A3-135 LIBRARY SERVICES MS 10-2

NASA CR-134987

~.

DO NOT DESTROY RETURN TO LIBRARY

FURTHER DEVELOPMENT OF HIGH TEMPERATURE-RESISTANT

GRAPHITE FIBER COUPLING AGENTS

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA-Lewis Research Center

Contract NAS 3-18931

William B. Alston, Project Manager

M76-13336

RETURN TO A3-135 LIBRARY SERVICES MS 10-2

G12/16

A3-135 LIBRARY SERVICES MS 10-2

A-137677 ASL-1

NASA CR-134987

÷.,

FURTHER DEVELOPMENT OF HIGH TEMPERATURE-RESISTANT

GRAPHITE FIBER COUPLING AGENTS

by

R. N. Griffin

General Electric Company Space Sciences Laboratory P. O. Box 8555 Philadelphia, Pennsylvania 19101

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA-Lewis Research Center

Contract NAS 3-18931

William B. Alston, Project Manager

A3-135 LIBRARY SERVICES MS 10-2

1 Report No	2 Government Access	ion No.	3 Recipient's Catalog	; No.			
NASA CR-134987			5 Report Date				
			•	1076			
Further Development of Graphite Fiber Couplin	High Temperat g Agents	ure Resistant	6. Performing Organia	tation Code			
7 Author(s)			8. Performing Organiz	ation Report No			
Richard N. Griffin	•	F	10. Work Unit No.				
9. Performing Organization Name and Address			TO: WORK ONIC NO.				
General Electric Company			11. Contract or Grant	No			
Space Sciences Laborato P. O. Box 8555	ory						
Philadelphia, Pennsylva	ania 19101	+	NAS 3-189 13. Type of Report ar				
12 Sponsoring Agency Name and Address	<u></u>						
National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D.C. 20546							
15 Supplementary Notes							
Project Manager: William B. Alston, Materials and Structures Division, NASA-Lewis Research Center, Cleveland, Ohio.							
16 Abstract		<u></u>		· · · · · · · · · · · · · · · · · · ·			
Seven potential couplir effect on the weight losses o 400 hours.	ng agents for g of Thornel 300,	raphite fibers w HMS, and HTS fi	ere screened) bers at 588K ;	by their for 200 and			
Unidirectional laminates were made from HMS and HTS fibers, untreated, and treated with each of the seven coupling agents. The matrix of all laminates was PMR polyimide (PMR-PI). On the basis of the best overall retention of elevated temperature interlaminar shear strength after 200 hours at 588K, composite weight after 200 hours at 588K, and fiber weight after 400 hours at 588K, Ventromer T-1 applied from aqueous solution and pyrolyzed PPQ were selected for further evaluation as coupling agents for HTS fiber while Ventromer T-2 and pyrolyzed PPQ were selected as coupling agents for HMS fiber.							
Laminates made with the selected coupling agents were 1000 hours at 588K. Composit strengths measured at 297K an	then exposed e wieght losse	in air and in ni	trogen for new	ciode un to			
Laminates made from HTS fiber with pyrolyzed PPQ as a coupling agent were subjected to further testing. Flexural strength and modulus, impact strength, and transverse tensile strength were determined at 297K and 588K for samples in air and in nitrogen at 588K for periods up to 1000 hours. The above properties plus inter- laminar shear strength were also determined at 297K and 588K the day after exposure to boiling water for two hours.							
It was shown that pyrol stability of HTS/PMR-PI compo	yzed PPQ as a sites.	coupling agent in	nproves the ox	idative '			
17. Key Words (Suggested by Author(s))		18. Distribution Statement					
Composites - Coupling Agent - Fibe Polyimide - Ventromer - Interface Pyrolyzed Polyphenylquinoxaline - Shear - Impact - Transverse Tensit	- Flexure - Interlaminar						
19. Security Classif. (of this report)	20. Security Classif. (c	f this page)	21. No. of Pages	22. Price*			
		_		22. 11100			
UNCLASSIFIED	UNCLAS	SIFIED	48	L			

۰.

* For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-C-168 (Rev. 10-75)

FOREWORD

This document constitutes the final report of the work accomplished between 8 January 1975 and 7 October 1975, by the General Electric Company for the National Aeronautics and Space Administration, Lewis Research Center, under contract NAS 3-18931, on Further Development of High Temperature-Resistant Graphite Fiber Coupling Agents.

This work was performed under the technical direction of Dr. William B. Alston of the Lewis Research Center, Cleveland, Ohio.

The Space Processing Programs Section of the Space Sciences Laboratory was responsible for the work performed on this program. Mr. Louis R. McCreight, Manager, Space Processing Programs Section, provided overall program supervision and management. The principal investigator responsibilities for the program were performed by Dr. R. N. Griffin. Major technical contributions throughout the program were provided by Mr. E. F. Muziani and Mr. R. J. Grosso.

iii

Page intentionally left blank

·.,

٠.

Page intentionally left blank

SUMMARY

The objective of this program was to develop improved high temperature resistant coupling agents for polyimide/graphite fiber composites. Seven potential coupling agents were investigated on Thornel 300, HMS, and HTS graphite fibers. Weight losses of the three fibers with the seven coupling agents were determined at 588K in a circulating air oven for 200 and 400 hours. Composites were made from HMS and HTS fibers and polyimide made by polymerization of monomeric reactants (PMR) using the monomethyl ester of 5 norbornene-2, 3 dicarboxylic acid, 4,4'-methylenedianiline, and the dimethyl ester of 3,3', 4,4'-benzophenonetetracarboxylic acid in a molar ratio of 2:3,087:2.087. Interlaminar shear strength of the composites was measured at 297K and 588K, and at 588K after 200 hours exposure at 588K.

On the basis of these tests the best coupling agent/fiber combinations were determined to be HMS fiber treated with Ventromer T-2, HMS fiber treated with pyrolyzed PPQ, HTS fiber treated with Ventromer T-1, and . HTS fiber treated with pyrolyzed PPQ. The interlaminar shear strengths of these composites were determined at room temperature and 588K before and after aging in air and nitrogen at 588K for times up to 1000 hours.

v

Page intentionally left blank

·• .

1

Page intentionally left blank

Laminates of PMR/PI and HTS graphite fiber treated with pyrolyzed PPQ were also tested for flexural strength and modulus, transverse tensile strength, and impact strength before and after aging at 588K in air and in nitrogen for exposure times up to 1000 hours. The coupling agent appeared to improve the retention of flexural strength and modulus, interlaminar shear and impact strength of the HTS composites, but did not appear to have any beneficial effect on the retention of transverse tensile strength after prolonged exposure at 588K.

Ŀ

Page intentionally left blank

•••

• :

Page intentionally left blank

TABLE OF CONTENTS

.

Page

•

.

I.	INTRODUCTION	
II.	MATERIALS	1
		3
	A. Polyimide Matrix B. Graphite Fiber C. Coupling Agents or Surface Treatments	3 4 5
III.	COUPLING AGENTS SELECTION AND PRELIMINARY EVALUATION	
	A. Fiber Weight Loss Tests B. Composite Fabrication and Testing	7 7 10
IV.	PREPARATION AND EVALUATION OF COMPOSITES	16
v.	ADVANCED COMPOSITE EVALUATION	21
	A. Interlaminar Shear Strength After Water Boiling B. Flexural Strength and Modulus C. Transverse Tensile Strength C. Impact Strength	21 22 26 26
VI.	CONCLUSIONS AND RECOMMENDATIONS	35
	A. Conclusions B. Recommendations	35 35
VII.	REFERENCES	37
VIII.	DISTRIBUTION LIST	38 ⁻

Page intentionally left blank

.

,

•

· ,

Page intentionally left blank

LIST OF FIGURES

FIGURE		PAGE
1.	Graphite Fiber Composites After 1000 Ho urs at 588K in Air	20
2.	Typical Flexural Fracture of Unaged PI/H TS Specimen without Coupling Agent	25
3.	Typical Flexural Fracture of Unaged PI/H TS Specimen with Pyrolyzed PPQ Coupling Agent	25
4.	Flexural Strength Specimen Made Without Coupling Agent, Aged 1000 Hours at 588K in Air	26
5.	Flexural Strength Specimen Made with Pyrolyzed PPQ Coupling Agent, Aged 1000 Hours at 588K In Air	26
6.	Izod Impact Fracture of Unaged HTS Laminate	31
7.	Izod Impact Fracture and Delamination of Control HTS Laminate Aged 200 Hours at 588K and Tested at 588K	31
8.	Imperfect Fracture of Izod Impact Specimen Tested at 297K After 1000 Hours Aging in Air at 589K	32

Page intentionally left blank

.

