NASA CONTRACTOR
REPORT

NASA CR-144174

LOGSIM PROGRAMMER'S MANUAL

By C. L. Mitchell and J. F. Taylor
M & S Computing, Inc.
Huntsville, Alabama

February 1976

(NASA-CR-144174) LOGSIM PROGRAMMER'S MANDAL ¥76-18821.
(M&S Computing, Inc.) 103 p HC $5.50-
CSCL 09B
Unclas

637671 . 14308_

REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

U, §. DEPARTMENT 91: Cgﬂq!;‘lﬂERGE

nnnnnn Eigl ™

PRICES SUBJECT TO CHANGE

Prepared for

NASA - GEORGE C. MARSHALL SPACE FLIGHT CENTER
Marshall Space Flight Center, Alabama 35812

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE
BEST COPY FURNISEED US BY THE SPONSORING
AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-
TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-
LEASED IN THE INTEREST OF MAKING AVAILABLE
AS MUCH INFORMATION AS POSSIBLE

TECHN!CAL REBORT STANODARD TITLE PAGE

1 REPORT NO, : : : 2. GOVERNMENT ACCESS1ON NO. 3. RECIPIENT’S CATALOG NO,
NASA CR-144174
4 TITLE AND SUBTITLE : 5. REPORT DATE
L.OGSIM PROGRAMMER'S MANUAL February 10, 1976

6, PERFORMING ORGANIZATION CODE

7. AUTHOR(S} 8, PERFORMING ORGANIZATION REPORT #

C. 1. Mitchell and J. ¥. Tavior 72-0002

9, PERFORMING ORGANIZATION NAME AND ADDRESS ' ’ 10, WORK UNIT, NO,

M & S Computing, Inc.

P. O. Box 5183 11, CONTRACT OR GRANT NO.
Huntsville, Alabama 35805 NAS8-25621

13, TYPE OF REPOR: & PERIOD COVERED

12, SPONSORING AGENCY NAME AMD ADDRESS

National Aeronautics and Space Administration Contractor Report
George C. Marshall Space Flight Center Japuary 18,1972
Marshall Space Flight Center, Alabama 3538172 14, SPONSORING AGENCY CODE

15. SUPPLEMENTARY NOTES
Flectronics Development Division, Electronics and Control Laboratory

Design Techniques Branch

16. ABSTRACT
This document is & programmen's manual for 2 Logic Simulator (1.OGSIM) computer
program that is a large capacity event simulator with the capability to accurately
simulate the effects of certain unknown states, rise and fall times, and floating nodes
in large scale Metal Oxide Semiconductor logic circuits. A detailed description of
the software with flow charts is included within the report.

18, DISTRIBUTION STATEMENT

Unclassified- Unlimite
COR:
L)

ret
ECOL T ({,m/{« ,«y,,uz' 4’,/7f A

It B, B, Moor
Director, K&C Lab

17. KEY WORDS

19, SECURITY CLASSIF, (of this reperty 20, SECURITY CL.ASSIF, (of thix page) 21. NO. OF PAGES | 22, PRICE
Unclassified Unclasgsified 108
MSEC - Form 2282 (Rev December 1612} For sale by National Technical Information Service, Springfiold, Vieginia 22151

Vb

° Section

1-

2.

TABLE OF CONTENTS

INTRODUGCTION

PREPROCESSOR

2,

2.

1

2

Pregram Structure

Subroutine Descriptions

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10
2.2.11
2.2.12
2.2.13
2.2, :!.4
2.2,156
2.2.16

2.2, 17

CARDPRO: Card Processing Subroutine -
Level 1
CHEKLIST;: Error Check and Data List
Subroutine - Level 1
PACSTORE: Array Packing and Storing
Subroutine - Level 1
FROMTO: Connectivity List Generation
Subroutine ~ Level 1 :
READ: Data Record Reading and Identi- -
fication Subroutine - Level 2
NAMCON: Name and Control Option
Processing Subroutine - Level 2
SPEC: Circuit Specification Subroutine -
Level 2
TIME: Time Record Processing Sub-
routine - Level 2
NEWGATE: NEWGATE Specification
Processing Subroutine - Level 2
ROM: Read-Only-Memory Specifica-
tion Processing Subroutine - Level 2
CREST: Element Description Records
Processing Subroutine - Level 2
SAVETAPE: Data Tape Generation
Subroutine - Level 2
SUBERR: Data Error and Substifution
Subroutine - Level 3 .
ERROR: Indeterminate and Misplaced
Data Skip Subroutine - I.evel 3
NETPRO-NET: Data Processing Sub-
routine - Level 3
GENER: Generator Data Processing
Subroutine - Level 3
GENFUN: Generator Function Data
Processing Subroutine - Lievel 3

10

10

v | Preceding page blank

Section

TABLE OF CONTENTS

{continued)
2.3 Arrays and Vafiables
2,4 Secondary Data Storage
2.4.1 Temporary Data Files
2, 4,2 Simulator Input Data File
2.4, 3 Postprocessor Input Data File
SIMULATOR
3.1 Program Structure
3.2 Subroutine Description
3.2.1 INITIAL: Gate Initialization Sub-
routine - Level 1
3.2.2 SIMRUN: Event Simulation Sub-
routine - Level 1
3.2.3 TERM: Termination Subroutine -
Level 1
3.2.4 SUBILO03: Logic State Determination
Subroutine - Level 2
3.2.5 -REGEN: Generator Events Restoration
Subroutine - Lievel 2
3.2,6 BUFOUT: Event Output Subroutine -
Level 2)
3.2.7 ROM: Read-Only-Memory State
Determination Subroutine - Level 3
3.2.8 INDEL: Delay Gate and Inverter State
Determination Subroutine - Level 3
3.2.9 TYPVALS: Logic Gate State Determin-
ation Subroutine - Level 3
3.2,10 ENTRE: Event Storage Subroutine
. Level 3
3.2.11 INENTRE: Initial Conditions Storage
Subroutine - Level 4
3.2.12 HOLD: Holding Mode Event Processing
Subroutine - Level 4
3.2.13 MCLEAN: FEC Clearing Subroutine -

Level 4

Page No.

10
22
22
22
26
30
30
30
30
32
32
32
32
32
33
33
33
33
33
34

34

TABLE OF CONTENTS

(continued)
Section
3.3 Arrays and Variables
3.4 Debug Output
4, POSTPROCESSOR
4,1 Program Structure
4,2 Subroutine Description
4.2.1 POSTCARD: Card Processing Sub-
routine - Level 1
4.2.2 PREPRINT: Timing Diagram Setup
Subroutine - Level 1
4.2.,3 INITIAL: Element Initial Conditions
Processing Subroutine - Level 1
4.2,.4 PREVENT: Event Processing Sub-
routine - Level 1
4,.2,5 CONTROL: Control and Output Char-
acter and Shift Card Processing
) Subroutine - Level 2
4.2.6 COMCARD: Compare and Compare
Function Card Processing Subroutine -
Level 2
4.2.,7 PNTSLT: PNT/SLOT Card Set Pro-
cessing Subroutine - Level 2
4.2.8 COMPARE: Level Comparison Pro-
cessing Subroutine - Lievel 2
4,2.9 SPIKE: Spike Notice Processing
Subroutine - Level 2
4.2.10 ERROR: Error Message Processing
Subroutine - Level 2
4,3 Arrays and Variables

APPENDIX A LOGSIM PREPROCESSOR PROGRAM FLOW-

CHARTS

APPENDIX B LOGSIM SIMULATOR PROGRAM FLOWCHARTS

APPENDIX C LOGSIM POSTPROCESSOR PROGRAM FLOW-

CHARTS

vi

Pape No.

34

38

40

40

40

40

40

42

42

42

43

43

43

43

44

44

1. INTRODUCTION

The Logic Simulation Program (LOGSIM) is a system of computer
programs written in FORTRAN IV that check the functional correctness
of a logic design by simulating the logic at the logic gate level. In addition
it checks the propagation delay through the varicus logic nets and will
generate printouts indicating that timing or ''race' conditions exist which
should be examined more carefuliy by the system or logic designer. The
program can be used to check logic for virtually any technology in which
the logic is expressed in Boolean logic or an effective equivalent.

The LOGSIM Program has an internal logic library of 15 logic
element types and provides the user with the capability of defining any
number of new logic functions as new gate types or read-only-memories
(ROM). The LOGSIM User's Manual provides the information required
to format a circuit description in terms of LOGSIM inputs.

LOGSIM is capable of simulating up to 5000 logic gates within
approximately 50,000 words of 32-bit computer memory. To achieve
the capability of simulating large networks, LOGSIM was structured
into three separate stand-alone programs: Preprocessor, Simulator,
and Postprocessor, Figure 1-1 illustrates the general flow of execution
of the LOGSIM system of programs,

This document is intended to serve as the Programmer's Manual
for LOGSIM and to describe the program structure and internal logic
flow in detail. It is recommended that every user become familiar with
this document although it is not required to effectively use the program.
The LOGSIM User's Manual is intended to serve as the basic user guide
to the program and contains the information required to successfully
use the program. This document assumes the reader has read the
User's Manual and has some prior experience in the use of the LOGSIM
Program.

This Programmer's Manual follows the structure of the LOGSIM .
program as the 3 major sections correspond to the 3 major LOGSIM
Programs:

o Preprocessor
o} Simulator
o Postprocessor

LOGSIM FLOW OF EXECUTION

Liogie
description

Preprocessoq
program

Logic
aescription,

Lenipora r

ailray

510 rage

diagnostl

Packed
lopaic

desiriplion
data

Simdlactor

Progiasn

Dmguus LISy

pect

events

Outent
specifications]

Pest-
proCessol

pro'g ram

Logic
Leming
diagram

DRIGINAE PAGE 1S
OF POOR QUALITY"

Figure 1 - 1

deimg
data

Each section describes the program structure, subroutines, arrays and
variables, and size. The subroutine descriptions refer to the program
flowcharts contained in Appendices A, B, and C. The subroutines
described may refer to blocks of coding in the main program as well

as actuzal program subroutines.

2. PREPROCESSOR

The Preprocessor Program reads the input data describing
the logic network and packs the information into a shorthand format
compatible with the Simulator Program's input requirements.

2.1 Program Structure

Figure 2-1 illustrates the functional structure of the Preprocessor'
(PREPRO) Program. The program is structured into four levels of
functional subroutines with the first functional level corresponding to
the four main program functions:

(1) Processing input data cards

(2) Verifying input data cards

(3) Packing and storing Simulator input data

(4) Constructing the connectivity list.

Appendix A contains the detail flowchart of the Preprocessor Program.

2.2 Subroutine Descriptions

Each subroutine illustrated in Figure-2-1 represents a particular
feature of the program and may include a block of the main program
coding and/or one or more actual program subroutines. The functional
subroutines are discussed in order from Level 1 through Level 4 and
their respective flowcharts are illustrated in Appendix A in that order.

