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A THEORETICAL STUDY OF THE ACOUSTIC IMPEDANCE OF ORIFICES 

IN THE PRESENCE OF A STEADY GRAZING FLOW 

by Edward J. Rice 

ABSTRACT 

03 
Q) 
CD 
act An analysis of the oscillatory fluid flow in the vicinity of a circular orifice 

&I with a steady grazing flow is presented. The study is similar to that of Hersh 
and Rogers but with the addition of the grazing flow. Starting from the momen- 
tum and cmtinuity equations, a considerably simplified sys tern of partial dif- 
ferential equations is developed with the assumption that the flow can be de- 
scribed by an oscillatory motion superimposed upon the known steady flow. 
The equations a r e  seen to be linear in the region where the grazing flow ef- 
fects a r e  dominant, and a solution and the resulting orifice impedance are pre- 
sented for this region. The nonlinearity appears to be unimporki~l for the 
usual conditions found in aircraft noise suppressors. Some preliminary con- 
clusions of the study a r e  that orifice resistance i s  directly proportional to 
grazing flow velocity (known previously from experimental data) and that the 
orifice inductive (mass reactance) 2nd correction is not a function of grazing 
flow. This latter conclusion is contrary to the widely held notion that grazing 
flow removes the effect of the orifice inductive end correction. This conclu- 
sion also implies that the experimentally observed total inductance reduction 
with grazing flow might be in the flow within the orifice rather than in the end 
correction. 

INTRODUCTION 

The acoustic impedance of perforated materials in the presence of a 
steady grazing flow is  an essential component of noise suppressor research. 
This impedance is used a s  a boundary condition in all duct sound propagation 
studies . 

Several investigations of the grazing flcw impedance phenomenon have 
been performed (Refs. 1 to 11) that lead to impedance models being generated 
for use in impedance calculations. Theoretical studies of a basic nature have 



been performed (Refs. 12 and 13) bbt mainly without grazing Cow. Recent 
work has been performed which is exposing the basic physics involved in the 
resistive cornpianent of the grazing flow impedance (Refs. 8 and 14), however, 
the physics of the imaginary o r  reactive component a r e  yet unclear. 

A valuable study has been perfarmed (Ref. 15) which considered the 
acoustic impedance, both linear and nonlinear, of ail orifice without grazing 
flow. This study is of particular interest since it was derived directly from 

the Navier-Stokes equabons and was th-s  very basic in nature. Closed form 
solutions (exact for the linear and approximate for  the nonlinear) were ob- 
tained for  both the real and imaginary component cf the acoustic impedance. 

The work reported in this paper represents an extension of Reference 15 
in that the steady grazing flow is added. A spherically symmetrical flow per- 
turbetion is assumed to be  impressed upon the known unsymmetrical steady 
flow. Where the grazing flaw effects dominate, the equations a r e  found to be 
linear thus yielding closed form s~lut ions (with suitable simplifying assump- 
tions) for acoustic pressure and velacity. The expression for acoustic impe- 
dance is also presented and the resistive part is compared to acoustic resis- 
tance models derived from experiments. The steady orifice flow solutions 
a r e  also obtained and calculated pressures in the vicinity of the orifice a r e  
compared with measured pressures. 

SYMBOLS 

ANL area dominated by nonlinearity, m 2 

C) 

A~~~ tok.1 flow area,  m' 

c speed of sound, m/sec 

d orifice diameter, m 

F (t) function of time (see Eq. (30)) 

f !t) function of timt (see Eq (32)) 

M~ grazing flow Mach number 



orifice Mach number 

exciting pressure amplitude far  from orifice, ~ / m  2 

nondimensional perturbation pressure, plLp 
complete dimensional pressure (see Eq. (5 ) ) ,  ~ / m  2 

average o r  ambient pressure, ~ / m  2 

perturbation in pressure, ~ / m  2 

nondimensional static perturbation pressure 

dimension iorm of p ~ / m '  
S' 

same a s  9 except for steady orifice flow, N/m 2 

dynamic pressure (4 7; c) , ~ / r n  2 

nondimensional radius (r */d) 

dimensional radius, m 

r a t  orifice radius (ro = 9 ) 

nondimensional time (w t*) 

time, sec 

magnitude of radial perturbation velocity near orifice, d s e c  

nondimensional radial perturbatlon velocity (uf/u0)  

