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ON THE ORIGIN OF COMETS

Asoka Mendis and Hannes Alfven

1. Introduction

The cosmogony of the planetary and satellite systems consists

of understanding the physio-chemical processes leading to their

formation and also trying to decide at what time and over what period

their formation took place. The cosmogony of the comets require

answers to not only these two questions but also as to where, in re^

lation to the solar system, the observed and inferred distributions of

comets were formed.

One also recognizes that unlike in the case of the larger bodies

the time scales of dynamical and physical evolution of some of these

bodies are very much smaller than the age- of the solar system. This

leads directly to the question of the maintenance of their observed

abundances and consequently to the genetic inter-relationships between

the various classes of comets and also to those between comets and other

bodies in the solar system. It also provokes the question whether the

formation of the comets was completed long ago together with the rest of

the solar system or whether the process of formation may be still con-

tinuing even though on a much diminished scale.

Attempts at answering each of these questions has produced a

number of interesting ideas, but despite considerable effort by a number

of authors it must be admitted that all of these questions still remain
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largely unresolved, although the continuing work on the dynamical

(1)
evolution of cometary orbits nave put important new constraints on the

evolutionary path of these bodies.

So far various theories have proposed solar origins, proto-

planetary origins, planetary origins and interstellar origins. They have

also proposed completed past origins as well as continuing origins.

Comprehensive reviews of these ideas are available elsewhere '

Here we will restrict ourselves to offering a few comments pertinent to

some of these problems.

2. Observed and Inferred Distributions

Up to the pressnt time about 100 individual short period

(P < 200 yrs) and over five times as many long period comets

have been discovered, and the present rate of discovery averages

about 4 long period and 1 short period comet per year

The differences in the orbital characteristics between these

two classes are well known. The short period comets which spend

almost all their time within the confines of the planetary system

have mostly low inclination ( i < 25 ) orbits. Only five of them are

known to be retrograde. Also about 2/3 of them have aphelia close

to Jupiter's orbit and are likely to be strongly influenced by that
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planet. The long period comets on the other hand show a uniform

distribution in inclination with about equal numbers having prograde

and retrograde orbits. They are also for the most part moving in

almost parabolic elliptic orbits with periods in excess of 10 yrs.

Based on a statistical analyses of 22 long period comets whose

original barycentric orbits had been accurately calculated, Oort

showed that the bulk of them seemed to come from a region between

4 5
about 3 X 10 A. U. and 10 A. U. with a median value of about

4
5 X 10 A. U. He also noted that average planetary perturbation in

( / 1 \ \ - 4 ' " " • * •
< A( — J > j which amounted to about ± 5 x 1 0 A. U. was

more than an order of magnitude larger than the observed dispersion

in I/a near the maximum. He was thus led to conclude that the

observed long period comets were "new" in the sense that they were

being observed at their first passage through the inner regions of the

solar system (q < 2 A. U. ). Based on the frequency of discovery of

new comets, their average period and an assumed distribution of the

transverse velocity at aphelion Oort further deduced that the number

/ 4 <of "intrinsically observable" comets in this reservoir ( 3 x 1 0 ~

Q < 10 A. U. ) must be in excess of about 10 . Although Oort's
7 (7)

conclusions have been strongly criticized by Lyttleton, a more recent

(8)
detailed analysis by Marsden and Sekanina seems to confirm them,
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despite the very small numbers on which the statistics are based.

They have shown that for comets having perihelion distance more than

3 A. U. and which are thus likely to be free of non-gravitational forces

if their volatile component is largely water ice as is now generally

believed , the distribution of original barycentric orbits show a

remarkable concentration corresponding to an aphelion distance around

4
5 x 1 0 A. U. Of course if these "new" comets are charged with a

component much more volatile than water or the clathrate then

this result too could be largely fortuitous.

