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	 The design and experimental evaluation of a series-hybrid thrust

bearing, consisting of a 150-mm ball bearing and a centrifugally actuated,

conical, fluid-film bearing is presented. Tests were conducted up to

16 000 rpm and at this speed an axial load of 15568 N (3500 lb) was safely

supported by the hybrid bearing system. Through the series-hybrid

bearing principle, the effective ball bearing speed was reduced to approxi-

mately one-half of the shaft speed. A speed reduction of this magnitude

would result in a ten-fold increase in the ball bearing fatigue life. A

successful evaluation of fluid-film bearing lubricant supply failure was

performed repeatedly at an operating speed of 10 000 rpm. A complete

and smooth changeover to full-scale ball bearing operation was effected

when the oil supply to the fluid-film bearing was cut off. Reactivation of

the fluid-film oil supply system produced a flawless return to the original

mode of hybrid operation.

INTRODUCTION

An important consideration in the application of ball bearings to

high-speed rotating machinery is the improvement of fatigue life. The

J
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use of low mass hollow or drilled balls in high-Speed bearings to reduce

r	 contact stress and thereby improve fatigue life, has been demonstrated

with limited success in several experimental programs. [1-5] Another

ki_ .
method .or improving fatigue life of a ball bearing is to reduce its rota-

tional speed by coupling it in series with a Juid-film bearing. This

arrangement called the series-hybrid bearing, is shown in Fig. 1. In the

series-hybrid bearing, each bearing component carries the full thrust

load at its respective speed. The inner fluid- fil:,i bearing member rotates

with the shaft at full speed. The mating fluid-film bearing member rotates

with the ball bearing inner race at some fraction of the shaft speed. The

outer race of the ball bearing is mounted in a stationary housing. Oil to

pressurize the fluid-film bearing and lubricate the ball bearing is fed

through the hollow shaft.

At low speed the inner and mating intermediate fluid-film bearing

members rotate together at the same speed; however as shaft speed in-

creases the fluid-film bearing lifts off at its pad, due to the hydrostatic

pressure developed by the centrifugal force of the lubricant fed through

the shaft. At 1- off, there is a differential in speed between the inner

member of the fluid-film bearing and intermediate member attached to

the inner race of the ball bearing. This speed differential results in a

lower speed for the ball bearing and thereby reduces ball centrifugal

force (and thus contact stress) at the outer race. Up to 33 dercent redue-

tion in ball bearing inner-race speed has been successfully demonstrated

in a test program, [6 1 where in a combination self-acting Journal and

hydi ,)static thrust fluid-film bearing was coupled to a 75- milli m eter- bore

ball hearing.

'Numbers in Ibrankets J designate references at end of paper.
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The series-hybrid bearing has several advantages when compared to

both the hollow and drilled ball bearing concepts at DN (bearing bore in

mm times shaft shaft speed in rpm) values from 3 to 4 million. Two of

`-	 these advantages, a greater bearing life improvement potential and the

built-in fail-safe feature of the backup ball bearing, make the series-

hybrid bearing a very attractive high-speed bearing concept.

_.. The objective of this investigation was to design, fabricate, and test

a series-hybrid bearing configuration over a range of running conditions.

An optimally ccmigured conical hydrostatic fluid-film bearing coupled to

a 150 millimeter bore angular contact, split-inner ring ball bearing was

specified for the series-hybrid bearing configuration. The fluid-film

bearing was optimally designed with a low torque-rotational speed charac-

teristic to match that of the ball bearing at 20 000 rpm shaft speed. A

30 to 40 percent reduction in ball bearing inner race s p eed at a 3 million DR

equivalent shaft speed was predicted for the series-hybrid bearing design

based on the analytical study of Ref, [71

NOMENCLATURE

C 	 Orifice discharge coefficient

C 1	Dimensionless laminar friction coefficient, 4hLfr%hp

C 2	Dimensionless turbulent friction coefficient,
0, 026ifr(pR 1 (ws - Wb)hpi'µ ^. 75 hL/ hp

d	 Orifice diameter

F	 Thrust load

F	 Dimensionless thrust load, F/'(r,pRl)

fr	 Fraction of area between R2 and R3 occupied by hydrostatic pockets

h 	 Fluid-film thickness

i
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hp Hydrostatic pocket depth

'h. k Fluid-film resistance ratio,

(2pps/9)0 5hL3 sin O/C dnd2 µ [1/ln X2 + 1/ln(X4/X3)]

