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ABSTRACT

SRI, with NASA support, has been developing cooperative (man--machine)

scene analysis techniques whereby humans can provide a computer with

guidance when completely automated processing is infeasible. An inter-

active approach promises significant near-term payoffs in analyzing

various types of high-volume satellite imagery, as well as vehicle-based

imagery used in robot planetary exploration. This report summarizes the

work accomplished over the two-year duration of the project and describes

in detail thrie major accomplishments not previously reported:

® The interactive design of texture classifiers .

v A new approach for integrating the -egmentation and

interpretation phases of scene analysis.

o The application of interactive scene analysis techniques

to cartography.
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I INTRODUCTION

SRI., with NASA support, has been developing cooperative (man-

machine) scene analysis techniques whereby humans can provide a computer

with guidance when completely automated processing is infeasible. An

interactive approach promises significant near--term payoffs in analyzing

various types of high-volume satellite imagery, as well as vehicle--based

imagery used in robot planetary exploration. This report summarizes the

work accomplished over the two--year duration of the project and describes

in detail the major accomplishments not previously reported.

1
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II SUMMARY OF WORK DURING 1973-1974

During this period, we developed and implemented a set: of scene

analysis programs known collectively as ISIS (Interactive Scene Inter-

pretation System). These programs are loosely integrated by compatible

data structures and a common top--level command-driven executive. ISIS

currently consists of the key components described below:

(1) ISIS Core [1]"---An extensible library of compatible

INTERLISP and Fortran subroutines for picture process-

ing and graphical interaction. These subroutines allow

interactive users to observe how graphically designated

parts of the scene are perceived by the system's de-

scriptive and relational primitives. This information

can then be used in conjunction with available sampling

and region growing subroutines to empirically formulate

and test automated strategies for distinguishing objects

in particular pictorial domains.

(2) Object Finding Subsystem [2]--A program that automatically

develops strategies for finding specified objects in a

given class of scenes. Objects are designated to the sys-

tem graphically by outlining pictorial examples. First,

the system formulates a description of the object, based

on characteristic features that distinguish it from ob-

jects previously designated. Then, it develops an effi-

cient strategy based on cost-effectiveness models of the

available ISIS modules.

(3) Segmentation Subsystem [3]---A program that uses ss.aantic

interpretations solicited interactively from s human col-

laborator to partition complex scenes into regions that

correspond to meaningful objects. The system operates by

requesting an interpretation whenever an unidentified re-

gion exceeds a rl,teshold size and then by refusing to

merge regions that carry different labels.

The references are listed at the end of this report.
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(4) Region Interpretation Subsystem fI 4]---A program that de-

termines the best joint interpretation for regions in a

partitioned scene. Each region is first assigned a set

of possible interpretations that are consistent with its

local, attributes. A deductive mechanism then system-

atically eliminates improbable interpretations that

violate global semantic constraints. For example "door"

would be eliminated as a possible interpretation of all

regions above a region previously deduced to be "wall."

The object finding, segmentation, and region interpretation subsys-

tems were written to provide ISIS users with packaged paradigms that

could be used as high-level components in their own scene analysis pro-

grams. Several specialized interactive systems were fabricated using

these subsystems: natably Garvey's program for finding objects in room

scenes [2], Weyl's program for cooperative (man-machine) parrioning

of natural scenes [3], and Tenenbaum's program for interpreting a manually

partitioned room scene [4].

`r
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ZIT SUMMARY OF WORK DURING 1974-1975

During this recently completed period, a number of new core facilities

were implemented including a relational data base and a capability for

windowing the image to obtain maximum resolution over a selected area

of interest. These facilities were used in experiments on the inter-

active design of texture classifiers for distinguishing textures in a

limited domain of scenes, The segmentation and interpretation subsystems

were integrated into an automatic scene analysis system distinguished by

its ability to capitalize on both general semantic knowledge about the

scene domain and direct guidance from a human user. Finally, inter-

active scene analysis techniques were successfully applied to the problem

of extracting cartographic features from aerial photographs. The approach

used appears applicable to a variety of other tasks requiring coordinate

digitization of graphical data.

The remainder of the report consists of self-contained chapters de--

scribing in detail the various aspects of our recent: work.

4
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A. Introduction

Texture is an essential feature in the segmentation and interpreta-

tion of natural scenes. However, unlike hue and brightness, it is not a

monolithic attribute, easily characterized by a single number. Investi-

gators have thus been forced to use a wide variety of features to classify

or distinguish particular textures in particular classes of imagery. At-

tempts to formalize criteria for selecting textural features have not been

overly successful. For these reasons we decided to investigate ways in

which the interactive facilities of ISIS could be used to determine em-

pirically enough featureR to distinguish the prominent textures appearing

in a lim:.ted scene domain.

B. Method of Approach

Representative images from the selected domain are partitioned ex-

haustively into small rectangular subimages. Manual interpretation is

made of the texture types appearing in each subimage. Each subimage is

then subjected to a battery of programs that extract texture-related

features (see Section C). The results of manual interpretation and fea-

ture extraction are stored in a relational file that provides access to

the values of texture features associated with a texture interpretation,

the texture interpretation (s) associated with a set of texture feature

values, the subimages containing a given texture interpretation, and the

subimages associated with each original image. Using this data base,

the experimenter designs ad hoc functions that test whether a particular

texture interpretation is present in a subimage, based on texture features

5



computed over that subimage. Typically, a texture function is first

hypothesized on a basis of feature values obtained in subimages contain-

ing that texture. The postulated function is then tested automatically

on the complete set of interpreted subimages in the data base. If
9

nt o cessary, the design process is iterated by modifying the function to

incorporate texture features of misclassified subimages. Implementational

details of the relational data base system can be found in Reference [5].

C.	 Texture Features q

Textures can be characterized on an .ad hoc basis at several levels'..

of detail.	 For example, a textured region may be characterized at a

microlevel by statistical. distributions of the brightness,. hue, and

saturation of individual picture elements. 	 Microtextures may also be r

specified by nonstatistical functions on the attributes of picture ele-

ments.	 In one particular	 scene,	 regions of sky and lake both contained

samples with virtually identical blue hues. 	 However, in the lake, the

blue samples were liberally interspersed with distinctive green samples.

Thus, in this domain, the texture "lake" might be characterized as a set
t

of picture elements within a prescribed proximity to a distinctive green. r

sample (the hue distribution of these proximate points being unimportant).

At the macrotexture level, a region could be described in terms of dais-

tittguishing attributes of component regions, as when describing grass as

a region containing green, yellow, and brown blobs. 	 A particularly simple
E

macrotexture descriptor is the number or density of smaller regions con-

tained in a standardized window of a subimage.	 For instance, bushes may

appear as a large number of small green regions, while grass,. sky, and
i
i

trees are represented by a few large regions.	 Other macrotexture features

include distributions of the shape, spatial arrangement., and microtexture

of the elementary component regions.

i

r

6
s
s



:^ e

A library of programs for extracting both micro- and macro--texture

features was written for use in developing cexture discrimination func-

tions. The microtexture features consist of approximately 30 statistical

properties computed over all the picture elements in a subimage. These

features, listed in Table 1, include the mean and distribution of bright-

ness, saturation, and hue over the subimage, as well as measures of the

homogeneity of these attributes. The homogeneity of an attribute was

estimated by comparing the range of values observed over the whole sub-

image (excluding the upper and lower 10 percent extrema) with ranges ob-

served over smaller subwindows of the subimage. Two sets of subwindows

were used, partitioning the subimage into 4 X 4 and 10 X 10 cells respec-

tively. Homogeneity served both as an intrinsic texture feature and as

an indication that perhaps two or more textures were present within a

subimage. This latter case might be suspected if the range of variation

computed over the whole subimage was large compared with the ranges com-

puted over more localized portions.

Macrotexture features were based on the attributes of regions ob-

tained by subjecting the subimage to a crude segmentation procedure. The

procedure used divided the subimage into regions consisting of Lidjacent

picture elements of identical brightness (based on a few significant

bits) in all three filter bands. The number of bits was manually chosen

to provide a "good" distribution of region sizes: too many bits produces

a lot of small regions and no large one-, too few bits produces a few,

very large regions. (The process of selecting a suitable number of bits

could, of course, be automated, perhaps by basing the number of bit3 on

the global mean and variance valu,2s of brightness and hue over the sub-

image.) Seventeen properties were computed for each significant region,

whose size exceeded 6 pixels (picture elements). These are listed in

Table 2. The total number of significant regions over the subwindows

7
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Table l

SUBWINDOW PROPERTIES

1.	 Number of significant regions (size >6 pixels)

2-4.	 Brightness homogeneity

a. Computed over whole subwindow (1)

b. Computed over a sixteenth of the subwindow (4)

C. Computed over a hundredth of the subwindow (10)

5-7.	 Hue homogeneity (1, 4, 10)

8-10.	 Saturation homogeneity (1, 4, 10)

11-13. Average brightness, hue, and saturation ( computed over

all pixels in subwindow)

14-18. Crude brightness distribution (5 level histogram)

19-23. Crude hue distribution

24-28. Crude saturation distribution

29-31. Variance of brightness, hue, saturation

32-40 Crude distributions of average brightness, hue, and

saturation for regions c6 pixels ( 3 level histogram

for each attribute)

41-45. Distribution of region sizes in partitioned subwindow

(5 level histogram)

together with crude distributions of brightness, hue, and saturation for

the insignificant regions were included in Table 1 as additional micro-

texture attributes of the subimage.