2.2.1 CARDPRO: Card Processing Subroutine - Level 1

The functional subroutine CARDPRO reads the input data and
sorts it according to data types into the proper data arrays., In the
actual program CARDPRO includes: .

o MAIN - first major coding block

o SUBROUTINES - HEAD1, HEAD? (output page heading
subroutines)

PREPROCESSOR (PREPRO) PROGRAM STRUCTURE

PREPROCESSOR ___ FUNCTIONAL |[SUBROUTINES

T 1 I :
(PREPRC) I LEveL1]LEVEL 21 [LEVEL 3 1

‘ CARDPRO

| ey READ
NAMCON

S ROM

) CREST

Fevera

READ*

frerrsmssssge| CHEKLLIST

GENER

P

READ*®

‘ - PACSTORE

»(GENFUN)

READ*

% See READ, Level 2 ;_)‘ SAVETAFE ’

Figure 2-1

-5-

-

READ*

00

2.2.2 CHEKIIST: Error Check and Data List Subroutine ~ Lievel 1
After the data cards are processed a CHEKLIST function is
performed to identify any substitutions made for indeterminate data
or any input data errors. The CHEKLIST function summarizes input
errors, control options, specifications, constructed delay gates, and
constructed inverters. In the actual program CHEKLIST includes:

o MAIN - second major coding block

o SUBROUTINES - HEAD1, HEAD2

2.2.3 PACSTORE: Array Packing and Storing Subroutine - Level 1
The PACSTORE subroutine sorts the processed input data,
packs it according to the input requirements of the Simulator, and
. stores it in a disk or magnetic tape file for access by the Simulator,
PACSTORE includes the actual program blocks:
o} MAIN - third major coding block

o SUBROU TINE - PACK

2.2,4 FROMTO: Connectivity List Generation Subroutine - Level 1
The functional subroutine FROMTO generates a list of the load
elements associated with each input element. In the actual program
FROMTO includes:
o} MAIN - fourth major coding block
0 SUBROUTINES - HEAD!I, HEAD2
2.2,5 READ: Data Record Reading and Identification Subroutine
Level 2
The READ function reads a data record, identifies the record
type, stores the record image on a scratch disk file, and prints the

record image. READ includes the actual program blocks:

o MAIN - record type decode and type routing instructions
in the first major coding block.

o SUBROUTINES - READ1, WRITEl, RECORD

-6-

2,2.6 NAMCON: Name and Control Option Processing Subroutine -
Level 2

The NAMCON {unctional subroutine processes the title (NAME)
card and the program control options (CONT) card. If the NAME card
is omitted, the title "LOGIC SIMULATION" is substituted. If the contirocl
card is omitted, it is assumed that none of the program's options (IGNORE,
FROMTO, NONCON, FOLLOW, or DEBUG) are desired. In the actual
program NAMCON includes:

o MAIN - part of first major coding block

o] SUBROUTINES - HEAD1, HEADZ, RECORD

2.2.7 SPEC: Circuit Specification Subroutine - Level 2

The SPEC subroutine identifies circuit specifications from a
specifications (SPEC) record. The SPEC record is a required card
that relays vital parameters to the three LOGSIM programs. The
SPEC record defines the time unit, maximum simulation time, the
number of gates excluding automatically constructed delays and invert-
ers, and the number of generators and generator functions. In the
actual program SPEC includes:

o MAIN - part of the first major coding block

o SUBROUTINES - HEADI1, HEADZ

2.2.8 TIME: Time Record Processing Subrouatine - Level 2

The functional subroutine TIME performs all delay rise time
(DTMR), delay fall time (DTMF), and decay time (DCTM) record pro-
cessing. This logic interprets each time type, assigns each an index
number, and generates the first three records of the Simulator input
file:

Record 1 - decay times
Record 2 = fall delay times
Record 3 = rise delay times

In the actual program TIME includes:
o MAIN - part of first major coding block
) SUBROUTINES - HEAD1, HEADZ

2.2.9 NEWGATE: NEWGATE Specification Processing Subroutine -
Level 2

The NEWGATE functional subroutine processes the newgate
type specification records. In the actual program NEWGATE includes:

o MAIN - part of first major coding block
o SUBROUTINES - HEADL, HEADZ

2.2.10 ROM: Read-Only-Memory Specification Processing Subroutine -
Level 2

The ROM functional subroutine processes the ROM specification
records and constructs the next three records of the Simulator input
file:

Record 4 = LOGSIM logic library truth tables; NEWGATE
truth tables; keys to the start of each ROM
truth table in Record 5.

Record 5 = ROM truth tables

Record 6 = Special code values for logic library and NEW-

GATE logic types.
In the actual program, the ROM functional subroutine includes: _
o MAIN - part of first major coding block
o SUBROUTINES - HEAD1, HEADZ2, PACK

2.2,11 CREST: Element]jescription Records Processing Subroutine -
Level 2

The functional subroutine CREST processes logic gate (NET)
records, generator (GEN) records, and generator function (GENF)
records. The processing includes data reading, sorting, routing, and

"validating. In the actual program CREST includes:

8-

o MAIN - part of first major coding block

0 SUBROUTINES - HEAD]1, HEADZ

2.2.12 SAVETAPE: Data Tape Generation Subroutine - Level 2

The SAVETAPE functional subroutine generates a data file to
be passed to the Postprocessor Program. This file contains a para-
meter record, images of the Preprocessor input cards, and a list of
all element names. In the actual program, the SAVETAPE function
is contained in the fourth coding block of MAIN,

2.2.13 SUBERR: Data Error and Substitution Subroutine - Level 3

The SUBERR functional subroutine performs the error checking
involved in ROM specification processing. Substitutions are made for
indeterminate data when possible. Error and substitution messages
are always output. In the actual program SUBERR includes:

o MAIN - part of the first major coding block which includes
ROM processing error messages and the subsequent
routing decisions.

o SUBROU TINES - HEAD1, HEAD2

2.2.14 ERROR: Indeterminate and Misplaced Data Skip Subroutine -
Level 3

The function of ERROR is to inform the user when an indeter-
minate or misplaced data record has been encountered and ignored.
ERRCR includes the actual program parts:

o SUBROUTINES - ERR1, HEAD1, HEAD2

2.2.15 NETPRO: NET Data Processing Subroutine - Level 3

The functional subroutine NETPRO reads and verifies all logic
element description (NET) records and outputs a block of sorted NET
data to a temporary scratch file, After all NET data is processed,
all automatically constructed delay gate and inverter data is output
to the same temporary file. In the actual program NETPRO includes:

-9-

a MAIN - NET record type routing decisions in first major
coding block

o SUBROUTINES - NETPRO, OUT1, BUILD, HEADl, HEAD2

2.2.16 GENER: Generator Data Processing Subroutine - Level 3

The functional subroutine GENER reads and verifies the
generator description {GEN) records and outputs blocks of sorted GEN
data to a scratch file. In the actual program GENER includes:

‘o MAIN - GEN record type routing decisions in the first
major coding block

o SUBROUTINES - GENER, 0OUT2, HEADI, HEAD2

2.2.17 GENFUN: Generator Function Data Processing Subroutine -
Level 3)

The GENFUN functional subroutine reads and verifies the

generator function description (GENF) records and outputs blocks of
sorted GENF to a scratch file. In the actual program GENFUN

includes:

o MAIN - GENF record type routing decisions in first major
coding block

o SUBROUTINES - GENFUN, OUT3, HEAD1, HEAD2

2.3 Arrays and Variables

The following is a list of array and variable names used in the
Preprocessor. Each name is accompanied by a detailed definition
including size and relative storage location information. Notations
such as: (I), (J), etc. indicate that the name refers to an array. When
more than one variable or array is assigned to the same storage loca-
tion or locations, a special attempt has been made to identify the point
in the program where the overlapping occurs. . The detailed structure
of the disk files referenced in the following definitions are presented
in Section 2. 4,

-10-

Not mentioned in the variable list are a number of intermediate
program variables (N, M, etc.) which are used repetitively as control
variables, temporary counters, etc. These variables are obvious in
the program listing and any definitions of these would be meaningless.

IDATA {I) dummy array; 12,500 words, to which most of the
program's arrays are equivalent, After all of the
input data is read, sorted, and output to scratch
file #1, it is read back and packed to the proper
Simulator input format. IDATA (I} is used to read
in blocks of data from scratch storage. IDATA (I)
is passed to the subroutine PACK, packed into an
intermediate array LDATA (I), and returned to the
main program as IDATA (I} in the proper packed
form.

IDECTM (1)

array of decay time values; I = 1, total number of
decay times. The maximum number of decay times
is 255 because of the 8-bit byte orientation of the
host computer. IDECTM occupies storage locations
IDATA (J), T =1, 256 and is not needed after it is
output to the Simulator input disk file, (record' 1).

array of fall delay time values; I = 1, total number
of fall delay times. The maximum number of fall
delay times is 255 because of the 8-bit byte orienta-
tion of the host computer. IDTMF occupies sforage
locations IDATA (J), J = 257, 512 and is not needed
after it is output to the Simulator input disk file
{record 2).

IDTMF (I)

IDTMR (I)

array of rise delay time values; I = 1, total number
of rise delay times. The maximum number of rise
delay times is 255 because of the 8-bit byte orienta-
tion of the host computer. IDTMR occupies the
storage locations IDATA (J), J = ‘513, 768 and is not
needed after it is output to the Simulator input disk
file (record 3).

IDTYPF (I)

index to each gate's fall decay time; I = the gate number,
The maximum size of IDTYPF is 250 words since only
250 NET descriptions are processed before the data is
output to scratch file #1, After all the NET data is
processed the array is no longer needed. It occupies
the storage locations IDATA (J), J = 1751, 2000,

-11.

IDTYPR (I) - index to each gate's rise decay time; I = the gate number,
The maximum size of IDTYPR is 250 words since only
250 NET descriptions are processed before the data is
output to scratch file #1. After all the NET data is
processed, the arrayis'no longer needed. It occupies
storage locations IDATA (N, J = 1501, 1750,

IFECTM (I) - time of first generator or generator function change;
I = the generator or generator function number. The
maximum size of IFECTM is 250 words since only 250
GEN or GENF descriptions are processed before the
data is output to scratch file #1. After all the GEN and
GENF data is processed, the arrayis no longer needed.
It occupies storage locations IDATA (J}, J = 1001, 1250,

IFECVL {(I) - logic state after first generator or generator function
change; I = the generator or generator function number,
The array elements may have the values 1 (OFF) or
2 (ON). The maximum size of IFECVL is 250 words
since only 250 GEN or GENF descriptions are processed
before the data is output to scratch file #1. After all
the GEN and GENF data is processed, the array is no
longer needed, It occupies storage locations IDATA (I},
J = 1251, 1500. .

IGATYP (I) - index to each gate's logic type; 1= the gate number.
Each array element may have any value from 1 to the
number of logic gate types (library, NEWGATE, and
ROMs). The maximum size of IGATYP is 250 words
since only 250 NET descriptions are processed before’
the data is output to scratch file #1, After the NET
data is processed, the array is no longer needed. It
occupies storage locations IDATA (J), J = 501, 750.

