

CAND PRESSURE DISTRIBUTION IN

Lorac S. H. Chow and Herbert S. Cheng

Prepared by
NORTHWESTERN UNIVERSITY
Evanston, Ill. 60201
for Lewis Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • APRIL 1976

0061452

[^0]TABLE OF CONTENTS
Page
SUMMARY 1
CHAPTER I - INTRODUCTION 3
CHAPTER II - THE EFFECT OF SURFACE ROUGHNESS ON THE AVERAGE FILM THICKNESS BETWEEN LUBRICATED ROLLERS 6
2.1 Introduction 6
2.2 Governing Equations 8
2.2.1 Transverse Surface Roughness 8
2.2.2 Longitudinal Surface Roughness 10
2.3 Method of Solution, 11
2.3.1 Elastohydrodynamic Contacts 11
2.3.1.a Pure Rolling Case 12
2.3.1.b Rolling and Sliding 13
2.3.2 Rigid Rollers 15
2.3.3 Infinitely-Wide Slider 17
2.3.4 Roughness Distribution Function 19
2.4 Discussion of Results 20
2.4.1 EHD Contacts 20
2.4.2 Rigid Rollers 21
2.4.3 Infinitely-Wide Siider Bearing 23
2.5 Conclusions 25
CHAPTER III - WAVINESS AND ROUGHNESS IN ELASTOHYDRODYNAMIC LUBRICATION 34
3.1 Introduction 34
3.2 Governing Equation 34
3.2.1 The Waviness Case 35
3.2.2 The Roughness Case 37
3.3 Discussion of Results 37
3.4 Conclusions 40
CHAPTER IV - PRESSURE PERTURBATION IN EHD CONTACTS DUE TO AN ELLIPSOIDAL ASPERITY. 44
4.1 Introduction 44
4.2 Mathematical Analysis 45
4.2.1 Geometrical Configuration. 45
4.2.2 Governing Equations 47
4.2.2.1 The Smooth-Film Case. 47
4.2.2.2 The Discretized Reynolds Equation 48
4.2.2.3. The Perturbed Reynolds Equation 49
4.2.3 Method of Solution 55
4.3 Deformed Asperity on the Stationary Surface 55
4.4 Discussions of Results 56
4.5 Conclusions 61
CHAPTER V - THE EFFECT OF SINUSOIDAL WAVINESS ON THE PRESSURE FLUCTUATION WITHIN THE HERTZIAN CONTACT. 79
5.1 Introduction. 79
5.2 Mathematical Formulation. 79
5.3 Discussions of Results. 81
5.3.1 The Effect of Pressure Viscosity Parameter G. 81
5.3.2 The Effect of c_{1} / h_{0} 82
5.3.3 The Effect of 82
5.3.4 The Effect of h_{0} / R 83
5.3.5 The Effect of P_{Hz} 84
5.4 Conclusions 85
REFERENCES. 101
APPENDIX A - JUSTIFICATION OF M AS A RANDOM QUANTITY OF ZERO (OR NEGLIGIBLE) VARIANCE 103
APPENDIX B - FORTRAN IV LISTING OF COMPUTER PROGRAMS 106