D.	 Designing Texture Classifiers

A case study on the interactive design of texture functions was per-

formed in a domain of 12 forest scenes from the Point Reyes National

Seashore. Some typical scenes are shown in Figure 1. These were digi-

tized through red, green, and blue color falters at 240 x 340 spatial

f^
c :C
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Table 2

REGION 1 1 EiOPE11TIES

(Computed fur each region Ln

pnrtitiuml Suirwininw)

Brightness, Colnr	 N	 ht,

1, Average Brightness, U i
, _ E YL	

X --	 of Pixels L • . region.

Liwl

2, Brightness stondnrd devintion,	 Ibr - 4ri
pr

	

3-5.	 Average brLghtness t):rougb Iced, Green, Blue Filters:

U

nr =	 Gr =	 \1	 13i	 N

i=1	 1=1
d1	

1=1

	

6-7,	 Average Red and Greun brightness, nut•tra112ed `byv tutal brightness,

t' Bill r i +g i +b l	 r LL....lt rt+gi+bi
i=1	 i=1

ti	 ti

	8-9.	 Average line, Saturation based nn r, K, h,

(Compute(i usint formulae described in Appendix A of [1^,)

Shape

	

LO • 	Area - N (number of Pixels in region),

	

1l,	 P^rimetr.r - number of elementary vec + ors surruwidiuL regifrn in region data structure,

12, Cornpnrtness = (Perineter)2
Area

(llL0-U0^) x •l• 4U111
13, Eccentricity =

2

ti
1 _	 o

where 1211 ^ ^ (x - xl)V
=1	 ORIGNAL(

^

^
pry

^
^.

^

u02 	 yi 12	

^Te
 P OOP

 ^1GUALFIV

i=1
21'

1	 -1 r	 l]	 n-

	

19.	 Angle of Dla,iur Axis, "'. - 	 tan	 [\	 +
02

whore n Ls scleeted so that 2 • ^7 5	 ,

	

15.	 X Width, LX	 X%tA% - XMIN (of boundLng rrcinngle),

	1B,	 Y Width, M _ YMAX - YMI\,

	

17,	 }rnrt Iona( Fill -	
Arco	 Area of regiuu	 .

	

GX • dY	 Area if b. yunrling reCtanglc

r'
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(b)

SA-4683-19

FIGURE 1	 FOREST SCENES FROM POINT REYES NATIONAL SEASHORE
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1

resolution and 8 bits of intensity. From each picture, several 40 x 40

subimages Caere selected manually For empirically developing a texture

i.+	 classifier. Each subimage was partitioned into regions of identical

color (based on several significant bits/separation) and then exhaustively

characterized according to the subimage and region features listed in

Tables 1 and 2. The resulting feature values wire stored respectively

under subimage and region files in the data base. The squares super-

imposed on the images in Figure 1 outline subimages selected for texture

analysis, some of which are shown isolated from the rest of their pictorial

context in Figure 2. The subimages in Figures 2a and 2b all come from

trees, showing the diverse appearances that textured entities in real-

world scenes can assume.

As mentioned earlier, the quality of the partition on which texture

analysis is based depends critically on the number of bits from each

separation that are used for determining homogeneity. Using too many

bits will result in too much detail_, reducing the amount of meaningful

region shape and orientation information, while using too few bits will

cause blurring and elimination of critical details. Figure 3a shows a

partition based on too few bits, while. Figure 3b shows a good partition.

Notice that in the good partition all important details have been cap-

turgid.

Five texture categories were identified in the current study, "grass,"

"shrubs," "trees," "sky," and "background." A list of texture interpreta-

tions from these categories was manually assigned to each subimage re-

corded in the data base.

The design of texture functions for these five textures began by

observing the distinguishing macrotexture features of subimages contain-

ing each texture type. Trees were observed to have a significant number

of bright reddish highlight regions in the crown portion, interspaced

11



(a) TREES

(b) MORE TREES

(c) GRASS

(d) BACKGROUND

r.

i

1.

-

I 	 ^

I

1	 ^
III

^	 1

111	
^

I I

I 	 I	 1

o	 (e) GRASS AND SHRUBS
`	 F

—Aim,  
SA-4683-20

FIGURE 2 SUBIMAGES REPRESENTATIVE OF TEXTURE CATEGORIES

12



I	 f	 I I

1

^	 ^	 ^	 ^.

1-

I air

U

5 tF

(a) OVERLY COARSE PARTITION
(TOO FEW BITS)

f ^	 Fl, 
rl	 !	 -)

+a":,



^f

with blue blob-shag-d regions of sky. Treebark tended to appear as ver-
k

tically elongated brown regions. Shrub::, by contrast, were distinguished

s^z

	 by large light-red blobs and few small blobs, while grass was a fairly

c t_ 
solid brown-green. Many of these distinctions are evident in the sample

subimages of Figure 2, despite the absence of color information present

in the original RAMTFK displays.

The next step in the design process i-ivolved formulating functions

of region and subimage properties that coulc represent analytically the

distinctions in texture described above. This crucial design phase is

entirely empirical and its success depends largely on the adequacy of

the available feature extraction operators.

The typical sequence used in designing texture classifiers can be

illustrated with an example. Suppose the user is interested in identi-

fying subwindows containing the class of treetrunk textures exemplified

by Figure 3. After displaying a representative subwindow, the user can

interrogate the values of selected window attributes and the attributes

of distinguishing regions, which he designates with a cursor.

For example in figure 4a, the user selects a vertical section of the

treetrunk in the middle of the subimage, which the computer identifies

with a bright star. The properties of this region, shown in Table 3,

are then printed out on his terminal.

The user then decides that sections of treetrunk are distinguished

by their vertical orientation and horizoncal narrowness. He filters the

regions, using the predicate for treebark shoran in Table 4. The regions

selected by this predicate are indicated with stars in Figure 4b. Any

subwindows containing a sufficient number of such regions are classified

as containing treetrunks. Classifiers for the other categories of texture

are also given in Table 4.

14
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Table 3

PROPERTIES OF TREETRUNK REGION

1. Average brightness	 = 78.2

2. Brightness s,d.	 = 11.7

3. Average r	 - 85.7

4. Average g	 = 47.8

5. Average b	 = 101.1

6. Average norm r	 = 0.36

7. Average norm g	 = 0.20

8. Area	 = 102.0 pixels

9. Perimeter	 = 102.0 elementary vectors

10. p2 /A =	 102.0

11. Trace =	 0.011

12. Eccentricity =	 0.01

13. Angle of major axis =	 90°

14. Fractional fill =	 0.54

15. x width =	 5.0 pixels

16. y width =	 38.0

17. Hue =	 283.6"

18. Saturation =	 0.39

i
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Table 4

TEXTURE CLASSIFIERS

Subwindow contains

1. Tree (trunks)

if regions with:

.33 s average r s 1.0

and SOP 15 angle of major axis (from horizontal) s 1000

and 4 s width (pixels) s S

2. Tree (crown)

if regions with:

4
(These regions correspond to

area C
those preceived as red high-

and 230 s brightness s 255 lights in Figure 2.)

and average r > 0,33

3. Sky

if regions with:

230 s brightness

and r < 0.33

4. Grass

if Ik of regions in subwindow c 200 (partition based

on 2 bits/color)

and not (sky)

5. Background

Brightness variance - small (fuzzy greenish tegions)

and	 average g > 0.33

17
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t.	 E.	 Discussion

As of this writing, a comprehensive evaluation of these classifiers

on the whole data base has not yet been performed. The actual results 	 {

obtained by this particular set of ad hoc texture functions is, however,

less important than the interactive methodology used in formulating them;

ISIS was created to provide experimenters with the tools (such as dis-

plays, data base, operators) needed to rapidly formulate effective scene

analysis strategies for limited domains of scenes. ISIS was first used

to design strategies for finding objects based on their distinguishing

features in a limited context. The same methodology has now been applied

to the design of texture functions.

The most obvious way to improve the performance and generality of

a texture classifier is to add additional texture features to the sys-

tem's repertoire. Several interesting features were discussed, for

example, in our 1974 annual report ^6], based on the spatial dependency

and Fourier power spectrum of pixel brightness. The performance of the

macrotexture features used in the current exercise could be improved

by using a better procedure to partition the 3sbimages into regions.

Clearly, these regions should correspond closely to interpretable pic-

torial entities (e.g., to leaves in a tree texture). In the extreme, a

detailed scene analysis procedure could be performed within each subimage

to obtain a good segmentation on which to base texture classification.

The interactive aids provided by the system could also be augmented

with clustering procedures for suggesting good texture features to the

user, our immediate interest, however, is in using textural attributes

in the semantically guided segmentation system described in the next

chapter.

