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SUMMARY

Results of a study towards the development of flutter modules applicable
to automated structural design of advanced aircraft configurations, such as a
supersonic transport, are presented. In this study automated structural
design is restricted to automated sizing of the elements of a given structural
model. It includes a flutter optimization procedure; i.e., a procedure for
arriving at a structure with minimum mass for satisfying flutter constraints.
Methods of solving the flutter equation and computing the generalized aero-
dynamic force coefficients in the repetitive analysis environment of a flutter
optimization procedure have been studied and recommended approaches are pre-
sented. Five approaches to flutter optimization are explained in detail and
compared. An approach to flutter optimization incorporating some of the
methods discussed is presented. Problems related to flutter optimization in
a realistic design environment are discussed and an integrated approach to
the entire flutter task is presented. Recommendations for further investiga-
tions are made. Results of numerical evaluations, applying the five methods
of flutter optimization to the same design task, are presented.
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modalized aerodynamics matrix
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basic aerodynamics influence coefficients (function of k
and Mach nunber) defined by equation (5.13)

amplitudes of successive cycles
arbitrary constant (equations (7.16), (8.1))
elements of a basic

ratio between mi and Pi : m. = C.P, ;

i i i
resizing column (equation (6.53))
reference chord

flutter determinant

viscous damping matrix

matrix relating control system displacements to structural
displacements

interpolation and differentiation matrix relating slopes at
downwash collocation points to displacements at structural
nodes (Section 5.3) '

interpolation matrix relating translations at downwash
collocation points to displacements at structural nodes
(Section 5.3)

equivalent airspeed

bending stiffness
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combination of modal displacement matrices (equation (5.14))
general modes of displacément

structural damping, 2%

torsional stiffness

interpolation matrix relating displacements at lumped aero-
dynamic load points to displacements at structural nodes
(Section 5.3)

transfer function of automatic control system (function of p)
column matrix of displacements at aerodynamic load points

constraint quantity (equation (6.43))

unmodalized aerodynamics matrix (function of k and Mach
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aerodynamic lifting pressure distribution mode
modal degrees of freedom (modal participation coefficients)
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flutter equation
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STUDY OF FLUTTER RELATED COMPUTATIONAL
PROCEDURES FOR MINIMUM WEIGHT STRUCTURAL
SIZING OF ADVANCED ATIRCRAFT
R. F. O'Connell, H. J. Hassig and N. A. Radovcich
Lockheed-California Company

Burbank, Californis

1. INTRODUCTION

1.1 General

One of the factors contributing to the profitability of an airplane is its
payload/range capability. Given certain safety and performance requirements,
there is a direct trade-off between structural weight and payload, and it is
the ideal of each airplane designer to reduce structural weight. Although the
ideal minimum weight design may be expensive to produce, overshadowing any
payload/range gains, it provides a good starting point for a practicable
design and a good basis for comparing different designs.

Structural weight minimization, of course, is not a new idea. It is one
of the airplane designer's most critical tasks. It now has come to the fore-
front as a result of two developments.

First, it has become evident to the structural design engineer that the
combination of finite element modeling, high speed computer capacity, and
mathematical techniques makes it practicable to do detailed structural
synthesis aimed at minimizing weight.

Second, the need for a comprehensive and detailed approach to structural
design optimization has significantly increased with the advent of the super-
sonic transport. This follows from the fact that for a supersonic transport
the return in terms of payload/range per pound of structural weight saved is
considerably larger than for a subsonic transport. For instance, a one per-
cent structural weight saving on a typical subsonic transport might result in
an increased payload capability of one to two percent; on an arrow wing super-
sonic transport, recently studied by the Lockheed-California Company, a one
percent structural weight saving resulted in a four percent increase in pay-
load capability for the design range.

The subject of this report is flutter optimization; i.e., structural
weight minimization with flutter constraints. The need for a systematic,
possibly automated, approach to flutter optimization also has increased sig-
nificantly. Subsonic transports, as they are known, and transonic transports,



as shown in artist's sketches, can be represented by simple, beam-type
structural models that are satisfactory for optimization with flutter con-
straints. Flutter optimization for such designs can be done, and has been
done, with available methods. The supersonic transports that are flying and
those being studied, however, all have 1lifting surfaces that cannot be repre-
sented satisfactorily by simple beam-type structural models. This fact alone
makes the task of flutter optimization an order of magnitude more complicated.

Although ad hoc approaches to flutter optimization still could lead to a
satisfactorily optimized supersonic design, refined methods that take full
advantage of the capabilities of the present computers, in regard to automation
as well as interaction with the engineer, become attractive and possibly
mandatory. This is especially true in view of the rapidly increasing capa-
bility for fast analysis and synthesis in the areas of structural modeling and
analysis, stress optimization, and performance analysis supported by improved
configuration control. Flutter optimization must keep abreast of these devel-
opments. A balanced improvement in capability in all disciplines will make
possible, within a practicable time span, true in-depth comparisons between a
large number of candidate desiguns.

The preceding paragraphs present generally well known justification for
a concerted effort in improving methods of structural optimization with flut-
ter constraints. Work performed during the subject study is part of such an

effort.

Work towards the goal of a generally available automated or semi-automated
structural optimization system, that includes items such as optimization for
stress, flutter and controllability, multiple flutter speed and modal damping
constraints, is still in a state of development. The present study has con-
tributed to this goal in the following areas. Methods of computing the aero-
dynamics parameters to be used in a flutter optimization program have been
compared in detail with respect to characteristics which are independent of a
specific aerodynamics theory. A method for efficiently and reliably solving
the flutter equation for roots of interest in a flutter optimization module
has been developed. Five methods of flutter optimization have been compared
in detail and the mechanics of the optimization process have been examined;
numerical examples with all five methods have been generated for the same
aircraft design. Recommendations for further study and for the design of a
flutter optimization module have been made.

The principal results of this study are presented in this report. Back-
ground discussions and supporting material are presented in a companion report

(Reference 1).



1.2 Objectives of Study

The objectives of this study are:

1. To survey and evaluate methods of representing unsteady aerodynamics
parameters and make recommendations for a general, accurate and efficient
formulation that minimizes the computational effort during the optimiza-
tion process. The assessment of aerodynamics theories, however, falls
outside the scope of this study.

2. To survey and evaluate methods of determining the flutter characteristics
and make recommendations for a method that is reliable and efficient, and
suitable for the optimization process.

3. To evaluate and compare a number of methods of structural optimization
with flutter constraints and make recommendations for Ifurther evaluation
in a realistic design environment.

L. To make preliminary recommendations for the design of a flutter
optimization module.

2. OVERVIEW OF THE FLUTTER OPTIMIZATION TASK

Structural optimization with flutter constraints is both an extension of
the structural optimization task related to strength and an extension of the
flutter analysis task. Being an extension of two tasks that traditionally are
considered to belong to different disciplines, flutter optimization must take
into account requirements of both disciplines. Structural optimization
requires that a structural model is used that incorporates sufficient struc-
tural detail, in terms of distribution of structural material, to aid the
designer in defining hardware. Similarly the flutter analysis that is incor-
porated in the optimization process must be of an accuracy comparable to that
used outside of flutter optimization. The latter refers to methods of
representing the unsteady aerodynamics and methods of solving the flutter
equation, since the more detailed a structural model is, the more accurate,
from an idealized theoretical point of view, is the flutter analysis. From a
practical point of vieéw, structural sizing for strength requires more detail
in the structural model than is required for adeguate prediction of flutter
characteristics.

Thus, the flutter optimization task starts with the definition of the
structural model. This is one of the most crucial aspects of flutter optimiza-
tioh, and it involves a serious conflict between simplicity of approach and
computer cost. Present computer technology, or methods of structural analysis,
or both,may not permit a structural model with sufficient detail for a stress
analysis to be used in flutter optimization; computer cost could be exorbitant
due to the repetition of operations during the design process. Section 7.1



deals with this problem in more detail. Suffice here that associated with the
choice of structural model is the selection of a practicable number of degrees
of freedom for the vibration analysis that has to provide the modes for the
modal reduction of the flutter equation, which is usually required to limit
computer cost. If the degrees of freedom for the vibration analysis are a
subset of the degrees of freedom of the structural model, complications arise
if a nonlinear relationship between the stiffness matrix and the design
variables results (see Section 7.1).

Without serious restriction on scope or accuracy of the analysis the mass
matrix can be assumed to be a linear function of design variables. It is the
sum of a basic matrix and as many elementary matrices as there are design
variables associated with a mass change, each proportional to a design
variable.

During the flutter optimization there is repeated need for determining
roots of the flutter equation, each time that a structure that has undergone
a resizing since the previous solution of the flutter equation. For many, if
not all, of these solutions a remodalization is necessary based on vibration
modes of the current configuration. It is found that for the optimization
process to provide reliable, converged results, consistent with the capability
of the structural model, more modal degrees of freedom are required in the
flutter equation than for a routine flutter analysis (see Section 4).

Incorporation of state-of-the-art level aerodynamics in the flutter
optimization process does not provide significant problems beyond those
encountered in the usual flutter analysis. For a given external geometry the
basic aerodynamics formulation is invariant with structural changes. The
repetitive formation of generalized aerodynamic forces for successive, updated
modalization of the flutter equation is simple and relatively inexpensive.

In view of the cbjectives and the scope of the present program, this
report devotes major sections to important aspects of the flutter optimization
procedure. Section 3 deals with the solution of the flutter equation. Sec-
tion L4 deals with modalization. Section 5 presents part of considerable work
devoted to the aerodynamics, with the remainder being presented in Reference 1.
In Section 6, methods of optimization for flutter, evaluated during this study,
are discussed. Numerical results obtained by applying these methods to a
simplified optimization task are presented in Appendix A.

Against the background provided by these sections, Section T presents
discussions of several additional problems and considerations that need to be
studied in order to choose a rational approach for formulating a flutter
optimization module.

In Section 8, computational aspects of the complete flutter task are
delineated. This task includes flutter analysis as well as structural syn-
thesis of a design that satisfies the flutter requirements.

Section 9 summarizes the conclusions of the present study and presents
recommendations for future work.



3. SOLUTION OF THE FLUTTER EQUATION

3.1 The Generalized Flutter Equation

When using the k method the flutter equation can be written as:

f e - o] (s)o0

One of several possible methods of soiving this equation is to determine the
1
characteristic value A =-};€§L for several values of the reduced frequency

'

k= keeping all other quantities in the equation constant (Reference 2).

V E]
In the p-k method the flutter equation is
V2 2 1 2
5[] o+ s 1] - 207 [ac0] {a}- (3.2)
c
and solutions p=(Y+i)k are sought for selected combinations of values of
V and p (Reference 3). The p-k method formulation is convenient for the

inclusion of viscous damping and control system transfer functions. This is
accomplished by writing:

[_Vé [M] p2 +% [D] p + (1+ig) [K] -—]Z;pV2[A(ik)] —EHj(p)[Dj] {q} =0 (3.3)

where Hj(p), Jj=1,2.., represents transfer functions of the control system
and [Dj] relates the control system displacements to the structural dis-
" placements; [D] is a viscous damping matrix (Reference 3).

A further generalization of the flutter equation can be made by making
the stiffness matrix and the inertia matrix functions of design variables

m. which is the standard procedure for structural optimization. In addi-
tion, other gquantities, such as [?] s [Dj] , as well as transfer function

coefficients in Hj(p), may be made functions of design variables.



Equation (3.3) implies that the determinant of the square matrix on the
left hand side is zero and thus, in a very general form, the characteristic
equation corresponding to the flutter equation can be written as:

5.[(Y+i)k,g,v,p,mi} = 0; (3.4)

D is called the flutter determinant. For arbitrary values of the variables
it has a complex value. Thus equation (3.4) represents two equations and, in
principle, can be solved for two unknowns for given values of the other
variables.

Letting 7Y=0 and solving for g and V corresponds to the traditional
k method of solving the flutter equation. Solving for Y and k corres-—
ponds to the p~k method. Letting V=0 and solving for k and V leads
directly to the flutter speed for a given value of the structural damping, g.

Solving equation (3.4) for k and one of the design variables, assuming
all other variables fixed, is a new use of the flutter equation. It is called
Incremented Flutter Analysis (References 4 and 1), applications of which are
included in Sections 6.2.3 and 6.6.

3.2 Types of Solution Sought

A flutter analysis in the traditional sense is the determination of the
flutter characteristics of a given structure. It includes the calculation
of any flutter speed that may occur at speeds up to or somewhat beyond a
speed corresponding to the required flutter margin. It also includes the
gaining of insight in the variation of fregquency and aerodynamic damping at
speeds below the flutter speed for several in-flight vibration modes of
interest. Consequently,sufficient modal solutions are obtained for the con-
struction of f-g~V diagrams (Figure 3-1) for several flight conditions.

A procedure for structural optimization with flutter constraints will
most likely start with such a survey-type analysis. However, during the
process of repeated resizing, leading to the optimum design, there is no need
for determining complete f-g-V diagrams at each resizing; only point solu-
tions are required. Point solutions found in the literature are of two types:
1) directly solving for the flutter speed (the combination k,V in equa-
tion (3.4)), and 2) determining the value of one design variable necessary to

satisfy a given flutter speed constraint (the combination k, m'j in equa-

tion (3.4) where mj is one of the design variables mi).
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One additional type of point solution has been formulated during this
contract, resulting in the determination of the minimum damping point of an
in-flight mode. Such a point, if it exists, is of interest if the minimum
damping point lies within the speed range considered. The associated mode is
called a hump mode (See Figure 3-1). This point solution requires the solution
of equation (3.4) and the equation

Y=o | | (3.5)

0409
<

for the three unknowns k, ¥ and V. Details of the formulation are given in
Section 3.L4. No numerical evaluation of the method has been made thus far.

The following section deals mainly with methods of obtaining point
solutions for the flutter speed. It should be kept in mind that when such
solutions are needed in an optimization program a solution for a similar
structural configuration is usually avallable as a first approximation to the
required solution.

3.3 Methods of Obtaining Point Solutions

Several methods for obtaining point solutions have been considered and
evaluated to various depths. Their apparent efficiency, in terms of computa-
tional effort, is an important part of the evaluation. However, the degree
of certainty with which a desired solution can be found is even more
important.

The latter consideration refers to convergence problems and to problems.
associated with relating modal solutions at one value of V or k +to modal
solutions at another value of V or k.

The results of evaluations of the following methods are presented:

Bhatia method (Reference 5)

Phoa - Boeing method (Reference 6)

Lockheed's Program 165 (p-k method, Reference 3)
Desmarais-Bennett method (Reference 7)

Two Dimensional Regula Falsi and Newton Raphson (Reference 8)

3.3.1 Bhatia Method - In Reference 5 Bhatia presents a method of solving
directly for the flutter speed. Numerical evaluations of the method have
been performed using data from the arrow wing study that Lockheed has con-
ducted under contract NAS1-12288.

In Bhatia's method, which is based on the k-method approach, the struc-
tural damping, g, required for neutral stability is computed as a function

of 1/k =?;¥- by means of a Laguerre type extrapolation. It is an iterative



method that is initiated by choosing a trial value 1/k and computing the
associated value of g and its first and second derivative with respect to
1/k. The Laguerre extrapolation leads to a first approximation of the value
of 1/k for which g=0.. The process is repeated for this new value of 1/k
until convergence is reached.

The method as presently programmed uses only aerodynamic matrices at
preselected values of k, requiring a large number of preselected k values.
The method also requires inputting the first and second derivatives of all
serodynamics matrices with réspect to 1/k. The method could be improved by
using interpolation with respect to k to determine the aerodynamics matrix
and its derivatives at arbitrary values of k  from matrices given at a
moderate number of preselected k values. Care must be taken that the
interpolated results are defined uniquely over the range of k of interest
for a particular solution to prevent the solution from oscillating between
two values ("hunting").

Numerical evaluations were performed as part of this study. Difficul-
ties were encountered in tracking the proper mode and in converging on the
lower flutter speed of a hump mode. There is uncertainty whether the program
can be modified such that the proper modal solution is always obtained.

At each step in the iteration towards the solution a characteristic
value problem must be solved. This may prove to be costly in terms of CPU
time.

3.3.2 Phoa Method - In Reference 6, Phoa presents a formulation of the
flutter equation from a controls theory point of view. Although it is
recognized that controls theory could prove to be of assistance in inter-
preting the flutter phenomenon, in the case of Reference 6 it leads to an
equation that is essentially the same as equation (3.4). Phoa's method, based
on the k-method approach, is in use at the Boeing Company. Discussions with
Boeing personnel indicate that in the actual application the equation

{p(w,v). -1} = D(w,V) = -1 1is solved for V and w.

The solution is accomplished in two steps. Constant velocity lines in
the complex plane representing D(w,V) are intersected with the real axis.
The values of the real parts at the intersections, as a function of the
velocity, are used to determine an estimate of the velocity for which the
real part of D(w,V) equals =~1. In an iterative process the accuracy of
the solution is improved.

In numerical evaluation of this approach it was shown that the constant
velocity lines may have two intersections with the real D(w,V) axis; this
can be a source of problems (Figure 3-2).

The method is a sequence of two interpolations requiring many determinant
evaluations. It is expected that very few, possibly not more than two or
three, steps in the iteration process are required.
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3.3.3 Lockheed Program 165 -~ Program 165 of Lockheed's Flutter and Matrix
Algebra System (FAMAS) is based on the p-k method approach. It is designed
to generate many point solutions, associated with in-flight modes, so that com-
plete f—g—V diagrams can be constructed. The program solves equetion (3,3)
for p=(Y+i)k given an initial trial solution. For determining the flutter
speed, Y 1is evaluated at several values of the velocity. Flutter occurs at
the speed for which 7=0. '

The program has been used successfully in nonautomated numerical evalua-
tions during this contract. Automation should be relatively simple and could
be based on the following steps. At the estimated flutter speed an estimated
frequency is used to start the process. Both are obtained from the solution
for a previous structural configuration. Determinant iteration (see
Reference 3) will lead to the actual value of Y at the estimated flutter
speed. At a slightly perturbed velocity, using the damping and frequency
already found as trials, VY 1is again evaluated. The two pairs of V and ¥
values thus found are used to initiate a One-Dimensional Regula Falsi pro-
cedure that leads to a value of V for which 7VY=0. The approach is expected
to be quite efficient, except for the problem of assuring that subsequent

solutions belong to the same in-flight mode.

3.3.4 Desmarais-Bennett Method - Reference T presents a fast and economical
automated procedure to generate f-g-V diagrams, including the proper con-
nection of point solutions of the flutter equation. The procedure is based
on the k-method approach.

Reference T shows that the method is quite powerful in properly con-
necting point solutions. The sample cases in Reference T, however, are
obtained by partial deflation of the flutter determinant after each modal
solution is found. Thus using this method would require solving for more
roots than are of interest if only the flutter speed is required. Or,
alternatively, if only the root of interest is determined, there is uncer-
tainty whether the method will be as successful in following modal solutions
as shown in Reference T.

Application of this method to directly solving for the flutter speed
could be programmed according to the following procedure.

The known solution for a base configuration is considered a reasonable
estimate of the solution for a slightly modified configuration. Two k
values, closely spaced according to the Desmarais-Bennett approach, are
chosen such that flutter is expected to occur at a lower k <value. Modal
solutions at these two k +values are obtained. The repeated sequence of
linear extrapolation to the next k value and the Laguerre iteration
described in Reference T is performed for the mode that is expected to give
the flutter crossing and one or more additional modes on each side of this

"mode in the frequency spectrum. The additional modes are included to assure
that a flutter crossing is obtained, in the event that an error in judgment
is made in selecting the prime candidate mode for a flutter crossing.
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The preceding conceptual evaluation defines the problems that need to be
resolved when adjusting the Desmarais—Bennett method for use in a flutter
optimization program and no numerical evaluation was considered necessary.

3.3.5 Two-Dimensional Regula Falsi - The concept of solving the two equations
implied by equation (3.k4) for two unknowns is not new. However, using this
concept for directly solving the flutter equation for the flutter speed is
relatively new. The need for such a solution arose with the advent of struc-
tural optimization with flutter speed constraints and, to the knowledge of
the present authors, the first published record of solving dlrectly for the
flutter speed is Reference 9.

In that Reference the Newton-Raphson approach is used in two dimensions
to determine flutter speed and, as a byproduct, flutter frequency. The
Newton-Raphson approach is based on determining the value of a function and
its derivatives for an initial set of trial values and extrapolating linearly
to an estimate of the solution. In Reference 9, the derivatives are deter-~
mined by a finite difference technigque. The Two~Dimensional Regula Falsi
approach uses three trial sets of the unknowns to construct two planes. The
common point between those planes and the plane D(w,V)=0 defines the next
estimate of the solution.

Table 3-1 compares the essential characteristic of the two methods. In
the Newton-Raphson method with analytical evaluation of the derivatives, the
formation of two derivative matrices is time consuming. In &ll1 methods the
determinant evaluations are the most time consuming. Other operations,
related to solving two linear eguations with two unknowns, are trivial. Pro-
visions to assure convergence are comparable for the two methods. Numerical
experience with the Two-Dimensional Regula Falsi has indicated that problems
with convergence on a solution are more easily solved than with the Newton-
Raphson approach. It is concluded that the Two-Dimensional Regula Falsi
approach is the more preferable one of the two.

It should be noted that both methods can be used for combinations of
unknowns other than frequency and flutter speed. The Two-Dimensional Regula
Falsi has been used successfully for solving for the value of one design
variable, required to meet a given flutter speed, and the associated frequency.
The method dces not require the computation of derivatives. No interpolation
or extrapolation of converged solutions is required, unless nonconvergence is
encountered and an intermediate configuration is analyzed to assist in obtain-
ing a better initial estimate of the solution for the configuration for which
the original nonconvergence occurred. Finally, the solution sought is a
combination of real values of the unknowns, rather than a series of complex
modal solutions associated with in-flight modes. The equivalent of converging
on the wrong mode, as may occur in seeking modal solutions, usually leads to
nonconvergence, and a recovery procedure that 1s described in Reference 1.
Thus mode switching to a non-~flutter mode does not occur or, at worst , leads
to nonconvergence. The chance of converging on the wrong flutter speed and
frequency would seem to be quite small in view of the relatively small number
of solutions within the region of interest of the unknowns. It has never
occurred in the many test cases that have been run during this study.

12



TABLE 3-1.

COMPARISON OF NEWTON-RAPHSON METHOD AND

TWO-DIMENSIONAL REGULA FALSI METHOD

Newton-Raphson o
Analytical Finite Dimensional
Operation Derivatives | Differences |Regula PFalsi
Number of initial estimates 1 1 3
Interpolation of aerodynamics Yes Yes Yes
matrix required?
Derivative of aerodynamics Yes No No
matrix required?
Formation of derivative matrices Yes Trivial No
required?
Number of complex Value of 1 3 3
determinant First | determinant
evaluations per step
iterative step Derivative 2 0 0
Each Value of 1 3 1
fol- determinant
lowing
step Derivative 2 0 0

3.3.6 Conclusion - On the basis of overall engineering evaluation, supported
by numerical experience with all methods except the Desmarais~Bennett and
Newton-Raphson approach, the Two-Dimensional Regula Falsi approach was con-
sidered most promising and chosen for further development (see Reference 1).

3.4 Minimum Damping in Hump Mode

Sufficient modal damping within the speed envelope can be assured by

requiring sufficient damping
required flutter speed or by
in so far as it occurs below

or larger than a given value.

To initiate exploration

minimum damping in a hump mode was formulated.

in all modes at "all" speeds below the minimum’
requiring that the minimum damping in each mode,
the minimum required flutter speed, is equal to

of the latter approach a method to determine the
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The point of minimum damping in the hump mode is defined by the condition

é;§==0, where 7Y defines the real part of the flutter root, p=(¥+i)k, in

terms of the reduced frequency k.
logarithmic increment: ’

The quantity 7 is a form of the’

a
- ._J:. _.Il_'".i .
_ Y = szn ] (3.6)

where an and a 41 are amplitudes of successive cycles.

An expression for Y

p~k method formulation of the flutter equation (equa~-
V:

oY is found as follows.