ML Land fluid-film bearing torque

r
M L Dimensionless land fluid-film bearing torque,

2MLhL sin 0 1 7T 4( ws - wb)R1

Mp Pocket fluid-film bearing torque

i
M

P
Dimensionless pocket fluid-film bearing torque,

2Mh	 sin B/rrµ(w	
- wb)R'L	 1p

Mt Total fluid-film bearing torque, ML + Mp

n Number of feeding orifices

p Pocket pressure

p Dimensionless pocket pressure, p/ps

ps Supply pressure

Q Fluid flow

Q Dimensionless fluid flow, 6µQ/ rph L sin B

R0 Radial location of feeding orifices

R 1 Inner radius of inner land

R2 Outer radius of inner land

R3 Inner radius of outer land

R4 Outer radius of outer land

X2 R2/R1

X 3 R3/R1

X4 R4 , 'R 1

B Half-angle of conical hydrostatic bearing

4 Fluid viscosity
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P	 Fluid density

W 	 Ball bearing speed

We Bearing cage speed

Ws Shaft speed

ANALYTJ^AL DESIGN

Series-Hybrid Thrust Bearing Design

A characteristic of operation of the series-hybrid system is that the

friction torque causing ball bearing rotation is the torque transmitted

through the fluid-flim bearing, As each component rotates under the same

applied thrust load, the speed of each is dependent upon the torque-speed

relation of that bearing component. Success of the series-hybrid bearing

concept in reducing the speed of the ball bearing depends on the fluid-film

bearing operating at the same low torque at a fraction of the shaft speed,

The series-hybrid bearing design selected for this investigation was based

on a shaft speed of 20 000 rpm and thrust load of 17 800 newtons (4000 lb).

These conditions are representative of a mainshaft ball bearing in a gas

turbine engine operating at maximum thrust load to simulate aircraft take-

off conditions. Off design performance at 10 000 and 15 000 rpm and

4450 newton (1000 lb) thrust load were also specified for the series-hybrid

bearing, as these are representative of engine cruise conditions.

Fluid-Film Bearing Design

An oil-fed fluid-film bearing having low torque-rotational speed

characteristic was required to match the torque of the ball bearing and

thereby obtain an appreciable reduction in ball bearing speed. Although

thrust was the primary load designed for in this application, the bearing

should also h?ve radial load capacity. To avoid complexity and reduce

M.

M



e

I
	

I-	 ,.

6

the friction of separate thrust and journal bearings, a conical hydrostatic

bearing was selected, A schematic of the conical hydrostatic bearing,

indicating the location of bearing land and pocket radii, is shown in

Fig. 2. Fluid is introduced at the shaft center-line (fig, 2(a)) and is fed

radially to orifice flow restricters, at radius R0 , which provide pressure

compensation for potential misalinement and varying loads„ The hydro-

static pressure available for load capacity is that developed at radius R0

because of centrifugal effects. After the fluid (c.il ) passes through the

compensating orifice, a pressure p is available in the hydrostatic pockets

to resist a thrust load, F. (Symbols are defined in the Nomenclature. )

The required pressure area is determined by the thrust load and the bear-

ing must carry at supply pressure, p
S'

The design of the fluid• film bearing must be optimized so that it yields

minimum friction torque at the specified design speed and load conditions.

Geometric dimensions and oil feeding arrangements were to be determined

for a hydrostatic bearing that satisfy the following conditions,

1. An envelope size with an eutPr radius (R 4 ) equal to or less than

84..8 millimeters (3.34 in. ) and an inner radius (R 1 ) equal to or greater

than 71.4 millimeters (2 81 in )_

2. A bearing conical half-angle equal to 45 degrees.

3. A design oil viscosity of 5 5 , 10 -3 newtons per second per square

meter (810 -1 lb-sec/in 2 ) and oil density of 9.4 . 10 2 kilograms per cubic

meter (0 34 lb'in 3 ) at a temperature of 3670 K (200 0 F).

4. At the desigr speed of 20 000 rpm and design load of 17 800 newtons

(4000 lb) the fluid-lilm bearing friction torque shall be a minimum

}
OJ
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5. At 20 000 rpm and a load of 4450 newtons (1000 lb) the oil flow

rate shall be 37.9 liters per minute (10 gpm) maximum.

Design optimization of a conical hydrostatic fluid-film bearing was

first performed in [8] based on a computer solution,	 A similar optimized

y bearing design procedure was followed in this effort. 	 Selection of the

bearing configuration and details of the design procedure used are given

TO in the appendix and also in [9].

Selected fluid-film bearing design. - The design procedure followed

} iii the appendix yielded optimized bearing configuration 	 Other considera-

tions in selec ting a finalized optinial bearing configuration were, (1) bear-

ing stiffness at the design load and speed and at off-design conditions,

(2) oil flow rates sufficient to provide adequate film thickness, and

(3) bearing friction torques over the range of speeds and loads.	 Dimension

and operating parameters of the selected bearing design given in the

appendix are also shown on Fig 	 3	 Bearing load and flow as a function

of film thickness for a p = 0.3 at the design speed of 20 000 rpm is shown

in Fig. 3.	 It appears the bearing has good stiffness in the design load

range and the flow rates are within the range specified in (5) above. 	 Fig. 3

also shows the bearing load and flow values as a function of film thickness

at shaft speeds of 10 000 and 15 000 rpm

The axial stiffness of the selected bearing are plotted in Fig. 4 for

speeds of 10 000, 15 000, and 20 000 rpm These stiffnesses were ob-

tained by numerical differentiation of the F - h 	 data presented in Fig. 3.

