
NASA CONTRACTOR

REPORT

NASA CR-144174

LOGSIM PROGRAMMER'S MANUAL

By C. L. Mitchell and J. F. Taylor

M & S Computing, Inc.

Huntsville, Alabama

February 1976

(NASA-CR-144174) LOGSIN PROGRAMMER'S MANUAL N76-18821

(M&S Computing, Inc.) 103 p HC $5.50-

CSCL 09B

Unclas

G3/61 .1_430.8_

BYREPRODUCED

NATIONAL TECHNICAL
INFORMATION SERVICE

U, S.DEPARTMENT OFCOMMERCE

PRICES SUBJEC[TO (iIAHGU

Prepared for

NASA - GEORGE C. MARSHALL SPACE FLIGHT CENTER

Marshall Space Flight Center, Alabama 35812

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE

BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-

LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

TECHNICAL REPORT STANDARD TITLE PAGE
1 REPORT NO, 4174 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'SCATALOG NO.

-ASA CR-144174

4 TITLE AND SUBTITLE 5. REPORT DATE

LOGSIM PROGRAMMER'S MANUAL February 10, 1976
6. PERFORMING ORGANIZATION CODE

7. AUTHOR(S) 8. PERFORMING ORGANIZATION REPORt N

C. L. Mitdhell and J. F. Taylor 72-0002
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO.

M & S Computing, Inc.
P. 0. Box 5183 1. CONTRACT OR GRANT NO.

Huntsville, Alabama 35805 NAS8-25621

13. TYPE OF REPORI & PERIOD COVERED

12. SPONSORING AGENCY NAME AND ADDRESS

National Aeronautics and Space Administration Contractor Report

George C. Marshall Space Flight Center January 18, 1972

Marshall Space Flight Center, Alabama 35812 14. SPONSORING AGENCY CODE

15. SUPPLEMENTARY NOTES

Electronics Development Division, Electronics and Control Laboratory

Design Techniques Branch

16, ABSTRACT

This document is a programmer's manual for a Logic Simulator (LOGSIM) computer

program that is a large capacity event simulator with the capability to accurately

simulate the effects of certain unknown states, rise and fall times, and floating nodes

in large scale Metal Oxide Semiconductor logic circuits. A detailed description of

the software with flow charts is included within the report.

17, KEf WORDS lS. DISTRIBUTION STATEMENT

19, SECURITY CLASSIF. (ofthis lVp)t

Unclassified
MSFC- Po mn3n92 (RevDeoemberI972)

ECCI JZ%:z1O/, .

Ft B. Moore " /
Director, E&C Lab

20. SECURITY CLASSIr. (of thl-PPas) 21. NO. OF PAGES 22. PRICE

Unclassified 108

For saM by National Todneial Inforration Saovice, Spti.gfIdVirgii tISI

IP

TABLE 	OF CONTENTS

Page No.Section

11. 	 INTRODUCTION

42. 	 PREPROCESSOR

42. 1 Program Structure

42. 2 Subroutine Descriptions

-2. Z. I 	 CARDPRO: Card Processing Subroutine 4

Level 1
Error Check and Data List 62. Z. Z 	 CHEKLIST:

Subroutine 	- Level 1
Array Packing and Storing 62.2. 3 PACSTORE:

Subroutine - Level 1
2. 	2. 4 FROMTO: Connectivity List Generation 6

Subroutine - Level 1

Z. 2. 5 	 READ: Data Record Reading and Identi- 6
fication 	Subroutine - Level Z

72. 	2. 6 NAMCON: Name and Control Option

Processing Subroutine - Level 2
Z. 2.7 SPEC: Circuit Specification Subroutine - 7

Level Z
2. 	2.8 TIME: Time Record Processing Sub- 7

routine - Level 2
Z. Z. 9 NEWGATE: NEWGATE Specification 8

Processing Subroutine - Level 2
2. 	2. 10 ROM: Read-Only-Memory Specifica- 8

tion Processing Subroutine - Level 2

2.2. 11 CREST: Element Description Records 8

Processing Subroutine - Level 2
2. 	2. 12 SAVETAPE: Data Tape Generation 9

Subroutine - Level 2
Z. Z. 13 SUBERR: Data Error and Substitution 9

Subroutine - Level 3

Z. Z. 14 ERROR: Indeterminate and Misplaced 9

Data Skip Subroutine - Level 3

2.2. 	15 NETPRO-NET: Data Processing Sub- 9
routine - Level 3

Z.Z. 	16 GENER: Generator Data Processing 10

Subroutine - Level 3

Z. Z. 17 GENFUN: Generator Function Data 10
Processing Subroutine - Level 3

iv 	 IFPreceding pag~blank

TABLE 	OF CONTENTS

(continued)

Section Page No.

2. 3 	 Arrays and Vatiables 10

2.4 	 Secondary Data Storage 22

2. 4. 1 Temporary Data Files 	 22
2. 4. 2 Simulator Input Data File 	 22
2. 4. 3 Postprocessor Input Data File 	 26

3. SIMULATOR 30

3.1 	 Program Structure 30

3.2 	 Subroutine Description 30

3. 	2. 1 INITIAL: Gate Initialization Sub- 30
routine - Level 1

3. 	 Z. 2 SIMRUN: Event Simulation Sub- 32
routine'- Level 1

3.2.3 	 TERM: Termination Subroutine - 32
Level 1

3. 	2.4 SUB103: Logic State Determination 32
Subroutine - Level 2

3. 	 2. 5 -REGEN: Generator Events Restoration 32
Subroutine - Level 2

3.2.6 	 BUFOUT: Event Output Subroutine - 32
Level 2

3. 	2. 7 ROM:- Read-Only-Memory State 33
Determination Subroutine - Level 3

3. 	2. 8 INDEL: Delay Gate and Inverter State 33
Determination Subroutine - Level 3

3. 	2.9 TYPVALS: Logic Gate State Determin- 33
ation Subroutine .- Level 3

3. 	2. 10 ENTRE: Event Storage Subroutine 33
Level 3

3. 2. 11 	 INENTRE: Initial Conditions Storage 33
Subroutine.- Level 4

3. 2. 12 HOLD: Holding Mode Event Processing 34
Subroutine - Level 4

3. 2. 13 MCLEAN: FEC Clearing Subroutine ­ 34
Level 4

v

TABLE 	OF CONTENTS

(continued)

Section 	 Page No.

3. 3 	 Arrays and Variables 34

3.4 	 38Debug Output

4. POSTPROCESSOR 	 40

4. 1 	 Program Structure 40

4. Z 	 Subroutine Description 40

4. 	2. 1 POSTCARD: Card Processing Sub- 40
routine - Level 1

4. 	2.2 PREPRINT: Timing Diagram Setup 40
Subroutine - Level 1

4. 	2. 3 INITIAL: Element Initial Conditions 42
Processing Subroutine - Level 1

4. 	2.4 PREVENT: Event Processing Sub- 42
routine - Level 1

4. 	Z. 5 CONTROL: Control and Output Char- 42
acter and Shift Card Processing
Subroutine - Level 2

4. 2. 6 	 COMCARD: Compare and Compare 43
Function Card Processing Subroutine -

Level 2
4 	 2. 7 PNTSLT: PNT/SLOT Card Set Pro- 43

cessing Subroutine - Level 2
4. 	Z. 8 COMPARE: Level Comparison Pro- 43

cessing Subroutine - Level 2
4. 	2.9 SPIKE: Spike Notice Processing 43

Subroutine - Level 2
4.2. 	10 ERROR: Error Message Processing 44

Subroutine - Level Z

4.3 	 Arrays and Variables 44

APPENDIX A LOGSIM. PREPROCESSOR PROGRAM FLOW- A-1
CHARTS

APPENDIX B LOGSIM SIMULATOR PROGRAM FLOWCHARTS B-1

APPENDIX C LOGSIM POSTPROCESSOR PROGRAM FLOW- C-1
CHARTS

vi

I. INTRODUCTION

The Logic Simulation Program (LOGSIM) is a system of computer

programs written in FORTRAN IV that check the functional correctness

of a logic design by simulating the logic at the logic gate level. In addition

it checks the propagation delay through-the various logic nets and will

generate printouts indicating that timing or "race" conditions exist which

should be examined more carefully by the system or logic designer. The

program can be used to check logic for virtually any technology in which

the logic is expressed in Boolean logic or an effective equivalent.

The LOGSIM Program has an internal logic library of 15 logic

element types and provides the user with the capability of defining any

number of new logic functions as new gate types or read-only-memories
(ROM). The LOGSIM User's Manual provides the information required
to format a circuit description in terms of LOGSIM inputs.

LOGSIM is capable of simulating up to 5000 logic gates within
approximately 50, 000 words of 3Z-bit computer memory. To achieve
the capability of simulating large networks, LOGSIM was structured

into three separate stand-alone programs: Preprocessor, Simulator,
and Postprocessor. Figure 1-i illustrates the general flow of execution
of the LOGSIM system of programs.

This document is intended to serve as the Programmer's Manual

for LOGSIM and to describe the program structure and internal logic
flow in detail. It is recommended that every user become familiar with
this document although it is not required to effectively use the program.
The LOGS]I User's Manual is intended to serve as the basic user guide

to the program and contains the information required to successfully
use the program. This document assumes the reader has read the

User's Manual and has some prior experience in the use of the LOGSIM

Program.

This Programmer's Manual follows the structure of the LOGSIM

program as the 3 major sections correspond to the 3 major LOGSIM

Programs:

o Preprocessor

o Simulator

o Postprocessor

LOGSIM FLOW OF EXECUTION

Logtt

descriptioniI
emporary

LPrproesso

gic program

diagnstitrage

P a cked

logic
desiription

data

1~

f,[P~sl- s . LjL

proram

I
tlun ng

DRIGINAL PAGt IS
OF POOR QUAU y' Figure I - I

-2­

Each section describes the program structure, subroutines, arrays and
variables, and size. The subroutine descriptions refer to the program
flowcharts contained in Appendices A, B, and C. The subroutines
described may refer to blocks of coding in the main program as well
as actual program subroutines.

-3­

2. PREPROCESSOR

The Preprocessor Program reads the input data describing
the logic network and packs the information into a shorthand format
compatible with the Simulator Program's input requirements.

2. 1 Program Structure

Figure Z-1 illustrates the functional structure of the Preprocessor
(PREPRO) Program. The program is structured into four levels of
functional subroutines with the first functional level corresponding to

the four main program functions:

(1) Processing input data cards

(Z) Verifying input data cards

(3) Packing and storing Simulator input data

(4) Constructing the connectivity list.

Appendix A contains the detail flowchart of the Preprocessor Program.

2. 2 Subroutine Descriptions

Each subroutine illustrated in Figure 2- represents a particular
feature of the program and may include a block of the main program
coding and/or one or more actual program subroutines. The functional
subroutines are discussed in order from Level 1 through Level 4 and
their respective flowcharts are illustrated in Appendix A in that order.