Consider the
tion (3.2)) and take the derivative with respect to

[0 57+ 2 2 5 32 - v ] - £ [wcaw] 3]}
c

c

+ [XZ—[M] p° + (1+ig) [K] - %Pvz [A(ik)]] {%} =0 (3.7)
c

Choose a velocity Vl for which g% is estimated to be equal to zero.

The solution of the flutter equation at Vl is: p = P> {q} = [ql} and the

characteristic vector of the transposed equation: r} = {rl . Substituting

this solution into equation (3.7) gives:
2

"27\:[; l.rl_l [M] {ql} P+ 2 Y?_I.rlJ [M] {ql} b, g

c

- lel-rlJ [A(ik)] {ql} +-;-le2 I_rlJ [A'(ikl)] {ql}% =0 (3.8)

t{s = e =
where A (lkl) 91 A( lk) evaluated at k kl.

With p = (Y+i)k:
(3.9)

9p _ 9Y .y 9k
Vo oav kit () 5y

1k



. Substituting equation (3.9) into equation (3.8) leads to a complex equa-

tion, and thus two equations in the two unknowns k4 and 9k from which %)
ov oV av 1

can be determined..

The process can be repeated for V2, leading to (%%) . A one-
. 2

dimensional Regula Falsi approach will lead to the value of V for which

oY _

5V 0.

In the above approach two characteristic value problems must be solved

. 9
for determining the first iterated value of V for 5%-= 0. Each following

step requires solution of one characteristic value problem.

It should be noted that damping versus speed curves may be rather flat
and for practical purposes a converged value of Y may not define a converged
value of V. This causes no problem since the most likely application of
these procedures is in connection with an inequality constraint such as:

Y (3.10)

hump top Vmax allowed

Determining the minimum damping in a hump mode can re combined with
solving for the value of a design variable satisfying the constraint:

(3.11)

<l

hump top - ymax allowed =

For V = vy and Y =Y, equation (3.7) is solved for k and the value

of the design variable m,. Then equations (3.9) and (3.8) are used to compute

9y
v

is initiated by repeating the process for another chosen value V =V

as before. In general N4 # 0. and a one-dimensional Regula Falsi process

ov

x
Numerical evaluation of the approaches outlined could not be accomplished
within the scope of this study.
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3.5 Recommendation

The two-dimensional Regula Falsi procedure is recommended for inclusion
in the Flutter Optimization Module for providing point solutions of the
flutter equation.. The procedure is more direct than any of the other pro-
cedures considered. It aims at roots of the flutter equations, either flutter
speed and frequency or design variable and frequency, of which for every
flight condition there are considerably fewer present than there are in-flight
modes represented in the problem formulation. As a result, convergence on the
wrong root would seem to be less likely than when modal solutions are sought.
That the same procedure can be used for solving for different pairs of
unknowns is considered an added advantage. In addition, it is equally appli-
cable to the p-, the k- and the p-k method of formulating the flutter
equation. A preliminary program is available that has shown good convergence
behavior under a wide variety of input data. '

Since it seems likely that the capability of directly solving for the

point for which Y - 0 will be a factor in developing methods of flutter

oV

optimization, numerical test cases should be conducted to evaluate the methods
related to determining the minimum damping in the hump mode. The results may
influence the development of methods of optimization that take into account
damping constraints. '

4. MODALIZATION

4.1 General

Modalization is the reduction of the number of degrees of freedom by
establishing modes of displacement in which the original degrees of freedom
(usually point displacements) have a fixed relation to each other.

Let {z(l)} define a relation between the discrete structural displace-

ments z. The arbitrary column matrix of displacements {z} can then be

approximated by linear combination of several linearly independent columns

{Z(i)_} :
()= [} . )] 0o
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or in short notation:
{z} = [zHa} | (4.2)
The modalized flutter equation is:

[E]T %Z—[M] p° + (1+ig)[¥] - 1/2pv®[a(1x)] [E]{q} =0 (4.3)

“'Modalization is desirable whenever the total number of initial degrees of
freedom is sc large that solving the unmodalized equation becomes uneconomical,
and is necessary if the number of initial degrees of freedom exceeds the
capacity of the available computer program to solve the original characteris-
tic value problem. Since, in general, the flutter equation is solved more
frequently than the vibration equation and, in addition, the flutter equation
must admit complex numbers, modalization is usually associated with the
flutter equation. However, when using all the structural displacements of a
detailed finite element structural model as degrees of freedom, modalization
may be desirable or necessary for the vibration analysis as well.

In any discussion of modalization, the type of modes and the number of
modes to be used must be considered. When used in an optimization procedure,
the question of "updating" must be considered. Updating in this context
means the adjustment of the modes after resizing the structural elements in
the course of the optimization procedure. These three aspects of modalization
will be discussed separately in the following sections.

4.2 Types of Modes

Before the advent of the high-speed computer, modalization (e.g.,
Rayleigh~Ritz method) was required even for vibration analyses. Relatively
few and simple modes were used. With the increasing capacity of computers,
the need for modalizing the vibration equation has all but disappeared. Thus,
present practice is to determine natural vibration modes of the entire airplane
from an unmodalized vibration equation and to use a certain number of modes,
associated with the lower range of natural frequencies, to reduce the order of
the flutter equation. For special investigations, such as the inclusion of
actual control-surface-actuator impedances, or the entire automatic control
system, additional control surface modes may be necessary.

In several instances in the literature (e.g., Reference 10), the use of

component modes has been described. Component modes define the relations
between discrete displacements of airplane components such as the wing or
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fuselage, and are obtained by a vibration analysis in which only displacements
of a particular component are used as degrees of freedom. Complications arise
when the connections between components involve many structural displacements.
Reference 11 shows, with a simple beam as an example, that the unjudicious

use of component modes can give inaccurate results for even the lowest fre-
quency of the entire body. The use of component modes is only recommended

for the determination of natural vibration modes of the complete vehicle,

and then only if it is necessary to reduce the order of the vibration

equations.

Analytical modes, such as defined by polynomials and modes corresponding
to static deflections, would obviate the need for repetitive vibration analyses
during the optimization process if they are used as fixed modes. However,
usually a considerably larger number of such modes is required, for the same
accuracy of the flutter solution, than when vibration modes are used. No
advantages off-setting that disadvantage have been encountered.

Specifically, analytical modes have been suggested for efficient genera-
tion of generalized aerodynamic force coefficients, as discussed in Section 5.
The use of analytical modes may permit the analytical integration of the
product of deflection and pressure modes. It makes it possible to compute
invariant generalized aerodynamic force coefficients that can be combined
linearly to form generalized aerodynamic forces for any arbitrary mode. To
take advantage of this feature, however, the number of analytical modes must
be large, since it must be adequate for a large number of stiffness and
inertia distributions. The analytical modes thus can serve as reference modes
that are the degrees of freedom for all vibration analyses from which a
smaller number of vibration modes is obtained for use in flutter calculations.
However, a large number of vibration modes of a basic configuration also can
be used as reference modes and one would expect that fewer reference modes
are needed if they are vitration modes than if they are analytical modes.

It was thought that using the (complex) flutter mode of a base configura-
tion might reduce the number of modes required for an adequate flutter solution
of a modified configuration. Some preliminary work during this study was
done, but was not carried far enough for any conclusion to be drawn.

4.3 Number of Modes

The number of modes used in the flutter equation is of importance for the
accuracy of the -computed flutter speed and flutter speed derivatives with
respect to design variables. At present there seems to be no readily available
general criterion for determining the number of modes needed for a desired
accuracy.

When trying to economize by restricting the number of modes to be used in
flutter calculations, there is a need to frequently check whether the number of
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modes is sufficient for accurate prediction of the flutter speed for arbitrary
configurations. Thus there is an advantage in using flutter analysis pro-
cedures that allow a large number of modes even if that raises the cost of
each individual flutter solution.

It has been pointed out in Reference 12, and it was confirmed by limited
numericel analysis during this study, that more modes are needed for accurately
computing flutter speed derivatives than for computing flutter speeds.

In deciding on the number of modes the computer environment may be an
important factor to be judged by the analyst in addition to the accuracy
required. Even the method of computer cost appropriation may influence the
decision.

4.4 Updating of Modes

As resizing steps accumulate during the optimization process, the vibra-
tion modes of the initial configuration become less suited to accurately
represent the revised structure. Ideally, therefore, after each resizing step
a new vibration analysis should determine new modes for modalizing the flutter
equation. The need for such updating is closely related to the number of '
modes used and the type and magnitude of structural changes incurred by the
resizing. The use of a large number of modes tends to reduce the need for
frequent updating. However, insufficient updating can cause the resizing
steps to follow a zig-zag path that, in the extreme, may not converge.

The physical explanation for this is the following. Let the optimization
procedure indicate a local stiffening as the optimum resizing for resizing
step J. Then the vibration modes for step j+1 would show a decrease in local
deformation. If the vibration modes for step j are used for step j+1l, the
excess local deformation tends to reinforce and overestimate the beneficial
effect of that local stiffening. Thus,in the absence of modal updating,
material tends to be added where the first resizing step, with the modes used,
indicates where it is most beneficial.

Modal updating must not be confused with making the modal matrix a func-
tion of the design variables. This aspect of modalizing was recently intro-
duced by Reference 12 and it is formulated in Reference 1. Determining each
resizing step under the assumption of constant modes (i.e., independent of the
design variables), but using updated modes at each resizing step, may under-
estimate the amount of material to be added locally for a certain amount of
stiffening in a particular step, but it is not expected to cause an erratic or
nonconvergent resizing path.

As important as the frequency of updating is on the efficiency of the

optimization procedure, the number of modes used to do the final flutter
analysis is more important from a general point of view since it provides the
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final check on the optimization procedure. In the opinion of the present
investigators, a check flutter analysis using a proven sufficient number of
vibration modes of the final configuration should conclude any optimization
process. If flutter requirements are not met, then a new optimization process
can be initiated and, probably, more modes or more frequent updating, or

both, should be used.

4.5 Recommendations

In view of experience during the present study, and as a result of
experience with flutter analyses of actual airplane designs, the present
investigators recommend the following:

1. A flutter module should provide the option of inputting arbitrary initial
modelizing matrices or of generating initial modalizing matrices based
on a vibration analysis of the initial configuration.

2. The number of vibration modes to be used for the flutter calculations
should be an input option.

3. The frequency of updating the vibration modes should be an input option.

k. An option should be included to provide the analyst with information to
determine whether his choice of number of modes and frequency of updating
has led to satisfactory flutter characteristics. B8Such information might
be provided by a vibration and flutter analysis of the final configura-
tion with more modes than were used throughout the resizing process,

a check on whether the optimality criteria for flutter are satisfied,
or other check procedures.

5. AERODYNAMICS

5.1 Introduction

One of the objectives of this study is to develop general, efficient and
accurate computational procedures for evaluating the unsteady aerodynamic
parameters necessary for use in a flutter optimization module, without, how-
ever, evaluating aerodynamics theories.

The procedure should be general. That is, it should be applicable to
all present, and hopefully future, theoretical formulations of unsteady
aerodynamics.

20



The procedure should be efficient. 1In the context of application in a
flutter optimization module, this implies a minimum of computational operations
required to recompute the generalized aerodynamic force coefficients each
time a modal updating occurs.

The procedure should be accurate. This implies it should be able to
accommodate the most sophisticated formulations of the aerodynamics, such
that the aerodynamics used in the flutter optimization module have the same
accuracy as the aerodynamics used in a flutter analysis module.

In the following section general background for a matrix formulation
that allows a procedure satisfying these requirements is presented. It is
followed by the definition of the formulation and a discussion of how the
dimensions of the matrices, the method of interpolation for modal deflections
and arbitrary values of the reduced frequency k, and the number of reduced
frequency intervals to be considered determine the sequence of operations
that is most efficient. Conclusions and recommendations regarding the aero-
dynamics subroutine in a flutter optimization module are presented.

5.2 General

The elements of the matrix of generalized aerodynamic force coefficients
are defired by:

ny = e pytey) ax ay (5.1)

Here pj(x,y) is the lifting pressure distribution associated with an

angle-of-attack distribution, aj(x,y), which is defined by:

of, (x,y)

aj(x,y) = %lsfj(x,y) + —-Jax— ay (5.2)

0 . .
and 5&- terms in the case of harnmonic

which expresses aJ as the sum of %%

motion with reduced frequency k in a mode defined by fj(x,y).

Expressed in the form of equation (5.1), the evaluation of Ai requires

J

evaluation of the surface integral each time new modes fi are used. In the
usual flutter investigation meny different sets of modes are used, corre-

sponding to different weight and stiffness distributions. In addition it is
expected that frequent remodalization is required in an optimization procedure.
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Thus it is advantageous to develop a method in which the generalized aerody-
namic force coefficients are formed from a mode-independent part that contains
as many of the numerical operations as possible, and a relatively simple
mode-dependent part.

Four different approaches are recognized in separating mode-independent
operations from mode-dependent operations. One method relies entirely on
analytical evaluation of the surface integral (Equation (5.1)). A second
method formulates a numerical evaluation of the surface integral leading,
effectively, to "lumped" aerodynamic forces at a grid of integration points.
In a third method pressure distribution modes are analytically integrated
over small areas and combined into elementary aerodynamic forces directly
comparable to, and treated as, inertial forces. The fourth method recognized
is based on a finite element approach, the basic formulation of which has no
reference to pressure distributions over the entire surface.

The first three methods are usually thought of as stemming from the
kernel function approach of Reference 13. In it the pressure distribution

pJ(x,y) is assumed to be a linear combination of pressure distribution modes
J .
p (x,y):
n n
Pj(x,y) = Eaj P (x,y) (5.3)

The pressure mode coefficients a? are determined from a boundary
condition requiring that the normalized induced velocity distribution result-

ing from the pressure distribution equals the angle-~of-attack distribution at
a set of downwash collocation points:

() - b o
Combining equations (5.3) and (5.4) leads to
b - B

where the elements of matrix [PKI] are the integrals of the product of
pressure distribution mode and an aerodynamic kernel.

The columns of [?n] are linearly independent pressure distribution

modes.
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5.2.1 Analytical Integration - When pj(x,y) is a linear combination of

pressure distribution modes pn(x,y), analytical modal functions fk(x,y)
. n

can be selected such that the integrals .[ffkﬂx,y) p (x,y) dx dy can be

evaluated analytically. Generalized aerodynamic force coefficients in terms
of modal coordinates can then be formed. The analytical modes can be used’
as arbitrary modes to modalize the flutter equation, or a mode-dependent
transformation between the analytical modes and the actual modes is used to
express the generalized aerodynamic force coefficients in terms of the actual

modal coordinates.

5.2.2 Numerical Integration of the Product of Displacement and Pressure -
Reference 12 defines an approach to separating mode-independent operations
from mode-dependent operations in which the surface integral of equation (5.1)
is evaluated numerically. A Gaussian integration procedure is suggested to

evaluate the integral. The pressure pj(x,y) and the deflection hi(x,y)

are evaluated at integration points defined by the Gaussian procedure.
Weighting factors in the form of a row matrix, LWF » make it possible to

write:
[/Li(x,y) p,(x,y) ax dy =~ [WFJ {hi pj} (5.6)

The right hand side of equation (5.6) can be written as:

\
WF| {h, p.t = [|WF]| |h, 1 = [hJ [WF]{} (5.7)
R R I | E R IR | R
The interchange of the row and diagonal matrix in the latter part of the
combined equation (5.7) makes it possible to separate the mode-dependent
operations from the mode-independent operations.
‘The column matrix {WF-pj} is a set of lumped aerodynamic forces. The

deflections hi can be expressed in terms of the deflections zs at the

structural nodes by the relation.

{nen} = [8] {=) (5.8)

A variation of this method is obtained if instead of the pressure
distribution the velocity potential distribution ¢3(x,y) due to an
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angle-of-attack distribution ai(x,y) is used. With the familiar linearized

relation between pressure and velocity potential:

p = -2(%-:’%+ ik‘P) (5.9)

equation (5.1) becomes:

o9
= =29 - _'j
Ay 21k/ffi @, ax dy 2[/1‘1 5= dx dy  (5.10)

It can be shown that with the help of numerical techniques equation (5;10).

can be written as:
Ay = I_hiJ [ik [WF] + [WFD]] {tpj} (5.11)

where [WFJ performs numerically the first integration in equation (5.10) and
[WFD]. performs the differentiation and integration in the second term of that
equation. Equation (5.11) is a triple matrix product, similar to equa-

tion (5.7). in which the center matrix is mode independent. For additional
details see Reference 1.

5.2.3 Numerical Integration of the Pressures - When pj(x,y) is a linear

combination of pressure distribution modes pn(x,y), the integral
J]rpn(x,y) dx dy can be evaluated over small areas, often referred to as
aerodynamic boxes, into which the surface is divided. By evaluating
Ifx p(x,y) dx dy and ffy pn(x,y) dx dy over the same areas, lumped

aerodynamic forces can be determined in magnitude and location. The modal
displacement at the location of each lumped force (i.e., for each aerodynamic

box and each pn(x,y)) can be expressed in terms of the structural degrees

of freedom. Thus the product of each lumped force and its modal displacement
can be formed. Summation over the aerodynamic boxes and the pressure dis-

tribution modes participating in pj(x,y) leads to Aij'

5.2.4 Finite Element Approach - In a finite element approach, lumped aerody-

namic forces corresponding to {WF-pj} (see equation (5.7)) are expressed
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directly in terms of angle—of-éttack distributions {aj} under appropriate

simplifying assumptions. The generalized aerodynamic force coefficients are
formed as in Section 5.2.2.

5.3 Basic Formulation

Whatever the approach, or whatéver aerodynamic theory is chesen, the
generalized aerodynamic force coefficients in terms of modal coordinates
can bé expressed as the product of five matrices of which only the first and
last are mode-dependent:

] - B B B

The matrix [AIC] = [AIC(k)], a function of the reduced frequency
==%?i and the Mach number, is the core of the aerodynamics and is independent
of mode shape. Its elements are basic aerodynamic influence coefficients

defining lumped aerodynamic forces {Za} at an aerodynamic force grid in

terms of the angles of attack at downwash collocation points:

{za} = [AIC(k)] {a} (5.13)

[W] = [W(k)] = [tDX] + ik[DZj] relates the angles of attack to the structural
displacements {z} . It is independent of mode shape.

The matrix [H]T is independent of k and of mode shape, and distributes
lumped aerodynemic forces and moments over the structural coordinates.

In the case that the approach of Section 5.2.1 is followed, [AIC] is

the matrix of generalized aerodynamic force coefficients in terms of the
analytical modes; [H] and [W are equated to

L -1 T
[F] = [fe(x,y)] [fﬂ(x,y)] [fg(x,y)] (5.1k4)
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where columns of [fé(x,y)] are the fixed analytical modes. The métrix .[F]

is independent of k and of the actual mode shapes used to reduce the order
of the flutter equation.

The operations performed by [W] and [#]T mey be included in [AIC].
Equation (5.12) then reduces to the product of three matrices.

The matrix [E] contains the modal columns in terms of the structural
deflections {z}.

. T . . ;-_...
The matrices [AIC], [H] and [W] are constant during an optimization
procedure., They will be used many times during the design process of an air-
plane with a given external configuration. It is therefore advantageous to
form these matrices in a special aerodynamics computer program.
Fach time during an optimization procedure that a remodalization takes

place, [éij] must be recomputed. Depending on the dimensions of the matrices

in equation (5.12),it may be more efficient to compute the triple matrix

[H_AW] - [H]T [axc] [w] (5.15)

in the aerodynamics program, or to perform one or both of the multiplications
[Z]T[#]T and [W][E] in the optimization program.

In the following sections factors are discussed that must be considered -
in determining which approach to numerically evaluating [Aij] according to

equation (5.12) is most efficient.

5.4 Factors Affecting The Efficiency of The Numerical Evaluation of The
Matrix of Generalized Aerodynamic Force Coefficients

It is believed that the formulation

[n,] = [ ] ] (5.16)
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which follows from combining equations (5.12) and (5.15), is widely used in
industry. Detailed study of the formulation of equation (5.12), which
directly follows from Reference 12, however, indicates that there are condi-

tions under which it is more efficient to compute [E]T[H]T and/or '[W][E]

in the fluttef optimization module. Extensive comparisons have been made
and are discussed in detail in Reference 1. In the following the factors
affecting these comparisons are discussed and major conclusions are presented.

5.4.1 Matrix Population - When métrices are sparsely populated, or populated
in well defined blocks, proper programming can take advantage of this. '

In equation (5.12) the matrices [W] and [H] may be sparsely populated.
These matrices perform an interpolation and |W] , in addition, determines
streamwise slopes at collocation points. In the case of simple interpolation
(linear or low degree polynomial), each row in [WJ expresses the angle of
attack at a downwash collocation point in terms of several surrounding struc-
tural coordinates. Similarly, each row of [H] expresses the deflection at
an integration point in terms of several surrounding structural coordinates.
Thus each row in [W] and [H} contains relatively few, say <20, nonzero
elements; for linear interpolation each row contains four nonzero elements.
In the case of interpolation by the surface spline method, the matrices W
and [H] "are fully populated, at least in the blocks that cover the aero-
dynamic surfaces.

Without specific stipulations, equation (5.16) implies that the order of
the matrix [HAW] equals the number of structural coordinates. There may
be a considerable number of structural coordinates that do not carry an aero-
dynamic load. They correspond to zero elements in [HAW]. It is not expected
that the fraction of nonzero elements will be high enough to justify treating
[HAW] es a sparse matrix. However, by proper ordering of the structural
coordinates, the nonzero elements in [HAW] may be concentrated in one or
more blocks. Then the aerodynamics program may form [HAW] based on aerody-
namic load carrying structural coordinates only. Correspondingly, the flutter
optimization module must eliminate structural coordinates that carry no aero-
dynamic load from the modalizing matrix [E]

5.4.2 Interpolation for Arbitrary k Value - It is generally accepted that
when the generalized aerodynamic force coefficients are determined for a

discrete set of values, k,, of the reduced freguency, [Aij(kﬂ)] inter-
polation is adequate for approximating [Aij(k)] at arbitrary values of k.

Two methods of interpolation are considered: cubic polynomial and cubic
spline,

27



can lead to "hunting" (oscillation between k +values in adjacent intervals).

Therefore it is recommended to define [A]!_J.(k)] by:

[Aij(k)] = ﬁZi)l@Q,z(k)[A;Lj(k!Z )] (5.20)

vhere [A:!L,j(kﬂ )] is the derivative of [Aij(k)] evaluated at k=k,. )
[A:;.j(kﬂ)] is an input to the interpolation subroutine. Thus the difference

between equations (5.19) and (5.20) is that in equation (5.19) differentiation
occurs after the polynomial fit and in equation (5.20) it occurs before the

polynomial fit. The formation of [Aij(kﬁ )] in the flutter optimization
module is based on equation (5.12), equation (5.16) or any variant that is
chosen as being most appropriate. The derivative [AIC'(k)] or [HAW '"(k)] is

needed and should be calculated outside the flutter optimization module by
any method that gives adequate accuracy.

To define [Ai,j(k)] and [A]!_J.(k)] in one k interval, four matrices
[AIC(kB )] and four matrices [AIC'(k!Z )] » or four of each of the matrices
[Haw(k)] and [HAW'(k)] must be input into the flutter optimization module.
1f [Azc(k)] and [AIC'(k)] are input, [Aij(k)] follows from equation (5.12).

t 1 3 -
[Aij(k)] is given by:

0] - B o] - TG )

If k moves to an adjacent interval only two of the input matrices, one
for the aerodynamics coefficients and one for their derivatives, need be
replaced.

It should be noted that, in effect, each k interval has its own

associated polynomials for the value of [Aij(k)] and its derivative. -

The cubic spline method also defines different cubic polynomials for
each k interval. The coefficients for the polynomial, however, are derived
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from matrices defined for all k values kg, £=1,2 . . . n. They follow
from the assumption of continuity of derivatives over the complete range of
k values. The resultant expression, e.g., for [AIC(k)], is:
[ucifd(k)] =[AICQO] + [AICBl](k-kB) + [Mcﬂz](k;kg)z * [AICBB](k-kB)B (5.22)
: !
The matrices [}Icﬂé] to [AIC£3] should be formed outside the flutter

optimization module.