Page

Fig. 2-1 EHD Contacts Between Two Rough Surfaces 26
Fig. 2-2 Rigid Rollers With Rough Surfaces 27
Fig. 2-3 An Infinitely-wide Slider Bearing with Rough Surfaces 28
Fig. 2-4 The Effect of Transverse and Longitudinal Roughness on the Ratio of the Reduced Pressure for Rough Surfaces to that for Smooth Surfaces, $K_{E}=Q_{R} / O_{S}$, of an EHD Contact. 29
Fig. 2-5 The Effect of the Center Film Thickness, H_{0}, on the Ratio of the Reduced Presse for Rough Surfaces ${ }^{\circ}$ to that for Smooth Surfaces, $K_{E}=Q_{R} / Q_{S}$, of an EHD Contact 30
Fig. 2-6 The Effect of the Roughness Height to Center Film Thickness Ratio, $\delta_{\max }$, on the Normalized Reduced Pressure, Q_{R}^{*}, of an EHD Contact 31
Fig. 2-7 The Variation of the Normalized Load Ratio, $K_{R}=W_{R}^{*} / W_{S}^{*}$, with the Roughness Height, $\bar{\delta}_{\max }=\delta_{\text {max }} / h_{0}$, for Rigid Roilers 32
Fig. 2-8 The Variation of the Nor alized Load, $W^{*}=-6 \mu_{1} \boldsymbol{l}^{\Sigma^{--w}}$, with the Roughness Height, $\bar{\delta}_{\text {max }}$, for an Infinitely-wide Slider Bearing 33
Fig. 3-1 The Effect of the Number of Wave Cycles, n, and the Phase Angle, θ, on the Percentage of Deviation of the Normalized Reduced Pressure, K_{D}, for Roughness to Thickness Ratio $\delta_{\text {max }} / h_{0}=0.3$ 41
Fig. 3-2 The Effect of the Number of Wave Cycles, n, and the Phase Angle, θ, on the Percentage of Deviation of the Normalized Reduced Pressure, K_{D}, for Roughness to Thickness Ratio $\delta_{\text {max }} / h_{0}=0.45$ 42
Fig. 3-3 The Effect of the Number of Wave Cycles, n, and the Phase Angle, $\boldsymbol{\theta}$, on the Percentage of Deviation of the Normalized Reduced Pressure, K_{D}, for Roughness to Thickness Ratio $\delta_{\text {max }} / h_{0}=0.6$ 43
Fig. 4-1 Two Lubricated Rollers and the Equivalent Roller-Plane System 62
Fig. 4-2 A Single Ellipsoidal Rigid Asperity in and EHD Contact 63
Fig. 4-3 One-dimensional Grids for Smooth Contact. 64
Fig. 4-4 Two-dimensional Grids for Rough Contact 65
Fig. 4-5 Grid Spacing 66
Fig. 4-6 The Effect of the Nominal EHD Center Film Thickness, h_{0} / R, on the Double Amplitue of the Perturbed Pressure, $\Delta_{s}=\boldsymbol{\Phi}_{\text {max }}$. $\boldsymbol{\Phi}_{\text {min. }}$. 67
Fig. 4-7 The Effect of the Normalized Hertzian Pressure, $\mathrm{P}_{\mathrm{Hz}}=\mathrm{P}_{\mathrm{Hz}} / \mathrm{E}^{\prime}$, on $\Delta_{\mathrm{s}} \mathbf{I}^{\boldsymbol{\Phi}_{\text {max }}}$. $\Phi_{\text {min }}$, for $\mathrm{h}_{\mathrm{o}} / \mathrm{R}=10^{-5}$ 68
Fig. 4-8 The Effect of the Normalized Hertzian Pressure, $\mathrm{P}_{\mathrm{Hz}}=\mathrm{p}_{\mathrm{Hz}} / \mathrm{E}^{\prime}$, on $\Delta_{\mathrm{s}}=\Phi_{\text {max }}, \Phi_{\text {min? }}$, for $\mathrm{h}_{\mathrm{o}} / \mathrm{R}=10^{-6}$. 69
Fig. 4-9 The Effect of the Pressure Viscosity Parameter, $G=\alpha E^{\prime}$, on $\Delta_{s}=\Phi_{\text {mnx }}-\Phi_{\text {min. }}$ 70
Fig. 4-10 The Effect of the Position of the Asperity Center, X_{3}, on $\Delta_{s}=\Phi_{\text {man }}-\Phi_{\text {min }}$ 71
Fig. 4-11 The Effect of the Asperity Size, $\bar{b}=b^{\prime} / \mathrm{b}$, on $\Delta_{5}=\Phi_{\text {max }}-\mathbf{X}^{2}$ 72
Fig. 4-12 The Effect of the Asperity Height, c_{1} / h_{0}, on $\Delta_{s}=\Phi_{\max }-\Phi_{\min }$. 73
Fig. 4-13 The Effect of the Ellipticity Ratio, $r=a^{\prime} / b^{\prime}$, on $\Delta_{s}=\Phi_{\text {max }}-\Phi_{\text {min }}$ 74
Fig. 4-14 The Effect of the Slide to Roll Ratio, $S=2\left(u_{1}-u_{2}\right) /\left(u_{1}+u_{2}\right)$, on $\Delta_{s}=\underline{\Phi}_{\text {max }}-\Phi_{\text {min }}$ for a Three-dimensional Rigid Asperity with Pressure Viscosity Parameter, $\alpha^{\prime} \mathrm{E}^{\prime}=100$ 75
Fig. 4-15 The Perturbed Pressure, Φ, Around the Tip of a Three- dimensional Rigid Asperity 76
Fig. 4-16 The Effect of Slide to Roll Ratio, $S=2\left(u_{1}-u_{2}\right) /\left(u_{1}+u_{2}\right)$, on $\Delta_{s}=\boldsymbol{\Phi}_{\text {max }}-\boldsymbol{\Phi}_{\text {min }}$ for a Three-dimensional Rigid Asperity ${ }^{\text {with }}$ Pressure Viscosity Parameter, $\alpha_{E^{\prime}}=100$ and 500 77
Fig. 4-17 The Smooth-Film and the Perturbed Pressure Profiles for a Three-dimensional Rigid Asperity. 78
Fig. 5-1 The Effect of the Pressure Viscosity Parameter, $G=\alpha E^{\prime}$, on the Double Amplitude of the Perturbed Pressure $\Delta_{s}=\Phi_{\text {max }}-\Phi_{\text {min }}$ 87
Fig. 5-2 The Effect of the Pressure Viscosity Parameter, $G=\alpha E^{\prime}$, on the Perturbed Pressure Profiles 88
Fig. 5-3 The Effect of the Asperity Height to Film Thickness Ratio, c_{1} / h_{0}, on $\Delta_{5}=\Phi_{\text {max }} . \Phi_{\text {min. }}$. 89
Fig. 5-4 The Effect of the Asperity Height to Film Thickness Ratio,c_{1} / h_{o}, on the Perturbed Pressure Profiles for $E^{\prime}=100 \ldots 90$
Fig. 5-5 The Effect of the Asperity Height to Film Thickness Ratio, c_{1} / h_{o}, on the Perturbed Pressure Profiles for $E^{\prime}=1000 \ldots 91$

Fig. 5-6 The Effect of the Number of Wave Cycles, n, on

Fig. 5-7 The Effect of the Number of Wave Cycles, n, on the Perturbed Pressure Profiles for Pressure Viscosity Parameter, $\alpha^{\prime}=100$.93

Fig. 5-8 The Effect of n, on the Perturbed Pressure Profiles for Pressure Viscosity Parameter, $\alpha \mathrm{E}^{\prime \prime}=1000$.94

Fig. 5-9 The Effect of the Dimensionless Center Film Thickness, $h_{0} / R_{\text {, }}$ on $\boldsymbol{\Delta}_{s}=\boldsymbol{\Phi}_{\text {max }}-\boldsymbol{\Phi}_{\mathrm{m}} \mathrm{in}$.95

Fig. 5-10 The Effect of the Dimensionless Center Film Thickness, h_{o} / R, on the Perturbed Pressure Profiles for $\alpha^{\prime}{ }^{\prime}=100$96

Fig. 5-11 The Effect of the Dimensionless Center Film Thickness, h_{o} / R, on the Perturbed Pressure Profiles for $\alpha \mathrm{E}^{\prime}=1000$97

Fig. 5-12 The Effect of the Normalized Hertzian Pressure, $\mathrm{P}_{\mathrm{Hz}}=\mathrm{P}_{\mathrm{Hz}} / \mathrm{E}$, , on $\Delta_{s}=\Phi_{\text {man. }}-\Phi_{\text {min }}$.98

Fig. 5-13 The Effect of the Normalized Hertzian Pressure, $\mathrm{P}_{\mathrm{Hz}}=\mathrm{p}_{\mathrm{Hz}} / \mathrm{E}^{\prime}$, on the Perturbed Pressure and Film Profiles for $\alpha \mathrm{E}^{\prime}=100 . . .99$