2. 2. 1 CARDPRO: Card Processing Subroutine - Level 1

The functional subroutine CARDPRO reads the input data and
sorts it according to data types into the proper data arrays. In the
actual program CARDPRO includes:

o MAIN - first major coding block

o 	 SUBROUTINES - HEADI, HEAD2 (output page heading
subroutines)

-4­

PREPROCESSOR (PREPRO) PROGRAM STRUCTURE

EPEROCESSOR FUNCTIONAL UBROUTINES

, EPRG LEVEL I LEVEL I LEVEL 3 LEVEL 4

* See READ, Level 2R

Figure 2- 1

-5­

2.Z.2 	 CHEKLIST: Error Check and Data List Subroutine - Level 1

After the data cards are processed a CHEKLIST function is
performed to identify any substitutions made for indeterminate data
or any input data errors. The CHEKLIST function summarizes input
errors, control options, specifications, constructed delay gates, and
constructed inverters. In the actual program CHEKLIST includes:

o MAIN - second major coding block

o SUBROUTINES - HEAD1, HEAD2

Z.2. 3 	 PACSTORE: Array Packing and Storing Subroutine - Level 1

The PACSTORE subroutine sorts the processed input data,
packs it according to the input requirements of the Simulator, and
stores it in a disk or magnetic tape file for access by the Simulator.
PACSTORE includes the actual program blocks:

o MAIN - third major coding block

o SUBROUTINE - PACK

2. 2.4 	 FROMTO: Connectivity List Generation Subroutine - Level 1

The functional subroutine FROMTO generates a list of the load
elements associated with each input element. In the actual program
FROMTO includes:

o MAIN - fourth major coding block

o SUBROUTINES - HEADI, HEAD2

2. 2. 	 5 READ: Data Record Reading and Identification Subroutine
Level 2

The READ function reads a data record, identifies the record
type, stores the record image on a scratch disk file, and prints the
record image. READ includes the actual program blocks:

0 MAIN - record type decode and type routing instructions
in the first major coding block.

o SUBROUTINES - READ1, WRITEI, RECORD

-6­

2. 	 2. 6 NAMCON: Name and Control Option Processing Subroutine
Level 2

The NAMCON functional subroutine processes the title (NAME)
card and the program control options (CONT) card. If the NAME card
is qmitted, 	 the title "LOGIC SIMULATION" is substituted. If the control
card is omitted, it is assumed that none of the program's options (IGNORE,
FROMTO, 	 NONCON, FOLLOW, or DEBUG) are desired. In the actual
program NAMCON includes:

o MAIN - part of first major coding block

o SUBROUTINES - HEADI, HEAD2, RECORD

2. 2. 7 SPEC: Circuit Specification Subroutine - Level 2

The SPEC subroutine identifies circuit specifications from a
specifications (SPEC) record. The SPEC record is a required card
that relays 	vital parameters to the three LOGSIM programs. The
SPEC record defines the time unit, maximum simulation time, the
number of 	gates excluding automatically constructed delays and invert­
ers, and the number of generators and generator funttions. In the
actual program SPEC includes:

o MAIN - part of the first major coding block

o SUBROUTINES - HEAD1, HEADZ

2.2. 8 TIME: Time Record Processing Subroutine - Level 2

The functional subroutine TIME performs all delay rise time
(DTMR), delay fall time (DTMF), and decay time (DCTM) record pro­
cessing. This logic interprets each time type, assigns each an index
number, and generates the first three records of the Simulator input

file:

Record 1 decay times

Record Z fall delay times

Record 3 rise delay times

-7­

In the actual 	program TIME includes:

o MAIN - part of first major coding block

o SUBROUTINES - HEADI, HEADZ

2.2. 9 NEWGATE: NEWGATE Specification Processing Subroutine -

Level 2

The NEWGATE functional subroutine processes the newgate

type specification records. In the actual program NEWGATE includes:

o MAIN - part of first major coding block

o SUBROUTINES - HEADI, HEADZ

2. 	 Z. 10 ROM: Read-Only-Memory Specification Processing Subroutine -
Level 2

The ROM functional subroutine processes the ROM specification
records and constructs the next three records of the Simulator input
file:

Record 4 = 	 LOGSIM logic library truth tables; NEWGATE
truth tables; keys to the start of each ROM
truth table in Record 5.

Record 5 = 	 ROM truth tables

Record 6 = 	 Special code values for logic library and NEW-
GATE logic types.

In the actual 	program, the ROM functional subroutine includes:

o MAIN - part of first major coding block

o SUBROUTINES - HEADI, HEAD2, PACK

2. 2. 	11 CREST: Element Description Records Processing Subroutine -

Level 2

The functional subroutine CREST processes logic gate (NET)
records, generator (GEN) records, and generator function (GENF)
records. The processing includes data reading, sorting, routing, and

-validating. 	 In the actual program CREST includes:

-8­

o MAIN - part of first major coding block

o SUBROUTINES - HEADI, HEADZ

2. Z. 12 SAVETAPE: Data Tape Generation Subroutine - Level 2

The SAVETAPE functional subroutine generates a data file to

be passed to the Postprocessor Program. This file contains a para­

meter record, images of the Preprocessor input cards, and a list of

all element names. In the actual program, the SAVETAPE function

is contained in the fourth coding block of MAIN.

2.2. 13 SUBERR: Data Error and Substitution Subroutine - Level 3

The SUBERR functional subroutine performs the error checking

involved in ROM specification processing. Substitutions are made for

indeterminate data when possible. Error and substitution messages

are always output. In the actual program SUBERR includes:

o MAIN - part of the first major coding block which includes

ROM processing error messages and the subsequent
routing decisions.

o SUBROUTINES - HEAD1, HEADZ

Z. 2. 14 ERROR: Indeterminate and Misplaced Data Skip Subroutine -

Level 3

The function of ERROR is to inform the user when an indeter­
minate or misplaced data record has been encountered and ignored.

ERROR includes the actual program parts:

o SUBROUTINES - ERRl, HEADI, HEADZ

-Z.2. 15 NETPRO: NET Data Processing Subroutine Level 3

The functional subroutine NETPRO reads and verifies all logic
element description (NET) records and outputs a block of sorted NET
data to a temporary scratch file. After all NET data is processed,
all automatically constructed delay gate and inverter data is output
to the same temporary file. In the actual program NETPRO includes:

-9­

o 	 MAIN - NET record type routing decisions in first major
coding block

o SUBROUTINES - NETPRO, OUT1, BUILD, HEADI, HEADZ

2.2. 16 GENER: Generator Data Processing Subroutine - Level 3

The functional subroutine GENER reads and verifies the

generator description (GEN) records and outputs blocks of sorted GEN

data to a scratch file. In the actual program GENER includes:

o 	 MAIN - GEN record type routing decisions in the first
major coding block

o SUBROUTINES - GENER, OUTZ, HEAD1, HEAD2

2. 	 2. 17 GENFUN: Generator Function Data Processing Subroutine -

Level 3

The GENFUN functional subroutine reads and verifies the

generator function description (GENF) records and outputs blocks of

sorted GENF to a scratch file. In the actual program GENFUN

includes:

o 	 MAIN - GENF record type routing decisions in first-major
coding block

o SUBROUTINES- GENFUN, OUT3, HEAD1, HEAD2

2. 3 Arrays and Variables

The following is a list of array and variable names used in the

Preprocessor. Each name is accompanied by a detailed definition

including size and relative storage location information. Notations

such as: (I), (J), etc. indicate that the name refers to an array. When

more than one variable or array is assigned to the same storage loca­
tion or locations, a special attempt has been made to identify the point

in the program where the overlapping occurs.. The detailed structure

of the disk files referenced in the following definitions are presented

in Section 2. 4.

-10­

the variable list 	are a number of intermediateNot mentioned in
program variables (N, M, etc.) which are used repetitively as control

variables, temporary counters, etc. These variables are obvious in

the program listing and any definitions of these would be meaningless.

IDATA (I) 	 dummy array; 12, 500 words, to which most of the

program's arrays are equivalent. After all of the

input data is read, sorted, and output to scratch

file #1, it is read back and packed to the proper

Simulator input format. IDATA (I) is used to read

in blocks of data from scratch storage. IDATA (I)
is passed to the subroutine PACE, packed into an

intermediate array LDATA (I), and returned to the

main program as IDATA (I) in the proper packed
form.

IDECTM (I) 	 array of decay time values; I = 1, total number of

decay times. The maximum number of decay times

is 255 because of the 8-bit byte orientation of the

host computer. IDECTM occupies storage locations

IDATA (J), j = 1, 256 and is not needed after it is

output to the Simulator input disk file, (record 1).

IDTMF (I) 	 array of fall delay time values; I - 1, total number

of fall delay times. The maximum number of fall

delay times is 255 because of the 8-bit byte orienta­

tion of the host computer. IDTMF occupies storage

locations IDATA (J), J = 257, 512 and is not needed

after it is output to the Simulator input disk file

(record 2).

IDTMR (I) 	 array of rise delay time values; I = 1, total number

of rise delay times. The maximum number of rise

delay times is 255 because of the 8-bit byte orienta­

tion of the host computer. IDTMR occupies the

storage locations IDATA (J), J ='513, 768 and is not

needed after it is output to the Simulator input disk

file (record 3).

= the gate number.IDTVPF (I) 	 index to each gate's fall decay time; I

The maximum size of IDTYPF is 250 words since only
250 NET descriptions are processed before the data is

output to scratch file #1. After all the NET data is

processed the array is no longer needed. It occupies

the storage locations IDATA (J), J 1751, 2000.

-11­

IDTYPR (I)

IFECTM (I)

IFECVL (I)

IGATYP (I)

IGENTM (I)

IGENVL (I)

rise decay time; I = the gate number.
- index to each gate's

250 words since onlyThe maximum size of IDTYPR is
the data isZ50 NET descriptions are processed before

output to scratch file #1. After all the NET data is

the array is' no longer needed. It occupiesprocessed,
=

storage locations IDATA (J), J 1501, 1750.

time of first generator or generator function change;
- TheI the generator or generator function number.

250 words since only 250maximum size of IFECTM is

GEN or GENF descriptions are processed before the

data is output to scratch file #1. After all the GEN and

GENF data is processed, the array is no longer needed.

It occupies storage locations IDATA (3), J = 1001, 1250.

logic state after first generator or generator function

change; I = the generator or generator function number.

The array elements may have the values 1 (OFF) or
250 words2 (ON). The maximum size of IFECVL is

since only Z50 GEN or GENF descriptions are processed

before the data is output to scratch file #1. After all

the GEN and GENF data is processed, the array is io

longer needed. It occupies storage locations IDATA (3),

J = IZ51, 1500.

index to each gate's logic type; I = the gate number.

Each array element may have any value from 1 to the

number of logic gate types (library, NEWGATE, and

ROMs). The maximum size of IGATYP is 250 words

since only 250 NET .descriptions are processed before

the data is output to scratch file #1. After the NET

data is processed, the array is no longer needed. It

occupies storage locations IDATA (3), 3 = 501, 750.

list of generator change time values; I - number of
of IGENTMgenerator changes. The maximum value

which limits the number of generator'changesis 4000,
to 4000 for each block of 250 generators. After all

the GEN data is processed, the array is no longer

needed. It occupies storage locations IDATA (J), J

1751, 4750.