·.,

۰.

-

Page intentionally left blank

~

.

LIST OF TABLES

4

•

.

TA	<u>BLE</u> .	PAGE
1.	Fiber Treatment Code	5
2.	Fiber Weight Losses up to 400 Hours at 588K in Air	8
3.	Fiber Weight Losses up to 1000 Hours at 588K in Air	9
4.	Composite Panels made from PMR-Polyimide and Graphite Fibers for Task l Tests	11
5.	Composite Weight Losses after 200 hours at 588K in Air	12
6.	Interlaminar Shear Strenth of Polyimide Composites	14
7.	Composite Weight Losses at 588K in Nitrogen	17
8.	Composite Weight Losses at 588K in Air	18
9.	Interlaminar Shear Strength of Polyimide/Graph ite Fiber Composit es	19
10.	Interlaminar Shear Strength After Boiling Water Exposure	21
11.	Flexural Strength and Modulus of Composites with Untreated HTS Fiber	23
12.	Flexural Strength and Modulus of HTS Composites with Pyrolyzed PPQ Coupling Agent	24
13.	Transverse Tensile Strength of Composites with Untreated HTS Fiber	28
14.	Transverse Tensile Strength of HTS Composites with Pyrolyzed PPQ Coupling Agent	29
15.	Impact Strength of Composites with Untreated HTS Fiber	33
16.	Impact Strength of HTS Composites with Pyrolyzed PPQ Coupling Agent	34

FURTHER DEVELOPMENT OF HIGH TEMPERATURE RESISTANT GRAPHITE FIBER COUPLING AGENTS

I. INTRODUCTION

One of the chief problems in the development of high-modulus carbon fiber reinforced composites is the fact that under multiaxial stress conditions, many of these composites appear to fail within the matrix or at the filament-matrix interface rather than by rupture of the filaments.

The surface treatments that are used for graphite /epoxy systems are not adequate for use with high temperature resins. The short time elevated temperature interlaminar shear and transverse tensile strength of polyimide/ graphite composites are significantly lower than the room temperature values. Composites exposed in air to elevated temperatures exhibit excessive further decreases in these strength values. In earlier work we developed two coupling agents which were shown to increase the room temperature and elevated temperature interlaminar shear strength of polyimide/graphite composites are exposed in air to elevated temperatures when the composites are exposed in air to elevated temperatures. The purpose of this program was to optimize the previous ly-developed coupling agents, and to extend their use to other commercially available carbon fibers. One of the coupling agents developed previously was a reaction product of titanium tetrachloride and trimethylborane.

Optimum conditions for applying this material to the carbon fiber were found, and the use of other closely related products as coupling agents was investigated.

II. MATERIALS

A. Polyimide Matrix

The polyimide used throughout this study was formed from the monomethyl ester of 5-norbornene-2, 3-dicarboxylic acid (NE), 4,4'methylenedianiline (MDA), and the dimethyl ester of 3,3',4,4'-benzophenonetetracarboxylic acid (BTDE) in the molar ratio of 2:3.09:2.09, giving a "formulated molecular weight" of 1500.

5-Norbornene-2, 3, -dicarboxylic anhydride (NA) was made from cyclopentadiene and maleic anhydride according to the literature procedure. A 95% yield of material, m.p. 431-433K (158-160C) (Lit. 164-5C (2) was obtained. The monomethyl ester was prepared according to Walton. After two washes with isopropyl ether and two washed with ligroin the product was obtained in 79% yield, m.p. 374-375K (101-102C) (Lit. 375-376K) (102-103C). (3)

The dimethyl ester of 3, 3', 4, 4'-benzophenonetetracarboxylic acid was prepared by heating benzophenonetetracarboxylic dianhydride (BTDA) with methanol according to the method of Serafini, Delvigs, and Lightsey. (4) A fresh ester solution was prepared and immediately used for each polyimide formulation. The proper amount of anhydride was heated in refluxing methanol, and the solution used directly in the polymer formulation without isolation of the BTDE.

Eastman 4, 4'-methylenedianiline, 500 g, was dissolved in 2.5 liters of boiling isopropanol containing decolorizing carbon. The mixture was filtered hot through a filter-aid cake and allowed to crystallize. Recovery was 80%, m.p. 365-366K (92-93C).

A 40 weight percent solution of the three monomers in methanol was applied to drum wound tapes of graphite fibers. The prepreg was heated at 323K (50C) for two hours on the drum to reduce the solvent content to less than 10 percent.

B. Graphite Fiber

For the selection and preliminary evaluation of coupling agents, three types of graphite fiber were used. Union Carbide's Thornel 300 graphite yarn, grade WYP 30 1/0 was used for comparison with our earlier work⁽¹⁾ along with Hercules HTS and HMS graphite fibers. Composites were prepared from the polyimide and HMS and HTS fibers for evaluation of composite density, fiber volume, resin content, void content, and interlaminar shear strength at room temperature and 588K. Finally, HTS graphite fiber was used to prepare laminates for flexural strength and modulus, impact strength and transverse tensile strength measurements.

C. Coupling Agents or Surface Treatments

Seven methods for improving the elevated temperature stability of graphite/polyimide composites were selected for evaluation. The seven treatments and the code thereof are listed in Table 1.

Table 1

Fiber Treatment Code

- 0 Control, no treatment
- 11 Ventromer T-1 applied from aqueous solution
- 12 Ventromer A-1 applied from aqueous solution
- 13 Ventromer T-1 in methanol
- 14 Ventromer A-1 in methanol
- 15 Ventromer T-2 in methanol
- 16 Ventromer A-2 in methanol
- 17 Pyrolyzed PPQ

Treatment #11, Ventromer T-1 applied from aqueous solution, is similar to one of the treatments used in last year's work. The Ventromer was applied to the graphite surface either as a 0.33% solution dissolved in water containing 0.33% sodium tripolyphosphate and neutralized to pH 7 with

ammonium hydroxide, or alternatively as a 0.33% solution which had been treated gradually to form a prepolymer. No differences were found between the two methods of application.

Treatment #12 was analogous, using the Ventromer A-1. In this case, however, neutralization was unnecessary since the solution of Ventromer A-1 and sodium tripolyphosphate is essentially neutral.

Treatment #13 involved a 0.33% solution of Ventromer T-1 in methanol.

Treatment #14 involved a 0.33% solution of Ventromer A-1 in methanol.

Treatments #15 and #16 were analogous to treatments #13 and #14 except with the Ventromers T-2 and A-2 respectively.

Treatment #17 was carried out with a 0.1% solution of PPQ in N-methyl pyrrolidone, B staging of the PPQ, and pyrolysis at 1050° C in nitrogen for 3 minutes.

Ventromer T-2 and Ventromer A-2 were made according to the procedure of Wade (5).

III. COUPLING AGENTS SELECTION AND PRELIMINARY EVALUATION

A. Fiber Weight Loss Tests

The seven coupling agents were applied to Thornel 300, HTS, and HMS fibers as described above. Treated fibers were exposed in a circulating air oven at 588K for 200 and 400 hours. The complete set of fiber weight loss data is shown in Table 2. The only coupling agent which appeared to diminish the rate of fiber weight loss was pyrolyzed PPQ (Treatment #17). Among the other coupling agents there was relatively little difference, although Ventromer T-1 (Treatment #11) applied from aqueous solution appeared to be slightly better than the remainder. Subsequently, fiber weight loss data were extended to 1000 hours exposure at 588K for the following selected graphite fiber/ coupling agent combinations: Thornel 300 fiber, no surface treatment, Ventromer T-1, pyrolyzed PPQ, and Ventromer A-2; HTS fiber, no surface treatment, Ventromer T-1. and pyrolyzed PPQ; HMS fiber, no surface treatment, Ventromer T-2, pyrolyzed PPQ, and Ventromer A-2. It is shown clearly in Table 3 that the HMS fiber is far more stable than either the HTS or the Thornel 300 at 588K. It is also evident that neither of the Ventromer treatments has an appreciably beneficial effect on the oxidative stability of Thornel 300 or HTS; but pyrolyzed PPQ coupling agent appears to improve significantly the oxidation resistance of both these fibers.