Fig. 5-14 The Effect of the Normalized Hertzian Pressure, $\mathrm{P}_{\mathrm{Hz}}=\mathrm{p}_{\mathrm{Hz}}$, on the Perturbed Pressure Profiles for $\alpha \mathrm{E}^{\prime}=1000$.............. 100

LIST OF SYMBOLS

a^{\prime}	= semi-major axis of the ellipsoidal asperity
b	$=$ half width of Hertzian contact
${ }^{\prime}$	= semi-minor axis of the ellipsoidal asperity
$\overline{\mathrm{b}}$	$=b^{\prime} / \mathrm{b}$
c	$=$ integration constant
c_{1}	= maximum asperity height
\bar{c}_{1}	$=c_{1} / h_{0}$
$\mathrm{C}_{\text {UD }}$	$=48\left(\mathrm{U}_{\mathrm{D}} / \mathrm{H}_{\mathrm{o}}^{2}\right)(\overline{\mathrm{b}})$
1/E'	$=1 / 2\left(\frac{1-v_{1}^{2}}{\mathrm{E}_{1}}+\frac{1-v_{2}^{2}}{\mathrm{E}_{2}}\right)$
$\mathrm{E}_{1}, \mathrm{E}_{2}$	= Young's modulus for rollers 1 and 2
$f(\%)$	$=$ probability density function of random variable γ
$g\left(8^{*}\right)$	= probability density function of surface roughness distribution
	$=\left\{\begin{array}{cc} 35 / 96\left(1-8^{* 2} / 9\right)^{3} & -3<8^{*}<3 \\ 0 & \text { elsewhere } \end{array} \quad\right. \text { for polynomial distribution function }$
	$=\left\{\begin{array}{cc} 1 /\left(\pi \sqrt{1-\delta^{* 2} / 9}\right) & -3<\delta^{*}<3 \\ 0 & \text { elsewhere } \end{array} \quad\right. \text { for sinusoidal distribution function }$
G	$=\alpha \mathrm{E}^{\prime}$
G_{2}	$=\int_{-\infty}^{\infty} \frac{g\left(\delta^{*}\right)}{\left(1+\frac{\bar{\sigma}}{H} \delta^{*}\right)^{3}} d \delta$
G_{4}	$=\int_{-\infty}^{\infty} \frac{\delta^{*} \mathrm{~g}\left(\delta^{*}\right)}{\left(1+\frac{\bar{\sigma}}{\mathrm{H}} 8^{*}\right)^{3}} \mathrm{~d} \delta^{*}$
h	$=$ average film thickness
h_{1}	= smooth-film thickness of an EHD contact
h_{c}	= average center film thickness of rigid rollers

h_{g}	= smooth-film thickness between two rigid rollers
h_{0}	$=$ center film thickness at $x=0$ for $E H D$ contacts as well as for rigid roller; also used as the minimum film thickness for the slider bearing
h_{T}	$=$ local film thickness
h^{*}	$=$ average reference film thickness at $\mathrm{p}=\mathrm{dp} / \mathrm{dx}=0$
$h_{\text {min }}$	$=$ nominal film thickness at the exit of the slider bearing (for the slider bearing analysis, $h_{\text {min }}=h_{0}$)
H	$=\mathrm{h} / \mathrm{h}_{0}$
H_{1}	$=h_{1} / h_{0}$
H_{0}	$=h_{0} / R$
H_{T}	$=\mathrm{h}_{\mathrm{T}} / \mathrm{h}_{0}$
$K_{\text {D }}$	$=\left(Q_{W}^{*}-Q_{R}^{*}\right) / Q_{R}^{*}$
K_{E}	$=Q_{R}^{*} / Q_{S}^{*}$
K_{R}	$=w_{R}^{*} / w_{S}^{*}$
i	$=a$ dummy index
j	$=\mathrm{a}$ dummy index
$\boldsymbol{\ell}$	$=$ overall characteristic length of a slider bearing
m	$=$ slope of the inclined surface of a slider
$\mathrm{m}_{1}, \mathrm{~m}_{2}$	
	$=$ mass of lubricants flowing into or out of the grid
M	$=$ the number of grids in the Y-direction such that $\mathrm{y} / \mathrm{a}^{\prime}= \pm 5$ at M
M (x)	$=$ see Eq. (2.10)
n	$=$ number of wave cycles within the Hertzian contact
N	$=$ the number of grids in the X-direction such that $x / b^{\prime}= \pm 5$ at N
p	$=$ local pressure
P_{1}	$=$ smooth film pressure
P_{Hz}	$=$ maximum Hertzian pressure
$\overline{\mathrm{p}}$	$=$ the expected or mean value of p
P	$=\mathrm{p} / \mathrm{P}_{\mathrm{Hz}}$

