradi

ance scale changes 3 times in the IR each time by 106 • The Sun is a variable 

star in the radio range near 1 III and in the UV. The dashed lines show Planckian 

curves at equivalent blackbody temperature, which is 5762 K over most of the 

range but goes to higher values at the two extremes. 

Following the recommendation of the Committee on Solar Electromagnetic 

Radiation, these values have received a wide circulation and have been exten

sively used as a standard of reference. A monograph (12) published in the NASA 

Space Vehicles Design Criteria series recommends these values as criteria for 

design and testing of spacecraft systems. These values have been adopted by the 

Solar Simulation Committee of the Institute of Environmental Sciences and have 

been developed by the American Society for Testing and Materials (ASTM) into 

an "Engineering Standard for the Solar Constant and Solar Spectrum (13) ." A 

practical application which incidentally gave the first impetus to the GSFC Con

vair 990 project is the design of solar simulators and pre-launch testing of sat

ellites and spacecraft components. In the laboratories of NASA, ESRO and their 

contractors the new values have replaced the older Johnson(14) values. One of 

the major suppliers of solar simulators, Spectrolab, Inc. of Sylmar, California, 

has ~ssued for the convenience of users a wallet size card presenting the data. 

The standard solar spectral irradiance table is available in the current edition 

of the American Institute of PhYSics Handbook(15) and in the forthcoming Van 

Nostrand-Reinhold Encyclopedia of Physics. The chapter on Solar Radiation in 
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the AFCRL Handbook of Geophysics and Space Environments is in process of 

revision to incorporate these data. Typical of the new curves to be published in 

the AFCRL Handbook is Figure 3 which gives irradiance also at ground level of 

air mass 1,4, 7 and 10; i. e, , for solar zenith angles 0,75° , 82° and 84°. These 

curves are for US standard atmosphere, ozone = 3.4 mm, precipitable water 

2100r-~r-~------.---------r-------~--~--------

2000r-~---------r--------+-------~~------~~ 

- 1600 
'7 
E 
::i.. 

AIR MASS IRRADINACE N 

E s: 0 1353 Wm-2 

u.J 1200 
'-' 1 956.2 
z 
<C 595.2 
Cl 
<C 413.6 ex:: 
9; 
-J 302.5 
<C 800 
t3 J i u.J 

I I 0.. 
(/) 

I f 
400 I II l 

I I:!' ;/! 
'Jl I/o" a .' 

0.3 0.5 2.0 2.5 2.6 

Figure 3. Solar irradiance spectra at ground level for air mass 1, 4, 7 and 10, 
compared to the standard curve - computed values. 
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vapor = 20mm, r~latively clear air with turbidity coefficients, ex :::: 1. 3, (3 = 0.02. 

Elterman's values are assumed for extinction optical thickness due to Rayleigh 

scattering and ozone absorption(16). For aerosol scattering (turbidity) the op

tical thickness is assumed to be of the form r = L. For absorption due to 
)..!X 

water vapor and other molecules the coefficients derived by Gates and Harrop(17) 

have been used. The program for computing these values for itradiance at 

ground level and for punching the cards was developed by D. Hoyt ·of NOAA, 

Boulder, Colorado. 

Solar spectral irradiance values in Table III are listed at intervals of 50A 

for the visible and hear UV, and are averages over 100 A bandwidth centered at 

the given wavelength. This method of listing was chosen so as not to make the 

table too long and to give a spectrum independent of the Fraunhofer absorption 

which different instruments portray differently according to their resolution. 

For many applications like atmospheric modelling, pollution studies, transmit-

tance computations of interference filters, studies of absorptive processes in 

the atmosphere, etc., a more detailed knowledge of the extraterrestrial solar 

spectrum was found to be necessary. In response to inquiries from users a 

project was undertaken recently to meet this need. For the wavelength range 

3000 to 6100A tables arid charts are now available which give the spectrum at 

intervals of 1 A . 

One of the curves for the range 3000 to 4000 A is shown in Figure 4. It is 

based on the data of the Perkin-Elmer monochromator on board the CV 990 air-

craft. The spectral curve was read at 1 A intervals and cards were punched by 
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Figure 4. Solar spectrum obtained with a Perkin-Elmer monochromator, air 
mass zero, 3000 - 4000A. 