IGENTM (I) - list of generator change time values; 1 = number of
generator changes. The maximum value of IGENTM
is 4000, which limits the number of generator changes
to 4000 for each block of 250 generators. After all
the GEN data is processed, the array is no longer
needed. It occupies storage locations IDATA (J}, J =
1751, 4750. '

IGENVL (I) - list of generator state changes; I = 1, number of generator
changes. The array elements may have the values 1
(OFF) or 2 (ON). The maximum size of IGENVL is 4000
which limits the number of generator changes to 4000
for each block of 250 generators. After all GEN data

-12-

IGNORE

INAME (I)

INAMED (I)

INAMEIL (1)

INCARD
INDEX

INNOTE

INPTKY (I)

1

is processed, the array is no longer needed. It occupies
storage locations IDATA (J), J = 4751, 8750.

control option flag for IGNORE option; 1 = option chosen,
0 = option unot chosen.

list of input gate names, double precision; I = 1, number
of inputs. The maximum size of INAME 18 4000 names,
which limits the inputs list to 4000 names for each block
of 250 NET descriptions. After the NET data is pro-
cessed the array is no longer needed. It occupieé
storage locations IDATA (J), J = 2251, 6250.

list of delay input gate names, double precision; I = 1,
number of delay gates. The maximum size of INAMED
is 500 names, which limits the number of delay gates
to 500 for each block of 250 NET descriptions. After
the NET data is processed, the array is no longer
needed. It occupies storage locations IDATA (J), J =
9251, 10250. .

list of inverter input gate names, double precision;

= 1, number of inverters. The maximum size of
INAMEI is 500, which limits the number of inverters
to 500 for each block of 250 NET descriptions, After
all NET data is processed, the array is no longer k
needed. It occupies storage locations IDATA (J),
J = 7251, 8250.

error counter for indeterminate input data types.
input buffer for a delay or decay time index.

error counter for indeterminate notations in input data
records.

key to start of each gate's inputs in the input names list;
I = gate number. The maximum size of INPTKY is 250,
since only 250 NET descriptions are processed before
the data is outputl to scratch file #1. After all NET data
is processed, the array is no longer needed. It occupies
storage locations IDATA (J), J = 2001, 2250,

-13-

INVERT (I)

IOVAL (I)

ITPVLT (I)

ITRUTH (I, J)

ITYPEF (I)

ITYPER (1)

list of inverter names, double precision; I = 1, number
of inverters. The maximum size of INVERT is 500,
which limits the number of inverters to 500 for each
block of 250 NET descriptions. After all the NET data
is processed, the array is no longer needed. It occupies
storage locations IDATA (J}, J = 6251, 7250,

array of initial states of logic gates, generators, or
generator functions; I = element number. Each array
element may have a value of 0 (indeterminate), 1 (OFF),
or 2 (ON}. The maximum value of IOVAL is 250, since
only 250 NET, GEN, or GENF descriptions are processed
before the data is output to scratch file #1, After all
NET, GEN, and GENF data are processed, the array

is no longer needed. It occupies storage locations

IDATA (J), J = 751, 1000,

array of special code values for the logic library and
NEWGATE types; I = logic type number, The maximum
size of ITPVLT is 46, which limits the number of per-
missible NEWGATE specifications to 30. The array

is no longer needed after it is output to the Simulator
input disk file (record 6). It occupies storage locations
LOADS (J), J = 887, 932,

array of NEWGATE truth tables; I =1,8 and J = 1,
number of NEWGATES. The maximum size of J is

30 since only 30 NEWGATES are permitted. The array
is no longer needed after it is output to the Simulator

input disk file (record 4)., It occupies storage locations
IDATA (K), K = 4001, 4240.

index to each gate's fall delay time; I = the gate number.
The maximum size of ITYPEF is 250 words since only
250 NET descriptions are processed before the data is
cutput to scratch file #1. After all the NET data is pro-
cessed, the array is no longer needed. It occupies
storage locations IDATA (J), J = 1251, 1500.

index to each gate's rise delay time; I = the gate number,
The maximum size of ITYPER is 250 words since only
250 NET descriptions are processed before the data is
output to scratch file #1, After all the NET data is pro-
cessed, the array is no longer needed. It occupies
storage locations IDATA (J), J = 1001, 1250,

~14-

JCODEL ()
JCODEZ (1)
JCODE3 (i)
JDATA (i)
IN (1)
INONE
JTRUTH (I)
KARDR (I)
KCARD
KDATA (I)

]

permissi ble NEWGATE special ¢ode input characters;
I=1,6 Eacharray element is one alphanumeric
character, The array is initialized in a DATA statement.

permissible NEWGATE truth table input characters;
I=1,7. Elements 1, 2, 3, and 6 are the perm1551b1e
ROM truth table input characters. Each array element
is one alphanumeric character. The array is initialized
in a DATA statement. :

all possible NEWGATE truth table entry and special
code values; 1 = 1,7. Each array elementis a one-
digit hexadecimal number, The array is initialized
in a DATA statement.

dummy array, double precision, 200 words. JDATA
is used as a buffer array for passing data to or from
disk files. It occupies storage location IDATA (J),

J = 10001, 10200.

four word alphanumeric array spelling LOGIC SIMU-
LATION. Itis used as a substitute page header title
if a title is not specified by a NAME card. The array
is initialized in a DATA statement.

four blank characters initialized in a DATA statement.

logic library truth table array; I = 1,16, Each array
element is eight hexadecimal digits as initialized in a
DATA statement.-

the number of cards in each ROM specification; I =

the number of the ROM specification. The maximum
size of KARDR is 100, the maximum number of ROM
specifications, The array is no longer needed after

the ROM data is output to the Simulator input disk file
(records 4 and 5), It occupies storage locations IDATA
(J), J = 4401, 4500.

inptit buffer for-input data record; first four characters
of the record.

buffer array for a 72-character input data record, double
precision; I = 1,9. The array is not needed after all data
is input. It occupies storage locations LOADS (), J =

1, 18,

_15-

KDEBUG

KDTIME (I)

KEY (I)

KEYBUG

KFILE

KFOLOW

KFTIME (I)

KODE1

KODE2 (1)

KONECT

KONTIN

t

control option flag for DEBUG option; 1 = option chosen,
0 = option not chosen.

array of decay time index; I = 1, total number of decay
times. The maximum number of decay times is 255
because of the 8-bit byte orientation of the host computer.
It occupies storage locations LOADS (J), J = 531, 786,
and is not needed after the delay gate data is output to
scratch file #1.

key to start of each record in the Simulator input disk
file and simulator option flags; 36 words. KEY is out-
put to the Simulator input disk file as the last record
oun the file.

debug option flag; the flag is passed to the Simulator
to determine the type of Simulator debug data to be
output,

number of generator function data blocks on scratch
file #1,

control option flag for FOLLOW option; 1 = option
chosen, 0 = option not chosen.

array of fall delay time indexes; I = 1, total number

of fall delay times. The maximum number of fall

delay times is 255 because of the 8-bit byte orienta-
tion of the host computer. It occupies storage locations
LOADS (I}, J = 275, 530, and is not needed after the
delay gate data is output to scratch file #1.

input buffer for NEWGATE special code character.

input buffer array for NEWGATE truth tables; I = 1, 8.
It occupies IDATA (J), J = 772, 779, and is not needed
after the NEWGATE input data processing is complete.

control option flag for the FROMTO option; 1 = option
chosen, 0 = option not chosen,

input buffer for the ROM specifications card number,

-16-

KRTIME (I)

LDATA (I)

LEND

LFILE

LINE

LOADS (I)

LOCGEN (I}

LOG (D)

LUNIT

I

array of rise delay time indexes, I = 1, total number

of rise delay times. The maximum number of rise
delay times is 255, because of the 8-bit byte orientation
of the host computer. It occupies storage locations
LOADS (J), J =19, 274 and is not needed after all of
the delay gate data is output to scratch file #l.

dummy array; 4000 words. LDATA is used as a buffer
array for transferring data to and from disk files and
as an intermediate array in the subroutine PACK. It
occupies storage locations IDATA (J), J = 8001, 12000.°

end of input data flag., LEND = 0 until all data cards
have been read and is set to 1 on a READ statement
END return indicating all cards have been read.

number of generator data blocks on scratch file #1.

output printing line counter. When LINE = 50, a new
page is started with a page heading.

list of gate load numbers; I = 1, number of loads.: The
maximum size of LOADS is 1000 since the total list of
loads is output to scratch file #2, 1000 at a time.

the start of each generator's changes in the generator
times and states array and the start of each generator
function's change sequence in the total generator change
sequence; I = generator or generator function number.
The maximum size of LOCGEN is 250 since only 250
GEN or GENF descriptions are processed before the
data is output to scratch file #1. It occupies storage
locations IDATA (J), J = 1501, 1750, and is not needed
after all GEN and GENF data has been output to scratch
file #1. A

array of gate type names; I = the gate type number, in
the order in which they are defined (library, NEWGATE,
and ROM). The logic library elements of LOG are
initialized in 2 DATA statement. The maximum size

is 146,

input logical unit number., LUNIT = 105 unless changed
by a CHANGE TO input data record.

-17-

MAXTIM

MROMTB (I)

NAMDEL (1)

NAME (1)

NAMROM
NCARDS
NCONT

NDATA (1)

NDE

NDEL (1)

NDT
NEDE

NEGF

1

total logic time for which simulation is to occur.

ROM truth table entries array; I = 1, total number of
truth table entries. The maximum size of MROMTB

is 2000, because the data is packed and output to scratch
file #2 in blocks of 2000. It occupies storage locations
IDATA (I), 1= 2001, 4000 and is no longer needed after
all ROM specifications have been processed.

list of delay gate names, double precision; I = 1,
number of delay gates. The maximum size of NAMDEL
is 500, which limits the number of delay gates to 500
for each block of 250 NET descriptions. After all

NET data is processed the array is no longer needed.

It occupies storage locations IDATA (J), J = 8251, 9250,

element names array, double precision; I = element
number. The maximum size of NAME is 5000 names.
It occupies storage locations IDATA (J), J =1, 10000.
input buffer for ROM gate type name.

total number of input data records.

ROM specification continuation card counter.

dummy array, double precision, 1000 double words.
NDATA is used as a buffer array to pass double word
data to and from disk files. It occupies storage loca-
tions IDATA (J), J = 6001, 8000.

number of delay gates in a data block on scratch file #1.
number of delay gates in each block of NET data on
scratch file #1; I = the data block number. The max-
imum size of NDEL is 20 which allows (20 x 250) 5000
NET descriptions. It occupies storage locations LOADS
(T), J =~ 847, 866, and is no longer needed after delay
gate construction is completed,

total number of decay times specified.

gate number of last delay gate.

gate number of last generator function.

-18-

NEGN - gate number of last generator.

NEIN - gale number of last inverter,

NELG - gate number of last library or NEWGATE type logic
gate.

NEROM - gate number of last ROM type gate.

NEW ~ input buffer for NEWGATE logic type name.

MEXT - input data record type routing flag,

NFALL (I) -~ index to each delay gate's fall delay time; I = delay

gate number. The maximum size of NFALL is 500,
which limits the number of delay gates to 500 for each
block of 250 NET descriptions. After all NET data is
processed the array is no longer needed. It occupies
storage locations IDATA (J), J = 10751, 11250,

NEILE - number of NET data blocks on scratch file #1. -

NET - number of fall delay times specified.

NGATES - number of gates declared.

NGENS - number of generators and generator functions declared,
NGF - generator function counter.

NGFS (I) - the number of entries in the generator function sequence

of each GENF data block on scratch file #l. The maxi-
mum size of NGFS is 20 which allow (20 x 250) 5000

GENF descriptions, It occupies storage locations
LOADS (J), J = 787, 806.

NGN - pgenerator counter,

NGNC (I) ~ the number of generator changes in each GEN block
of data on scratch file #1. The maximum size on NGNC
is 20 which allows (20 x 250) 5000 GEN descriptions.
It occupies storage locations LOADS (), 7 =807, 826.

NG - unumber of logic gate types.

-19-

NHEAD (1)

NIN

NINPUT (I)

NINV (i)

MLG

NLNG
NNAMES
NNG
NOCARD
NOENUF

NOMANY

NONCON

NONO

NRG

72 character page header title; I = 1,18, NHEAD is
formed from the data on the title (NAME) record.

number of inverters in a data block on scratch file

#1.

number in the input list in each block of NET data on
scratch file #1; I = the block number. The maximum
size of NINPUT is 20 which allows for (20 x 250) 5000
NET descriptions, It occupies storage locations

LOADS (J), J = 827, 846.

number of inverters in each block of NET data on scratch
file #1; I = the block number. The maximum size of
NINV is 20 which allows for {20 x 250) 5000 NET descrip-
tions. It occupies storage locations LOADS (J), J =

867, 886 and is no longer needed after inverter con-
struction is completed.

number of logic gates in a block of NET data on scratch
file #1,

total number of library and NEWGATE logic types.
number of network elements declared,

number of NEWGATE specifications.

error counter for n_lissing essential input data records.
error counter for missing ROM continuation cards,

error counter for extra ROM continuation cards based
on nurmber of inputs.

control option flag for NONCON option; 1 = option chosen,
0 = option not chosen,

error counter for errors prohibiting simulation.

number of ROM specifications.