FIBER WEIGHT LOSSES UP TO 400 HOURS IN AIR

Percentage Weight Loss

[....]

Land Land

Sund.

-]

Fiber	Treatment	200 hours	400 hours
Thornel 300	0	12.96	30.06
	11	21.19	44.44
	12	21.32	47.05
	13	20.97	46.64
	14	21.86	48.15
	15	25.76	54.47
~~ ~~~	16	23.94	54.16
	17	5.27 ·	19.28
HTS	ο	19.65	28. 38
	11	18.74	29.48
	12	20.26	35.67
	13	31.31	44.88
	14	32.05	47.05
	15	31.61	51.43
	16	34.64	51.74
	17	6.79	10.10
HMS	0	0.94	0.50
	11	0.28	0.23
	12	0,28	0.30
	13	0.50	0.36
	14	0.40	0.48
	15	0.31	0.30
	16	-,	0.07
	17	0.56	0.22

FIBER WEIGHT LOSSES UP TO 1000 HOURS AT 588K IN AIR

.

- 1

7

.

			Perc	entage Weig	ht Loss	, • ,
Fiber	Treatment	200 hrs.	400 hrs.	600 hrs.	800 hrs.	1000 hrs.
Thornel 300	None	12.96	30.06	42.50	57.26	64.77
	Ventromer T-1	21.19	44.44	67.50	81.09	86.89
	Pyrolyzed PPQ	5.27	19.28	27.62	43.21	50.10
	Ventromer A-2	23.94	54.16	67.93	77.56	82.85
HTS	None	19.65	28.38	34.42	36.94	39.31
	Ventromer T-1	18.74	29.48	36.08	38.73	42.20
	Pyrolyzed PPQ	6.79	10.10	9.88	13.36	14.09
HMS	None	0.94	0.50	1.00	0.66	0.64
7	Ventromer T-2	0.28	0.23	0.39	0.39	0.35
	Pyrolyzed PPQ	0.56	0.22	0.36	0.56	0.32
	Ventromer A-2	-	0.07	0.05	0.07	-

B. Composites Fabrication and Testing

Sixteen PMR polyimide/graphite laminates were prepared from HTS and HMS fibers, and the monomethyl ester of 5-norbornene-2, 3dicarboxylic acid, 4,4'-methylenedianiline, and the freshly prepared dimethylester of 3, 3', 4, 4'-benzophenonetetracarboxylic acid. Ultrasonic C-scans of these 16 laminates showed that they were generally free of voids with the notable exception of the laminate made with HMS fiber treated with Ventromer A-2. This particular laminate had so little void-free area that there was barely enough material for the preparation of interlaminar shear and resin content specimens. The properties of the sixteen laminates are summarized in Table 4. The laminates were prepared by winding the graphite fiber on a mandrel, impregnating with the calculated amount of a 40% methanol solution of the monomer mixture, and drying under heat lamps. After the pre-preg was dry, it was removed from the mandrel, stacked between Teflon-coated glass and aluminum foil, and imidized for 2 hours at 400°F 477K in an oven. It was transferred to a pre-heated (477K) mold, and 460 F placed in a press at 505K for 10 minutes under contact pressure. Pressure 1.00°F of 3.45 MPa (500 psi) was applied and maintained while heating to 588K and holding for 1 hour. The composite was cooled slowly to 477K, then rapidly to room temperature. Post-curing was accomplished according to the following schedule:

í

				Weight		Bulk	Density				
Fiber Type	Treat- Ment #	Treatment	Prepreg Weight, Grams	Cured Panel, Grams	Weight Loss, Grams	Density Before Post-Cure	of Resin Content Samples	% Resin Content	Volume Fraction Resun, 9/	Volume Fraction] Fibers, %	Volume Fraction Voids, %
SMH	0	None	58.7	50.7	8, 0	1.64	1.65	28.75	36.71	62.49	0, 79
SMH	11	Ventromer T-1, aqueous	60.6	50.0	9.1	1.65	1.65	28.13	36.26	61.37	2.36
HMS	12	Ventromer A-l, aqueous	59.4	53.3	6.1	1.62	1.63	31.33	38.50	60.52	0.90
HMS	13	Ventromer T-l, non-aqueous	58.9	52.1	6.8	1.59	1.64	29.09	37.93	60.92	1. 15
HMS	14	Ventromer A-1, non-aqueous	66. 7	53.9	12.6	1.64	1.63	29.92	36. 73	62.12	1, 15
HMS	15	Ventromer T-2	66. 1	54.2	11.9	1.56	1, 63	30, 97	37.28	59,94	2.78
HWS	16	Ventromer A-2	59.9	53, 3	6.6	1.58	1.63	31,06	38.70	58.76	2.54
HMS	17	PPQ pyrolyzed	64.6	53.2	11.4	1.62	1.64	29.81	38, 73	60.36	0. 91
HTS	0	None	61.5	53. 6	7.9	1.52-	1.61	29.80	36, 35	60.28	3, 37
HTS	11	Ventromer T-l, aqueous	56.2	51.5	4.7	1.55	1,58	31.46	39, 06	59.06	1,88
STH	12	Ventromer A-1, aqueous	57.3	53.0	4.3	1.53	1.56	31.61	38, 58	57.76	3. 66
HTS	13	Ventromer T-1, non-aqueous	61.0	52.7	8 . 3	1.57	1.59	30, 98	38, 42	59.70	1.88
STH	14	Ventromer A-1, non-aqueous	61.0	51.7	7.3	1.55	1.59	31, 98	38.74	58, 37	2.89
HTS	15	Ventromer T-2	60.2	53, 5	6.7	1.57	1.59	32,19	37.94	60.42	1.64
HTS	16	Ventromer A-2	58.7	52. 9	5.8	1.54	1.58	34.78	39, 91	58,58	1.51
HTS	17	PFQ Pyrolyzed	60.0	52, 3	7.7	1.54	1,58	28, 13	35.64	61.15	3.20

4

.

.

·

.

TABLE 4 - COMPOSITE PANELS MADE FROM PMR-POLYIMIDE AND GRAPHITE FIBERS FOR TASK 1 TESTS

Avg.	1. 94	1.92	1. 95	2.12	1.87	1. 95	2.20	1.70
% Wt. Loss of Three Samples	2.13 1.79 1.90	1.63 1.71 2.42	1.83 2.05 1.98	2.01 2.00 2.36	2.08 1.81 1.71	2.10 1.83 1.92	2.25 2.20 2.16	1.64 1.67 1.78
Treatment Number	0	11		13	14	15	16	17
Fiber	HTS							
Avg.	1.21	I.43	1.71	0. 95	1.81	1.11	0.85	1.26
% Wt. Loss of Three Samples	1.15 1.22 1.27	1.44 1.06 1.78	1.99 1.55 1.58	1.24 0.78 0.84	1.88 1.92 1.63	0,98 1.12 1.24	0.99 0.79 0.78	0.99 1.77 1.03
Treatment Number	0	11	12	13	14	15	16	17

r í

•

T. 6

Benzny

S. A.M.

1 mar 1

Sec. 1

Anna and

г 64

funnel.

No. of the local division of the local divis

BETTHICKNEED

Composite Weight Losses After 200 Hours at 588K in Air

Room temperature to 505K in 8 hours 505K - hold for 16 hours 588K - hold for 24 hours 588K to room temperature overnight.

Weight losses of the 16 laminates were measured after 200 hours exposure in a circulating air oven at 588K. The weight losses of the composites made with HMS fiber were all quite low. In the worst case the weight loss amounted to 1.8% in the composite made with HMS fiber treated with Ventromer A-1 (Treatment #14). The smallest weight loss observed was 0.85%, in the laminate made with HMS fiber and Ventromer A-2 (Treatment #16). As might be expected, the weight losses of the HTS laminates were generally higher than those of the HMS laminates. The lowest weight loss observed with the HTS laminates was with the composite made from HTS fiber treated with pyrolyzed PPQ (Treatment #17). The highest weight loss observed was with HTS fiber treated with Ventromer A-2 (Treatment #16). These data are summarized in Table 5.