Besides these distributions one has to grant the possible existence

4
of others. Indeed a comet having aphelion < 2 X 10 A. U. and

perihelion well outside the planetary system will be dynamically stable

against both stellar and planetary perturbations, during the lifetime

of the solar system. It may also be barely possible to have some

comets stably trapped in certain perculiar orbits in the outer regions

of the planetary system over the cosmognic time scale . Furthermore

it is known that there is a continuous ejection of long period comets

from the solar system at the present time and the process may have

proceeded on a grander scale during the formation stages of the solar

system. Consequently interstellar space may be continously being

populated by.comets from our own solar system as well as others

like our own. We shall, however, concern ourselves here mainly with

the observed distributions.
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3. The Origin of Long Period Comets

Believing that it was difficult to form comets in situ at such large

4 (6)
distances (r ~ 5 X 10 A. U. ) Oort suggested that they originate

within the inner solar system. They were ejected out by planetary

perturbations and while some would have immediately escaped the solar

system in hyperbolic orbits those on elliptic orbits whose aphelia

Q, > 10 A. U. were subsequently removed by stellar perturbations

9 4over a time scale of 5 X 10 yrs, whereas those with Q < 2 X 10 A. U.

are hardly affected at all. These two values of Q define the limits of

the so-called Oort's cometary reservoir. Oort further showed that

while stellar perturbations will completely isotropize the velocity

distribution near aphelion of comets in this region, the continual re-

shuffling of the velocity distribution will continuously inject some long

period comets into orbits bringing them to the vicinity of the sun to

explain the observed isotropic distribution. Although Oort originally

made the highly unlikely supposition that these comets, together with

the minor planets resulted from the break up of a planet inside Jupiter's

orbit, several other authors have subsequently suggested that these

comets originate in the outer regions of the planetary system in a more

., (12), (13)
reasonable way
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The difficulty with this scheme is already apparent from Everhart 's

(14)
calculations for the diffusion of the I/a values of hypothetical comets

started within the solar system (despite their incompleteness, particularly

the neglect of stellar perturbations). If we, however, accept Everhart's

linear law for a number of orbits vs I/a and scale it for the fact that

1 1 4 5
there are, say, 10 comets in the region 2 x 10 AU - 10 AU, this

seems to require an embarrassingly large number of comets within the

solar system at some time (> 10 ).

(15)Recently Alfve'n and Arrhenius have developed a detailed hydro-

magnetic, planetesimal theory for the formation of planetary systems

around a central star as well as the formation of satellite systems around

a central planet. The basic steps in the process are the following: initially

gas infalling towards a spinning, magnetized central body is ionized and

brought into partial corotation. Grains condensing out of this plasma fall

on neutralization towards the equatorial plane and are collected there at

various descrete distances from the central body due to mutual inelastic

collisions to form streams of almost co-orbital particles called "jet streams".

These grains then further accrete within these streams due to mutual in-

elastic collisions growing into larger and larger planetesimals which ultimate-

ly grow into planets and satellites, the final stages of the accretion process

being gravitational.
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The central problem here is the time evolution of these jet streams

which have been studied recently both numerically and analytically

with the authors drawing basically similar conclusions. In order to make

the problem tractable a number of simplifying assumptions have been

made in both cases. In particular, the effects of fragmentation and ac-

cretion have been neglected as are gravitational perturbations and electro-

magnetic effects such as the Poynting-Robertson effect. Within these

limitations, however, one finds in a general way that, if collisions are

sufficiently inelastic, a radial focussing or clustering would occur such

that the thickness of the stream is reduced.

(18)
More recently Ip and Mendis have studied the time evolution

of such streams using simple mathematical models which also take into

account the effects of fragmentation and accretion. Accretion here

meaning not merely the coagulation effect of stream particles sticking to

each other during inelastic collisions but also the continuous sweeping up

of matter intersecting the streams. The treatment is in terms of the average

kinetic and physical parameters of the particles and considers for

simplicity a pure accretion case and a special fragmentation case wherein

despite the competing effect of accretion, fragmentation continues to keep

the average grain radius constant. The results of the computation are

shown in the following figures. Figure 1 depicts the pure accretion

model. Here A is the initial value of the ratio of the accretion time
o
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Figure 1: The variations of the normalized internal velocity,
the number density and the grain radius with time,
for different values of Ao, in the pure accretion
model.
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scale to the internal collision time scale, and time is measured in units of

the initial accretion time scale. For A =1 we have a gradual dispersion

of the matter stream due to the thermalization effect of the accretion of the

external matter. In the case of A = 100 there is a rapid focussing

of the stream because the evolution of the stream is dominated by the

inelastic collision process among the stream particles. An intermediate

behavior is observed when A - 10, the matter stream has an initial
o

expansion phase until T ~ 1. At this stage the thermalization effect is

balanced by the internal energy dissipation by inelastic collisions, and

contraction begins. It seems therefore that, in the case of a pure accretion

model for interplanetary matter streams, focussing will always occur if

A > 10.
o -"

Figure 1 also shows that for A • <_ 10 the particle density of the

stream is reduced by three orders of magnitude within a period of about 3 T.-

while the average radius of a grain increases by one to two orders of

magnitude due to the efficiency of the coagulation process in the stream.

