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ABSTRACT

r

The effects of environmental perturbations on the attitude of a

w

Y ` y slow tumbling each-oriented satellite are investigated. 	 The environ-

mental perturbations considered were aerodynamic drag, gravity -gradient,

solar radiation pressure, and magnetic torques. 	 The Euler attitude`

equations were solved numerically for the Skylab spacecraft. 	 Results

are presented for both torque-free motion and for cases in which

aerodynamic and gravity-gradient torques are acting in a slow tumble

mode.	 Simulations show gravity -gradient effects on satellite momentum

to be cyclic and to increase the precession rate of the angular momentum

vector about the radius vector. 	 This also tends to align the minor axis

along the radius vector. 	 Aerodynamic drag initially decreases angular

momentum, slowly precesses the momentum vector about the radius vector,

-^ and finally drives the satellite into an unstable mode. 	 Combined

gravity=gradient and aerodynamic torques reduce angular momentum and

energy, and induce a steady precession rate of the momentum vector about s-:

the radius vector.
k

'# x
a

1

i

v



CHAPTER I

INTRODUCTION
k

With the coming of the space shuttle the opportunity for retrieving

and repairing satellites will become feasible. 	 With retrieval capability,

future satellites may be designed with docking ports to be used by a

retrieval device for attaching to the satellite. 	 To design thesePte. I,

devices and the location of docking ports on the satellite, the final

attitude state of the passive satellite must be determined.
w

The research in this thesis involves a numerical study of the a

general attitude motion for an as ymmetric satellite due to environmental

perturbations.	 These perturbations included gravity-gradient, aerodynamic

drag, solar radiation pressure, and magnetic torques.

The general analytic solution to Euler's moment equations are

elliptical functions for the torque free case. (l)	General solutions to

Euler's equations with complicated torque functions do not exist and

solutions are primarily numerical. 	 Some solutions have been obtained by

linearization for special cases.	 Here the equations could not be

linearized to study detailed motion.. 	 However, Euler's moment equations
A

were solved numerically using a fourth order Runge-Kutta and an Adams-

Bashforth predictor-corrector integration technique. 	 The dynamical'

state of interest was a slow tumble mode, defined as small angular rates

--	 about the three body axes.	 Initial conditions are explained in Appendix

`-	 A.	 The satellite was considered to be a rigid body with no control

system functioning.

The asymmetric satellite studied in this research was the Skylab

:i'tacec<raft. 	 Its attitude control system is assumed to be shut down.{ ti

f

M



.	 s

2

p	 Linearization of the equation of motion was possible in order to study

stability under effects of gravity-gradient and aerodynamic drag.(2,3,4)

This stability analysis has indicated the spacecraft to be unstable in

J	 the presence of gravity-gradient with aerodynamic torques.

x i

f
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CHAPTER II

COORDINATE SYSTEMS

This section describes the coordinate systems used in determining

the position and attitude of the satellite. The inertial coordinate

system is show.. in Figure 1 with its origin at the Earth's center. ZI

lies in the equatorial plane pointing in a positive direction away from

the center of the earth along the vernal equinox. Y  is perpendicular

to the equatorial plane and positive northward. X I is in a direction

forming a positive right handed coordinate system. The inertial

coordinate system will be denoted as

XI

( L ] I =	 YI	 ^1)

ZI

The relationship of the apparent motion of the sun about the earth

is shown in Figure 2. The unit vector from the earth to the sun in the

geocentric inertial coordinate system is

Ls =sin @ s cos is ih +sin @s sin is j I + cos @ s kI	(2)

where
i

.^	
_ 360	

D	 (3) AEs	 365.24
I

DAE is the number of days after vernal equinox. i s is the inclination

of the ecliptic plane to the equatorial plane of the earth (obliquity

r	 of the ecliptic).

The relationship between the orbital and inertial coordinate 	 -

system is shown in Figure 3. The transformation from inertial to

orbital coordinate system is defined by three rotations,
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Figure 3.	 Inertial and Orbital Coordinate System.
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YI YI ZI

k	 i

i
Xs

Y^
ZS

+. ; I it

^Y^	 ^

F+c ^

Xi Yi Zi

X'0 0 0

The three rotations are

A. Rotation about Y I axis
y

XS cos S 0 -sin XI

Z Q sin R 0 cos	 I ZI `;

B. Rotation about Zs axis
4 n

Xi Cos i sin i 0 XQ

Yi = -Sin i cos i 0 YS (4-B)

Z. 0 0 1
1

Za

C. Rotation. about Y	 axis

X cos a 0 •-sin a Xi

0 1 0 Y (4-C)
o i

Z" sin a 0 cos a Z
o

-

r

1



The orbital coordinate system will be denoted by:

X
0

	

[L] o =	 Yo	 (5)

Z
0

From Figure 3, the following transformation exists:

	

Y1	 0	 0	 X'

	

0	 0

	

Yo 	= 0	 -1	 0	 Yo	 (6)

Z	 0	 0	 -1	 Z'

	

o	 o

From transformations (G) and (6) the transformation from inertial to

the orbital coordinate system becomes 	 -

(cosatcosicos (-sinasinO 	 (cosasini)	 (-cosacosisin^-sin(%cos S)

f

i'	 [L] 041
(sinicos	 (-cosi)	 (-sinisin^)

(-sinacosicos^-cosasinO	 (-sinasini)	 (sinacosisins-cosaccoss)

(7)

where

Xo	 XS

Zo	 ZI

is the right ascension of the orbit ascending node. The nodal

regression rate is assumed constant, (5)

l	 e
R

k	 R  e0.001637 (a)
L 800P cos i

w,



r

10

where P is the satellite orbital period in hours. 	 i is the satellite

orbit inclination with respect to the equatorial plane, and a is the

4 satellite true anomaly; its initial displacement is measured from the

ascending node for a circular orbit.

The body coordinate system is located at the center of mass of r,_

the satellite along its principal moments of inertia. 	 The rotation

i
from the orbital to the body coordinate system is illustrated in

Figure 4.	 The order of transformation is defined as

Z
Yo 	 Yo 0

t ^ ,
kl	 Y1	 Z1

M (10)

^	 Y2	 22

`	 y A

I Xb	 yb	 Zb

The three Euler rotations are

A.	 Rotation about the Z	 axis0

%1 cos	 sin ^	 0 Xo

Y _ -sin	 cos	 0 Yo (10-A)

zl 0	 0	 l Zd

;a

A



,.