J. DeLuisi of NCAR. We developed a normalization program so that in each 

50 A range the integral under this curve is equal to the values of the standard 

spectrum (Table III). The dashed line shows the standard curve. The curve 

for the range 3600 to 6100 is shown in Figure 5. The well known solar absorp-

tion Ca +H and K lines at 3969 A and 3934 A respectively, the H et line at 4861 A, 

the Fe G .line at 4308, etc., are readily recognizable on this curve. 
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Figure 5. Solar spectrum obtained with a Perkin-Elmer monochromator, air 
mass zero, 3600 - 6100A. 

Punched cards giving solar sped:r:al ,irradiance data (X and Ei\. ) are avail-

able for .the tables and figures discussed earlier, the standard table (Table ill) , 

spectral curves at ground level for several sets of atmospheric parameters and 

the extraterrestrial solar spectrum, 3000 to 6100A, at one A intervals. User 

organizations which have need of such data for computer aided applications may 

obtain them by writing to the National Space Science Data Center, Code 601, 

NASA/GSFC, Greenbelt, Maryland 20771. 
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2. UNCERTAINTIES IN CURRENTLY AVAILABLE DATA 

In many applications of solar irradiance data, solar and spectral, there are 

two questions of major importance, the absolute accuracy and the variability of 

these values. 

As for the absolute accuracy of the solar constant there are several major 

problems. The values given in Table I based on high altitude measurements 

vary between a maximum of 1338 W m-2 and 1368 W m-2 • The two extreme values 

are those which claim the least estimated error. The standard value adopted by 

NASA and ASTM is 1353 W m-2 with an estimated uncertainty of :±:21 W m-2 • For 

applications in meteorology, atmospheric physics, solar physics, etc., an ab

solute accuracy of the order of 0.1 % or ±1. 4 W m-2 is desirable and many authors 

believe that it is possible within the state-of-the-art of radiometric measure

ments. Variations in the solar constant with sporadic or cyclic variations of 

the Sun itself cannot be detected unless the precision, if not the absolute accu

racy, of the solar constant is 0.1% or better. 

The values of the solar constant derived from ground-based measurements 

are significantly higher than 1353 W m-2 • F. S. Johnson's(14) value which was 

published in 1954 and had long been accepted as a standard in the U.S. was 

1395Wm-2 or 3.1% higher. Nicolet's value(18) was close to this, 1380Wm-2 • 

Still higher are the values derived by Stair and Johnston(19), 1428 W m-2 , and by 

Makarova and Kharitonov(20), 1418 W m-2 • In a recent monograph, "Distribution 

of Energy in the Solar Spectrum and the Solar Constant" published in Moscow(21), 
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Makarova and Kharitonovhave proposed a value 1360Wm-2 ; this is a weighted 

average of all the earlier measurements by many different authors~ . In 1~68 

Labs and Neckel(22) derived the value 1366Wm-2 based on measurements they 

made from Jungfralljoch in the wavelength range 0.33 to 1.25 Mm and data from 

other authors for the region outside their range. In 1970(23) they revised their 

earlier value downwards to 1358Wm-2 • The measurements made from moun

taintops by C. G. Abbot and his co-workers at the Smithsonian Institution ar'e by 

far the most detailed and extensive for the solar constant and the solar spectrum. 

They cOVer a period of nearly half a century. The Smithsonian value, 

1352Wm-2(24), is very close to the NASA and ASTM standard. 

The uncertainties in the distribution of the solar energy as a function of 

wavelength are considerably greater than in: the solar constant itself. The four 

different instruments used by the GSFC experimenters on board CV 990 for tIle 

same wavelength range did not yield identical curves; there was a certain amount 

of scatter between them, though the variations were within the estimated error 

limits of the instruments. There were greater differences between the GSFC 

curve (weighted average of the four instruments) and the Eppley-JPL filter 

data (25) . 

