General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

ANGULAR DISTRIBUTION OF PHOTOELECTKONS AT $58+\AA$ USING POLARIZED RADIATION

b:
W. H. Hancock and James A. R. Samsun

Behlen Laboratory of Physics
University of Nebraska
Lincoln, Nebraska 68588

ABSTRACT

Photoele tron anguiar distributions for $\mathrm{Ar}, \mathrm{Xe}, \mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{CO}, \mathrm{CO}_{2}$, and NH_{3} have been obtained at 584 \& by observing the photoelectrons at a fixed angle and simply rotating the plane of polarization of a highly polarized photon source. The ridiation from a helium dc glow discharge source was polarized (84%) using a reflection type polarizar.

INTRODUCTION

Although the first measurements of the angular distribution of photoelectrons ejected from free atoms date back to 1931 it is only during the past ten years that interest has been revived in tiris area. ${ }^{1,2}$ However, the majority of the published results have been cuncerned with the angular distribution of electrons ejected from the rare gases. The motivation has been to verify theoretical predictions that the angular distributions are sensitive to the kinetic energy of the electrons and to the orbital from which they are ejected. There are surprisingly few measurements of electron angular distributions from molecules. The most extensive work on molecules has been reported by Carlson and co-workers for discrete emission lines at $584 \AA$ (HeI) and at 736, and $744 \AA$ (NeI). ${ }^{3-6}$

The purpose of the present work is two-fold; (a) it presents angular distribution data at 584 A for comparison with previously published results and (b) it presents a new technique that is simple and accurate to use. In addition, results are presented for ammonia for the first time.

EXPERIMENTAL

In order to measure angular distributions of photoelectrons, the electron flux is measured as a function of angle relative to the plane of polarization of the radiation. Traditionally, this has been done by using unpolarized radiation and rotating the electron spectrometer or light source about an axis which is perpendicular to the beam axis. $2,3,7,8$ These methods present several difficulties in that the interaction volume viewed varies and must be corrected for in the data analysis. Also, motion of the apparatus can cause shifting contact potentials and in the case of rotating
the detector, the electrons have different trajectories relative to residual magnetic fields.

Other workers have overcome the problem of varying interaction volume by using plane polarized synchrotron radiation and rotating the electron spectrometer about the beam in the plane perpendicular to the beam axis. ${ }^{9}$ This method still retains the problems of contact potentials and magnetic field.

All these problems were alleviated in the present experiment by fixing the position of the electron spectrometer at 90° from the beam direction and then polarizing and rotating the plane of polarization of the beam. 10 This methe c used in 1931 by Chaffee ${ }^{1}$ using a transmission polarizer in the $2200 \AA$ spectral region to determine the angular distribution of the photoelectrons ejected from potassium. However, no transmission polarizers exist for radiation below $1200 \stackrel{0}{\mathrm{~A}}$. Thus, a reflection type polarizer similar to that described by Horton, et al. ${ }^{11}$ was used to polarize $584 \AA$ A radiation from a helium d.c. discharge lanp. This type of polarizer, however, produces partially plane polarized light. Provided the degree of polarization is known it is possible to determine the angular distribution as shown below.

It has been shown theoretically 12,13 that for dipole transitions the number of electrons N ejected per unit solid angle in a specific direction by plane polarized radiation is given by

$$
\begin{equation*}
N \propto \frac{\sigma}{4 \pi}\left\{1+\beta P_{2}(\cos \theta)\right\}, \tag{1}
\end{equation*}
$$

where σ is the photoionization cross sec;ion, β is an asymnetry parameter that can take on values ranging from -1 to $+2, \theta$ is the angle between the electric vector and the electron directir,i, and $P_{2}(\cos \theta)=3 / 2 \cos ^{2} \theta-1 / 2$. Equation. (1) has been generalized ${ }^{14,15}$ to include the case of partially polarized or elliptically polarized radiation and takes the form

$$
\begin{equation*}
N \propto \frac{\sigma}{4 \pi}\left\{Y+1 / 2 \beta\left\{\frac{3}{g+1}\left(g \cos ^{2} \theta x+\cos ^{2} \theta_{y}\right)-1\right\}\right\} \tag{2}
\end{equation*}
$$