18
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V EXPERIMENTS IN INTERPRETATION-GUIDED SEGMENTATION

A.	 Introduction

A truly flexible interactive scene analysis system should be based

on an underlying automatic system with the versatility for effectively

using manually supplied guidance. Such a system would be capable of

functioning, albeit at reduced effectiveness, without any guidance, and

its effectiveness would increase steadily with increasing quantity and

specificity of user interaction.

The system we propose is based on a generalization of Weyl's semantic

segmentation program [3]. The central idea in that program was the use of

semantic region interpretations to guide segmentation. The program in

its existing form interactively solicits explicit interpretations for

large unidentified regions and then refuses to merge regions that carry

different labels. The use of a size threshold is, of course, arbitrary;

if interpretations could be assigned to every picture element (pixel),

then segmentation would be reduced to the trivial process of collecting

adjacent pixels with the same labels.

There are two difficulties in automating interpretation at the pixel

level, namely the excessive volume of data, and the absence of global at-

tributes (e.g., shape, texture, boundmry relations). These attributes

emerge only after a region structure has been imposed on the pixels, but

without them, interpretation is usually ambiguous.

The integration of segmentation and interpretation is accomplished

in our system by proceeding incr ,^inental'y. Beginning at the pixel level,

the system first performs the most complete interpretation possible in

the current partition. Next, it performs the safest merge consistent
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with that interpretation and any prior knowledge about the domain. The 	 ,!I

process then iterates by revising the interpretation to fit the current

partition and performing another merge (see Figure 5).

Start

PERFORM
INITIAL PARTITION

INTERPRET CURRENT
PARTITION

ALL
ADJACENT	

YesINTERPRETATION	 Terminate
SETS

DISJOINT

No

PERFORM SAFEST
MERGE

SA-4683-2

FIGURE 5 OVERVIEW OF INTERPRETATION GUIDED
SEGMENTATION PARADIGM

The safety of a merge is evaluated by assessing the likelihood that

two adjacent regions (or pixels) are fragments of the same object. Merges

are thus never allowed between regions whose interpretations (or sets of

possible interpretations) are known to be disjoint. The safest merge

involves regions that have already been assigned the same unique inter-

pretation. It is also safe to merge adjacent regions whose interpretations,
a-	
1i
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while not yet unique, have been narrowed to Lhe point where prior knowledge

constrains both regions to take the same interpretation. For example,

}	 suppose that "pictures" were constrained to hang only on "walls," and thus
s;!
ct

could never appear adjacent Lo "doors" in an image. Two adjacent regions

with "door" and "picture" as possible interpretations, could thus be

safely merged since both regions must be interpreted either as parts of

a "door" or as parts of a "picture." If there are no "safe merges," as

defined by the above criteria, then the regions separated by the lowest

contrast boundary are merged, provided, of course, their possible inter-

pretations are not disjoint. When the possible interpretations of all

adjacent regions in the current partition are disjoint, the analysis

terminates.

After each merge, the resulting partition is reinterpreted. When

regions merge, the resultant region initially inherits the possible in-

terpretations shared by its parent regions. ('These are obtained by inter-

secting the interpretation sets of the parent regions.) Some of these

common interpretations may not be compatible with the expanded range of

attribute values found in the enlarged region and can therefore be im-

mediately ruled out. A small region, for example, will admit interpreta-

tion as either a small object or part of a urge object, but a large

region can correspond only to a large object.

Interpretations eliminated in the course of region merging may, in

turn, allow semantically related interpretations to be dropped as possi-

bilities of other regions. For example, if a newly merged region becomes

too large to be a "chairseat," the possibility "chairback" can be dropped

for the region above it. These secondary eliminations may themselves

propagate additional eliminations extending throughout the image.

Initially, all pixels are assigned all possible interpretations.

Hence, any adjacent pixels can be legally merged but no merge is guaranteed

to be "safe." Without additional knowledge or interactive guidance, the

21
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system will thus function as a conventional region grower, merging regions

in order of boundary contzast. Prior knowledge and user interaction act

i	 by constraining the possible interpretations of regions and thereby re-

strict the set of region interpretations with which those regions can be

compatibly merged.

A prototype version of the above paradigm was implemented in Fortran,

as an extension of a previously described region analysis program [3]. In

this prototype version, every pixel was allowed up to 18 possible inter-

pretations that were predefined for a given domain. In room scenes, for

example, the interpretations that were defined included "door," "wall,"

"floor," and so forth. (The possible interpretations of a pixel were

physically represented by bits in the left halfword of the image array

element containing its brightness.) As an expedient, the initial level

of interpretation occurred, not at the pixel level, but after an initial

level of partitioning in which adjacent pixels with both identical bright-

ness and identical sets of possible interpretations were grouped into

regions.

The remainder of this chapter describes three sets of experiments

with the above paradigm involving three distinct sources of knowledge.

In these experiments, interpretations were constrained by user interac-

tion, a geometrKc model, and prior knowledge about the spatial relation-

ships of objects in a limited domain.

B.	 Experiment I--Interactively Guided Segmentation

1.	 Introduction

Users can influence the partitioning of particular images by

directly assigning interpretations to specified regions. In Weyl's system,

an interpretation was solicited from the user whenever merging produced

a large uninterpreted region. This capability has been generalized so

22
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that users can now volun aer interpretations for re,-ions or sets of

regions throughout the analysis by pointing at or encircling them with

a display cursor.

Intuitively, guidance received early in the analysis will be

most beneficial in preventing erroneous merges. We felt that with

relatively little effort, a user could crudely outline and label the

major objects in a scene. These labeled outlines would provide must of

the region interpretations that had to be solicited individually in

Weyl's system and also serve as a good initial partition from which

detailed boundaries could be rapidly grown. To test this contention,

a program was written that allowed users to draw regions in a displayed

image before initial partitioning, and to specify for each region a

unique label, a set of possible labels, or a set of labels to be deleted.

Users were instructed to rapidly partition and label the image so as to

thwart anticipated merge errors. In particular, they were told to crudely

inscribe and uniquely label areas of the image containing unobstructed

views of large objects and to point at and label at least one pixel in

each area of the image containing a sizable but isolated fragment of a

major object, such as pieces of "sky" showing through a "tree." They

could also attempt to contain spatially amorphous objects, such as "trees,"

by circumscribing them crudely and then deleting that object's interpre-

tation from all pixels outside the circumscribed region.

2.	 Methodology

The out put of this region-labeling phase was an annotated image

array in whic l-: ­ 7 exy ;lixel had an associated set of possible interpreta-

tions. All pixeis contained L,Tithin a region designated by the user were

assigned the interpretation set associated with that region. All other

pixels were assigned, as a default, the set of -11 possible interpreta-

tions. An initial partitioning of this array was performed in two steps.
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First, adjacent pixels with unique, identical interpretations were grouped

into regions, then all remaining adjacent pixels with both identical

j ;	brightness and identical interpretations were grouped. G-ouping uniquely
,c

interpreted regions independent of brightness reduced the total number of

regions in the initial partition and made the resulting regions more repre-

sentative of the underlying object structure.

Following this initial partitioning, the merge/interpretation

cycle commenced. In this experiment, the system had no general semantic

knowledge and hence all merges had to be regarded as unsafe. As such,

merging proceeded at each stage by deleting the lowest contrast boundary

between adjacent regions with nondisjuInt interpretation sets. Additional

user interaction was not solicited during this subsequent analysis.

3.	 Results

Some typical results are shown in Figures 6 and 7. Figure 6a

is an improved digitization of the scene previously analyzed in Reference 3.

This scene contains a large number of isolated fragments of objects oc-

cluded by parts of the tree. This necessitated a rather detailed manual

labeling stage, the results of which are shown in Figure 6b. The initial

partition based on brightness and manual labeling (at 60 X 60 resolution)

appears in Figure 6c. (This initial partition is far superior to that

shown in Reference 3, which was based solely on brightness at 40 X 40

resolution.) The final partition and labeling appears in Figure 6d. The

scene analyzed in Figure 7 contains little occlusion. Consequently, fewer

manually inscribed regions were needed to adequately constrain the final

partition.

The current digitization was performed at USC on a Muir head drum at

8 bits of brightness resolution.
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(a) DIGITIZED IMAGE

(8 BITS AT 256 x 256 RESOLUTION)

4

¢	 Interpretations	 Regions

}	 `•	 r \	 2t	 _	 Sky	 2,4,5,6,7,10*,11

28	
j^ 	 Mountain	 18,19,20,21 -,22-,28

-	 _	 -	 22	 18	 Saa	 23,24,25*,26,27*
^-	 Grcund	 33,34*

`^tF	2'^	 s	 Rock	 30,31,32*

z4 . k\'  Tree f Crown)	 8
Tree (Bark)	 12,13,15*,16 17

30

(b) CRUDE MANUAL PARTITION AND LABELING

"Single point region.
* Circumscribed boundary.