-20-

NRIN (1)

NRINPT

NRISE (I)

NROM
NRT

NRTE (1)

NRTT (L)

NSCALE
NTDE
NTG
NTGFS
NTGNC
NTIN

NTINPT

number of inputs of each ROM gate type; I = the ROM
gate type number. The maximum size of NRIN is 100
limiting the number of ROM specifications to 100. It
occupies storage locations LOADS (J), J = 970, 1069.

input buffer for number of inputs of an ROM gate type,

index to each delay gate's rise delay time; I = delay
gate number. The maximum size of NRISE is 500
which limits the number of delay gates to 500 for each
block of 250 NET descriptions. After the NET data

is processed, the array is no longer needed. It
occupies storage locations IDATA (J), J = 10251, 10750.

ROM type logic gate counter.
number of rise delay times specified.

key to the start of each ROM's truth table in the com-
bined ROM truth table array; I = the ROM gate number.
The maximum size of NRTE is 100, allowing only 100
ROM specifications. It occupies storage locations
IDATA (J), J = 4241, 4340, and is no longer needed

after it is output to the Simulator input disk file (record 4).

input buffer for ROM truth table entries; I = 1, 56,
NRTT occupies storage locations IDATA (J), J = 4341,
4396, and is no longer needed after all ROM specification
input data is processed.
four character :alpha.numeric time unit on timing diagram.
total number of delay gates constructed.

total number of network elements,

total number of all generator function sequences.
total number of generator changes.

total number of inverters.

total number of gate inputs.

-21-

2.4 Secondary Data Storage

The Preprocessor makes extensive use of secondary storage.
Thé program creates three temporary files, the Simulator input file,
and part of the Postprocessor input file. The followmg discussion
illustrates the contents and structure of each of these data files.

2.4.1 Temporary Data Files

The Preprocessor creates three scratch files to store sorted
input data until all the input data is read. The number and length of
each record in each file depends on the size and complexity of the
network being simulated.

2.4.1.1 Scratch File #1

Scratch File #1 is used for storing the data from NET, GEN,
and GENF descriptions. Table 2-1 illustrates the structure and array
content. The array subscript values illustrated refer to the maximum
array dimensions.

2.4.1,2 Scratch File #2

Scratch File #2 is used throughout preprocessing for temporary
storage requirements resulting from overflow conditions; for example,
if the array MROMTB (I) exceeds 2000 the first 2000 entries are packed
and stored in file #2. Hence the frequency with which it is used depends
on the complexity of the network being simulated. Table 2-2 illustrates
the data which may be stored on file #2,

2.4.1,3 Scratch File #3

Scratch File #3 is used for the temporary storage of the input
data record images, and the element names list, This data must be
stored until a Postprocessor input parameters record can be constructed,
2.4.2 Simulator Input Data File

The only Simulator input is the data file created by the Prepro-

cessor., Therefore, this file must contain all of the data necessary to
simulate the network. The file'is organized into 24 records. The first

22~

SCRATCH FILE #1 CONTENT AND STRUCTURE

" "NET DATA BLOCK™

1 | NAME (250)
2 IOVAL (250)

3 INAME (4000)
4 ITYPER (250) _
5 ITYPEF (250)
6 IDTYPR (250}
7 IDTYPF (250)
8 INPTKY (250

9 IGATYP (250)

(NAMDEL (f), INAMED (I), NRISE

10
(1), NFALL (I})
I= 1,500

11 (INERT (), INAME (1),

1= 1,500

NET Data Blocks
- each block contains 11 records,

- there may be 1 to 20 blocks,
- each block corresponds to 250 NET
descriptions which may contain less

than 250 NETS.

- each block is constructed by one
passe through SUBROUTINE OUTL.

DELAY GATE BLOCK

NAMDE L from all NET blocks

Delay Gate Data Block

- the block contains 7 records.

2 initial values
- there may be only 1 block; no block if
?. INAMED from all NET blocks there are no delay gates.
4 NRISE from all NET blocks - the block is constructed by SUB-
ROUTINE BUILD.
5 NFALL from all NET blocks
b rise decay time indices
7 fall decay time indices
INVERTER DATA BLOCK
Inverter Data Block
1 INVERT from all NET blocks
’ - the block contains 3 records.
2 initial values - there may be only 1 block, no block
if there are no inverters.
3 INAMEI from all NET blocks ~the block is conatructed by SUBROUTINE

BUILD

Table 2-1

-23-

SCRATCH FILE #1 CONTENT AND STRUCTURE (Cont'd}

GEN DATA BLOCK '

NAME (250)

IOVAL (250}

LOCGEN (250)

IFEGTM (250)

IFEOVL (250)

IGENTM (4000)

IGENVL (4000)

GEN Data Blocks
- each block contains 11 records,
- there may be 0 to 20 blocks,
- each block corresponds to 250 GEN
descriptions except the last block

which may contain less than 250 GENs.

.- each block is constructed by one pass
through SUBROUTINE QUTZ,

GENF DATA BLOCK

NAME (250)

IOVAL {250}

LOCGEN (250)

IFECTM (250)

IFEC VL (250)

Word #1 - number of GENF
seguence repetitions.

Word #2 - time interval between
changes,

Werd #3 - number in change
gequence.

Weord #4 to n- change sequence
packed 4 bits/state

- All repeated for each CENF

GENY Data Blocks
~ each record contains 11 records.
~ there may be 0 to 20 blocks.
- each block corresponds to 250 GENF
descriptiona except the last block

which may contain less than 250 GENF 5.

- each block is conatructed by one pass
through SUBROUTINE OU'T3.

Table 2-1 continued

-24-

SCRATCH FILE #2 CONTENT AND STRUCTURE

CONTENT

STRUCTURE

MROMTB (I)

HI'IYPEF (I), NFALL (J)

2000 words packed 125 words/record.

from NET and Delay Gate blocks on file
#1, 1000 words packed 250 words/record.

ITYPER (I), NRISE (J) - from NET and Delay Gate blocks on file

#1, 1000 words packed 250 words/record.

IDTYPF (1)

from NET blocks on file #1, 1000 words
packed 250 words/record. ’
[DTYPR (I) from NET blocks on file #1, 1000 words
packed 250 words/record.
LGENVL (1) from GEN blocks on file #1, 1000 words
packed 125 words/record.
EFECTM'(I) from GEN and GENF blocks of file #1,
FECVL (1) one record each.
kGATYP (1) from NET blocks and GEN and GENF blocH
OCGEN (J) of file #1 respectively, one record of each,
ALl element names - one record.
INPTKY (1) from all NET blocks on file #l, one record

ALl input names
ALL input gate numbers
ﬂKey to start of each
load in LOADS
array.
OADS (1)

- 100 names/record,
- 100 words/record.
- one record,

- 1000 words/record.

Table 2-2

-25-

word of each of the first 23 records is the number of words in the record.
The 24th record is a key array to the position and size of the other
records and a list of network parameters. Table 2-3 illustrates the
organization of the Simulator input data file.

2.4,3 Postprocessor Input Data File

The first part of the Postprocessor input data file is created by
the Preprocessor. This data file contains::

- Parameters record - including a four-character time unit,
NSCALE; the number of Preprocessor input data records,
NCARDS: the total number of network elements, NTG; and
the maximum Simulation time, MAXTIM,

- Prepro;:essor input data record images, one image per
. record, transferred from scratch file #3. The number
of records = NCARDS.

- Element names, one name per record, transferred from
scratch file #3., The number of records = NTO,

-2h-

SIMULATOR INPUT DISK FILE ORGANIZATION

ECORD CONTENT

1 l-word decay time values, IDECTM,

2 1-word fall delay time values, IDTMF,

3 l-word rise delay time values, IDTMR,

4 8 4-bit entries for each logic library truth table,
JTRUTH. 8-4bit entries for each NEWGATE truth
table, ITRUTH, and 1 word indices to the start of
each ROM truth table in record 5, NRTE.

5 2-bit ROM truth table states, MROMTB.

6 4-bit special code values for logic library and NEW-
GATE logic types, ITPVLT,

7 l-byte index to each gate's fall delay time, ITYPEF,
NFALL,

8 l-byte index to each gate's rise delay time, ITYPER,
NRISE, :

9 _1-byte index to each gate's fall decay time, IDTYPF.

10 l1-byte index to each gate's rise decay time, IDTYPR,

11 l-word generatof change times, IGENTM.

12 4-bit generator state changes, IGENVL,

13 1-word number of repetitions, l-word time interval,

. l-word sequence pointer and limit, list of 4-bit state
secquence entries, repeated for each generator function,

14 list of half-word element numbers in the order in which
future events are to occur, Generator and generator
functions numbers are entered, all other entries - 0.

15 l-word time of next change for each element, First

generator and generator function change times, IFECTM,
are entered, all other entries = -1.

Table 2-3

-27-

SIMULATOR INPUT DISK FILE ORGANIZATION (Cont'd)

RECORD CONTENT
—

16 4-bit state of next event for each element, first genera-
tor and generator function change states, IFECVL, are
entered, all other intries = 0.

17 4-bit entry for the initial state of all aetwork elemens:s,
IOVAL,
18 half-word reference to each gate's logic type, IGATYP

and index to its associated data in record 4.

19 half-word index to each generator's data in records 11
and 12 and each generator function's data in record 13,
LOCGEN,

20 half—-ﬁvord element number for each element in the list

of inputs.

21 half-word index to the start of each gate's inputs in the
list of inputs, INPTKY.

22 half-word element number for each element in the list
of loads, LOADS,

23 half-word index to the start of each element's loads in the
list of loads. .

KEY (1) array:

1,23 imy to start of records 1 through 23,

24 - element number of laat non-ROM type
logic gate, NELG,

24 I1=25 - element number of lagt ROM type logic
gate, NEROM.

26 - element number of last delay gate, NEDE

27 - element number of last inverter, NEIN.

28 - element number of last generator, NEGN.

29 - element number of last generator function,

. . NEGF

1

I
L

]

= H
"

Table 2-3 continued

-28-

SIMULATOR INPUT DISK

FILE ORGANIZATION (Cont'd)

RECORD

CONTENT
24 I = 30 - IGNORE option flag, IGNORE
cont'd I=3] - NONCON option flag, NONCON
I =32 - FOLLOW option flag, KFOLOW
I =33 - end of key, number of elements
—+40,
I =34 - maximum simulation tirme,
) MAXTIM
1 = 35 - number of generators and gener-
ator functions.
I = 36 - DEBUG option flag, KDEBUG

Table 2 - 3 continued

-29-

3. SIMULATOR

The Simulator portion of the LOGSIM Program simulates the
operation of a logic network based on the network description generated
by the Preprocessor and outputs a sequence of logic events describing
the operation for interpretation by the Postprocessor.

The Simulator operates using the concept of a "Future Events
Chain' (FEC). When an event occurence isg recognized, the program
examines the effect which the state change has on other elements in
the circuit and schedules future events accordingly, The future events
are stored in the FEC, and the current time is advanced to the time of
the next scheduled event, This concept will be referenced extensively
in the following Simulator discussions.