P	$=\mathrm{p} / \mathrm{p}_{\mathrm{Hz}}$ for EHD analyses
P	$=h_{0}^{2-} /\left(6 \mu\left(u_{1}+u_{2}\right) R\right)$ for the analysis of rigid rollers
P	$=h_{0}^{2-} /\left(6 \mu u_{1} \ell\right)$ for the analysis of a slider bearing
P_{1}	$=\mathrm{p}_{1} / \mathrm{P}_{\mathrm{Hz}}$
P_{Hz}	$=\mathrm{P}_{\mathrm{Hz}} / \mathrm{E}^{\prime}$
q	$=\underline{1-e^{-\alpha p}}$
q	α
\bar{q}	$=$ the expected or mean value of q
Q	$=\frac{R^{2}}{6_{\mu_{0}}\left(u_{1}+u_{2}\right) b} \cdot q=48 \sqrt{\frac{W}{2 \pi}} U\left(\frac{\bar{\delta}}{E^{\prime}}\right)$
Q_{R}	$=Q^{*}$ calculated by the stochastic theory for roughness model
${ }_{\text {\% }}$	$=Q^{*}$ calculated by the waviness model
Q_{S}^{*}	$=Q^{*}$ for the smooth film analysis
R	$=\mathrm{R}_{1} \mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$
$\mathrm{R}_{1}, \mathrm{R}_{2}$	$=$ radii of rollers 1 and 2
S	$=2\left(u_{1}-u_{2}\right) /\left(u_{1}+u_{2}\right)$
t	$=$ time
$\mathrm{u}_{1}, \mathrm{u}_{2}$	$=$ velocities of surfaces 1 and 2
u	$=\left(u_{1}+u_{2}\right) / 2$
U	$=\mu_{s}\left(u_{1}+u_{2}\right) /\left(2 E^{\prime} R\right)$
U_{D}	$=\mu_{s}\left(u_{1}-u_{2}\right) /\left(2 E^{\prime} R\right)$
w	$=1$ oad per unit width
W	$=\mathrm{w} / \mathrm{B}^{\prime} \mathrm{R}$
$\mathrm{W}_{\mathrm{R}}^{*}$	$=W^{*}$ calculated by stochastic theory for rigid rollers
W_{s}^{*}	$=W^{*}$ calculated by smooth film theory for rigid rollers
W*	$=h_{0}^{2} w /\left(6 \mu\left(u_{1}+u_{2}\right) R^{2}\right)$ for the analysis of rigid rollers
W*	$=h_{o}^{2} w /\left(6 \mu u_{1} l^{2}\right)$ for the analysis of a slider bearing


```
\(\bar{\alpha} \quad=\alpha \mathrm{P}_{\mathrm{Hz}}\)
\(Y \quad=\) random variable, also used as ellipticity ratio \(a^{\prime} / b^{\prime}\)
\(\varepsilon\} \quad=\) the expected value of \(\}\)
\(\theta \quad=\) the phase angle of the waviness surface profile measured from \(X=0\)
\(\theta_{1}, \theta_{2}=\theta\) of surfaces 1 and 2
\(\phi \quad=\) perturbed pressure
\(\Phi \quad=\phi / \mathrm{P}_{\mathrm{Hz}}\)
\(\Phi_{\max }, \Phi_{\min }=\) the maximum and the minimum perturbed pressure measured from the
average pressure profile
\(\Delta_{s} \quad=\Phi_{\max }-\Phi_{\text {min }}\)
p \(\quad=\) lubricant density
\(\bar{\delta} \quad=8 / h_{0}\)
\(\bar{\delta}_{1} \quad=\delta_{1} / h_{0}\)
\(\bar{\delta}_{2} \quad=\delta_{2} / h_{0}\)
\(\bar{\delta}_{\text {max }}=\delta_{\text {max }} / h_{0}\)
\(\bar{\sigma} \quad=\sigma / h_{0}\)
```


SUMMARY

The Christensen Theory of a stochastic model for hydrodynamic lubrication of rough surfaces is extended to elastohydrodynamic lubrication between two rollers. The Grubin-type equation including asperity effects in the inlet region is derived. Solutions for the reduced pressure at the entrance as a function of the ratio of the average nominal film thickness to the r.m.s. surface roughness (in terms of standard deviation σ), have been obtained numerically. Results were obtained for purely transverse as well as purely longitudinal surface roughness for cases with or without slip. The reduced pressure is shown to decrease slightly by considering longitudinal surface roughness. The transverse surface roughness, on the other hand, has a slight beneficial effect on the average film thickness at the inlet.

The same approach was used to study the effect of surface roughness on lubrication between rigid rollers and lubrication of an infinitelywide slider bearing. Results of these two cases show that the effects of surface roughness have the same trend as those found in elastohydrodynamic contacts.

A comparison is made between the results using the stochastic approach and the results using the conventional deterministic method for the inlet pressure in a Hertzian contact assuming a sinusoidal roughness. It was found that the validity of the stochastic approach depends upon the number of wave cycles n within the Hertzian contact. For n larger than a critical number, which depends upon the ratio of asperity height to the nominal film thickness, $\delta_{\max } / h_{0}$, the stochastic theory yields the same results as that obtained by the deterministic approach.

Using the flow balance concept, the perturbed Reynolds equation, which includes a single three-dimensional rigid asperity in one of the lubricating surfaces, is derived and solved for the perturbed pressure distribution. In addition, the Cheng's numerical scheme : for EHD contacts, is modified to incorporate a single two-dimensional elastic asperity, or a waviness profile, on the stationary surface. The perturbed pressures obtained by these three different models are compared. Qualitatively, the results for the single 2 D elastic asperity and the waviness profile model by using Cheng's scheme, are mostly the same. However, some results obtained for the single 3 D rigid asperity exhibit different trends when compared with the single 2 D elastic asperity or the waviness profile. In the case of the waviness profile in which the local elastic deformation is allowed, the magnitude of the pressure fluctuation Δ_{s}, is found to increase when the pressure viscosity parameter G, or the ratio of the asperity amplitude to the nominal film thickness, $\delta_{\max } / h_{0}$, increases. On the other hand, Δ_{s} is found to decrease as the magnitude of the Hertzian pressure P_{Hz}, or the ratio of the nominal film thickness to the radius of the equivalent cylinder, h_{o} / R increases.

INTRODUCTION

In conventional sliding bearings, there usually exists a kigh degree of conformity between bearing surfaces, and this enables a substantial load to be generated by the thin oil film. The performance of these bearings can be satisfactorily predicted by solving the Reynolds equation for the pressure distribution within the lubricant film. However, for highly loaded concentrated contacts, such as gears, cams and rolling contact elements, the 1 ubrication phenomenon cannot be predicted by Reynolds equation alone. Local elastic deformation of the solid under high pressure becomes influencial in determining the load capacity and film thickness of these contacts. The study of lubrication processes including the elastic effects is presently known as elastohydrodynamic lubrication (EHL).

To date, the theories for hydrodynamic and elastohydrodynamic lubrim cation have reached a very advanced stage. However, these theories are mostly based on the assumption that the lubricating surfaces can be described by smooth mathematical functions. In reality, surfaces are never perfectly smooth in a microscopic scale. In the hydrodynamic lubrication regime, the asperity heights of the rough surfaces are much smaller than the average lubricant film. Thus, the effect of surface roughness on hydrodynamic lubrication, in most cases, can be neglected. Hence, the smooth film hydrodynamic lubrication theories provides a very satisfactory prediction of lubrication performance. In elastohydrodynamic lubrication of concentrated contacts, there exist two distinctively different regimes, the full film and the partial film EHL. In the full film
regime, the average nominal film thickness is usually much greater than the asperity heights, and, in this regime, the behavior of the contact can be predicted quite satisfactorily by smooth-film EHL theories. In the partial film regime, the asperity heights are of the same order as the average nominal lubricant film. Thus, the effect of surface roughness in the regime must be considered.