Y	 11
0

1 Y1

F

Xi

Xo r.

y

(a) Rotation of Angle W

,-
Y
`1

X2

k'X

t

^m 6 z2

I

z
1 t

rr

j (b) Rotation of Angle 8

z2

Zb t

T

Yb

y2
8

x

r` (c) Rotation of Angle

"" Figure. 4.	 Euler Rotations.
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B. Rotation about the Y 1 axis

r
, X2	 cos e 0	 -sin e	 I Xl

. 	 ar

Y2	 =	 0 1	 0	 Y1 (10-B)

iv , k

. f , Z2	 sin 6 0	 cos a	 Z1

0

. C. Rotation about the X2 axis

Xb	 1 0	 0	 X2

Yb	 =	 0 cos	 sin	 Y2 (10-C)

pz
 0 -sin	 cos	 Z2

R ' The transformation from orbital to the body coordinate system can be
F.

expressed as

(cosecos^) (cosesint) (-sine)

-[L] b	_ (sin^sinecos^-cos¢sint) (sin^sinesiny+cos^cosy) (sin^cose)
r' ;

r

(cos#inecoo+sin^sin^) (cos^sinesint -sin^cosji) (coocose)

r ^ (L1)

where

X Xo

K Yb	
=	 [L]b Ya (11-A)

Zb Zo

m The above transformations are basic in determining the attitude

and poaition of the satellite. All rotations are defined positive by '}

the right handed rotation rule. Any other transformations required are

developed as needed.

REPRODUCIBILITY OF THE	 M

ti ORIGINAL PAGE IS POOR
A
7

i



CHAPTER III
r^
xl

DYNAMIC ANALYSIS

► 	 j

The motion of a satellite about its center of mass is described

by Euler ' s moment equations which for the principal axes are(1)

A wx + w 
y 
w 
z 

(C-B) = x

B w+ w w (A-C) = M	 (12)	 i
y	 x 	 y

C w  + wxwy (B-A) = MZ

A, B, and C are the principal moments of inertia about the x, y, and z

body axes, respectively. wX , wy , and wz are the satellite angular

velocities. MY , My, and MZ are the perturbing moments such as gravity

gradient torque.;

Euler angular rates	 e, describe the motion of the satellite

with respect to a reference-coordinate system which in this report is

the orbital coordinate system. Euler angular rates can be expressed as

a function of the body angular velocities and the Euler angles.

= 'wx + (wysin¢ + w  os^) tan 0

,
0 = W  cosh - w zsin	 (13)

_ (wysi# + wzcosc) sec 6

The body angular velocities can also be written in terms of Euler rates.

wx =	 s ire 0

f

Y = 0 cosh + cos 9 sin	 (14)

wx	cosh cosh - 0 sine



Equation (12) can be expressed as

Mx ( , M) C-Bwx 	A	 -ywz (A)

M Olell)	 (A-C)
W  = B	

- W 
x 
W 
z B

(15)
	

r .'

Mz0,e,0	 B-Awz	
C	

- wX y (^ )

Knowing the perturbing moments as a function of the Euler angles

equations ( 12) and (13) can be solved numerically. These equations

describe the attitude motion and orientation of an asymmetric satellite.

P

a

r,
L^

y'ka

The angular momentum, h and energy, T of the satellite are

computed from

h = AwXib + Bwyjb + CWzkb	(16)

T= 1 Aw 2 + 1
Bw 

2+1Cw 2	 (17)
2	 2	 y	 2	 z

The position of the angular momentum vector in the orbital coordinate

;w
system with respect to the orbit radius vector and velocity vector

tangent is shown in Figure 5. The angle S is the angle between the

radius vector of the earth and the satellite momentum vector.

-1 h	 o	 0
S = cos	 (h

z 
) 0 	0 < S < 18^	 (18-A)

rr^

`-	 h is the Z angular momentum component in the orbital coordinate system.
z	 R

The angle a defines the angle between the angular momentum projection

^N
onto the xo , yo plane and the orbital velocity vector tangent.

r^

Y
y
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^

h
X = tan 1 (T-) 00 < X S 360° (18-B)

S

y o
Y y

h 
	 and by are the x and y angular momentum components in the orbital

coordinate system, respectively.	 6 and X will be noted as the nutation r.

t and precession angles in the orbital coordinate system.

The position of the minor axis with respect to the radius vector

will be noted as the nadir angle,T1. The nadir angle is defined as

T

Tr

n	 2	 + 6

(19)

5

I

A

e	 ,
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CHAPTER IV

,.r ENVIRONMENTAL PERTURBATION MODELS

f

Gravity-Gradient

Gravity-gradient torque is one of the major environmental

(6)perturbations for asymmetric satellites in near earth orbits. 	 The

gravity-gradient-effect is a function of altitude, mass distribution,

and the satellite orientation.	 Here the gravity torque model assumes a

spherical earth neglecting anomalies due to its asymmetric mass

distribution.

Under the assumption of a spherical earth, the gravity force

field can be expressed as

-"3m
dFG = r	 (20)

r

i
and the gravity-gradient torque as

j (dM)G - p x dFG	(21)
3

° Figure 6 illustrates the coordinate system used in this derivation. p

is the vector from the satellite center of mass to the mass element dm.

P = xi b + yjb + zkb	(72)

Subscript b indicates the satellite body coordinate system. 	 r is the

satellite radius vector from the geocenter to the mass element dm.