- list of generator state changes; I = 1, number of generator

changes. The array elements may have the values 1

(OFF) or 2 (ON). The maximum size of IGENVL is 4000

which limits the number of generator changes to 4000

for each block of 250 generators. After all GEN data

-1Z­

is processed, the array is no longer needed. It occupies
storage locations IDATA (J), J = 4751, 8750.

IGNORE -

INAME (I) -

INAMED (I)

INAMEI (I) -

INCARD

INDEX

INNOTE

INPTKY (I)

control option flag for IGNORE option; I - option chosen,

0 = option not chosen.

list of input gate names, double precision; I - 1, number

of inputs. The maximum size of INAME is 4000 names,
which limits the inputs list to 4000 names for each block

of 250 NET descriptions. After the NET data is pro­
cessed the array is no longer needed. It occupies

storage locations IDATA (J), 5 = Z251, 6250.

list of delay input gate names, double precision; I z 1,
number of delay gates. The maximum size of INAMED

is 500 names, which limits the number of delay gates

to 500 for each block of 250 NET descriptions. After
the NET data is processed, the array is no longer

needed. It occupies storage locations IDATA (J), J =

9251, 10250.

list of inverter input gate names, double precision;

I = 1, number of inverters. The maximum size of

INAMEI is 500, which limits the number of inverters

to 500 for each block of 250 NET descriptions. After
all NET data is processed, the array is no longer

needed. It occupies storage locations IDATA (J),
S - 7251, 8250.

error counter for indeterminate input data types.

input buffer for a delay or decay time index.

error counter for indeterminate notations in input data

records.

key to start of each gate's inputs in the input names list;

I = gate number. The maximum size of INPTKY is Z50,
since only Z50 NET descriptions are processed before
the data is output to scratch file #1. After all NET data

is processed, the array is no longer needed. It occupies
storage locations IDATA (J), J = 2001, ZZ50.

-13­

INVERT (I) 	 list of inverter names, double precision; I - 1, number
of inverters. The maximum size of INVERT is 500,
which limits the number of inverters to 500 for each
block of 250 NET descriptions. After all the NET data
is processed, the array is no longer needed. It occupies
storage locations IDATA (J), J = 6251, 7250.

IOVAL (I) 	 array of initial states of logic gates, generators, or
generator functions; I = element number. Each array
element may have a value of 0 (indeterminate), 1 (OFF),
or 2 (ON). The maximum value of LOVAL is 250, since
only 250 NET, GEN, or GENF descriptions are processed
before the data is output to scratch file #I. After all
NET, GEN, and GENF data are processed, the array
is no longer needed. It occupies storage locations
IDATA (3), J = 751, 1000.

ITPVLT (I) 	 array of special code values for the logic library and
NEWGATE types; I = logic type number. The maximum
size of ITPVLT'is 46, which limits the number of per­
missible NEWGATE specifications to 30. The array
is no longer needed after it is output to the Simulator
input disk file (record 6): It occupies storage locations
LOADS (J), J -	 887, 932.

ITRUTH (I, J)-	 array of NEWGATE truth tables; I = 1, 8 and J = 1,
number of NEWGATES. The maximum size of J is
30 since only 30 	NEWGATES are permitted. The array
is no longer needed after it is output to the Simulator
input disk file (record 4). It occupies storage locations
IDATA (K), K 	 4001, 4240.

ITYPEF (I) 	 index to each gate's fall delay time; I - the gate number.
The maximum size of ITYPEF is 250 words since only
Z50 NET descriptions are processed before the data is
output to scratch file #1. After all the NET data is pro­
cessed, the array is no longer needed. It occupies
storage locations IDATA (j), J = 1251, 1500.

ITYPER (I) 	 index to each gate's rise delay time; I = the gate number,
The maximum size of ITYPER is 250 words since only
250 NET descriptions are processed before the data is
output to scratch file #1. After all the NET data is pro­
cessed, the array is no longer needed. It occupies
storage locations IDATA (3), J = 1001, 1250.

-14­

JCODE1
" "i

(I) permissi bLe NEWGATE special code input characters;

z 1, 6. Each array element is one alphanumneric

character. The array is initialized in a DATA statement.

JCODEZ (I) permissible NEWGATE truth table input characters;

I = 1, 7. Elements 1, 2, 3, and 6 are the permissible

ROM truth table input characters. Each array element

is one alphanumeric character. The array is initialized

in a DATA statement.

JCODE3 (I) 41 possible NEWGATE truth table entry and special

code values; I = 1,7. Each array element is a one­

digit hexadecimal number. The array is initialized

in a DATA statement.

JDATA (I) dummy array, double precision, 200 words. $DATA

is used as a buffer array for passing data to or from

disk files. It occupies storage location IDATA (J),

J = 10001, 10200.

JN (I) four word alphanumeric array spelling LOGIC SIMU-

LATION. It is used as a substitute page header title

if a title is not specified by a NAME card. The array

is initialized in a DATA statement.

JNONE - four blank characters initialized in a DATA statement.

JTRUTH (I) - logic library truth table array; I = 1, 16. Each array

element is eight hexadecimal digits as initialized in a

DATA statement.-

KARDR (I) the number ofcards in each ROM specification; I

the number of the ROM specification. The maximum

size of KARDR is 100, the maximum number of ROM

specifications. The array is no longer needed after

the ROM data is output to the Simulator input disk file

(records 4 and 5) . It occupies storage locations IDATA
(J), J = 4401, 4500.

KCARD input buffer for-input data record; first four characters
of the record.

KDATA (I) buffer array for a 7Z-character input data record, double

precision; I = 1, 9. The array is not needed after all data

is input. It occupies storage locations LOADS (J), J­

1, 18.

-15­

KDEBUG control option flag for DEBUG option;
0 = option not chosen.

I = option chosen,

KDTIME (I) array of decay time index; I 11, total number of decay
times. The maximum number of decay times is 255
because of the 8-bit byte orientation of the host computer.
It occupies storage locations LOADS (3), J = 531, 786,
and is not needed after the delay gate data is output to
scratch file #1.

KEY (I) key to start of each record in the Simulator input disk
file and simulator option flags; 36 words. KEY is out­
put to the Simulator input disk file as the last record
on the file.

KEYBUG debug option flag; the flag is passed to the Simulator
to determine the type of Simulator debug data to be
output.

KFILE number of generator function data blocks
file #1.

on scratch

KFOLOW - control option flag for FOLLOW option;
chosen, 0 = option not chosen.

1 = option

KFTIME (I) - array of fall delay time indexes; I = 1, total number
of fall delay times. The maximum number of fall
delay times is 255 because of the 8-bit byte orienta­
tion of the host computer. It occupies storage locations
LOADS (J), 3 = 275, 530, and is not needed after the
delay gate data is output to scratch file #1.

KODEI - input buffer for NEWGATE special code character.

KODEZ (I) - input buffer array for NEWGATE truth tables; I = 1, 8.
It occupies IDATA (J), J = 772, 779, and is not needed
after the NEWGATE input data processing is complete.

KONECT - control option flag for the FROMTO option; 1 = option
chosen, 0 = option not chosen.

KONTIN - input buffer for the ROM specifications card number.

-16­

KRTIME (I) array of rise delay time indexes, I = 1, total number
of rise delay times. The maximum number of rise
delay times is Z55, because of the 8-bit byte orientation
of the host computer. It occupies storage locations
LOADS (J), J = 19, Z74 and is not needed after all of
the delay gate data is output to scratch file #1.

LDATA (1) dummy array; 4000 words. LDATA is used as a buffer
array for transferring data toand from disk files and
as an intermediate array in the subroutine PACK. It
occupies storage locations IDATA (J), J = 8001, 12000.'

LEND end of input data flag. LEND = 0 until all data cards
have been read and is set to 1 on a READ statement
END return indicating all cards have been read.

LFILE number of generator data blocks on scratch file #1.

LINE output printing line counter. When LINE
page is started with a page heading.

_ 50, a new

LOADS (I) list of gate load numbers; I - 1, number of loads: The
maximum size of LOADS is 1000 since the total list of
loads is output to scratbh file #Z, 1000 at a time.

LOCGEN (I) the start of each generator's changes in the generator
times and states array and the start of each generator
function's change sequence in the total generator change
sequence; I = generator or generator function number.
The maximum size of LOCGEN is 250 since only 250
GEN or GENF descriptions are processed before the
data is output .to scratch file #1. It occupies storage
locations IDATA (3), J = 1501, 1750, and is not needed
after all GEN and GENF data has been output to scratch
file #1.

LOG (I) array of gate type names; I = the gate type number, in
the order in which they are defined (library, NEWGATE,
and ROM). The logic library elements of LOG are
initialized in a DATA statement. The maximum size
is 146.

LUNIT input logical unit number. LUNIT = 105 unless changed
by a CHANGE TO input data record.

-17­

MAXTIM - total logic time for which simulation is to occur.

MROMTB (I) - ROM truth table entries array; I = 1, total number of
truth table entries. The maximum size of MROMTB
is 2000, because the data is packed and output to scratch
file #Z in blocks of 2000. It occupies storage locations
IDATA (I), I = 2001, 4000 and is no longer needed after
all ROM specifications have been processed.

NAMDEL (I) list of delay gate names, double precision; I = 1,
number of delay gates. The maximum size of NAMDEL
is 500, which limits the number of delay gates to 500
for each block of 250 NET descriptions. After all
NET data is processed the array is no longer needed.
It occupies storage locations IDATA (J), J1 8251, 9250.

NAME (I) element names array, double precision; I element
number. The maximum size of NAME is 5000 names.
It occupies storage locations IDATA (J), J = 1, 10000.

NAMROM - input buffer for ROM gate type name.

NCARDS - total number of input data records.

NCONT - ROM specification continuation card counter.

NDATA (I) - dummy array, double precision, 1000 double words.
NDATA is used as a buffer array to pass double word
data to and from disk files. It occupies storage loca­
tions IDATA (J), 3 = 6001, 8000.

NDE - number of delay gates in a data block on scratch file #1.

NDEL (1) - number of delay.gates in each block of NET data on
scratch file #1; I = the data block number. The max­
imum size of NDEL is 20 which allows (20 x 250) 5000
NET descriptions.
(J), J ­ 847, 866,

It occupies storage locations LOADS
and is no longer needed after delay

gate construction is completed.

NDT - total number of decay times specified.

NEDE - gate number of last delay gate.

NEGF - gate number of last generator function.

-18­

NEGN - gate number of last generator.

NEIN - gate number of last inverter.

NELG gate number of last library or NEWGATE type logic
gate.

NEROI - gate number of last ROM type gate.

NEW - input buffer for NEWGATE logic type name.

NEXT - input data record type routing flag.

NFALL (1) - index to each delay gate's fall delay time; I = delay
gate number. The maximum size of NFALL is 500,
which limits the number of delay gates to 500 for each
block of 250 NET descriptions. After all NET data is
processed the array is no longer needed. It occupies
storage locations IDATA (5), J = 10751, 11250.