The interlaminar shear strengths of the 16 laminates were measured at room temperature, at 588K, and at 588K after 200 hours exposure in a circulating air oven at 588K. The data are summarized in Table 6.

On the basis of the interlaminar shear strength data and the composite and fiber weight loss data, two surface treatments were selected for further investigation with each of the two graphite fibers. The surface treatments

TA.	BL	ĿE	6
-----	----	----	---

 \Box

]

]

D

8

Current J

Share and

E.....

Simil

FL

Same and

INTERLAMINAR SHEAR STRENGTH OF POLYIMIDE COMPOSITES

••

	•	ILSS . at	at	ILS at 588K After 200 Hrs.	
<u>Tréatment</u>	Fiber	298K M Pa ₁	<u>588K</u> MPa _l	at 588K MPa _l	% Increase
0	HMS	72.6	48.9	59.3	21.3
11		53,8	44.7	49.6	11.0
12		52.4	43.3	49.6	14.5
1.3		66.4	42.6	53.1	24. 6
14		65.7	36.3	52.4	44.3
15		66.4	41.2	57.3.	39.1
16	V	63.6	37.0	52.4	41.6
17	HMS	83.1	45.4	56.6	24.7
0	HTS	115.3	58.0	63.6	9.7
11		108.3	50.3	62.9	25.0
12		93.6	48.2	58,7	21.8
13		85.2	51.0	60.1	17.8
14		104.8	44.7	60.8	36.0
15		98.5	50.3	60.8	20.9
16	4	111.1	50.3	57.3	13.9
17	HTS	119.4	49.6	60.1	21.2

L4

selected for further evaluation with HMS fiber were pyrolyzed PPQ and Ventromer T-2 (Treatments #17 and 15). For HTS fiber the surface treatments selected were pyrolyzed PPQ and Ventromer T-1 applied from aqueous solution (Treatments #17 and 11).

í

IV. PREPARATION AND EVALUATION OF COMPOSITES

The six laminates selected in the screening work were aged at 588K in air and in nitrogen for periods up to 1000 hours, and the weight losses and interlaminar shear strengths of the laminates were measured at 200, 500, and 1000 hours. The composites included those made with HMS fiber, untreated, treated with Ventromer T-2, and treated with pyrolyzed PPQ; composites made with HTS fiber, untreated, treated with Ventromer T-1, and treated with pyrolyzed PPQ.

Aging in nitrogen caused little loss of weight as is indicated clearly in Table 7. Exposure in air at 588K, however, caused considerably greater losses in weight of the laminates. As indicated in Table 8 the two coupling agents tested with each of the two fibers appeared to make little difference in the weight loss of HMS composites, while both seemed to improve the HTS composites. There was, however, at least a 3:1 ratio in the weight losses observed with the HTS composites and the HMS composites. This was to be expected in the light of the results of the fiber weight loss studies.

Interlaminar shear strength data obtained after exposures at 588K for 200, 500 and 1000 hours in air and in nitrogen are summarized in Table 9. The most noteworthy results was that after 1000 hours at 588K in air, the HTS laminate made without coupling agent was reduced to a pile of disconnected fibers. Figure 1 shows the difference between the HMS and HTS composites after aging. All the HTS samples had a number of loose fibers on the outside.

Į.

İ

COMPOSITE WEIGHT LOSSES AT 588K IN NITROGEN

.

		Perc	ent Weight Lo	058
Fiber	Treatment	200 hrs.	500 hrs.	1000 hrs.
HMS	None	0.34	0.55	0.65
	Ventromer T-2	0.59	0.63	1.10
	Pyrolyzed PPQ	0.55	0.57	0.77
HTS	None	0.77	1.01	1,21
	Ventromer T-1	0.87	1.17	1.33
	Pyrol yzed PPQ	0.90	0.86	1.17

;

COMPOSITE WEIGHT LOSSES AT 588K IN AIR

		Per	cent Weight	Loss
Fiber	Treatment	200 hrs.	500 hrs.	1000 hrs.
HMS	None	1.21	2.14	6.39
	Ventromer T-2	1.14	1.77	5.32
	Pyrolyzed PPQ	1.26	2.11	5.47
HTS .	None	1.94	5.03	25.43
	Ventromer T-1	1.92	4.55	15. 32
	Pyrolyzed PPQ	1,70	4.34	18.66

in the second

Lunary J

E

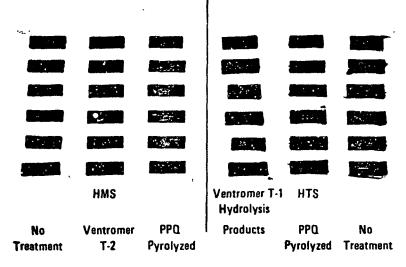
Samuel

Re-Kardi

INTERLAMINAR SHEAR STRENGTH OF POLYIMIDE/GRAPHITE FIBER COMPOSITES, MPa

-

•


	Aged in T	Aged in Air Environment HTS Fibers * Treatment No.	onment rs * vo	Aged in	ged in Nitrogen Environment HTS Fibers Treatment No	rooment a	Aged in	Aged in Air Environment HMS Fibers Treatment No.	onment rs No	Aged in	Aged in Nitrogen Environment HM5 Fibers T=2000000000000000000000000000000000000	vi ronment rs No
Temp, K/Time Ageà	0	11	17	0	11	. 17	0	15	17	0	A FEALMENT	17
	91.0	104.8	117.2				73.8	65.5	79.3			
Tested @ 297K/0 hours	124.1	108.9	118.6				71.0	66.2	82.1			
	126.2	107.6	117.2				71.0	64.1	84.5			
	58.6	47.6	49.0				49.0	38.6	44.8			
Tested @ 588 K/0 hrs.	56.5	48.3	48,3				48.3	33.1	44.1			
)	56.5	53.8	50.3				47.6	49.6	46.2			
	62.1	63.4	60.0	59.3	57.9	54.5	52.4	56.5	56.5	50.3	51.7	53. R
Testcd @ 588 K/200 hrs.	62.7	61.4	58,6	60.7	60.7	56.5	56.5	56.5	54.5	55.2	49.0	54.5
@ 588 K	63.4	61.4	58.6	60.0	57.2	55.2	66.9	57.2	55.8	56.5	46.2	53.1
Tested @ 297K/200 hrs	82.0	100.0	99.3	129.6	108.3	115.1	66.9	65.5	83.4	66.2	64.1	86.9
j) ŭ	122.0	95.2	98.6	128.2	100.7	113.1	67.6	66.2	82.7	62.7	62.7	89.6
	122.7	108.3	108.9	93.8	103.4	109.6	68.9	65.5	85.5	60.9	79.8	89. é
Testad @ 588 K/500 hus	51.0	52.4	49.6	50.3	54.5	55.2	49.6	48.3	49.0	43.4	45,5	49.0
	52.4	55.2	48.3	60.7	54.5	55.8	47.6	46.9	49.6	42.7	46.2	48.3
	53.1	55.8	49.6	61.4	55.1	59,3	47.6	47.6	50.3	42.7	44.8	50.3
Tested @ 297K/500 hrs.	106.9	99.3	106.2	133.1	109.6	110.3	56.5	68.3	81.4	58.3	75.5	76.5
285	108.9	104.8	103.4	95.8	107.6	109.6	58.6	65.5	79.3	57.9	71.7	76.5
	106.2	105.5	97.2	131.0	103.4	106.9	57.9	61.4	78.6	62.0	73.8	74.5
Tested @ 588 K/1000 hrs.	* * <mark>v</mark> N	64.1	55.2	68.3	*** V	67.6	42.1	43.4	48.3	47.6	54.1	55.2
585		61.4	59.3	68.3	66.2	65.5	42.1	37.9	48.3	54.5	53.0	51.7
		60.0	57.9	68.3	68.3	66.2	39.3	49.6	48.3	54.5	53.4	57.2
Tested @ 297K/1000 hrs.	NA* *	106.2	104.8	137.2	114.5	118.6	60.7	63.4	57.9	68.9	72.4	83.3
588		108.2	102.7	133.1	118.6	111.0	68.3	68.3	60.7	71.0	70.3	86.7
** Degradation too	0 severe	1 4	it ILSS	-9 -	71,12	£ · 9711	c.yc	04.0	1.00	1		
: يو		•						* Trea	Treatment No.	•		
								0 - U 11 - V 15 - 17	Untreated Ventromer T-1 Ventromer T-2 PPQ Pyrolyzed	•	ducous	
•					`							

•

.