3,1 Program Structure

Figure 3-1 illustrates the functional structure of the Simulator
(SIMUL) Program. The program is structured into five functional
levels with the first level of subroutines corresponding to the following
major program functions:

(1) Initialization of element states

(2) Simulation of logic events

(3) Termination of the simulation

Appendix B contains the detailed flowchart of the Simulator Program,

3,2 Subroutine Description

Each subroutine illustrated in Figure 3-1 represents a particu-
lar function of the program and a specific block of coding in the main
program. The only actual subprograms of the Simulator are short
functions used for bit manipulation., These subprograms are frequently
used Boolean functions which are important for packing and unpacking
data, but are not represented as major functional program blocks in
this discussion.

3.2.1 INITIAL: Gate Initialization Subroutine - Level 1

The functional subroutine INITIAL determines the initial state
of as many network elements as pogsible, If all indeterminate states

-30-

SIMULATOR (SIMUL} PROGRAM STRUGCTURE

FUNCTIONAL;SUBROUTINES
i 1 L i . |
SIMUT,ATOR I Levels 1 Treverz 1 Triovers 1 Fievera 1 ITevers

l L

SIMUL

(mrTian) ‘
e (suB13)
i ROM

—
e { TT PVALS

{ INENTRE
;! HOLD '

—-——-b' MCLEAN ’

Frmadgee ¥ %
] SIMRUN
' w-—-u-_b*
—— (e)
—
b ENIRE
: BUF:OUT ——._..._).| IN'EN'I'RE ’

' > MCLEA;‘J.)

Bwe 33l

* See TERM Level 1
*¥ See BUFOUT Level 2

Figure 3 - 1 2hGE 15‘

-31.

cannot be resolved, the Simulator action taken depends on the vaiue Ol
the IGNORE option flag. The initial states determined by the Simulator
are examined for any inconsistencies with those specified by the user,
and any action taken depends on the value of the NONCON option flag.

3.2.2 SIMRUN: Event Simulation Subroutine - Level 1

The functional subroutine SIMRUN performs the operations
necessary to simulate the network operation from zero time to the
maximum simulation time, MAXTIM.

3.2.3 TERM: Termination Subroutine - Level 1

The functional subroutine TERM outputs any data in the Simulator
output data buffers and brings the simulation to an orderly terminate.

3.2.4 SUB103: Logic State Determination Subroutine - Level 2

The functional subroutine SUB103 determines the output value
of a network element, It is first utilized during initialization to resolve
indeterminate initial gate output levels. During simulation SUB103
predicts future gate output changes to be entered in the FEC.

3.2.5 REGEN: Generator Events Restoration Subroutine - Level 2

When a generator or generator function event occurs, the
subroutine REGEN locates that elemient's next event in the input data
array., If there is a future event scheduled it is then entered into the
FEC.

3.2.6 BUFOUT: Event Output Subroutine - Level 2

In the operation of BUFOUT any data which is to be output to
the Postprocessor input data tape is entered into one of two buffers.
Data is entered into the first available buffer, while the other buffer
may be busy with output. After the buffer is filled, the intrinsic sub-
routine BUFFER OUT is called and the data is output to tape,

_32-

3,2.7 ROM: Read-Only-Memory State Determination Subroutine -
Level 3

The functional subroutine ROM determines the output level of
-a read-only-memory element by searching its truth table according
to the input levels. An attempt is made to resolve the output for any
indeterminate inputs only if requested by the FOLLOW option.

3,2.8 INDEL: Delay Gate and Inverter State Determination Subroutine -
Level 3

The subroutine INDEL determines the output levels for delay
gates and inverters.” This is done by examining the level of the gate's
input and scheduling its output the same as it8 current input if itis a
delay gate, or setting its current value at the current input complement
value if it is an inverter,

3.2.9 TYPVALS: Logic Gate State Determination Subroutine - Level 3

The functional subroutine TYPVALS determines the output of
logic elements of the logic library or NEWGATE type. The determina-
tion is made on the basis of the type of gate and the input levels. The
gate type special code and 8-character truth-table is accessed from
the input data array. TYPVALS attempts to evaluate cutputs even when
indeterminate inputs exist. If the output state cannot be determined,
it is set to indeterminate,

3.2.10 ENTRE: Event Storage Subroutine - Level 3

The subroutine ENTRE enters an element’'s new value into the
NIT list or schedules a future event by an entry in the FEC, It deter-
mines the event delay, and identifies holding events and spike conditions.
When a spike condition cancels a future event, the FEC entry is deleted
and a spike message is output.

3.2,11 INENTRE: Initial Conditions Storage Subroutine - Level 4
The INENTRE subroutine enters initial gate levels into an in- -

itial conditions array. A holding initial event is considered indeterminate.
If an initial conditions conflict occurs a message is output.

-33-

3,2.12 HOLD: Holding Mode Event Processing Subroutine - Level 4

When a holding mode event is encountered, the subroutine HOLD
examines the event data, determines if the gate's output should be held
at its current state, determines its current state, and finds the proper
rise or fall decay time. If the state is to be held, the event is entered
in the FEC,

3.2,13 MCLEAN: FEC Clearing Subroutine - Level 4

The functional subroutine MCLEAN maintains the FEC storage
area, by insuring against an overflow, If the FEC is filled, any positions
where events have been deleted are filled and any duplicate entries in
the FEC are eliminated. If the FEC is still full, it is an indication
that the simulation is attempting to process current events from a zero
delay feedback loop. In this case a message is output and 2 normal
termination occurs.

5. 3 Arrays and Variables

The following is a list of array and variable names used in the
Simulator Program. Each is defined in detail including.any dimensional
or equivalence information. Notations such as (I),. [J), .étc. refer to
array names. Variable names which are used repetitively with different
meanings are not included in this list, o

IBASE ~ address of a ROM truth table in the input array M (I).

IBIT (I) - 150,16, where IBIT (I) = 2!; initialized in a DATA
statement and.used for masking the debug word KDEBUG.

IDECTM - a decay time value.

IDTMF - a fall delay time va.lue..

IDTMER - a rise delay time value.

IDTYPF - a gate's fall decay time index.

IDTYPR - a gate's rise decay time index.

-34_-

IERJ
IER2
1ER3 |
1IER4

o

IFECKY

IFECTM
JIFECVL
IGATE

IGATS

IGATYP

IGENF
IGENTM
IGENVL

IGNORE

IHIS
INCLOC
INDET (1)
INDETS

INFLAG

INITIA

error type flags used in error messages passed to tape;

initialized in a DATA statement.

kg;(to future events, euntry in FEC.
time of a gate's f‘:ltu re event.

a gate's future event value.

a gate number.

the number of the gate whose current event is being
processed,

the value identifying the current logic type and its truth
table location.

a generator function event value scheduled at preprocessing.

a generator event time scheduled at preprocessing,
a generator event value scheduled at preprocessing.

option flag for control option IGNORE set at prepro-
cessing. -)

counter for the number of HIGH inputs to a gate.

flag for a gate's clock value.

1= 0,16, indicating the indeterminate inputs to a ROM.
counter for the number indeterminate’inputs to a gate.
a count of indeterminate initial states left affer a pass
at attempting to resolve indeterminate states during
initialization.

a flag indicating whether or not initialization is taking
place.

-35-

INPTKY
INPUTS

IOBUFF

IOVAL

IPRINT (I)

ISIGN

ITER

ITPVAL

ITPVLT

ITYPEF
ITYPER

K (1}

KDEBUG
KDLEND
KEYEND
KFOLOW

‘KGEND

address of a gate's input list.

the number of a gate's inputs.

output buffer array, I = 1, 1000; IOBUFF is divided
I1=1,500andI= 501, 1000 and used as two arrays to
buffer blocks of output data.

the initial state of a gate.

a small intermediate buffer array, I = 1, 6; used to
store data temporarily until one of the output buffers
is available.

flag to indicate direction in binary search of FEC,

a mask word initialized by a DATA statement; used by
Boolean type intrinsic functions.

a logic library or NEWGATE type truth table or address
of 2 ROM truth table,

a gate's special code identifying how its truth table is
to be manipulated.

index to a gate's fall delay time,

index fto a gate's rise delay time,

input buffer array, I = 1, 28; for reading the last record
on the Simulator input data file., Each of the first 23
entries of K (I) are equivalent to the variable name re-
presenting the data in each of the first 23 records on
that file,

debug data print flag,

the number of the last delay gate,

size of the FEC,

option flag for control option FOLLOW set.

the number of the last generator.

-36-

KGENFD
KGTEND

KLEAN

KONFLI
KROMND
KTYPE
KURTIM
KVLEND

LASTFG

IL.OADKY -

LOADS

LOCGEN

LOWwS

LPOINT -

L1
L2

LZBITS

M (1)

MASK 11

the number of the last generator function.
the number of the last inverter.

count on the number of passes through functional sub-
routine MCLLEAN,) :

flag on conflicting initial states.

number of the last ROM type logic gate. .
indicator of a gate's special code.

current time during simulation,

number of the last non-ROM type logic gate.

count of indeterminate initial conditions prior to the
last pass at attempting to resolve indeterminate states.

address of a gate's loads list.
number of a gate's loads.

address of a generator or éenerator function event
scheduled at preprocessing.

counter for the number of LOW inputs to a gate.

pointer to the start of data in the array IPRINT (I) to
be transferred to the output buffer IOBUFF (J).

address of first load in a gate's load list.
address of last load in a gate's load list,

a mask word, initialized by a DATA statement; used
by the Boolean type intrinsic functions.

input buffer array for reading the first 23 records of
the Simulator input data file. I =1, 20000 limiting
the size of the input data file to 20, 000,

a mask word, initialized by a DATA statement; used
by Boolean type intrinsic functions.

-37-

MAXTIM
MCLEAN
MROMTB

MSK (I)

MSKCNT

NIT

NONCON

NOWSR

NPOINT

NWORDS

NIFLAG
NZFLAG
PNTRET
SUBRET

XI

maximum simulation time,

variable statement number assignment,

16 2-bit ROM truth table entries.

mask array for reading ROM truth tables, I = 0, 16;
contains the number of bits which a ROM word must

be shifted to right justify the desired value.

counter on number of masks constructed for reading
a2 ROM truth table,

index to locati‘on of a current time event in the FEC.

option flag for control option NONCON set at prepro-
cessing,

flag used in processing 4th and 5th inputs of a CJKF
type gate. NOWSR = 1 indicates output must change
because either the 4th or 5th input is set.

pointer on the last entry in the output buffer array
being filled.

number of entries in the intermediate array IPOINT (i)
to be transferred to an output buffer.

BUFFER OUT operation error flags for the two output
buffer array, -

variable state;:nent number assignment,

variable statement number assignment.

floating point representation of increment used in binary
search of FEC,

3.4 Debug Output

Detailed debug information can be obtained from a Simulation
run by specifying the debug option to the Preprocessor. The Simulator
debug word KDEBUG is set to indicate the type of debug output to be

printed.

Table 3-1 illustrates the use of debug word KDEBUG in the
Simulator.

-38-

SIMULATOR DEBUG WORD BIT INTERPRETATION

KPEBUG Description of Debug Output When Bit is Set
Bit No.
0 Data from Simulator input disk file is printed.
2 All data output to Preprocessor input data tape by the
the simulator is printed.
3 . _All events scheduled for the current time are printed.
4 The gaie number whose loads are about to be checked
for future events is printed.
5 The current state of the gate which is about to be
' checked for a future event is printed
6 The future state of the gate which is about to be checked
for a future event is printed.
7 The current FEC status is printed.
8 Status of the FEC clearing operation performed by the
Subroutine MCLEAN is printed,
9 ROM Processing data is printed,
KDEBUG Final gate initialization is printed.
0

Table 3 - 1

=39

4, POSTPROCESSOR

The primary function of the Poetprocessor is to output logic
timing diagrams corresponding to the events simulated.

4.1 Program Structure

Figure 4-1 illustrates the functional structure of the Postpro-
cessor (POSTOR) Program. The program is structured into two levels
of functional subroutines with the first functional level corresponding
to the four main program functions:

(1) Processing input data cards.