complete dimensional radial velocity (see Eq. (6)), m/sec 

radial component of grazing flow velocity (see Eq. (I)), m/sec 

radial component of perturbation velocity, m/sec 

same a s  u but for steady onfice flow 

orifice perturbation velocity based or, flow rate and orifice area, m/eec 

orifice perturbation velocity at vena-contracts, m/sec 

grazing flow velocity, m/sec 

6 cqmponent of grazing flow velocity, d s e c  



complete dimensional 8-component of velocity (see Eq. g)), d s e c  

0-component of perturbation velocity, d s e c  

cp-component of grazing flow velocity, d s e c  

complete dimensional cp-component of velocity (see Eq . (8)), m/sec 

cp-component of perturbation velocity, m/sec 

phase angle between pressure and velocity 

dimensionless acoustic impedance 

polar angular coordinate (see Fig. 1) 

wavelength, m 

density, kg/m 3 

average uniform density, kg/m 3 

density perturbation, kg/m 3 

azimuthal angular coordinate (see Fig. 1) 

circular frequency, rad/sec 

THEORETICAL DEVELOPMENT 

In this section first  the differential equations will be presented in dimen- 
sionless form, Next, they will be simplified by a magnitude analysis and finally 
the solutions will be derived. 

Differential Equations 

The geometry of the system considered here is  shown in Figure 1. Both 
rectangular and spherical coordinate systems a r e  shown centered at the ori- 
fice center. The steady flow velocity is shown parallel to the x axis and al- 
though uniform in the rectangular coordinates, in spherical coordinates the ex- 
pressions are: 



- 
u = -V, sin 6 cos cp (1) 

The differential equations, for the purpose of brevity, will be given with 
all of the assumptions inserted. The variables will be considered to be given 
by the sum of a steady component and a time varying component a s ,  

Asterisks a r e  used here to denote complete dimensional quantities for the 
dependent variables and dimensional quantities for the coordinates. The 
isentmpic relationship is assumed valid so that 

The radial coordinate and time will be nondimensionalized as follows. 

The time varying pressure is normalized by the peak far-field pressure 

P 1  'qJP (12) 



and thus using Equation (9) 

The time varying radial velocity is normallzed by the amplitude near the 
orifice (Uo) thus 

The perturbation velocity (ut), the complete velocity (u*), and two components - - 
of the steady grazing flow (u, v) a r e  shown in the two-dimensioml sketch of 
Figure 2 .  The simplest possible solutiol~ will be sought for the velocity and then 
tested to see if i t  has provided any information o r  insight into the physics of the 
grazing flow impedance. With this in mind, only axisymmetric pertuhations 
of the velocity will be  considered and thus, 

It should be noted later in the development of the equations that even though the 
velocity perturbatioil is axisymmetric, the pressure distribution around the uri- 

fice is asymmetric The viscous terms in the momentum equations will not be 
considered. 

With the above assumptions, the equations of motion can be written as  
follows: 

Co. tinuity 



r Momentum 

Although considerably simplified from the complete equations, Equations 
(16) to (19) a r e  still much too complex for a simple closed form solution. An 
order of magnitude analysis on the coefficients must now be made in a manner 
similar to Reference 15 except that V, must be considered. Only the coeffi- 
cients need to be consider( d since the variables themselves a r e  of order unity 
due to the nondimensionalization. From several references (Refs. 4, 6, 7 ,  8, 

10, and 14 e. g.) the grazing flow resistance can be approximated by 

Thus 



since M, is a t  most 0.6 or 0.7 fo r  the usual acoustic liner and Mo is much 
less than this. Also 

provided the wavelength, (A) is much larger  than the orifice didmeter (d) which 
is  almost always the case in a practical acoustic liner. The first  term in the 
continuity Equation (16) is  probably the smallest of all with the third term be- 
ing next smallest in magnitude (essentially Mach numbers to the third power 
when the terms in the square brackets a r e  considered). Also since p is of 

2 order unity the term . ~ F C  can be dropped where it  is added to unity. Thus 
the problem to be solved is shown to be incompressible and the equations have 
been reduced to. 

Note that Equation (24) is  nonlinear in u and we will restrict the solution tr, the 
region in which the grazing flow velocity dominates the orifice velocity. An 

approximate nonlinear solution can probably he found tollowing the meihod of 

Reference 15 but that will not be attempted here. A discussion of the range 
of validity of the linear solution wil l  bc expanded upon in a later  section. With 

this restriction in mind, Equation (24) can bc written as  



h e  boundary conditions to be applied involve the excitation pressure im- 
posed upon the system in the far  field and the inevitable separation of the flow 
at  the upstream edge of the orifice for inflow. This separation implies that 
for sufficiently short orifices (no reattachment) the ambient or  back cavity 
pressure will be felt at  the upstream orifice edge. This separation region i s  
shown in Figure 2. For outflow the orifice boundary condition would be modi- 
fied and it is  thought that the solutions could be made to model outflow. This 
is not done in this paper and the solutions which follow are  intended for inflow 
only at  this time. The boundary conditions can be expressed as  follows 

Solution to Differential E q u a i i o ~  

The solution to the differential equatio~s follow in a similar manner to that 
of ~eference 15. Equation (23, can be immediately integrated to give, 

where the negative sign was chosen sinca the velocity is opposite to the radial 
coordinate for inflow. The function F(t) depends upon t only since u was 
assumed not to be a function of 8 o r  q. Using Equation (30), Equation (27) 

can be written. 