From Figure 6 the satellite radius vector R can be written as
A

w R = -R ko	 (23)

Transforming equation (23) to the satellite body coordinate system

using equation (11), the radius vector can be expressed as

n
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r
-
^;y

'l ifass Element On)

yI Satellite Center

{
k	

of Mass

0

r

R
.^

q	 .`
RI

/ - Center of Earth
;q

z 

j

Figure 6.	 Coordinate System Used in Gravity-Gradient

Torque Derivations.
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Rb = R Sine ib - R- sino	 cose 3b - R cosi	 coshkb (24)

i

1
Noting that r	 R + p equation (21) becomes

(dM)G	 p x [ - u3 (R + p) ] ( 25) t

r;

^- With the following approximations:
p{@

r2 = R2 [ 1 + 2R•p ] (26)
2R

1	 _ 1 l + 2R • p	 -3/2

N [	 ]
(27)

r3 	R3 	R

ra

1	 1	 3R•p
—	 [ 1 --
r3	 R3	

R2
(28)

p/R	 << l (29)

Equation (25) becomes

d ML G
_ _u	 _ 3R-P]	 -	 -

3	 [ 1	 2 	 [ p x (R + P)	 ] dm (30)
R	 R }

Since the coordinate system is located at the satellite center of mass

the products of inertia are zero

j
J p dm= 0 (31)

µ
Ixy 

=	 _	 _
Ixz	 IyZ	

o (32) r=



y
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A

Integrating equation (30) results in the following equation for the
i

gravity-gradient torque

MG = U [sin2^ cos2e (C-B)i.b + sin2e cosh (C-A)jb
2R

+ sin2e sink (A-B)Kb ]	 (33)
,r

l^
A

Equation (33) describes the gravity-gradient effect in satellite body
t	 ,

a
r coordinate system.

r

The gravity-gradient torque in the orbital coordinate system can 110
^r

be found by transforming equation (33) to the orbital coordinate system

using the inverse of equation (11). 	 The resulting torque equations in

the orbital coordinate system are t a

w _

(mx)o -[(A-B)sin28 sing + (B-C) {sin26 sink cos 2^ + sin2^ cos8 cosh}] 3 }13

y

f 2R

r, (my)o =[(B-A) sin2e costs +(C-B) 1cos 2^ singe costs - .sin2^ cos8 sing}) 3u3
2R

(mz)o = 0
	 (34)

(mX)o,	 (my)o, and (mz)o are the x, y, and z gravity-gradient components

in the orbital coordinate system.

Aerodynamic Drab

Aerodynamic drag is a major perturbation for near earth satellites

"^ with altitudes of 80 0 km or less. 	 Drag is a function of atmospheric

density, angle of attack, satellite velocity and satellite shape. 	 For

t^	 =' complex satellite structures the satellite is divided into components of
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spheres, flat plates, and cylinders.	 The center of pressure and

moment arms for	 component are computed.	 The total torque iseach

. computed from the sum of the components.	 For complex satellites

i{ shading of one component by another from the free stream flow may

IT occur.	 This effect must be taken into account for an accurate drag
rr

model.	 Reference (7) describes a computer technique for modeling the

shadow effect.	 The amount of one element shading another is a function

of the orientation of the spacecraft with respect to the free stream

velocity.

'- The aerodynamic torque can be expressed as

N	 V.
t	 }

....

dMA =
	

E	 pi x dFa 
^i	

(35 )i=1	 i A

Pi is the distance from the center of mass to the center of pressure.

V is the relative velocity vector.	 dF	 is the aerodynamic force.
a

_n

dF	 1 C	 p	 V2 cos Y	 dS.	 (36)
2	 D	 V	 ia	 a

h	 A

E

is atmospheric density.	 C	 is the 
pa	 p	 y.	 D

	 aerodynamic drag coefficient. V

is the velocity at the surface element relative to incident stream. 	 yV

is the angle of attack of element dS. 	 Equation (-36) is the basic

R.

aerodynamic force equation. 	 Reference (8) discusses aerodynamic force:

using normal and tangential momentum transfer coefficients to replace the

drag coefficient.Tr

For this report the aerodynamic drag model was developed by NASA(9)

for the Skylab vehicle.	 The drag model for Skylab was derived from data

based on free molecular flow theory with a Knudsen number greater than

10.	 Three drag moment coefficients (cX , cy, c Z ) as depicted in Figure 7

J R
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Figure 7.	 Aerodynamic Moment Coefficients in Satellite Body Coordinate System.
a

'tN
N

^	 ::..y a,v. Magiµ ^n44^<:tiik+4.»urx,



23

were computed for a number of orientations- as a function of the angles

A Fourier series curve fit formula for c , c y , c	 was
z

K,	 M

a	 a	
x

deri,,Ted from t yke above data as a function of the angles a a
and ^ . ;.a

cx , cy , and c z are the roll moment coefficient, pitching moment

coefficient, and yaw moment coefficient, respectively. 	 as and	 a are
1

the angle of attack and roll angle, respectively, as defined in Figure 7.

` The resulting Fourier drag coefficient equations are

Ao(a)C(a '^ > _	
+.E	 [A.O cos is	 + B i (^a)sin iaa] (37)

a	 s	 2	 i=1	 i	 s	 a

where
I µ

) = 
aaio

A 0 
	 + E	 [a	 cosj^	 + b	 sinj^ ]

2	 a	 aij	 a
(38-A) !

L.0 i	 s	 _	 ai
j=l

for j= 2	 4, 6, and i = 1	 3)

Bi( a) = a2iO + E	 [ablj cosj^a +,bbij sinj¢a ] (38-B) .k

1'1
3

r.

(for j = 1,	 3, 5, and i	 1,	 3)

aij and bid are coefficients from Appendix B. 	 The vehicle moment

equations are computed from

_	 q 
A

ri	
c

x	
x	 ref

 D I

^Y
M	 _ cyq Aref Dref

(39)

i

w
Mz
	 c 

z q Aref Dref
-7

where.

1	 2g2pV
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Aref 
and Dref are reference Area and Diameter of Skylab respectively,

and are listed in Appendix C.

The roll angle ^ and angle of attack a were computed from
a	 a

V

^a = tan-1 [Vyib	
0 < ^ < 360°

z

and

04
V

as = cos 1 [Vx]b	
0 < as

 
S180

0
(41)

as shown in Figure 7.	 Assuming a circular orbit for Skylab, where V
0

is the orbital velocity,

T7	 V i
0	 0 0

Expressing the velocity V 	 in body coordinates results in Vx , V	 and
Y

V	 as required in equations (40) and (41)
z

^. V	 = V	 shrose	 co	 -
x	 o	 b

fl; Y = Vo [sink sine cos*	 - cos¢ sing] jb (42)

7„
Vz	

Vo [cosh sine costs	 + sink sing] kb

^p Appendix B lists the aerodynamic coefficients from Reference (9)

used incomputing the aerodynamic drag torques.	 The drag coefficients

in Appendix B are based on Skylab with the auxiliary thermal shield, ATAl

solar arrays, and orbital workshop solar panel No. 1 deployed as shown

in Figure 8.