(2) Timing diagram setup.

(3) Processing element initial conditions.

(4) Processing simulation event.

Appendix C contains the detailed flowchart of the Postprocessor Program.

4,2 Subroutine Description

Each subroutine illustrated in Figure 4-1 represents a particu-
lar function of the program and may include a block of the main program
coding and/or one or more actual program subroutines.

4,2.1 POSTCARD: Card Processing Subroutine - Level 1

The functional subroutine POSTCARD processes all input data
cards except PNT/SLOT cards. This subroutine also processes the
data on the Postprocessor input data tape generated by the Preprocessor.
In the actual program POSTCARD includes:

o MAIN - first major coding block

o SUBROUTINES - HEAD1, HEAD2, HEAD3, HEADS,

4.2.2 PREPRINT: Timing Diagram Setup Subroutine - Level 1
The PREPRINT subroutine outputs user reference data, and

-40-

POSTPROCESSOR {(POSTOR} PROGRAM STRUCTURE

POS'IPR;)CESSOR FUNCTIONAL SUBROUTINES

|

| FMiEveL 1 | LEVEL 2
(POSTOR)

POSTCARDY}

i
Lo

y
;

CONTROL Y

COMGARD

PNTSLT

it

(PREPRINT)
i

PNTSLT

-

!

»l COMPARE

¥
e
3
@ U‘
=

- " ERROR

wACOMPARE

1
L

¥
5

B
b

- ERROR

i

Figure 4-1

_41-

starts the printout of each timing diagram. In the actual program
PREPRINT includes:

0 MAIN - part of first major coding block

o SUBROUTINES - HEAD7, HEADS8, HEAD9, HEADIO,
HEADI1l, HEADI13.

4,2.3 INITIAL: Element Initial Conditions Processing Subroutine -
Level 1

The functional subroutine INITIAL accesses the Postprocessor
input data tape for the first events blocks containing element initial
states output by the Simulator. The initial conditions are processed
according to the INITIAL control option, In the actual program
INITIAL includes:

0 MAIN - second major coding block

o SUBROUTINES - HEAD1, HEADZ2, HEADI12, HEADII,

4.2.4 PREVENT: Event Processing Subroutine - Level 1

The subroutine PREVENT begins with the first event following
the initial conditions on the tape and processes the events in blocks of
250, A line of data is printed on the timing diagram for every time
at which any event occured. PREVENT includes the actual program
parts: :

o MAIN - third major coding block
o) SUBROUT INES - HEADI1, HEADI14, OUTPUT.
4.2,.5 CONTROL: Control and Qutput Character and Shift Card Processing
Subroutine - Level 2
The functional subroutine CONTROL reads and verifies the

control (CONT), character (CRCT), and shift (SHFT) cards. In the
actual program CONTROL includes:

-42-~

o MAIN - part of first major coding block -
o SUBROUTINES - HEAD1, HEADZ,
4.2.6 COMCARD: Compare and Compare Function Card Processing
Subroutine - Lievel 2
The subroutine COMCARD reads and verifies the level comparison
(CMP) and compare function (CMPTF) input data cards. COMCARD
includes the actual program parts:

o MAIN - part of first major coding block

o SUBROUTINES - HEAD1, HEAD2.

4,2.7 PNTSLT: PNT/SI.OT Card Set Processing Subroutine - Level 2
The functional subroutine PNTSLT reads and verifies the PNT
and SLOT data cards, one PNT/SLOT set at a time, In the actual
program PNTSLT includes;
0 MAIN - part of first major coding block
o SUBROUTINES - HEAD1l, HEADZ, NOPNT, PNTSLT,
PNT, SLOT.
4.2.8 COMPARE: Level Comparison Processing Subroutine - Lievel 2
The COMPARE subroutine performs the level comparisons
requested by the level comparison (CMP) and compare function (CMPF)
cards. COMPARE includes the actual program parts:

o MAIN - routing decisicn in 2nd and 3rd major coding blocks

o SUBROUTINES - HEAD1l, COMPARE

4.2.9 SPIKE: Spike Notice Processing Subroutine - Level 2

The functional subroutine SPIKE searches the table of predicted
spike conditions for any corresponding to the current event time. In
the actual program SPIKE includes:

~43

o MAIN - routing decisions in 2nd and 3rd major coding
blocks

o] SUBROUTINES - HEADI], SPIKE,

4.2.10 ERROR: Error Message Processing Subroutine - Level 2
The subroutine ERROR identifies error messages which are

passed from the Simulator among the events, and processes them

according to the error type. Spike predictions are included in the

error messages passed. ERROR includes the actual program parts:

o MAIN - routing decisions in 2nd and 3rd major coding
blocks

o - SUBROUTINES - HEADI11, ERROR'I, ERRORZ, ERROR3

4.3 Arrays and Variables

The following is a list of array and variable names used in the
Postprocessor Program. Each is defined in detail including any array
dimension information. Notations such as (1), (J), etc. refer to an
array name. Not included in this list are a number of variable names
which are used repetitively as control variables and temporary
counters.

IDATA (I) - input buffer array for preprocessor input data records,
I1=-1,18,

INFO - first word of a sequence of error data from the Simulator.

INFOL1 (1) - first word of any error message word pair; I = word

pair number. The maximum value of I is 5 since no
error message given by the Simulator exceeds 5
word pairs.

INFO2Z (I) - second word of any error message word pair; I = word
pair number. The maximum value of Iis 5 since no
error message given by the Simulator exceeds 5 word
pair.

ITIME (I) - list of beginning time values for time slots to be printed.

I =1, 60, limiting the number of time slots per timing
diagram to 60,

~44.

JCARDA
JCARDDB
JCARDI

JERROR
JNONE
JNUM

JOPTNI1
JOPTN2
JOP'."L”N3
JOPTN4
JOPTNS5
JSHFTL
JSHFTR
JTYPEL
JTYPEZ

JTYPE3

character card identifier; four alphanumeric characters-
CRCT, initialized by a DATA statement.

shift card identifier; four alphanumeric characters -
SHY¥T, initialized by a DATA statement,

control card identifier; four alphanumeric characters -
CONT, initialized by a DATA statement,

error message word pair counter.
four blank characters, initialized in a DATA statement.
BNT card counter.

SPIKE option identifier; 4 characters - SPIK, initialized
by a DATA statement.

PREPIN option identifier; 4 characters - PREP, init-,
ialized by a DATA statement,

POST option identifier; 4 characters - POST, initialized
by a DATA statement. ‘

COMSTOQOP option identifier; 4 characters - COMS,
initialized by a DATA statement.

INITIAL option identifier; 4 characters.- INIT, initialized
by a DATA statement.

left shift identifier; 1 character - L, initialized by a
DATA statement,

right shift identifier; 1 character - R, initialized by
a DATA statement,

compare card identifier; 4 characters - CMPE, initialized
by a DATA statement.

compare function card identifier; 4 ‘characters - CMPF,
initialized by a DATA statement.

PNT card identifier; 4 characters - PNTB, ivitialized
Ly a DATA statement.

~-45.

JTYPE4

KCAR DAY
KCARDB
KCARDI

KCARD2 »
KCARD3

KCARD4

KCARD5

KDATA (1)

KDRCTN (I)

KGATE ()

KINDER

)

]

SLOT card identifier; 4 characters - SL.OT, initialized
by a DATA statement,

input buffer for data card types, first four characters

on card.

input buffer array for 72-character image of any data
card; double precision, I =1, 9.

input buffer array of left or right shifts corresponding
to how each character on the timing diagram, KLEV (J),
is to be shifted; I = character number, The Simulator
outputs only three possible states, indeterminate, LOW,
and HIGH, but the array is dimensioned at 16 allowing
for 16 different states.)

array of element number to which each event, in a block
of 250 events, corresponds; I=1, 250,

error message type flag, may assume vaiues from 1
to 5 with the following correspondence:

1 - conflict of initial states

2 - spike

3 - indeterminate ini}:ial states
4 - a stable gate operation

5 - termination

-46-

KLEV (I}

KLEVEL (I}

KLOOP

KMSTOP

KNAME ()

KNUM
KOPTNI ~
KOPTN2
KOPTN3 »

KOPTN4

KOPTNS ~
KRCTRA
KRCTRH
KRCTRL
KSKIP

KTIME (I)

¢

1

array of characters used to reprelsent each possible
output state on the timing diagram; I = state number.
There are three possible statess 1 - indeterminate,
2 - LOW, 3 - HIGH, which the Simulator outputs.
However, KLEV is dimensioned at 16 allowing 16
possible states.

array of state values to which each event in a block
of 250 events corresponds; I =1, 250.

counter for number of initial conditions processed
since previous line of initial conditions were printed
under the INITIAL option, When KLOOP = 10 another

line is to be printed.

option flag for COMSTOP control option; 1 = program
to be terminated, 0 = program to continue, .

double precision input buffer array of element names to
be printed on a timing diagram. It is limited to 40 names

because only 40 columns are allowed per timing diagram.

number of gate outputs to be printed on a timing diagram.

input buffers for control option names.

one character, *, initialized in DATA statement,
one character, H, initialized in DATA statement.
cne character, L, initialized in DATA statement,
four characters, SKIP, initialized in DATA statement.

array of time values to which each event, in a block of
250 events, corresponds; I =1, 250,

-47-

KWORD - last word of events block of 250 word pairs.

KWORDI (I) - array of first words of each word-pair in a block of
250 event word pairs; I = 1, 250,

KWORDZ (I) - array of second words of each word-pair in a block of
250 event word pairs; I = 1, 250,

KWORD3 (I) - input buffer for 250 event word pairs; I = 1, 500.

LABORT - - error termination flag; 1 = program to be termin-ated,

0 = program to continue.

LDRCTN (I} - output character shift value array, corresponding to
shift character array, KDRCTN (I); 1 = shift to the
right, 0 = shift to the left.

LEVEL (I) - present state of each network element. Dimensioned
at 2000 allowing for simulation of 2000 elements.

LINE - printed line counter. When LINE = 50 a new printer
page is started with the proper heading.

LNAME (I) - print matrix names array, double precision; I = 1,40
column numbers,

LNUM - number of time slots in a set of SLOT cards.

LOPTNI - option flag for SPIKE control option; 1 = option chosen,
0 = option not chosen.

LOPTN2 - option flag for . PREFIN control option; 1 = option chosen,
0 = option not chosen,

LLOPTN3 - option flag for POSTIN control option; 1 = option chosen,
0 = option not chosen.

LOPTN4 - option flag for COMSTOP control option; 1 = option
chosen, 0 = option not chosen,

LOPTNS5 - option flag for INITIAL control option; 1 = option chosen,
0 = option not chosen,

LSKIP (1) - array of columns to be left blank on timing diagram,

Limited to 40 since only 40 columns of output are allowed.

-48-

LTIME

current simulation time value.