١

•

1000 HOURS IN AIR AT 588K

Figure 1. Graphite Fiber Composites After 1000 Hours at 588K in Air.

Interviewa

Ł

Although it is not evident from Figure 1, the HTS samples made with coupling agents still had good integrity with only surface damage, while the control samples were destroyed. The HMS laminates showed little evidence of damage after the 1000 hours exposure in air at 588K.

V. ADVANCED COMPOSITE EVALUATION

The laminates of HTS graphite fiber treated with pyrolyzed PPQ were selected by the NASA Project Manager as the material for complete evaluation. Laminates were prepared from PMR/PI and HTS fiber treated with pyrolyzed PPQ. Control panels were prepared from PMR/PI and HTS fiber without surface treatment. The laminates were examined by ultrasonic C-scans, and void-free areas were used for interlaminar shear strength tests after water boiling, flexural strength and modulus, transverse tensile strength, and impact strength. Tests were performed at 297K and 588K.

A. Interlaminar Shear Strength After Water Boiling

Interlaminar shear strengths were measured at 297K and 588K the day following a 2-hour exposure to boiling water. Comparison of the data in Tables 9 and 10 indicates clearly that the boiling water treatment had no significant effect on the laminates.

Table 10

Interlaminar Shear Strength After Boiling Water Exposure

Treatment	ILSS @ 297K, MPa	ILSS @ 588K, MPa
Pyrolyzed PPQ	124	50.3
	121	51.7
	120	49.6
Control	129	50.3
	128	48.9
~	130	48.9

"PAGE MISSING FROM AVAILABLE VERSION"

•

· , ,

E	Aged	Atmos-	Tested	Flexural Strength	Flexural Modulus	E	Aged		Tested	Flexural Strength	Flexural Modulus
duia r		buere	ar Contra	- 01 X BJW	MFa X 10	r emp.		Atmos.	at	MFa X 10	- 01 X 23 M
I	5	•	N) 67	16.2	11.3	788 K	200	Air	588K	8.99 10.3	9.86 10.2
			Ξ	10.0	7 7 7					· • • •	7 07
			:	6.01	11,4					10.4	9. 00
Wai	Water Boil		297K	15.7	10.8	588K	500	Air	297K	14.4	10.2
			=	15.7	11, 1					11.4	9.52
			=	15.4	10.6					12.9	10.1
ı	0	ı	588K	11.0	11.4	588K	500	Ν,	588K	9.84	10.7
			=	10.4	11.3			J		10.2	10.6
			=	10.4	10, 3					11. 1	11.0
Xat Mat	Water Boil	1	588K	9, 48	10.5	588K	500	N,	297K	14.3	10.9
:			=	9.52	:0.6			J	•	14.0	10.7
			=	9.54	9.79					12.9	10.8
588K	200	Air	588K	11.9	10.5	588K	1000	Air	588K	6.75	6.05
			=	11.2	10.5					7.06	6.56
			1	10.7	10.5					6.94	6.44
588K	200	Air	297K	7.78	10.0	588K	1000	Air	297K	9.03	6.87
				8.72	10.3					7.84	6.11
				14.1	10.7					10.1	10.0
588K	200	N2 N2	588K	11.7	10.2	588K	1000	N2	388K	10.2	11.5
				11.1	10.1			1		9.83	11.2
				0.11	11.4					10.5	11.0
588K	200	N2	297K	16.2	10.9	588K	1000	N2	297K		11.1
			•	15.0 16.2	11.1					9.49 9.60	11.0 11.3

.

Flexural Strength and Modulus of Composites with Untreated HTS Fiber. Table 11.

				14010		with Pyrolyzed PPQ Coupling Agent	Agent	aansodiiioo		
Temp	Aged Hours	Atmos- phere	Tested at	Flexural Strength MPa x 10 ⁻²	Flexural Modulus MPa x 10-4	Aged Temp, Hours	Atmos.	Tested	Flexural Strength MPa x 10-2	Flexural Modulus MPa x 10 ⁻⁴
I	0	1	297K	14.7 15.1 16.2	10.6 11.0 11.6	588K 500	Air	588K	10.4 9.88 9.66	11. 7 11. 3 11. 0
Wat	Water Boil		297K	16.8 14.7 14.3	11.2 10.8 10.8	588K 500	Air	297K	12.5 14.0 13.7	15.4 15.4 15.6
' 24	0		588K .	8.27 9.54 9.60	10.8 11.0 10.9	588K 500	N2	588K	10.4 11.2 11.5	12.4 11.0 11.3
Wat	Water Boil		588K	6.42 7.15 6.81	9.24 9.72 10.2	588K 500	N2	297K	11.6 15.1 15.8	11.0 11.2 11.8
588K	200	Air	588K	11. 1 9. 37 9. 74	11.9 11.5 11.5	588K 1000	Air	588K	8.85 8.97 8.69	9.17 9.38 9.24
588K	200	Air	297K	14.3 12.3 13.2	11.9 11.0 11.1	588K 1000	Air	297K	9.76 8.70 9.23	9.58 8.48 8.76
588K	200	N2	588K	8.72 9.74 9.16	11.9 12.6 11.7	588K 1000	N2	588K	9.67 10.4 10.7	11.6 11.9 12.5
588K	200	N2	297K	15.6 16.3 15.3	10.9 11.8 11.0	588K 1000	NZ	297K	14.1 15.2 15.0	11.7 11.9 11.7

Table 12, Flexural Strength and Modulus of HTS Composites

.

24

, , ر الاست سندیا ا

][

,

ĺ

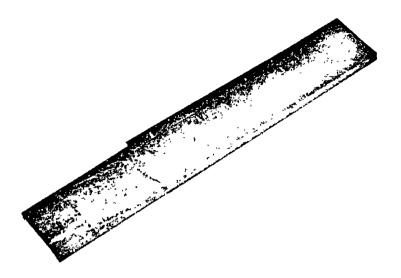


Figure 2. Typical Flexural Fracture of Unaged PI/HTS Specimen Without Coupling Agent

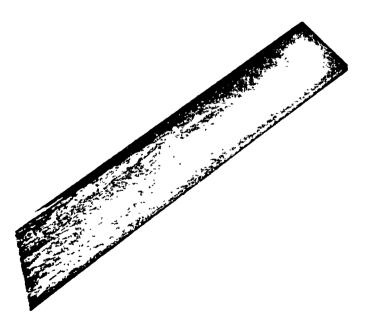
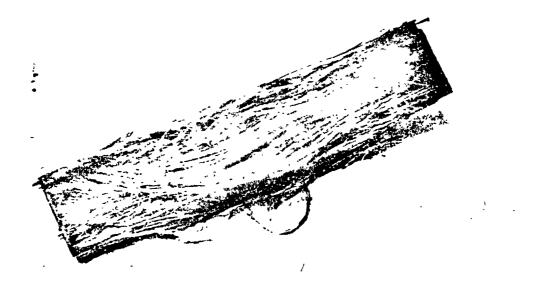



Figure 3. Typical Flexural Fracture of Unaged PI/HTS Specimen With Pyrolyzed PPQ Coupling Agent

Sec.

ľ

Figure 4. Flexural Strength Specimen Made Without Coupling Agent, Aged 1000 Hours at 588K in Air

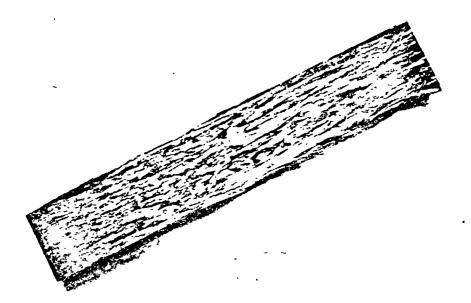


Figure 5. Flexural Strength Specimen Made with Pyrolyzed PPQ Coupling Agent, Aged 1000 Hours at 588K in Air. samples shown in Figures 4 and 5 have both been fractured, but in both cases the fracture is hidden by the loose fibers on the surface.