Then:
[AfJ (k)] = [Axgo] +[Axgl] (k-kp) + [Axez] (k-k,)? + [AXB] (k-kp)3 +

[AZQO] ik + [Azn] 1k(kk)) + [AZB2] ik(k—kg)e + [Azm] ik(k—ke)3
where
[AXQO] = [Z]T[H]T[AIC Bo] [DX] ['z'] etc., (5.24)
[AZIZO] [z]T[H]T[AIceo] [DZ] [2] ete., | | (5.25)

Because of the implied continuity of the derivatives, it is proper to
differentiate equation (5.23) directly and thus no additional matrices for
the derivative need to be formed.

(5.23)

and

To define [Aij(k{] and [Aij(k)] in one k interval if the aerody-
namips input is [AICEO] to [AIC£3] requires eight coefficient matrices.
Switching k to any other interval requires replacing all eight matrices.

If the basic aerodynamics input is in the form of [HAWQO] to [HAWQB]’
then only four coefficient matrices are needed for each k interval.

5.4.3 Number of k Intervals - Let the basic aerodynamics input into the

flutter optimization module be [HAW(kg)]; the number of k intervals to be

considered is f£ .
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For the cubic polynomial,Lagrange's interpolation formula is considered
to be most efficient since it expresses [Aij(k{] directly in terms of its

value [Aij(kzil at discrete values kp , £=1, 2, 3, e
L £ '
[25;0)] = z 2(0) [, (xy)] (5.17)

where le(k) is defined by:

(k=k,.) (k-k.) (k-k,)
43 (k) 2 3 N

= (5.18)
1 (kl—kz) (kl—k (kl-k£7

3)
and cyclic substitution leads to <132,<133 and th.
The interpolation formula (5.17) is used only for the interval k< k<<k3.

For the interval k3< k<:kh the index { must be increased by one and for

kl<:k'<:k2 the index must be lowered by one.

Since most methods of optimization require the computation of the deriv-
ative of the aerodynamics matrix with respect to k, the formation of the

derivative, [Aij(k)]’ must be considered.

Differentiating equation (5.17) with respect to k 1leads to an
expression:

[Aij(k)] = élﬁlz(k)[Aij(ke)] (5.19)

that is based on the same aerodynamic matrices as equation (5.17). This
approach, however, combined with the re-indexing of kﬂ as k moves to an
adjacent interval, leads to jumps in the value of [Aij(ki] at all values

k=k,. Apart from considerations of accuracy, this is undesirable since it

£
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If cubic polynomial interpolation is used, (£+3) matrices [HAW(kQ)]
.

and [HAW'(kﬂ)] must be input and pre- and postmultiplied by [z] and
[EJ to form the .2(2+3) matrices [Aij(kﬂ)] and [Aij(kﬂ)] needed in
Lagrange's interpolation formula.

If cubic spline interpolation is used, u4f matrices EHAWQO] to [HAW?B]
must be input and pre- and postmultiplied by [?]T and [?] to form Ui
coefficient matrices [AZO] to [AB3]'

Under otherwise equal circumstances, polynomial interpolation is more
efficient if

2(8+3) < by or 2>3 (5.26)
This condition is wvalid for other sequences of operations to form
[Aij(k)] according to equation (5.12). However, there are also sequences

for which £ 2 4 or £ =5 is required for cubic polynomial interpolation
to be more efficient than cubic spline interpolation.

The number of intervals that should be used is difficult to predict.
If only one flutter constraint is active, k may stay within a rather small
range during the entire optimization process and that range may lie completely
within one k interval. Obviously only aerodynamic matrices applicable to
that one k interval need be computed. In general, however, several k
intervals are required.

5.4.4 Sequence of Multiplications - Defining one computational operation as

one multiplication and one addition, the numbers of such operations required

inside the flutter optimization module for different sequences of multiplica-
tions in equation (5.12) have been determined and compared.

The following options'have been considered; the numerals indicate the
sequence of multiplication.
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Hl:

HZ2:

H3:

Hh:

HS5:

0 R i e

GRS RIEY
1l 2
=
———
() - B ) )
1 =z
=
I ———

[AIC]~ [W] = [Aw] is computed outside the flutter optimization

module

] B [0 B )

() = - ] [¥] [2] (5.30)

[H]T [%IC] [w] = Eﬂwﬂ is computed outside the flutter module

ud - BT (] [

The number of computational operations is independent of sequence of

multiplications in H5.
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Formulas defining the number of numerical operations have been derived
and are reported in Reference 1. No option stands out as clearly superior
or inferior to all others, but some comments are offered in Section 5.5.

5.4.5 Form of Inputting the Angle-of-Attack Generating Matrix - In the pre-
vious section the options are defined as if one complex matrix [W(k)] was
input for each value of k. Suboptions of the options that require inputting
[W] can be obtained by considering the definition of [W].

[wx)] = [[DX] + ik[DZ]] (5.32)

Thus in options Hl, H2 and H4 an "a" and a "b" version can be recognized.

In the "a" version [W(k)] is input for several k values. In the "b"
version the real matrices [DX] and DZ] are input.

Whether option "a" is more efficient than option "b" depends on the
other factors. In the case of option Hl it seems that Hla is favored if
interpolation for deflections is held simple. Option Hlb is favored if
surface spline interpolation is used. If the "a" option is used and the
derivative of the aerodynamics matrix is needed, matrix [DZ] must be

input anywey.

5.5 Summary of Comparisons

Detailed comparison of the options H1 through H5 is reported in Refer-
ence 1. The following summarizes the comparisons.

5.5.1 Input Storage Requirements - If the number of k intervals to be used
is three or more, cubic polynomial interpolation for arbitrary values of k
requires less input storage than cubic spline interpolation for all options
H1 through HS.

5.5.2 Core Space - For options H5 and H3, cubic polynomial interpolation
for k requires two times as much core space as cubic spline interpolation.
For all other options, both methods of interpolation require the same core
space.

5.5.3 Read-In - Cubic polynomial interpolation for arbitrary k requires

less read-in than cubic spline interpolation as the value of k moves into
an adjacent interval.
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5.5.4 Number of Computational Operations - Cubic polynomial interpolation
for arbitrary values of k requires fewer computational operations than cubic
spline interpolation under the following conditions:

options H3 and H5: 1if the number of k intervals is more than three.

options H1l and Hi: if the number of k intervals is more than four.

option H2: if the number of k intervals is more than five.

Which of the options H1 through H5 is most efficient depends strongly on
the dimensions of the matrices. These, in turn, depend on the desired accu-
racy, and the methods used for integrating or lumping the aerodynamic pressures
and interpolating and differentiating the structural displacements.

Let M be the number of modes, N +the number of structural coordinates

before modalizing, D +the number of downwash collocation points and K the
number of integration points. Then equation (5.12) can be annotated as follows:

[as] = [ [ o] ] 2] (5-23)

., ¥,X X,J D,N W,
From this equation it can be seen that if X and D are small compared
with N it becomes advantageous to perform the multiplications [EJT° [H]T

and [W]' [E] in the flutter optimization module. If K and D are equal
to N or larger, then it becomes advantageous to form the product

[H]T [AIC] [W] outside the flutter module. The relationships defining

when an option is better than another are complicated. They are documented
in detail in Reference 1, but they have not led to simple criteria.
5.6 Conclusions and Recommendations

The preceding sections lead to the following conclusions:

1. Pormulation of the generalized aerodynamic forces in the form

o] - (o] ]

is possible and practicable for all approaches to determining unsteady
aerodynamic forces.
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2. Several options of inputting the matrices [H]T s [AIC(k)]', and

[W(k)] = [DX] + ik[DZ] can be recognized, i.e., separately, after multi-
plication, in the form of cubic spline matrices, or in derivative form.
Which option is most efficient depends strongly on sizes of the matrices,
whether the derivative of the aerodynamics matrix is needed, the method
of interpolation for arbitrary k, the population of the matrices [H]
and [W] and the number of k intervals expected to be active during
the optimization process.

3. In addition to depending on the number of computational operations-}
il sy : ' : '

required to form ’[éij(ki] the efficiency of the flutter optimization

process may also depend on the required input storage, the possibility
of storing all matrices required for interpolation of the aerodynamics
for k in one interval in core, and the read-in required if the value
of k moves to an adjacent interval.

L, It is possible to design a flutter optimization module that includes all
options such that the user can choose the option that is most efficient,
that fits his available data or that he prefers for some other reason.

In view of the above conclusions the following recommendation is made:

In designing a flutter optimization module for a facility, the calculation
of the generalized aerodynamic force coefficients and their derivatives should
be based on the formulations presented in this section. That is, a mode-
independent part should be generated outside the flutter optimization module
leaving an often to be repeated mode-dependent part of the calculations to be
performed inside the flutter module. The number of options is large and it
may not be practicable to include all options in the flutter module. The
choice of options is facility dependent. Certain practices of generating
generalized aercdynamic force coefficients may already exist and the existing
computer system may influence the choice significantly. The module, however,
should allow the user considerable freedom in choosing the option that is most
efficient for his problem. The number of options to be included should be
decided on the basis of a stand-alone flutter optimization module. It should
not be restricted because of the module being part of a general analysis system
which at present has only a restricted choice of outputting aerodynamic
coefficients. :
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6. METHODS OF OPTIMIZATION FOR FLUTTER

6.1 General

In this section five approaches to structural optimigzation with flutter
constraint are reviewed. All five belong to the category of direct methods;
i.e. methods in which the mathematical formulation defines resizing steps
aimed directly at determining the extreme value of the objective function,
in this case minimizing the structural mass. In contrast, in the indirect
methods the mathematical formulation defines resizing steps aimed at satisfy-
ing a criterion that, when satisfied, indicates that the optimum condition
is reached.

The five methods reviewed represent distinctly different mathematical
formulations. They are, in the order of review: the gradient methods of
Rudisill and Bhatia (Reference 1k4), the weight gradient method of Simodynes
(Reference 15), a penalty function method (Reference 16), a method of
feasible directions (Reference 1T7), and a method that evolved from the method
of Incremented Flutter Analysis (References 4 and 18). All are formulated
under the assumption of modalization matrices that are independent of the
design variables, but can be updated at any resizing step.

In addition to the qualitative evaluation of the methods presented in
this section there is a numerical evaluation and comparison in Appendix A.
In that appendix the results are presented of applying these methods to an
optimization task in which the flutter eguation is written in terms of Lo
discrete degrees of freedom and is not modalized.

6.2 Rudisill-Bhatia Approach

Reference 14 defines four different resizing columns that alone or in
combination can be used to design a minimum weight, or near minimum weight,
structure that satisfies a flutter speed constraint. The resizing columns

are defined in terms of incremental values, APi, of the design variables

Pi' (The notation of Reference 14 is followed.) Three of them involve the
gradient of the flutter speed with respect to the design variables. In con-
nection with this, Reference 14 presents closed form analytical expressions
for the derivative of the flutter speed with respect to a design variable.
These expressions have been used successfully in numerical test cases per-
formed during this study. Numerical values of the derivatives are in good
agreement with values obtained using the approach of Reference 15. In the
following the resizing columns defined in Reference 14 are discussed. The
terminology of Reference 1L is followed.
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6.2.1 Velocity Gradient Search - Equation (23) of Reference 14 defines a
column of design variable increments as:

AP. = __AV 8_V . (6-1)
i n 2 |oP,
f'A i
z oP
i=1 i
. . . . ov R
Equation (6.1) defines a direction by means of 7 The magnitude
i
of the increments is directly related to the velocity increment AV through
. s AV ov . .
the coefficient o 7 where AV = 3. APi is the approximate
oy i
2 \op
i=1 i

increase in flutter speed due to the design variable increments {APi}.
The formulation is known as the method of steepest ascent of the function

V(Pi)' The direction implied by equation (6.1) defines a column of directional
apP
i av

. i . av . .
cosines e for which 3s = NEGVE is maximum.
v ZidPi)

Assuming a linear relationship between the design variables Pi and the

associated mass, m, = CiPi’ equation (6.1) can be written as:

AP} = —8&V . 9V (6.2)
i 2 i0m,
ov i
zlc.—
18mi

Taking g%- as a reference it can be seen that the direction of LﬁPi}
i

depends on the scaling between the design variable and the associated mass.

Since the quantity of direct interest is total mass, and not design variables

related to mass, it seems logical to choose elementary mass as design

varisbles and choose C,=1. In that case equation (6.1) becomes:

Am t = — AV . gy_ (6.3)
> (a_v ) i
1=1 0y '
av
which represents a design change in the direction of maximum
: v E(dmi) 2
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The usefulness of the velocity gradient search is related to its ability
to raise the flutter speed more efficiently, i.e., with a smaller increase in

total mass mi than a simple increase of the overall stiffness level. Simple

physical considerations, however, lead to the conclusion that the most

efficient move is in the direction in which %%-= E%% is maximum.
i

The numerical evaluations in Appendix A indicate that a resizing column
proportional to g%- is an efficient means of resizing a structure in one
i

step to satisfy a flutter speed constraint with a moderate mass penalty, thus
providing a good starting point for a procedure that minimizes- the total mass
at constant flutter speed.

The relative efficiency of a resizing column proportional to -g%
i

follows from the fact that it tends to add more material where it is most

efficient in raising the flutter speed. Design variables for which gg is
i
negative are reduced in value, which also raises the flutter speed.

6.2.2 Mass Gradient Search - Equation (30) of Reference 1k defines a column
of design variable increments:

&V oM (6.4)
APt = [ay_ J {BM] 5P,
. ap.| |ap.
1 1

where M 1is the total mass: M=Emi.

oM

Equation (6.4) defines a direction by means of P The magnitude of
i

the increments is directly related to the velocity increment AV through the
AV

coefficient '?if___iﬁi_ .
OP. oP,
i i
The direction defined by equation (6.4) corresponds to a maximum value of

daM

v E(dPi) 2
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Again assuming a linear relation between the design variables Pi and

the associated mass mi=CiPi it can be seen that

n

n .
M=Y m = 3 cC,P, (6.5)
i=1 * 4= t?
oM _
and 3. - Cl .
i
Thus equation (6.4) becomes:
{AP_} = Ay {c} - —ar {c} (6.6)
i av i n i
C. &a— C, 2 9V
ll Bm.J[l} ECg‘
i &~ Y1 Om,
i=1 1

It is apparent that the direction of LﬁPi} again depends on the scaling
between design variable and associated mass.

Choosing m, as design variables eguation (6.4) becomes:

Am } =—2C .} )
{ ml} élg—li { } (6.7)

which represents a uniformly distributed weight increment.

Reference 1L uses equation (6.4) to define a decrease in total mass,
thus a negative AV is used. By following a path of steepest descent for

M(Pi) the emphasis is on decreasing total mass. The relation AM vs. AV

is not considered.

The mass gradient search could be used in combination with the velocity
gradient search to formulate an optimization procedure. Alternate application
of these searches tends to lower the design variable weight required for
satisfying the flutter constraint since the velocity gradient search tends to
increase the flutter speed by adding a relatively efficient mass distribution.
Although the mass gradient search removes mass indiscriminately, repeated
application of both searches tends to an optimum mass distribution. Rather
than remove mass indiscriminately, it seems logical to remove mass first where
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it reduces flutter speed the least. That would be the case if most mass would

be removed where gg% is smallest. Note that if there are design variables

for which g%— is negative their reduction increases the flutter speed,
i
allowing more mass to be removed from design variables with a small positive

value of g%— . An efficient method to remove mass is to remove it propor-

5%75£; for design variables for which g%; is positive.
In Reference 1 the sequential application of a velocity gradient search
and g mass gradient search is replaced by the application of an equivalent
two-component column of design variable increments. Regrouping of the ele-
ments in the two components shows clearly that this method does result in a

tionally to

resizing where more mass is added where g%' is larger and more mass is
v . - * s av
removed where S is smaller, regardless of the algebraic sign of om. °

6.2.3 Gradient Projection Searches - The gradient projection search follows
a direction of steepest ascent while satisfying a constraint. The gradient
projection search used in Reference 14 is aimed at following the steepest
ascent of the flutter speed as a function of design variables while keeplng
the total weight constant.

From equations (32) and (34) in Reference 14 the following column of
design variable increments can be derived:

i As av ., oM (6.8)
—.\/ > 8Pi 1 8Pi
av oy oM
Z (api) * 2 9. ap.
i i
2 2 2
where AS™ = 3 QﬁPi) , the step size in terms of design variables.
i=1 T
Equation (6.8) can also be written as
- _ 4V v oM (6.9)
ARl T [[av,, eaw] fer,* ™1 o,
= — i i
opP. 9P, "1 2P, _
i i i
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In both equations

A== _—aM BM‘ (6.10)
EAlE

which follows from the condition

oM
AM = I_APiJ [Ei]= 0 (6.11)

Usually V(Pi) has a maximum for a given total weight. Although in the

application shown in Reference 14 this maximum is not sought, it may be
reached. It would seem, therefore, that the formulation of equation (6.8) with
AS determining the step size, is preferable over the formulation of equa-

tion (6.9) in which AV determines the step size.

Reference 1L mentions the possibility of a gradient projection search
in which the flutter speed is held constant and the total weight is reduced.
The present authors consider this a more significant procedure from a prac-
tical point of view. As indicated in Reference 14 the formulas for this
approach can be obtained from the constant total weight approach by inter-
changing the symbols V and M and changing the algebraic sign on AS.

Since the total mass M has a minimum value, only the equivalent of
equation (6.8) will be given:

~AS M d ’ (6.12)
1

!AP:L] = > 9P,
HOEE 1
“ oP. 1 9P, 9P,
i=1 i i i
5] )
.aPi aPi (6.13)

>

where:

which follows from the condition

AV

av | _ (6.1L)
lAPiJ ‘aPi] "0
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Assuming a linear relationship between the elementary masses, mi, and

the design variables, Pi: s
m, = C,P, - (6.15)

equations (6.12) and (6.13) become:

_ -AS X ' :
[APi] = [ci + AlaPiJ (6.16)

v
A lci J {aPi] 6
R WA (6.17)
TEE
1 1

Letting, in addition, Ci =1, i.e., choosing the elementary masses as

design variables, these two egquations become:

_ - AS v (6.18)
4A'mi] ) . [l R am']

A, = - A21Om; (6.19)

The step size is determined by

n
88° = 3 An? (6.20)
i
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Equation (6.18) will now be discussed under the assumption that

E %E > 0 and thus 7\1 <0. This implies that lg%’lJ {l} >0. The latter
: i

inequality indicates that a uniform increment of all the design variables
increases the flutter speed. This is not an unreasonable assumption. Addi-

n
tionally it can be shown that n + Al 2 % 2 0 for any arbitrary set of-
oV i=1 i
values of Bm.
m,

In view of these considerations equation.(6.18). can be written as:

av

= = —_— +
Am, K 12y o, 1 (6.21)
where K. = As >0 and A v can be larger or smaller
1 \/ I gy 1 Om,
n o+ Al z: om.
i=1 i

than 1.

The resizing column defined by equation (6.21) is a linear combination of
the columns associated with the velocity and mass gradient search discussed in
the previous sections. The algebraic sum of the two contributions tends to

increase the design variables with a larger value of g% and to decrease
i
those with a smaller value of v s 1including those with a negative value of

om
v *
- == . This agrees with physical reasoning. As defined in equation (6.18) the
i
two contributions to {Ami} in equation (6.21) are in a fixed ratio. Due to

nonlinearities this results in a drift in flutter speed due to a resizing

step {Ami} .
By writing
= —Aav___ ]9V =
Am = — > 1om —K[l] (6.22)
E ov
&~ (Bm.)
i=1 1

an equivalent of equation (6.21) is formulated that allows the use of the
method of Incremented Flutter Analysis (References 4 and 1) for determining a
value of K such that the velocity increment, AV, associated with the wvelocity
gradient column is exactly cancelled.
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In equation (6.21), K; determines the step size. In a follow-on paper
(Reference 19) Rudisill and Bhatia describe a deterministic method of
defining step size in the case that the gradient projection search is used
to increase the flutter speed at constant total mass. The method is based on
the assumption that the flutter speed is a nearly quadratic function of the
design variables.

Since the total mass is a linear function of the design variables this
method of determining the step size is not applicable to the gradient pro-
Jjection search at constant flutter speed. Choosing a step size then is a
matter of experience and judgment.

6.2.4 Concluding Remarks - The preceding discussion deals with the basic
resizing columns as defined by four different approaches. In any practical
application,minimum size constraints must be taken into account. Conceptually
this is a simple matter. Computer programming requires close attention to
detail since a variety of potential minimum size constraints, some of them
expected to occur infrequently, must be foreseen. Reference 1llU does not go
into detail on this. '

The capability of the approaches presented in Reference 14 for structural
optimization with a flutter constraint lies exclusively in the use of the
gradient of the flutter speed with respect to the design variables. Repeated
addition of structural material according to a distribution proportional to

v
om. | °
i

maintain the desired flutter speed, converges to a minimum mass design.

followed each time by a rather indiscriminate removal of material to

6.3 The Weight Gradient Method of Simodynes

In March of 1973, E. E. Simodynes presented a method for the optimiza-
tion of structural weight at a specified flutter speed (Reference 15). The
method employs the gradient of total weight with respect to n-2 design
variables in a resizing algorithm to minimize structural weight while main-
taining a constant flutter speed. Two of the design variables are dependent
variables. The resizing column is such that a constant flutter frequency is
also maintained, a characteristic which simplifies the formation of the
required derivatives. The restriction on fiutter frequency, however, repre-
sents an arbitrary constraint on the procedure which may result in weight
penalties which can not be justified by the computational simplifications
achieved. A modification of the method is proposed wherein the flutter
frequency is permitted to vary, taking the place of one of the dependent
design variables. In the following, the original method is discussed first,
followed by a discussion of the modified procedure.

6.3.1 The Method of Simodynes - The optimization method presented in Refer-
ence 15 uses a resizing algorithm based on the gradient of total weight,
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subject to flutter speed and flutter frequency constraints. As with most
optimization methods, the stiffness and inertia terms are expressed in
linear form:
n n
= = +
[K] [KO] + .z m, [AKi] and [M] [MO] _E m, [AMi] (6.23)
i=1 : i=1
The matrices [#Q] and [#0] represent the stiffness and inertia of the
fixed structure, and the matrices [AKi] and EAMi] represent stiffness

and inertias increments per unit weight of the ith design variable. The

flutter equation for neutral stability is

() -] - T+ & = (] o)) (o) - e} o

where [Q] is a matrix of unsteady aerodynamic force coefficients.

Considering flutter frequency and flutter velocity to be specified, the
fixed and variable coefficients of the flutter equation may be grouped as in
equations (6.25) and (6.26), and the flutter equation expressed as in

[ ] - <] -1 o
[Bi] - [AKi] - wz[AMi] (6.26)
(- & =Ed)l) - (6.21)

Two of the design variables are now designated as the dependent design
variables m, and m» and derivatives of the flutter equation with respect

to the independent design variables m, formed as shown in equation (6.28).

b - EJE e LR e e
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In this equation, {q} is the flutter eigenvector of equation (6.27),
and LrJ is the corresponding row eigenvector. Since the complex coeffi-

cients of equation (6.28) are known, the partial derivatives am.u/ami and
6m.v/8mi are readily obtained. . The weight of the structure is now expressed

in equation (6.29), where W. is the weight of the fixed structure; the

0
derivative of the weight with respect to each independent design variable
is computed (equation (6.30)), and the gradient of total weight formed
(equation (6.31)).

n-2
W= WO tmo+m ;E m, (6.29)
i=1
om om
oW _ “Tu v
om.  Om, * om, 1 (6.30)
i i i
3W/3ml
oW/om
W =
{V } : 2 (6.31)
8W/8mn_2

A resizing column of increments is then formed for a specific weight reduc-
tion, - AW (eguation (6.32)), and new values of m and m ~ are calculated
using this column of increments and the partial derivatives Bmu/ami and

amv/ami.