NFILE - number of NET data blocks on scratch file #1.

NFT - number of fall delay 'times specified.

NGATES - number of gates declared.

NGENS - number of generators and generator functions declared.

NGF - generator function counter.

NGFS (I) - the number of entries in the generator function sequence
of each GENF.data block on scratch file #1. The maxi­
mum size of NGFS is 20 which allow (20 x 250) 5000
GENF descriptions. It occupies storage locations
LOADS (J), J = 787, 806.

NGN - generator counter.

NNGC (I) - the number of generator changes in each GEN block
of data on scratch file #1. The maximum size on NGNC
is 20 which allows (20 x 250) 5000 GEN descriptions.
It occupies storage locations LOADS (J), J = 807, 826.

11 C'T"- number of logic gate types.

-19­

NHEAD (I) - 72 character page header title; I = 1, 18. NHEAD is
formed from the data on the title (NAME) record.

NIN - number of inverters in
#I.

a data block on scratch file

NINPUT (I) - number in the input list in each block of NET data on
scratch file #1; I = the block number. The maximum
size of NINPUT is 20 which allows for (20 x 250) 5000
NET descriptions. It occupies storage locations
LOADS (J), J = 8Z7, 846.

NINV (1) number of inverters in each block of NET data on scratch
file #1; 1 = the block number. The maximum size of
NINV is 20 which allows for (20 x 250) 5000 NET descrip­
tions. It occupies storage locations LOADS (J), J =
867, 886 and is no longer needed after inverter con­
struction is completed.

NLG - number of logic gates
file #1.

in a block of NET data on scratch

NLNG - total number of library and NEWGATE logic types.

NNAMES - number of network elements declared.

NNG - number of NEWGATE specifications.

NOCARD - error counter for missing essential input data records.

NOENUF - error counter for missing ROM continuation cards.

NOMANY - error counter for extra ROM continuation cards based
on number of inputs.

NONCON - control option flag for NONCON
0 = option not chosen.

option; I = option chosen,

NONO - error counter for errors prohibiting simulation.

NRG - number of ROM specifications.

-20­

NRIN (I) - number of inputs of each ROM gate type; I = the ROM
gate type number. The maximum size of NRIN is 100
limiting the number of ROM specifications to 100. It
occupies storage locations LOADS (J), J = 970, 1069.

NRINPT - input buffer for number of inputs of an ROM gate type.

NRISE (I) - index to each delay gate's rise delay time; I = delay
gate number. The maximum size of NRISE is 500
which limits the number of delay gates to 500 for each
block of 250 NET descriptions. After the NET data
is processed, the array is no longer needed. It
occupies storage locations IDATA (J), y = 10251, 10750.

NROM - ROM type logic gate counter.

NRT - number of rise delay times specified.

NRTE (I) - key to the start of each ROM's truth table in the com­

bined ROM truth table array; I = the ROM gate number.
The maximum size of NRTE is 100, allowing only 100
ROM specifications. It occupies storage locations
IDATA (5), 3 = 4241, 4340, and is no longer needed
after it is output to the Simulator input disk file (record 4).

NRTT (I) input buffer for ROM truth table entries; I = 1, 56.
NRTT occupies storage locations IDATA (3), J = 4341,
4396, and is no longer needed after all ROM specification
input data is processed.

NSCALE four character alphanumeric time unit on timing diagram.

NTDE total number of delay gates constructed.

NTG total number of network elements.

NTGFS total number of all generator function sequences.

NTGNC total number of generator changes.

NTIN total number of inverters.

NTINPT total number of gate inputs.

-21­

2.4 Secondary Data Storage

The Preprocessor makes extensive use of secondary storage.

The program creates three temporary files, the Simulator input file,

and part of the Postprocessor input file. The following discussion

illustrates the contents and structure of each of these data files.

2. 4. 1 Temporary Data Files

The Preprocessor creates three scratch files to store sorted

input data until all the input data is read. The number and length of

each record in each file depends on the size and complexity of the

network being simulated.

2.4.1.1 Scratch File #1

Scratch File #1 is used for storing the data from NET, GEN,

and GENF descriptions. Table 2-1 illustrates the structure and array

content. The array subscript values illustrated refer to the maximum

array dimensions.

2.4.1.2 Scratch File #2

Scratch File #2 is used throughout preprocessing for temporary

storage requirements resulting from overflow conditions; for example,
if the array vMEOMTB (I) exceeds 2000 the first 2000 entries are packed
and stored in file #2. Hence the frequency with which it is used depends

on the complexity of the network being simulated. Table 2-2 illustrates
the data which may be stored on file #2.

2.4.1.3 Scratch File #3

Scratch File #3 is used for the temporary storage of the input

data record images, and the element names list. This data must be

stored until a Postprocessor input parameters record can be constructed.

2.4. 2 Simulator Input Data File

The only Simulator input is the data file created by the Prepro­

cessor. Therefore, this file must contain all of the data necessary to

simulate the network. The file-is organized into 24 records. The first

-22­

SCRATCH FILE #1 CONTENT AND STRUCTURE

. .NET DATA BLOCK-

I NAME (250)

z IOVAL (250)

3 INAME (4000)

4 ITYPER (Z50)

5 ITYPEF (Z50)

6 IDTYPR (250)

7 IDTYPF (250)

8 INPTKY (250

9 IGATYP (250)

10 (NAMDEL (I), INAMED (I), NRISE
(I),NFALL (I)

I = 1, 500

11 (INERT (1), INAME (I),
I=__1500

DELAY GATE BLOCK

I NAMDE L from all NET blocks

2 initial values

3 1NAMED from all NET blocks

4 NRISE from all NET blocks

5 NFALL from all NET blocks

6 rise decay time indices

'7 fall decay time indices

INVERTER DATA BLOCK

I- INVERT from all NET blocks

2 initial values

3 INAMEI from all NET blocks

NET Data Blocks

- each block contains 11 records.

- there may be 1 to 20 blocks.

- each block corresponds to 250 NET
descriptions which may contain less
than 250 NETS.

- each block is constructed by one
pass through SUBROUTINE OUTI.

Delay Gate Data Block

- the block contains 7 records.

- there may be only 1 block; no block ifthere are no delay gates.

- the block is constructed by SUB-
ROUTINE BUILD.

Inverter Data Block

- the block contains 3 records.
- there may be only 1 block, no block

if there are no inverters.
-the block is constructed by SUBROUTINE
BUILD

OF POOP QUPArjv
SO QLZT Table 2-1

-23­

SCRATCH FILE #1 CONTENT AND STRUCTURE (Cont'd)

GEN DATA BLOCK

1 NAME (250)

2 IOVAL (Z50)

3 LOCGEN (250)

4 IFECTM (250)

5 IFEOVL (250)

6

7

IGENTM (4000)

IGENVL (4000)

GENF DATA BLOCK

1 NAME (250)

2 IOVAL (250)

3 LOCGEN (250)

4 IFECTM (250)

5 IFECVL (250)

6

Word #1 - number of GENF
sequence repetitions,

Word #2 - time interval between
changes.

Word #3 - number in change
sequence.

Word #4 to n- change sequence
packed 4 bits/state

-_All repeated for each GENF

GEN Data Blocks

- each block contains 11 records.

- there may be 0 to Z0 blocks.

- each block corresponds to Z50 GEN

descriptions except the last block
which may contain less than 250 GENs.

- each block is constructed by one pass
through SUBROUTINE OUTZ.

GENF Data Blocks

- each record contains 11 records.

- there may be 0 to Z0 blocks.

- each block corresponds to Z50 GENF

descriptions except the last block
which may contain less than 250 GENFs.

- each block is constructed by one pass
through SUBROUTINE OUT3.

Table Z-1 continued

-24­

SCRATCH FILE # Z CONTENT AND STRUCTURE

CONTENT 	 STRUCTURE

MROMTB (1) 	 2000 words packed 125 words/record.

[TYPEF (1), NFALL (J) 	 from NET and Delay Gate blocks on file
#1, 1000 words packed Z50 words/record.

TYPER (1), NRISE (J) 	 from NET and Delay Gate blocks on file

#1, 1000 words packed 250 words/record.

IDTYPF (I) 	 from NET blocks on file #1, 1000 words
packed 250 words/record.

IDTYPR (I) 	 from NET blocks on file #1, 1000 words
packed 250 words/record.

IGENVL (1) 	 from GEN blocks on file #1, 1000 words

packed 125 words/record.

FECTM (I) 	 from GEN and GENF blocks of file #1,
IFECVL (I) 	 one record each.

IGATYP (1) from NET blocks and GEN and GENF bloc
LOCGEN (J) of file #1 respectively, one record of each

All element names 	 one record.
[NPTKY (I) 	 from all NET blocks on file #1, one record
All input nanes 	 - 100 names/record.
All input gate numbers 	 - 100 words/record.
Key to start of each 	 - one record.

load in LOADS
array.

LOADS (I) 	 - 1000 words/record.

Table 2-2

-25­

word of each of the first 23 records is the number of words in the record.

The 24th record is a.key array to the position and size of the other

records and a list of network parameters. Table i-3 illustrates the

organization of the Simulator input data file.

Z.4.3 Postprocessor Input Data File

The first part of the Postpro*cessor input data file is created by
the Preprocessor. This data file contains:'

Parameters record - including a four-character time unit,

NSCALE; the number of Preprocessor input data records,
NCARDS; the total number of network elements, NTG; and
the maximum Simulation time, MAXTIM.

Preprocessor input data record images, one image per
record; transferred from scratch file #3. The number
of records = NCARDS.

Element names, one name per record, transferred from
scratch file #3. The number of records = NTO.

-76­

SIMULATOR INPUT DISK FILE ORGANIZATION

RECORD
 CONTENT

I' 	 1-word decay time values, IDECTM.

2 	 1-word fall delay time values, IDTMF.

3 	 1-word rise delay time values, IDTMR.

4 	 8 4-bit entries for each logic library truth table,

JTRUTH. 8-4bit entries for each NEWGATE truth

table, ITRUTH, and 1 word indices to the start of

each ROM truth table in record 5, NRTE.

5 	 2-bit ROM truth table states, MROMTB.

6 	 4-bit special code values for logic library and NEW-
GATE logic types, ITPVLT.

7 	 1-byte index to each gate's fall delay time, ITYPEF,
NFALL.

8 	 1-byte index to each gate's rise delay time, ITYPER,
NRISE.

9 	 1-byte index to each gate's fall decay time, IDTYPF.

10 1-byte index to each gate's rise decay time, IDTYPR.

11 1-word generator change times, IGENTM.

12 4-bit generator state changes, IGENVL.

13 1-word number of repetitions, 1-word time interval,

I-word sequence pointer and limit, list of 4-bit state
sequence entries, repeated for each generator function.

14 list of half-word element numbers in the order in which
future events are to occur. Generator and generator
functions numbers are entered, all other entries - 0.

15 1-word time of 	next change for each element. First
generator and 	generator function change times, IFECTM
are entered, all other entries = -1.