All other regions are inscribed boundaries.
SA-4883-15

FIGURE 6 INTERACTIVELY -'UiDED SEGMENTATION OF MONTEREY CYPRUS SCENE
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Interpretations	 Regions

Sky 1-7
Mountain 8-10
Sea 11-13,	 21
Ground 14
Rock 15-16
Tree (Crown) 17
Tree	 (Bark) 18-20

(c) INITIAL PARTITION (A7 60 	 60
RESOLUTION) BASED ON BRIGHTNESS
AND MANUAL LABELING; CONTAINS
481 REGIONS

(d) FINAL PARTITION AND LABELING (21 REGIONS)
SA-4683-16

FIGURE 6 INTERACTIVELY GUIDED SEGMENTATION OF MONTEREY CYPRUS SCENE
(Concluded)
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FIGURE 7 INTERACTIVELY GUIDED SEGMENTATION OF POINT REYE8 SCENE
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FIGURE 7	 INTERACTIVELY GUIDED SEGMENTATION OF POINT REYE8SCENE

{Concluded)
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It is difficult to evaluate an experiment whose results are

subject to the variability of human input. The results shown are, how-

ever, representative of the 10 experiments of this type that have been

performed. The final partition in Figure 6 appears subjectively better

than the result previously obtained in Reference 3, where interpretations

were solicited during the analysis. This improvement is probably due,

in large part, to the improved initial partition and the increased reso-

lution.

4.	 Discussion

The above experiments confirmed that with a little human guid-

ance, rea.sonable partitioning of complex scenes could be obtained. This

interactive mode of partitioning could conceivably provide a practical

way to process images that are too difficult to segment completely auto-

matically and also too detailed or numernus to segment by hand (e.g., by

tracing detailed boundaries on a digitizing table). We envisage a system

that would use crude manual partitioning as a guide to extract detailed

region boundaries, and then rely on additional interaction to correct the

occasional errors (e.g., small sections of boundary could be traced in

detail). We are currently studying the application of such techniques

to cartography (see Chapter VI), and are considering additional applica-

tions in earth resource assessment, photo interpretation, and radiology.

C.	 Experiment II--Model Guided Segmentation

1.	 Introduction

An experiment was performed to demonstrate the feasibility of

guiding segmentation with interpretations provided by a three-dimensional

geometric model. Specifically, the objective was to segment an image into

regions that correspond to the parts of an object articulated in the model.

For this experiment, a color photograph of an air compressor was digitized
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to 32 levels at 60 X 60 resolution (Figure 8). This photograph was in-

itially partitioned into regions composed of adjacent pixels with identi-

cal brightness, as shown in Figure 9. Because of the uniform col3ring

of the compressor, which is typical of mechanical equipment, a nonsemantic

region-merging program proved very unsatisfactory. Figure 10, for example,

shows the partition that results from successively merging together pairs

of adjacent regions with lowest color contrast, until 200 regions remained.

Though pointless, this process could obviously be continued until the en-

tire scene was merged into one big region.

A structural model of this compressor was previously developed

by Agin, for use in planning assembly and disassembly sequences (7]. The

model, shown in Figure 11, contains polyhedral representations for the

major components of the compressor, and associated metrical information.

Given this polyhedral model and a simple projective camera model, a

graphics program can display how the compressor in known position and

orientation will appear from an arbitrary viewpoint. With the straight-

forward addition of a hidden surface algorithm, the display program can

also determine which component of the compressor (e.g., tank, pump, motor)

will actually be visible at each point in the image. This knowledge can

be represented in the form of a visibility matrix, as shown in Figure 12.

2.	 Methodology

For our experiment, it was assumed that the relative location

and orientation of the camera and compressor were known approximately.

This uncertainty in relative position introduces a corresponding uncertainty

in the prediction of which compressor component will be visible at a given

	

point in the image. The	 uncertainty can be represented by a set

of overlapping regions, each of which expresses the composite area of the

image that could possibly be occupied by a given interpretation, for all

compressor positions within the assumed range of uncertainty. Figure 13
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FIGURE 11 POLYHEDRAL (WIRE FRAME) MODEL
SUPERIMPOSED ON T-V IMAGE

OF COMPRESSOR

0 = Background	 5 = Purnp

1 = Table	 6 = Tank Platform
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FIGURE 12 VISIBILITY MATRIX SHOWING PIXEL INTERPRETATIONS FOR COMPRESSOR

IN KNOWN RELATIVE POSITION TO CAMERA
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	 shows the composite regions for the compressor parts distinguished in

this experiment. (These regions were transcribed manually from a series

of displays showing the compressor at various positions over the allowed

range. The transcription process would, however, be straightforward to

automate.)

The regions shown in Figure 13 were used to make initial inter-

pretations of each pixel, in the same way that manually designated region

interpretations were used in the previous experiment. Specifically, the

bit representing the interpretation of each region was turned on for all

pixels within that re gion and turned off for all those outside. An ini-

tial partition was then formed in which all adjacent pixels with identical

brightnesses and interpretations were grouped into regions. Regions were

then merged, as in the previous experiment, in order of weakest boundary

contrast subject to the existence of at least one common interpretation.

Resultant regions again acquired interpretation sets formed by intersect-

ing the possible interpretations of both parent regions.

3. Results

The merging process tertminated with the partition shown in

Figure 14, in which all adjacent regions had disjoint interpretations.

The result is by no means perfect, but does represent a considerable im-

provement over the attempt at unguided segmentation. The result could be

further improved by using a more detailed model, by iterating `Le analysis

to refine the position estimate of the compressor, and by using additional

knowledge about compressors such as the visual appearance of parts.

4. Discussion

The use of structural models for guiding segmentation is well

suited to industrial inspection tasks where the structure of a manufac-

tured item is fixed and its position is known approximately. The resulting
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Region	 Interpretations

1	 Background
2	 Belt Housing
3	 Motor
4	 Pump
5	 Tank Platform
6	 Table
7	 Tank Cylinder
8	 Base
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FIGURE 13

	

	 .OMPOSITF REGIONS DELINEATING
POSSIBLE AREAS OF IMAGE FOR
EACH INTERPRETATION

SA-4683-14

FIGURE 14 FINAL PARTITION AND LABELS AFTER MODEL GUIDED MERGING
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4	 analysis can be used to locate the item's position exactly and also to

locate the boundaries of parts of the item as a prelude to inspection.

This inspection scenario is representative of a variety of tasks involv-

ing knowledge about the approximate image location of objects in a rela-

tively static scene. Thus, maps can be used in a similar fashion as

structural models to guide the interpretation of aerial photographs.

Similarly, anatomical maps can guide the interpretation of medical imagery

such as x-rays and thermograms. A previous analysis of a scene is yet

another source of knowledge about object Location that can be used in

tasks such as change detection, motion tracking (i.e., analyzing a series

of scenes taken from slightly different viewpoints), and the analysis of

a sequence of movie frames. 	 Note that when the location parameters of

an object model are known exactly but the position of the camera is un-

certain, then a model-driven analysis can be used to calibrate parameters

of the camera model, or alternatively, the location of a robot vehicle

that may be carrying the camera.

A.	 Experiment 111--Constraint Guided Segmentation

In both previous experiments, segmentation was guided by interpreta-

tions that were specified for particular regions in a particular scene.

Region interpretations can also be deduced using constraints that apply

to generic interpretations over all images in a given domain. These con-

straints specify conditions on the attributes and spatial relationships

of regions that must be satisfied for given region interpretations to be

valid. For example, constraints might dictate that the interpretation

"sky" can apply only to large, blue regions that are nest below another

region previously labeled "horizon."
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1.	 Deducing Region Interpretations with Relational

ti	 Constraints

The process of deducing region interpretations using constraints

generalizes Waltz's filtering algorithm [8]. Waltz analyzed line drawings

by initially assigning all locally possible interpretations to each vertex

and then eliminating any vertex interpretation that was inconsistent with

all possible interpretations of a neighboring vertex along a common edge.

Eliminating a possible vertex interpretation could result in the elimina-

tion of additional interpretations from adjacent vertices. This elimina-

tion process would often propagate until each vertex was left with a

unique interpretation. A similar paradigm can be applied to region analy-

sis by initially assigning all locally possible interpretations to each

region and then eliminating interpretations inconsistent with those as-

signed to neighboring regions sharing a common boundary.

The locally possible interpretations of a region are governed

by constraints that specify a range of attribute values a region must

have to admit a particular interpretation (e.g., tabletops must be hori-

zontal regions, 2-3 feet high). The global consistency of a region in-

terpretation is determined by relational constraints that specify, for

each interpretation, the allowed interpretations for an adjacent region

in a specified relationship (e.g., a region labeled "door" can appear

above an adjacent region labeled "door," "floor," or "doorknob," but not

above one labeled "wall"). It is presumed that the correct interpretation

of a region will be supported in every adjacent region by at least one

interpretation that satisfies all applicable constraints between that

pair of regions. Therefore, any region interpretation that lacks at least

one such compatible interpretation in every adjoining region can be im-

mediately ruled out. After eliminating a region interpretation, the in-

terpretations of all adjacent regions must be reexamined to determine

whether they are still compatible with the remaining interpretations.