The differences between the NASAl ASTM standard (based on GSFC and 

Eppley-JPL data) and the solar spectral curves obtained from earlier ground 

based measurements are considerably greater. Three of these curves and the 

standard are shown in Figure 6. The most significant variations ar.e in the 
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spectral range near O.55J.Lm. This mode of comparison fails to show the spec-

tral differences as distinct from those in the solar constant; and in the wave-

length range of low irradiance the curves seem to be identical, though they are 

far from being so. 
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Figure 6. The NASAl ASTM standard curve compared with the curves derived 
by Makarova and Kharitonov, Labs and Neckel, and Nicolet. 
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A clearer and mOJ;'emeaningful comparison of the standard curve with that 

of Labs and Neckel is shown in Figure 7. The Y-axis is the ratio R ::: k. P ,,/p A' 

where P
A 

is the irradiance as given in the standard table (Table 3) andP?,· is the 

irradiance at the same wavelength from Labs and Neckel. k is a normalizing 

constant which makes the area under the Labs and Neckel curve equal to the 

standard solar constant, 1353 Wm-2 • The excursions of the ratio curve above 

and below the 1. 0 line show to what extent the Labs and Neckel distribution 

differs from that of the standard curve. 

Similar comparisons with three other spectral cu:rves, those published by 

F. S. Johnson, Nicolet and Stair and Ellis(26) are shown in Figures 8, 9 and 

10 respectively. A comparison of Figures 7, 8 and 9 shows that in the range 

1.20 r--------------------------------------------------------, 

0.70 ~----------------------------------------____________ ~ 

WAVELENGTH (}J-m) 

Figure 7. Comparison ofNASA/ASTM spectrum with Labs and Neckel spectrum. 
(Curve gives the ratio of normalized Labs and Neckel values 

to those of Table III. ) 
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Figure 8. Comparison of NASAIASTM spectrum to Johnson spectrum. (Curve 
gives ratio of normalized Johnson values to those of Table III. ) 
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Figure 9. Comparison of NASAl ASTM spectrum to Nicolet spectrum. (Curve 
gives the ratio of normalized Nicolet values to those of Table III.) 
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Figure 10. Comparison of NASA/ASTM spectrum to Stair and Ellis spectrum. 
(Curve gives the ratio of normalized Stair and Ellis values to those of Table TIL) 

0.25 to 0.45 J,tm, the -Johnson values are higher and those of Labs and N eckel 

and Nicolet are lower than the standard. It will be recalled that Johnson had 

scaled Dunkelman and Scolnik's values(27) upward by 8.8%. The values of Labs 

and Neckel and of Nicolet are low probably because of the difficulty of estimating 

the solar continuum in a wavelength range which is so rich in Fraunhofer lines. 

Both Nicolet and Labs and Neckel show a sharp change in the ratio near the 

Balmer discontinuity, which is not seen in Figures 8 and .10 where the data are 

based on irradiance of the whole disc rather than on radiance at the center of 

the disc. The Stair and 1j:llis curve is of special significance. Two instruments 

were used, a Leiss monochromator and a filter radiometer. The wavelength 

range was limited by the photo-multiplier detector to 0.3 to 0.53 J,tm. The ex-

cursions of the ratio line above and- below the ratio line are more or less evenly 

balanced. 
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A wavelength range which has given rise to a certain amount of controversy 

is from 0.5 to O. 7 /lm. In this range the values of Labs and N eckel, Johnson 

and Nicolet are all higher than the standard values, as shown by Figures 7, 8 

and 9. But this is a spectral range where the different instruments of the GSFC 

CV 990 experiment were in rather close agreement. Confirmation of the stand

ard values was obtained recently from independent sources. Michael Kuhn(28) 

made measurements at Plateau Station in the Antarctic with differential broad 

band filters and a pyrheliometer and extrapolated the values to zero air mass. 