_A.W

o= T

6.3.2 Discussion of the Method - As indicated in Reference 15, the principal
feature of the method of Simodynes is the weight gradient, and the resizing
column derived from it. The computation of this weight gradient is partic-
ularly straightforward due to the constraints on flutter speed and flutter
frequency imposed on the resizing procedure. In particular, the unsteady

{vw} (6.32)
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aerodynamic parameters are constant throughout the optimization cycle, so
that the flutter derivatives do not involve derivatives of the aerodynamic
parameters.

This simplification, however, is not obtained without an associated
disadvantage. The imposition of the frequency constraint on the optimization
process results in an artificial constraint on the distribution of the design
variable masses during the resizing procedure. An example of this may be
seen in the numerical evaluations reported in Appendix A. The effect of
this constraint is difficult to assess, since it depends to a great degree
on the particular situation. For a configuration far from the final optimum
distribution, with a frequency of the critical mode significantly different.
from the final value, the effect of the freguency constraint would be expected
to be significant. For a configuration closer to the optimum distribution,
with a critical mode frequency approximately equal to that of the final con-
figuration, the effect would be correspondingly less. Reference 15 states
that a fixed set of vibration modes is used throughout a complete optimization
cycle, and it is concluded that the flutter frequency constraint is maintained
throughout the optimization cycle also. In that case, at least one additional
optimization cycle must be performed in order to assure that no effects of the
constraint remain. The choice of dependent design variables also influences
the magnitude of the constraint effect, since design variables having little
influence on frequency would produce relatively greater distortions of the
unconstrained distributions.

As with other methods employing an arbitrary step-size (e.g. Refer-
ence 14), this parameter must be established on the basis of judgment,
intuition, experience or (probably) a combination of these. For the present
method, step-size is determined by the weight reduction, -AW, specified
by the user. The choice of this parameter involves a compromise; too large
a value of AW could result in unacceptably large excursions in flutter speed
and frequency; too small a value of AW would result in an excessive number
of resizing steps required to reach optimum.

Minimum size constraints are handled in a straightforward manner; when
a design variable reaches minimum size, it is temporarily eliminated as a
design variable. In subsequent steps, the derivatives are calculated for this
design variable and it is reinstated as an active design variable if these
calculations so indicate. Although not specifically stated in the reference,
this is presumably true of the dependent design variables as well as the inde-
pendent design variables. Here again, a poor choice of dependent design
variables, requiring frequent shifting to other design variables during the
optimization cycle, would result in an inefficient resizing process.

6.3.3 A Modification of the Method of Simodynes — As discussed earlier, the
constraint on the flutter frequency provides a simplification in the computa-
tion of the required derivatives, but results in a nonoptimum weight incre-
ment implying a weight penalty that is difficult to predict. A modification
is suggested which eliminates this frequency constraint. This is done by
allowing the flutter frequency to become a dependent variable, taking the
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place of one of the dependent design variables. Following a procedure
similar to that of the original method, derivatives of the flutter equation
are obtained after first expressing the flutter equation as a function of the
reduced frequency, k. The result is equation (6.33), which is comparable to
equation (6.28) of the original procedure. Equation (6.33) is solved for the

‘Om

el o] o) - o) o e} o
o o] o), +[e) e o)

om

e foed {a) g - [1) [392] {o}i - o

unknown parameters Bmu/ami and 8k/8mi; the total weight is expressed in

equation (6.34), and the derivative of the weight with respect to each

-1
W= bm + ami (6.34)
dm '
ow  _ u
TRy (6.35)

of the independent design variables is shown in equation (6.35).

The gradient of the weight and the column of increments are formed as be-
fore (equations (6.31) and (6.32)). Except for this modification in the weight
gradient formation, the optimization cycle proceeds as in the original method.

6.3.4 Discussion of the Modified Method - The modification of Simodynes'
method suggested here unquestionably results in a less approximate procedure.
The frequency constraint, with the associated distortion of the resulting
mass distribution, is removed. Not only does this eliminate an undesirsable
feature of the original method, but fewer optimization cycles should be
required in order to reach a satisfactory approximation of the optimum dis-

tribution. As a result of the modification, however, some additional complica-

tion of the computational procedure is required. In solving the flutter
equation to obtain the eigenvectors, a fixed matrix of unsteady aerodynamic
coefficients can no longer be used throughout the optimization cycle. 1In
addition, the derivatives of the aerodynamic parameters with respect to the
reduced frequency, k, must be obtained. How troublesome these complications
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are depends on the versatility of the computational system used. For the
numerical evaluation of the modified method presented in Appendix A, the
Lockheed p-k method of solving the flutter equation was used; this procedure
has & built-in subroutine for interpolating matrices of aerodynamic coeffi-
cients. A similar routine was used to obtain the approximate derivatives of
the aerodynamic parameters using a finite-difference procedure. 8Since these
computational tools were readily available, the modifications resulted in no
particular computational difficulty.

It should be noted that a certain similarity exists between the column
of increments resulting from the present procedure and the.column of incre-
ments resulting from the gradient projection search with. econstant flutter
speed of Rudisill-Bhatia (Section 6.2.3). Thé expression for the column of
increments of the present procedure is shown in equation (6.36) and from
equation (A.6) of Appendix A it is seen that equation (6.37) is an equivalent
- expression.

f am )
1 +
Am1 AW om,
AT T T )T T o (
u lVWJ {Vw} om, 3mu> (6.36)
omn, om,
\ 1 Py
f . 8V/8m:.L
A | caw )
Am - T 2 (6.37)
4 lva {VW} ) BV /Bm, . z v/bm,
' BV/Bmu BV/Bmu

Recognizing that the scalar premultiplier of the column is arbitrarily
chosen, the increments for the independent design variables m, can be made
identical to those of equation (6.21) of Section 6.2.3 if the normalization

factor l/BV/Bmu. is equal to =-A, of eqguation (6.21). It will be recalled

1

that A is chosen so as to result in a flutter velocity increment, on a

1

linear basis, equal to zero. Ir general, the normalization factor for the

present procedure will not be equal to -A since 1t results from the choice

l,

of the dependent design variable. The (linear) flutter speed increment is
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then held to zero by the increment in the dependent design variable defined
in equation (6.37).

6.3.5 Assessment of t#® Method - The original Simodynes method is a simple, =~
straightforward procedure which involves a minimum of computational difficulty
in the generation of the flutter derivatives. The flutter frequency con-
straint might be a useful device in adopting existing routines for the solu-
tion of the flutter equation and generation of unsteady aerodynamic parameters
for use in a flutter optimization procedure. In the development of an inte-
grated design procedure, however, there would appear to be no clear advantage
in retaining the frequency constraint. Instead, a modification of the pro-
cedure such as indicated here would be highly desirable.

6.4 An Interior Penalty Function Method

In seeking to evaluate a penalty function method, the initial task is
one of defining both the method itself and the scope of the evaluation. As
used here, the term penalty function method refers to any structural optimiza-
tion technique in which penalty terms, which are related to the constraint
equations, are added to an objective function to form a modified objective
function, which is then minimized. For the purposes of this evaluation,
however, only a single, representative procedure will be considered. The
particular procedure chosen 1s an interior penalty function method and follows
closely the method described in Reference 16, and is essentially identical to
that used in the numericel evaluations presented in Appendix A. A brief
description of this method is presented in the next section, preparatory to
the discussion and evaluation which follow.

6.4.1 Description of Method -~ As indicated previously, the method considered
here is based on the method described in Reference 16. In that procedure, a

modified objective function, P(mi,r), is formed as shown in equation (6.38).

P(mi,r) = W(mi) + r-? (6.38)

_1
ge (mi)
The term W(mi) is the quantity to be minimized, or objective function,

and represents the weight associated with the design variables mi. The

second term of equation (6.38) expresses the penalty terms as functions of the
design constraints; r 1is a penalty function weighting factor. By means of

this formulation, the problem of minimizing W(mi), subject to the constraints

ge(mi), is transformed to one of an unconstrained minimization of P(mi,r)
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using a SUMT (Sequence of Unconstrained Minimization Technique) approach
(Reference 20 and 21). One such minimization is carried out for each succes-
sive reduction of the value of the penalty function weighting factor, r,
until the minimized value of P(mi,r) 1s approximately equal to the corre-
sponding value of W(mi).

The unconstrained minimization of P(mi,r) is accomplished by first
generating a move-vector direction, then determining the minimum of P(mi,r)
in this direction by means of a one-dimensional search. For determining
this move direction, several direction-generating algorithms are available,
the best known of which is the DFP algorithm (Reference 22) as used in the
preliminary design procedure reported in Reference 9. Reference 16, how-
ever, uses a variation of Newton's method wherein the second derivatives of

P(mi,r) are approximated, and this procedure will be used here. The second

derivatives shown in equation (6.39) may be approximeted by neglecting

2

0% _ %, o (,%% _  °§

dm.om, Om.om. 7 om. om,. ~ 8 dm.om. )B4 (6.39)
i3 i i J 177§

the second term of the summation, under the assumptions stated in Reference
16. In addition, the objective function, W(mi), is assumed to be a linear
function of the design variables, so that the first term of equation (6.39)

is equal to zero. The second derivatives are then approximated as in equa-
tion (6.40), and an estimate for the column of design variable

2% . . %8 %\ 3
om,9m i 7 om, om, }&p (6.40)
i 1 N}

Am.t = - lo| 122 (6.11)
1 «
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It should be noted that equation (6.41) would exactly define the required
column of design variable increments if P(mi,r) were a quadratic function

of the design variables and the exact second derivatives used. In the present
case, however, equation (6.41) is used only to define the move direction for
the one-dimensional search.

6.4h.2 Discussion of the Method - In evaluating the penalty function method
described here, four principal elements or characteristics can be discerned:
the treatment of the constraints, the penalty term weighting factors, the
direction generating algorithm and the one-dimensional search. In the fol-
lowing sections, each of these characteristics will be discussed, followed
by an assessment of the method as a complete procedure.

The treatment of constraints is the principal distinguishing feature
of the penalty function method, and this treatment provides a number of
advantages. As used in the present procedure, the inequality constraints
serve two important functions: 1) conditioning of a move vector such that it
tends to avoid violation of the constraints, and 2) limiting of the move
vector amplitude such that the constraints are not violated. The first of
these functions is implemented through the direction generating procedure,
and the second of these is a part of the one-dimensional search.

The treatment of the constraints as inequality constraints, resulting
in the characteristics described above, can be a very powerful approach in
structural optimization for flutter. One of the more obvious advantages is
the fact that the inclusion of multiple flutter speed constraints causes
little conceptual difficulty. Whether this advantage is of practical value
is difficult to assess without further work. To include all flutter speed
constraints (for several Mach numbers and airplane loading conditions) in
the penalty term would be a large computational burden. Thus it would seem
that only active constraints should be included in the penalty term and that
separate program logic should be used to determine which constraints are
active. Experience at the Lockheed-California Company, partly obtained during
this study, indicates that multiple active flutter speed constraints may occur
rarely. Probably the most important advantage resulting from this method of
handling constraints is the fact that a large number and variety of constraints
can readily be included in an automated procedure. A disadvantage, however,
is the fact that derivatives of the constraint quantities with respect to the
design variables must be obtained.

The handling of the penalty term weighting factors indicated in equa-
tion (6.38) exerts a significant influence on the resultant performance of
the method. The treatment of these factors is a matter of judgment and
depends on experience. Experience at NASA, Langley Research Center suggests
an initial value for these weighting factors which makes the penalty terms
approximately equal to the value of the objective function (Reference 23).
The final value for these factors can be determined by establishing acceptable
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values of the residual constraint inequalities and then specifying an allowable
percentage of the modified objective function contributed by the pensalty terms.
Having thus established the range of the weighting factors, the appropriate
reduction factor to be applied during each step is determined from the selec-
tion of the desired number of steps. Monitoring of the progress of the weight
minimization, however, may lead the analyst to interrupt the optimization
procedure and modify the penalty weighting factors. Specifically, optimiza-
tion steps may continue after the number of steps on which the reduction

factor is based are completed i1f the total weight progression indicates that

a minimum weight has not been attained.

At each step in the optimization process, the weighting factors deter-
mine the extent to which the constraints influence the resultant move. If
the weighting factors are large relative to the distance from the constraint,
the design tends to move away from the constraint, into the feasible design
space. If the weighting factors are small, the constraints exert little
influence on the move and the design may move in the direction of the con-
straints. The behavior is dependent on the reduction factor applied to the
weighting factors at each successive step, which is in turn related to the
range of the weighting factors and the number of steps selected. A large
number of steps (or a small reduction factor) can result in erratic behavior
of the process due to the strongly repelling influence of the constraints.
Too few steps, with the corresponding large reduction factors, may result in
moves which impact one or more constraints before significant weight reduc-
tions have been accomplished.

The use of the approximate second derivatives in an adaptation of
Newton's method results in a more efficient unconstrained minimization pro-
cedure than does the use of the DFP algorithm (Reference 22). Since this
latter procedure requires a number of one-dimensional searches approximately
equal to the number of design variables, and the number of such searches
required with Newton's method is independent of the number of design vari-
ables, the advantage of Newton's method increases as the number of design
variables increases. As indicated in equation (6.41) however, the matrix @
must be inverted; this matrix is an n x n matrix where n 1is the number of
design variables. Reference 16 states that this matrix is singular or
ill-conditioned when the number of active constraints is small. To preclude
the obvious difficulties which would otherwise result, a matrix G is used
in place of the matrix G, the elements of which are shown in equation (6.42).

In this equation, 515 is the Kronecker delta and a value

G,., =G, .(1+ €6,.,) (6.42)
ij ij i3

of €=0.01 1is found to be satisfactory for the systems evaluated thus far.

For each step in the optimization process, a one-dimensional search is
conducted to determine the minimum of the modified objective function. The
direction of the move vector is determined as previously described (equa-
tion (6.41)), and only the magnitude of the move vector is varied during
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the search. The derivatives of the modified objective function need only be
evaluated once during each step, but the modified objective function is
evaluated for a number of values of the move vector magnitude sufficient to
define the minimum of the function. These evaluations of the modified objec-
tive function require flutter speed solutions, stress analyses and/or other
procedures appropriate to the determination of the penalty terms. Although
the process of evaluating the acceptability of a design relative to the con-
straints is common to all optimization methods, the penalty function method,
employing a one-dimensional search, requires at least three such evaluations
per step, whereas methods which do not employ the one-dimensional search need
only one such evaluation. These other methods, however, normally require a
greater number of steps to achieve an acceptable level of optimization, and
therefore usually require a larger number of flutter speed derivative deter-
minations. Considering that determining the flutter speed derivatives
requires determination of the flutter root and two characteristic vectors,

it is estimated that in terms of computaticnal operations (and thus cost)
each step in the penalty function procedure, requiring the calculation of
three flutter roots, is approximately equivalent to three steps of a pro-
cedure such as the modified Simodynes method described in Section 6.3.

This trade-off must be taken into account in any comparative evaluation of
methods, and must be determined for a realistic design procedure. The
principal advantage of the one-dimensional search is that it provides a
specific criterion for the determination of step size, resulting (usually)

in greater weight reductions per step than obtained with methods employing
arbitrary step size. The determination of step size by the present procedure
can readily be implemented as a fully automated computational subroutine.

6.4.3 Assessment of the Method - Based on the description of the optimization
method presented in Section 6.L4.1 and the discussion of the characteristics

of the method in Section 6.4.2, it is concluded that the penalty function
method (as that term is used here) is an efficient optimization procedure
possessing characteristics not found in other methods. The unique means cf
handling design constraints is, of course, the most noteworthy of these.

This feature, along with the use of the one-dimensional search to determine
step size, results in an optimization procedure which is particularly well
suited to use in a completely automated routine. Detailed specifications

for such a procedure should be relatively easy to develop. The principal
element required for the use of this method, over and above the requirements
of other methods investigated, is the determination of the derivatives of the
constraint quantities (other than flutter derivatives) with respect to the
design variables. Since it should always be possible to evaluate the con-
straint functions for specified values of the design variables, these deriva-
tives may be obtained by finite difference techniques if no better method is
available. In terms of computational efficiency, it is difficult tc compare
the penalty function method with the other four methods considered here.

From the foregoing it is clear that the penalty function method does, in
general, require more computations per step than do the Simodynes or Rudisill-
Bhatia procedures. Whether or not the more efficient optimization step of the
penalty function method overcomes that disadvantage can only be assessed in
terms of a realistic design case.
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6.5 A Method of Feasible Directions

The method of feasible directions is an approach to structural opti-
mization using direct minimization of a constrained function. This is in
contrast to penalty function methods, treated in Section 6.4, which convert
the constrained design problem into a sequence of unconstrained minimizations
of a modified objective function.

The method discussed here is based primarily on the method of Gwin and
McIntosh (Reference 17), which is in turn a generalization of a method
developed by Zoutendijk (Reference 24). Addition background material is
derived from Vanderplaats and Moses in Reference 25. It should be noted that
the discussion presented here is limited to those characteristics inherent
to the feasible directions method itself; other particulars of the method
presented in Reference 17 are not treated. Thus, such elements as the method
of generating aerodynamic parameters, solution of the flutter equation and
computation of flutter speed derivatives are considered to be separate from
the method of feasible directions. These and other details of a complete
optimization procedure are considered elsewhere in this report.

6.5.1 Description of Method - The method of feasible directions generates a
sequence of design changes, each of which is both feasible (does not violate
active constraints) and usable (reduces total mass). Each resizing direction
is followed until a new constraint is violated, an active constraint is
re-encountered or the total mass is minimized. The process can be visualized
with the help of Figure 6-1, which reproduces Figure 6 of Reference 17. 1In
this figure, the minimum size constraints are represented by the horizontal
and vertical boundaries, the minimum flutter speed constraint by the curved
boundary and the constant weight contours by the diagonal straight lines.

The starting point for the process is at point A, which is on the flutter
speed constraint boundary; the design proceeds in a direction away from the
flutter speed constraint and in a direction of decreasing weight until a con-
straint boundary is encountered. At that point, a new direction is generated
and a new move executed. This process is continued until a point B is reached
which approximates an optimum design. Figure 6-2, also from Reference 17,
illustrates the range of acceptable design directions starting from a point B
on a general nonlinear constraint boundary.

For a constraint equation of the form given in equation (6.L3), the condi-
tion that the direction is feasible is given by equation (6.L4), where {Vh}
is the gradient vector of the constraint with respect to the design variables,

m, » and {S} is the direction vector of the design variables.

h <0 (6.43)

{s] {vh}=o (6.4k)
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W = Constant

Figure 6-1: Hypothetical Design Space

e-Feasible Sector

Figure 6-2: Direction-Finding Problem
at a Constraint Boundary
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In the present context, a feasible direction is one which does not
violate an active constraint, as defined by a linear approximation of that
constraint. The line segment BC in Figure 6-2 lies on the boundary of the
feasible region. The condition that the direction is usable is given by
equation (6.45), where {VW} is the gradient vector of the objective func-
. tion, i.e., the total structural weight. Any direction between lines BD and
BC in Figure 6-2 is then in the usable-feasible sector.

[s]{vw} =0 - (6.45)

The particular direction vector used in the present method is found such
that a scalar B 1is maximized subject to the conditions expressed in equa-
tion (6.46). 1In this set of equations, & is an adjustment factor which

(a) |s]{vn} + 68=o0
(v) |s}{wvw}+ B=o0 (6.46)
(c) The length of |S] 1is bounded.

controls the direction of LSJ within the usable-feasible region; large
values of 6 force the direction away from the constraint and toward the
usable boundary BD, while a value of & = 0 results in a move direction along
line BC. For nonlinear constraints, such as a minimum flutter speed con-
straint, an intermediate value of 0 is used which approximately bisects the
usable feasible sector. Reference 17 suggests a value of 0 = 1.0. It will
be shown, however, that the effect of any particular value of 08 depends on
the normalization of the constraint gradients and the weight gradient. For
linear constraints, such as minimum size constraints, a value of 6 = 0 is
used in order to produce a move direction parallel to the constraint boundary.
The condition that the length of LSJ is bounded is usually accomplished by
limiting the elements as shown in equation {(6.47).

lsil <1 i = 1,2,.2205 1 (6.47)

Once the value of 6 1is selected, the suboptimization problem indicated
by equations (6.46) is transformed to a standard form and solved by means of
the Simplex algorithm. Some of the details of this procedure are given in
Reference 17, and a more comprehensive description may be found in Reference
26. The details of the Simplex algorithm will not be repeated here, but
some aspects of the procedure are discussed in the following section. It
should be noted that the Simplex algorithm was used to generate the direction
vectors for the numerical evaluations presented in Appendix A of this report.
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In applying the constraint conditions indicated by equation (6.46(a)),
only those constraints which are considered to be active at a particular
design point are included in the direction-finding process. A constraint is
considered to be active if the design in question falls within a specified
tolerance band e of the constraint boundary. This constraint tolerance
band is arbitrarily specified and may vary with type of constrsint. As
stated earlier, any particular design step continues in the specified direc-
tion until a constraint is violated; at that point, a correction step is
taken back into the constraint tolerance band and a new direction generated.

6.5.2 Principal Characteristics of the Method - The principal distinguishing
feature of the method of feasible directions is, as the name implies, the
direction generating procedure. Some aspects of this procedure, and of the
method of establishing the step size, are discussed in the following.

Some uncertainty exists as to the handling of the constraint tolerance
band, € . Reference 17 indicates that an appropriate constraint tolerance
is established for each constraint or constraint type, and that when a con-
straint is violated, the step size is corrected such that the end-point of
the step is midway in the tolerance band. Reference 25, however, recommends
the use of a large tolerance band for the initial phases of the optimization
so that the constraints will become active early in the optimization pro-
cedure and will remain active. Combining these two approaches would not
appear to result in an efficient resizing procedure, since a large constraint
tolerance band would prevent a close approach to any constraint. For the
idealized test case of Appendix A, no particular advantage can be discerned
in maintaining a large "pad" on the constraints; this would almost certainly
result in an increased number of resizing steps for the weight reductions
shown in Section A.6. It may be that such a procedure would be useful in
the application of the method to more complex design problems as a means of
avolding convergence to localized minima, but it is felt that such usefulness
would be rare in practical situations. Based on the idealized test case, it
would appear that the constraint tolerance for minimum size constraints should
be equal to zero. A minimum size constraint should not be active until the
minimum size is reached, since otherwise no further reduction in that design
variable would take place while the constraint remained active. For minimum
flutter speed constraints, it would seem that the constraint tolerance band
for defining an active constraint should indeed be fairly large. The flutter
speed constraints then become active early in the design process, and are
therefore effective in the efficient resizing of the design variables. The
constraint tolerance band for determining the end-point of a particular design
step, however, should be essentially equal to zero.

Assuming a reasonable value of the adjustment factor, 6 » the next
design step will be directed well into the feasible region, so that no useful
purpose is served by originating the step any appreciable distance from the
flutter constraint boundary.

For other types of constraint, the treatment of the constraint tolerance
band can be based on similar reasoning.
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As indicated earlier, the recommended adjustment factor for a minimum
size constraint or other linear constraint is 6 = 0. This choice of adjust-
mént factor results in subsequent design steps proceeding parallel to the
constraint boundary if the design steps would otherwise result in continued
reductions of the constrained design variable. Tor nonlinear constraints
such as flutter speed constraints, a nonzero value of € must be used in
order to force the design direction away from the constraint boundary.
Otherwise, any finite move amplitude would violate the flutter speed con-
straint. This characteristic of the parameter 6 results in the term
"push-off" factor being applied to it in some references. The most efficient
value of the "push-off" factor depends on the particular structural opti-
mization under consideration, but a value of - § = 1.0 is usually chosen.
Reference 17 states that this value produces a vector direction which
approximately bisects the usable-feasible sector. Examination of equations
(6.46) demonstrates, however, that the value 6 which accomplishes this is
dependent on the normalization of {Vh} and {VvW}. A larger value of the
normalized constraint gradient corresponds to a smaller value of 6 , while
a larger value of the normalized weight gradient corresponds to a larger
value of 6 . In the numerical evaluations described in Appendix A, the
weight gradient was a unit column as a consequence of the choice of design
variables, and the flutter speed constraint gradient was normalized such that
the value of the average element is unity. A value of 6= 1.0, in conjunc-
tion with that normalization, produced approximately the desired result. The
more usual procedure of normalizing the gradients on the largest element would
have produced approximately twice as much "push-off".