Figure 2 depicts the fragmentation model. The variations of v.

and therefore the thickness of the stream are similar to those of the pure

accretion model. However, in the case of A = 10, the contraction of
o

the stream occurs much faster culminating in a catastropic collapse just

before T « 2. Due to the rapid focussing the particle density begins to in-

crease almost instantaneously following an initial phase of gradual decrease.
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In the evolution of any proto- planetary matter stream while there

would be a gradual increase in the average grain size as shown by the

pure accretion model, this growth would be hindered to some extent by

the competing effects of fragmentation. Consequently the real. situation

would be intermediate to those suggested by the two models we have

discussed. The general conclusion then is that any proto-planetary matter
/

stream in which accretion and fragmentation are taking place a strong

focussing would occur over a period of a few accretion time scales.

While planets and satellites will be formed in this way close to

the equitorial plane of the central body, dust particles associated with the

gas and having a sufficiently small charge to mass ratio not to be signifi-

cantly effected by the magnetic field will fall in streams towards the sun.

18
If we consider a spherical cluster of such dust of cometary mass (as 10 g)

initially at a large heliocentric distance r from the sun falling in towards
yv

it in a highly elongated elliptic orbit, then if r is the heliocentric dis-
B

tance sufficiently before perihelion such that a linear approximation may

be made to the portion of the orbit between A and B, it is seen that the

cluster will be drawn out into a thin pencil shaped stream near B whose
r B\ 2

length ~ %/ - D . and whose cross-sectional diameter is I - ID

Consequently the density will be increased by a factor - I If

we take r « 5 x 1 0 AU and r w 5 AU, and the distributed dust
A B
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-20 -3
density at A ss 2 x 10 gm cm (corresponding to a neutral gas density

K 10 cm ), p w 10 p ~ 2 x 10 gm cm . Since the internal
13 .A.

r p
collision time scale at B is given by t ss —° "• , taking r ~ 10 p, ,

B PB Vrel g

p « 0. 5 gm cm , v « 10 cm sec , we get t « 2 X 10 sees
O

« 1 mo. Consequently a fast focussing into consolidated body of

cometary size is possible during a single perihelion passage. While the

isotropy of the observed distribution of long period comets is a natural

consequence of this formation process, the emerging view of a comet as a

lossely consolidated grainy matrix is consistent with such a formation. It

also anticipates the observed compositional similarities between interstellar

dust and comets.

It should be noticed that the mechanism we are proposing is essentially

(19)
different from Lyttleton's gravitational lensing . It is also asserted that

these dust streams are unstable against the effects of internal inelastic

collisions and would quickly agglomerate into one or more larger bodies.

4. The Origin of Short Period Comets

The idea that short period comets derive from long period ones that

pass near one of the massive outer planets (especially Jupiter) and lose

energy is nearly two centuries old being generally attributed to Laplace.

This classical capture hypothesis has since been considered by several

authors and worked out in detail by Newton whose calculations have
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been extended and refined more recently by Everhart . Both authors

reached the conclusion that single close encounters of long period (or more

precisely parabolic) comets belonging to the observed random distribution,

with planets (particularly Jupiter) cannot solve the problem of the origin

of short period comets. While the capture probability remains finite although

very small, the calculated post-capture distribution of these short period

comets following a single close encounter with Jupiter does not in any way

correspond to the observed distribution and nowhere is this discrepancy

more marked than in their distribution with regard to period and inclination.

In fact, these calculations perdict that about a quarter of the short period

comets with perihelion <_ 2 A. U. and period < 21 yrs should have

retrograde orbits although there are none observed.