LUTIME - current simulation time~va1ue, same ‘as LTIME.
MASK - B8-character, OOOOFFFF, mask value used in intrinsic
function IAND to extract a half-word,
MAXTIM - maximum simulation time,
MCOMP (I} - double precision array of element names to be compared.
CMP cards limited to 100.
MNUM - number of time slots on a slot card.
MQOUT (1) - array-of levels to which the cutput of each element
named in MCOMP (I) is to be compared. CMP cards
limited to 1000.
MOVE - number of bits to be shifted, used in intrinsic function
ISL. to extract half-words.
MTIME (I) - array of times at which the outputs of elements named
in array MCOMP (I) are to be compared to the levels
in the array MOUT (I). CMP cards limited to 100.
NAME (I) - double precision array of all element names; dimensioned
to 2000,
NCARD - number of Preprocessor input data records on the Post-
processor input data file following the heading record,
NCARDS -1.
NGAR NN nutnher of Preprocessor input data records on the Post-
processor input data {ile,
NCOMP (I) - double precision array of element names involved in
compare function., CMPF cards limited to 100,
NERROR - error processing flag; > 0 error being processed, =< 0
no error being processed.
NHEAD (I) - 72 character printout page heading; I = 1, 18,
NJUMP (I} - time interval between comparisons for each compare
function, CMPF cards limited to 100,
ORx
Gy, -49-
O {4
FPOOAL P4
% qr,

gy’

NNAMES
NO

NOMORE

NONEXT

NORDER (I)

NREP (I)

NSBEG (I)

NSCALE

NSEND (I)

NSEQ (1, J)

NSGATE (1)

NSLEV1 (1)

NSLEV2 {I)

NSPIKE

1

number of network elements.
flag for missing PNT card; 1 = terminate, 0 = continue.

flag for last timing diagram; 1 = last PNT/SLOT set,
0 = more PNT/SLOT sets.

flag for last events data block; 1 = last block, 0 = more
blocks.

input buffer array for 32-character compare function
sequence; 1 = 1, 32,

array of the number of repetitions of the sequence for
each compare function, CMPF cards limited to 100.

beginning time of spike condition for each spike notice
kept on file. A maximum of 100 spike notices are kept
on file at any time.

four character time unit to be printed above time column
on timing diagram.)

end time of spike condition for each spike notice kept
on file. A maximum of 100 spike notices are kept on
file at any one time. ‘

array of the 32-entry comparison sequence for each
compare function; I = compare function number, and

F =1, 32, CMPF cards are limited to 10(_).

gate number corresponding to each spike notice kept

_on file. A maximum of 100 spike notices are kept on

file at any one time.
originally scheduled state before each spike condition for
each spike notice kept on file. A maximum of 100 spike

notices are kept on file at any one time,

new scheduled state after spike condition for each spike
notice kept on file; I = 1, 100,

number of spike notices on file.

-50-

NSTART (I}

starting time of each compare function. CMPF cards
limited to 100.

NUM1 - number of CMP cards.

NUM2 - number of CMPF cards.

NUM3 - number of PNT/SLOT card sets.

NUTIME - first non~-zero event fime in an events block; = -1 when
time = 0.

NWORDS - number of words in erj-:'or message to be read.

DLEVEL (I)

1

a set of element outputs to be printed on one line of the

timing diagram; I = the column number and is limited
to 40.

-51-

APPENDIX A

LOGSIM PREPROCESSOR PROGRAM FLOWCHARTS

This Appendix presents the detail flowcharts of the LOGSIM
Preprocessor Program, The flowcharts should provide sufficient
explanation of the Preprocessor listing,

The '"Picture oni a Page'’ technique has been utilized, which
allows the reader to study the flowcharts to the depth he desires,
Each page is a complete representation of the area presented, Those
functions that are expanded in more depth on subsequent sheets are
identified with subroutine nomenclature blocks NAME

For example, on page A-4, the block IPACSTORE |indicates that
Pack and

ata

the activity defined by the block is discussed in more detail on a
separate sheet with the entry PACSTORE (See page A-6}).

Appendices A, B, and C refer to the following input/output data
files by logical unit numbers:

1) scratch file 1 2 logical unit number 1

2) scratch file 2 = logical unit number 2

3) scratch file 3 = logical unit number 3

4) Postprocessor = logical unit number 7
input file

£) Simulator input = logical unit number 9
file :

Table Al is an index to the flowcharts, Table AZ describes
the flowchart symbol convention adhered to by these flowcharts and
by the flowcharts presented in Appendices B and C,

LOGSIM PREPROCESSOR PROGRAM

FLOWCHART INDEX

Page
Logic Simulation Preprocessor A-4
Card Processing Subroutine A5
Error Check and Data List Subroutine A-5
Arrays Pack and Store Subroutine A-b
Connectivity List Generation Subroutine A-b
Data Record Reading and Identification Subroutine A-T
Circuit Specifications Subroutine A-T
Name and Control Option Processing Subroutine A-8
Time Record Processing Subroutine A-9
Newgate Specification Processing Subroutine A-10
Read-Only Memory Specification Processing Subroutine A-11
Element Description Record Processing Subroutines A-l2
Data Tape Generation Subroutine ' A-13
Data Error and Substitution Subroutine A-14
Indeterminate and Misplaced Data Skip Subroutine A-14
Net Data Processing Subroutine A-15
Gen Data Processing Subroutine A-lb
Genf Data Processing Subroutine A-17

Table Al

FLOWCHART SYMBOL CONVENTION

Subroutine Terminal Points

Process

Decision

Subroutine C all

-
<
_/ £/0 Opesation
O
O

Magnetic Tape

On Page Connector

On Line-Storage

Table AZ

LOGIC SIMULATION PREPROCESSOR

‘ PREPRO ’

}

CAB(DERO

ead an

. process
data cards

]

CHEKLIST
Chec'; error
list data

ny Y
errors
' N

PACSTORE
Pack and
store data

N FROMTE
option

FROMTO
dsheratS ity
list

b

1

STOP

CARD PROCESSING SUBROUTINE

(CARDPRO)

Y
READ -
Read a
data
record

4

NAMCON
Process

NAME &
ONTROIL.

[
SPEC

Process
SPEC data

4

TIME
Process
TIME data

\

NEWGATE
Process

NEWGATEs

Priutmpn
ROME

CREST

Process
NET, GEN
GENE

|
RETURN

i

ERROR CHECK AND DATA LIST SUBROUTINE

An

sub_sgitu-
tions

sutﬁ’f}ltute
msg,

n)\
Errors X

Print
options
list

Print
spec,
list

Print
delay
I3¥ 14

]

Print
invert,
list

Print
error

msg,

gt

RETURN

¢

ORIGINAL PAGE IS
OF POOR QUALITY]

CONNECTIVITY LIST GENERATION
SUBROUTINE

‘PACSTORE ' ‘ FROMTO ’

Read
NAMES
from

file #2

ARRAYS PACK AND STORE SUBROUTINE

from file

#1

Y SAVETAPE
Generate

data
tape

Read LOAD
LOADKY,
#2

of array

1—-_—--——*

Find start of
gate's
LLOADS from
LOADKY

4

Find number]
of LOADS
of gate

in file
#2

packing/
N Pack array

- to correct 3
size)

‘Store arra
in file
#9

More
arrays

RETURN

DAT.A RECORD READING AND - GIRCUIT SPECIFICATIONS
IDENTIFICATION SUBROUTINE SUBROUTINE

O—

Read a
data
record
f.
Decode Decode
data eircuit
type specifications
Reget
error
Y
cnunter_
Print READ
data Read a
image data
record

Y

‘ RETURN)

1

Reéset
logical
unit #

=

NAME AND CONTROL OPTION PROCESSING
SUBROUTINE

NAMCON

AME
record

Y

Decode
header
Create array
substitute
header
B READ
Read a
Zero the data
option record
flags
CON N
. record
Y
Decode
CONTrol
options
READ
Read a
data
. record

1

Rewset
optlon flag
to 1

options

READ’
Read a
data record

-

‘ RETURN ',

Decode
rise time
& index

TIME RECORD PROCESSING SUBROUTINE

‘ TIME)

DITMF-

'Decbde
fall time
& index

Add index

to ordered
rise array

Y

Add index
to ordered

fall array

L.

y

Decode

delay time
& index

L

Add index
to ordered

decay array

£
.-
4

\

READ

Read a
data
record

Reset
error

counter

-3

Store
times
on #9

i

[
Define
library
special
codes

Y

‘ RETURN >

NEWCATE SPECIFICATION PROCESSING SUBROUTINE

‘ NEWGATE'

recor

EWGA\TA N

Decode
NEWGATE
data
¥
Check
validity
of data
Any v
errors
¥
Tin
error
msg,
{
Reset
error
4 - counter

¥
au b_sh Y
hi:i/,'
N

Reset
\f SN0,
READ counter,
Read a -
data
record

A-10

READ-ONLY MEMORY SPECIFICATION PROCESSING SUBROUTINE

. record
¥ \/

Deacode
part of
data

b4
Y
SUBERR
Process
g errors and
subatitutions
Decode
truth
table { T, T}
Y
rggrs
subs., Y
N SUBERR
- Process
i errors and
BL patitutions
) O'f -
ent.rie.s

READ
Read a iy
data READ
record Read a
data
record

no
record

A-11

Y

ore

ROMT,T
on
#9

Y
Store
code
on #9

|

(RETURN)

Spoge

on file
#2

ELEMENT DESCRIPTION RECORD PROCESSING SUBROUTINES

CREST

i
ERROR

Ignore
data,
continue

RETURN

k |
NLE'LT PRO

Process
NET
data

Y /G€N
or GEN

GENER
Process

GEN
data

GENFUN

Process
GENF
data

ERROR
Ignore
data,
continue

N nd Y

ERROR

Ignore
data,
Continue

\Of(jata/

Y

‘ RETURN '

A -12

DATA TAPE GENERATICON SUBROUTINE

SAVETAPE

ORIGINAL PAGE IS
OF POOR QUALITY,

A-13

DATA ERROR AND SUBSTITUTION INDETERMINATE AND MISPLACED
SUBROUTINE DATA SKIP SUBROUTINE

SUBERR

' ERROR '

\

rint
ignore
note
Y
Print . Szt
ignore
ro
pmzzr counter
Reset
proper READ
substitution Read a
counter data
record
Y
v nd N
errors of data,
Print .
proper
T TR A f
Set end Decode
flag data
Y type
Reset -
proper
error ,
counter i -

! /

RETURN ‘ RETURN ’

A-14

NET DATA PROCESSING SUBROUTINE

' NETPRO ’

.
Decode &
verify
data
.-—-—:—u—-—-’
Decoa.-_ &
verify
inputs.
More N
inputs
Y.
o0 Y
much dat
READ
B Read a N
- data -
kccord
READ
Read a -
data
record

RETURN

A-15

GEN DATA PROCESSING SUBROUTINE

‘ GENER !

o

Decode and
verify data

L

\

Decode angd
verify
change list

ore
changes

Y

READ
Read a data

record

Store data

READ
Read a data
record

Stor data
on #E

A-16

GENF DATA PROCESSING SUBROUTINE

‘ GENFUN '

™y

Decode &
‘verify
data

L

Y

Decode &
verify
sequence

sequence

READ

Read a

data
record

oo
much dat

N

1

Y

g Store

READ

Read a
data
record

GEN

record

initialize
delays &
inverters

Y

‘ RETURN ’

A-17

data

APPENDIX B

LOGSIM SIMULATOR PROGRAM FLOWCHARTS

This Appendix presents the detail flowcharts of the LLOGSIM
Simulator Program. As with the Preprocessor flowcharts in Appendix
A, the "Picture on a Page'' technique has been utilized in these flowcharts
and is described in Appendix A, page A-1,

An index to the LOGSIM Simulator Program flowcharts is con-
tained in Table Bl and the same flowchart symbol convention described
in Table A2 is adhered to in the Simulator flowcharts.