EHD film thickness has been well accepted as an important bearing design parameter. The degree of asperity interactions, and the surface distress in the forms of wear, pitting and scuffing are associated with the ratio of the average nominal film thickness to the r.m.s. surface roughness (in terms of standard deviation σ), in EHD contacts. In many cases, bearing failures can be attributed to insufficient film thickness which leads to asperity contacts. Thus, there is a need to determine the surface on the film forming capability in EHD contacts. Therefore, the second chapter of this dissertation is focused on the effect of surface roughness on the average film thickness between lubricated rollers. The stochastic theory developed by Christensen [7] is extended to determine the surface roughness influence on the inlet film thickness of EHD contacts. In addition, the roughness effect on the load capacity in rigid rollers and infinitely-wide slider bearing is also studied.

The third chapter compares the difference between the roughness effect and waviness effect on the average film thickness in EHD contacts. It also provides some criteria to determine the applicability of the stochastic theory.

The pressure profile enables one to predict the stress distribution of the lubricated contact. In the fourth and fifth chapters, the effect of surface roughness on the pressure distribution are discussed. In

Chapter IV, comparisons are made between the effect on the perturbed pressure due to a single three-dimensional rigid asperity and due to a single two-dimensional elastic asperity within an EHD contact. In Chapter V, the surface profile before elastic deformation is assumed to be in the form of sinusoidal waviness. The effects of the following non-dimensional variables: the Hertzian pressure P_{Hz}, the nominal center film thickness h_{0} / R, the pressure viscosity parameter G, the number of wave cycles within the Hertzian contact, n, and the asperity height h_{0} / R, on the magnitude of the pressure fluctuation as well as the perturbed pressure profile are studied.

CHAPTER II

THE EFFECT OF SURFACE ROUGHNESS ON THE- AVERAGE FILM .
THICKNESS BETWEEN LUBRICATED ROLLERS

2.1 INTRODUCTION

The inclusion of surface irregularities in lubrication analysis can be traced back to [1-3], in which the roughness is modelled as sinusoidal or saw-tooth waviness. Subsequently, Tseng and Saibel [6] introduced the stochastic concept based on random surface roughness analysis on lubrication. Their method deals with surfaces with one dimensional transverse roughness only. The stochastic model has been revived by Christensen and his colleagues $[7,8,9,16,17]$ in studying the lubrication process between rigid surfaces containing surface roughness modelled as ridges oriented transversely or longitudinally. Recently, the effects striated roughness on both bearing surfaces have been obtained by Rhow and Elrod [18].

The effect of surface roughness on film thickness in EHD contact has not been fully explored. However, there have been some related work. For instance, Fowles [4] studied the EHD lubrication between identical sliding asperities. Lee and Cheng [5] have studied the effect of a single asperity on the film and pressure distribution during its entrance into an elastohydrodynamic contact. The load sharing between fluid film and asperity contacts as well as the traction in partial EHD contacts have been studied by Tallian [10], and Thompson and Bocci [12]. Johnson, Greenwood and Poon [11] have used an approximate analysis to ascertain the effect of roughness on the EHD film thickness. They concluded that, to a first approximation, the separation between two rough surfaces is very close to that calculated by the smooth film theory. Recently, pressure and traction rippling inEHD contact of rough surfaces have been calculated by Tallian [19], by using Christensen's stochastic model of hydrodynamic lubrication.

In the present analysis, Christensen's approach [7] is extended to determine the surface roughness influence on the inlet film thickness of EHD contacts. The Grubin-type hydrodynamic equation in the inlet region for the rough surfaces is derived and solved numerically. Results are compared with smooth-film theories. In addition, the load capacity in rigid rollers and in an infinitely-wide bearing is also presented for comparison.

2.2 GOVERNING EQUATION

Assuming that the lubricant is isothermal and incompressible and the sideleakage is negligible, the one-dimensional Reynolds equation governing the pressure in an EHD contact is

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\frac{h_{T}^{3}}{12 \mu} \frac{\partial p}{\partial x}\right)=\left(\frac{u_{1}+u_{2}}{2}\right) \frac{\partial h_{T}}{\partial x}+\frac{\partial h_{T}}{\partial t} \tag{2,1}
\end{equation*}
$$

where h_{T} is the local total film thickness consisting of the following three parts

$$
\begin{equation*}
h_{T}=h+\delta_{1}+\delta_{2} \tag{2.2}
\end{equation*}
$$

In the above, h is the local average film thickness, and δ_{1}, δ_{2}, the roughness profile measured from the mean level of surface profiles 1 and 2 (Fig. 2.1).

2.2.1 Transverse Surface Roughness

In this case the asperities on both lubricating surfaces are straight ridges perpendicular to the direction of rolling. Equation (2.2) becomes

$$
\begin{equation*}
h_{T}=h+\delta_{1}\left(x-u_{1} t\right)+\delta_{2}\left(x-u_{2} t\right) \tag{2,3}
\end{equation*}
$$

With the relations,

$$
\begin{align*}
& \frac{\partial}{\partial t} \delta_{1}\left(x-u_{1} t\right)=-u_{1} \frac{\partial \delta_{1}}{\partial x} \tag{2.4}\\
& \frac{\partial}{\partial t} \delta_{2}\left(x-u_{2} t\right)=-u_{2} \frac{\partial \delta_{2}}{\partial x} \tag{2,5}
\end{align*}
$$

Eq. (2.1) is simplified to

$$
\begin{equation*}
\frac{\partial}{\partial x}\left[\frac{h_{T}^{3}}{12 \mu} \frac{\partial p}{\partial x}-\frac{u_{1}+u_{2}}{2} h+\frac{u_{1}-u_{2}}{2}\left(s_{1}-\delta_{2}\right)\right]=\frac{\partial h}{\partial t} \tag{2.6}
\end{equation*}
$$