"" The atmospheric density was calculated from the 1970 Jacchia

t

N*
(40)



Figure 8., Skylab's Configuration for Aerodynamic Drag Model. 	 ^)U1
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'#	 n
w

(a)	 variations with an 11.5 year solar cycle

(b)	 variations with daily changes in solar activity

(c)	 diurnal variations

(d)	 variations with geomagnetic activity

(e)	 semiannual variations p
9d tj

(f)	 seasonal-latitudinal variations of the lower thermosphere

ti (g)	 seasonal-latitudinal variation of helium

The inputs are the sun and satellite right ascension and declination,

number of days from January 1, 1970 and vehicle's altitude (km) above

^ the surface of the earth. The output is the atmospheric density (kg/m3)

s at the altitude of the satellite.	 The model calculates atmospheric
t

densities for altitudes of 125 km to 700 km with a maximum error of 5%

G when compared to tabulated densityP	 y values.

Magnetic Torqueùe Model

Magnetic torques are caused by the interaction between the earth

magnetic field and the satellite magnetic components. 	 The earth

magnetic field potential can be represented by a series of solid

^. (11),(12)
spherical harmonics.	 The magnetic field potential can be

expressed as

N=8 K=N
Vm = R E	

(R )N+l	
cos KIM + rN sin KIM] pN (cos e,^)	 (43)t

N=1 K=O	 e

The spherical magnetic force components are

-	 N=8 K=N

e	
= E
	 (R_)N+2
	

K cosKX	 + hK sinKX ] d	 pK (cos 8 )	 (44)
6	 gN

.t
., £^	 M	 N	 M	 de	 N	 AS

N=1 K=0	 e
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n r

N=8 K 	 a

e^ = E E (R 
)N+2 sine -gN

I sinK + hN cosKaM] pN (cosem)
N=1 K=0 e

(45)

N=8 K-N

er =	 E	 E	 -(N+1) (R )N+2 1gN cosKaM + hN sinKX] pN (coseM)
N=1 K=0	 a

b^ (46)

]

where:

^- eV e., and er are the magnetic spherical force components in a

geocentric coordinate reference with respect to the Greenwich time line

..
as shown in Figure 

9.-XM 
is the east longitude from the Greenwich line

and 
a  

is the colatitude.	 R is the satellite orbit radius and Re the
s.

the earth radius. ]

•- The function pN (cos(eM)) is defined as
s

6K(N-K):(1-v2 ) K 1/2	 +N)(v2
K	 1	 d(K-1)N

N	
(N+K).	 +N)

2 N.'	 dv(K

where

v	 cos e
M

eK = 1 for K = 0	 (48)

r E 	
2 for K_ 1_

The epoch time for this model is 1965. (11)	Since the magnetic

field varies with time, the coefficients gN and hN are functions of time
F'

C	 (49)N ( t ) _ C N (to) + ^.K

.... Reference 12 lists the magnetic coefficients gN and hN at epoch 1965

with associated sacular coefficients gN and h;N i
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The earth ' s magnetic field components can be transformed to a

29

geocentric Greenwich coordinate system with ZG passing through the
r

-- Greenwich line as shown in Figure 9 by

L^

t	 ^'
ex ea

C ,^

ey - ^L] G;S ee (50)

` -- c^^
e
z

e
r

G

where

cos 
X 
	 -coseM sinaM sine 	 sinaM

[L]G-*S 0	 sine coseM (51)

- -sin 
XM	

-cos6M cosx ri Msine	 cosaM

The Greenwich ;eccentric coordinate system is related to the

geocentric inertial coordinate system by

X e
x

Y ey (52)

Z e zI	
G

j

where

_ cos l	 0 -sina0 0

[L]I;G
0	 1 0 (53)

sin A	 0k cosaoJ
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X 
o 

is defined as a i 	 e
. + S2 t. a i, is the initial angle of the

Greenwich line from the vernal equinox. 0 is the earth rotation rate.

The magnetic torque is computed from

M = M x B	 (54)m

where M and B are the satellite magnetic moment and the earth magnetic

`	 field vector, respectively.

Solar Radiation Pressure

Solar radiation torques are due to the incoming solar radiation

flux of the sun. The solar torques are functions of the distance from

the sun, satellite surface geometry, and surface reflectivity. Only

direct radiation from the sun is considered. Earth and atmospheric

reflected radiation along with the satellite radiation are ignored. In

4	 this paper the secular and periodic terms are separated by averaging one

orbit, assuming a constant inertial solar radiation force.

The physical model used is similar to the model in reference

(13). Figure 10 shows the geometry of the model. The solar radiation

force is due to the reflected and absorbed components of the incoming

sun radiation flux

dFs = dP. +'dFr	(55-A)

where F and F are the absorbed and reflected solar radiation forces,I	 r

respectively. Assuming secular reflection, angles 'y 1 and y are equal.

y1 = y2 = Y	 (55-8)
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From Figure 10, e l is in the opposite direction of the incoming radiation
^. 3

flux vector.	 n is defined as the unit vector normal to the surface a

element dA.	 The incident force component can be written as

dFi = - (Sr + SA) PS dA el (56)
r.

where

SA = satellite surface absorption coefficient t

S	 = satellite surface reflection coefficient

PS = solar radiation pressure

dA = element area

The reflected force component is

dFr	 - SrPSdA e 2 (57)

where e 2 is . defined in Figure 10.	 From equations 56 and 57 the total

solar radiation force is

dFs = - PdA[(Sr + SA) el + Sr e 2 ] (58)
S

The total solar radiation force can be expressed in terms of the

F incoming flux vector ' (el) and the surface normal vector (n).

dFs _ - PdA[ ( SA + 2Sr) cosy n+S n + (e l x n) ] (59)
S

The solar force components expressed in geocentric inertial

components are

FY	 =	 -FS sin es cos is

sin 8s sin 
is

Fy	-F (60)
S

F	 =	 -F	 cos 8
_w z	 s	 s

,z
r
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Since the initial secular trends were of interest, the periodic and

secular terms were separated whenever possible.	 For the solar

radiation force the inertial force components were assumed constant

over one orbit.	 The inertial components were transformed to the

" orbital reference coordinate system and averaged over an orbit as a

function of true anomaly.	 27r

F

1
= dot (61)j	 Fs 

r
Favg 21T

0

e

_^
F F

4 X X

- 
Lo

(62)

s

k
Fy }I Fy

F Fz zL	 J° I

l°
becomes

F FX X
9

[Lo-}I] F (63)
'

Fy
avg

F Fz z

°	 I

I
d^

where

(cosa cosi cosh - sina sins)	 0

[L}I^	 _ sini	 coss	 -cosa°
avg

C
(-sina cosi coss - cosa sins) 	 0

.^ (-cosa cosi	 sins - sina cosh) y

-sini sins (64)

(sina cosi sins - cosa Coss)
i^

1

4	 ..
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Equation (64) assumes i, F x , Fy , and Fz are constant over one orbit.