where g is defined by the ratio $I_{x} / I_{y} ; I_{x}$ is the intensity of the radiation vibrating along the x axis and I_{y} is the intensity vibrating along the y axis. The degree of polarization P is related to g by the equation $P=(g-1) /(g+1)$. The angles θ_{x} and θ_{y} refer to the direction of the photoelectron with respect to the x and y axer, respectively, as shown in Fig. 1. Either the x or y axis must be oriented parallel to the direction of maximum polarization. In the present experiment $\theta_{y}=90-\theta_{x}$ and $\theta_{z}=90^{\circ}$. Thus, by measuring N at two different angles θ_{x} and knowing g, the asymuletry parameter β can be found. The angle θ_{x} was varied by rotating the polarizer.

The polarizer consists of three mirrors arranged so that the photon beam enters and exits on the same axis as shown in Fig. 2. A computer study, using known optical constants and Fresnel's equations, ${ }^{16}$ was made ti calculate the degree of poiarizations at 584 A , produced by various reflective materials and as a function of angle of incidence. The materials included silver, gold, osmium, glass, aluminum oxide, and platinum. Gold provided the best compromise between transmission and degree of polarization at the angles shown in Fig. 2.

The polarizer was first constructed using glass microscope slides coated with gold. However, because of scattering from the uneven surfaces of the slicies, they were replaced by $1 / 4$ wave optical flats with a research grade optical polish. A transmission of 10% was measured with a $1 / 2 \mathrm{M}$ Seya monochromator. The degree of polarization waṣ measured with a vacuum uv polarization analyzer ${ }^{17}$ based on the 45° reflectance technique of Raisinovitch et al. ${ }^{18}$ A value of 84% was obtained. These volues were each within a few percent of the values predicted using the known optical constants for gold at 584 A , namely, $n=1.07$ and $k=0.35$. The plane of polarization was changed by rotating the polarizer about its axis. A laser was used in the extensive alignment procedure to insure that there was bio deviation of the photon beam during rotation.

A cylindrical mirror electron energy analyzer was used with the photon beam incident at right angles to the axis of the analyzer. The entrance slit to the analyzer was masked so that only a 6^{0} solid angle was viewed at 90° from the beam direction. The detector was a "Spiraltron" electron multiplier.

In order to eliminate errors caused by target gas pressure fluctuations or lamp intensity variations, the data were taken using multiscan techniques and with a multichannel analyzer. Data were taken for only two orientations of the polarizer because this provided better statistical results than curve fitting techniques. ${ }^{19}$ However, initially data were taken as a function of angle to test for symmetry. The two positions were such that electrons were sampled in the direction of polarization and perpendicular to it.

The polarizer was set in one position while the energy analyzer scanned over one photoelectron energy peak in approximately two minutes.

This information was stored in one block of 123 channels in the multiscalar. The polarizer was then rotated by an electric motor to the other position. The energy analyzer scanned the same energy peak. This information was stored in the next 128 channels of the multiscalar. The motor then rotated the polarizer to the first position and the whole sequence was repeated. The motor drive was interfaced with the multiscalar so that the entire procedure was automatic. The date were transferred to punched paper tape and then directly to a computer. The computer integrated the area under the electron energy peaks. The ratio of these areas for the two polarizer orientations and the known degree of polarization were used with Eq. (2) to deternine the asynmetry parameter.

The degree of polarization decreased slowly over a period of about one week due to contamination of the mirrors by pump oil and exposure to uv radiation. Consequently the degee of polarization was measured for every đấa run.

RESULTS

The angular asymmetry parameters for $\mathrm{Ar}, \mathrm{Xe}, \mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{CO}, \mathrm{CO}_{2}$, and NH_{3} are listed in table 1. The data were taken with an energy resolution of 50 meV . In most cases the β-values are for specific vibrational levels as indicated. Where more than one vibrational level is given, the β-value was found to be the same for each level indicated: if no vibrational level is given, the β-value represerts the average value taken over all the levels of the state.