Table Z-3

-27­

SIMULATOR INPUT DISK FILE ORGANIZATION (Cont'd)

RECORD

16"

17

18

19

20

21

22

23

24

-

CONTENT

4-bit state of next event for each element, first genera­
tor and generator function change states, IFECVL, are
entered, all other intries = 0.

4-hit entry for the initial state of all network elements,
IOVAL.

half-word reference to each gate's logic type, IGATYP
and index to its associated data in record 4.

half-word index to each generator's data in records 11
and 1Z and each generator function's data in record 13,
LOCGEN.

half-word element number for each element in the list
of inputs.

half-word index to the start of each gate's inputs in the
list of inputs. INPTKY.

half-word element number for each element in the list
of loads, LOADS.

half-word index to the start of each element's loads in the
list of loads.

KEY (I) array:

I 1,2,3 - ky to tart of records I through 23.
I - 24 - element number of last non-ROM type

logic gate, NELG.
1 = 25 - element number of last ROM type logic

gate, NEROM.
I = 26 - element number of last delay gate, NEDE

I = 27 - element number of last inverter, NEIN.

I= 28 - element number of last generator, NEGN.

=I 29 - element number of last generator function,
------- . NEGF

Table 2-3 continued

-28­

SIMULATOR INPUT DISK FILE ORGANIZATION (Cont'd)

RECORD CONTENT

24 1 = 30
cont'd I = 31

I = 32
I = 33

I = 34

I = 35

I = 36

- IGNORE option flag, IGNORE
- NONCON option flag, NONCON
- FOLLOW option flag, KFOLOW
- end of key, number of elements

-+-40.
- maximum simulation time,

MAXTIM
- number of generators and gener­

ator functions.
- DEBUG option flag, KDEBUG

Table 2 - 3 continued

-29­

3. SIMULATOR

The Simulator portion of the LOGSIM Program simulates the

operation of a
logic network based on the network description generated
by the Preprocessor and outputs a sequence'of logic events describing
the operation for interpretation by the Postprocessor.

The Simulator operates using the concept of a "Future Events
Chain" (FEC). When an event occurence is recognized, the program
examines the effect which the state change has on other elements in
the circuit and schedules future events accordingly. The- future events
are stored in the FEC, and the current time is advanced to the time of
the next scheduled event. This concept will be referenced extensively
in the following Simulator discussions.

3. 1 Program Structure

Figure 3-1 illustrates the functional structure of the Simulator
(SIMUL) Program. The program is 'structured into five functional
levels with the first level of subroutines corresponding to the following
major program functions:

(I) Initialization of element states

(2) Simulation of logic events

(3) Termination of the simulation

Appendix B contains the detailed flowchart of the Simulator Program.

3. 2 Subroutine Description

Each subroutine illustrated in Figure 3-1 represents a particu­
lar function of the program and a specific block of coding in the main
program. The only actual subprograms of the Simulator are short
functions used for bit manipulation. These subprograms are frequently
used Boolean functions which are important for packing and unpacking
data, but are not represented as major functional program blocks in
this discussion.

3.2. 1 INITIAL: Gate Initialization Subroutine - Level 1

The functional subroutine INITIAL determines the initial state
of as many net-work elements as possible. If all indeterminate states

-30­

5

SIMULATOR (SIMUL) PROGRAM STRUCTURE

FUNCTIONALI SUBROUTINES

vSl 1. L 2 Level 3 1 Level 4 Lev

SML

ROM

* INDEL

EN IRE

REGE

TEROM

* See TERM Level I
** See BUFOUT Level 2

Figure 3 ­ 1

31-~

cannot be resolved, the Simulator actlon taken depends on tne value oi

the IGNORE option flag. The initial states determined by the Simulator

are examined for any inconsistencies with those specified by the user,

and any action taken depends on the value of the NONCON option flag.

3. Z. Z SIMRUN: Event Simulation Subroutine - Level 1

The functional subroutine SIMRUN performs the operations

necessary to simulate the network operation from zero time to the

maximum simulation time, MAXTIM.

3. 2. 3 TERM: Termination Subroutine - Level 1

The functional subroutine TERM outputs any data in the Simulator

output data buffers and brings the simulation to an orderly terminate.

3. 2. 4 SUB103: Logic State Determination Subroutine - Level 2

The functional subroutine SUB103 determines the output value

of a network element. It is first utilized during initialization to resolve

indeterminate initial gate output levels. During simulation SUB103

predicts future gate output changes to be entered in the FEC.

3. 2. 5 REGEN: Generator Events Restoration Subroutine - Level 2

When a generator or generator function event occurs, the

subroutine REGEN locates that elemient's next event in the input data

array. If there is a future event scheduled it is then entered into the

FEC.

3. Z. 6 BUFOUT: Event Output Subroutine - Level 2

In the operation of BUFOUT any data which is to be output to
the Postprocessor input data tape is entered into one of two buffers.

Data is entered into the first available buffer, while the other buffer
may be busy with output. After the buffer is filled, the intrinsic sub­

routine BUFFER OUT is called and the data is output to tape.

-3Z­

3. 	Z. 7 ROM: Read-Only-Memory State Determination Subroutine -

Level 3

The functional subroutine ROM determines the output level of
-a read-only-memory element by searching its truth table according

to the input levels. An attempt is made to resolve the output for any

indeterminate inputs only if requested by the FOLLOW option.

3. 	2. 8 INDEL: Delay Gate and Inverter State Determination Subroutine -
Level 3

The subroutine INDEL determines the output levels for delay

gates and inverters.' This is done by examining the level of the gate's

input and scheduling its output the same as its current input if it is a

delay gate, or setting its current value at the current input complement

value if it is an inverter.

3. 2. 9 TYPVALS: Logic Gate State Determination Subroutine - Level 3

The functional subroutine TYPVALS determines the output of

logic elements of the logic library or NEWGATE type. The determina­
tion is made on the basis of the type bf gate and the input levels. The

gate type special code and 8-character truth-table is accessed from

the input data array. TYPVALS attempts to evaluate outputs even when

indeterminate inputs exist. If the output state cannot be determined,

it is set to indeterminate.

3. 2. 10 ENTRE: Event Storage -Subroutine - Level 3

The subroutine ENTRE enters an element's new value into the
NIT list or schedules a future event by an entry in the FEC. It deter­
mines the event delay, and identifies holding events and spike conditions.
When a spike condition cancels a future event, the FEC entry is deleted
and a spike message is output.

3. Z. 11 INENTRE: Initial Conditions Storage Subroutine - Level 4

The INENTRE subroutine enters initial gate levels into an in­
itial conditions array. A holding initial event is considered indeterminate.
If an initial conditions conflict occurs a message is output.

-33­

3. 2. 12 HOLD: Holding Mode Event Processing Subroutine - Level 4

When a holding mode event is encountered, the subroutine HOLD
examines the event data, determines if the gate's output should be held
at its current state, determines its current state, and finds the proper
rise or fall decay time. If the state is to be held, the event is entered
in the FEC.

3.2. 13 MCLEAN: FEC Clearing Subroutine - Level 4

The functional subroutine MCLEAN maintains the 'EC storage
area, by insuring against an overflow. If the FEC is filled, any positions
where events have been deleted are filled and any duplicate entries in
the FEC are eliminated. If the FEC is still full, it is an indication
that the simulation is attempting to process current events from a zero
delay feedback loop. In this case a message is output and a normal
termination occurs.

3.3 Arrays and Variables

The following is a list of array and variable names used in the
Simulator Program. Each is defined in detail: inclu'ding-any dimensional
or equivalence information. Notations such as (1),. (3), etc. refer to
array names, Variable names which are used repetitively with different
meanings are not included in this list.

IBASE - address of a ROM truth table in the input array M (I).

IBIT (I) - I z 0, 16, where IBIT (I) = ZI; initialized in a DATA
statement and.used for masking the debug word KDEBUG.

IDECTM - a decay time value.

IDTMF - a fall delay time value.

IDTMR - a rise delay time value.

IDTYPF - a gate's fall decay time index.

IDTYPR - a gate's rise decay time index.

-34­

IER1

error type flags used in error messages passed to tape;IERZ

IER3 initialized in a DATA statement.

IER4

IFECKY - key to future events, entry in FEC.

time of a 	 event.IFECTM - gate's future

,IFECVL - a gate's future event Value.

IGATE - a gate number.

- the number of the gate whose current event is beingIGATS
processed.

IGATYP - the value identifying the current logic type and its truth

table location.

scheduled at preprocessing.IGENF - a generator function event value

at preprocessing.
IGENTM - a generator 	event time scheduled

event value scheduled at preprocessing.
IGENVL - a generator

IGNORE - option flag for control option IGNORE set at prepro­

cessing.

gate.
IHIS - counter for the number of HIGH inputs to a

INCLOC - flag for a gate's clock value.

INDET (I) - I = 0, 16, indicating the indeterminate inputs to a ROM.

counter for the number indeterminate'inputs to a gate.
INDETS -

INFLAG - a count of indeterminate initial states left after a pass

at attempting to resolve indeterminate states during

initialization.

INITIA - a flag indicating whether or not initialization is taking

place.

-35­

INPTKY - address of a gate's input list.

INPUTS - the number of a gate's inputs.

IOBUFF - output buffer array, I 11, 1000; IOBUFF is divided
I - 1,500 and I = 501, 1000 and used as two arrays to
buffer blocks of output data.

IOVAL - the initial state of a gate.

IPRINT (I) - a small intermediate buffer array, I = 1, 6; used to
store data temporarily until one of the output buffers
is available.

ISIGN - flag to indicate direction in binary search of FEC.

ITER - a mask word initialized by a DATA statement;
Boolean type intrinsic functions.

used by

ITPVAL - a logic library or NEWGATE type truth table
of a ROM truth table.

or address

ITPVLT - a gate's special code identifying how its truth table is
to be manipulated.

ITYPEF - index to a gate's fall delay time.

ITYPER - index to a gate's rise delay time.

K (I) - input buffer array, I 11, Z8; for reading the last record
on the Simulator input data file. Each of the first 23
entries of K (I) are equivalent to the variable name re­
presenting the data in each of the first 23 records on
that file.

KDEBUG - debug data print flag.

KDLEND - the number of the last delay gate.

KEYEND - size of the FEC.

KFOLOW - option flag for control option FOLLOW set.

KGEND - the number of the last generator.

-36­

KGENFD - the number of the last generator function.

KGTEND - the number of the last inverter.

KLEAN - count on the number of passes through functional sub­
routine MCLEAN.

KONFLI - flag on conflicting initial states.

KROMND - number of the last ROM type logic gate.

KTYPE - indicator of a gate's special code.

KURTIM - current time during simulation.

KVLEND - number of the last non-ROM type logic gate.

LASTFG - count of indeterminate initial conditions prior to the
last pass at attempting to resolve indeterminate states.

LOADKY - addres's of a gate's loads list.

LOADS - number of a gate's loads.

LOCGEN - address of a generator or generator function event
scheduled at preprocessing.

LOWS - counter for the number of LOW inputs to a gate.