The ascending node was not assumed constant. 	 As the orbit inclination

- approaches 90 degrees, R approaches zero.	 Therefore, if ^ is assumed

constant the transformation, equation (64), after averaging becomes

'R 0	 0	 0

[Lo-+IJ	 = sini cosh	 -cosi	 -sini sin$ (65)
avg`-

0	 0'
	 0

To predict accurately long term effects the ' apparent_ motion of the

sum needs to be included.	 In this study we were concerned with initial

secular effects in determining the trends of the satellite attitude

r motion.	 The apparent motion of the sum was assumed constant.

-''j After averaging the solar forces, the orbital force components
3

were transformed to the body reference coordinates. 	 The final averaged
F

3

force components, therefore, can be expressed in matrix notation as

X Fx
3

Fy [Lb-rol [L Fy (66)(66)
avg

F F
z z

b	 I

The solar torques are computed from the cross -product

N
dMS =	 E	 (ai x' dFs )	 (67)

..
=1

where pi is the distance between the center of mass and center of

pressure of the satellite.	 N is the number ofsatellite components.

The shadow model is used to determine the points at which the >'

satellite enters and leaves the earth shadow by assuming the projection



;5

F

of the shadow to be a; cylinder.	 The model is shown in Figure 11 and

assumes the earth, sun, and satellite to be coplanar.

LS is the unit vector from the earth to the sun.
p

LS= sines cosis ii +sine s snis j I + cosec ki (fib)

f
From Figure 11 the angle D can be defined as

. , LS	 r
cos D (69)r

For cos D > 0, the satellite is in sunlight; for cos D < 0 the satellite

is in the shadow of the earth.	 Also from Figure 11 angle E can be

i written as

' sin E = R/r (70)	 3e

Considering Figure (11) geometry the following conditionexists;

rF ^* if (D + E) < 180°; satellite is in sunlight

if (D + E) > 180°; satellite is in earth's shadow
+

The identity

a sin (D + E) = sin D cos E + sin E cos D (71)

I

F ' was used in the computer program for this test.

1

1

4:
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CHAPTER V

APPLICATION TO SKYLAB

The Euler moment equations discussed in Chapter III were solved

numerical)	 using an IBM 370/168 computer for ty	 g	 p	 he Skylab spacecraft..
za

The equations were solved using a fourth-order Runge-Kutta method and

a fourth-order modified Adams-Bashforth predictor corrector method with

(14)
a constant integration step size. 	 The fourth order Runge-Kutta

method was used to compute the starting values for the Adams-Bashforth.

predictor-corrector. 	 After the starting values were computed the =

predictor-corrector algorithim was used to integrate the equations of-^ z

r motion.

-"° The Euler's moment equations were solved for the slow tumbling

Skylab spacecraft using initial conditions in Appendix A. 	 The slow

tumble case simulates a slow spin approximately about the major axis.

The slow tumble was solved for the torque-free motion, gravity-gradient,

aerodynamic drag, solar radiation pressure, and gravity-gradient with

aerody	 4 torque.	 Results from each perturbation are discussed in

Chaptei VI.

Since the solution of Euler's attitude equations used excessive

computer time only the initial effect of the perturbations on the

spacecraft were simulated.	 The torque-free motion is discussed first,

^ followed by the environmental_ effects.

The magnetic effects were not studied since data was not

' available on the magnetic residual moments of Skylab; they were assumed

i

to be negligible. 	 Solar radiation effects were simulated and found to =	 --

be negligible compared to aerodynamic drag and gravity-gradient torques.
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CHAPTER VI

SIMULATION RESULTS

d Torque-Free Results
t

Since the general torque-free solution to Euler's attitude

equations are elliptic functions, equation (12) was solved numerically

to determine the force-free motion in the orbital and satellite

coordinate system for Skylab, using the initial conditions in Appendix

A.	 The motion in the orbital coordinate system of the satellite

r^
j

angular momentum vector is represented in Figure 12 for approximately

five orbits.	 The nutation and precession angles are defined by

equation (18).	 The rapid motion at 40, 90, and 140 minutes is caused

F
by the singularity of the Euler Angle 8.	 As 8 approaches 90 degrees'

the Euler rates (¢,) become larger as shown by equation (13). 	 This

causes the angular momentum to be transferred from either x or y to the

y or x axis inducing a large angular momentum precession rate for a
r

short duration.	 At t = 180 minutes the precession angle changes

x• direction and the angular momentum vector passes above the orbit plane

(notation angle >, 900 ).	 The nutation 'angle varies from 70 to 116

degrees and the precession angle varies from 40 to 326 degrees.	 Figure

12 illustrates the motion of the angular momentum vector in the orbital

coordinate system.

The nadir angle (l) represents the angul,:: ^ , 'nion of the minor (h)
i

axis with respect to the orbi t_ radius vector.	 Figure 13 illustrates the

nadir angle for the slow tumble torque free solution.; From figure 13

the nadir angle oscillates between 0 and 180 degrees. 	 The nadir angle

T
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period is approximately two orbits. The angular momentum and energy

for the slow tumble case were 4227 kg-m2 
Is and 2.37 kg-m2/s2•

Gravity-Gradient Results

The result of the gravity-gradient torque on the nadir angle is

illustrated in Figure 14 which shows that the nadir angle is bound

between 0 and 40 degrees. Comparing Figures 13 and 14 the gravity

gradient torque tends to align the minor axis along the orbit radius

vector. From inspection of equation (33) an equilibrium position (zero

torque) state exists when the minor axis is aligned along the orbit

radius vector. This state occurs when the nadir angle is O or 180

degrees (e = +g	 _90 ). Another equilibrium position exists when all

principal axes are aligned along the orbital coordinate system axes.