Deductions m.ty thus propagate, as in Waltz filtering.
36



2.	 Illustration of Filtering_

The deduction of region interpretations by filtering is il-
I

'4	 lustrated in Figure 15. The example involves an image of an empty room

that has been correctly partitioned into six regions corresponding to the

objects "floor," "wall," "door," "baseboard," "picture," and "doorknob."

The problem is to determine the correct pairing of interpretations and

regions. To simplify the example, it is assumed that all boundaries be-

tween regions have nonnegligible contrast. Therefore, invoking Relation 5,

no adjacent regions will have the same interpretation. Initially, every

region is assigned all six possible interpretations, but immediately

"picture" and "doorknob" are dropped from Regions 1, 3, and 6 because

their size violates Relation 4. This stage of labeling is shown in

Figure 15a. Regions are now filtered in pairs in order of region

number, beginning with Regions 1 and 2. Relation 1 (within) applies be-

tween these regions and eliminates all interpretations but "wall" and

"door" for Region 1 and "picture" and "doorknob" for Region 2. Next,

Regions 1 and 3 are filtered with Relation 2 (beside), which eliminates

"floor" from the possibility set of Region 3. Finally, Regions 1 and 5 are

filtered by Relation 3 (above), leaving Region 5 with "floor" and "base-

board" as possible interpretations. The state of interpretation after

filtering Region 1 with all its neighbors appears in Figure 15b. Region 2

is now filtered against its neighbor, Region 1, but there are no further

eliminations since neither region has changed interpretation since the

last time it was filtered.

The process then proceeds to filter Regions 3 and 4 by Relation 1

(within), eliminating "baseboard" from Region 3 and reducing the interpre-

tation possibilities of Region 4 to "doorknob" and "picture." Region 3

is next filtered against Region 5 by Relation 2 beside), which leaves

Region 5 with the unique interpretation "baseboard" and Region 3 with the

unique interpretation "door." Finally, Regions 3 and 6 are filtered by
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FIGURE 15	 DEDUCING REGION INTERPRETATIONS USING RELATIONAL CONSTRAINTS
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Relation 3 (above), yielding "floor" as the sole surviving interpretation

of Region C. The current state of interpretation is now as shown in Fig-

ure 15c. Region 4 is next filtered against Region 3 using Relation 1

(within), which leaves Region 4 with the interpretation `doorknob."

Regions 5 and b are filtered using Relation 3 (above), leaving."wall"

as the unique interpretation of Region 1. The initial pass concludes

by filtering Regions 5 and 6 by Relation 3 (above), with no effect.

Every region now has a unique interpretation except for Region 2, which

retains the possibilities "picture" and "doorknob." The process con-

tinues by reconsidering all pairk of regions whose interpretation sets

have changed since they were last filtered. Since "door" was just

eliminated from Region 1, Regions 1 and 2 are refiltered by Relation l

(within) and, this time, Region 2 loses the interpretation "doorknob."

The final (correct) interpretation of the scene is shown in Figure 15d.

3.	 Integration of Filtering and Segmentation

The use of filtering to guide segmentation is summarized in

Figure 16. First, the scene is partitioned into regions of pixels with

identical brightness. Every region is assigned the complete set of

possible interpretations. Adjacent regions are then filtered by making

repeated passes through a table of boundaries, each boundary representing

a pair of regions. For each pair of regions, a set of applicable rela-

tions is determined, based on properties of the common boundary. For

example, the regions may be in the relation above/below and have strong

boundary contrast. The interpretations of both regions are.then individ-

ually filtered against all the possible interpretations of the other

region. An interpretation is allowed if at least one interpretation

of the other region simultaneously satisfies all the applicable relational

constraints in conjunction with the interpretation being filtered. If

any region interpretations are eliminated for lack of such a compatible

z
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FIGURE 16 FLOWCHART OF CONSTRAINT GUIDED SEGMENTATION
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interpretation, all boundaries involving that region are flagged in the

boundary table. Initially, a complete pass is made through the boundary

table, filtering all adjacent regions. Subsequent passes are made to

refilter pairs of regions whose boundaries were flagged on the previous

pass. When no flagged boundaries are encountered, filtering is complete.

At the conclusion of filtering, all merges that can be done

"safely" are performed. Safe merges incur no risk because the regions

involved are known to have the same interpretation (even if the interpre-

tation has not yet been uniquely determined).' • After every merge, the

boundary table is updated to represent the resulting partition. All

boundaries involving the newly created region are flagged.

After all safe merges have been performed, the resulting parti-

tion is interpreted by refiltering all flagged boundaries. Mote that

boundaries are refi lltered even when a newly created region has the same

interpretation possibilities as both its parents. This is because its

boundary relations with adjacent regions may be different from those that

previously held for its parent regions. If filtering succeeds in eliminat-

ing interpretations, additional safe merges may be possible, which could

in turn allow .further eliminations. The cycle of safe merges followed

by refiltering continues until no further eliminations occur. At this

point, if the possible interpretations of all adjacent regions are dis-

joint, the analysis is complete. Otherwise, a single unsafe merge is

performed (between the adjacent regions with at least one common inter-

pretation, which have the weakest boundary contrast) and the interpreta-

tion/merge cycle resumed.

J
A merge between two regions will be safe provided they have the	 set
of. possible interpretations and, moreover, that every region. interpreta-
tion is supported in the other region only by that sane interpretation.
This condition is checked with the same routine used for filtering, by

testing whether the deletion of each region interpretation would result

in the elimination of that interpretation from the other region.
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If filtering should ever succeed in eliminating all possible

interpretations of any region, the analysis is immediately halted so that

constraints can be interactively refined.

4.	 Error Recovery---The Incremental Acquisition of

Knowledge

Errors manifest themselves in three ways; The elimination of

all possible interpretations for some region at an interim stage of par-

titioning, an incorrect final partition, or the incorrect interpretation

of regions in the final partition. Error detection is automatic in the

first case, but a matter of human ,judgment in the latter two.

Errors are caused by constraints that are incorrect (e.g., that

contain incorrect supporting interpretations), inappropriately applied,

or insufficient. Incorrect and inappropriately applied constraints are

responsible for eliminations of correct region interpretations and thus

for the first and third error manifestations. Insufficient constraints

are the primary cause of erroneous unsafe merges, which result because

an incorrect region interpretation was not eliminated early enough in the

analysis. Ideally, with sufficient constraints, no merge should be un-

safe.

Errors resulting from insufficient constraints can be uncovered

in a straightforward manner, by examining the resulting partition after

each unsafe merge. Erroneous interpretations whose elimination would

preclude the erroneous merge can then be identified. Unfortunately, be-

cause of the way filtering propagates eliminations, it is frequently

difficult to track down the source of errors due to incorrect or inap-

propriately applied constraints. The fact that some region has been left

with no interpretations could be merely an artifact of having eliminated

the correct interpretation of some other region much earlier in the analy-

sis. Two key aids are provided to help users deduce the original source

t
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of error. First, the analysis can be repeated with an instruction to

halt whenever specified interpretations are deleted from regions contained

within designated areas. This facility can be used, for example, to halt
^c

the analysis as soon as any correct region interpretation is eliminated.

Second, upon halting, the user can interrogate the current interpretation

possibilities of any region as well as the relations holding between re-

gions in the current partition.

Having located the source of an error, a user can add or modify

constraints and then retry the analysis. A correct analysis establishes

empirically when the system has sufficient knowledge to process at least

the current scene. This incremental mode of acquiring knowledge through

debugging proved essential, even in simple scenes, because of difficulties

in anticipating the relations that could arise between regions at interim

stages of partitioning.

5.	 Experimental Results

An experimental validation of constraint-guided segmentation

was performed in the elementary but nontrivial domain of empty room scenes

typified by Figure 17a. Six possible region interpretations were defined:

"wall," „ door," "picture," "floor," "baseboard," and "doorknob." These

interpretations were constrained by the eight relations defined by the

boxes in Table 5. Each box gives for each interpretation of a region,

R1, the permissible alternative interpretations for a related Region R2.