Ball Bearing Configuration

The ball bearing component specified for the series-hybrid bearing

was a 150-nullimeter bore split-inner ring design. The bearing had a
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radial clearance of 0. 107 to 0. 142 millimeter (0.0042 to 0 0055 in. ) with

a nominal contact angle of 30 degrees. Ball and race matevial was

AISIM-50CEVM steel with a Rockwell hardness of 60 to 63. Cage material

was AISI4340 steel with 0.025 to 0.051 millimeter (0.001 to 0. 002 in. )

thick silver plate. Complete bearing specifications are given in (51.

}	 The measured torque values for the ball bearing from 15] at 8900 andc

17 800 newtons (2000 and 4000 lb) thrust load are given in table I for inner-

race speeds from 6670 to 20 000 rpm. These torque values which increase

with speed, as was anticipated, were used to calculate the differential speed

between the fluid-film and ball bearing components of the series-hybrid

bearing. The ball bearing stiffness ranged from 6.98 newtons per centi-

meter (3.7x10 -5 lb/in) at 17 800 newtons (4000 lb) thrust load and 20 000 rpm

to 1 58 newtons per centimeter (0.9'<10 -5 lb/in) at 4450 newton (1000 lb)

load and 10 100 rpm. These stiffness values were used in the rotor dy-

namic stability determination for the series-hybrid bearing over the entire

test-speed range.

Predicted Series-Hybrid Bearing Performance

Once the torque characteristics of the fluid-film bearing and ball

bearing components were known. the performance characteristics of the

combined hybrid bearing could be calculated. The effects of speed and

load on fluid-film bearing flow and film thickness have been discussed

previously in the fluid-film bearing design section Other important

parameters to be determined for the hybrid bearing design were: (1) the

differential speed between the ball and fluid-filni hearing components. and

(2) the net benefits of the speed differentials in terms of ball bearing life

and bearing power loss.

.a
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Determination of Differential Speed

The split between the shaft speed and that of the ball bearing inner

race can be determined from a crossplot of ball bearing and fluid-film

bearing torques as a function of ball bearing to shaft Epeed ratio wb" 's'

The speed ratio data (wb/ws ) for 8900 and 17 800 newtons (2000 and 4000 lb)

thrust loads at the three shaft speeds is given in table II. The crossplot
AA

A	 of this torque data is shown in Fig. 5 for a test shaft speed of 20 000 rpm.

Note that the ball bearing torque at 8900 newtons (2000 lb) is approximately

&	 one-halt that at 17 800 newtons (4000 lb). This high degree of torque depen-

dence on load is more indicative of Coulomb friction rather than of friction

existing in well lubricated bearings operating on an ela..t)hvdrodynamic

film. Along the 17 800 and 8900 newton (4000 and 2000 lb) load curves for

the fluid-film bearing in Fig. 5, the points of equal torque are shown at

the intersection of the ball bearing axial load curves of 17 800 and 8900 new-

tons (4000 and 2000 lb). At these intersection points the ball bearing inner-

race speeds are 46 and 61 percent, respectively, of the shaft speed of

20 000 rpm.

The hybrid bearing should be capable of supporting 17 800 newtons

(4000 lb) at shaft speeds of 20 000 and 15 000 rpm At 10 000 rpm, the

load carrying capacity drastically decreases because of the reduction in

the pressure due to inertia forces At this speed, the load corresponding;

to a 0.0254 millimeter (1 mil ) film thickness is 11 900 newtons (2670 L`))

see Fig. 3.

Net Benefits of Ball Bearing; Speed Reduction

The combination of high thrust load and high speed severely limits

the ball bearing; life. This limitation is difficult, and in some cases
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impossible to overcome with mere changes in ball bearing design and

materials.	 The series hybrid bearing arrangement brings about a net

reduction in ball bearing speed and consequently mitigates the limitations

imposed by the severe operating conditions. 	 A comparison of the fatigue
1

life of the ball bearing operating at 20 000 rpm within the specified load

range of 8000 to 17 800 newtons (2000 to 4000 lb) indicates that bearing

4 . fatigue life improvement is more than tenfold when going from a single

bearing to the series-hybrid bearing cc.nfiguration 	 For example, at

17 800 newton (4000 lb) thrust load, ttie	 B10	 life is increased from

100 hours to 1150 hours. 	 The	 B10	 life was calculated based on air

melted race and ball material without elastohydrodynamic film or material

improvement factors considered.

The greatest disadvantage of the hybrid bearing lies in its flow require-

ments.	 The flow consumption of the hybrid bearings at 20 000 rpm and

17 800 newtons (4000 lb) load is calculated to be 28. 4 liters per minute

(7.5 gpm) for the fluid-film bearing plus 4 54 liters per minute (1.2 gpm)

for the ball bearing alone at the above conditions of operation. 	 The in-

creased flow, however does not represent as great an obstacle to opera-

tion at high speeds and high loads as that presented by the inherent ball

bearing fatigue life limitations

A thermal and elastic deformatien analysis were performed on the

selected series-hybrid design	 The thermal analysts indicated relatil-ely

low axial and radial thermal gradients for the fluid-film bearing runner

and stater, A maximum temperature rise of 11 0 K (20 0 F) for in inlet oil

temperature of 367 ( ' K (2000 F) indicated that the hall and fluid-film [)car-

ing lubricant flows are adequate and no temperaturV gradients exist that

will adversely affect the series - hybrid hearing operation
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The calculated results of the distortion analysis indicated that a

nominal radial growth and relative rotation between the primary and inter-

mediate rotor faces of the fluid-film bearing occurs. The net effect,

however, results in less than 2. 54Y10 -3 millimeter (0.0001 in. ) net loss

in film thickness at the bearing outer edge. Based on these small defor-

mations at the bearing surfaces the degradation in fluid-film 'bearing per-

formance is Negligible.