It is assumed here that there are enough numbers of asperities within the Hertzian zone such that h can be considered as a constant of time. Let the bracketied term in the left-hand side of Eq. (2.6) be denoted by

$$
\begin{equation*}
M=\frac{h_{T}^{3}}{12 \mu} \quad \frac{\partial p}{\partial x}-\frac{u_{1}+u_{2}}{2} h+\frac{u_{1}-u_{2}}{2}\left(\delta_{1}-\delta_{2}\right) \tag{2.7}
\end{equation*}
$$

For infinitely-wide slider bearing and rigid roller bearing, M is expressed as above. In elastohydrodynamic contact, the reduced pressure, q, and viscosity, μ, which are respectively

$$
\begin{align*}
& q=\frac{1-e^{-d p}}{\alpha} \tag{2,8}\\
& \mu=\mu_{s} e^{\alpha p} \tag{2.9}
\end{align*}
$$

are introduced. Then, M in an EHD contact is

$$
\begin{equation*}
M=\frac{h_{T}^{3}}{1 \mu_{s}} \frac{\partial q}{\partial x}-\frac{u_{1}+u_{2}}{2} h+\frac{u_{1}-u_{2}}{2}\left(\delta_{1}-\delta_{2}\right) \tag{2.10}
\end{equation*}
$$

It is shown in appendix A that M in the case of EHD contact, rigid roller bearing, or infinitely-wide slider bearing is a stochastic quantity with a negligible variance comparing to the variance of the terms on the right hand side. Re-arranging Eq. (2.7) and taking expected values on both sides, one obtains

$$
\begin{equation*}
\varepsilon\left\{\frac{M}{h_{T}^{3}}\right\}=\frac{1}{12 \mu} \in\left\{\frac{d p}{d x}\right\}-\frac{u_{1}+u_{2}}{2} h \in\left\{\frac{1}{h_{T}^{3}}\right\}+\frac{u_{1}-u_{2}}{2}\left[\in\left\{\frac{1}{h_{T}^{3}}\right\}-\in\left\{\frac{{ }_{h}}{h_{T}^{3}}\right\}\right. \tag{2,11}
\end{equation*}
$$

where

$$
\begin{equation*}
c\left\}=\int_{-\infty}^{+\infty}\{ \} f(r) 8 y\right. \tag{2,12}
\end{equation*}
$$

and $f(r)$ is the probability density distribution of the random variable Y.

Since M is a stochastic quantity with zero (or negligible) variance, M and $\frac{1}{h^{3}}$ can be considered to be (approximately)stochastically independent quantities. ${ }^{\mathbf{T}}$ Hence

$$
\begin{equation*}
\varepsilon\left\{\frac{M}{h_{T}}\right\}=M \in\left\{\frac{1}{h_{T}^{3}}\right\} \tag{2.13}
\end{equation*}
$$

$$
\begin{align*}
& \text { Then Eq. (2.11) can be re-written as } \\
& \qquad M=\frac{1}{12_{\mu}} \frac{d \bar{p}}{d x} \frac{1}{\varepsilon\left\{\frac{1}{\left.h_{T}\right\}}\right\}}-\frac{u_{1}+u_{2}}{2} h+\frac{u_{1}-u_{2}}{2} \frac{\in\left\{\frac{1}{h_{T}^{3}}\right\}-\in\left\{\frac{l_{2}}{h_{T}}\right\}}{\in\left\{\frac{1}{\left.h_{T}\right\}}\right\}} \tag{2.14}
\end{align*}
$$

where \bar{p} is now the expected or mean value of p. Substituting Eq. (2.14) into Eq. (2.6) and re-arranging, one obtains the stochastic Reynolds equation for rigid rollers bearing and infinitely-wide slider bearing.

$$
\begin{equation*}
\frac{d}{d x}\left[\frac{1}{12 \mu} \frac{d \bar{p}}{d x} \frac{1}{\varepsilon\left\{\frac{1}{h_{T}^{3}}\right\}}\right]=\frac{u_{1}+u_{2}}{2} \frac{d h}{d x}-\frac{u_{1}-u_{2}}{2} \frac{d}{d x}\left[\frac{\varepsilon\left\{\frac{1}{h_{T}^{3}}\right\}-\varepsilon\left\{\frac{d_{2}}{h_{T}^{3}}\right\}}{\varepsilon\left\{\frac{1}{h_{T}^{3}}\right\}}\right] \tag{2.15}
\end{equation*}
$$

Similarly, the stochastic Reynolds equation for EHD contact can be expressed as

$$
\begin{equation*}
\frac{d}{d x}\left[\frac{1}{12 \mu_{a}} \frac{d \bar{q}}{d x} \frac{1}{\varepsilon\left\{\frac{1}{h_{T}^{3}}\right\}}\right]=\frac{u_{1}+u_{2}}{2} \frac{d h}{d x}-\frac{u_{1}-u_{2}}{2} \frac{d}{d x}\left[\frac{\varepsilon\left\{\frac{1}{h_{T}^{3}}\right\}-\varepsilon\left\{\frac{d_{2}}{h_{T}}\right\}}{\varepsilon\left\{\frac{1}{h_{T}^{3}}\right\}}\right] \tag{2.16}
\end{equation*}
$$

2.2.2 Longitudinal Surface Roughness

When the asperity ridges are parallel to the direction of rolling, δ_{1} and δ_{2} are independent upon x, u_{1}, u_{2} and t. Again, assuming $\frac{\partial h}{\partial t}=0$, then Eq. (2,1) can be simplified to

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{h^{3}}{12 \mu} \frac{d p}{d x}\right)=\frac{u_{1}+u_{2}}{2} \frac{d h}{d x} \tag{2.17}
\end{equation*}
$$

For the cases of rigid rollexs and infinitely-wide slider bearings, with longitudinal surface roughness, it is shown in [7] that the stochastic Reynolds equation is of the form

$$
\begin{equation*}
\frac{d}{d x}\left[\frac{1}{12_{\mu}} \frac{d \bar{p}}{d x} \in\left\{h_{T}^{3}\right\}\right]=\frac{u_{1}+u_{2}}{2} \frac{d h}{d x} \tag{2.18}
\end{equation*}
$$