For example, if Region R1 is above R2, then R.l can be "floor" only if R2

can also be "floor." On the other hand, if R1 is below R2, then R1 can

be "floor" provided R2 is either "floor," "door," or "baseboard." These

constraints were compiled into the filtering program in the form of bit

tables so that bits . representi,ng required interpretations could be rapidly

matched with logical operations against those representing possible region

interpretations. Interpretations Caere not constrained with respect to

region attributes such as size, shape, or brightness.
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DIGITIZED IMAGE
(8 BITS AT 256 x 256

RESOLUTION)

INTERPRETATION POSSIBILITIES
FOR SELECTED REGIONS
FOLLOWING	 INITIAL_ FILTERING

Region Possible	 Interpretations

1-5 Picture	 Wall
6 Picture
7-10 Wall
11 Door
12 Knob
13 Door,	 Baseboard
14-15' Baseboard
16" Universal

(b) INITIAL PARTITION OF ROOM SCENE (264 REGIONS BASED ON 4
SIGNIFICANT BITS OF BRIGHTNESS AT 60 x 60 RESOLUTION)

` Manually assigned interwetation
SA-4683-10

FIGURE 17 CONSTRAINT GUIDED SEGMENTATION OF ROOM SCENE
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INTERPRETATION POSSIBILITIES
FOR SELECTED REGIONS
FOLLOWING REFILTERING

5 t Possible Average
^.1 Regions Interpretations Brightness

1 Picture,	 Wall 52
-	 ^••	

. r
2 Picture 188

^•. ; 3 Picture,	 Wall 16_
• 4 Wail 89

^^.	 •,	 - 5 Picture 182
`•	 ^• 6 Door 13

s	 –
^ 9:^	 s

7
8
9

Baseboard
Knob
Door,

27
64
17

Baseboard
• —	

– 10 Wall,	 Door 48

(c) ROOM SCENE PARTITION AFTER 200 SAFE-MERGES

FINAL REGION INTERPRETATIONS

Region	 Interpretation

1	 Wall
;•^: 'ti

^'
2 Picture

.,	 .• 3 Universali	 '	 ••
c

4 Door.,
i 5 Picture

.•i	 4' 6 Picture
i.^•:{. ^,,^' ti 7 Picture

8 Picture
9 Knob

^ E. 10 Picture
11 Baseboard

;d} FINAL PARTITION OF ROOM SCENE
SA-4683-it

FIGURE 17	 CONSTRAINT GUIDED SEGMENTATION OF REGION SCENE 1Concludedl
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RI Above R2

R1 R2

Baseboard Floor, Baseboard

Door Knob, Floor, Do4^r

Floor Floor
Wall Picture, Wall, Baseboard

Picture Picture, Wall

Knob Knob, Door

Rl Be'w R2

Rl	 R2

Baseboard Shall, Baseboard

Door	 Knob, Door

Floor	 Floor, Door, Baseboard
wall	 Picture, Wall

Picture	 Picture, Wall

Knob	 _ Knob, Door

1 i
j
i

S

Table 5

REIATIONS GOVERNING INTERPRETATIONS

OF ADJACENT REGIONS IN ROOM SCENE DOMAIN

R1 Beside R2
R1 R2

Baseboard Door, Baseboard

Door Knob, Wall, Door, Baseboard

Floor Floor
Wall Picture, Wall, Door

Picture Picture, Wail

Knob Knob,. Door

r--
Rl Ad scent to R2

RI FL2

Baseboard W411, Floor, Door, Baseboard

Door Knob, We11, Floor, Door, Baseboard

Floor Floor, Door, Baseboard
Wall Picture, Wall, Door, Baseboard

Picture Picture, Wail

Knob Knob, Door

Baseboard Knob, Picture, Wail, Floor, Door
Door	 Knob, Picture, Wall, Floor, Baseboard

Floor	 Knob, Picture, Wall, Door, Baseboard

Wall	 Knob, Picture, Floor, Door, Baseboard

Picture	 Knob, Picture, Wall, Floor., Door, Baseboard

Knob	 Picture, Wall, Floor, Door, Baseboard

RI Inside R2

RI 12

Baseboard Baseboard
Door Door

Floor Floor
Wall Wall

Picture Picture, Wall
Knob Knob, Door

R1 No Contrast With R2

X1 R2

Baseboard Knob, Picture, Door, Baseboard

Door	 - Picture, Door, Baseboard_- 	 -

Floor Knob, Picture, wall, Floor

Wall Knob, Wall, Floor

Picture I Knob, Picture, Floor, Door, Baseboard

Knob Knob, Picture, WW II, Floor, Baseboard

J
ie

Box lists the interpretations of Region R2 that are compatible with each interpretation of Region Ri, given

that R1 is above R2... Other relations are analogously. defined.
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Applicable relations between a pair of regions were determined

in this experiment by factors that could be most easily extracted from

an existing region data structure. The conditions of applicability are

sulwarized in Table 6. Applicability of the relations above, below,.and r

	

beside is based on the relative image coordinates of the regions' centers 	
K

of mass and vertices .of:their bounding rectangles (derived from X., Y

boundary extrema). Region R1, for exL,nple, is defined to be above
_	 ^	 a

Region R2gi	 provided its highest boundary point is higher in the image than

the highest point of R2 and its lowest point is higher than R2's center.

of mass. It was also required that the horizontal extents of R1 and R2

overlap, and that the size of both regions exceed 5 - pixels. The two last:'.

requirements decrease (but do not eliminate) the possibility that a rela-

tion will be prematurely applied at an early stage of partitioning (see

Figure 18 in conclusion). Below is defined as the converse of above.

Beside is a symmetric relation that applies when regions with vertical,

overlap are sufficiently displaced in a horizontal direction.

Adjacency is a universal relation that applies between any

regions with a common boundary. Inside and outside. refer to regions. that

are holes within other regions. These three relations are topological

properties of the region data structure and not subject to the artifacts

of merging. They are therefore applied regardless of region size.

The relation contrast applies whenever the average brightness of

two regions excoeds a conservatively large threshold (T1). The relation

no-contrast applies when the difference is less thana second, conserva-

tively small threshold (T2). For the current room domain, these.threshoW25
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Table 6

CONDITIONS OF APPLICABILITY FOR RELATIONS BETWEEN ADJACENT.REGIOtiS

Axmin'
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The relation no-contrast insures that two regions with similar brightnesses

will not receive different interpretations whose brightnesses are known

to be significantly different, for example, "wall" and "door."

The image in figure 17a was digitized to 8 bits at 60 X 60

resolution. An initial partition of this digitized image, based on the

four most significant bits of brightness, * is shown in Figure 17b.

There were 264 regions in the initial partition. All regions,

with two exceptions, were initially assigned the set of all possible

interpretations. The first exception involved an isolated one-pixel

region at the bottom of the image (Number 15 in Figure 17b), which was

manually assigned the unique interpretation "baseboard." This assignment

was made to explicitly exclude the case where every region in the image

receives the interpretation "picture" (i.e., the image portrays a picture

of a room scene rather than a room scene). The second exception involved

the thin vertically elongated rectangular region (Number 16) at the top

of the image between the "door" and "wall." This very bright region was

an anomaly, the result of specular reflections from a doorframe that,

otherwise, was indistinguishable from the "wall." While such anomalies

are undeniably a part of real scenes, we saw no reason to complicate the

initial experiment by introducing additional interpretations specifically

to account for them. The region was thus manually assigned . a special

universal interpretation that both supports and is supported by any ad-

jacent interpretation. With this interpretation, the anomalous region

was effectively removed from the analysis since it could not participate

in filtering or safe merges, and coulO merge unsafely only with another

region that had the same special interpretation.

A 4-bit partition was chosen as an experimental expedient to minimize
the number of regions without losing any significant boundaries.

A
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The above set of region interpretations was filtered using

relational constraints applicable in the initial partition. The results

of filtering are shown for selected regions in the caption of Figure 17b.

Note that many parts of the scene have already acquired unique interpre-

tations. These parts include large areas of the "wall" (Regions 7-10)

and "door" (11) , as well as the "baseboard" (14) , the "doorknob" (12) ,

and the lower (bright) half of the "picture" (6). Many of the smaller

regions contained within these areas are also uniquely labeled with the

same interpretation as the containing region.

During filtering, eliminations propagated from the manually

assigned "baseboard" interpretation. The possibilities for Region 14,

adjacent to and noncontrasting with Region 15 (known to be baseboard)

were immediately reduced to "door" or "baseboard." Regions 10 and 14

could then be filtered by the relations above and contrast, leaving

those regions with the unique interpretations "wall" and "baseboard,"

respectively. The interpretation of Region 13, beside and noncontrasting

with "baseboard" Region 14, was then narrowed to the alternatives "door"

and "baseboard." The interpretation "wall" propagated upward from

Region 10 to Region 9 through the relations above and no-contrast, and

subsequently to Regions 5, 7, and 8. This, in turn, allowed Region 6

to be interpreted as "picture" since it is above and contrasting with

Region 9, now known to be "wall." Meanwhile, Region 11, which is beside

and contrasting with Region 9 ("wall") and adjacent and noncontrasting

with Region 13 ("door" or "baseboard"), is uniquely constrained to be

"door."

The initial stage of filtering leaves two main areas of the

image with uncertain interpretations. Region 13 and its interior re-

gions still admit the possibilities "door" or "baseboard," while

Regions 1-6 in the upper left part of the scene can each be interpreted

as either "wall" or "picture." The "door"/"baseboard" ambiguity persists

50
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because Regions 11 and 13 do not satisfy the formal conditions defining

the relation above. The second ambiguity arises because of a brightness

gradient across the wail such that Regions 5 and 8 do not fulfill the

conditions for either contrast or no-contrast. As a consequence, the

interpretation "picture" cannot be eliminated from Region 5 and the re-

sulting "wail"/"picture" ambiguity then propagates to the other regions

in the area. A third and relatively minor area of ambiguity exists among

the small regions on the border between "wall" and "door." These regions,

adjacent to both "door" and "wall," are classified as either "doclr,"

"wall," or "baseboard."