TEST APPARATUS AND INSTRUMENTATION

Test-head assembly. - The major components of the series hybrid

test head are shown in Fig. 6. The three bearing test spindle was directly

coupled to and driven by 100 HP DC motor through a 6.34 to 1 step-up

gear box. Shaft speed was continuously variable from 1000 to 20 000 rpm.

Thrust load for the hybrid bearing assembly was provided by a hydraulic

cylinder ram that pushed on the end cover of the test head (fig. 6). A

more detailed discussion of the test head assembly can be found in 110 ^.

Test instrumentation. - Film thickness between the runner and inter-

mediate member of the fluid-film bearing was measured by eddy current

position sensors mounted in pairs in holding blocks as shown in Fig. 6.

Four pairs of these probes were mounted every 90 degrees around the

periphery of the bearing. To provide for temperature compensation and

obtain a true calibration value, each probe contains an iron-constantan

thermocouple. Four iron-constantan thermocouples, spaced 90 degrees

apart in the bearing housing at the axial mid-point of the ball bearing.

were used to measure outer race temperature A single I-C thermocouple.

positioned at the top of the bearing housing in Fig. 6, was used to measure

oil discharge temperature.
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The magnetic pickup shown was used to measure int(.rmediate bearing

member speed, whereas the eddy current sensing probe shown above it

was used to measure ball bearing cage speed.

Additional test instrumentation not shown in Fig. 6 were (l) two (2)

float type flow meters to measure fluid-film and ball bearing oil flow rates,

as iron-constantan thermocouple in each line provided oil inlet tempera-

ture values; (2) pressure gages to indicate fluid-film bearing oil supply

pressure and load cylinder pressure to determine applied axial load, and

(3) a magnetic pickup at the motor end o_ the test spindle to measure shaft

speed.

t'i:! ,;se on the series-hybrid test assembly was measured through

torque arms on opposite sides of the bearing housing. The arm contained

balls that transmitted torque by point contact to deflection')eams instru-

mented with strain gages. Beam deflection is proportional to strain gage

voltage output that was recorded or a strip chart. The beams were allowed

to deflect a limited amount before they met solid stops.

Lubrica nt supply s tem. - A skid mounted lubricant system provided

adequate synthetic !ubricant to the fluid-film and call bearings at pressures

to 8. 60 X 10 5 N/m2 (125 psi), at flow rates to 9. 25 -10
-4

 m3 I'sec (13 gpm)

at inlet oil temperatures to 422 0 K (3000 F). The lubricant used in the

series-hybrid bearing tests was a type fI ester manufactured to MIL-L 23699

specifications. A second pu, aping unit, designed to supply onl} , mineral

oil, was capable of providing 6. 31 • 10 -3 m 3 , ser 10 gpm) at 1.04 -10 1 N m2

(1 1 00 psi) pressure at temperatures nut cx(-cedi ► ig 3360 K (145 0 1+'). 'The

lubricant used for the fluid-film hearing tests was an SAID' - 1 0 miner;il ml

.M
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TEST PROCEDURE

The first test run wa.s performed to establish the system's charac-

teristics at gradually increasing levels of load and speed. The initial

conditions set were: (1) thrust load, 225 newtons (500 lb); (2) ball bearing

oil flow rate, 6.31x10 -5 m3 /Eec (1.0 gpm); (4) inlet oil temperature,

3670 K (2000 F) of type II ester oil (MIL-L 23699). At these static con-

ditions, the shaft rotational speed was gradually increased to 2200 rpm and

held until thermal equilibrium within the test head was established. After

thermal stability was obtained, rotor speed and axial load were increased

sequentially until 10 000 rpm and a 4480 newton (1000 lb) load was reached.

At a shaft speed of 2200 rpm, the fluid-film bearing still remained

inoperative and the speed of the intermediate member was equal to that

of the shaft. At about 3500 rr m, the fluid-film bearing surfaces suddenly

parted, establishing a separating oil film between the shaft and inter-

mediate member. Simultaneously, with the parting of the fluid-film

bearing surfaces, the ball bearing speed dropped to 42 percent of the

shaft speed. This was observed on the intermediate speed indicator, as

well as on the bearing cage speed indicator.

The oil supplied to the center of the test shaft was introduced into

the radial passages of the inner fuild-film bearing member. The oil pres-

sure was read at the point where the oil entered the end cover (see fig. 6).

The capability of supplying large volumes of pressurized oil allowed check-

ing the fluid-film bearing behavior not only at lower speed, but at pres-

sures simulating those that were centrifugally developed at higher speeds.