C. Transverse Tensile Strength

The use of the pyrolyzed PPQ coupling agent did not have a beneficial effect on the transverse tensile strength of the laminates, nor on the thermooxidative stability of the transverse tensile strength on aging at 588K in air. The laminates made without coupling agent decreased in transverse tensile strength by about 61% after air aging at 588K for 1000 hours. During the same time the laminate made with pyrolyzed PPQ coupling agent lost 86% of its transverse tensile strength as measured at 297K. A two hour exposure to boiling water resulted in significant decreases in the transverse tensile strength in all cases except the 297K transverse tensile strength of the laminate made with pyrolyzed PPQ coupling agent. These data are summarized in Tables 13 and 14.

D. Impact Strength

The impact strength of laminates was assessed by a modified Izod impact test using specimens approximately 1.27 by 0.254 centimeters. The specimens were not notched. No toss correction was attempted, and data were used regardless whether or not a clean break was obtained. A typical cleanly broken specimen is shown in Figure 6, which is an unaged specimen made from HTS

Transverse Tensile Strength, MPa	9.08 11.2 4.19	21.6 24.5 18. 2	25.1 15.4 26.5	44.7 53.8 49.6	6.89 10.5 9.78	18.9 20.2 23.7	18.2 21.6 17.5	34.9 30.7 33.5
Tested at	588K	297K	588K	297K	588K	297K	588K	297K
Atmos- phere	Air	Air	N2	N2	Air	Air	N2	N2
Aged Hours	500	500	500	500	1000	1000	1000	1000
Temp	588K	588K	588K	588K	588K	588K	588K	588K
Transverse Tensile Strength, MPa	54.5 53.8 53.8	38.4 39.8 44.7	12.6 32.1 32.1	20.0 20.0 16.5	9.78 11.9 13.3	15.8 29.6 21.4	31.4 32.8 37.0	48.9 41.2 52.4
Tested at	297K	297K	588K	588K	588K	297K	588K	297K
Aged Atmos- 13 phere	ı		·		Air	Air	N2	ŊZ
A, Temp Hours	0	Water Boil	0	Water Boil	200	200	200	200
Temp	1 -	Wate	I	85 Wate	588K	588K	588K	588K

Table 13. Transverse Tensile Strength of Composites with Untreated HTS Fiber

Ľ

in the

,

ſ

Γ

	eneth.									
Agent	Transverse Tensile Strength.	MPa	8.38 6.98 5.59	11. 2 11. 9 12. 6	20.2 21.6 23.0	45.4 49.6 47.5	3.49 3.84 2.79	6, 28 8, 38 4, 89	14.0 25.8 24.4	44.7 39.1 43.3
PQ Coupling	Tested	at	588K	297K	588K	297K	588K	297K	588K	297K
yrolyzed F		Atmos.	Air	Air	N2 N2	N2 N2	Air	Air	N2	N2
with P	Aged	Hours	500	500	500	500	1000	1000	1000	1000
Composites	·	Temp	588K	588K	588K	588K	588K	588K	588K	588K
Transverse Tensile Strength of HTS Composites with Pyrolyzed PPQ Coupling Agent	Transverse Tensile Strength,	MPa	42.6 51.7 46.1	46.8 39.8 51.0	21.0 21.6 19.6	13.1 15.8 15.8	6.78 11.9 12.6	20.7 18.6 22.8	25.1 26.5 26.5	44.0 41.2 46.8
sverse Te	Tested	at	297K	297K	588K	588K	588K	297K	588K	297K
	Atmos-	phere	ı		ŝ		Air	Air	NZ	N2
Table 14.	Aged	Hours	0	Water Boil	0	Water Boil	200	200	200	200
	-	Temp	ı	Watı	1	Wate	588K	588K	588K	588K

1 Ç , Ć 111 -÷. C STH 3 4+2 1 ขึ้ 2:12 Ē 1 -T « o n Table 14

fiber treated with pyrolyzed PPQ coupling agent. Imperfectly broken specimens are typified by Figure 7, which shows a control specimen broken at 588K after 200 hours exposure in air at 588K. The specimen broke cleanly at the edge of the vist, but in addition the free end delaminated into two approximately equal parts. Figure 8 shows an imperfect break that occurred in a sample made with coupling agent and tested at 297K after 1000 hours exposure at 588K in air.

Comparison of the data in Tables 15 and 16 shows that the PPQ coupling agent may have had a slight beneficial effect on impact strength, but that the improvement is probably marginal. Exposure of specimens to boiling water for 2 hours had no apparent deleterious effect. In fact, any small effect there may have been appears to have been beneficial. On the other hand, aging in air at 588K appeared to have no deleterious effect on the impact strength of any of the laminates.

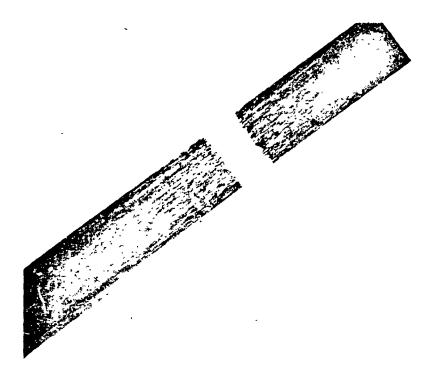


Figure 6. Izod Impact Fracture of Unaged HTS Laminate.

2

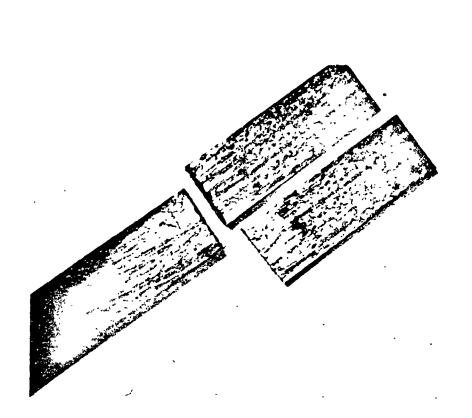
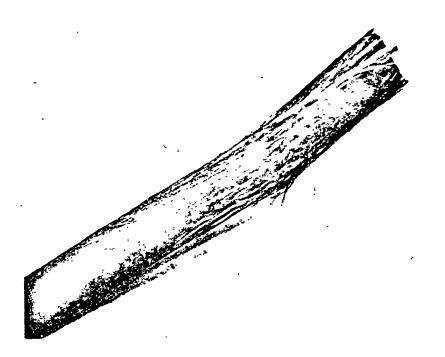



Figure 7. Izod Impact Fracture and Delamination of Control HTS Laminate Aged 200 Hours at 588K and Tested at 588K.

aler mar

Same

barn and

-[

Land.

Para di Angeleria

in and the second second

Figure 8. Imperfect Fracture of Izod Impact Specimen Tested at 297K After 1000 Hours Aging in Air at 588K.

	Impact Strength J/m ² x 10-4	5.48 4.71 4.27	4.17* 4.17* 4.18*	5.99 5.11 5.55	4.54 4.08 3.69	5.92 6.16 7.86	4.76 4.59 5.15	5,88 6,50 4,48	3.05 2.70 2.92
	Tested at	588K	297K	588K	297K	588K	297K	588K	297K
	l rs Atmos.	Air	Air	N2	N2	Jir Air	0 Air	0 N2	0 N2
	Aged Temp Hours	588K 500	588K 500	588K 500	588K 500	588K 1000	588K 1000	588K 1000	588K 1000
	Impact Strength J/m ² x 10-4	5,51 5,26 4,71	5.08 3.75 4.60	5.02 6.65* 7.79*	8.88 8.18 8.02	8,39 6,69* 5,53	3,84 3,54 3,82	7.09 6.60 5.15	3.98 4.78 4.43
{	Tested at	297K	297K	588K	588K	588K	297K	588K	297K
	Atmos- phere	ı		ı		Air	Air	N2	N2
	Aged Hours	0	Water Boil	0	Water Boil	200	200	200	200
	Temp	ı	Wate	I		588K	588K	588K	588K
					33				

-

٠

Table 15. Impact Strength of Composites with Untreated HTS Fiber.