The zero air mass solar irradiance values were respectively 178.,9 W m-2 and 

116.5 W m -2 for the wavelength ranges 0.525 to 0.63 /lm and 0.63 to O. 71/l m. 

The corresponding values of the standard table are 178. 7W m-2 and 116.5 W m-2 , 

as may be seen by taking the differences of the column EO_A of Table III. Since 

Table III claims an accuracy of :1:5%, this agreement should be considered rather 

fortuitous. R. Hulstrom (Martin Marietta, Boulder, Colorado) (29) made during 

1973 a series of measurements over the range 0.4 to 1.35/lm. His values ex

trapolated to zero air mass show close agreement with the standard curve over 

the whole range. The agreement over the range O. 5 to O. 7 /lm is particularly 

striking. Another valuable confirmation is from A. Angstrom(30). His detailed 

analysis of atmospheric turbidity ({3 coefficient) covers a period of many years 

and ground based data of several observers including those of himself and A. 

Drummond from Mauna Loa. He concludes that the extraterrestrial solar spec

trum in the range 0.3 to 0.7 as given in Table III is essentially correct. 

19 



3. POSSIBLE VARIATIONS IN SOLAR IRRADIANCE AND THEIR EFFECtS 

Next question i,s the variability of the solar energy output. Does the energy 

output, total and spectral, chang,ewith all the other features of the Sun which 

are known to change? Among the cyclic changes of the Sun the best known is 

the 11 year sunspot cycle. Figure 11 shows the annual average sunspot numbers' 

from 1760 to 1960. In addition to the 11 year cycle there is the 22 year cycle of 

solar magnetic field and probably a 90 year cycle of sunspots. There are sev-

eral intriguing meteorological phenomena which seem to follow the changes in 

the Sun. J. M. MitcheU(31) presented a very detailed study of this topic at an 
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Figure 11. Annual average sunspot number (Zurich number or Wolf number of 
sunspots) over the period 1750 to 1960. 
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NCAR symposium in 1965. Among these variations are Etesian winds, wintri-

ness index of the northern hemisphere sea level pattern, the annual march of 

temperature in different cities of Europe, changes in meridional sea level pres-

sure, growth rings of trees, ozone density, geomagnetism, glacier movement. 

Add to these, the recurrence of drought in North America every 22 years (solar 

magnetic cycle) as was pointed out by C. G. Abbot in 1938 and the 11 year pat-

tern in the movement of high pressure systems in Australia as pointed out by 

E. G. Bowen(32). 

Let us look at some of these in more detail. Figure 12 shows the number 

of days per year when Etesian winds blow over Athens. The annual frequency 

of Etesian winds from 1893 to 1961 follows the same trends of maxima and min-

ima as the sunspot numbers. That the Earth-atmosphere system reacts to 

changes in the input energy of the Sun is a well established fact. The density of 

the ozone layer changes from day to night. The changes in the ionization layers 

of the upper atmosphere and their dependence on solar phenomena have been 

studied in great detail because of their direct effects on radio communication. 

The geomagnetic disturbances have a periodicity of 27 days superposed on an 

11-year period, in agreement with the rotational and Wolf number cycles of the 

Sun(33). The ll-year cycle of magnetic fJ. figure is clearly shown on Figure 13. 

In Figure 14 the charts of magnetic character figure Ci over a period of nine 

solar rotation cycles are shown one below the other. Long period correlation 

with sunspot cycles has been observed in such weather related phenomena as 
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· the water level in rivei'·sand lakes, annual growth rings of petrified and livmg 

trees, and the advance and retreat of glaciers. Solar events such as flares 

cause corpuscular emission of which the effects are observed in aurorae, geo

magnetic disturbances, changes in cosmic ray flux; increase in ionization of 

the D layer ,possibly localized heating of the atmosphere. Changes in photon 

flux, though small, apparently act as a trigger mechanism which upsets a deli

cate energy balance and causes large scale meteorological changes. 

Several attempts have been made to determine the variations' in solar con

stant. The rriost extensive data are those of the Smithsonian Institution. 

Kondratyev and his co-workers(4) conclude from their balloon data over a six

year period that the maximum value of the solar constant occurs for sunspot 

numbers between 80 and 100 and that the solar constant decreases by 2 to 2.5 

percent during sunspot maximum and minimum. The Lowell Observatory pro

gram on the Sun as a variable star(34) shows a gradual increase of the solar 

constant by 1.4 percent as the sunspot number increases from 2 to 200. 