Furthermore, the direct readings of the pressure inside the shaft. provided

a positive identification of a continual presence of oil in this area. As

.,
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long ^.s the flow to the fluid-film bearing was satisfied, the inner shaft

volume remained at a positive pressure. As soon as that pressure reached

zero, it was determined that the flow requirements to the fluid-film bear-

ing had reached the upper supply limit and no additional load capacity

could be developed.

A test sequence to establish the performance of V , fluid-film bearing

component separately, was run. The remaining test sequences provided

data for the performance of the series-hybrid bearing operational and fail

safe tests.

The test plan called for the fluid-film bearing evaluation to be per-

formed usi.-4_ : type II ester (MIL-L-23699) lubricant. Preliminary runs

with the high pressure lubricant supply system disclosed that this system

was not capable of operating on the synthetic ester type oil at temperatures

of (3670 K) (200 0 F). As a result of this restriction, the tests of the fluid-

film bearing were performed using a SAE-10 mineral oil. The hybrid

bearing tests were conducted using the specifi?d MIL-L-23699 lubricant.

RESULTS AND DISCUSSION

Fluid-film Bearing Tests

The fluid-film bearing tests were performed to establish the load

carrying capacity of this component of the series hybrid bearing under

hydrostatic action when oil was su pplied from an external source. The

tests consisted of operating the fluid-film bearing at rotor speeds of

0, 2000, 4000, 6000, and 5000 rpm. An SAE-10 oil was used at supply

pressures of 251 40 4 , 569 x 10 4 , and 1010` iO 4 N,, m-2 (364, 325, and

1465 psi) which correspondei to pressures that would be developed

centrifugally at shaft spee;ls 	 () 00, 15 000, and 20 000 i •pm Applied

o

a
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load was varied between 2220 and 17 800 newtons (5, 00 and 4000 lb) depending

upon the load carrying capability of the oil film at the specific simulated

shaft speeds. Results of the fluid-film bearing tests are shown in Fig_ 7.

Of primary interest were the effects of speed, load, and hydrostatic supply

pressure on the film thickness and oil flow rates. Comparison between the

experimental and analytical results indicated several important differences,

Figure 7 shows the film thickness as a function of load (or bearing stiffness)

for the three hydrostatic supply pressures. The experimental film thick -

ness shown at each load was averaged from values obtained at rotor speeds

from 0 to 8000 rpm. The experimental curve drawn through the points

appears to have the same slope as the theoretical curves for 0, 4000, and

8000 rpm, shown on the right. However, for a given thrust load flee

measured film thickness did not increase with increasing rotor speed in

every case, as shown for the theoretical curves. This phenomenon is in

contrast to normally expected behavior where increasing speed and result-

ing centrifugal pressure augmentation increase the load carrying capacity,

as indicated by the analytical results

Reasons for observed differences between the experimental and

analytical values of film thickness are discussed in more detail in the

CONCLUDING REMARKS section of this report It can be noted here that

the effect of speed on fluid-film bearing load capacity is more pronounced

at low supply pressures (fit; 7(a)) than at the higher supply pressures

(fig. 7(c)) where the augmenting action of the centrifugal pumping forces

represent a smaller fraction of the load carrying capacity.

The fluid-film bearing test data indicates aniple load carrying capacity

at high speeds of operation with reasonable oil flow rates Loads of

J
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6672 newtons (1500 lb) can be sustained at equivalent DN values of 1. 5 mil-

lion (10 000 rpm), with flews not exceeding 3: 46-,10 -4 m3 ;"sec (5 5 gpm)

r	 At equivalent DN values of 2 25 million (15 000 rpm) the load carrying

capacity can reach 13 250 newtons (3000 lb) with the flow not exceeding

4. 73X10 -4 m3 ; sec (7 5 gpm) and at equivalent of 3 million DN (20 000 rpm),

17 792 newtons (4000 lb) can be safely supported with flow rates less than

5. 93' 10 -4 m3 /see (9 5 gpm).

Series Hybrid Bearing Tests

Successful tests were ec•nducted with the series-hybrid bearing over

the speed range from 5000 to 15 000 rpm and at thrust loads from 4450 to

13 240 newtons (1000 to 3000 lb) using MIL-L-23699 oil. Test results

are presented in table III, and the flow and torque measurement data are

shown in Figs. 8 and 9, respectively.

The film thickness data for the hybrid tests showed values consistently

lower than predicted Exanimation of the individual probe readings indi-

cates that some misalignment occurred as the test conditions were varied,

but the apparent low film thickness readings were felt to be primarily

caused by the same effects acted previously for the fluid-film bearing tests.