* Imperfect Break

		,			Add	PPQ Coupling Agent	Agent				
*"	Temp	Aged Hours	Atmos- phere	Tested at	Impact Strength J/m ² × 10-4	Temp	Aged Hours	Atmos.	Tested at	Impact Strength J/m ^x x 10 ⁻⁴	
	ı	0	ı	297K	4.57 4.69 4.88	588K	500	Air	588K	5.29 5.67 5.66	
	Wat	Water Boil	_	297K	4.31 4.69 4.87	588K	500	Air	297K	4.27* 5.24* 4.76*	
	I	0	•	588K	5.18 5.55 7.32	588 K	500	N2	588K	6.06 5.99 5.74	
34	Wat	Water Boil	_	588K	8.46 9.04 9.60	588K	500	N2	297K	4.41 4.71 4.73	
	588K	200	Air	588K	9.84 6.32 6.27	588K	1000	Air	588K	6.08 5.71 5.32	
	588K	200	Air	297K	4.71 4.20 4.55	588K	1000	Air	297K	6.00 6.99 5.62	
	588K	200	N2 N2	588K	8.05 8.30 4.87	588K	1000	N2	588K	4.82 5.13 5.27	
	588K	200	N2	297K	4.10 4.46 4.13	588K	1000	NZ	297K	4. 73 4. 41 4. 52	
	*Impe	*Imperfect Break	reak								

T.L

5

Trank.

Contraction of

Contract of the second s

Sec. 1

- miliand

luter-

Same and

E.L.

SECTION AND

.

 Table 16. Impact Strength of HTS Composites with Pyrolyzed

 PPQ Coupling Agent

VI. CONCLUSIONS AND RECOMMENDATIONS

Summarized below are the conclusions reached during this study to develop high temperature resistant graphite fiber coupling agents for use with PMR polyimide. Based on the conclusions, recommendations are given for further studies.

A. Conclusions

1. Pyrolyzed polyphenylquinoxaline as a coupling agent or surface treatment for HTS graphite fiber improves the oxidative stability of HTS/PMR-PI composites. During 1000 hours aging in air at 588K such composites suffer some loss in interlaminar shear strength, about 50% loss in flexural strength and flexural modulus, and loss of a major fraction of their transverse tensile strength. Little effect was noted on impact strength. The coupling agent reduces the rate of weight loss from such composites, and prevents the total oxidative destruction of small samples during 1000 hours exposure at 588K in air.

2. The pyrolyzed polyphenylquinoxaline coupling agent brought about a slight improvement in the interlaminar shear strength of HMS/PMR-PI composites. No particular effect was noted on the long term thermo-oxidative stability of HMS/PMR-PI composites.

B. Recommendations

It appears from the results of this study that the oxidative stability of the polyimide used depends to a large extent on the nature of the graphite

fiber used in the composite. Therefore it is recommended that a more fruitful approach to understanding the oxidative stability of polymide/ graphite fiber composites depends on determination of the chemical reactions involved in the oxidative degradation rather than on the measurement of the effect of the thermo-oxidative degradation on composite mechanical properties. **ب**

£...

VIL. REFERENCES

- 1. Griffin, R.N., "Development of High Temperature Resistant Graphite Fiber Coupling Agents", NASA CR-134725, February 1975.
- 2. Adams, R. et al, Organic Reactions, IV p. 22 and 47 (1948).
- 3. Walton, H.M., J. Org. Chem. 22, 308 (1957).
- Serafini, T.T., Delvigs, P. and Lightsey, G.R., "Thermally Stable Polyimides from Solutions of Monomeric Reactants", Journal of Applied Polymer Science, <u>16</u>, 905 (1972), and NASA TN D-6611, January 1972.
- 5. Wade, R.C., "Reaction Products of Chlorides of Certain Metals with Trimethoxyboroxine", U. S. Patent 3, 502, 703, March 24, 1970.

VIIL DISTRIBUTION LIST

COPIES

BAC W

ļ

F

Į

E

Lane - 0

ł

Lewis Reso 21000 Broc	eronautics and Space Administration earch Center okpark Road Ohio 44135	
Attn:	Contracting Officer, MS 500-313 Technical Report Control Office, MS 5-5 Technology Utilization Office MS 3-19 AFSC Liaison Office, MS 4-1 Library, MS 60-3 Office of Reliability & Quality Assurance, MS 500-111 G. M. Ault MS 3-13 R. H. Kemp MS 49-1 Polymer Section - W. Alston MS 49-1 R. W. Hall, MS 49-1 N. T. Musial, MS 500-113 T. D. Gulko, MS 49-3 J. Acurio/Army Office, MS-77-5 J. C. Freche, MS 49-1	1 1 3 2 2 1 1 1 1 1 1 1 1 1
	eronautics and Space Administration a, D.C. 20546	
Attn:	RW RWM	1 2
NASA Scien Acquisition College Pa		10
National Ac Ames Rese	eronautics and Space Administration earch Center .d, California 94035	10
Attn:	John Parker *	1
Flight Rese P.O. Box 2	eronautics and Space Administration earch Center 273 California 93523	
Attn:	Library	1

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771	
Attn: Library	1
National Aeronautics and Space Administration John F. Kennedy Space Center Kennedy Space Center, Florida 32889	
Attn: Library	1
National Aeronautics and Space Administration Langley Research Center Langley Station Hampton, Virginia 23365	
Attn: P. M. Hergenrother and N. J. Johnston V. L. Bell	1 1
National Aeronautics and Space Administration Manned Spacecraft Center Houston, Texas 77001	
Attn: Library Code EP	1 1
National Aeronautics and Space Administration George C. Marshall Space Flight Center Huntsville, Alabama 35812	
Attn: J. Curry J. Stuckey	1 1
Jet Propulsion Labora tory 4800 Oak Grove D rive Pasadena, California 91103	
Attn: Library	1
Office of the Director of Defense Research and Engineering Washington, D.C. 20301	
Attn: H. W. Schulz, Office of Assistant Director (Chem, Technoloty)	1

Defense Documentation Center Cameron Station Alexandria, Virginia 22314	1
Research and Technology Division Bolling Air Force Base Washington, D.C. 20332	
Attn: RTNP	1
Air Force Materials Laboratory Wright-Patterson Air Force Base Dayton, Ohio 45433	
Attn: T. J. Reinhart, Jr.	1
Commander U.S. Naval Missile Center Point Mugu, California 93041	
Attn: Technical Library	1
Commander U.S. Naval Ordnance Test Station China Lake, California 93557	
Attn: Code 45	l
Director (Code 6180) U.S. Naval Research Laboratory Washington, D.C. 20390	
Attn: H. W. Carhart	1
Picatinny Arsenal Dover, New Jersey	
Attn: SMUPA-VP3	1
SCI Azusa, California 91703	
Attn: Ira Petker	1

È.

Cincil and

Section 1

Second Second

hand

Free of Street

and mail

No. 1 . 14.

.