Argon was used as a standard to insure the proper working of the apparatus. A value of $\beta=0.95+0.02$ was obtained. This compares favorably
with other literature values, some of which are given in table 1. No corrections are made to the data other than subtracting out any background of scattered electrons, which in the case of argon was negligible. The fact that the system consistently reproduced the argon β-value through several realignments and for a variety of values of the degree of polarization gives confidence that the system is working (P varied from 65 to 84%). Where other data exist for comparison the overall agreement is good. We verify the anomolous behavior between the $v=0$ and $v=1$ vibrational levels of the ground electronic states of N_{2} and co originally observed by Carlson. ${ }^{3}$ For the O_{2}^{+}ground state Morgenstern et al. and Carlson disagree. Our results support the negative β-value found by Carlson. However, there is a major disagreement beiween our values and Carlson's for the B-state of CO^{\dagger}. This measurement has been repeated several times, yielding the same results. No other published values exist for comparison. In a similar vane we disagree with the β-value given by Morgenstern et al. for the B-state of O_{2}^{+}. In both cases the B-state electrons represent the lowest energy electrons (0 to 1.5 eV) and thus the most difficult to measure by more conventional methods. The present technique is ideally suited for low energy electrons where contact potentials or varying magnetic fields would tend to give false results. Thus, we have a high degree of confidence in our values. The error bars given in table 1 represent standard deviations.

ACKNOWLEDGEMENT

This work was supported by the National Aeronautics and Space Administration under Grant NGR 28-004-021.

REFERENCES

1. M. A. Chaffee, Phys. Rev., 37 (1931) 1233.
2. J. Berkowitz and H. Ehrhardt, Phys. Lett., č1 (1966) 531.
3. T. A. Carlson and A. E. Jonas, J. Chem. Phys., 55 (1971) 4913.
4. T. A. Carlson, G. E. McGuire, A. E. Jonas, K. L. Cheng, C. P. Anderson, C. C. Lu and B. P. Pullen, in D. A. Shirley (editor), Electron Spectroscopy (Prcc. Int. Conf. at Asilomar, Calif., 1971), North-Holland Publ. Co., Amsterdani, 1972, p. 207.
5. T. A. Carlson and G. E. McGuire, J. Electron Spectrosc, 1 (1972/73) 209.
6. T. A. Carlson, Chem. Phys. Lett., 9 (1971) 23.
7. R. Morgenstern, A. Niehaus and M. W. Ruf, Chem. Phys. Lett., 4 (1970) 635.
8. D. A. Vroom, A. R. Comeaux and J. William McGowan, Chem. Phys. Lett., 3 (1969) 476.
9. R. G. Houlgate, J. B. West, K. Codling and G. V. Marr, J. Phys. B: Atom. Molec. Phys., 7 (1974) L470.
10. W. H. Hancock and J. A. R. Samson, Bull. Am. Phys. Soc., 19 (1974) 1203.
11. V. G. Horton, E. T. Arakawa, R. N. Hanm and M. W. Williams, Applied Optics, 8 (1969) 667.
12. C. K. Yang, Phys. Rev., 74 (1948) 764.
13. J. Cooper and R. N. Zare, J. Chem. Phys., 48 (1968) 942.
14. J. A. R. Samson and J. L. Gardner, J.O.S.A., 62 (1972) 856.
15. J. A. R. Samson and A. E. Starace, J. Phys. B., 8 (1975) 1806.
16. J. A. R. Samson, Techniques of Vac. U. V. Spectrosc., John Wiley \& Sons, Inc., 1967, pp. 296-319.
17. J. A. R. Samson, to be published (1976).
18. K. Rabinovitch, L. R. Canfield and R. P. Madden, Applied Optics, 4 (1965) 1005.
19. Jan-Tsyu J. Huang, J. Wayne Rabalais aad Frank O. Ellison, J. Electron Spectrosc., 6 (1975) 85.
20. R. Morgenstern, A. Niehaus and M. W. Ruf in L. M. Branscomb et al. (editors), Electronic and Atomic Collisions (Abstracts VIIth int. Conf. at Amsterdan, The Netherlarids, July 1971) North-Holland Publ. Co., Amsterdam, 1971, p. 167.
21. A. Niehaus and M. W. Ruf, Z. Physik, 252 (1972) 84-94.
22. J. L. Dehmer, W. A. Chupka, J. Berkowitz and W. T. Jivery, Phys. Rev. A., 12 (1975) 1966.