As shown by equation (33) any misalignment of the principal axes from

the orbital coordinate system induces a torque. Once a misalignment

occurs gravity-gradient torques will attempt to orient the satellite

toward an equilibrium state. Comparing the torque-f -ree solution in

Figure 13 and the gravity-gradient solution in Figure 14, the amplitude

of the nadir angle oscillation is reduced from 180 degrees for the

torque-free case to 40 degrees for the gravity-gradient case. The nadir

a rlr

1(%

angle period of oscillation decreases from 184 minutes to 66 minutes.

Thus, by bounding the amplitude of the nadir angle oscillations gravity-

gradient torque causes the frequency of the oscillations to increase.

Figure 15 illustrates the gravity-gradient effect on Skylab's

energy and angular momentum. Gravity-gradients cause the energy and

angular momentum to become cyclic with a period of 34.1 minutes or

approximately .36 of an orbital period. From the initial conditions the

7
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spacecraft was near a zero-torque (9 -80 0) position initially. As

the spacecraft moves from the initial position gravity-gradient torques

attempt to restore it, decreasing the angular momentum and energy. As

a result angular momentum and energy are maximum when the satellite

nadir angle is minimum and vice versa. Figures 14 and 15 illustrate

this effect.

The motion of the angular momentum vector in the orbital coordinate

system is shown in Figure 16. The gravity-gradient toque causes the

precession angle and rate to become periodic with an approximate period

of fifty minutes. The singularity due to Euler angle e = 0 degrees in

the torque-free case no longer occurs since the Euler angle 8 is bound

between -45 and -90 degrees. The precession angle represents the change

of angular momentum in the orbital coordinate system :fin the orbit

normal-velocity vector plane. Examination of the gravity- gradientCP

torque equations in the orbital coordinate system,equations (34),for a

symmetric satellite about the minor axis (B=C) indicates why the regular

precession occurs. Making the assumption (B=C) for-Skylab the gravity-

gradient torque equations in the orbital coordinate system become

(Mx) o sin2e sink (A-C) 3p/2R3

(M )o 	 sin2e cosy (C-A) 3u/2R3	(72)
aft

y o

(M	
0z)o 

X
and M` are the torque components in the orbit normal-velocity vector

y

plane and are functions of 8 and Vt . Since 9 is bound between -40 and

-90 degrees the Euler angle_ controls the direction of the precession.

The nutation angle represents tha motion of the angular momentum

vector with respect to the orbit radius vector. Since the z gravity-

gradient torque component in the orbital coordinate system is zero the

r
.a
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the nutation angle reflects the change in the total angular momentum A

magnitude.	 The nutation angle is shown in Figure 16.
i.

i Gravity-gradient causes the angular momentum and energy to

W4 become cyclic, attempts to align the minor axis along the orbit radius

vector, and causes a regular precession of the angular momentum about

the orbit radius vector. 
'.F

Alm - ^(

Aerodynamic.Drag Results

f The aerodynamic torque equations are complex and difficult to

F "" examine analytically.	 However, by examining the trends of various

spacecraft attitude parameters, valuable insight into the problem can
f

be gained. s

Figure 17 illustrates the motion of the minor axis with respect to

the orbit radius vector.	 As compared with the torque-free case, Figure

13, aerodynamic torques tend to damp out the oscillations and drive the b

-minor axis perpendicular to the orbit radius vector.	 Since the free

streamline velocity vector is approximately parallel to the orbit velo-

city vector,, aerodynamic drag would orient the spacecraft toward a

position of minimum resistance.p 	 Figure 17 this position would.From

appear to occur when the minor axis is in the orbit normal velocity

f vector plane.	 This can be illustrated by examining the nadir angle.

f^ The nadir angle amplitude continues to decrease in magnitude until 310

minutes and is oscillating about the velocity vector tangent (nadir angle

°)of 90.

Figure 18 illustrates the change in angularmomentum and energy.

As shown the angular momentum and energy decrease until approximately

t
310	 After this time the	 and	 begin tominutes.	 angular momentum	 energy

,,

increase.
..

w
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An explanation for the above trends can be found by examining

the change in angular momentum in the spacecraft body coordinate

system.- Figure 19 illustrates the angular momentum change for the

major axis (B) and the intermediate axis (C). 	 The angular momentum

change for the minor axis (A) was very small.	 As shown in Figure 19 rr.

initially the spacecraft was principally spinning about the major axis.

As time progressed the aerodynamic effect caused the angular momentum

to shift from the major axis to the intermediate axis until the space---

craft was essentially spinning about the intermediate axis at approxi-

mately 310 minutes.	 From attitude dynamics (5) a spacecraft spinning

about the intermediate axis with a perturbation is in an unstable

mode.	 Reference 15 illustrates why an unstable mode exists for motion

about the intermediate axis with a perturbation. 	 After reaching this

unstable mode the spacecraft quickly changes its momentum state and

a

within an orbit is spinning about the major axis. It is interesting to

note that the spacecraft is spinning about the major axis in the.

direction opposite to its initial one. 	 This change - in angular momentum

state causes the nadir angle, angular momentum, and energyto increase.

The aerodynamic drag effect on the position of the angular :.

momentum vector in the orbital coordinate system is illustrated in

Figure 20. As compared to the torque-free solution, the oscillatory

motion of the nutation-angle is damped out and the momentum vector tends

to align along the radius vector. The nutation angle continues to

decrease until approximately 310 minutes. As the minor axis is being

forced to become parallel to the orbit's velocity vector tangent the

momentum is being transferred from the major to intermediate axis as

shown in Figure 19 and explains the reason for the 'decrease. The

'r



k

	

	
-3000

ar

E	 `^	 -2000

-1000
rh	x N

0

0 20	 60	 100	 140	 180	 220	 260	 300	 340

s.	 Time (minutes)

Figure 19. Effect of Aerodynamic Drag on the Y and Z Angular
Momentum Compqnents in the Body Coordinate System.