(22)
Very recently Everhart has made a Monte Carlo statistical study

of the interaction of hypothetical random parabolic comets with the Sun-Jupiter

system, following some comets up to 2000 returns. While elucidating

several important points regarding the capture hypothesis it identified a

so-called "capture-region" consisting of prograde comets of low inclination

(i < 9 ) having perihelia close to Jupiter's orbit (4 < q < 6 A. U. )

from which over 90% of the captures take place. While the calculated

post-capture distributions agree rather well with observation, subsequent

(14)
work by the same author shows that from a purely orbital evolution

i

point of view the source of the observed short period distribution could
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equally well be situated within the confines of the solar system, in particu-

lar the Jupiter-Saturn region. Consequently such claculations have so far

not succeeded in unambigiously identifying the source region of the observed

short period comets. The problem of maintaining the observed short-period

population against dissipation and fading require a capture rate of at least

one every ten years or so. Based on the rate of capture deduced from

Everhart's numerical regults and the deduced rate of injection of "new"

(23)
comets from the Oort cloud into the "capture region" Joss concluded

that the capture rate -was 4-5 orders of magnitude too small to account

for the observed number of short period comets. Delsemme on the

other hand, considering also the intermediate period distribution and as-

suming a concentration towards small inclination in the capture region

concludes, on the basis of the number of comets reaching perihelia per

unit time, that no such discrepancy exists. Besides a number of questionable

assumptions and the uncertainties in the several parameters inherent in

o

Delsemme's analysis it needs to be realized that the 10 "intermediate

period comets" required to increase the capture rate must ultimately derive

from the "new" comets entering the capture region from the Oort cloud

4 5
(2 x 10 AU < Q < 10 AU) due to stellar perturbations. Even with an

orbital diffusion time scale as large as the age of the solar system one still

needs an input of such comets at the rate of 1 every 50 years. Consequently

we now have a problem not of accounting for the observed short period comets
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but rather for the deduced abundance of "intermediate period comets" from

which the short period comets are supposedly derived.

Vsekhsviatsky had earlier attempted to circumvent this difficulty by re-

viving the old Lagrangean idea of an eruptive origin for short period comets.

In a series of papers (e. g. see ref . 25), he has successively proposed that

comets are the ejecta of violent volcanic eruptions on the surfaces of planets

(particularly Jupiter) and their satellites. Besides the essentially circum-

stantial nature of the evidence, simple considerations based on the energy

requirements as well as the survival of these objects during such violent

eruptions argues strongly against such a view.

This leads us to our final topic: the genetic relationship between comets

and other small bodies in the solar system. The orbital associations of

comets and meteor streams on the one hand and the formal similarity of the

orbits of short-period comets and Apollo-type minor planets on the other,

have been known for a considerable time. Both classes of objects are

generally believed relics of comets. While the Apollo-type minor planets are

believed to result from a complete degassing of cometary nuclei and the con-

sequent shrinkage of their orbits due to non-gravitational forces, meteor

streams are believed to result from the complete or partial disintegration of

cometary nuclei.
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There are at least 17 major permanent meteor streams observed to

intersect the Earth's orbit, while a somewhat smaller number of temporary

meteor streams too have been observed. Since meteor streams (whose

typical thicknesses are < 0. 1 A. U) are observed only when their orbits

are favorably positioned with respect to the earth's orbit, the total

number within the solar system is likely to be much larger. Several of

these meteor streams are known to be approximately co-orbital with

comets (e. g. Perseids with P/Swift-Tuttle, October Draconids with

P/Giacobini-Zinner, Leonids with P/Temple-Tuttle, Taurids with P/Encke,

etc. ). It is of course not unreasonable that meteor streams should be

considered as the disintegration products of comets since we witness

cometary erosion--i. e. the loss of gas (type I tails) and dust (type II tails)

as comets approach the Sun, all the time. We have also seen on several

occasions cometary disintegration; P/Biela was seen to break up into two

parts in 1846. Subsequent to break up both comets moved in very close

orbits and were seen at their next return in 1852 separated by about

3 x 10 km. They were never observed after that, but a temporary meteor

stream (Andromedids) is now believed to be associated with their orbit.