LPOINT - pointer to the start of data in the array IPRINT (I) to
be transferred to the output buffer IOBUFF (J).

Li - address of first load in a gate's load list.

L2 - address of last load in a gate's load list.

LZBITS - a mask word, initialized by a DATA statement; used
by the Boolean type intrinsic functions.

M (1) - input buffer array for reading the first Z3 records of
the Simulator input data file. I = 1, 20000 limiting
the size of the input data file to 20, 000.

MASK 11 - a mask word, initialized by a DATA statement; used
by Boolean type intrinsic functions.

-37­

MAXTIM - maximum simulation time.

MCLEAN
 - variable statement number assignment.

MROMTB
 - 16 2-bit ROM truth table entries.

MSK (I) - mask array for reading ROM truth tables,
 I = 0, 	 16;
contains the number of bits which a ROM word must

be shifted to right justify the desired value.

MSKCNT - on number of masks
counter constructed for reading

a ROM truth table.

NIT - index to location of a current time event in the FEC.

NONCON - option flag for control option NONCON set at prepro­
cessing.

NOWSR - flag used in processing 4th and 5th inputs of a CJKF
type gate. NOWSR = 1 indicates output must change
because either the 4th or 5th input is set.

NPOINT - pointer on the last entry in the output buffer array
being filled.

NWORDS - number of entries in the intermediate array IPOINT (I)
to be transferred to an output buffer.

NIFLAG BUFFER OUT operation error flags for the two output

N2FLAG J buffer array.

PNTRET ­ variable statement number assignment.

SUBRET ­ variable statement number assignment.

XI - floating point representation of increment used in binary
search of FEC.

3.4 	 Debug Output

Detailed debug information can be obtained from a Simulation
run by specifying the debug option to the Preprocessor. The Simulator
debug word KDEBUG is set to indicate the type of debug output to be
printed. Table 3-1 illustrates the use of debug word KDEBUG in the
Simulator.

-38­

_ _

SIMULATOR DEBUG WORD BIT INTERPRETATION

NDEBUG Description of Debug Output When Bit is Set

Bit NO. _

0 Data from Simulator input disk file is printed.

Z All data output to Preprocessor input data tape by the
the simulator is printed.

3 All events scheduled for the current time are printed.

4 	 The gate number whose loads are about to be checked
for future events is printed.

5 	 The current state of the gate which is about to be
checked for a future event is printed

6 The future state of the gate which is about to be checked
for a future event is printed.

7 	 The current FEC status is printed.

8 Status of the FEC cle.ring operation performed by the
Subroutine MCLEAN is printed.

9 ROM Processing data is printed.

KDEBUG Final gate initialization is printed.
0

Table 3 - 1

-39­

4. POSTPROCESSOR

The primary function of the Postprocessor is to output logic

timing diagrams corresponding to the events simulated.

4.1 Program Structure

Figure 4-1 illustrates the functional structure of the Postpro­

cessor (POSTOR) Program. The program is structured into two levels

of functional subroutines with the first functional level corresponding

to the four main program functions:

(1) Processing input data cards.

(2) Timing diagram setup.

(3) Processing element initial conditions.

(4) Processing simulation event.

Appendix C contains the detailed flowchart of the Postprocessor Program.

4.2 Subroutine Description

Each 	subroutine illustrated in Figure 4-1 represents a particu­
a block of the main programlar function of the program and may include

coding and/or one or more actual program subroutines.

4. 2. 1 POSTCARD: Card Processing Subroutine - Level 1

The functional subroutine POSTCARD processes all input data

cards except PNT/SLOT cards. This subroutine also processes the

data on the Postprocessor input data tape generated by the Preprocessor.

In the actual program POSTCARD includes:

o MAIN - first major coding block

0 SUBROUTINES- HEADI, HEADZ, HEAD3, HEAD5.

4.2. Z PREPRINT: Timing Diagram Set-up Subroutine - Level 1

The PREPRINT subroutine outputs user reference data, and

-40­

POSTPROCESSOR (POSTOR) PROGRAM STRUCTURE

POSTPROCESSOR FUNCTIONAL SUBROUTINES- IL
TrV1L E1 V EL2Z

PoTOR

POSTARD

CONTROL

CORDR

PREVEINT

COMAR

Figure 4-1

-41S­

starts the printout of each timing diagram. In the actual program
PREPRINT includes:

o MAIN - part of first major coding block

o 	 SUBROUTINES - HEAD7, HEAD8, HEAD9, HEAD1O,
HEADI1, HEAD13.

4.2 .3 INITIAL: Element Initial Conditions Processing Subroutine -

Level 1

The functional subroutine INITIAL accesses the Postprocessor
input data tape for the first events blocks containing element initial
states output by the Simulator. The initial conditions are processed
according to the INITiAL control option. In the actual program
INITIAL includes:

o MAIN - second major coding block

o SUBROUTINES -	 HEADI, HEADZ, HEADl2, HEADIl.

4. 2.4 PREVENT: Event Processing Subroutine - Level 1

The subroutine PREVENT begins with the first event following
the initial conditions on the tape and processes the events in blocks of
250. A line of data is printed on the timing diagram for every time
at which any event occured. PREVENT includes the actual program
parts:

o MAIN - third major coding block

o SUBROUTINES -	 HEAD11, HEADl4, OUTPUT.

4.2.5 	 CONTROL: Control and Output Character and Shift Card Processing
Subroutine - Level 2

The functional subroutine CONTROL reads and verifies the
control (CONT), character (CRCT), and shift (SHFT) cards. In the
actual program CONTROL includes:

-42­

o MAIN - part of first major coding block

o SUBROUTINES -	 HEAD1, HEADZ.

4. 	Z. 6 COMCARD: Compare and Compare Function Card Processing
Subroutine - Level 2

The subroutine COMCARD reads and verifies the level comparison
(CMP) and compare function (CMPF) input data cards. COMCARD
includes the actual program parts:

o MAIN - part of first major coding block

o SUBROUTINES -	 HEADI, HEADZ.

4.2. 7 PNTSLT: PNT/SLOT Card Set Processing Subroutine - Level 2

The functional subroutine PNTSLT reads and verifies the PNT
and SLOT data cards, one PNT/SLOT set at a time. In the actual
program PNTSLT includes:

o MAIN - part of first major coding block

O 	 SUBROUTINES - HEAD1, HEADZ, NOPNT, PNTSLT,
PNT, SLOT.

4.2.8 COMPARE: Level Comparison Processing Subroutine - Level 2

The COMPARE subroutine performs the level comparisons
requested by the level comparison (CMP) and compare function (GMPF)
cards. COMPARE includes the actual program parts:

o MAIN - routing decision in 2nd and 3rd major coding blocks

o SUBROUTINES -	 HEADII, COMPARE

4. 2. 9 SPIKE: Spike Notice Processing Subroutine - Level 2

The functional subroutine SPIKE searches the table of predicted
spike conditions for any corresponding to the current event time. In
the actual program SPIKE includes:

-43­

o 	 MAIN'- routing decisions in 2nd and 3rd major coding
block s

o SUBROUTINES - HEADII, SPIKE.

4. Z. 10 ERROR: Error Message Processing Subroutine - Level 2

The subroutine ERROR identifies error messages which are

passed from the Simulator among the events, and processes them

according to the error type. Spike predictions are included in the

error messages passed. ERROR includes the actual program parts:

o 	 MAIN - routing decisions in 2nd and 3rd major coding
blocks

o SUBROUTINES- HEAD11, ERRORI, ERRORZ, ERROR3

4.3 Arrays and Variables

The following is a list of array and variable names used in the

Postprocessor Program. Each is defined in detail including any array

dimension information. Notations such as (I), (J), etc. refer to an

array name. Not included in this list are a number of variable names

which are used repetitively as control variables and temporary

counters.

IDATA (I) - input buffer array for preprocessor input data records,

I= 1, 18.

INFO 	 - first word of a sequence of error data from the Simulator.

INFOl (I) - first word of any error message word pair; I - word

pair nurnber. The maximum value of I is 5 since no

error message given by the Simulator exceeds 5

word pairs.

INFOZ (I) - second word of any error message word pair; I = word

pair number. The maximum value of I is 5 since no

error message given by the Simulator exceeds 5 word

pair.

ITIME (I) - list of beginning time values for time slots to be printed.
I - 1, 60, limiting the number of time slots per timing
diagram to 60.

-44­

JCARDA " character card identifier; four alphanumeric characters-
CRCT, initialized by a DATA statement.

JGARDB shift card identifier;
SHFT, initialized by

four alphanumeric characters
a DATA statement.

-

JCARD1 control card identifier; four alphanumeric characters
CONT, initialized by a DATA statement.

-

JERROR - error message word pair counter.

JNONE - four blank characters, initialized in a DATA statement.

JNUM - PNT card counter.

JOPTNI - SPIKE option identifier; 4 characters
by a DATA statement.

- SPIK, initialized

JOPTNZ - PREPIN option identifier; 4 characters
ialized by a DATA statement.

- PREP, init-,

JOPTN3 - POST option identifier; 4 characters
by a DATA statement.

- POST, initialized

JOPTN4 - COMSTOP option identifier; 4 characters
initialized by a DATA statement.

- COMS,

JOPTN5 - INITIAL option identifier; 4 characters,- INIT,
by a DATA statement.

initialized

JSHFTL - left shift identifier; 1 character
DATA statement.

- L, initialized by a

JSH.FTR - right shift identifier;
a DATA statement.

I character - R, initialized by

JTYPEI - compare card identifier;
by a DATA statement.

4 characters - CMPE, initialized

JTYPEZ - compare function card identifier; 4characters
initialized by a DATA statement.

- CMPF,

JTYPE3 - PNT card identifier; 4 characters
by a DATA statement.

- PNT15, initialized

-45­

JTYPE4 - SLOT card identifier; 4 characters - SLOT, initialized
by a DATA statement.

KOARDA

KGARDB

KOARDI
input buffer for data card types, first four characters

KGARDd

KCARD3on card.

KCARD3

KGARD45f
KGARD5-

KDATA (I) - input buffer array for 72-character image of any data
card; double precision, I 1 9.1,

KDRCTN (I) - input buffer array of left or right shifts corresponding
to how each character on the timing diagram, KLEV (J),
is to be shifted; I = character number. The Simulator
outputs only three possible states, indeterminate, LOW,
and HIGH, but the array is dimensioned at 16 allowing
for 16 different states.

KGATE (I) - array of element number to which each event, in a block
of 250 events, corresponds; I = 1, 250.

KINDER - error message type flag, may assume values from 1

to 5 with the following correspondence:

1 - conflict of initial states

2 - spike

3 - indeterminate initial states

4 - a stable gate operation

5 - termination

-46­

KLEV (I) - array of characters used to reprelsent each possible
output state on the timing diagram; I = state number.
There are three possible states.'1 - indeterminate,
2 - LOW, 3 - HIGH, which the Simulator outputs.
However, KLEV is dimensioned at 16 allowing 16
possible states.

KLEVEL (I) - array of state values to which each event in a block
of 250 events corresponds; I = 1? 250.