»	 nrn4	 0^4 .ty;	 ..w+M«r"N wea ,#,•sa+,a.,*	 a. .;;< .u«+r.+ r.ns	 _.	 ..	 _	 ..



A	 d	 b	 R' . :..q	 :..	 ^	 q

U 100

bv 80- r

60
on

I 40

4J ,o
,,

z 0

0	 20	 60 100 140 180	 220	 260 300	 340	 380

Time (minutes)

360-
bo

300
a^

240

H 180

u 12
P4

60

0	 20	 60 100 140 180	 220	 260 300	 340	 380
CAI
.^ Time (minutes)

r-3 Figure 20. Aerodynamic Drag Effect on the Precession and Nuta-t on Angles.
Ln
N ^	 f



t 2.

52

intermediate axis is oriented in the general direction of the orbit's

radius vector.	 As a result the notation angle decreases until the

angular momentum is transferred back to the principal axis.	 As the

angular momentum is transferred back to the major axis the nutation

A angle increases.	 The aerodynamic effect on the precession angle is to

cause it to precess slowly about the orbit radius vector as shown in

Figure 20.

Combined Effects o,_ Gravity-Gradient and Aerodynamic Torques

The combined effect of aerodynamic and gravity-gradient torques on

the energy and angular momentum is illustrated in Figure 21. 	 Since

gravity-gradient is larger than aerodynamic drag the cyclic motion due

' to gravity-gradient is predominant.. The periodic type motion of the 

angular momentumand energy resulting from gravity-gradient becomes a

9

random type oscillation due to the damping effect of aerodynamic drag.
lY M

The aerodynamic torque reduces the amplitude of the gravity-gradient

induced oscillations.	 Initially the amplitude of oscillations varied

between 600 and 4200 kg •m2 /s; as time progressed the amplitudes varied

between 2700 and 4200 kg•m 2 %s.	 The lower limit of the gravity-gradient
A,

oscillation was affected more severely.	 This was due to the aerodynamic

effect of aligning the minor axis along the velocity vector._

Comparing the nadir angle of gravity-gradient (Figure 14) and

gravity-gradient with aerodynamic drag (Figure 21) illustrates the

aerodynamic effect.	 Aerodynamic drag reduces the amplitude of oscilla-

tion of the angular momentum and nadir angle which were induced by the

gravity-gradient torque. This torque tends to align the minor axis

along the radius vector.- The aerodynamic torque attempts to align the
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minor axis along the orbit velocity vector tangent perpendicular to

the orbit radius.	 The combined effect of gravity-gradient and

` aerodynamic torque is to cause the minor axis to oscillate between

t the radius vector and orbit velocity vector tangent as illustrated in

Figure 22.	 Since the gravity-gradient torque is larger than aerodynamic,

` its effect is predominant.	 This causes the minor axis to oscillate

" nearer the orbit radius vector between 25 and 30 degrees.
"'

Since the gravity-gradient torque component in the orbit radius

vector is zero the change in nutation angle illustrated in Figure 23 is s j

due to the; aerodynamic torque.	 The effect of the aerodynamic torque is

f to maintain the angular momentum vector below the orbit velocity vector-

orbit normal plane.	 The precession angle as shown in Figure 23 has a

Mn period of approximately 46 minutes. 	 This is similar to gravity-gradient

effect shown in Figure 14.	 The difference is aerodynamic torque

eliminates the change in the precession angle direction. 	 As a result

^.
the combined effect of gravity-gradient torque with aerodynamic drag is

to cause the angular momentum vector to precess regularly about orbit

radius vector pointing down the radius vector.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

i
1. An investigation of environmental perturbations for an asymmetric

i slow tumbling satellite has been presented. 	 Environmental perturbation

sources considered were gravity-gradient, aerodynamic drag, solar

radiation pressure and magnetic field interactions. 	 For the Skylab
r

spacecraft results assuming gravity-gradient and aerodynamic torques

were presented.	 Solar radiation pressure and magnetic torques were

small and neglected.

Gravity-gradient torque causes the nadir angle to become bounded

about the orbit radius vector and causes the energy, angular momentum,

and precession angle to become cyclic.	 Aerodynamic drag initially

decreased the angular momentum, energy, and nadir angle and drives the

spacecraft into an unstable mode by transferring angular momentum from

the major axis to the intermediate axis.	 Aerodynamic drag also induces

slow precession rate about the orbit radius vector and causes the

nutation angle to decrease.	 The combined effects of gravity-gradient

with aerodynamic torques were to cause the gravity-gradient induced

oscillation amplitudes to decrease and the periodic motion to become

random type oscillations.	 Gravity-gradient torques were greater than

aerodynamic drag and its effect was 	 predominant.

For long term predictions of satellite tumbling motion, analytical
a

techniques must be investigated. 	 Computer simulation for this type of

motion becomes very expensive since small time intervals are required to

solve the nonlinear equations of motion.	 Future models of tumbling

al

r

t
L
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spacecraft should include

internal energy dissipatii

y.



A

r.

lu

59

REFERENCES

1. Thompson, W. T., Introduction to Space Dynamics, John Wiley and
Sons, Inc., New York, 1963, pp. 111-113.

2. Frik, M. A., "Attitude Stability of Satellites Subjected to Gravity
Gradient and Aerodynamic Torques," NASA TM X-53796, October 1968.

3. Nurre, G. S., "Attitude Dynamics of the S-IVB Orbital Workshop
d Influenced by Gravitational and Aerodynamic Torques," NASA TM

X-53691,  January 1968.

4. Nurre, G. S., "Effects of Aerodynamic Torque on an Asymmetric,
Gravity-Stabilized Satellite," NASA TM X-53688, January 1968.

5. Palmer, J. L., "Generalized Spacecraft Simulation," TRW Report
064640600-TOO, February 1967, pp. 9-2 - 9-15.

6. Greensite, A. L., "Attitude Control in Space," Analysis and Design
of Space Vehicle Flight Control Systems, Vol. XII, NASA, CR-831,
Washington, D. C., August 1967, pp. 64-68.

7. Barnum, P. M., Firechsel, P. G., and Grunberger, P. J., "The
Attitude Motion of a Nutationally Damped Dual-Spin Spacecraft in
the Presence of Near Earth Environment," AIAA Paper No. 71-90,

r presented at the 9th Aerospace Sciences Meeting, New York, N. Y.,
j January 1971.