Similarly, the stochastic Reynolds equation of an EHD contact can be shown to be

$$
\begin{equation*}
\frac{d}{d x}\left[\frac{1}{1 \mu_{s}} \frac{d \bar{q}}{d x} \in\left\{h_{T}^{3}\right\}\right]=\frac{u_{1}+u_{2}}{2} \frac{d h}{d x} \tag{2,19}
\end{equation*}
$$

If the roughness distribution is symmetric to zero mean

$$
\begin{equation*}
\varepsilon\left\{h_{T}^{3}\right\}=h^{3}\left(1+3 \frac{\sigma^{2}}{h^{2}}\right) \tag{2.19a}
\end{equation*}
$$

2.3 METHOD OF SOLUTION

2.3.1 Elastohydrodynamic Contacts

Using Grubin's approach, it is assumed that the average surface profile, h, in the inlet region is governed by the deformation produced by a Hertzian elliptical pressure distribution in the contacting region. From [14], this profile is given by

$$
\begin{equation*}
H-1=\frac{h-h_{0}}{h_{0}}=\frac{4 W}{\pi H}\left[|x| \cdot \sqrt{x_{0}^{2}-1}-\ln \left(|x|+\sqrt{\left.x^{2}-1\right)}\right]\right. \tag{2.20}
\end{equation*}
$$

Introducing dimensionless variables $Q, X, H, H T, \bar{\sigma}, U, \bar{b}_{1}, \bar{\delta}_{2}, \overline{8}$ and S as defined in the Nomenclature, Eq. (2.16), for the transverse roughness becomes,

$$
\begin{equation*}
\frac{d}{d x}\left[\frac{d Q}{d X} \frac{H_{o}^{2}}{\epsilon\left\{\frac{1}{H_{T}^{3}}\right\}}\right]=\frac{d H}{d X}-\frac{S}{2} \frac{d}{d X}\left[\frac{c\left\{\frac{1}{3}\right\}-\epsilon\left\{\frac{1}{H_{T}^{3}}\right\}}{\epsilon\left\{\frac{1}{H_{T}^{3}}\right\}}\right] \tag{2.21}
\end{equation*}
$$

The boundary conditions are:

$$
\begin{array}{lll}
\frac{d Q}{d X}=0 & \text { at } & X=-1 \\
Q=0 & \text { at } & (\text { at } H=1) \tag{2.23}\\
Q=-\infty
\end{array}
$$

2.3.1.a Pure, Rolling Case

In this case, $S=0$, and Eq. (2.21) becomes

$$
\begin{equation*}
\frac{d}{d X}\left[\frac{d Q}{d X} \frac{H_{o}^{2}}{\left\{\frac{1}{H_{T}^{3}}\right\}}\right]=\frac{d H}{d X} \tag{2.24}
\end{equation*}
$$

Integrating Eq. (2.24) twice with the two boundary conditions, one obtains

$$
\begin{equation*}
Q^{*}=\left.Q\right|_{X=-1}=\int_{-\infty}^{-1} \frac{H-1}{H^{3} H_{0}^{2}} \cdot G_{2} d X \tag{2.25}
\end{equation*}
$$

where

$$
\begin{align*}
G_{2} & =H^{3} \in\left\{\frac{1}{H_{T}^{3}}\right\} \\
& =H^{3} \int_{-\infty}^{\infty} \frac{g\left(8^{*}\right)}{\frac{h^{3}}{h^{3}}\left(1+\frac{8}{h}\right)^{3}} d s^{*} \\
& =\int_{-\infty}^{\infty} \frac{g\left(\theta^{*}\right)}{\left[1+8^{*}\left(\frac{8}{H}\right)\right]^{3}} d s^{*} \tag{2,26}
\end{align*}
$$

and

$$
\begin{aligned}
& \delta^{*}=\overline{8} \bar{\sigma} \\
& \bar{\delta}=\bar{\delta}_{1}+\overline{8}_{2}
\end{aligned}
$$

$\bar{\sigma}$ is the composite standard deviation and is defined as $\bar{\sigma}^{2}=\bar{\sigma}_{1}^{2}+\bar{\sigma}_{2}^{2}$, $g\left(8^{*}\right)$ is the roughness height distribution function.

Once $\bar{\sigma}$ and $g\left(\delta^{*}\right)$ are given, Eq. $(2 ; 25)$ can be evaluated numerically for Q^{*}.

2.3.1.b Rolling and Sliding

If there is relative sliding between surfaces, S will not be zero, and the last term in the stochastic Reynolds equation, Eq. (2.21), will not necessarily vanish. However, if the roughness distribution function of both surface profiles are the same, then

$$
\begin{equation*}
\epsilon\left\{\frac{\frac{\bar{\delta}^{\overline{8}}}{3}}{\mathrm{H}_{\mathrm{T}}}\right\}=\varepsilon\left\{\frac{\bar{H}_{\mathrm{T}}^{\bar{\delta}_{2}^{3}}}{}\right\} \tag{2.27}
\end{equation*}
$$

Using this relation, Eq. (2.21) becomes

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dX}}\left[\frac{\mathrm{dQ}}{\mathrm{dX}} \frac{\mathrm{H}_{\mathrm{o}}^{2}}{\varepsilon\left\{\frac{1}{\left.\mathrm{H}_{\mathrm{T}}^{3}\right\}}\right.}\right]=\frac{\mathrm{dH}}{\mathrm{dX}} \tag{2.28}
\end{equation*}
$$

which is the same as Eq. (2.24) of the pure rolling case. Q^{*} will accordingly be the same as that expressed in Eq. (2.25).