KLOOP - counter for number of initial conditions processed
since previous line of initial conditions were printed
under the INITIAL option. When KLOOP = 10 another
line is to be printed.

KMSTOP - option flag for COMSTOP control option; I
to be terminated, 0 = program to continue.

= program

KNAME (I) - double precision input buffer array of element names to
be printed on a timing diagram. It is limited to 40 names
because only 40 columns are allowed per timing diagram.

KNUM - number of gate outputs to be printed on a timing diagram.

KOPTNi1

KOPTNZ

KOPTN3 input buffers for control option names.

KOPTN4

KOPTN5

KRCTRA one character, *, initialized in DATA statement.

KRCTRH one character, H, initialized in DATA statement.

KRCTRL one character, L, initialized in DATA statement.

KSKIP - four characters, SKIP, initialized in DATA statement.

KTIME (I) - array of time values to which each event,
250 events, corresponds; I = 1, 250.

in a block of

-47­

KWORD - last word of events block of 250 word pairs.

KWORDI (I) - array of first words of each word-pair in
Z50 event word pairs; I = 1, 250.

a block of

KWORD2 (I) - array of second words of each word-pair in
250 event word pairs; I = 1, 250.

a block of

KWORD3 (I) - input buffer for 250 event word pairs; I = 1, 500.

LABORT- - error termination flag; 1
0 = program to continue.

= program to be terminated,

LDRCTN (I) - output character shift value array, corresponding to
shift character array, KDRCTN (I); 1 = shift to the
right, 0 = shift to the left.

LEVEL (I) - present state of each network element. Dimensioned
at 2000 allowing for simulation of 2000 elements.

LINE - printed line counter. When LINE -- 50 a new printer
page is started with the proper heading.

LNAME (I) - print matrix names
column numbers.

array, double precision; I = 1, 40

LNUM - number of time slots in a set of SLOT cards.

LOPTNI - option flag for SPIKE control option;
0 = option not chosen.

1 = option chosen,

LOPTN2 - option flag for<PREPIN
0 = option not chosen.

control option; 1 option chosen,

LOPTN3 - option flag for POSTIN control option;
0 = option not chosen.

1 option chosen,

LOPTN4 - option flag for COMSTOP control option;
chosen, 0 = option not chosen.

I = option

LOPTN5 - option flag for INITIAL control option;
0 = option not chosen.

1 = option chosen,

LSKIP (I) - array of columns to be left blank on timing diagram.
Limited to 40 since only 40 columns of output are allowed.

-48­

LTIIE -	 current simulation time value.

LUTIME -	 current simulation time value, same as LTIME.

MASK - 8-character, OOOOFFFF, mask value used in intrinsic
function IAND to extract a half-word.

MAXTIM -	 maximum simulation time.

MCOMP (I) - double precision array of element names to be compared.
CMP cards limited to 100.

MNUM -	 number of time slots on a slot card.

MOUT (I) - array -of levels to which the output of each element
named in MCOMP (I) is to be compared. CMP cards
limited to 1000.

MOVE - number of bits to be shifted, used in intrinsic function
ISL to extract half-words.

MITIME (I) - array of times at which the outputs of elements named
in array MCOMP (I) are to be compared to the levels
in the array MOUT (I). CMP cards limited to 100.

NAME (I) - double precision array of alt element names; dimensioned
to Z000.

NCARD - number of Preprocessor input data records on the Post­
processor input data file following the heading record,
NCARDS -1.

NCIAIHI04 	 titwmtirt. ,rr or rlnt. rrcord on the Post­1'rr)rtrn itipti
proce.ssor input 	data ie,

NCOMP (I) 	 double precision array of element names involved in
compare function. CMPF cards limited to 100.

NERROR 	 error processing flag; ---0 error being processed, ±- 0
no error being processed.

NHEAD (I) 	 72 character printout page heading; I = 1, 18.

NJUMP (I) 	 time interval between comparisons for each compare
function. CMPF cards limited to 100.

-9
'OoN

NNAMES - number of network elements.

NO - flag for missing PNT card; 1 = terminate, 0 = continue.

NOMORE - flag for last timing diagram; 1 = last PNT/SLOT set,
0 = more PNT/SLOT sets.

NONEXT - flag for last events data block;
blocks.

1 %last block, 0 r more

NORDER (I) - input buffer array for 32-character
sequence; I = 1, 32.

compare function

NREP (I) - array of the number of repetitions of the sequence for
each compare function. CMPF cards limited to 100.

NSBEG (I) - beginning time of spike condition for each spike notice
kept on file. A maximum of 100 spike notices are kept
on file at any time.

NSCALE - four character time unit to be printed above time column
on timing diagram.

NSEND (I) - end time of spike condition for each spike notice kept
on file. A maximum of 100 spike notices are kept on
file at any one time.

NSEQ (I, J) - array of the 32-entry comparison sequence for each
compare function; I = compare function number, and
J = 1, 32; CMPF cards are limited to 100.

NSGATE (1) - gate number corresponding to each spike notice kept
on file. A maximum of 100 spike notices are kept on
file at any one time.

NSLEV1 (I) - originally scheduled state before each spike condition for
each spike notice kept on file. A maximum of 100 spike
notices are kept on file at any one time.

NSLEVZ (1) - new scheduled state after spike condition for each spike
notice kept on file; I = 1, 100.

NSPIKE - number of spike notices on file.

-50­

starting time of each compare function. CMPF cardsNSTART (I) ­

limited to 100.

NUMI - number of CMP cards.

NUMZ - number of CMPF cards.

NUM3 - number of PNT/SLOT card sets.

NUTIME - first non-zero
time = 0.

event time in an events block; = -1 when

NWORDS - number of words in error message to be read.

DLEVEL (I) - a set of element outputs to be printed 6n one line of the

timing diagram; I = the column number and is limited

to 40.

-51­

APPENDIX A

LOGSIM PREPROCESSOR PROGRAM FLOWCHARTS

This Appendix presents the detail flowcharts of the LOGSIM
Preprocessor Program. The flowcharts should provide sufficient
explanation of the Preprocessor listing.

The "Picture on a Page" technique has been utilized, which
allows the reader to study the flowcharts to the depth he desires.
Each page is a complete representation of the area presented; Those
functions that are expanded in more depth on subsequent sheets are
identified with subroutine nomenclature blocks

For example, on page A-4, the block IPACSTQRE indicates thatj Pack and'I

the activity defined by the block is discussed in more detail on a
separate sheet with the entry PACSTORE (See page A-6).

Appendices A, B, and C ref.r to the following input/output data
files by logical unit numbers:

1) scratch file I logical unit number 1
2) scratch file 2 logical unit number 2
3) scratch file 3 logical unit number 3
4) Postprocessor logical unit number 7

input file
5) Simulator input logical unit number 9

file

Table Al is an index to the flowcharts. Table AZ describes
the flowchart symbol convention adhered to by these flowcharts and
by the flowcharts presented in Appendices B and C.

A -I

PROGRAMLOGSIM 	PREPROCESSOR

FLOWCHART INDEX

Logic Simulation Preprocessor

Card Processing Subroutine

Error Check and Data List Subroutine

Arrays Pack and Store Subroutine
List Generation SubroutineConnectivity

Data Record Reading and-Identification

Circuit Specifications Subroutine

Page

A-4
A-5

A-5
A-6
A-6
A-7Subroutine
A-7
A-8

Name and Control Option Processing Subroutinc
A-9

Time Record Processing Subroutine

Newgate Specification Processing Subroutine A-10
A-1

Read-Only Memory Specification Proce s sing Subroutine

Element 	Description Record Processing Subroutines A-lZ
A-13

Data Tape Generation Subroutine

Data Error and Substitution Subroutine
A-14

Indeterminate and Misplaced Data Skip Subroutine A-14
A-15

Net Data 	Processing Subroutine

Gen Data 	Processing Subroutine
A-16
A-17

Genf Data Processing Subroutine

Table Al

A-Z

FLOWCHART SYMBOL CONVENTION

Subroutine Terminal PointsG(lD

Process

0Decision

Subroutine Call11 1

I/O Operation

Tape0Magnetic

Q On Page Connector

On Line Storage

Table AZ

A -3

LOGIC SIMULATION PREPROCESSOR

CA D RO

ea an

process

data cards

CHEKLIST

Check error

store data

N RMterm.

ptio n m.

S;OTO 1
CE D

I

10

CARD PROCESSING SUBROUTINE ERROR CHECK AND DATA LIST SUBROUTINE

REdM subd itu- N

dtrecord

INAMCON sbaitute

2L

SPEC
Process Eors y

SPEC data

TIME
Process options

MTIME data

I
ProA;crin Prin

NEWOATEs

CRESTPrn

NET, GEN ls
GENF

RETURNN

ORIGINAL PAGE IS
OF POOR QUALfY

A-5

ARRAYS PACK AND STORE SUBROUTINE

PACSTORE

Read array

from file

N EndLOADEY,

too bigec

ArraN Store arra
lt ~ i fiileOAS~

packinof

In file

MoeN
Y

RETURNRETURN

A-6

CONNECTIVITY LIST GENERATION
SUBROUTINE

EOT

Read\NAMES
NAMES

from
file ni2

A YETAPE
GYene rate

tae

Read LOAD

Find start of
gate's
NM nLOADS from

LOADKY

Find numbej
ofLOADSE

gat

XPrint

lilt

End
of list

Y

DATA RECORD READING AND CIRCUIT SPECIFICATIONS

IDENTIFICATION SUBROUTINE SUBROUTINE

READ SPEC

A

Read ae

data

record

Decode Dcd
datacict
typespcfcto

RAPrint
Radata

image

Store
RTR
image

on #3

RAet
logical
unit

A­

OPTION PROCESSING

SUBROUTINE
NAME AND CONTROL

substitute
header

Zero kthe
option
flags

NN ~

'

Decod

heade

Read

dat
recor

Decode

options

\--

Reaa-dat
optioptions

or

data recordREUR

A -8

TIME RECORD PROCESSING SUBROUTINE

dely NNm

Dcd DTMF- Decod e

timeim
ine alt & index

ero

Addd

rie ry

ex~~

index

to

indenxe

ordered

fallrraycounter
errorara

READRead

data
record

._ ___7 Store
timeson#

/

Slibrary
S specialcodes ,,

cp
A - 9'

NEWGATE SPECIFICATION PROCESSING SUBROUTINE

NEWGATE

data

of data

errrror

error

i • counter

y
substitu- y

tions

Print

suo.

READ counter

Read a
data

record

A- 10

Decode
part of

SoreTT.
. T.

data

or \T.T.
SUBE:RR #2

N |Proces 8

Decode
,errors and
s ubstitutions RorROOT.T

truth - on

table AT. T) #

N SUBE R
Process

r |errors and

YY

Son fife

Srecord Reada
data

record

0-I

ELEMENT DESCRIPTION RECORD PROCESSING SUBROUTINES

ERROR
Ignore Process
data, NET
continue data

ofNEdatataGE

Process Continue
GEN
data

T [_ GENFUN'

Proe ss

012tGEN

DATA TAPE GENERATION SUBROUTINE

W rite
specs,

ORIGIfrw; PAGE 18
OF POOR QUAu!yyI

A - 1"3

DATA ERROR AND SUBSTITUTION INDETERMINATE AND MISPLACED
SUBROUTINE DATA SKIP SUBROUTINE

SUBERRERO

y

ubstitutidaigor

Print

note

proper
ecounter

m g

PrntSet ignore

Resetpoer

sADJitution
counter

READ

Read a
data

record

Any
errors

y

Print

proper
ntsk.