Results c,f the flow (fig 8) and tl,ique data (fig 9) fro . ni the hybrid

tests showed good co,rrelatim-, Nk-nh theoretically predicted values. Addi-

tionally, the speed ratio: (:..1) .$) o.i the split between the ball bearing

inner-race and shaft speeds was better than predi( ted For example, at

8900 newton (2000 ]b) thrust load and 10 000 and 15 000 rpni the speed

ratios were 0 495 and a 475 respectively (table III) These values were

lower than these predicted sire e table II shc«s speed ratil . values of

0 590 and 0 600 at these hearing; operating coo itio,ns

a
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The series hybrid test sc,luence had to be modified somewhat after

the 4450 newton (1000 lb) thrust load tests had been run. It became

apparent that to remain within the supply capability of the pump, the

higher speed runs would have to be made at higher axial loads. As a

result 6670 and 8900 newton (1500 and 2000 lb) thrust loads were added

to the test prog ram. Also a 13 350 newton (3000 lb) load was substituted

for the 4450 newton (1000 lb) load at 15 000 rpm.

s	 At the conclusion of the 15 000 rpm, 13 350 newton (3000 lb) test

point, the load was raised to 15 600 newtons (3500 lb) and the rotor speed

was slowly increased. At approximately 16 500 rpm, the residual pressure

supplying the fluid-film bearing reached zero, indicating that the maximum

flow rate of the lubricant pumping system had been achieved. Therefore,

no attempt was made to run the 20 000 rpm tests.

Fail-Safe Tests

Prior to final disassembly, an oil system failure was simulated

(fail-safe test) at a speed of 10 000 rpm and a 4450 newton (1000 lb) axial

load, by stopping the oil flow to the fluid-film bearing; several times.

Each time the oil flow to the fluid bearing was terminated, the ball bearing;'

inner race accelerated quickly to the shaft speed level without any audible

changes in the system performance. Similarly, the restoration of oil flow

to the fluid-film bearing; with the shaft speed maintained at 10 000 rpm

resulted in fluid-film bearing; activation and a reduction of the bill bearing;

speed to 43 percent of the sloaft speed - an excellent speed split. In these

oil system failure tests, the ball bearing, temperature would stabilize at

3780 K (220 0 F) when the fluid-tilni bearm- was activated. At the time

of oil shutdown to the fluid-film bearing, the Ietiipe rat ure of the outer race

I .
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of the ball bearing rose to 401 0 K (265 0 F). This increase in outer race

temperature was mainly due to the increase in the effective ball bearing

speed.

Tear-down and inspection of the bearing after the fail-safe series of

tests showed the fluid-film bearing and ball bearing to be in excellent con -

diiion. The bearing surfaces of the runner and the intermediate menih.-r

had circumferential scratches and bui • tiishes, but these were not of suf-

ficient magnitude to affect bearing performance

CONCLUDING REMARKS

Generally, the independent fluid-film bearing tests indicated good

performance under all test conditions, but with some anomalies.

It was shown experimentally, that at several different thrust loads,

an increase in rotor speed at constant lubricant supply pressure produced

a decrease in the measured bearing clearance. This result was contrary

to the analytical predictions, where an increase in speed should produce

an increase in film thickness. In addition, the average experimental

values of film thickness measured at any individual supply pressure over

the test range, were consistently smaller than the predicted values anti

always by a nearly similar amount of 1 2710 -5 meter :5.0 , 10 -4 In. i

A plausible explanation for both of the above observed effects, i e ,

film thickness reduction with speed, as opposed to analytically predicted

film thickness Increase, and the generally reduced overall measured

film thickness level, lies in the methods used to measure temperature

The oil discharge temperature (oil leaving the Hearing) is'nleasui-ed

by thermocouples, each attached to a probe bracket. This telrlperature

Is also use, to compensate for thermal errors inlleI'ent In the perkil'Rl.wCC



4	 1

19

of the proximity probes, These thermocouples are surface mounted with

W^

	

	 their junction exposed to both the exit oil spray and the metal temperature

of the probe holder. Since the probe holder is firmly attached to the

housing, the heat conduction away from the probe holder will tend to lover

the apparent temperature indicated by the thermocouple.

The probe calibration curves generally showed a zero shift of about

5.08X10 -6 meters per o K (1 ,<10 -4 in. per ° F) with no thermal effect on

the calibration surve slope. Thus, should the measured temperature

reading be in error by 2. 5 0 K (5 o F), an observed error of 1. 27 \10 -5 meter

(5.0X10_ 4  in, ) between the measured and calculated film thickness values

could be easily explained. Furthermore, higher relative velocities within

the fluid-film bearing, caused b y increased rotor speed, will generate

higher levels of heat within the bearing clearance, thereby also exaggerat-

ing this thermal effect.

The speed splits obtained in the tests are obviously more favorable

than those originally anticipated by analysis. The split, however, is in a

large measure a function of the ball bearing torque. The ball bearing

torque values employed In the original analysis were those obtained on test,

as reported in 15 1. These tests were performed with normal hall bearing

mounts. hi the series hybrid bearing arrangement, the oil emanating from

the fluid-film bearing imparts all add itional c hur ning torque on the hall

bearing inner race or the intermediate member This can Increase the

ball bearing torque value and result In it Illore favorable split	 That tact

may be utilized to the designer's advantage 	 Intu r e applications

SUMMARY OF RESULT'S

A series-hybrid thrust bearing configuration consisting of a conical
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hydrostatic fluid-film bearing and a 150-millimeter-bore ball bearing was

designed and tested. A type II ester oil was used in the fluid-film bearing

to develop the hydrostatic load capacity by centrifugal inertia force and to

lubricate the ball bearing. The study produced the following results:

1. Tests were conducted up to 16 500 rpm (2.5 million equivalent DN

value) and an axial load of 15 600 newtons (3500 lb) was safely supported

by the series bearing system. Through the employment of the series

hybrid bearing principle, it was possible to reduce the effective bearing

speed to approximately one-half of the shaft speed. A reduction of this

magnitude can result in a ten fold increase in ball bearing fatigue life.