Bossolasco and his group(35) analyzed data from four widely separated stations 

and concluded that the maximum value of the solar constant occurs ·for Wolf 

number N about 160, and that the solar constant is Significantly lower for 

N < 160 and N > 160; the minimum at 270 < N < 330 is about 15 percent lower. 

But this conclusion has been disputed by Kondratyev who ascribes the low value 

to ~ncreased atmospheriC turbidity caused by nuclear tests. C. G. Abbot and 

his co-workers of the Smithsonian Institution (36) present a large mass of 
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evidence for variations in the solar constant, for example, a drop of 4 percent 

when a large sunspot crosses the disc, a similar decrease accompanied by 

magnetic storms and West Indian hurricanes, periodicities related to 273 

months (period of the solar magnetic cycle) and related weather phenomena. 

While there is a great deal of literature about changes in the solar constant 

and their effects on weather, there is hardly any mention of changes in spectral 

distribution in the visible and near IR where the energy output is the greatest. 

The reason is not that changes do not exist, but they are totally unknown and 

unexplored. Almost all solar energy effects on the atmosphere and the Earth 

are wavelength dependent. Localized radiation balance and transport of large 

masses of air, increase of pollution and changes in sink mechanisms, the mak

ing of weather and climate and the modelling required for prediction of weather, 

changes in ozone and their erythemal effects on humans, all depend on some 

limited portions of the solar spectrum more than on others. The atmosphere is 

far from being a neutral density filter, nor is the land and ocean surface of the 

Earth an achromatic absorber. The Earth albedo spectrum is different from 

the solar spectrum. Ozone production is due to solar UV. Photosynthesis 

essential for all life support is due to wavelength bands centered round 0.44 

and o. 75 J.l. m. Other resonance phenomena are photomorphogenic responses 

like seed and flower development, shape and size of leaves, plant height, leaf 

movements as in mimosa; the associated wavelengths are 0.66 and 0.73 J.l m. 

Absorption by water vapor with all its major effects on the making of weather is 
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in narrow wavelength bands , all beyond 0.7 p.m, as shown on Figure 3. This is 

the, more poorly known part of the solar spectrum. 

,4. A MEASUREMENT PROGRAM FOR SOLAR ENERGY IN SPACE 

An obvious conclusion from these discussions of the state of our knowledge 

on the solar constant and solar spectrum and the relative lack of knowledge 

about the variations of these parameters is that a strong effort should be made 

for the measurement of solar irradiance, both total and spectral, with consid

erably greater accuracy and precision and that such measurements should be 

made on a continuing basis. During, the first decade of the space age it has been 

possible to measure solar irradiance from above all or almost all of the atmo

sphere. Except for the Mars Mariner, the obserVing platforms were space

craft and balloons. Satellites were not used for this purpose since the degree 

of accuracy aimed at is such that the experimental package should be retrieved 

after the flight for recalibration and for checking possible degradation of the 

optical components and detectors. 

A project is now being developed for more precise and accurate determina

tion of solar irradiance on a continuing basis. The objective is to monitor the 

solar constant with an accuracy of better than one percent and the solar spectral 

irradiance with an accuracy better than three percent. The variations of these 

parameters will be determined with a precision constderably greater than the 

absolute accuracy. The instrument package will be mounted in a U-2 aircraft 

which has a cruising altitude of ,20 km. Observing time per flight will be about 
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six hours. The instrument package will consist of a medium resolution prism 

monochromator for the spectrum and a thermopile detector for the total energy. 

A schematic of the instrument package is given in Figure 15. Sun's light 

enters an integrating sphere A through an aperture on its top B. The total irra

diance is measured by a thermopile detector C and the spectral irradiance by a 

monochromator D. The mirror E focusses the light to the entrance slit F. It 

is chopped by a tuning fork chopper G, collimated by the mirror H, and spec

trally dispersed by the prism 1. The Littrow mirror J returns the light to the 

prism for doubling the dispersion. The concave mirror H focusses the light to 

the exit slit K, from which it falls on another focussing mirror L. The beam 

splitter M transmits the light to the two detectors, a photodiode N for the wave

length range 0.25 to 1.1 Jl m and a lead sulfide tube or a thermopile for the 

wavelength range A > O. 7 Jl m. 