FIGURE CAPTIONS

Figure 1. Efected electron direction in terms of $\theta_{x}, \theta_{y}, \theta_{z}$ relative to the photon direction and direction of polarization. The x axis z is the direction of maximum polarization.

Figure 2. Schematic diagram of the rotatable reflection type polarizer.

TABLE 1
ANGULAR DISTRIBUTION ASYMMETRY PARAMETER B FOR PHOTOELECTRONS EJECTED FROM VARIOUS GASES BY 584 \＆RADIATION

Gas	State	Present Work	Carlson ${ }^{\text {a }}$	Morgenstern ${ }^{\text {b }}$	Dehmer ${ }^{\text {c }}$
Ar	${ }^{2} \mathrm{P}_{1 / 2}, 3 / 2$	0．95士． 02	0．85士． 05	0．95士．02	$0.89 \pm .04$
Xe	${ }^{2} P_{3} / 2$	$1.78 \pm .04$	$1.45 \pm .05$	$1.71 \pm .02$	1．77 $\pm .05$
	${ }^{2} P_{1}$	1．64土．04	$1.35 \pm .05$	1．64土．06	$1.63 \pm .05$
N_{2}	$X^{2} \dot{\Sigma}_{g}^{+} v=0$	$0.68 \pm .05$	$0.5 \pm .1$	0．69 $\pm .03$	
	$v=1$	$1.5 \pm .1$	1.4	$1.4 \pm .03$	
	$A^{2} \Pi_{u} \quad v=0,1$	0．37土．05	$0.3 \pm .1$	0．43土． 04	
	$B^{2} \Sigma_{u}^{+}{ }_{v}=0$	$1.36 \pm .1$	$1.25 \pm .1$	$1.25 \pm .04$	
\mathbf{O}_{2}	$x^{2} \mathrm{~m}_{\mathrm{g}}^{+} \mathrm{v}=1,2$	$-0.27 \pm .05$	$-0.3 \pm .1$	$0.04 \pm .05$	
	$a^{4} \Pi_{u}$	． $39 \pm .1$	$0.4 \pm .1$	$0.55 \pm .07(v=3)$	
	$b^{4} \Sigma_{g}^{-}$	．57士． 1	$0.7 \pm .1$	$0.73 \pm .05(v=0)$	
	$B^{2} \Sigma_{g}^{-}$	$1.04 \pm .2$	－－－－	1．35士．07（v＝1）	

C0	$X^{2} \Sigma_{g}^{+} v=0$	$0.95 \pm .05$	$0.8 \pm .1$
$v=1$	$0.56 \pm .07$	0.4	
$A^{2} \Pi_{U} v=0,1$	$0.31 \pm .05$	$0.3 \pm .1(v=2)$	
$B^{2} \Sigma_{u}^{+}$	$0.28 \pm .05$	$1.0 \pm .2$	

$C O_{2} \quad X^{2} \Pi_{g} v=0,1$	$-0.14 \pm .05$	$-0.1 \pm .1$	
	$A^{2} \Pi_{u} v=0,1,2$	$0.80 \pm .05$	$0.8 \pm .1$
$B^{2} \Sigma_{u}^{+}$	$-0.65 \pm .05$	$-0.4 \pm .1$	
	$C^{2} \Sigma_{g}^{+}$	$1.15 \pm .05$	$1.3 \pm .2$

$\mathrm{NH}_{3}{ }^{2} \mathrm{~A}_{1} \quad 0.82 \pm .1$

[^0]
$$
\xrightarrow[\sim]{h v}
$$

[^0]: $a_{\text {From ref．}}$ 3，4， 5
 $b_{\text {From ref．} 20,21}$
 ${ }^{C}$ From ref． 22