The experimental performance of the series hybrid has proven the series

hybrid principle to be a viable means of reducing DN levels of large ball

bearings operating in high-speed, high-load systems.

2. A sucessful evaluation of lubricant supply failure (fail-safe tests)

was performed at an operating speed of 10 000 rpm. When oil flow was

stopped to the fluid-film bearing the ball bearing inner race accelerated

smoothly and quickly to the shaft speed. When oil flow was restored, the

bearing returned to series-hybrid operation.

I
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APPENDIX

DESIGN OPTIMIZATION OF A CONICAL HYDROSTATIC

BEARING FOR MINIMUM FRICTION

(Analysis from Ref. 3)

1. Analytical Background

Following the analysis given in the cited reference, the dimension-

less thrust load and flow rate are:

I	 F=X2+X2-X2-1	 (1)

Q =	 1	 +	 1	 (2)
In X2	X4

In —
X3

where

2F = F	 (3)
2rpR1

Q = -- 611Q_	 (4)
rphL sin 0

R.
Xi = —1	(5)

RI

and F is the thrust load, Q the flow rate, p the pocket pressure, h 

the land clearance, Il the fluid viscosit, , , and 0 the half-cone angle

(45 0 for the present case).

The friction torque Mt consists of the torque M L due to the laminar

shearing of the fluid between inner and outer circumferential lands and

the mating surface and the friction torque M p , resulting from the shear-

ing of the fluid in the bearing pockets which may be laminar or turbulent
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depending on the relative rotational speed, M L can be expressed as,

M L = X4- X3 +X2 -1	 (6)

where

2h sin B M LML =	 L 
	 (7)

nµ (Ws-wb)R1

and w  is the shaft speed and wb the ball bearing speed. The pocket

friction M  depends on the Reynolds number defined by

pR (w -w b )hpR _	 2 s	 (g)

f	
e	 µ

where hp is the pocket depth. The expression for the normalized pocket

friction torque for laminar flow is

M
p 

= C 1(X3- _  
X2)	 for Re ^ 1000	 (9)

where

h
C 1 = 4f 	 L	 (10)

11
p

and f  is the fraction of area between R2 and R3 occupied by hydro-

static pockets (fr is close to one for the present case). For turbulent flow,

the normalized torque is

	

Mp - C2(X4. 75 _ X2 75)	 for Re	 1000	 (11)

where

0.75

C = 0_124 f p R 1 (ws -wb )h^^	 hL	
)12)

2	 4. 75	 r `	 Il	 hp
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For given load F and flow Q, values of X 2 , X3 , and X4 that yield a

minimum total friction torque Mt are given in the reference in graphical

form. Actually, X21 X3 , and X4 are related through Equations ( 1) and (2),

Therefore, X2 may be considered as the only dependent variable and, X3

and X4 may be expressed in terms of F, Q, and X 2 as:

2	 F+"T+-
X3=—

and

X4 = X3 exp - 1
Q - 1

In X2

The relationship between the optimal value of X 2 and F and Q is shown

in Fig. 10, which was reproduced from 18 J.

For a given design load, the value of F depends on the level of pocket

pressure p (see Eq. (3)). Pocket pressure p, as will be shown later, is

a function of the orifice restriction, bearing geometry, and clearance.

Thus, for a given design load, the factors affecting pocket pressure have

to be established.

For this hydrostatic, fluid-film bearing in the series hybrid bearing

system, oil is fed to the bearing pockets centrifugally. The supply pres-

sure is, therefore,

1)	 -1
1 f' R0" ^2
2

	 (15)

(13)

(14)

4	 _ .Mj



24

where R0 is the radius defining the location of the feeding orifices.

Using Bernoulli's equation, the flow rate through the orifices is

2 1 2 (ps - p )1 1/2	 , .

	

Q = Cdnnd –	 J	 (16)

	

4	 p

where n is the number of orifices, d the orifice diameter, p the pocket

pressure downstream of the orifices, and C  the orifice discharge coef-

ficient accounting for any deviation from ideal orifice flow. Continuity

requires that the orifice flow rate must be equal to the flow rate through

the bearing clearance. This requirement gives rise to the expression for

the pocket pressure as follows:
2 1 !2

__ -1 + (1 T 4k )	
,17)p

2k2

where

p = P?	 (18)
ps

L/2 3	 ^
s	 L

	

2pp	 h sin 0	 1

	

k - ---	 —	
1

1 + I	 1191
	9 	 Cdnd211 In X2 In X4

\	 X3

k may be considered as the ratio of the orifice flow resistance to the 	 A

fluid-film flow resistance.

The procedure of using the available data given in 18 1 to select a

bearing; configuration for minimum friction is described below.

2._ Bearing Configuration Selection-Procedure

In order to use the bearing; data given in reference 181 effectivclY. t1w

following* ,cheme has been employed and automated on sc digital conilmn-i

..USA
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The selection of the optimized bearing configuration was performed on the

basis of minimum friction.