The instrument package will be provided with a tracking mechanism so that 

it will view constantly the Sun and a small portion of the circumsolar sky. It 

will be mounted in the Q-bay of the U-2 aircraft where a pressure of 350 milli

bars and a temperature range of 5°C to 25°C will be maintained. The reSidual 

atmosphere above the aircraft at 20 km is about 5% of what it is at sea level and 

the water vapor above the aircraft is 0.05% of the average amount ofprecipi

table water in the atmosphere. About 50% or more of the ozone is above the 

aircraft so that the lower limit of the observable spectrum is 0.27 Jlm. The 

upper limit is 2.6 /lm with quartz optics and 4.0 Jlm with sapphire optics. Since 
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Figure 15. Optical schematic of Solar Energy Monitor in 
Space (SEMIS). Sunlight is received by an integrating sphere. 

Total energy is measured by a detector C and the 
spectrum is scanned by a prism monochromator D. 
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there is a certain amount of residual atmosphere above the aircraft, extrapola-

tion to zero air mass will be made by measuring the solar energy at zenith 

angles varying between 15° and 60°. The instrument will be sufficiently light 

weight and compact so that it can be flown "piggy-backll on all routine missions 

of the U-2 aircraft. 

The U-2. measurements will permit the development of a more reliable and 

rugged instrument for deployment on the Space Shuttle which will be in operation 

in the 80 's. A floating laboratory above the ozonosphere and all other atmo-

spheric absorbents, with manned instruments and on-board calibration, with 

few constraints as to weight, size and power, with long observation periods, 

total and spectral irradiance of the Sun can be determined with sufficient accu-

racy and resolution. This will provide an answer to many questions about the 

Sun's energy output which have often been raised but never adequately answered. 
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FIGURE CAPTIONS 

Fig. 1. The NASAl ASTM standard curve of extraterrestrial solar spectral 

irradiance, 0.2 to 2.6,um. 

Fig. 2. The extraterrestrial solar spectrum from X-rays to radio waves. 

Fig. 3. Solar irradiance spectra at ground level for air mass 1,4,7 and 10, 

compared to the standard curve - computed values. 

Fig. 4. Solar spectrum obtained with a Perkin-Elmer monochromator, air 

mass zero, 3000 - 4000 A. 

Fig. 5. Solar spectrum obtained with a Perkin-Elmer monochromator, air 

mass zero, 3600 - 6100 A. 

Fig. 6. The NASAl ASTM standard curve compared with the curves derived 

by Makarova and Kharitonov. Labs and Neckel, and Nicolet. 

Fig. 7. Comparison of NASA/ASTM p,pectrum with Labs and Neckel spectrum. 

(Curve gives the ratio of normalized Labs and Neckel values to those 

of Table III.) 

Fig. 8. Comparison of NASA/ASTM spectrum to Johnson spectrum. (Curve 

gives ratio of normalized Johnson values to those of Table III.) 

Fig. 9. Comparison of NASA/ASTM spectrum to Nicolet spectrum. (Curve 

gives the ratio of normalized Nicolet values to those of Table III.) 

Fig. 10. Comparison of NASA/ASTlVI spectrum to Stair and Ellis spectrum. 

(Curve gives the ratio of normalized Stair and Ellis values to those of 

Table III.) 
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Fig. 11. Annual avergge sunspot number (Zurich number or Wolf number of 

sunspots) over the period 1750 to 1960. 

Fig. 12. Correlation between annual. average of sunspot numbers and the num

ber of days per year of Etesian winds • 

. Fig. 13. Correlation between geomagnetic disturbance and the 11 year sunspot 

activity. Upper curve shows the magnetic 11 fig'J.re and the lower 

cUr've shows the annual mean sunspot numOer. 

Fig. 14. Correlation of geomagnetic disturbance and solar rotation. Curve 

shows thema~etic character figure Ci as a function of days 1 ti:lrough 

27 over nine solar rotations. 

Fig. 15. Optical schematic of Solar Energy Monitor in Space (SEMIS). Sun

light is received by an integrating sphere. Total energy is measured 

by a detector C and the spectrum is scanned by a prism mono::hrom

ator D. 
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