Equat~on (31) can be integrated to obtain, 



Use Equation (28) in Equation (32) as r+  to obtain, 

E EPRODUCIBILII'Y OF THE 
ORIGINAL PAGE 35 POOR 

where f(t) can be only a function of time due to the boundary condition of Equa- 
tion (28). Thus, Equation (32) can be written, 

In solving for F(t) we will seek solutions of the form, 

Substituting Equation (35) into Equation (34) and imposing the upstream boundary 
condition (Eq. (29)) at  the orifice edge, after considerable arithmetic, A and 6 
can be determined such that 

and 

C'sing Equations (35), (36), ar.d (37) in Equation (30) yields, 



and then Equation (34) will @ve, 

It should be noted here that the velocity and pressure Equations (38) and (39) 

also satisfy the 0 and cp momentum Equations (25) and (26). 

ACOUSTIC IMPEDANCE 

Before calculating acoustic impedance one more point must be made. 
Usually impedance is based upon the velocity calculated from orifice flow rates 
and orifice area. Note that the area of the hemisphere a t  r = ro is twice the 
orifice area. The value of u calculated a t  r = ro will thus be doubled when 
used to calculate impedance. 

The acoustic impedance ul l l  be defined as the far  field pertu&ation pres- 
sure divided by the orifice velocity and then normalized by Fc or  

Uping Eqsation (38) evaluated at r = ro = 1/2 in Equation (40) yields. 



The negative sign occurs in Equation (41) because the velocity for inflow is 
in the negative r direction with the coordinate system centered on the orifice. 

A dicsussion of Equation (41) along with a camparison with experimental 
data will be made in a later  section. 

Steady Orifice Inflow Theory 

The theory of the preceding sections can be easily converted to a steady 
orifice inflow theory. This i s  useful since the theory can then be compared 
to the more easily obtained and thus more numerous steady flow data. This 
conversion to eteady flow can most easily be obtained by letting u.) + 0 (thus 
also eliminating elt = eLU t*) in Equations (38) and (39). These equations 
thus become, 

and 

P s = - (:J sin 0 cos cp 

Some interesting result" can be derived from the equations. First notice in 
Equation (43) that at the upstrsam edge of the orifice (r -= ro. 8 = a/2, q = 0) thil; 

p s = 0 wiiich of course was the boundary condition reflecting flow separation at  
this point. The back cavity pressure is  felt here. However at the downstream 
edge (r - ro, 0 -: n / 2 .  cp = a ) ,  p, = 2 o r  twice the far  f ~ e l d  pressure. In fact if 

the pressure is  integrated over a hemisphere arour!d the orifice to fina an aver;tge 
pressure, it is  found that this average is euual to the far  field diiving pressure. 
The pressure has just redistributed due to the grazlng flow. The pressure in thc 
high pressure region of the flow must yet be relieved in passing to the back cavity 
which requires a further expansion. In oiher words, the average prcssurc at 
r = rO still has r magnitude 9. The fluid must expand to have zero prcssurc as 
it passes to the back cavity side of the orifwe. The vclocity will thus increase 



to a maximum at the vem-contract-. This will be analyzed using a one- 
dimensional appmach to find an average vena-contracts velocity, utc, and 
then a discharge coefticient will be cdculated. 

The further expansion in the orifice can be estimated from the Bernoulli 
equation, 

where UOus is the dimensional perturbation velocity at r = ro, and the pres- 
sure  drop is from .? to zero in the back cavity. Using Equation (42) tl. sre 
results, 

F r ~ m  flow continuity considerations (use Eq. (42)) to calculate flow rate through 
the hemispherical area) the ful l  flowing orifice velocity (based on orifice area  
and flow rate) is ,  

The orifice discharge coefficient is defined here a s  t le ratio of the full flowing 
orifice velocity to the vena-contracts velocity and c; .n then be calculated from 

where 912~3 was assumed to be small compared to unity. 



This result has been found empirically in Reference 14 and will be dis- 

cussed further in the next section along with pressure measurement com~sr i -  

sons using Equation (43). 