Aeronautic Division of Philco Corporation Ford Road	
Newport Beach, California 92600	
Attn: L. H. Linder, Manager Technical Information Department	1
Aeroprojects, Inc. 310 East Rosedale Avenue West Chester, Pennsylvania 19380	
Attn: C. D. McKinney	1
Aerospace Corporation P.O. Box 95085 Los Angeles, California 90045	
Attn: Library-Documents	1
Office of Aerospace Research (RROSP) 1400 Wilson Boulevard Arlington, Virginia 22209	
Attn: Major Thomas Tomaskovic	1
Arnold Engineering Development Center Air Force Systems Command Tullahoma, Tennessee 37389	
Attn: AEOIM	1
Air Force Systems Command Andrews Air Force Base Washington, D.C. 20332	
Attn: SCLT/Capt. S. W. Bowen	1
Air Force Rocket Propulsion Laboratory California 93523	
Attn: RPM	1
Air Force Flight Test Center Edwards Air Force Base, California 93523	
Attn: FTAT-2	1

		(
At Dura Office of Scientif's Decemb		Ţ
Air Force Office of Scientif's Research Washington, D.C. 20333		54 62
Attn: SREP/J. F. Masi	1	
Commanding Officer		S.
U.S. Army Research Office (Durham) Box GM, Duke Station		~
Durham, North Carolina 27706	1	(Second
U.S. Army Missile Command		
Redstone Scientific Information Center		
Redstone Arsenal, Alabama 35808		_
Attn: Chief, Document Section	- 1	
Bureau of Naval Weapons		
Department of the Navy We abig store D. C. 20260		
Washington, D.C. 20360		
Attn: DLI-3	1	
University of Denver		6
Denver Research Institute		
P.O. Box 10127 Denver, Colorado 80210		
Denver, Colorado Collo		. 🏹
Attn: Security Office	1	
Ultrasystems, Inc.		
2400 Michelson Drive		-
Irvine, California 92664		
Attn: K. Paciorek/R. Kratzer	1	
General Dynamics/Astronautics		
P.O. Box 1128 San Diego, California 92112		
		12
Attn: Library & Information Services (128-00)	1	
General Technologies Corporation		đ.
708 North West Street		نة النا النا
Alexandria, Virginia		
Attn: H. M. Childers	1	A.
	*	

C.W.S.

.

ARO, Incorporated Arnold Engineering Development Center Arnold Air Force Station, Tennessee 37389 B. H. Goethert, Chief Scientist 1 Attn: AVCO Corporation Space Systems Division - Polymer Laboratory Lowell Industrial Park Lowell, Massachusetts 01851 Attn: W. S. Port 1 Battelle Memorial Insti ute 505 King Avenue Columbus, Ohio 43201 Report Library, Room 6A 1 Attn: The Boeing Company Aero Space Division P.O. Box 3707 Seattle, Washington 98124 Attn: J. T. Hoggatt 1 Celanese Research Company Morris Court Summit, New Jersey Attn: J. R. Leal 1 Monsanto Research Corporation Dayton Laboratory Station B, Box 8 Dayton, Ohio 45407 1 Attn: Library North American Rockwell Corporation Space & Information Systems Division 12214 Lakewood Boulevard Downey, California 90242 Attn: Gary Brown (Mail Stop AE24) 1 Technical Information Center, D/096-722 (AJ01) 1

Northrop Corporate Laboratories	
Hawthorne, California 90250	
Attn: Library	1
Rocket Research Corporation	
520 South Portland Street	
Seattle, Washington 08108	1
Rocketdyne, A Division of	
North American Rockwell Corporation	
6633 Canoga Avenue	
Canoga Park, California 91304	
Attn: Library, Dept. 596-306	1
Sandia Corporation	_
Livermore Laboratory	·
P.O. Box 969	
Livermore, California 94551	、 :
Attn: Technical Library (RPT)	1
Thiokol Chemical Corporation	
Alpha Division, Huntsville Plant	
Huntsville, Alabama 35800	
Attn: Technical Director	1
Jnited Aircraft Corporation	
Jnited Aircraft Research Laboratories	
East Hartford, Connecticut 06118	
Attn: D. A. Scola	1
fercules Incorporated	
P.O. Box 98	
Magna, Utah 84044	
Attn: H. R. Macpherson	1
Iughes Aircraft Company Culver City, California	

•

San Calif

ana a

and a

TEL MA

Institute for Defense Analyses 400 Army-Navy Drive Arlington, Virginia 22202	
Attn: Classified Library	1
ITT Research Institute Technology Center Chicago, Illinois 60616	
Attn: C. K. Hersh, Chemistry Division	1
Lockheed Missiles & Space Company Propulsion Engineering Division (D.55-11) 1111 Lockheed Way Sunnyvale, California	1
Lockheed Propulsion Company P.O. Box 111 Redlands, California 92374	
Attn: Miss Belle Berlad, Librarian	1
McDonnell Douglas Aircraft Company Santa Monica Division 3000 Ocean Park Boulevard Santa Monica, California 90406	1
United Aircraft Corporation Pratt and Whitney Aircraft East Hartford, Connecticut	
Attn: Library	1
United Aircraft Corporation United Technology Center P.O. Box 358 Sunnyvale, California 94088	
Attn: Library	1
Westinghouse Electric Corporation Westinghouse Research Laboratories Pittsburgh, Pennsylvania	-
Attn: Library	1

ς.

.

TRW Equipment Lab Cleveland, Ohio Attn: W. E. Winters P. J. Cavano J. N. McCarthy TRW, Inc. Systems Group One Space Park Redondo Beach, California 90278 Attn: E. A. Burns R. J. Jones R. W. Vaughan Vito Mazzio, P38-21 **Boeing-Vertol** Company **P.O.** Box 16858 Philadelphia, Pennsylvania 19142 Dr. Janet S. Perkins Composites Division, Bldg. 39 U.S. Army Materials and Mechanics Research Center Watertown, MA 02172 Dr. Stanley E. Wentworth Polymers Division, Bldg. 39, Room 526 U.S. Army Materials and Mechanics Research Center Watertown, MA 02172 Dr. W. E. Chamners Union Carbide Corporation Director, Carbon Fiber Technology 12900 Snow Road Parma, Ohio 44130 Dr. N. R. Byrd Douglas Aircraft Company Internal Mail Code 1-18 3855 Lakewood Boulevard Long Beach, California 90846

46

٢

1

1

1

1

1

1

1

1

1

2

1

のたい

General Dynanics - Convair Aerospace Division P.O. Box 166 San Diego, California 92412	
Attn: Library	1
A. M. Anzalone A. E. Slobodzinski SARPA-FR-M-D Plastics Technical Evaluation Center Bldg. 176, Picatinny Arsenal Dover, N.J. 07801	2
Dr. Jack Orr Code 3022R Naval Air Development Center Warminster, PA 18974	1
George F. Bremer Rockwell International 15100 West 164th Cleveland, Ohio 44142	1
Professor Akira Sugawara Dept. of Mechanical Engineering Yamagata University Yonezawa, Yamagata Japan	1
Stanford Research Institute 333 Ravenswood Ave. Menlo Park, California 94025	
Attn: M. G. Maximovich	1
Chemical Propulsion Information Agency Applied Physics Laboratory 8621 Georgia Ave. Silver Spring, Maryland 20910	1
Allied Chemical Corporation General Chemical Division P.O. Box 405 Morristown, New Jersey 07960	
Attn: Security Office	1

•

•

•

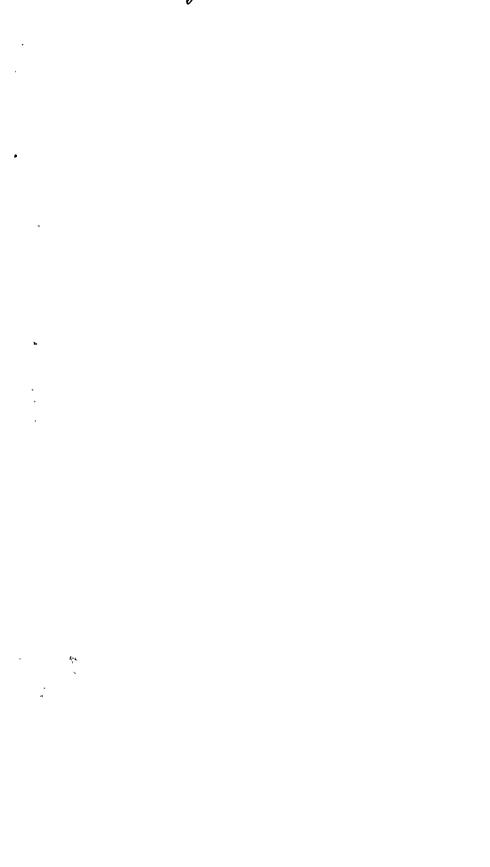
American Cyanamid Company 1937 West Main Street Stamford, Connecticut 06902

Attn: Security Office

Rohm and Haas Company Redstone Arsenal Research Division Huntsville, Alabama 35808

Attn: Library

Hercules Powder Company Allegheny Ballistics Laboratory P.O. Box 210 Cumberland, Maryland 21501


Attn: Library

•

1

1

-

•

12 JUL 76 A

.

y. Sapp E457/106/25663