It is noted that Vanderplaats and Moses, Reference 25, recommend a
variable "push-off" factor which is a function of the distance from the con-
straint boundary. In the present notation, this is expressed in equation

(6.48), where € is the constraint tolerance, h? is the value of the jth

th . . .
constraint function at the k design step, and 00 is chosen as unity.

Kk 2

- J
9. = 90 —€-+ 1 (6.1#8)

Since the constraint functions have negative values anywhere within the
feasible region, the effect of this treatment of the "push-off" factors would
be to drive the design to the constraint tolerance boundary, where the value

of Qj is equal to zero. Although this approach has the advantage of pro-

viding a uniform treatment of the "push-off" factors, it would appear that
the resultant excursions of the design in and out of the constraint tolerance
band might well offset any advantage derived from this approach.
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The direction vector for feasible directions procedures is usuelly
ocbtained by the Simplex method. As noted in Reference 25, "the resulting
direction tends to point towards the corners of & hypercube in the design

space (Sg =1 or =1)." The direction vectors obtained in the numerical

evaluations of Appendix A certainly exhibit the indicated tendencies. Refer-
ence 25 goes on to propose an alternate direction vector formulation, based
on imposing bounds on the total vector rather than the individual elements.
Although this formulation has not been evaluated in detail, it is presumed
that the resulting vector might be somewhat more efficient since it is
subject to fewer constraints.

Returning to the original formulation, some elementary considerations
of equations (6.46) and equation (6.47) will indicate the reasons for the
resulting direction vector characteristics, and will suggest a method of
generating the direction vector without the use of the Simplex algorithm.
Referring to equations (6.46), assume for the moment that only the flutter
constraint is active. It will be seen that maximum g can only occur when
both equation (6.46(a)) and equation (6.L46(b)) are equal to zero. If now the
value of 6 is taken as unity, equation (6.49) results when B is maximum.

l_SJ {vw}- {Vh} =0 (6.19)

Returning to equations (6.46) and observing that the elements of {Vh}
are generally negative, it is not difficult to see that the addition of weight
to the design variable having the greatest increase in flutter speed per
pound, and removing weight from the design variable having the least increase
in flutter speed per pound, tends to increase B . The restriction on the

size of the elements S, expressed in equation (6.47) 1imits these elements

to +1 and -1 , respectively, while the objective of maximizing B insures
that these limits will be reached. Continuing the same line of reasoning, it
will be seen that the resulting direction vector must have +1 elements for
the deslign variables with the higher flutter speed derivatives, -1 elements
for the design variables with the lower flutter speed derivatives, and one
element of intermediate value in order to satisfy equation (6.49). If one or
more design varisbles in the negative group is limited by an active minimum
sizing constraint, the corresponding elements in the direction vector are set
to zero and equation (6.49) balanced as before. It should be noted that the
ranking of the flutter derivatives must be on the basis of rate of change of
flutter speed per pound of design variable, which is the ratio of the elements
of {Vh} to the elements of {VW} . During the course of the numerical
evaluations presented in Appendix A, it was found that a move vector direction
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identical to that generated by the Simplex method could be derived by the

procedures described. When there are two active flutter constraints, Vl
ov ov

. +

2 Bml 8m2

+1l and -1 ; two equations similar to (6.49) will determine two elements

of LSJ that have intermediate values. This was also demonstrated, numer-

ically, to lead to the same LSJ as the one generated by the Simplex method.

It is expected this approach can be expanded to more active flutter con-

straints. It is suggested that it is more straightforward and may be a more

economical means of generating the direction vector. o

and V the values of determine which elements of LSJ are

Several methods of step-size selection are proposed in Reference 17,
the simplest of which is to continue to increase step size in the prescribed
direction until a constraint violation occurs. At this point, a corrected
distance to a point within the constraint tolerance band is found by linear
interpolation of the appropriate constraint function values.

As mentioned earlier, it should be relatively simple to determine the
step size which would terminate exactly on the boundary of the nearest linear
constraint, and in view of the fact that no further reduction of that design
variable will take place while the constraint is active, no correction into
the tolerance band would appear to be required. A more direct procedure might
then be to determine the step-size to the nearest linear constraint and then
check for violation of other constraints using that step-size. If constraint
violations resulted, the step-size would be reduced until the critical con-
straint was Jjust satisfied. For minimum flutter speed constraints, the use
of some form of Incremented Flutter Analysis to solve for the step-size
necessary to satisfy the flutter constraint should result in a substantial
improvement in the step-size search procedure.

6.5.3 Assessment of the Method - The method of feasible directions is similar
to the penalty function methods in that the constraint functions influence
both the direction of the design step and the step-size. Full automation of
the method is documented in Reference 27. A wide range of constraint types
can be accommodated, the only requirement being that it must be possible to
evaluate both the constraint functions and constraint gradients for each
design step. In concept, multiple flutter constraints can be included,
although there may be practical difficulties to be overcome outside the
cptimization proper.

The move direction vector resulting from the usual form of the equations
appears to be rather crude, and it is felt that an alternate procedure, such
as suggested in Reference 25, might result in a more efficient move vector.
The treatment of constraint tolerances and determination of step-size seem
overly complicated, and significant improvements in these areas should be
possible.
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Overall, the method seems to be gquite representative of the direct
methods of flutter optimization and competitive with other methods evaluated.
The numerical evaluations reported in Appendix A show the method to be much
better behaved than would be indicated by consideration of the move vector,
and the rate of convergence demonstrated on the simplified test case is quite
satisfactory. As a result, the method of feasible directions must be con-
sidered a strong candidate for further evaluation in a realistic design
environment.

6.6 An Optimization Method Using Incremented Flutter Analysis

Incremented Flutter Analysis was conceived as a method for efficiently
determining design parameters for external stores satisfying a predetermined
flutter speed requirement (Reference 4). Its capability of determining the
value of general design variables such that the flutter speed has a given
value makes it attractive as a tool in optimization with flutter constraints.
A study was therefore initiated to assess the usefulness of Incremented
Flutter Analysis as a tool in an optimization procedure. It was used in a
heavily interactive approach to optimization for flutter, using the Computer
Graphics system. The resulting method of optimization was demonstrated on a
simulated design problem based on a subsonic transport wing (Appendix A,
Section A.7) and was also used on an actual design problem (arrow wing super-
sonic transport).

During this development, the method of Incremented Flutter Analysis was
generalized to be consistent with the needs in a complex optimization program
(Reference 1).

A breadboard prototype of an automated computer program was developed
and demonstrated on the same simulated design problemn.

In the following, the main features of the program and its present form
are presented based on data in Reference 18.

6.6.1 Main Features - The optimization method is a resizing routine that
minimizes total mass while maintaining the flutter speed exactly at a required
value.

Key features of the method are that the resizing column is allowed to
change direction, without the need to recalculate flutter speed derivatives,
during e one-dimensional minimization process in which the value of a scalar
@« is determined that minimizes the total mass.
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In the methods of optimization discussed in the preceding sections, a

column of design variable increments (resizing column) P&mg} is defined as:

{Aml.‘} =ak{dk} | (6.50)

where {dk} defines a direction in design variable space and the scalar «

a magnitude. The resized design is related to the original design by

1

In this method the resizing column is

{ml.”l} . {ml.‘}+ { ant} (6.51)

{Am}i‘} - {dk(ak)} (6.52)

k R .
i.e., the direction of Aﬁmi] is a function of the scalar «@. The scalar o
2.

During one resizing cycle, i.e., for one
one set of derivatives of the flutter speed

with respect to the design variables, g%— s 1is used. The column matrix

is discussed in Section 6.6.
k

value of the superscript )

{dk@rk)} is a function of g%— as well as sizing constraints. During the
i

one-dimensional minimization of the total mass with &« as a variable, the

method of Incremented Flutter Analysis is used to maintain the flutter speed

exactly at the desired value.

6.6.2 Present Form of Program - The resizing column Pﬁmi} is defined as

the sum of a basic resizing column {Ci} and an adjustment column G{Ai} .
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The elements of {Ci} satisfy the equation

(6.53) -

and thus would correspond to a zero change in flutter speed if V were a

linear function of the mi's.

The scalar & of the adjustment column

G{Ai} is determined such that

{an} = e} ofa} (6.5
results exactly in a zero change in flutter speed.
In the following the notation = =V ., 1is used.
Bmi mi
The design variables are divided in an R group and a Q group,
such that
(6.55)

The division between the

of V.. .
mi

The largest V_,
mi

by i = sp. The
inequality

wvhere VR 1is an
tion, that VR =
Appendix A. For
equals 1. Thus

satisfied belong

(v ) > (v )
Ml/ieq ml/ier

R and Q group lies within the positive range

Thus all design variables for which Vmi< 0 are in the R group.

is identified by i = m and the smallest positive Vmi

division between the R and Q groups is defined by the

-1
-1

v /v,
mm  mi
v /v
mm’ ‘msp

(6.56)

z VR

empirical value. It was found, by numerical experimenta-
0.3 'is an acceptable value for the test case reported in
i =m the left hand side equals zero; for i = sp- it
the design variables for which the inequality (6.56) is
to the R group.

The algorithm in Reference 18 is based on removing mass from each design

variable in the

6k

R group that is not at minimum size. Each mass removal is



individually coupled with a change of all design variaebles in the Q group
such that equation (6.53) is satisfied. Mass removal from a design variable

in the R group for which VmieR >0 requires addition of mass in the @Q

group. If V < 0 mass removal in the R group is compensated by mass

nmieR
removal in the Q group in order to satisfy equation (6.53).

The column matrix {C;r)} is the change in the design variables in

the Q group due to removal of mass from design variable r "in the R
group. In Reference 18 the distribution

C o=V (c, >0) (6.57)
m mm
is used if mass is to be added to the Q group (C_ >0 and V_, > 0) and
m mieR
A
m mq

if mass is to be subtracted from the Q group (Cm <0 and V_, 0).

mieR <
Equation (6.57) expresses that more is added to the design variables with
the higher values of V .. Equation (6.58) expresses that more is subtracted

from the design variables with the lower values of Vmi'

The distribution for removal of mass in the R group used in Reference 18
is:

2

N me *

cr = - < -V_> C (6-59)
mr

The foregoing leads to a basic resizing column that is the sum of two
columns that do not "overlap" and thus can be written as one column

c
l—-‘-l— (6.60)

r
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The column matrix {Cr} is given by equation (6.59); {Cq} by:

Vﬁr Vm Vﬁr
c =-c_ [X—2 1 -C_ X —— _ (6.61)
q ri V2 r{, n Vm
ev._>0 rev__<0
mr mr

" where nq is the number of design variables in the Q group.

Equations (6.59) and (6.61) define the basic resizing column {Ci} with
the scalar C¥* defining a magnitude.

If the value of C¥* is such that equation (6.59) leads to the violation
of minimum size constraints, that equation is only used for the elements that
do not violate the size constraints. The other elements are given values
corresponding to the minimum size constraints.

Violation of a minimum size constraint by design variables in the @Q
group is expected to be infrequent. The program, however, has provisions to
guard against such violation.

The distribution of the adjustment column & {Ai} 1s discussed in
Reference 18. In the numerical example in Appendix A"Ai = 0 except at
. . oV . .
i=m (max1mum 55—). It is suggested, however, that Ai = Ci for ieQ

and AAi = 0 for ieR is expected to be a better choice.

The value of the scalar 6 is determined by means of Incremented Flutter
Analysis. The determinantal flutter equation (according to equation (3.4)) is
written as:

p{(¥ + 1)x,8,7, pumtec, oA, | = 0 (6.62)

In equation (6.62), ¥ =0, g=0, V and p have given values; m?
are the values of the design variables at the beginning of the current
resizing step; C, satisfies equation (6.53). Equation (6.62) is solved by

two-dimensional Regula Falsi for k and 6 . The complete resizing column 1is
then determined by equation (6.54).
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If no size limitations become active, simple substitution of equa~
tion (6.59) into equation (6.61) shows that all elements of the resizing

column Ci are proportional to C¥, Different values of C¥ can be

assumed; {Aml:.:} = {Ci} + G{Ai} can be computed and M = I_l_l{mli{ +Am1;} can be

computed as a function.of C¥. This 1s, in principle, the one dimensional
minimization that determines the direction as well as the magnitude of the
resizing column. The total mass M does have a minimum due to nonlinear
effects, which are taken into account by means of Incremented Flutter Analysis.
c A o 1 :

When size limitations are active not all elements of {Ci} are propor-

tional to C¥* and nonalgebraic operations are needed to obtain M as a
function of C¥. The logic for this is presented in Reference 18. ‘

To facilitate initiation of the one dimensional minimization, a varilable
o= - % Cr is used. It is the total mass removed from design variables in

the R group and has a very simple relation to C¥. The quantity @ has a
simple physical meaning, independent of the number of design variables. An
initial value can be chosen as a fraction of the total mass represented by
the design variables.

The numerical example of Reference 18 is presented in the Appendix as
Table A-11. It suggests that the method is very powerful in reducing the
total mass by a large fraction (>80%) of the difference between the current
total mass and the minimum mass in a single step.

Although it 1s not essential to the overall method, it should be noted
that the program as described in Reference 18 uses the method of Incremented
Flutter Analysis to determine the values of 8V/8mi by means of a finite

difference approach (Reference 1).

6.6.3 Concluding Remarks - The approach taken in this method is distinctly
different from each of the other methods discussed, although it contains
elements of several of these methods. One distinguishing feature is that the
flutter speed is held exactly at the constraint value. In fact, this feature
is used to include the nonlinear character of the flutter speed as.a function
of the design variables and makes it possible to do a one-dimensional minimi-
zation of the objective function itself, rather than of a modified objective
function as in the penalty function method.

Another distinguishing feature is the departure from the traditional dis-
tributions in the resizing column, which are largely based on the gradient of
the velocity and the total mass. It has been demonstrated that empirically
generated distributions can lead to rapidly converging optimization procedures.
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A third feature is the use of Incremented Flutter Analysis. It is not
considered advantageous to use Incremented Flutter Analysis to determine the
derivatives of the flutter speed by the finite difference method. However,
Incremented Flutter Analysis, as executed with the help of the two-dimensional
Regula Falsi method for solving two nonlinear equations with two unknowns,
is an efficient method for keeping the flutter speed exactly constant. This
use of Incremented Flutter Analysis could be used advantageously in some of
the other methods of optimization: keeping the flutter speed exactly constant
facilitates the observance of a convergence criterion for minimum total mass
since side effects due to drift of the flutter speed are avoided,

6.7 Comparison of Optimization Methods

6.7.1 General - In comparing the optimization methods discussed in

Sections 6.2 - 6.6, many differences in procedural detail are apparent.
Specifically, differences in generating the distribution and magnitude of

the resizing column can be recognized. Of these two, however, the more basic
difference relates to the determination of the magnitude of the resizing
column, or step size. Several of the methods -~ the welight gradient optimiza-
tion of Simodynes (Section 6.3) and the velocity gradient, mass gradient and
gradient projection methods of Rudisill-Bhatia (Section 6.2) - employ arbitrary
step sizes. In contrast, the penalty function method (Section 6.4), the
method of feasible directions (Section 6.5) and the method incorporating
Incremented Flutter Analysis (Section 6.6) all make use of a step size deter-
mined by well defined criteria. In the following, these two groups are dis-
cussed separately and then a candidate resizing procedure is synthesized,
based on the analytical and numerical evaluations conducted thus far.

6.7.2 Arbitrary Step-Size Procedures - The resizing procedures employing an
‘arbitrary step size are characterized by a well-defined resizing cycle which b
is usually simple and straightforward. In general, one flutter solution .
(with two characteristic vectors) and one set of flutter derivatives are
required for each step. The procedures based on constant flutter speed
(Simodyne's weight gradient and the gradient projection search of Rudisill-
Bhatia) rely on a linearization, based on the flutter velocity derivatives,
to hold the flutter speed constant. As a result, the actual flutter speed
tends to drift (downward, in most practical resizing exercises) and must
periodically be corrected. It is this tendency which effectively limits
step-size, since large excursions from the required flutter speed.are unde-
sirable. Rather than attempting to maximize step-size, however, a moderate
step-size is chosen, based on experience and engineering judgment, and the
attendant penalty of an increased number of steps is accepted.

In terms of specific procedures, the Rudisill-Bhatia methods should be
somewhat more efficient than the weight gradient method of Simodynes. As
indicated in Section 6.3, the frequency constraint imposed by this latter
procedure results 1n a degree of approximation which probably cannot be
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Justified on the basis of the resulting simplifications. In the modified
procedure (Section 6.3.3), this frequency constraint is removed and the
resulting procedure is shown to be similar to the gradient projection

search of Rudisill-Bhatia. In comparing these two procedures, the Rudisill-
Bhatia approach has a significant advantage in that it does not require the
selection of a dependent design variable, and thus eliminates the resulting
influence of this choice on the performance of the procedure. The use of
the flutter velocity derivatives as developed by Rudisill-Bhatia, rather than
the normalized derivatives of Simodynes, has some advantage in a procedure
which incorporates a nonzero flutter velocity increment. This would be the
case when using the flutter velocity gradient to define a design variable
distribution to increase the flutter speed of an initially deficient system,
or to make small flutter velocity corrections during the resizing cycles.
For use in constant flutter velocity procedures, however, it is shown in
Section A.3.3, Appendix A, that the two forms of the derivative may be used
interchangeably.

The two most useful procedures employing arbitrary step size would then
appear to be the velocity gradient search and the gradient projection search
of Rudisill-Bhatia. As envisioned in Section 6.7.4, this former procedure
would not be implemented using an arbitrary step-size. The most useful
application of the velocity gradient search procedure is in increasing the
flutter speed of a flutter-deficient system to the required flutter speed in
a nearly optimum manner. It is shown in Section A.L.1, however, that the use
of a single step to accomplish this is probably the most effective procedure.
As a consequence, it seems reasonable to use the Incremented Flutter Analysis
technique (cf. page 43) to determine the step-size necessary to satisfy the
flutter speed constraint exactly. The gradient projection search could also
be improved by a modification of the resizing column such that the mass
gradient component is replaced by the reciprocal of the flutter speed
derivatives, resulting in a resizing column defined by equations (A.3), (A.h4)
and (A.5) of Appendix A. A comparison of Tables A-5 and A-8 of Appendix A
indicates that, at least for the idealized test case evaluated there, a
significant increase in efficiency results from this modification.

6.7.3 Defined Step-Size Procedures - In resizing procedures employing a
defined step-size, an attempt is made to maximize the step-size so as to
derive the maximum benefit from a single resizing step. This maximum step-
size is determined by a well-defined set of criteria, usually involving the
condition of the current design with respect to the design constraints.
Evaluating these criteria usually involves the determination of the flutter
speed, along with other constraint conditions, at several points along the
move path during one step. In contrast to the arbitrary step~size procedures,
then, the defined step~size procedures normally result in a greater mass
reduction for each set of flutter derivatives calculated, but at the expense
of a greater number of required flutter solutions.

Each of the three defined step-size procedures discussed in the preced-
ing sections has distinct characteristics, and meaningful comparisons are
difficult to make. Some general observations are possible, however, allowing
some tentative conclusions to be drawn.
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The penalty function procedure (Section 6.4) is perhaps the most versatile
of the three procedures considered. The treatment of constraints is straight-
forward, making automsation of the procedure particularly simple. A step is .
terminated before a constraint violation occurs, but the constraints are
continuously active and exert some influence on the direction of each resizing
step. The efficiency of the method is to a significant degree dependent on
the handling of the penalty term weighting factors associated with the con-
straints (equation (6.38)), so that some judgement and experience are both
required in the selection of these factors. A more troublesome difficulty
might be encountered in the use of the direction generating algorithm based
on Newton's method. As shown in equation (6.41), the matrix of coefficients
of the design variable second derivatives must be inverted, and it is
indicated in Reference 16 that this matrix may be singular or .ill-conditioned.
Although means to avoid this problem are suggested, computational difficulties
may still arise in practical design tasks involving large numbers of design
variables.

The method of feasible directions (Section 6.5) provides a treatment of
constraints which is different from that of either of the other two methods
considered here. For the flutter speed constraint (and presumably other
nonlinear constraints) the approach appears to be quite satisfactory. It is
similar to that of the penalty function method, in that the "push-off" factor
can be considered as analogous to the penalty weighting factors of that
procedure. In the feasible directions method, however, the move direction is
restricted to the usable as well as feasible region. As a consequence, each
move must reduce the objective function (total mass) as well as avoid a
violation of the design constraints. In contrast, the penalty function move
must reduce the modified objective function, but not necessarily the objective
function itself. For linear constraints, such as minimum sizing constraints,
the feasible directions method is formulated such that the constraints are not
active until a constraint violation occurs, and the resizing step is
terminated at that point. Prior to the constraint violation, the constraint
exerts no influence on the move direction and therefore such constraint
violations are normal occurrences. For the idealized test case evaluated
in Appendix A, this characteristic did not appreciably degrade the efficiency
of the procedure; only four sizing constraints became active during the
optimization, and a significant weight reduction resulted from each step. 1In
a more realistic design case, with a large number of minimum size constraints,
it is anticipated that a significant number of short, ineffective moves would
result from sizing constraint encounters. Once a linear constraint becomes
active, however, the constraint is incorporated in the move direction so
that subsequent moves take place along the constraint boundary. The conditions
imposed on the direction of the move vector result in design variable incre-
ments that, in general, are-equal in magnitude, are positive for the design
variables with the higher values of 8V/dm and are negative for the design
variables with the lower values of 0V/9m. Thus there appears a lack of
differentiation between the design variable increments with equal algebraic
sign. It should be noted, however, that the results of the numerical evalua-
tions described in Appendix A do not substantiate this lack of efficiency.
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The procedure incorporating the use of Incremented Flutter Analysis in
a formalized resizing procedure (Section 6.6) utilizes a concept to define
step-size which is significantly different from that of either of the other
two methods discussed here. In principle, a distribution of design variable
increments is defined which reduces total mass and which, on a linear basis,
produces no change in flutter speed. Since flutter speed is not a linear -
function of the design variables, however, any finite value of this incremental
distribution will produce (in all practical cases) a decrease in flutter
speed. For several values of the incremental distribution, the value of an
adjustment increment is determined by the Incremented Flutter Analysis tech-
nique which brings the flutter speed exactly back to the required value. For
some value of the incremental distribution the total mass will be a minimum;
this point defines the end of the step. By this means, the nonlinearities in
the flutter constraint are explicitly accounted for, and the maximum mass
reduction for a given set of values of the flutter speed derivatives is
achieved. In the process of determining the step-size associated with the
minimum mass, minimum size constraints are enforced as necessary. To that
extent, the direction vector of the design variables is a function of the
move amplitude, the direction conforming to the size constraints.

As presented in Reference 18 and as used in the numerical evaluations
of Appendix A, the method described in Section 6.6 differs in two other
respects from the other methods evaluated. The flutter derivatives are
obtained through the use of Incremented Flutter Analysis in the form of
increments in each individual design variable required for a reference change
in flutter speed. The results of the numerical evaluation indicate that this
finite difference form of the flutter derivatives results in values compa-
rable to those obtained from the analytic form, and that the two forms may be
used interchangeably. It is recognized, however, that the use of this pro-
cedure for obtaining the flutter derivatives - which requires the equivalent
of a flutter solution for each design variable - is not efficient for a
practical design task involving a large number of design variables. In such
a case, the use of the analytic form of the derivative would be more econom-
ical. The other area in which this method differs from those previously
discussed is in the formation of the resizing move vector. The separation
of the design variables into two groups, those with higher values of aV/dm
and those with lower values of 9V/dm, is empirical, and it is not clear
that the criterion used in Section 6.6 would be efficient in all cases. The
distribution of the increments for the design variables with the higher values’
of ©9V/9m 1is proportional to the velocity gradient, but the distribution for
the design variables with the lower values of 0V/Om is a second order
function of the reciprocals of the velocity derivatives. The results of a
numerical evaluation using the move vector of Section A.3.3, Appendix A, in
place of the move vector described in Section 6.6 indicate that the effi-
ciency of the two move vectors 1s approximately equal, at least in terms of
the idealized test case of Appendix A. In view of this, it is considered
that the more complex move vector presented in Section 6.6 is not justified
on the basis of present results.
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6.7.4 Formulation of a Resizing Procedure - Based on the evaluations
presented in this section and the results of the numerical evalustions
presented in Appendix A, a resizing procedure can be formulated’ which will’
result in an improved performance over that of any of the specific methods
discussed.” It is recognized that the evaluations of the resizing procedures
are not complete; any promising procedure must be further evaluated in terms
of a realistic design task in order to arrive at firm conclusions. 1In
particular, further evidence must be obtained to determine the relative
efficiency of the arbitrary step-size and defined step-size procedures.