LOGSIM SIMULATOR PROGRAM
- FLOWCHART INDEX

Routines

LOGSIM Simulator

Gate Initialization Subroutine

Event Simulation Subroutine

Termination Subroutine

Event Output Subroutine

Logic State Determination Subroutine

Generator Events Restoration Subroutine
Read-Only-Memory State Determination Subroutine
Delay Gate and Inverter State Determination Subroutine
Logic Gate State Determination Subroutine

Event Storage Subroutine

Initial Conditions Storage Subroutine

Holding Mode Event Processing Subroutine

FEC Clearing Subroutine

Table Bl

5
m
[¢]

PP E W
1

NoREe SR B o AR (R~ W

11
12

13

14
15
16

LOGSIM SIMULATOR

(SIMUL '

101 §

Initialization}

SIMUL Read

file » control
card

—

SIMUL Read
file — data

base

INITIAL

Perform
gate initiali-
z B

¢

bl %}gﬁfggAGE I
ALI{m

¥

Write
indet,
error
megsage

tape

LOGSIM SIMULATOR

- 200
Write Gave
initial tape
state to
tape

Set
initialization g

flag

4

SIM RUN

Run
simulation

i
Y

TERM
Terminate

simulation

B - 3a

sTOP

GATE INITIALIZATION SUBROUTINE

' INITIAL '

109 §

Inifialize

counts &

ﬂags

P

Imtialize

next pass

INFLAG = 0

A

4

SUB 103
Find gate's
value from

input

Address
next
gate

GATE INITI ALIZA"I'ION SUBROUTINE

111
Y
NONCON : A RETURN,

= 0
N

Initialize
NONCON
~1

1030
SUB103

Find gate

value from
inputs

TERM
Terminate
gimulation

STOP

SIM RUN

ORx .

POOR

QUALITY

EVENT SIMULATION S5UBROUTINE

Fine KURTIM
transfer

- Restore

events to NIT

list

REGEN

IGENS in FEC

Y

Shaft

L ECKY oven
vacated
dlots

¢

210 i

1 Address
next NIT
gate

211 ¢
Address
NIT gates

next
load

1030

SUB103

Find new
value of load

Note: REGEN
is only executed
when a GEN or
GENF event is
taken from the
FEC

EVENT SIMULATION SUBROUTINE

BUFCUT Save
Write NIT |] tape

gate's value
nto event ligt

213
N as
v NIT
gate
Y
279
Clear FEC - URT
f deleted ' - *
 ohaee KTIM
entries '
-
Put ocut ‘ Save
MAXTIM tape
termination
message =

‘ RETURN ’

B - 5a

TERMINATION SUBROUTINE

< TERM '

999 ¢

Set iudexes

for correct

buffer

[Set remaining

buffer words

to 0

]

Initiate
buffer

out

EVENT OQUTPUT SUBROUTINE

(BUFOUT ,

1010 ¥

Initialize

Set index to

process
NWORDS
. o
} .]
i
N Eithe
1 buffer
open
Y
Reset
3
| indexes
Enter next 2 [
words in buf-
fer, add 2 to
pointer
N
Initiate
buffer ocut Last
words
reset indexes
' Y

RETURN

http:Bufe,.nt

LOGIC STATE DETERMINATION SUBROUTINE

(SUBl0O3 '

f

Set up
gate

information

Gate

f
ROM
Find ROM

value

type
INVERTER
OR DELAY

INDEL

Y

p

TYPVALS

Find delay
or anverter
value

Find value
of TYPVALS
pate

k

1

ENTRE

Enter value

in
FEC

f

‘ RETURN ’

GENERATOR EVENTS RESTORATION SUBROUTINE

REGEN

GEN

Y
se LOCGEN

GENF

o find new
hange in
Resget cycle Add I te
pointer state
pointer

N
———————
Last Subtract 1
rep, from rep.
counter i
Y -

Add 1 to
GEN's
LOCGEN
jndex

262 ¢

Access next
tate change
add intervals

702 |

Enter value

into FEC

f
RETURN

{to 209)

READ-ONLY-MEMORY STATE DETERMINATION SUBROUTINE

1600

ROM

Initialize

Form base
address
find indet,

bits

e

1604 ¥

Construct

required
mask

shiit

903"' B -10

READ-ONLY~MEMORY STATE DETERMINATION SUBROUTINE

1612

Loop

initialization

Increment
indet.

count

1619 ¢
Map indet,
‘eount inta.
ROMEdAdres
bits

1620

Compare
under requirs
pod msaks for

conflicts

Conf-
icting
states

*Subl03-1091

Enter

indet,
state

If holding
mode force
hold value

1091

Jrrerd RETURN

DELAY GATE AND INVERTER STATE DETERMINATION SUBROUTINE

Find input

using
inputs

Find input
from
INPTKY

Find
input's
state

Subl03-1079

Set

complement

value

Set

gate's
» current

' yalue

—

A

‘ RETURN ’

B ~11

LOGIC GATE STATE DETERMINATION SUBROUTINE

ey

Set Reference
indet, b IND HIGH - high clock
clock P tabl
flag _Tow or ‘ il
] | NONE ¥ =
Flip-flop Xamine '
Type gpecific
FF inputs
Other :
¥
-
Find number F
of high, low,
and indet,
inputs
[
Find value
from
tabulation
|
Force
indet,
output
‘ RETURN)
ORF -
GINAL BPA B 12

EVENT STORAGE SUBRQUTINE

INENTRE

A

C Enter gate's
- / initial
value

HOLD

C la Enter -
/ hold event

B
%%%3 QAL

Find
event

delay

B -1:

EVENT STORAGE SUBROUTINE

Incrernent

spike count
et up spike
data
L
N BUFOUT
- Output
apike
mesgage
i
MCLEAN MCLEAN N d
Clear Clear cha.nugec
FEC event
list v
) i
Enter nter event
evant in Delete
in current avent FEC
F EC | list entry
¥
RETURN

B ~13a

INITIAL CONDITIONS STORAGE SUBROUTINE

INENTRE

Force
event,
indet.
Increment
indet,
count
vgli?\ ¥ Increment
conflict conflict
N count
\
Setup
conflict
data
BUFOQUT
N
blggr?tz‘e- Cutput
golved conflict
v mes sage
y
Enter new
¥ gate value in
IOVAL
array
ﬂ

\

]

‘ RETURN '

HOLDING MODE EVENT PROCESSING SUBROUTINE

Low

rent gate

=0 =0
KDECR P KDECF
{0 N é 70
Find Find
rige fall
decay . decay
time time
¥
Enter
hold event
n .
C

—0

r

(RETURN '

B-15

FEC CLEARING SUBROUTINE

MCLEAN

Eli.inale
posiuuns of
deleted FEC
erntries

SEEup
vverflow

message

1

E.d gate
with .osi
entries 1
NIl Lisu

Elirninate
duplicate

NIT
entries

\

bUFOUL

‘ RETURN ’

B - 16

Qutput

message

]

TERM

Ter.ninate

sizmilation

APPENDIX C

LOGSIM POSTPROCESSOR PROGRAM FLOWCHARTS

The detailed flowcharts of the LOGSIM Postprocessor are
contained in this Appendix, The "Picture on a Page'' technique des-
crived in Appendix A, Page A-1, and the flowchart symbol convention
described in Table A2 have been used in the development of these

flowcharts,

An index to the LOGSIM Postprocessor flowcharts is contained
in Table C1l.

LOGSIM POSTPROCESSOR PROGRAM
FLOWCHAR'I INDEX
Routines

Logic Simulation Postprocessor

Card Processing Subroutine

Timing Diagram Setup Subroutine

Element Initial Conditions Processing Subroutine

Event Processing Subroutine

Control and Output Character and Shift Card Processing
Subroutine :)

Comparison and Compare Function Card Processing Subroutine '

PNT/SLOQT Card Sets Processing Subroutine
Level Comparison Processing Subroutine
Spike Notice Processing Subroutine

‘Error Message Processing Subroutine

Table C1

Page

C-11
C-12
C-13

LQGIC SIMULATION FPOSTPROCESSOR

(POSTOR >

Y
POSTCARD
Procesa
data
cards

B
: Y

PREPRINT
Start
fiming

diagram

INITIAL

D Proucess
initial
tonditione

Do nde
nexi

eveni

LOGIC SIMULATION POSTPROCESSOR

PREVEMNT

Proress

event
data

ORIGINAL PAGE IS
QF POOR QUALTIY

C - 3a

CARD PROCESSING SUBROUTINE

‘ PGS CARD’

Read 2
record
from

CONTROL
Process

CONT, CRC'I
& SHIFT :ard

]
COMCARD

Procean

CMP & CMPH
cards

PNTSLT

Procesa a
PNT/SLOT

sSet

Read pre.
records
fro.n

#1

Read
NAMES

from

)

' RETURN '

ORIGINAL PAGE IS
OF POOR QUALITY|

TIMING DIAGRAM SETUP SUBROUTINE

PREPRINT

"PNTSLT

Pr..
print

matrix

Priat a
slot
list

F.re¢!
diagram

Process a
PNT 'SLCT

sel

Print init.

Y

]
Print
regular

heading

1

1 RETURN'

ELEMENT INITIAL CONDITIONS PROCESSING SUBROUTINE

‘ INITIAL ’

Read an
events
blk,

i
¥

Derode
imitial

~ondifions

Print afl
initial

condit-
_ors

Print
mtitial

condi-
tions

: ‘ Pring
- repular

heading

ELEMENT INITIAL CONDITIONS PROCESSING SUBROUTINE

9

i

3
/ﬁm Y

to cotp-
are

|

COMPARE
Process
level
o aparisons
Y .
A
spike
N
SPIKE
Process
spike
notices
Anv Y
terror
I'IV
N- ;
ERROR ..
Recopnize
- error
flaos

1
(~ RETURN)

C - ba

EVENT PROCESSING SUBROUTINE

PREVENT

nd o
events fo

Lmne,

Queput
une lue

Tine
O L um-

are

CUMPARE
Process

level
COINDaLEu 6

SPIKE

Process
spilre
not1cen

)
ERROR
Recogalize

y

(RETURN ,

error

flags

oRIE

?003

o¥

A

pAG
QUMM .

CONTROL AND OUTPUT CHARACTER AND SHIFT CARD PROCESSING SUBROUTINES

CCNiURCL

Conlrol

<ard

¥

Decode
options
set flag
Zero the
()[Jl 00N ’.
flapgs ‘ Read
- next
[card
CRCT
card
y
N
Decode
chata.ter
y artday
Sunstitule
chara«ter 1
aira - i Read
rexl

card

Suwsatitule

whiil
charaglers

)

\
Deg ode

ahift
characters

; Read

-

Congiruct
shift values

arra;

[

RE1URN

nexi

card

COMPARISON AND COMPARE FUNGCTION CARD PROCES3SING SUBROQUTINE

{ COMCARD }

Decode
comparison
data

CMPF
card

Y

Y
‘ RETURN '
Devode

tthapare

func.aun
Gata

PNT/SLOT CARD SETS PROCESSING SUBROUTINE

PHLS L

PN1 N

Y

]
Piru.ess
PN

ol
Udin

2

)

Print
error
/ message,

Pracess

SOy

cared

dala \
Set
anort
flag

N

4
‘ RETURN '

C - 10

LEVEL COMPARISON PROCESSING SUBRQU TINE

(COMPARE)
t

Locate
compares
for current
ti.nne

a

Ga& N
atp -

roper
level :

N

cullipare

1.GCave cOvrl-
pare funfton
[ur tVrrent
Linie

Y
mRN

+ pfoper
h-V

Y

RETURN

c-11

SPIKE NOTICE PROCESSING SUBROUTINE

Dele-e
s.ile
fr..
o le

F

Y More

8., es

RETURN

Cc-12

ERROR MESSAGE PROCESSING SUBROUTINE

Decode wvae
eliuwl
word

paLr

Decode
error
tyre i
Enter
spirke
in
Print raule
proper
1eppage
i

Sev

‘anoru

flag

\

() 1B
RE1URN QRIGIN AL PAGE
)

C-13

¥ U.5. GOVERNMENT PRINTING OFFICE 1976-641-255/282 REGION NO.¢