Approximately 200 safe merges are performed, based on the inter-

pretations surviving the initial filtering. The resulting partition,

containing about 68 regions, is refiltered, yielding the results shown

in Figure 17c. The safe merges primarily involved adjacent regions already

having the same unique interpretations. Regions in the upper part of the

wall with possible interpretations "wall" and "picture" could also be

safely merged where the contrast constraint did not apply (since a

"picture"/"wall" boundary is required to have contrast). Although the

resulting partition appears much cleaner, the same basic ambiguities per-

sist. These ambiguities must now be resolved by postulating unsafe merges,

based on the region brightnesses included in the caption of Figure 17c.

The first unsafe merge of consequence occurred with approximately

43 regions remaining. Regions 6 and 9 (in Figure 17c), with a contrast

of 4, were merged into a single region with the unique interpretation

"door" (the intersection of the interpretation possibilities for Regions

b and 9) and an average brightness of 15. Next, with approximately 25

regions left, Regions 1 and 4 (contrast 37) were merged to form one large

region of "wall" with brightness 87. As a result of this merge, the con-

trast relation could now be applied to eliminate the interpretation "wall"

from Region 3. Finally, with about 20 regions left, the sm..Il regions,
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such as 10, between "door" and "wall" were merged unsafely into "wall."

At this point, after a total of 43 unsafe merges and 214 safe merges,

the analysis terminated with 11 regions remaining, all having unique and

disjoint interpretations.

The final partition and associated region interpretations are

shown in figure 17d. The analysis is essentially correct, given the

limited semantics used in the experiment. A wall-mounted thermostat

was fragmented into three regions (5-7), which were then interpreted as

"pictures." A noisy pixel in the center area of the wall area was also

assigned the interpretation "picture." These interpretations occurred

because "picture" was the only legal possibility for a contrasting region

contained within a region labeled "wall." The interpretation errors could

have been avoided by introducing explicit interpretations for "thermostat"

and "noise" (which would be distinguished from "picture" by additional

constraints on region size). Finally, the so- called picture, actually a

Sierra Club calendar, was split into two regions, containing respectively,

a landscape and numeric data. These parts of the calendar were physically

connected by a spiral binding which was invisible in the digitized. image.

G.	 Discussion

The present set of constraints was conceived as an initial test

of constraint-guided interpretation and, as such, makes no pretense at

semantic generality. Thus, it assumes a particular viewing position and

is dependent on a number of thresholds concerning region attributes, such

as size and brightness. We plan to reformulate the constraints so as to

remove these limitations and then evaluate the performance of the paradigm

on a reasonable sampling of room scenes.

More generally, binary valued relations between adjacent regions

often cannot adequately constrain interpretations. First, defining rela-

tions between adjacent regions is of questionable value in scenes containing
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significant occlusion. Attributes of the individual regions, such as

size, shape, color, and texture can still be used to prune interpreta-

tions. Alternatively, relations such as above, beside, and contrast can
^s

be redefined for nonadjacent regions. This would increase overhead in

the filtering algorithm but it might also allow the implications of an

elimination to propagate faster. A second drawback of the current con-

straints is their binary 'Fall or nothing" nature. If two large regions

touch along a very small fragment of their boundaries, should this be

sufficient grounds to exclude absolutely an interpretation that violates

an adjacency constraint? In cases such as this, it seems more natural

for constraints to decrease the likelihood of that interpretation, but

not necessarily all the way to zero. Absolute elimination is particularly

risky because the filtering algorithm can propagate the consequences of

any error throughout the image, possibly resulting iii many other errors.

A third limitation concerns the restrictive way in which constraints must

currently be expressed: as sets of interpretations that may be compatible

with a given interpretation. One might also want to impose stronger must

and must-not conditions. It should be possible, for example, to require

that an interpretation "doorframe" must be adjacent to at least one region

with the possible interpretation "door," or to require that two regions

on opposite sides cannot both be uniquely interpreted as "doors." Ideally,

it should be possible to formulate constraints as arbitrary procedures.

This would also allow conditions of applicability for the constraint to

be specified independently for each interpretation. We have, in fact,

experimented with a LISP program called MSYS, which performs region in-

terpretations based on real valued, procedurally represented constraints.

However, MSYS (which runs . slowly) has not yet been integrated with a seg-

mentation program to perform a complete scene analysis.

The above limitations can be viewed as shortcomings of the cur-

rent implementation. There are, however, a number of deeper conceptual
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	 problems concerning the filtering paradigm that have not yet been satis-

factorily resolved. A major source of concern is the fact that relations

between a region and one of its neighbors can cease to apply when that
ct	 '

region is merged with another neighbor (see Figure 18). In other words,

a relation that may have already been used to eliminate a correct region

interpretation is shown in a subsequent stage of partitioning to have

been invalid--an artifact of the grain of the .previous partition. Un-

fortunately, because of the way eliminations propagate, there is no ob-

vious way to either diagnose or recover from such errors.

A second fundamental issue concerns the extensibility of the

filtering approach. The present system has been demonstrated in a domain

containing less than 10 objects. Whenever a new interpretation type is

added, every constraint must be modified to express relations between it

and all previously defined interpretations. Obviously, the list of pos-

sible interpretations cannot expand without limit. How then, could the

paradigm be applied in natural scenes containing innumerable objects?

One approach would be to make the initial level of interpretation domain

independent. Regions would be interpreted initially in terms of descrip-

tive surface characteristics such as curvature (planar, convex, concave),

orientation (vertical, horizontal), texture, and material (e.g., metal,

plastic, wood) that are common to many domains. This level of interpre-

tation would be based on domain-independent constraints dealing with

shading, illumination, shadowing, occlusion, and so forth. Interpreta-

tions at the level of specific objects would then be introduced, together

with appropriate constraints, as a consequence of establishing associated

surface characteristics. Thus, a large vertical planar surface might in-

voke the interpretation "wall." Determining whether the interpretation

guided segmentation paradigm will actually work with domain-independent

interpretations is one of our major research objectives.
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E. Conclusion

The scene analysis paradigm described in this chapter has two main

features: segmentation and interpretation are completely and effectively

integrated; and many diverse sources of knowledge can be used to guide

the analysis. The second feature is particularly significant in that

the effectiveness of a scene analysis technique is usually correlated

with its ability to capitalize on prior knowledge about the depicted

scene. So far, we have experimented with three sources of knowledge:

direct manual interaction, geometric models, and relational constraints.

Additional sources that have been contemplated include maps, region at-

tributes, and prior analyses of the scene (from similar viewpoints),

perhaps by other scene analysis programs. All these knowledge sources

can be expressed in a uniform way as constraints on the possible inter-

pretations of regions. Multiple sources of knowledge can thus be combined

in a straightforward way so that incremental additions of knowledge (or,

equivalently, human guidance) will effect incremental improvements in

performance.

Areas for improvement have previously been suggested in the dis-

cussions following each experiment. One way of improving performance in

all tasks is by improving the underlying region-merging process. First,

the current method of obtaining an initial partition is quite crude and

incurs a significant risk of grouping pixels from different objects in

the same region. Several recently developed segmentation programs can

do much better. In particular, a program by Yakimovsky [9] forms a

partition based on the output of a sophisticated edge operator; regions

in the partition are defined as sets of pixels that can be connected by

a path that does not cross a ridge of edge values. Second, the ordering

of unsafe merges could be improved by relying on more elaborate region

descriptions. Comparing the textures and brightness gradients of regions,

in addition to their average colors, should significantly improve the
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basic decision regarding whether two regions belong to the same surface.

(This will certainly be true in monochrome images.) Third, there is at

3^

s

	

	 present no provision for splitting regions if a merge error is detected.

Such a capability would relax the requirements on both initial partition-

ing and merging.
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	 VI APPLICATION OF INTERACTIVE SCENE ANALYSIS

TECHNIQUES TO CARTOGRAPHY

A. Introduction

The production of maps from aerial photographic data is, despite a

large body of mechanical techniques, primarily labor-intensive. One

of the most time-consuming steps in this process is the delineation of

topographic, cultural, and land-use features, such as lakes, rivers,

roads, and drainages. Currently, a trained operator must manually trace

the detailed boundaries of features, a lengthy process. Similar ,?roblems

also occur in digitizing maps for later updating.

In such a labor-intensive craft, it is reasonable to look toward

computers as a possible means for eliminating much of the routine work.

The idea of a fully automatic, aerial photograph-to-map computer system,

while appealing, is not only infeasible at the present time but is likely

to remain so for the forseeable future. A more promising approach would

be to develop an interactive system which an operator could quickly program

to extract specific features in a specific type of terrain. The feasi-

bility of such an interactive approach has been successfully demonstrated

at SRI using our ISIS [1].

B. Example

The following scenario illustrates how a user and interactive system

might work together on a typical cartographic task, extracting an outline

of the large lake in Figure 19. ` Human input will be shown by thick white

J.