8. Chambre, P. L., and Schaaf, S. A., Flow of Rarefied Gases,
Princeton University Press, Princeton, New Jersey, 1961.

9. "Skylab-I PerformancE Data," NASA-MSC-01549, Vol. 4,
October 1972, pp.	 9-53, 55,	 C-1,	 C-25.

10. Lewis, J. R., "RTCC and MOPS Requirements for Modified 1970 Jacchia
Atmosphere Model," NASA MSC Internal Note No. 70-FM-202, January

{ 1971.

11. Cain, J. C., and Cain, S. J., "Computation of the Main Geomagneticr .
r`eld from Spherical Harmonic Expansions," NASA-NSSDC 68-11, May
1968.

12. Cain, J.	 C., and Caen, S. J., "Derivation of the International
tt Geomagnetic Ra"erence Field," NASA TN D-6237, August 1971.

13. Clancy-, T. F., and Mitchell, T. P., "Effects of Radiation Force on
the Attitude of an Artificial Earth Satellite," AIAA Journal, No. 3,

' Vol. 2, 1964, Pp. 517-524.



60

REFERENCES (continued)

14.	 Beckett, R., and Hurt, J., Numerical Calculations and Algorithms,
John Wiley and 'Sons, Inc., New York, 1967, pp. 192-220.

15.	 Kaplan, M. H., Modern Spacecraft Dynamics and Control, John Wiley s
and Sons,	 Inc., New York, pp. 68-72; (to be published in 1976).

F

g

.

^W

m

^	 a

F

,

^.	
^.ti :.	 `i34rn^:l^ttaF^Ri0.',¢fx4.S,yJ: ..	 `ro1.Rx5'.0 	 aw ,wwnW.xrrr+wwlp+	 "

'Slkt^`+.,

	 .,.^



v it

61

Aw
^rx

APPENDIX A
nx

Initial Conditions for the Slow Tumble Mode
ta. Y

d'	 A. Slow Tumble Orientation

The Skylab spacecraft was assumed to be in the following attitude

_ 1.07 degrees

e = -79.96 degrees

= 12.85 degrees

This was the attitude Skylab was believed to be in when it became
i

passive.	 For the slow spin case a negative angular velocity equal in

magnitude to the orbital rate about the orbit normal was assumed.

wo = +•00112256 radians/second

W	 = w j
00	 0

Using the transformations and Figure (4) the required initial t

Euler rates can be computed.

0.0

,., 6 = w	 cos
0

(p = w	 sill 1p cos e
0

Assuming w	 is the negative of the orbital rate the initial Euler rates
o >;

for the flow tumble case are

= 0,0

e = -:0011229 radians/second

-3.656 x 10
-6
 radians/second

e

'} u
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APPENDIX B

K } Skylab's Aerodynamic Drag Moment Coefficients
L,

n.

(
Y

a0 a'1 a2 a3 a4	 a4	 a6
t. b1 b2 b 3 b4 b	 b5	 6

H!

-
c	 (Pitching moment coefficient)y

^p
A
Al

-1.289 0.135 -0.195 -0.009 0.080	 0.007	 -0.037
-0.004 0.009 -0.011 0.022 -0.005	 0.011

r

Al 0.442 -0.073 0.084 0.000 -0.076	 -0.011	 0.003

3
A 0.009 -0.022 0.015 -0.036 0.007	 -0.020
B -0.037 -5.146 0.011 0.350 0.01/1	 -0.010	 -0.007

r _ Bi 0.199 -0.017 0.120 0.002 -0.06	 0.009
{ B -0.044 0.779 -0.007 0.123 0.005	 -0.032	 -0.001

h,
3B -0.049 -0.012 -0.021 0.001 0.032	 -0.001

. dr
c 2 (yawing moment coefficient)

,.

A -0.958 -0.067 -0.266 0.019 0.016	 -0.006	 0.012
d Ai -0.096 -0.055 -0.026 -0.054 0.018	 -0.009

A3 0.269 0.006 0.207 -0.007 -0.032	 0.006	 -0.014
A3 0.055 0.031 0.014 0.068 -0.027	 0.012
B 1 0.166 -0.140 -0.014 0.280 -0.042	 -0.074	 0.046
B 4.210 0.022 0.454 -0.052 -0.055	 0.003
B1 0.155 0.072 0.003 -0.069 -0.015	 0.032	 0.004
B3 -0.467 0.004 -0.134 -0.010 0.003	 -0.001

cY (rolling moment coefficient)

A -0.056 -0.071 -0.038 0.009 -0.,012	 -0.001	 0.006
Al 0.018 -0,.035 0.013 -0.017 0.:002	 -0.011
A30 .078 0.047 0.058 -0.009 0.1018	 0.005	 -0.016
A3 -0.021 0.042 -0.016 0.028 -0..000	 0.018
B1 - 0.053 1.136 0.024 0.250 -0.005	 -0.039	 -0.007
Bi 0.943 -0.016 0.430 0.005 -0.052	 -0.005

N B3 0.025 -0.210 0.009 -0.055 =0.005	 0.019	 -0.003

u

B3 -0.162 0.005 -0.099 0.000 0.00 1 	-0.002

i
r

$EPRODUCIBILITY- OF THE
ORIGINAL PAGE IS POOR
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APPENDIX C

Skylab's Orbit and Satellite Parameters

Orbital Parameters	 t

r
Orbit Inclination = 50 degrees

Eccentricity = 0

	

-r	 Altitude = 435.5 kilometers

Right Ascension of Ascending Node = 233.2 degrees

Orbital Period = 93.23 minutes

	

k	 Earth's gravitational constant = 3.986	 105 kilometer 3/
second

	

^a	 -

Earth ' s mean radius 6378.0 kilometers

a

Satellite Parameters

Principal Moment of Inertias

I	 7.93321 x 105 kilograms - meter 2
xx

I = 3.767828 x 106 kilograms - meter 2
yy

I = 3.694680 x 106 kilograms meter 2
zz

`	 -	 Aerodynamic Reference Area

Surface Reference Area = 79.46 meter 

a

Reference Diameter 10.058 meter

a

1
A

v i