For the time being, however, it will be premised that the problems associated
with a practical design task will dictate the use of a defined step-size
procedure. These problems, some of which are discussed in Section T, would
seem to indicate that the greatest possible mass reduction should be obtained
for each step, since the structural reanalysis required per resizing step may
e much more extensive than is generally recognized.

As qualified by the preceding paragraph, the preferred resizing pro-
cedure may be described in terms of the following characteristies:

Flutter speed derivatives are of the analytic type, calculated by the
method of Rudisill-Bhatia (Section 6.2), possibly generalized by taking into
account the derivatives of the vibration modes with respect to the design
variables.

The initial resizing step is one which increases the flutter speed of
the flutter-deficient design to the required value. This is done in a
nearly-optimum manner by the addition of design variable increments distributed
according to the velocity gradient. The total required flutter speed incre-
ment is obtained in a single step, and a form of Incremented Flutter Analysis
is used to determine the magnitude of the step required to satisfy the flutter
constraint exactly.

Subsequent resizing steps are performed at constant flutter speed, using
the technique of minimization of the objective function (mass) described in
Section 6.6 in order to determine the step-size. As discussed in that section,
the primary distribution of design variable increments is such as to produce
zero flutter velocity change on a linearized basis. Incremented Flutter
Analysis is then used to determine the magnitude of an adjustment column of
increments required to maintain the actual flutter speed constant. The
total mass of the design variables, including both the primary and adjustment
distributions, is determined as a function of step-size, and the step-size
corresponding to minimum mass chosen. Using this configuration as a starting
point, the resizing cycle is repeated.

The sizing constraints are satisfied in the manner of Section 6.6, with
the direction of the move vector being modified as constraints are encountered
during the minimization of the objective function. Note that the flutter
constraint is satisfied at each substep of the minimization.

The move vector for design variables corresponding to positive values
of ©9V/dm 1is based on the combination of the velocity gradient and the
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negative reciprocals of the flutter derivatives shown in Section A.3.3.
For design variables corresponding to negative values of 8V/dm, modified
distributions will be used, some options of which are discussed in Reference 1.
1 {

A summary discussion of this procedure and an example of numerical
results are presented in Reference 28.

T. CONSIDERATIONS RELATED TO A REALISTIC
DESIGN ENVIRONMENT

In the literature on optimization with flutter constraints, the methods
presented are illustrated with examples of varying complexity. One example
in Reference 16 is based on 156 structural degrees of freedom and 23 design
variables. The example in Reference 29 is based on 150 degrees of freedom
and 100 design variables. As much as these numbers surpass the corresponding
numbers in earlier examples in the literature, they fall short of what may be
encountered in a realistic design enviromment. Thus, problems that may result
from such an environment remain unexposed. During the present work, several
aspects of dealing with an actual design have been examined. They are dis-
cussed in the following sections, together with other aspects to which little
or no attention could be given.

T.l Structural Model

The mathematical model representing the structure obviously is an
important element of structural optimization with flutter constraints. Finite
element structural models with thousands of elements and a corresponding
number of nodal displacements as degrees of freedom are used for stress and
stiffness analysis of a given structure. A duplication of effort can be
avoided if the same structural model can be used for flutter optimization.

It should be noted that for a flutter analysis, or a loads analysis
including aeroelastic effects, the refinement of a multi-thousand element
structural model is not required. For the current type of subsonic transports,
a.relatively simple beam model suffices for fiutter. For supersonic trans-
ports, however, as are in existence and projected for the future, a simple
beam model is inadequate and a finite element model must be used. This
implies that methods of optimization for flutter must be able to handle finite
element type structural representation. '

The typical structural model for stress analysis has a number of degrees
of freedom that exceeds what at present seems practicable for the repetitive
vibration anelysis expected in a filutter optimization program. A reduced
number of degrees of freedom can be obtained by using a stiffness matrix of
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reduced size in the vibration analysis or by generating a coarser finite
element model for aerocelastic analyses, whic¢ch may or may not require further
size reduction. .

The common approach to coordinate reduction is one in which coordinates
to be eliminated are assumed to have zero loads. This is often called static
reduction in contrast with the approach of Reference 30; which can be called
dynamic reduction, since the reduction is a function of the frequency. If
the basic stiffness matrix [#b] is partitioned as indicated in equation (T7.1),

the reduced matrix, Kr-, is given by equation (7.2).

EKb] = -E;i E;z (7.1)

[Kr] - [kll] - LKle][kze]_l[kzl] F7.2)

If the incremental stiffness due to increasing the design variable Bi

a unit amount is L&Ki], the basic stiffness matrix, as a function of the
3i's is:
[5,8,)] = [k,] + 28, [ax,] (7.3)

where Bi is defined relative to a reference value.

In general, therefore, [Kr] is a nonlinear function of Bi due to the
triple product and inversion in equation (7.2). Thus,to compute [Kr(ﬁiﬂ,
the coordinate reduction represented by equation (7.2) must be repeated for
each combination of values of Bi'

In most flutter optimization procedures, the derivative of the stiffness
matrix, a_?i’-i[Kr(Bi)], with respect to mény design variables Bi is required.
The procedure is as follows:

Equation (7.2) is equivalent to

]+ B [5) [
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where
[6r] = :-[Kzz = [K | (7.5)

The derivative of the reduced stiffness matrix with respect to any
design variable Bi’ evaluated at a given combination of values of Bi, is

then defined by:

ap [ket6,)] = [omte)]" oy [omtsy)) (7.6

where AKi is consistent with equation (7.3).
The application of equation (7.6) is as follows. The incremental stiff-

ness matrices [AK&] are invariant during the optimization process. As a

new set of design variables, Bi’ is defined during a step in the optimiza-
tion process, [Kb] is computed according to equation (7.3) and [Kr] accord-

ing to equation (7.2). The reduced stiffness matrix [#r] can then be used

in a vibration analysis. The associated coordinate reduction matrix [GR]
is formed and used in the triple product of equation (7.6) to compute the

derivatives of E%] with respect to all design variables.

When the number of structural coordinates is not too high, the coordinates
to be eliminated can be restricted to those that are of no interest to aero-
elastic analyses and, in fact, can be considered unloaded. However, when the
structural model is designed for stress analysis it may be desirable to
eliminate coordinates that are of interest to aeroelastic analyses, such as
deflections perpendicular to lifting surfaces. This usually means that
coordinates must be eliminated that have associated inertis. If that is the
case, equations (T7.4) and (7.6) must be applied to the mass matrix as well
( Reference 31).

In using a coarse grid finite element model for aeroelastic analysis, the
aim is to reduce the number of coordinates to be eliminated to a minimum. In
a finite difference approach, as described in Reference 32, the only struc-
tural degrees of freedom are deflections perpendicular to the lifting surface.

75



Which approach will be favored in future optimization work is hard to
foresee. There seem to be three areas of investigation that could lead to

significant development.

It seems most advisable, because of the directness of the approach, to
speed up the computation of [%r(ﬂiﬂ. for arbitrary sets of ﬁi' in the basic
finite elemeﬁt analysis system. DPossibly approximate methods can be developed,

which are valid for a few resizing steps, after which an exact updating takes
place. It seems self-evident that the last updating in an optimization should

be exact.

A second area of investigation could be based on an approach used with
some success at the Lockheed-Californis Company. In it the reduced stiff-
ness matrix is approximated by a polynomial function of the design variables:

[k (80 ] [K00)] + 28, [a] + z28,8,[5,,] i

where the summation is over i =1-n and J = 1l--n.

Such a polynomial can be an acceptable approximation over limited ranges
of the values of the design variables. Since the stiffness is represented as
an explicit function of the design varisbles, it can readily be evaluated for
any arbitrary combination of wvalues of Bi. The derivative of the stiffness

matrix is:
5g—i- [Kr(Bi)] = [Ai] + ZBJ[B:_LJ] C(7.8)

One element of EKr(Biﬂ is approximated by

K (Bi) zKr(O) + A ¢+ zrsiBiBiJ (7.9)

To determine the values of the coefficients Ai and Bij’ Kr(ﬁﬁ)
must be computed for n+n2 values of ﬁi. Thus, to define the polynomial

expression in equation (7.7) it is necessary to compute [kr(ﬂi)] for

l+n+n2 linearly independent columns {Bi}’ with the help of equations (7.3)

and (7.2).
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On an arrow wing, where design variables were torsional and bending
stiffness over certain areas of the outer wing, it was found there was little
coupling between the design variables. When that is the case equation (7.7)
can be written as:

[Kr(Bi)] = [Kr(O)] . z(ﬁi[Ai] + B?[ci]) (7.10)

Only 1+2n evaluations of- [#r(ﬂi)] are necessary.to compute [Kr(Oﬁ
and all the coefficient matrices [A%] - and [Ci] in equation (7.10).

A third area of investigation is the use of the aerocelastic model. 1In
that case it seems mandatory that a direct two-way relationship be developed
between the sizing in the stress model and the sizing in the aerocelastic
model.

T.2 Multiple Flutter Speed Constraints

Although the problem of multiple flutter speed constraints is addressed
in the literature (e.g., Reference 33), examples in the literature, used to
illustrate methods of optimization for flutter, are all restricted to one
flutter speed. Often it is indeed possible to eliminate all flutter con-
straint violations by eliminating the most critical flutter speed. In gen-
eral, however, the possibility of more than one active flutter speed constraint
must be anticipated.

Formally, the penalty function method (Section 6.4) and the method of
feasible directions (Section 6.5) have built-in capability to handle multiple
flutter speed constraints. The other methods discussed in Section 6 require
added logic to handle multiple flutter speed constraints.

Reference 34 makes use of the multi-constraint capability of the penalty
function method by requiring that the flutter roots for selected values of
the reduced frequency, k, correspond to combinations of speed and damping
that provide adequate damping within the flight envelope (see also Section T7.3).

The optimality criterion for one flutter speed constraint is:

av_  _ oV
Bmi ~ 8nm (7.11)

J

where i and j refer to free design variables, i.e., design variables that
are not at a sizing constraint (References 29 and 1).
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For two flutter speed constraints the optimality criterion is
(Reference 1):

1 101
ov, oV, a8V, .  (r12)
aml 6m2 8m3

8V2 8V2 8V2
aml i)m.2 am3

Equation (7.12) must be satisfied for any combination of three free
design variables. It is satisfied if:

8Vl . 8V2 ) 8Vl . 8V2 (7.13)
om, om, om, om, e
i i J J

Extension of this criterion to more than two flutter speed constraints

is straightforward.
8Vl 8V2
It was found that the value 55—-+ B determines the resizing column
i

that is generated by the feasible direction method of Reference 17 (Sec-
tion 6.5) with a push-off factor @ = 1. It is believed that this value can
also be used in defining a resizing column if the optimization is based on
the methods discussed in Sections 6.2, 6.3 and 6.6. This is further discussed

in Reference 1.

To demonstrate multiple flutter speed constraint capability, the numerical
examples must relate to a realistic design environment in which two or more
in-flight modes lead to flutter speeds below the minimum required flutter
speed. These in-flight modes may be unrelated flutter modes for a particular
weight configuration of the airplane and one particular Mach number, or they
may be related or unrelated flutter modes for more than one weight configura-~
tion end Mach number.

7.3 Damping Constraints

In the discussions in Section 6, the emphasis is on flutter speed con-
straints. This is in recognition of the flutter speed margins as defined by
the Federal Airworthiness Regulations and military specifications. The
requirements of the Federal Airworthiness Regulations are illustrated in
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Figure T-1. The airplane shall be designed to be flutter free within the
altitude-speed envelope defined by M30’ 1.2 MD’ 1.2 VD and h = ~3100 m

(~10,200 ft). 1In addition to this flutter speed requirement there is an

implied requirement for adequate modal damping within this envelope. This
is illustrated in Figure T7-2: for all flight conditions within the flight
envelope there must be a certain amount of positive damping. In k-method

terminology this means g = 8 ax’ and in p-k-method terminoclogy Y < ymax'
Both g and Y are negative quantities. From the definitions of g
max max
and Y it follows that for small values g = 27
To satisfy the general damping constraint, the inequality constraint

Y s Whax (or g < gmax) must be invoked at several speeds below 1.2 VD’
for all in-flight modes of interest, for several Mach numbers and for the
airplane weight configurations to be considered. In a realistic design
environment this may lead to hundreds of inequality constraints. It is

obvious there are practical difficulties associated with that many constraints.

Experience shows that usually only very few damping constraints are
active and they are associated with hump modes. Sometimes damping constraint
violations by hump modes disappear as the structure is resized to eliminate
the most critical flutter speed violation(s). In anticipation of the need
for invoking a minimum hump mode damping constraint, Section 3.4 presents a
procedure to directly determine the minimum damping of a hump mode.

The optimality criterion for an active damping constraint is:

Y . _98Y
om,  om, (7.14)
i J

where i and J refer to free design variables. It corresponds to the
optimality criterion for a flutter speed constraint, the derivation of which
(given in Reference 1) can be generalized to arbitrary constraints.

For a combined flutter speed and damping constraint, the optimality
criterion is:

1 1 1
av. v v
aml om om
=0 (7.15)

oY oY oY
le Ym Ym
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Equation (7.15) must be satisfied for any combination of three free
design variables. It is satisfied if

ov _ oY _ 8V Y
om. ¥ Com. =~ m. * Com. (7.16)
1 i J J

Here C 1is an arbitrary constant that can be used to create compatible
units or to assign a different weighting to the two constraints.

In several methods of optimization this criterion can provide a guide
towards generating a resizing column.

-Further development of a practical method .of including damping con-
straints in flutter optimization should be based on numerical examples in a
realistic design environment.

T.4 Mass Ballast

The literature pays little or no explicit attention to ballast (dead
weight) as a design variable. The reason for this omission is understandable:
any method of optimization that can handle design variables representing
related stiffness and mass changes can handle a design variable representing
a mass change only.

Adding mass ballast may be a more efficient way of raising the flutter
speed to its required value than structural stiffening. That appeared to be
the case on one of the United States supersonic transport designs and in the
example treated in Reference 29. In the latter case, however, it is not clear
whether the modified strength requirements due to the addition of ballast are
accounted for. Reference 29 demonstrates a potential complication associated
with mass ballast as a design variable: as ballast 1s added in a particular
region, the flutter speed derivative with respect to the mass ballast changes
from negative to positive. As stated in Reference 29, if this phenomenon
occurs, an automated resizing procedure may fail to recognize the beneficial
effect of a larger amount of ballast since an infinitesimal amount of ballast
proved to lower the flutter speed. Until this aspect of flutter optimization
has received more attention, considerable engineering judgment should be used
in handling mass ballast as design variables.

In view of the preceding paragraph, it may be convenient to first consider
stiffness design variables and their associated masses only for raising the
most critical flutter speed to the desired value and the subsequent optimiza-
tion at constant flutter speed. Starting with the original deficient con-
figuration, it is then determined whether any mass change without stiffness
change is more efficient than the most efficient stiffness change in raising
the flutter speed to the desired value. Incremented Flutter Analysis can be
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used to directly determine the amount of ballast needed to meet the flutter
constraint, regardless of any changes in sign of the flutter speed derivatives
as a function of the amount of mass ballast. If mass ballast is more effec-
tive than optimum stiffening, the mass ballast design variables of interest
can be added as design variables for a final optimization process.

T.5 Interface With Strength Optimization

Combined optimization for flutter and stress has been demonstrated with
simple structural models and/or under simplifying assumptions (References 9,
16 and 29).

In References 9 and 16 the penalty function method is used and, in order
to reduce the number of stress constraint derivatives to be evaluated, the
stress constraint is reduced to one constraint per loading condition. The
effect of this can be easily seen in the following formulation of the penalty

function approach.

The modified objective function may be represented by:

n n n
}: I‘V o 2: T
¢(m,) = m, + V) - v + = + — = (7.17)
e R R = R D e
where:
V(mi) = flutter speed
VR = minimum desired flutter speed
o,(m,) = stress in jth element j =1 ... n.
qj = maximum allowable stress in Jjth element
m, = design variable; mass associated with ith design element;
+ i=1...n.
ﬁi = minimum allowable value of m,
rys ro, rm = penalty weighting factors
v
It is understood that in equation (7.17) there are as many o) v
i R
n
I‘(.T
terms as there are flutter speed constraints, and as many 2 o
=1 % " T
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terms as there are design load conditions. For this discussion it is suffi-
cient to assume one flutter speed constraint and one design load condition.

As a part of the determination of the resizing column, the partial

derivatives 8¢(mi)/8mi are used.

n
r
a¢=l— \'A ov 0 ) (2 m

% + — . (7.18)
om; (V(mi) - VR)2 om; Omy o o - glmy) (m; - ﬁi)g

For each design variable, one derivative gg— and n derivatives
r i
9 = g must be evaluated. Thus a total of n flutter speed
ami o-j - onmiS

. . 2 . .
derivatives and n stress derivatives must be evaluated. In References 9

and 16 the number of stress derivatives is reduced to n by evaluating the
derivatives by means of finite differences but performing the differentia-
tion after the summation; i.e., the following identity

n
5 25 gy r& 865

™M s

(7.19)

which requires the evaluation of n derivatives per single design variable,
is replaced by the finite difference representation:

n n
T r
0

o 1 ) (4 _

o - o.(m, + 6m.)
J J 1 1

n

e
e 0. - 0.(m,)
J=1 7J J 1

S _ = (7.20)
omg g=1 Oy = Glmy) o omy |4

requiring the evaluation of only one derivative per single design variable.
This substitution does not affect the one-dimensional minimization that is
part of the method used in Reference 14, but it does affect the direction
of the resizing vector. Instead of each elemental stress contributing

0
individually to 5%—, one contribution representing an average stress

penalty term is used. No studies investigating the effect of this substitution
have been reported.
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In Reference 28, the optimality criterion gg- = constant for all i is

used in the flutter optimization and the fully-stressed-design criterion for
strength optimization. The two optimizations are performed alternately until
a converged design is obtained.

The fully-stressed-design criterion does not, in general, lead to a
minimum weight structure, at least not for a redundant structure (Refer-
ence 35). Furthermore, without further investigation there is little ground
for expecting that alternating flutter and strength optimization will lead
to a converged design if both flutter constraints and stress constraints
are active. This leads to the conclusion that ideglly flutter and strength
optimization should take place simultaneously as is done in References 9
and 16.

Tt would seem that the adequacy of the methods of References 9, 16
and 29 has not been demonstrated when applied to a practical design problem.
Conceptually the methods of References 9 and 16 allow as many stress con-
straints per load condition as there are independent stress constraints
(which may be larger than the number of elements). Thus the number of inde-
pendent stress constraints can be very large. This has led to the definition
of one stress constraint per load condition, which, however, removes the
possibility of independent stress constraints contributing individually to
the move vector direction. Possibly other composite stress constraints can
be defined such that the number of derivatives to be evaluated is reduced
while retaining the contribution of each constraint to the move vector
direction.

Additional investigations in the areas of structural modeling and combined
optimization for flutter and strength are needed before conclusions regarding
the best approach can be formulated. Such conclusions should be based on the
results of analyses in a realistic design environment.

8. COMPUTATIONAL ASPECTS OF THE FLUTTER TASK

The purpose of this section is to delineate the computational aspects of
the complete flutter task, which includes flutter analysis as well as struc-
tural synthesis, i.e. the design of a structure that satisfies the flutter
requirements. Although the subject of this report is flutter optimization,
i.e. structural synthesis aimed at a minimum weight structure that satisfies
the flutter requirements, it is useful to include flutter analysis, or flut-
ter survey, in this discussion, since there is a large common data base and
many common analytical tools.

Structural design aimed at satisfying flutter requirements must, to result

in a viable airplane, also take into account strength requirements and require-
ments related to manufacturing cost. Examination of a merit function that
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combines structural weight and manufacturing cost falls outside the scope of
this study. The interface between structural synthesis with strength con-
straints and synthesis with flutter constraints is discussed in Section T.5.
There it is concluded that additional investigations in the areas of struc-
tural modeling and structural optimization with combined flutter and strength
constraints are needed before the best approach to total structural synthesis
can be formulated. The organization of computer programs and modules dis-
cussed in this section as a possible basis for definition of specifications
for computer software envisions combining flutter optimization with satis-
faction of stress constraints.

8.1 The Complete Flutter Task

The complete flutter task can be considered as being composed of three
subtasks, subsequently to be discussed:

1. Flutter survey of the original design.
2. Initial structural resizing to satisfy all flutter requirements.
3. Flutter optimization: weight minimization while explicitly satisfying

flutter requirements and not violating strength requirements.

8.1.1 TFlutter Survey - The original design is defined by the external
geometry, by a structural mass distribution derived by satisfyling strength
requirements, by an additional mass distribution representing fixed, non-
structural airframe masses (e.g. powerplants, control system, furnishings)
and mass distributions representing useful loads (e.g. fuel, payload).

The flutter survey is a series of flutter analyses sufficient to identify
any flutter deficiency that may exist in the original design over a range of
operating conditions. Although details of the actual execution of the flutter
survey may be different for different engineering facilities, it is believed
that the flow diagram in Figure 8-1 is generally applicable. The general
procedure is not new; it is discussed here in order to relate it to the overall
design process. In Figure 8-1 oval boxes define engineer action points,
although not necessarily manual operations; rectangular boxes represent com-
puting modules. The computing process can proceed from one module to the next
without engineer action, although an engineer's review may be inserted at
any point.

Starting with the design definition box in Figure 8-1, the engineer pro-
ceeds to prepare, not necessarily manually, structural model data, inertia
data and aerodynamics data. The structures module forms the stiffness and
inertia matrices that are used in the vibration analysis. It performs, if
necessary, the static coordinate reduction to keep the number of degrees of
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freedom for the vibration analysis within a practical limit. The structures
module may also form the inertia matrix associated with the masses of the
structural elements. If this is the case, the inertia data prepared by the
engineer refer to nonstructural and useful load masses only. Inertia matrices
for a number of useful load configurations, chosen on the basis of experience,
and the output of the structures module are input into the vibration analysis
module and vibration analyses, leading to natural frequencies and vibration

modes, are performed.

The natural frequencies and vibration modes can be reviewed by the
engineer for checking purposes and, after the flutter analysis, for obtain-
ing a better understanding of the flutter behavior of the airplane. In the
case of a final design, the results of the vibration analysis can be com-
pared with the results from ground vibration tests. From an analytical point
of view, however, the vibration analysis is only necessary if the original
number of degrees—of-freedom exceeds a practical 1limit for the flutter
analysis. In that case, the vibration modes associated with the lower vibra-
tion frequencies are, in general, used as generalized coordinates for the
flutter analysis. The output of the vibration analysis can be formulated to
include generalized stiffness and inertia matrices. In that case, the func-
tion of the generalized-matrices module is to form only the generalized aero-
dynamics matrices. However, to be more generally useful, this module should
also include the capability of generating generalized mass and stiffness
matrices by pre- and postmultiplication by modal matrices. This capability
may be used if the generalized coordinates are not updated after each resizing
step. In view of the options available for forming the generalized aero-
dynamics matrices (Section 5.3), the generalized-matrices module may do more
than a pre- and postmultiplication by the modal matrices obtained from the
vibration analysis. Consequently, the output of the aerodynamics module
may be a set of [HAW] matrices (Equation (5.16)) for discrete values of the
reduced frequency k, or may be a set of basic aerodynamic influence coeffi-
cient matrices [AIC(k)] and matrices [H], [DX] and [DZ] (Equations (5.8)
and (5.32)), or any combination between these extremes as discussed in
Section 5.4.4. The aerodynamics data preparation consists of defining aero-
dynamics grid systems for the downwash collocation points and the aerodynamics
loads points, and the selection of Mach numbers for which the flutter analysis
will be performed. Structural grid data are input into the aerodynamics
module to form the grid transformation matrices [H], [DX] and [DZ .