Figure 19 is an orthophoto of Fort Sill, Oklahoma, coarsely digitized at
256 x 256 resolution. A coarse digitization was used to speed processing

for this example.
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lines and the computer's response by thin ones. In Figure 20, the user

-has designated an area of interest that is then displayed at a magnified

ig
	 scale, In Figure 21, a crude triangular region is drawn by the user to

c^
indicate roughly the center of the lake. The computer's initial guess,

shown in Figure 22, contains both errors of omission (samples excluded

along the periphery of the lake), and of commission (unwanted tail in

lower left-hand corner of the lake). The operator crudely encircles the

tail (Figure 23) and tells the computer to omit all points in the enclosed

region. He also points at several omissions (the crosses in Figure 23).

The computer responds with the boundary shown in Figure 24.

C. Method of Approach

The examples and counterexamples of lake were used to develop and

debug interactively a computer procedure for distinguishing between

pixels (picture elements) from the lake and those from the shore. The

resulting procedure was then used by a conventional boundary-following

algorithm to extract the lake outline.

This algorithm first detects the lake boundary by scanning outwards

from the center of the designated triangle until the discrimination pro-

cedu-re classifies a pixel as "nonlake." It then follows the boundary in

a counterclockwise direction. The next boundary point ;^s determined by

applying the discrimination procedure to the pixel immediately to the

right of the present boundary element and then testing pixels in a

counterclockwise are about the present element until a "lake" classifi-

cation is encountered.

The interesting part of this uo;k concerns the methodology used to

develop the discrimination procedure. The objecti ;re is to construct

the simplest procedure, using all available feature extraction operators,

for distinguishing example points from counterexample points. Table 7

lists typical feature extraction operators, ordered by computational
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7.

Table 7

TYPICAL OPERATORS
12	 2

Point Operators (applied to individual pixels)
Brightness

2P

Color (hue and saturation)
Elevation

Local Area Operators (applied to sets of c6ntigqous.pixe
in small circular or oblong areas),

Average of attribu-,,.e values
0 i

Distribution of attribute values
Weighted averages (templates)

Region Operators (applied to sets of contiguous pixels)::
Texture over regions
Shape of regions
Size of regions

T able.8

GRAPHICAL INTERACTION (POINTING)
MODES FOR DESIGNATING

EXAMPLES AND COUNTEREXAMPLES

L



complexity. Details of these and other operators can be found in stan-

dard texts on scene analysis [10-11]. There is a hierarchy of graphic

interaction (pointing) modes, as Table 8 indicates, by which the machine

can be shown examples. From a single sample pixel, it is possible to

construct a program that accepts contiguous pixels whose point at-

tributes (i.e., brightness, hue, or elevation, if available) differ

from the indicated pixel by less than a threshold. An implicit in-

ference is being made here that the rest of the pixels on the feature

resemble this single pixel. Given an example region, the thresholds can

be widened to encompass the range of attributes measured on that region.

Counterexamples can than be used to narrow these limits. In general,

the more complete the example, the less iteration will be required to

develop a . good specification. If an example and counterexample cannot

be distinguished on.the basis of thresholded point: attributes, averages

or distributions of attribute values over local areas can be used. If

this still is not sufficient, an attempt can be made to distinguish be-

tween the two on the basis.of the size and shape of the regions delineated

by outlining. The final procedure will be composed of conjunctions and

disjunctions of these processes.

Now, we. will examine in detail the interactive process by which the

lake-outlining procedure illustrated above was developed. The sampled,

digitized image (Figure 19) was read into ISIS and displayed on a RAMTEK

self-refreshing CRT. With the cursor, the user then created a small

region in the interior of the lake and asked the system for a distribu-

tion of brightness values for pixels in this area. From these data he

composed a simple programgram that determined whether a pixel belonged to the

lake based on thresholded brightness (the only available point attribute).

The . edge follower. used. -the program to produce the outline . shown in Fig-

ure 22.
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The user next drew a crude boundary around the "bad" pixels in the

tail and again requested a brightness distribution. A significant over-

lap with the previous distribution of example pixels was observed. Ade-

quate discrimination was achieved empirically by increasing the operator

size so that brightness of a point was computed as the average brightness

over a circular area centered on the point. This crude spatial filter-

ing acted to exclude dark areas of the image with insufficient width

to qualify as lakes. Finally, the brightness threshold was widened

to include the brightnesses of the missed points that the user had in-

dicated with the cursor. Using the updated program., the edge follower

was able to obtain an outline that tracked fairly accurately the actual

lake.

The final procedure for distinguishing lake points from nonlake

points is, in fact, a "model" for what pixels from a lake look like to

the computer. The program was written on-line in an interactive language

(LISP) and then debugged interactively as contingencies arose. Inter-

active refinement is a powerful concept for a scene analysis programmer.

It frees him from the necessity of formulatipg programs in a language

that is understood by the machine but that is cumbersome for people.

Instead, it allows direct communication with the program via a common

language of images. Debugging is simplified in this system. Instead

of predicting the ;rroblems that the system is likely to encounter, the

program is executed on exemplary images and debugged when errors arise.

D. Further Examples

1. Automatic Extraction of Previously Learned Features

The procedure developed in tracing the first lake can serve

as the initial basis for extracting other lakes in similar terrain.

Even if the outline is not exact, it provides a good staring point
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for further interaction. Figure 25 shows a boundary extracted for the

small lake using the same discrimination procedure developed for the large

lake. In this example, the user manually designated a single pixel in

the center of the second lake to initiate the boundary follower. Al-

ternatively, a starting point could have been acquired automatically by

scanning systematically through the image for a reasonably sized set of

contiguous pixels satisfying the criteria for "lake." Note, that any

subsequent interaction required to refine a boundary could be used to

further improve or generalize the original discrimination procedure.

2.	 Linear Features

Linear fatures, such as rivers and roads, may also be outlined

using similar interactively generated procedures. In Figure 26, we show

the upper branch of the river connecting the two lakes. Here the user

pointed at a single river point just above the fork. Starting from

this point and using a threshold based on its brightness, the boundary

follower tracked the river until it intersected the road. The trainer

next indicated additional starting points on each river branch below the

road, and using the same threshold, the river boundary was completed.

The final river boundary is shown in Figure 27.' These crude boundaries

could be improved by applying a thinning algorithm [12]. Figures 28 and

29 show the final results of tracing the designated features and then

projecting them back onto the orignal, high-resolution image.

E. Possible Extensions

1. Automatic Generation of Discrimination Procedures

The above examples required that the user supply discrimination

procedures for distinguishing between the brightness distributions of

designated regions. These procedures were interactively formulated using

data provided by the system. An obvious next step would be to have these
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procedures formulated automatically by the system based on the user

designated examples and counterexamples. In this mode of operation, a

user might crudely sketch a feature of interest. The sf^

	

	 g	 Y	 stem would useY

this to formulate a discrimination procedure and then attempt to trace a

detailed boundary. Any errors made by the system could be refined inter-

actively.

For simple discrimination procedures of the type described in

this paper, automatic generation appears straightforward. Existing ISIS

subroutines could be used, for example, to select the appropriate thresh-

old and operator size for distinguishing the brightness distributions of

example and counterexample points [ 2]. The same approach should be ap-

plicable with the other operators in Table 7 when additional discrimina-

tion is required.

2. Elevation Data

The availability of elevation data would make many of the tasks

described above much simpler. The nstant elevation of a lake, com-

bined with local brightness values, would provide a powerful d°scrimi-

nating test. And, in many cases where the brightness contrast between

two features is poor, a difference in slope or elevation may be suf-

ficient to distinguish them. Similarly, features in mountainous terrain

would prove more tractable with elevation data.

3. Digitization ox Existing Maps

The same techniques used to trace features on aerial photos

would also be use ful for tracing features on existing maps to reduce

them to digital form. In many . cases, the processing should, in fact,

be easier, because, of the better contrast available in maps. These

digitized maps could' then be updated interactively using recent aerial
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C	 photographs, Ultimately, information in existing digitized maps could be

used in lieu of pointing to indicate preexistant features on the photo-
;

^z	
graph. This would allow the program to use the digitized map to guide

the subsequent analysis of the aerial photograph, in the same way as

would a person.

4.	 Elimination of Map Editing

The process we have described should eliminate the need for an

independent editing step after the map features have been extracted. The

editing is an inherent part of the process of incremental refinement of

the outline and, therefore, should not be normally needed as a post-

processing step.

F.	 Conclusions

We believe that the examples described above demonstrate the tech-

nical feasibility of applying interactive scene analysis techniques to

cartography. Whether or not the techniques developed will prove practi-

cal in actual cartographic use is, of course, a shatter for further study.

The simple feature extraction operators used (essentially a threshold

applied to the average brightness computed over a bar-shaped operator)

almost certainly will not suffice in more complex aerial scenes. More-

over, processing times may become a key factor at the.image resolutions

required for cartographic accuracy. An appealing aspect of the inter-

active approach is that, when necessary, the user can always revert to

detailed manual tracing. Thus, our approach would be useful even if it

applied in only some of the cases encountered in practice.

In the future, we plan to apply interactive techniques in a variety

of other problem domains involving large volumes of graphic and pictorial

data that are difficult to extract in digital form by either strictly

manual or automatic means.
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