_Reset
proper
error
counter

N y

Set end
flag

nd
of data

N

Decode
data
tp

RETURNRETURN

A - 14

NET DATA PROCESSING SUBROUTINE

NETP,

Decode &

ve if

data

ecode

% d

Mor N

READamch

RedaNStore

datata

tr

/a

record

GEN DATA PROCESSING SUBROUTINE

Decode and

verify data|

ecode andr dt

-oreeor

ReadS~ addta

record6

GENF DATA PROCESSING SUBROUTINE

verify

sequence

NS t r Read a
daata

record I---
 -

READ

Read a

data

record

Ieays &

APPENDIX B

PROGRAM FLOWCHARTSLOGSIM SIMULATOR

This Appendix presents the detail flowcharts of the LOGSIM
in AppendixAs with the Preprocessor flowchartsSimulator Program.

Page" technique has been utilized in these flowcharts
A, the "Picture on a

page A-i.and is described in Appendix A,

An index to the LOGSIM Simulator Program flowcharts is con­

flowchart symbol convention describedsametained in Table Bl and the
adhered to in the Simulator flowcharts.in Table AZ is

B-I

LOGSIM4 SIMULATOR PROGRAM

FLOWCHART INDEX

PageRoutines

B - 3LOGSIM Simulator
B - 4Gate Initialization Subroutine
B - 5Event Simulation Subroutine
B - 6Termination Subroutine
B - 7Event Output Subroutine
B - 8Logic State Determination Subroutine
B - 9Generator Events Restoration Subroutine
B - 10Read-Only-Memory State Determination Subroutine

Delay Gate and Inverter State Determination Subroutine B - 11
B - 12Logic Gate State Determination Subroutine
B - 13Event Storage Subroutine
B - 14Initial Conditions Storage Subroutine
B - 15Holding Mode Event Processing Subroutine
B - 16FEC Clearing Subroutine

Table B1

B -2

LOGSIM SIMULATOR

101T

Initialization].

SIMUL Readfile control

cardI
SIMVUL Read

file data

base

A1

p
B -3
BQUA-L1

LOGSIM SIM ULATOR

200

Write av

initialzatio

indet.

indeTermInre

tapeiiuiliation

stmat

ia e

on

error3

GATE INITIALIZATION SUBROUTINE

109

Initialize

counts &

£aLas

Indet. N

NFLAO opassoutput

1030

SUB 103
Find gatet s
value from

in ut

Address
next N Lgt
gatn.<

Y ewer

N

B-4

SUBROUTINE
GATE INITIALIZATION

NONCON

10304

value from

inputs

Y

Terminate
imulation

B - 4a

EVENT SIMULATION SUBROUTINE

Note: REGEN
REGEN is only executed

SNt to NITFEC
Res ore when

GEN
a GEN or
event is

list taken from the
FEC

IIF'ECKY ove

B-S

NgAes

next
load

1030 1

Find new
value of l.oad

N Lt n

13load

SUBROUTINE
EVENT SIMULAMTON

Sav
BUFOUT

- 'tpWrite NIT
gate's valuentevn-ls
q13'

Z79
Clear FEC

entries

B - 5a

TERMINATION SUBROUTINE

IT

999
Set tndexes

for correct

buffer

N

ad
y

Set remann

buffer words

to 01
Initiate

buffer

out

B-6

EVENT OUTPUT SUBROUTINE

Initialize

. R

N Eithe

buffer
open

y
Reset:

dindxes

Enter next 2
vords in but­

add 2 to -er,

oiter

YN -."ate°__

LsBufe,.nt
bhuffer outfull

word

http:Bufe,.nt

LOGIC STATE DETERMINATION SUBROUTINE

Set up
gate

information

OR DELAY

alevalue
Find dBliydFindor inverter

value
of TYPVA]S

at

EN[TR.E

Ene val..
in

FEC

UPDEQUALI PTY

DRJ6INAL PAGE IS
or POOR QUALITY B - 8

GENERATOR EVENTS RESTORATION SUBROUTINE

REGEN

260
GEN GEN

r GENTOE

;GENF sLOG"CGEN

ind ew
hange in
EC

Reset cycle 	 [Add 1 to

pointer 	 'tate

pointe

N

(to 209)

B-9

READ-ONLY -MEMORY STATE DETERMINATION SUBROUTINE

1600

Initialize I

of
input

N

JForm baseI
address

find indet.
bits

1604
Construct
reeutred

wiask

shLft

A

B - 10

STATE DETERMINATION SUBROUTINEREAD-ONLY-MEMORY

1612

Loop

initializatio

I 3- z o

1619

Map indet.
count into-

ROM ddre s
bits

1620

[Compare
nder requir

md maskiafor

conflicts

"Sub103-1091

sttsindet. y
~state

Enter

Increment

indet.
con

N L at y
on IsA.-
iu

od force

hold value
RETURN

B - 10a

GATE AND INVERTER STATE DETERMINATION SUBROUTINEDELAY

input
Is" indI

I / using

inputs
TN[

from

PTKY:

input'.s

state

n~verSubi03-1079

[~complement

[value

Sub103O 01)

gate's

,,current

vle

RETURN1

LOGIC GATE STATE DJETERIN!ATION SUBROUTINE

indet. E| Clckgh clock
clock
flagOWOtal

Flip-flo xa ne
Type specific

inpt inut

Jdetermin
[o~ted

.. v (UALIT

EVENT STORAGE SUBROUTINE

ENTRE

--
INENTRE.
Enter gate's

initial
valueN

Y
-.

Gete
-;

hold eold

N keY te N

C Sp
con tio

revnt0sl
cely

B- N

EVENT STORAGE SUBROUTINE

A

Y Increment

Spik spike count

Dela Output

: spike
message

MCEAN MCLEAN N

FEC
ar Cear

event
change

Enernter event Delete
ent in

inurrent even FEC
FC list entry

B - 13a

SUBROUTINEINI TIAL CONDITIONS STORAGE

e v e n ti nd et

vauet

cofl c

Y

N

Increment

con fict
count

[data

Iee---tie-

s o v dc

y

Output

o nfl ct

message

SOVAIL

array

B -14

HOLDING MODE EVENT PROCESSING SUBROUTINE

HOLD

re Yions ev­
ent ached

uled

N

Gate

F dct.

N

rentge

fall
rise

. decay
decay

time

timne

0 A 0

RETURN

B - 15

FEG CLEARING SUBROUTINE

MCLEAN

y

ec-. y Setup

l~ n ' "' 't

inleee FEC

I ertrls INVI

I ,.d g.i

entrie

lis

duphiate

NIT
output

messg

I-P

B - 16

APPENDIX C

1!JOGSIM POSTPROCESSOR PROGRAM FLOWCHARTS

The detailed flowcharts of the LOGSIM Postprocessor are
contained in this Appendix. The "Picture on a Page" technique des­
crined in Appendix A, Page A-i, and the flowchart symbol convention
described in Table AZ have teen used in the development of these
flowcharts.

An index to the LOGSIM Postprocessor flowcharts is contained
in Table Cl.

C-I

LOGSIM POSTPROCESSOR PROGRAM

FLOWCHART INDEX

PagRoutines

C-3Logic Simulation Postp rocessor
Cr4Card Processing Subroutine

Timing Diagram Setup Subroutine C-5
C-6

Element Initial Conditions Processing Subroutine
C-7Event Processing Subroutine

Control and Output Character and Shift Card Processing C-8

Subroutine
Function Card Processing Subroutine C-9Comparison and Compare

PNT/SLOT Card Sets Processing Subroutine C-10

Level Comparison Processing Subroutine C-1

Spike Notice Processing Subroutine C-12

'Error Message Processing Subroutine C-13

Table Cl

c-2z

LOGIC SIMULATION POSTPROCESSOR

PaT

Process
data

cards

PREPRINT
Start

timing

dia ram

Read/
events
hik.

Y
First

h orkx

initial
tondlt(o)

P

C-3
 ~jj

I

LOGIC SIMULATION POSTPROCESSOR

A

PREVENT

dafa

'Y fors

N

DMRIINAE PAGE IS

OF POOR QUALMT

C - 3a

CARD PROCESSING SUBROUTINE

Read 2PNTSLT
rectjrd Process a
from PNT/SLOT

set

T

Read Read pre.
1t records

data. fronti
card#

rocespion

ONT, CRC

COMCA RD Read
Pr,,cessNAMES

MP 8 CMfrom
Lcards

ORIGINAL PAGB M.

OF POOR QUAITl

C-4

TIMING DIAGRAM SETUP SUBROUTINE

Process a
PNT 'SLCT

set

slot

lit

Print

y

init.

ceond.
headingr

Print

heain

C-5

ELEMENT INITIAL CONDITIONS PROCESSING SUBROUTINE

INITIAL

Dc rode

intial

odtons

LI a r

n-6y
t an 0tvoO

ELEMENT INITIAL CONDITIONS PROCESSING SUBROUTINE

A

areia~sn

Process
level

N
o...parisons

COPAE

A..
y

spike

notGces

ERROR ,
Recopni,,e

~error

C -6a

EVENT PROCESSING SUBROUTINE

PR EVENT

events fo
LII

Y

Time N
*n slot

dos N

fl of
daEROR

Reqonl7
N Proess

I ireor

.­>?
A -7

CONTROL AND OUTPUT CHARACTER AND SHIFT CARD PROCESSING SUBROUTINES

Zero the

fla g sR

N ~ De code

otions

e d

nex t

chara, ter

airs.

Decode

c'hat .. te,

Read/

slhift

C -8, or

FUNCTION CARD PROCESSING SUBROUTINECOMPARISON AND COMPARE

NCMP
card

y

Decode

comparison

data

Read

next

card

card

ta

R~a

ex

LId_

Ocardd

PNT/SLOT CARD SETS PROCESSING SUBROUTINE

N

. TD'''sIPN'I --7-­

caira

PN,
 pr

error

mesage

Read an ort

RE'j
URN

C-I

LEVEL COMPARISON PROCESSING SUBROUTINE

Gae N

arepare fu nCuro

------- nce

,hN•

gtGINN

optio
OtS.O

SPIKE NOTICE PROCESSING SUBROUTINE

SPIKE.

S:e

.,sa

fr.

RETURN

C - 12

ERROR MESSAGE PROCESSING SUBROUTINE

ERRORt

Deuude .,,o

word
air

y Mo re
oada

no ode

mesage

NN?

C- 13

*U.S, GOVERNMENT PRINTING OFFICE 1976-64I-255I282 REGION NO.4