Static reduction of the stiffness matrix is a generally accepted method
of reducing the number of degrees of freedom in the vibration analysis.
Reference 36 presents an alternative that is worth. consideration. In the
approach of Reference 36, no reduction of the stiffness matrix takes place;
in fact, the complete stiffness matrix is not assembled. Instead, the output
of the structures module is a collection of submatrices that are used directly
in the vibration analysis module to compute generalized stiffness and inertia
data, and vibration modes.
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From the generalized-matrices module the flutter survey procedure
enters the flutter analysis module. The flutter analysis module should
. contain an interpolation routine for computing the generalized aerodynamics
matrix for arbitrary k +values. The flutter equation is solved by any
suitable method and the output is a series of f-g-V diagrams (Figure 3-1)
for different Mach numbers, different distributions of useful load and'for.
symmetric, anti-symmetric and possibly asymmetric modes.

Figure 8-1 indicates three potential reanalysis loops. Any realistic
procedure must account for the possibility that the initial choice of input
parameters does not provide sufficient definition of the flutter character-
istics of the original design. It is possible that the initial choice of
k-values or speeds for which the flutter analysis is performed is insuffi-
cient to determine flutter speeds or minimum damping in hump modes. Thus,
review of the flutter analysis results may require return to the flutter
analysis module for improved definition of the f-g-V diagrams. Review. of
the results may also indicate the need for including more Mach numbers,
inertia configurations associated with different useful load distributions,
or stiffness matrices in the flutter survey. The possibility of including
more than one stiffness matrix follows from the fact that failed conditions
must be considered.

After sufficient flutter data have been generated, it is determined
whether any flutter deficiencies exist. If there are no deficiencies, the
flutter task is completed, unless design changes occur which make it neces-
sary to repeat the flutter survey. Since the first survey resulted in
engineering familarity with the flutter characteristics of the design,
additional surveys usually can be restricted to fewer combinations of inertia
configurations, Mach numbers and failed conditions than were investigated
during the first survey.

If there are flutter deficiencies, a structural resizing is initiated
which is aimed at satisfying all flutter requirements.

8.1.2 Initial Structural Resizing - If the flutter survey of the original
design indicates the presence of flutter deficiencies, it is desired to remove
these deficiencies with a minimum weight penalty. Reference 1 indicates that
it is theoretically possible to attain a minimum weight design by judiciously
adding structural mass in small gquantities to those structural elements that,
at each step, are most efficient in removing the deficiencies. For a struc-
ture with a large number of design variables and several flutter deficiencies,
this is, however, an impracticable approach. It is more efficient to first
generate, in one or very few resizing steps, a structure without flutter
deficiencies, but not necessarily with minimum weight, and then minimize the
weight while avoiding flutter deficiencies. Most methods of flutter optimiza=-
tion discussed in this report are based on this approach.

Two types of flutter deficiencies are recognized: 1) too low a flutter

speed (Vf < VR) and 2) insufficient damping at the top of a hump mode
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(yhump top > Vo allowed). Although both deficiencies are undesirable, the
flutter speed deficiency occurs more frequently and is emphasized throughout
this report. Optimization techniques aimed at satisfying flutter speed
requirements can be generalized to include damping requirements. In this
discussion, reference will be made, for convenience, to flutter speed require-
ments, or constraints, only.

Experience at the Lockheed-California Company, related to a realistic
design environment, suggests that on the basis of engineering judgment, one
flutter deficiency often can be identified as being most critical. That is,
for a particular Mach number and useful load configuration there exists a
deficiency, the removal of which is expected to result in all flutter defi-
ciencies being removed. ‘If this is not the case, then one or more additional
applications of the following approach will lead to a design without flutter
deficiencies. Neither case, in general, leads to an optimum design.

Reference (1) indicates that a resizing column
ov

.Anﬁ = C ammc (8.1)
i

where Vmc is the most critical flutter speed, and C defines a magnitude

ov
is an efficient initial resizing. The column Bmmc

such that Vmc = VR’

is recognized as the gradient of the flutter speed. Other distributions

i
of Ami, however, may be considered, e.g.,

av

s me 1
An& = C.positive elements of ami - avmc/ami (8.2)

If it is difficult to define one most critical flutter mode, a resizing
column based on a weighted sum of two or more flutter speed gradients may be
a better approach. In any case, initial resizing should take into account
the efficiency with which design variables can increase the flutter speed
and, thus, it is necessary, at this stage, to define design variables and to
determine partial derivatives of the flutter speeds with respect to the design
variables. In general, the initial resizing column can be defined as:

BVj .
Ami = C{f 55; (8.3)

where the subscript J refers to the flutter speeds that are less than the
required speed.
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The initial resizing procedure, again, may be different for different
engineering facilities and it probably depends, in its details, on the pre-
ceding flutter survey procedure as well as on the subsequent optimization
procedures to be used. With this in mind the essential features of the pro-
cedure are shown in the flow diagram of Figure 8-2. Note that in Figure 8-2
oval boxes still indicate engineer action points, but the rectangular boxes
no longer define computational modules but computing activity in general,
and no attempt is made to define specific modules.

The endpoint of Figure 8-1 is the starting point for Figure 8-2: review
of the flutter survey results. If there are flutter deficiencies, design
variables may be defined and most critical flutter conditions selected. To

ov,
generate the flutter speed derivatives 5ﬁi’ the characteristic roots and

vectors corresponding to the flutter points must be determined (e.g., by the
two-dimensional Regula Falsi followed by a subroutine for determining char-
acteristic vectors). In addition, derivatives of the mass, stiffness and
aerodynamics matrices are required. If there is a static reduction of the
stiffness matrix,the static reduction matrix must be explicitly generated
in order to compute the derivatives of the reduced stiffness matrix. The

ov,
flutter speed derivatives 554- can be computed following the formulation of
i
Reference 1L, a compact version of which is included in Reference 1. The
v,
analyst may want to review the values of gﬁi before deciding on the direc-
i

av,
tion of the resizing column, f<%ﬁi> » or it may be formed automatically
i

by the program. Incremented Flutter Analysis (References 1 and 4), is a con-

venient method of determining each C, that results in Vj = VR . If

om,
i

ov, d
f(}—i> contains only positive elements, the largest value of Cj deter-
mines the resizing column Lﬁmi} according to equation (8.2) which results

in all V, = VR . If there is uncertainty about this result, the structure
J

is incremented by P&mi} and a new vibration and flutter analysis is per-
formed for selected combinations of Mach number and useful load. If necessary,

more critical flutter speeds Vj are selected and the process is repeated.

The procedures described, and illustrated in Figure 8-2, are aimed at a
one-step resizing to reach the goal of satisfying all flutter requirements.
Variations of this procedure are possible but would include the same basic
computational modules.

e
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8.1.3 Flutter Optimization - Of the three subtasks discussed in this section,
the flutter optimization task is most dependent on the computational methods
adopted by an engineering facility. However, this method dependency is
mainly concentrated in the actual resizing procedure with a constant set of
generalized coordinates (invariant vibration modes). The structural analysis
and vibration analysis, to be repeated several times during the optimization
task, can be defined in general terms, relatively independent of the resizing
procedure used.

The methods of optimization discussed in Section 6 deal with only a
small aspect of the optimization task, namely, the resizing when given a con-
stant set of generalized coordinates (i.e., invariant vibration modes). It is
most likely that modal updating is necessary (Section 4). If a static reduc-
tion of the stiffness matrix is used to reduce the number of degrees of
freedom in the vibration analysis (Section 7.1), the reduced stiffness matrix
may be a nonlinear function of the design variables. This results in addi-
tional computations to determine derivatives of the stiffness matrix and
possibly the inertia matrix. '

In this section the overall flutter optimization task, except for the
resizing for a constant set of generalized coordinates, is delineated under
the following assumptions: ’

1. There will be modal updating.

2. Static reduction of the stiffness matrix is required.

3. For each resizing step the derivative of the reduced stiffness matrix is
determined exactly (Equation (7.6)).

Iy, No static reduction of the mass matrix is required.
5. There is one active flutter speed constraint.
6. Strength requirements are satisfied.

Keeping in mind these assumptions, a flow diagram is formulated (Fig-
ure 8-3) that delineates those computational steps that are considered
independent of the method chosen for determining the resizing steps, given
the flutter speed derivatives., Several of the computations indicated in
Figure 8-3 are identical to those in Figure 8-2.

The inputs into the flutter optimization task are: +the starting stiff-
ness and mass matrices that are output from the initial resizing task; the
incremental stiffness and mass matrices; the basic aerodynamics input; and
the aerodynamics derivatives input.

The starting (first current) stiffness and mass matrices are used to

define generalized coordinates via a vibration analysis. These generalized
coordinates along with the associated generalized stiffness and mass matrices,
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and the basic aerodynamics input are used to obtain a point solution of the
flutter equation and the associated characteristic vectors. The character-
istic vectors are combined in turn with the incremental stiffness matrix

pre~ and postmultiplied by the static reduction matrix [?R], with the
incremental mass matrix, and with the aerodynamics derivatives input, to form
the derivative scalars (See Reference 1). The flutter speed derivatives are
formed and input into the resizing module. Other inputs into the resizing
module depend on the method of optimization used, but include minimum size
constraints equal to the original design, i.e., before the initial resizing,
and program control parameters to be chosen by the analyst.

The resizing module generates a column of design variable increments
defining one step in a resizing process that usually comprises. several steps.
The total mass associated with the new values of the design variables is
compared with the previous total mass. If the total mass has not converged
to a minimum, the design variable increments are used to generate new current
stiffness and mass matrices and the process is repeated.

Satisfying the stress constraints can be accomplished in various ways.
One approach, which does not involve the resizing module, is shown in
Figure 8-3. In it, when a minimum total mass is reached, the loads and
stress analysis is redone. Due to stiffening of the original design, there
may be stress violations due to redistribution of internal loads or changes
in the external loads. Where such violations occur, the element sigzes are
increased to satisfy the stress constraints and new current stiffness and
mass matrices are formed and the flutter optimization is repeated using
updated minimum sizes. After a new convergence on a minimum total mass, the
stresses are checked again and, if necessary, the entire process is repeated.
The increased element size will, in general, cause a change in flutter speed.
This is expected to be small, since the stress violations are most likely to
be in elements that have not increased in size during the flutter optimiza-
tion and, thus, are ineffective in changing the flutter speed.

In another approach there is a strong interaction between a stress
analysis module and the resizing module such that each resizing step is con-
strained such that stress constraints are not violated. Two possibilities
can be distinguished: the loads are assumed constant or the loads are recal-
culated at each step. In the former case the loads and stress analysis shown
in Figure 8-3 must follow the flutter optimization as described in the previous
paragraph.

It is noted that the aerodynamics input, in Figure 8-3, is not defined
in terms of specific matrices. The discussions in Section 5 and Reference 1
indicate that there are many options for formulating the matrices of general-
ized aerodynamic force coefficients, and it is considered outside the scope
of this discussion to present a definite choice. It 1s worthwhile noting,
however, that if cubic spline interpolation is used for the aerodynamics,
the basic aerodynamics input and the aerodynamics derivatives input are

identical matrices.
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Since no recommendations for a specific method of optimization are made
as a result of this study, a further definition of the resizing module, in
Figure 8-3, is considered to fall outside the scope of this report.

8.2 Aspects of the Computing System

General aspects of the computing system required to perform the flutter
task are discussed without attempting to define detailed specifications for
such a system.

When pfoberly'divided into well defined building blocks the complete
flutter task, including the optimization, is relatively straightforward,
inviting extensive automation. The flutter optimization task seems especially
well suited for complete automation. It is questionable, however, whether
the actual design experience available is sufficient to decide on all aspects
of the optimization task and to embark on the design of a computing system
that can handle efficiently a structural design that is defined by several
thousands of finite elements. In view of this the Lockheed-California Company
has first developed a semi-automatic system, based on its Computer Graphics
system. It has been used on the configuration upon which the numerical
examples of Appendix A are based, on an arrow wing supersonic transport study
(Reference 1) and on an actual hardware problem. The authors believe, how-
ever, that a batch process system with maximum automation options is a
desirable design asset, even if in its initial version it is somewhat
restricted in the number of structural degrees of freedom, design variables
and flutter constraints it can handle. In this section some aspects of a
batch process computing system are discussed.

An engineering facility that already has a computing system for flutter
analysis (flutter survey task) may want to restrict its batch process system
to the initial resizing task and the flutter optimization task. This, how-
ever, seems only justified if the data input and output of the existing flut-
ter analysis system can easily be made compatible with the input requirements
for the other tasks. Since the repetitive analyses associated with flutter
optimization put extra emphasis on computational efficiency, a facility may
decide to update its flutter analysis system as part of the introduction of
a flutter optimization capability. In the following it is assumed that a
batch process system for the complete flutter task is to be designed.

When comparing the flow diagrams in the Figures 8-1 through 8-3 it is
clear that the three tasks represented in these three figures have a large
number of computational functions in common. Thus, the first point of con-
sideration is whether three independent programs should be developed within
an existing computing system or whether one program, or a new system should
be developed for the complete flutter task. The choice depends on what
computing system is available at a facility and, to a certain extent, personal
preferences of the engineers. From a practical engineering point of view it
seems self-evident that, whatever course is chosen, data format compatibility
is mandatory and that a data management system is required.

95



In selecting a computing system for the complete flutter task, con-
sideration should be given to a system that has access to an existing matrix
algebra computing system. If this access is not available, the complete flut- '
ter task system should include some generalized matrix algebra capability to
enable the user to depart from a rigid format.

In designing a computer system for the complete flutter tésk, two
approaches can be distinguished: Self-Contained Programs and Variable Job

Stepping.

In the first approach, which is the more common of the two, there may
be a self-contained program for each of the subtasks comprising the complete
flutter task, or some or all subtasks may be combined into one self-contained
program. Each program has its own executive module which controls calling
into core the various computing modules (sub-programs) as they are needed
during the entire computer operation for that program. Organizing the com-
plete flutter task in one program with one executive module would result in
a very large program with some complex input/output interface problems as well
as core overlay problems. If existing batch programs are to be integrated
into such an overall computing program, extensive modification might be needed
in order to resolve some of these problems. If the complete flutter task is
covered by more than one program, automatic transfer from one program to
another might prove impracticable, thus limiting the overall automation
attainable., Since engineer reviews are required during the computational
effort, however, this may not be an important limitation. Consideration must
be given to the degree of commonality between modules in the separate pro-
grams that perform the same function. PFailing to achieve complete commonality,
e.g., due to different overlay requirements, increases the effort needed to
update a functional module.

Variable Job Stepping consists of a number of separate computer programs
each representing a computing module, such as those defined in Figure 8-1,
which are controlled by another program called the Executive. Variable Job
Stepping, therefore, is a sequence of separate computer job steps in which
each job step is a function of the preceding job step(s) as determined by
the Executive Module. The Executive Module (a separate program) monitors
the task completion codes of the preceding steps and, based on the instruction
code supplied by the engineer, determines which computing module is next
required. Prior to transferring the control to the computing module, the
Executive Module prepares the input data for that computing module in accor-
dance with its data format requirements. The Variable Job Stepping system
is inherently modular in approach. To add another module, only the Executive
Module (program) needs to be modified and reloaded as a new executable pro-
gram in addition tc the new computing module. Existing batch process programs
can be included in a Variable Job Stepping system with little modification to
the batch programs. If a new method for computing, say, aerodynamic matrices,
becomes available, again only the Executive Module needs to be modified. It
is also worth noting that each program within the Variable Job Stepping system
could be executed as an independent program outside the Executive Module
Control. Figure 8-U illustrates the principle. The Executive is loaded and
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calls in the next module needed, say C, which is loaded over the same space
as was occupied by the Executive Module. When module C has completed its
task it calls back the Executive Module, at the same time giving it instruc-
tions that depend on the output of module C. The Executive Module calls in
the next computational module, again while annihilating itself from core.

Which of the two approaches discussed 1s preferred depends on many
factors and, without a more in~depth look at the details of the computing
system, cannot be determined at this time.

As stated above, the complete flutter task is relatively straightfor-
ward, when properly defined, and will, in principle at least, not give rise
to great programming difficulties. The great challenge in designing the
system lies in maximizing its capacity, in terms of number of structural
coordinates, design variables and flutter constraints, while keeping computing
cost reasonable. This does require a very efficient use of all computer
resources: maximum utilization of available core, efficient input/output
routines, systematic labelling and external storage of data blocks, efficient
compacting of data blocks (e.g. sparse matrices), ete. Obviously, close
cooperation between experts in flutter analysis, optimization procedures and
computer programming is required in order to obtain an efficient computing
system.

9. CONCLUSIONS AND RECOMMENDATIONS

Based on the investigations and evaluations performed during this study
and augmented by the additional supporting activities conducted concurrently
at the Lockheed-California Company, it is concluded that an efficient,
practicable flutter optimization module can be formulated and implemented
with a reasonable amount of further development. Some of the particular con-
clusions supporting this general conclusion are presented in the following:

Aerodynamics parameters may be efficiently represented by the five-
matrix product shown in equation (5.12). The most efficient method of imple-
mentation of this equation depends upon a complex relationship involving the
numbers of aerodynamic integration points, downwash points, generalized modal
coordinates, discrete structural coordinates and reduced frequencies used,
as well as the interpolation procedures employed. To be completely general,
several options should be available in order to provide alternate procedures
for the generation of these parameters. In relation to the complete flutter
optimization task, however, it is concluded that severely limiting the number
of such options would not significantly increase the required computing
resources.,

Repetitive flutter solutions of the type required in structural resizing
procedures may be efficiently obtained using the 2-D Regula Falsi method.
Although other flutter solution procedures might be developed to the same
degree of efficiency and reliability demonstrated by the Regula Falsi in
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obtaining repetitive flutter solutions, it is concluded that this procedure
has a wider range of application than other procedures considered. The 2-D
Regula Falsi method can be used in the solution of a general form of the
flutter equation in order to obtain the values of any two dependent variables
required to satisfy the equation. It can be used in a direct form of Incre-
mented Flutter Analysis to solve for the magnitude of the increment of a
specified design variable, along with an additional variable, necessary to
satisfy a flutter constraint. Other applications, such as the determination
of the minimum damping of a hump mode, are also possible.

Resizing procedures vary widely in particular detail, with each proce-
dure considered exhibiting one or more advantageous features. In terms of
a realistic:design effort, however, it is concluded that the general differ-
ences between the arbitrary step-size procedures and the defined step-size
procedures are more significant than the differences between the individual
procedures in each category. Based on the numerical evaluations of the
idealized test case of Appendix A, it would appear that the arbitrary step-
size procedures produce the same mass reduction as the defined step size
procedures with less total computing cost. It is not clear that this same
result would be obtained for a more complex design effort. It is concluded,
however, that either type of procedure can be included in a flutter optimiza-
tion module with no undue difficulty.

Practical considerations in the implementation of a flutter optimization
procedure can have at least as profound an effect on the performance of the
flutter module as does the selection of the three major elements considered
thus far. These considerations include the choice of structural model, num-
ber of structural degrees of freedom retained, method of generation of
incremental stiffness matrices, number of modal coordinates used, frequency
of updating vibration modes and frequency of updating flutter derivatives.

No definite conclusions are available regarding these considerations, since
it was not possible to conduct the required investigations within the scope
of the present study.

The conclusions reached in the course of the present study, and presented
above, lead to the following recommendations for development of a flutter
optimization module:

1. Computer coding for the aerodynamics submodule should be based on the _°
five~-matrix product of equation (5.12). The number of options in form~
ing the five-matrix product should be limited to those forms that are
most generally useful.

2. The flutter solution submodule for the repetitive flutter solution pro-
cedure should be based on the two~-dimensional Regula Falsi approach.
A global solution procedure, such as the p-k method of Reference 3 or
the Desmarais-Bennett method (Reference 7) should be included for the
initial and final flutter survey.
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3. At least two candidate resizing procedures should be evaluated in a
realistic design effort such as the arrow wirng flutter optimigzation task
performed under Contract NAS-1-12288. One resizing procedure should be
of the arbitrary step-size type and the other a defined step~size type.
To facilitate the comparison, it would be useful to maintain as much
commonality between the two methods as possible. As an example, the
resizing procedure formulated in Section 6.7.4 could be used as the
defined step~-size procedure, and the gradient projection search of
Rudisill-Bhatia (Section 6.2), modified to incorporate the move vector
of Section A.3.3, could be used as the arbitrary step-size procedure.

L, Depending on the outcome of these evaluations, specifications should
be developed for the selected procedure and the required computer coding
accomplished. It should be recognized that it may be desirable to retain
the option of using either type of resizing procedure in the final
module.

5. Investigation of the flutter optimization task should be extended to
include those problems encountered in a realistic design environment
which have a direct influence on the performance of an optimization
procedure. These problems are discussed in Section 7 and mentioned
briefly in the conclusions above. To be of most use, it is felt that
such investigations must be made using a structural design task of the
complexity of the arrow wing study performed by Lockheed for NASA
(AS~-1-12288).

6. The extent to which it is feasible and desirable to integrate the flutter
optimization task with the strength optimization task should be investi-
gated with emphasis on means of simplifying the formulation of the
strength constraints.

APPENDIX A

NUMERICAL EXAMPLES OF RESIZING PROCEDURES

A.1 INTRODUCTION

To provide the basis for a direct comparison of the several candidate
resizing procedures (Section 6) in performing a simplified flutter optimiza-
tion task, an idealized test case was formulated and numerical evaluations
were conducted. Not all candidate procedures were evaluated to tlie same
degree. In most cases the process was discontinued as soon as the results of
interest were obtained.
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The structural model on which the test case was based is a simple EI,
GJ beam representation of a subsonic transport airplane. Although no attempt
was made to simulate a realistic design process in detail, the resulting
optimization might be regarded as typical of the preliminary design phase of
the development of such an airplane. The test case was designed to avoid the
difficulties associated with modalizsation (Section 4) and the nonlinear
stiffness effects (Section 7.l1l) encountered in more practical optimization
efforts.

In implementing the various resizing procedures, no specialized computer
programs were formed. Instead, existing batch, graphics and remote terminal
systems and programs were employed, augmented by hand computations where

- necessary. As 8 result, no direct comparison of the computer resources
.required by the various resizing procedures is available; such information

relative to this idealized test case is of little practical significance in
any event.

A.2 STRUCTURAL MODEL

The structural model used for the test case is an EI, GJ beam representa-
tion of a subsonic transport airplane.

There are 9 grid-points on the wing semi-span, 12 grid-points along the
fuselage center line (Figure A-1) and other miscellaneous grid-points used to
define a rigid empennage and control surface, for a total of 67 elastic
degrees of freedom. Symmetric boundary conditions are imposed. All inertia
and aerodynamics coordinates are retained., Eighteen elastic degrees of
freedom, not associated with design variables, are eliminated by static stiff-
ness condensation, reducing the number of degrees of freedom to L9.

The design variables are the torsional stiffnesses of the eight struc-
tural elements indicated in Figure A~1. The bending stiffness of the wing is
not varied. The design variables are defined as increments over values
defining a simulated strength design and the associated inertia and stiffness
matrices are expressed in terms of a unit mass, so that the total inertia and
stiffness matrices are as expressed in equations (A.1l) and (A.2).

m FAK. (A.1)

nLAAMi (A.2)
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Figure A-1: Structural Model

where [KO] and [Mo] are the matrices of the fixed stiffness and inertia

and [AKl] and [AMl] are the stiffness and inertia matrices associated
with a unit mass of the design variable m, . For the present purposes, the
minimum-size cr strength designed portions of the design variables are

included in the K , M

o 5 matriées, so that the AKi, AMi matrices include

only the desﬂ'.gn variable increments relative to the strength design.