DISCUSSION OF RESULTS 

In t h ~ s  section the previously derived theory will be  compared to data 

where i t  is  available. The acoustic resistance is  well established by experi- 

mental data. The acoustic inductance is less defined since measurements 

lump both the orifice end effects and within the orifice mars effects into one 
inductive quantity without any way of separating them. Also the steady orifice 

inflow theory will be compared to experiments. 

Acoustic Impedance 

Acoustic resistance. - The real part of Equation (41) (resistance) com- 
pares well with published experimental results. It is well established that 

resistance depends upon the grazing flow Mach number. 
The coefficient of Moo in Equation (41) is 0.5 which compares favorably 

with 0 .3  from References 4 and 7 for arrays of orifices and with 0.7 from 

Reference 14 for a single orifice. It is not Jlltended that these theoretical 
results replace the empiricisms since there is much more work to be done 

on the ;letails of the flow within the orifice, but only to show that the theory 

appears reasonable. 
Acoustic reactance. - The theoretical results for orifice reactance a re 

not so  easily compared to data a s  was resistance. Since the major conclu- 

sions of this paper concern the reactance, it is best to first put the theory 
and the actual flow into proper perspective. Figure 2 shows sketches of thc 

inflow to the orifice for conditions such that the grazing flow is complete1:- 
dominant as assumed in the present theory. The flow patterns of figure 2 

have been established for steady orifice flow in Reference 14 and for oscil- 
latory orifice flow in Reference 16. Th? hemisphere of radius equal to 

the orifice radius is shown on Figure 2 and the solutions given in this paper 

a r e  expected to apply outside of this hemisphere. The total inductance i s  

determined by adding the inductance provided by the fluid within this hemi- 
sphere and within the orifice itself to the inductive oriiice end correction 

given by Equation (41). Going back for a moment to zero pazing flow and low 



pressure amplitudes, the orifice inductive end correction is given by 0.8 5d 
(Ref. 18) which would give 0.425d a t  each end of the orifice. Equation (41) 
accounts f~ over half (0.25cD of this cornction which is outside of the 
hemisphere sbowu in Figure 2 with the remainder wing within this hemi- 
sphere. Hard conclusions can thus be made about only half of this mass, but 
i t  is suspected that the conclusions will apply to the bulk of the attached mass. 

Experimental data (Refs. 6, 8, and 17) show that the total inductance is re- 
duced with a grazing flow. Since Equatio~ (41) shows the inductive orifice end 
correction to be independent of grazing flow velocity, then the reduction in in- 
ductance which is observed must be coming from the fluid within o r  very close 
to the orifice. This conclusion is contrasted to the idea in which an orifice 
slug flow exists with an attached mass end correction which is blown away by 
the grazing flow. 

Additional study must be devoted to the flow in the orifice. The orifice 
flow (with a grazing flow velocity) is  not a slug which accommodates more mass 
flow by an acceleration of the slug. Instead the flow may have very nearly a 
constant velocity (see Ref. 16) with additional mass flow accommodated by an 
increased flow area. A sketch of these flow patterns is shown in Figure 3. It 
may be that a constant velocity, variable area type of flow has essentially no 
inductance at  all. This latter point is currently being studied. 

Steady Orifice F ~ L W  

For steady inflow into an orifice some discharge coefficient data are 
given in Reference 14. At low orifice velocity to grazing flow velocity ratios 
a fit to that data can be made as 

This result compares favorably with the theoretical result of Equation (47). 

In Reference 14 some pressure tap data was given in the vicinity of the 
orifice for both upstream and downstream locations. The data is given a s  

(P* - p&)/q, . For upstream pressure, Equation (43) gives 



where 0 = r / 2 ,  cp = 0 were used. 
Equation (49) can be converted to (using Eq. (46)), 

This is plotted in Figure 4 along with tbe results f mm Reference 14. The 
radius values used were r/ro = 1.47 which was determined by the dimensions 
shown on the figure insert. The agreement between the theory and the data a re  
seen to be reasonably good. 

For downstream pressure taps the analog of Equation (50) is, 

where 0 = a/2 and cp = ?r was used in Equation (43). This resuit is also shown 
in Figure 4 along with data from Reference 14. The radius values here were 
r/ ro = 1.20 determined from the dimensions f mm the insert on Figure 4. The 
add behavior of the data at very low orifice flow was caused by the vortex stand- 
ing in the orifice, which raised the streamlines above the orifice, and slightly 
depressed the downstream pressure. Once this depression effect is  overcome 
by going to larger values of ubrf the theory and the data agree quite well. In 
fact, the agreement for both curves in Figure 4 extends beyond the expected 
range of validity of the solution which will be discussed next. 