While we cannot deny a process occurring before our eyes, we need not

necessarily assume that this process is irreversible. It seems worthwhile

considering, in the light of the development of the theory of jet streams,

whether the opposite process, viz. , comets and/or Apollo-type minor planets

forming in meteor streams is also possible.
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A meteor stream, where we have a swarm of particles moving in

Kepler orbits in a gravitational field with a small spread both in velocity

and configuration space is a good physical example of an idealized "jet"

stream" suggested by Alfven and Arrhenius, and whose dynamical evolution

(•? f.\
has been disussed in section 3. Trulsen has made a preliminary study

of the effects of planetary perturbations on meteor streams. He considers

the case of Jupiter producing a perturbation in a co-orbital eccentric jet

stream of particles dispersed along the orbit. A velocity modulation is

produced which causes a traveling density wave. The longitudinal focussing

achieved this way is, of course, only temporary for any given group of

particles and the maximum focussing achieved is only about 20. A

greater compression could possibly be obtained through the interference

of two such waves excited at consecutive close approaches of the meteor

stream to the planet. Besides, if viscous effects of some form are present,

as would be the case if an appreciable quantity of gas could be retained in

the stream for a sufficient time, it may be possible to achieve a more

permanent condensation which may be considered as the birth of a comet or

at least an Apollo-type minor planet. The process considered above must

be of a rather frequent occurrence because only a modest modulation is

required to trigger it. In fact, if the modulation is too large, as would be

the case if the stream approached Jupiter too closely, it is a scattering

rather than a focussing that results.
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Mendis has considered the time scales for a number of dispersive

effects including differential precession of nodes and perihelia, the disper-

sion of particles of different sizes due to the Poynting-Robertson effect,

the longitudinal dispersion due to variation of the "effective" gravity on

particles of different sizes moving in the combined gravitational and

radiation fields of the Sun, and the dispersion due to the differential ef-

ficiencies of accretion of particles of different sizes. It is found, in a

typical case, that all these times are comparable or larger than the time scale

4
for agglomeration, which is typically about 9 x 1 0 yrs with the typical

values adopted by Ip and Mendis l ^ in ~ ^. 5 km/s, r « 10 p ,
O

-72 3 -20 3 \
a« 3 A . U . , p. ~ 10 g/cm , p - 10 g/cm AQ« 10J.

The low elasticity and high sticking coefficients assumed in these cal-

culations seem to be supported by the studies of the surface properties

of lunar dust grains, dust grains sticking to the protective paint of Sur-

veryor III and also of dust grains artificially irradiated with large doses

/og \
of low energy praticles simulating solar wind conditions . Furthermore

if a factor is allowed for the dumpiness of these streams the focussing

time scale would be further reduced, so will the retnetion of a sufficient

quantity of gas. Consequently while the situation remains somewhat

marginal an eventual focussing of some present day meteor streams is not

excluded. The initial expansion phase noticed in our recent model computa-

tion (see figures 1 and 2) too is interesting in that it may explain the claim

that "young" meteor streams are dispersing faster than can be explained by

(29)
planetary perturbations or electromagnetic effects
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(27)
It is also shown that unlike comets, meteor streams could be

very efficient in accreting matter from interplanetary space due to their

large "effective" cross-sections. How much could be collected of course

naturally depends on l.he highly undertain dust density of the interplanetary

space, especially in the regions beyond Jupiter. However, should this be

even as much as two orders of magnitude lower than the distributed density

in meteor streams a fraction of about 10 can be collected by the stream

per revolution, which could account for the volatile fraction in the subsequently

consolidated comet, if a significant fraction of these interplanetary grains

contain such a component, perhaps in the form of clathrates.

An interesting observation in this connection concerns P/Temple-

Tuttle (P ~ 33. 2 yr) which was first recorded as a diffuse but bright object

(30)
only as recently as 1866 although the associated Leonids had been

known for centuries earlier. An even more significant observation concerns

Comet P/Swift-Tuttle (P ~ 120 yr) which was bright on its first apparition

(in 1862) to be easily seen with the naked eye being a 2nd magnitude object

at its brightest . What is surprising is its association with the Perseids

meteor stream which has been observed for over twelve centuries . Both

these observations seem to indicate that comets may have formed in already

existing meteor streams. Due to the very large times which span these

observations and the uncertainty with regard to the conditions of the early

observations we hesitate to draw any strong conclusions from them at this

stage except to state that they seem very suggestive. It should, however,

be stressed that theso observations are of such an important nature that

their significance merit further investigation.
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If indeed the genetic relationship between comets and meteor streams

is a reciprocal one with meteor streams providing not merely a sink for

comets but also a source, it could very well mitigate the crucial difficulty

at the present time, with regard to the observed abundance of short period

comets. At a more basic level is the intriguing possibility that the comet-

meteor stream complex may provide us with a cosmic laboratory where

we could still observe even though on a much diminished scale the planetesimal

process which led to the formation of the solar system over 4. 5 million

years ago.
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