The strength designed configuration is a fictitious configuration defined
such that a flutter problem is assured within the design envelope of the air-
plane. The characteristics of this critical flutter root are shown in Fig-
ure A-2, indicating a flutter speed of approximately 226.4 m/s EAS (L4L0 KEAS).
Using this as a starting point, the test case required that the flutter speed
be increased to 270.1 m/s EAS (525 KEAS) with a minimum of weight increase in
the torsional stiffness design variables.
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Figure A-2! Frequency and Damping of Critical Flutter Root

In addition to the flutter-deficient (226.4 m/s EAS) configuration, two
auxiliary configurations are required. For the constant flutter speed pro-
cedures, a configuration having the required flutter speed (270.1 m/s EAS)
but a non-optimum distribution of the design variables is needed. This was
‘ocbtained by increasing the design variables in a manner equivalent to raising
the torsional stiffness of the wing by a uniform factor uniil the required
flutter speed was reached. For the penalty function procedure (Reference 16),
an initial configuration having a flutter speed in excess of the final flutter
speed is required. This configuration was obtained in the same manner as the
previous one, except that the flutter speed was increased to 280.4 m/s EAS
(545 KEAS). The design variable distributions and total design variable mass
for these configurations are shown in Table A-1. A man-in-the-loop resizing
procedure, different from any of the methods discussed in Section 6 and using
Incremented Flutter Analysis as the principal tool, indicated that the mini-
_mum mass for the required flutter speed is spproximately 249.6 kg (550.2 1bs).
This value is used as a bench mark for further comparisons.
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Flutter Design Variable Mass, kg¥*

. Speed _ :
m/s EAS 1 2 3 L 1 5 6 T 8  Total
2064 0 0 0 0 0 0 0 0 o

270.1 113.5 | 105.2 | 90.4 | 65.5 63.6 31.3| 21.8| 15.3| 506.6

280.4 1k1.3| 131.0 | 112.5 81.6 79.2 | 38.9 27.1| 19.1| 630.9

*¥ In accordance with the definition of design variable this is a mass
increase above the simulated strength level design.

Table A-1: Initial Configuration; Non-Optimum Distribution

A.3 METHOD OF SIMODYNES

The method of Simodynes is reported in Reference 15 and discussed in
Section 6.3 of this report. The numerical evaluations reported here are in
fact evaluations, or partial evaluations, of three distinct methods. The
Simodynes method itself was evaluated only to the extent of the first
resizing cycle. At that point, two undesirable features of the method were
identified and a modification of the method was implemented. The numerical
evaluation was then continued, using this modified method. In the modified
method one of the objectionable features of the original method, the frequency
constraint, is avoided, as is discussed in Section 6.3. Finally, a second
modification was incorporated by which the influence of the choice of the
dependent design variable on the resizing step is eliminated, and an addi-
tional numerical evaluation was performed using this procedure.

A.3.1 Original Method of Simodynes - As discussed in Section 6.3, the method
of Simodynes 1is a procedure for minimizing the total weight of a set of
design variables while maintaining a fixed flutter speed and frequency. In
order to satisfy these constraints, two of the design variable masses are
considered to be dependent functions of the remaining design variable masses.
The resizing direction is then determined by the gradient of the total weight
subject to the flutter speed and frequency constraints.

An initial resizing step was generated for an arbitrarily chosen total
mass reduction, Wl, of 45.4 kg (100 1bs) for each of three pairs of depen-

dent design variables: 1 and 2, 4 and 5, and 7 and 8. The resulting values
of the design variable increments are shown in Table A-2.
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D;;é;éent”*i Design Variable Increments, kg
Design Varisbles|{ 1 2 3 L 5 6 T 8 Total
1 and 2 -198.6 ”issjé -d.d; 0.0 -d;o -0.3 |-1.0| 1.4 -hs;h
L and 5 -0.2{ -0.2 |-0.2 {-106.4 {68.3{-0.5 |-2.3| -3.9 |-L45.4
7 and 8 -10.1 { -10.0 | -9.7 -9.0 | -7.6 { ~4.3 |20.6 [-15.3 | -U5.4

Table A-2: Initial Design Variable Increments (first resizing step)
for Three Pairs of Dependent Desigr Variables

The dual constraint of flutter speed and frequency leads to relatively
large positive and negative increments in the dependent design variables.
When design varieble pairs 1, 2 and 4, 5 are chosen as dependent design
variasbles the magnitude of the negative increment is larger than the avail-
sble amount (cf. Table A-1l). The question arises whether to invoke the
minimum size constraint and accept the resulting larger drift in flutter
speed, or recognize the vioclation of the minimum size constraint as a tem-

porary situation that will be corrected in subsequent steps, or reduce Wl'
It should be noted, however, that as a result of the large increments of the
dependent design varigbles, the amount of resizing towards the goal of minimum
total mass occurring in the independent variables is small when the pairs 1, 2
and 4, 5 are the dependent design variables. How serious a drawback is
implied by these considerations has not been pursued in detail, since it is
believed that the frequency constraint by itself puts Simodynes method at a
distinct disadvantage, certainly in view of the rather straightforward manner
in which this constraint can be removed, as is demonstrated in the modified
Simodynes method which is the subject of the next section.

A.3.2 Modified Simodynes Method - The method of Simodynes was modified to
eliminate the flutter frequency constraint, substituting flutter frequency

as a dependent variable in place of one of the two dependent design variables
used in the original method (Section 6.3).

As in the case of the original method, an initial resizing step was
generated for a total mass reduction of Wl = L5,k kg (100 1bs) for each
of three choices of the dependent design variable. The results, shown in
Table A-3, indicate more reasonable distributions of the resizing increments
due to the elimination of the frequency constraint, although the sensitivity

to the choice of dependent design variable remains. Specifically, the result

of choosing as a dependent design varisble one for which g% is small in
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Dependent Design Variable Increments, kg
Eesign Variable 1 2 3 L 5 6 7 8 | Total
1 ~50.1 0.0 041.- 0.k 0.9 1.4 j1.k 0.k -hs.ﬁxé
5 -12.57 -12.0 |-10.8 | 6.1 | -14.2 (8.5 (8.8 ~-6.8 | -k5.k
8 3.4 | 3.0 2.3 | o | 3.9/8.8 (9.0 | -58.8|-ks5.k

Table A-3: Initial Design Variable Increment (first resizing step)
for Three Dependent Design Variables; Modified :
Simodynes Method

magnitude is demonstrated in Table A-3. With number 1 as the dependent
variable, a large negative increment of that variable is required to balance
rather small increments in the independent design variables in keeping the

flutter speed constant on a linear basis. For a given weight decrement wl,
the amount of resizing towards the goal of minimum total mass occurring in
the independent variables is small. It would seem, therefore, that it is

important to choose as a dependent design variable one that corresponds to

a large value g%. With the proper choice of this variable, it would appear
that a reasonably efficient procedure might result. In order to assess this,
additional resizing steps were executed, using design variable 5 as the
independent variable. The flutter speeds and design variable distributions

for six resizing steps are presented in Table A-k. One other minor departure
from the original method is that the flutter speed was adjusted to approximately
270.1 m/s EAS at the beginning of each resizing cycle by a uniform percentage
increase in the current design variable distribution.

Tt is believed that the efficient performance indicated by the results
shown in Table A-4 may be somewhat better than might typically be achieved
by this method. These evaluations were performed relatively late in the con-
tract effort, so that much experience with this test case had been accumulated.
This allowed a choice of total mass reduction steps which minimized the
required number of steps to achieve the mass reductions shown. Specifically,

the successive values of W. chosen (90.7, 90.7, 90.7, 45.4, 9.1, 9.1 kg)

1
anticipate the minimum weight.
A.3.3 Improved Move Vector - To eliminate the sensitivity of the modified

method to the choice of dependent design variable, a modified move vector
was formulated and tested in a further evaluation.
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Design Variable Mass, kg Flutter Speed
Step 1 2 3 L 5 6 7 8 Total .. m/s EAS
0 [113.5 | 105.2{ 90.4| 65.5| 63.6] 31.3| 21.8} 15.3| 506.6 270.1
1 88.0 | 81.1| 68.8| 53.4} 35.2| 48.3| 39.3] 1.7| k15.9 267.2
2 60.7| 55.1| k.7 38.5| Ti.4| 48.9| 35.4| 0.0 35k.7 - 268.3
3 2k.6 | 22.2| 17.2| 30.5| 57.2| 63.0| 48.1] 15.9| 278.9 267.8
Yy 6.1 5.5___3:6 26.3| 89.8| 64.5| k7.2] 6.1 2k9.1 268.6
5 0.6 1;6 0.4] 27.5| 93.8| 68.1| 49.8| T.6| 248.8 269.7
6 0.0 0.0 0.0] 28.2} 91.3| 69.9| 51.2| 8.6| 249.2 270.0

Table A-L: Mass Reductions with Modified Simodynes Procedure

The new move vector is shown in equation (A.3), where g:;— is the
i

derivative of the flutter speed with respect to the design variable mi.

The first, positive, component of this move vector will be recognized as the

lAmi] = alg;fl—.] - b I—BV/;m.] (A.3)
i i

o

a= LlJ{BV/Bmi} (a.L)

. alBV/ BmiJ {BV/ ami}
lBV/ amiJ [BV /;mi }

velocity gradient. The scalar "a'" is determined from equation (A.L4), where

(A.5)

W2 is the total mass specified for the positive component of the vector
{Ami} . The scalar "b" defines the magnitude of the negative component of

the wvector {Ami} such that the change in flutter speed, on a linearized

basis, is zero.
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The flutter velocity derivatives, needed for this move vector, are not
computed directly in either the Simodynes or modified Simodynes procedure.
Instead, partial derivatives of the dependent varisbles with respect to
independent variables are generated. For. the modified Simodynes procedure,

considering the dependent design varialbe, m s and one independent design
variable, m. » keeping all other independent variables constant, the condition
V(mu, mi) = constant leads to:
om ov/om, -
u i

B v ' o -
dm.  ov/om._  ~ om, (4.6)
1 u 1

ov R R . . .
where o is a normalized flutter speed derivative. The negative of the

i :

complete set of such derivatives is then equivalent to the flutter velocity
derivatives normaliged to the flutter velocity derivative of the dependent
design variable. Examination of equations (A.3), (A.4) and (A.5) shows that
the column of resizing increments, AAn&, remains invariant with normalization

of the flutter velocity derivatives. Accordingly, the normalized derivatives
indicated in equation (A.6) are used to evaluate the resizing increments
shown in equation (A.3).

Using the move vector described here, with a value of W2 = 45.4 kg
(100 1bs), the results of eight resizing steps are shown in Table A~5. 1In
comparing these results with the results in Table A-L4 and noting that the
"improved" move vector requires more steps to reach the minimum total mass,
reference is again made to the fact that the results of Table A-4 were gen-
erated after considerable experience had been gained with this idealized test
case. OSpecifically, it was found that the wvalue of W2 chosen affects the
convergence of the procedure. Note that the quantity W2 in the present
procedure has no direct relationship to the quantity Wl used in the modified
Simodynes procedure.

To determine the effect of wvarying W2, steps 5, 6 and T were repeated
with values of W2 of 90.7, 90.7 and 136 kg, respectively.- The results,

presented in Table A-6, demonstrate that improved performance of the method

could be expected for a more favorable choice of the value of W2.
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[ Design Variable Mass, kg Flutter Speed
Step 1 2 3 L4 5 7 Total m/s EAS
ﬁ—é r113.5 105.2 | 90.L | 65.5 |63.6 31.3 2i?8 15.3 | 506.6 270.1
1 58.7| 67.5|66.3|58.6 {64.8 |39.4 |30.1 | 6.9]392.3 269.2
2 | 25.0] 43.2|50.7|55.4 |[68.0 h6.8 36.6 | 6.8|332.8 269 .6
3 0.3 | 24.6|38.5|53.2 |71.k |53.1 |41.7 | 7.9 |290.7 269.8
L 0.0 7.5|26.9 |50.8 |74.0 |58.0 |45.3 | 8.5 271.1 269.9
5 | 0.0| 0.0|16.5|48.6|76.2 [61.9 |L7.9 | 8.8 |260.0 270.0
6 0.0 0.0 T7.0]46.4 [78.1 |64.8 {49.6 | 8.9 |25L.8 270.0
7 0.0 0.0| 0.0 uk.5 [79.6 |67.2 |50.9 .1 |251.2 270.0
8 0.0 0.0 0.0 | k2.1 [80.4 [68.5 |51.3 | 8.6 |250.8 270.1
Table A-5: Mass Reductions with Improved Move Vector
W1 Design Variable Mass, kg | Flutter Speed
Step | kg 1 2 3 ] & 5 6 7 8 | Total m/s EAS
““5 §6:7 0.0 |0.0 }|5.0 | k5.6 77.77 65.11L49.8 | 8.7 |252.0 269.8
6 90.7 |0.0 (0.0 |0.0 |40.9 |80.2|69.0 [51.5 | 8.3 |250.0 270.0
7 ]136.1|0.0 [0.0 |0.0 |35.1 {82.2|71.9 |52.0 | 8.k 249.6 270.0

Table A-6: Mass Reductions with Increased Values of W

A.4 GRADIENT METHODS OF RUDISILL AND BHATTA

2

In Reference 14, Rudisill and Bhatia present a method of generating
flutter velocity derivatives and they suggest several resizing procedures

using these derivatives.

These procedures are discussed in Section 6.2. Two

of these procedures, the velocity gradient search and the gradient projection
search, were chosen for numerical evaluation and the results are presented in

the following sections.
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A.4.1 Velocity Gradient Search - The velocity gradient search is used to
increase flutter speed by a series of resizing steps in which the increments
in the design variables are proportional to the corresponding elements of the
velocity gradient. The resulting distribution is not optimum, but is a good
initial distribution for procedures in which the total mass is minimized at
constant flutter speed. One obvious application of this procedure is in
increasing the flutter speed of a flutter-deficient design to the required
flutter speed. Starting with the 226.4 m/s EAS configuration of the test case
structural model, the flutter speed was increased to approximately 270.1 m/s
EAS in five steps (Table A-T). The design varieble increments were formed
according to equation (A.T), where the nominal velocity increments, AV, were

AV oV

Am;t = LaV/amiJ {av/ami} o, (A.7)

12.9, 10.3, 10.3, 5.1 and 3.1 m/s EAS. The actual velocity increments do
not correspond exactly to the nominal increments because of 1) the nonlinear
‘relationship between the increment in flutter speed and increments in the
design variables, and 2) the fact that the velocity derivatives, as defined
in Reference 1L, are not based on matched atmospheric conditions of Mach
number, speed and altitude, whereas the flutter equation was solved directly
for matched conditions.

To evaluate the effect of the number of resizing steps used to produce
a given velocity increment, the magnitude of the original increment was
determined which resulted in the same flutter speed of 270.5 m/s EAS in one
resizing step. The required mass, 292.3 kg, does not differ greatly from
the multi-step result of 286.7 kg, when compared with the optimum total

design variable mass of 249.6 kg pounds (for Ve = 270.1 m/s EAS).

Design Variable Mass, kg Flutter Speed
Step | 1 2 3 L 5 6 T 8 Total m/s EAS
1 [1.1 ]| 1.6 2.4 | 5.7 10.1 |16.6 17.8 | 8.1 63.4 239.0
2 2.6 | 3.9| 6.0]13.6 [23.2 §33.2 |32.6]15.7 |130.9 2k9.9
3 |5.0 | 7.b|11.2 |2k.6 [L40.3 |51.3 |L7.7[23.6 |211.0 261.1
L [6.7 ] 9.8 | 14.7 {31.5 [50.4 |60.8 | 55.4 | 27.5 | 250.8 260.9
5 [7.9 j11.6|17.2 |36.2 {57.1 |66.8 60.1 29.8 [286.7 270.5

Table A-T7: Design Variable Mass and Flutter
Speed; Velocity Gradient Search
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A.4.2 Gradient Projection Search - The gradient projection search is a
procedure for reducing the total mass of the design variables while attempting
to maintain e constant flutter speed. The column of resizing increments is
derived from the velocity gradient and the mass gradient as indicated by
equation (A.8) '

- oo e b, Jav
Am = Aol lom. |+ M ]om. (4.8)
i i . _
dV/0m, | 0M/3m,
A I- lJ{ l} (A.9)

1° " |_av/ami [ v /ami}

where the scalar Al is determined as in equation (A.9). Comparison with

equations (A.3), (A.4) and (A.5) shows that this resizing column is similar
to that of Section A.3.3 except the mass gradient is used in place of the
reciprocals of the flutter derivatives. For comparison with this previous

procedure, the product Aoll, the coefficient of the velocity gradient, was

chosen to give the same U45.4 kg positive increment as before. The results

of the first three resizing steps, starting with the 270.1 m/s EAS configura-
tion, are given in Table A~8. Comparison with Table A-5 indicates that the
first three steps of the gradient projection search are less effective than
the initial step of the procedure of Section A.3.3. The evaluation of the
gradient projection search was terminated at this point.

Design Variable Mass, kg Flutter Speed
Step 1 2 3 Lo s 6 i 8 Total m/s EAS
0 [113.5| 105.2| 90.4| 65.5| 63.6| 31.3| 21.8| 15.3| 506.6 270.1
1 [2105.4| 97.4} 83.3] 61.0| 62.3| 34.5| 25.2| 10.3| L79.4 270.0
2 98.11 90.6| T77.1| 57.4}| 61.9) 37.8| 28.2| T.2| 458.3 270.0
3 91.2| 8h.1| 71.3}| 54.2| 61.8] LO.T7| 30.8| 5.4 439.5 270.0

Table A-8: Mass Reductions with Gradient Projection Search

111



A.5. INTERIOR PENALTY FUNCTION METHOD

The interior penalty function method, described in Reference 16 and
discussed in Section 6.4, employs a series of unconstrained minimizations
of a modified objective function in order to minimize the objective function
of interest (usually total mass). The modified objective function, ¢(mi),

is formed by adding penalty terms, reflecting the contraint. equations, to the

objective function W(mi) (equation (A.10)). The minimization of the modified

objective
n
o(m.) = Wim,) + & —= (A.10)
i i =1 gj(mij

function is carried out for repeated reductions of the penalty weighting fac-
tor, r, until the minimum of the modified objective function approximates
the minimum of the objective function. In the present case, the penalty

terms represented minimum size (mass) constraints for each of the eight design
variables, in addition to the flutter speed constraint. Starting with the
280.4 m/s EAS (545 KEAS) configuration, the initial penalty weighting factors
were chosen to produce a total of the penalty terms approximately equal to

the objective function. These penalty weighting factors were reduced in five
steps to a value which resulted in penalty terms approximately equal to one
percent of the minimum value of the objective function (total mass). The

move direction was generated using approximate second derivatives with Newton's
method (Section 6.4 and Reference 16). The results of the five resizing steps
are given in Table A-9.

Design Variable Mass, kg Modified
Objective
Function
Step 1 2 3 L 5 6 7 8 Total ke
0 |i41.3| 131.0| 122.5| 81.6} 79.2| 38.9| 27.1}| 19.1| 630.9 1305.0
1 73.5| 175.3| T76.3| 76.9] 88.9] 52.9] 36.8| 23.4| 50h.1 1178.h4
2 31.8| 32.8| 34.1| 7.7 82.1} T1.0| L9.k| 1Lk.2| 363.1 492.6
3 ih.s5| 15.6| 217.7| 37.4| 81.4| 70.5| 48.7| 9.4l 295.1 329.3
L 2.9 3.5 5.4 33.5| 83.8| 73.4| 52.4| 8.5 263.4 274 .4
5 2.0 2.1 1.8| 30.9 84.1| 73.5| 52.1| 8.5| 255.1 258.1

Table A-9: Mass Reductions with Penalty Function Procedure
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It is recognized that additional resizing steps in which the penalty
weighting factor is further reduced would lead to a lower total mass. How-
ever, it has been observed (Section 6.4.2) that each step in the penalty
function procedure requires approximately the same number of numerical evalua-
~ tions as three steps in arbitrary step size procedures, so that the number of
steps in this numerical evaluation of the penalty function method is suffi-
cient to provide the comparison with the arbitrary step size procedures
(Tables A-4 and A-5).

A.6 METHOD OF FEASIBLE DIRECTIONS

The method of feasible directions (Reference 1T and Section 6.5) gen-
erates a series of resizing move vectors, each of which is both feasible
(does not violate sasctive constraints) and usable (reduces total mass). Each
resizing direction is followed until a new constraint is violated, an active
constraint is re-encountered or the total mass is minimized. The resizing
direction is found using the Simplex procedure to determine an optimum move
direction.

In the present case, the 270.1 m/s EAS configuration was taken as the
starting point, and minimum size (mass) constraints were imposed on the
eight design variables in addition to the flutter speed constraint. The
results of the first eight resizing steps are presented in Table A-10.

D;sign Variable Mass, kg Flutter Speed
Step 1 2 3 L 5 6 7 8 Total m/s EAS
0 | 113.5 [105.2 |90.4 | 65.5 |63.6] 31.3 |21.8 | 15.3 [ 506.6 270.1
1 98.6 | 90.3 |75.5|50.7 |69.3| 46.1|36.7| 0.5 |46T7.6 273.0
2 54.9 | 46.6 |31.8 | 7.0 |28.1] 89.8 | 80.4 | 4k.1 |382.7 270.1
3 23.6 | 15.3 | 0.5}38.3 |59.4]110.6 | 49.0 | 12.8 [309.2 273.0
L 11.2 2.9 | 0.5 |%7.7 |71.1| 98.0 | 61.4 | 0.5 |293.8 273.7
5 0.5 2.9 | 0.5[36.9 |82.5( 87.2 [ 61.h |11.2 |283.0 274.0
5A 0.5 2.9 | 0.5}30.8 [76.5| 81.2}55.3 | 5.3 |253.0 270.1
6 0.5 0.5 | 0.5{31.9 |79.0| 78.7 | 52.8 7;8 251.6 270.1
6A 0.5 0.5 0.5|31.8 |78.9( 18.5|52.T| 7.6 [250.8 270.1

Teble A-10: Mass Reductions with Feasible Directions Procedure
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It should be noted that steps S5A and 6A are so designated because the
flutter speed constraint was not active for those steps, and therefore no
flutter speed derivatives were required. The resulting move direction was
then one of "steepest descent,” determined by the mass gradient. These two
steps required somewhat less computing resources than did the remainder of
the steps, and it therefore seemed reasonable not to identify them as full
steps. It should also be noted that 0.5 kg (one pound) was established as
the minimum mass (size) allowed for any design variable, rather than zero
as in other procedures. This was later determined to be unnecessary as is
discussed in Section 6.5.2. Had this not been the case, the total mass in
each of the last several steps would have been slightly less.

A.7 AN OPTIMIZATION METHOD USING INCREMENTED FLUITER ANALYSIS

Reference 18 describes a resizing procedure developed at Lockheed and
used primarily in an interactive mode employing graphics displays. This
procedure is discussed in Section 6.6.

Although this procedure is presently 1in an incomplete state of develop-
ment, it is of interest in that it employs a unique method of determining
resizing step size. This is done by a direct minimization of the objective
function (weight) using a direction determined by velocity derivatives and
the constraints. This minimization results from, and takes into account,
the nonlinear relationship between design variable increments and flutter
speed. A new direction is generated after each minimization, and the process
is repeated until an acceptable approximation of the minimum total mass is
obtained.

The results of 4 resizing steps are presented in Table A-11.

Design Variable Mass, kg Flutter Speed
Step 1 2 3 L 5 6 7 8 Total m/s EAS
0 |[113.5( 105.2( 90.4| 65.5{ 63.6( 31.3| 21.8 | 15.3| 506.6 270.1
1 0.0 0.0 0.0[ 70.1| 71.6 | 4k.0| 63.5]19.5| 268.6 270.1
2 0.0 0.0| o0.0| 4o0.3| 84.8| 78.2| 4k9.k| 0.0| 251.8 270.1
3 0.0 0.0{ 0.0| 36.0{ 82.7 | T73.2| 47.7|10.8| 250.3 270.1
Y 0.0 0.0| 0.0| 32.7| 8k.9| 72.7| 52.9| 6.7| 249.8 270.1

Table A-11: Mass Reductions with the Method Using
Incremented Flutter Analysis
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