Procedure

1. Set R 1 = 71. 1 millimeters (2. 81 in.) (the minimum value) for

minimum friction.

2. Assume a reasonable R 0 (R3 '> RO .-> R2 ) so that p s can be calcu-

lated from Eq. (15) by letting w  be the design speed of 20 000 rpm

3. Assume a value of p (0 <p < 1) so that p and F corresponding

to the design load of 17 800 newtons (4000 lb) can be calculated

4. Assume a value of X 2 (1 < X2 < X4 and X4 11 3.34 _ 1,19)
2,8Y

Using the relation among X 2 , F and Q given in Fig. 10 (Q) correspond-

ing to F = 17 800 newtons (4000 lb) is obtained. Q as a functior. of F

and X2 is stored in the selection computer Program as a two-dimensional

numerical table.

5. From (F), (Q) and X2 , X3 and X4 are obtained from Eqs. (13)

and (14).

6. Compute the flow resistance ratio (k) corresponding to F 17 800

newtons (4000 lb) by using Eq (17). Then calculate (h L )/C dnd2 fro.n

Eq, (19).

7. From F and F = 4450 newtons (1000 lb), compute the corres-

ponding p and 1).

8. C-1 . ,-u 	 (k) and (h L ) 3 Cd nd2 similar to step 6

9. Using Eq. (16) and setting (Q) 	 37 9 liters per minute (10 t;pni l.

2calculate the maximum value for C dnd to satisfy tale floe, requirement
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10. Let Cdnd2 be equal ;,- the obtained maximum value for minimum

friction. Compute (h L ). Thus, the bearing configuration is completely

defir,ed for F = 17 800 newtons (4000 lb) and 4450 newtons (1000 lb).

Since the bearing friction torque is approximately proportional to the

bearing radius raised tc, the fourth power or higher (see Eq. (6) and (11)),

small bearings yield lower torques. For a given loan, a small bearing

requires high pocket pressure and from Eq. (3), the corresponding dimen-

1	 sionless load F is small. The available optimized bearing data, shown

in Fig. 10, only covers F from 0.5 to 10. F = 0. 5 corresponds to

p = 0.377 (pocket pressure is 37. 7 percent of supply pressure). In the

bearing configuration selection process, for p ? 0.0377 (F < 0. 5) the

optimized bearing configurations were obtained by linear extrapolation of

the available data given in Fig. 10.

The bearing clearances at the design load are largest for p = 0.3.

Because of the high load carrying capacity at off-design conditions and

the good performance in terms of stiffness, flow, oil film thickness at

design conditions, ap = 0.3 was selected for the fluid-film bearing

final design.

The selection of the pocket depth h p involves a compromise between

stiffness and torque. High hp % h L values exhibit low stiffness and low

torque. The inverse holds true for low values of h h 'h L. High values of

hp /h L require unr , aiistically deep pockets while low values increase

the operational torque causing unfavorable speed distribution in the final

bearing and high power losses. An h1) / h L of 100 representing an average

value was thus selected for this application.
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^. The selected values ofp and hp/h L indirectly established a bearing

configuration of the following make-up.

Dimensionless Parameters

p	 0> 3

Q	 55. 50

F	 0.6189

`
11 /h

L	100

Bearing Dimensions

R0	 76,2 mm (3 in. )

R 1	 71. 4 mm (2. 810 in. )

R2	 74, 2 mm (2.922 in.)

R3	 81. 5 mm (3.210 in. )

R4	 84, 3 mm (3. 329 in. )

hp	 0,0345 mm (0.136 in.)

C dnd2	5.26 min 	 (0. 00816 in. )2

0	 450

0
y
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TABLE I. - BALL BEARING TORQUE CHARACTERISTICS

Inner-race

speed,

Torque, N-m (in-lb)

Axial load, Axial load,rpm
8900 N (2000 lb) 17 800 N (4000 lb)

6 670 3.72 (32.9) 6.38 (56.5)

10 000 4.66 (41.2) 10.89 (96.4)

13 000 6.27 (55.5) 13.33 (118)

15 200 7.70 (68.1) 13.00 (115)

16 660 8.37 (74.1) 14.57 (129)

18 330 9.10 (80.5) 15:59 (138)

20 000 9.53 (84.3) 17.52 (155)

TABLE II. - DIFFERENTIAL SPEED DATA

Shaft speed,

ws ,

Ball bearing speed,

wb,

w

w 

 Load

Newtons lb rpm rpm

20 000 9 200 0.46 17 800 4000

20 000 12 200 0.61 8 900 2000

15 000 7 200 0.48 17 800 4000

15 000 9 000 0.60 8 900 2000

10 000 5 900 0.59 8 900 2000
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dx	 sin A- dr
V
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(a) SECTION VIEW.

RADIAL LAND\	
^-OUTER LAND

PRESSURE

AREA

I

`INNER LAND	 f	 R2	 R1
R3

R4

(b) FRONT VIEW.

Figure 2.	 Schematic diagrams of conical hydrostatic bearing design,
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