RANGE OF VALIDITY OF THE LINEAR SOLUTION 

Recall that the r-momentum Equation (24) uras actually nonlinear and that 
this nonlinearity was ignored in the solutions of this paper. The coefficient of 



the second term in Equation (24) may be written, 

In the area where the first term of the equation dominates the second term, the 
present solution might be expected to approximate the complete solution. This 
may be true provided the area of influence of nonlinearity is small. The 
coordinates of the flow area at  which the two inflttences are equal is given by, 

Uou sin 8 cos p=- 
v, 

The nonlinear solution is approximated from the results of Reference 15 (and 
ignoring the time dependence) a s  

thus Equation (53) becomes 

sin 0 m s  cp F J-$ 

The ratio of the flow area dominated by the nonlinear solution to that of the en- 
tire area may be estimated by (assuming P/+ is very small), 

00 

Mass flow rates in the two regions (rather than areas) could also have been used 
to indicate the importance of the nonlinearity. Using Equation (46), Equation (56) 

becomes, 



Thus it is presumed that as long a s  the quantity on the right side of Equa- 
tion (57) is small, theu the nonlinearity can be ignored. Note from Equation (52) 
(when sin 0 cos (g - 0) that the nonlinear term should dominate when 8 = 0 o r  
rp = 7r/2 o r  3n/2 which is above and to the sides of the orifice (in the y-z plane 
of Fig. 1). Also note from Equation (43) (again sin 6 cos cp 0) that this is pre- 
cisely the region in which the linear solution would predict that the pressure is 
equal to the far-field driving pressure (both equal to one). Thus with an apparent 
lack of driving pressure difference in the nonlinearly dominated area, the linear 
solution may be valid well beyond the criterion given above (the right side of 
Eq. (57) being small). This may explain the agreement between the linear theory 
and the data shown in Figurt - well beyond the U & ~ V ,  range at first expected. 
Thus it is anticipated that for the usual acoustic pressures and grazing flow veloc- 
ities found in aircraft suppressors, the nonlinearity and thus the nonlinear acous- 
tic resistance due to the acoustic pressure will be negligible. 

CONCLUDING REMARKS 

The main conclusion of this paper is that the orifice inductive and correction 
or  attached mass is not a function of grazing flow velocity. This was shown by 
calculating the acoustic impedance in Equation (41) and observing the inductance 
term. This conclusion could also be drawn from the governing differential Equa- 
tion (27). Only the first term in this differential equation can contribute to veloc- 
ity components which are  out of phase with the pressure and this term does not 
contain the grazing flow velocity. This approach (using the differential equation) 
is more general since n m  also the orifice outflow can be included if it is as- 
sumed the small separated flow leaving the orifice near the wall on the down- 
stream side does not appreciably affect the reactive part of the solution. 

When the nonlinearity (small for ubr4v, mush less than unity) is restored 
to the differential Equation (24) then the conclusions must be modified somewhat. 
The nonlinearity can produce reactive changes as shown in Reference 15 but 
these effects, especially their dependence upon grazing flow, will be unknown 



until the nonlinear solution is obtained. However, i t  has been argued here that 
this nonlinearity is probably not important except a t  extremely high pressure 
amplitudes and small grazing flows for which ubr4v, would become large. 

If the inductance change with grazing flow does not come from the attached 
mass (orifice inductive end effect) then i t  must be coming from the flow within 
the orifice itself. This region is a prime candidate for this effect since the 
flow within the orifice may have close to a uniform velocity with mass flow 
changes occurring due to a variable flow area. 

The acoustic resistance was calculated using the theoretical results pre- 
sented here. The resistance was shown to depend linearly upon the grazing 
flow velocity with a magnitude agreeing quite well with published data. Since 
the nonlinearity in the differential equation does not seem to play an important 
role, this implies that the resistance will be dominated by the grazing flow 
and will not be sensitive to the acoustic pressure. 

It should be recalled that the solutions to the differential equations pro- 
vided here a r e  for the flow perturbations. To obtain the complete pressure 
and velocity solutions, these perturbations must be added to the average pres- 
sure and uniform gtazing flow velocities. 

The complete solution to the orifice impedance problem is yet to be ob- 
tained. This will involve the coupling of the solutions on the cavity side of the 
orifice, the complicated three-dimensional orifice flow, and the grazing flow 
side of the orifice for both inflow and oufflow. 
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Figure 1. - Ceomctry used in orifice fbw analvsls. 
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Figure 2. - Sketch of orifice inflow with a grazing flow. 
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