If, on the other hand, one of the contacting surfaces is considered rough while the other one smooth, then Eq. (2.21) becomes

$$
\begin{equation*}
\frac{d}{d X}\left[\frac{d Q}{d X} \frac{H_{9}^{2}}{\varepsilon\left\{\frac{1}{\left.\frac{1}{3}\right\}}\right\}}\right]=\frac{d H}{d X} \pm \frac{S}{2} \frac{d}{d X}\left[\frac{\varepsilon\left\{\frac{\overline{8}}{3}\right\}}{\varepsilon\left\{\frac{1}{H_{T}^{3}}\right\}}\right] \tag{2.29}
\end{equation*}
$$

where the plus sign is for $\bar{\delta}_{1}=0$, and minus sign for $\bar{\delta}_{2}=0$. (See Appendix B for the Fortran IV listing of the numerical analysis.)

Defining $\quad G_{4}=\frac{\mathrm{H}^{3}}{\bar{\sigma}} \quad \in\left\{\frac{\bar{\delta}}{H_{T}^{3}}\right\}$

$$
\begin{align*}
& =\frac{\mathrm{H}^{3}}{\bar{\sigma}} \int_{-\infty}^{\infty} \frac{\bar{\sigma} \delta^{*} \mathrm{~g}\left(8^{*}\right) \mathrm{d} \delta^{*}}{\mathrm{H}^{3}\left[1+\left(\frac{\bar{\sigma}}{\mathrm{H}}\right) 8^{*}\right]^{3}} \\
& =\int_{-\infty}^{\infty} \frac{8^{*} \mathrm{~g}\left(8^{*}\right)}{\left[1+\left(\frac{\bar{\sigma}}{\mathrm{H}}\right) 8^{*}\right]^{3}} \tag{2.30}
\end{align*}
$$

Eq. (2.29), expressed in G_{2} and G_{4}, becomes

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dX}}\left[\frac{\mathrm{H}_{0}^{2} \mathrm{H}^{3}}{\mathrm{G}_{2}} \frac{\mathrm{dQ}}{\mathrm{dX}}-\mathrm{H} \mp \frac{\mathrm{~S} \bar{\sigma}}{2} \frac{\mathrm{G}_{4}}{\mathrm{G}_{2}}\right]=0 \tag{2.31}
\end{equation*}
$$

Using boundary condition (2.22), one obtains

$$
\begin{equation*}
H_{\sigma}^{2} \frac{H^{3}}{G_{2}} \frac{d Q}{d X}-H \mp \frac{S \bar{\sigma}}{2} \frac{G_{4}}{G_{2}}=-1 \mp \frac{S \bar{\sigma}}{2}\left(\frac{G_{4}}{G_{2}}\right)_{X=-1} \tag{2.32}
\end{equation*}
$$

Integrating Eq. (2.32) between $-\infty$ and -1 , one obtains the expression for Q^{*}

$$
\begin{equation*}
Q^{*}=\frac{1}{H_{0}^{2}}\left\{\int_{-\infty}^{-1}\left(\frac{H-1}{H^{3}}\right) G_{2} d X \pm \frac{S \bar{\sigma}}{2} \int_{-\infty}^{-1} \frac{1}{H^{3}}\left[G_{4}-G_{2}\left(\frac{G_{4}}{G_{2}}\right)_{X=-1}\right] d x\right\} \tag{2.33}
\end{equation*}
$$

Eq. (2.33) can be integrated numerically for Q^{*} for various slide to roll ratios from the pure rolling case, $S=0$, to the simple sliding case for which $u_{1}=u$, $u_{2}=0$, and $s=2$.

For EHD contacts with longitudinal surface roughness, the stochastic Reynolds equation following Eq. (2.19) becomes

$$
\begin{equation*}
\frac{d}{d x}\left\{H_{o}^{2} H^{T}\left[1+3\left(\frac{\sigma}{H}\right)^{2}\right] \frac{d Q}{d X}\right\}=\frac{d H}{d X} \tag{2.34}
\end{equation*}
$$

The above equation is valid for any rolling and sliding EHD contacts. Using boundary conditions, Eqs. (2.22) and (2.23), the reduced pressure Q^{*} at $X=-1$ can be integrated as

$$
\begin{equation*}
Q^{*}=\int_{-\infty}^{-1} \frac{H-1}{H_{0}^{2} H^{3}\left[1+3\left(\frac{\sigma}{H}\right)^{2}\right]} d x \tag{2.35}
\end{equation*}
$$

2.3.2 Rigid Rollers

If the elastic deformation of the rollers is neglected, the smooth, average surface profile can be approximated by a parabolic profile

$$
\begin{equation*}
H=\frac{h}{h_{0}}=1+\frac{x^{2}}{2\left(\frac{h_{0}}{\mathrm{R}}\right)} \tag{2.36}
\end{equation*}
$$

where

$$
x=x / R
$$

$$
h_{o}=\text { the average center film thickness }
$$

Using the same approach as developed in EHD contacts, but with different dimensionless variables for $P, X, X^{*}, H, H_{T}, H^{*}, \bar{\sigma}, \bar{\delta}_{2}$ and $\bar{\delta}$ as defined in the Nomenclature, the stochastic Reynolds equation for rigid rollers with transverse surface roughness can be expressed as

$$
\begin{equation*}
\frac{d}{d X}\left[\frac{d P}{d X} \frac{1}{\varepsilon\left\{\frac{1}{H_{T}^{3}}\right\}}\right]=\frac{d H}{d X}-\frac{S}{2} \frac{d}{d X}\left[\frac{\varepsilon\left\{\frac{H_{T}^{3}}{\delta_{T}}\right\}-\varepsilon\left\{\frac{2}{3}\right\}}{\varepsilon\left\{\frac{1}{H_{T}^{3}}\right\}}\right] \tag{2,37}
\end{equation*}
$$

This equation has the same form as Eq. (2.21) of the EHD contacts. However, the boundary conditions for the case of rigid rollers will be different from Eqs. (2, 22) and (2.23). They are given by

$$
\begin{array}{ll}
\frac{d P}{d X}=0, \quad P=0 & \text { at } X=X^{*} \tag{2.38}\\
P=0 & \text { at } X=-\infty
\end{array}
$$

Using these boundary conditions, Eq. (2.37) can be readily integrated to yield

$$
\begin{equation*}
P(X)=\int_{-\infty}^{X}\left(\frac{H-H^{*}}{H^{3}}\right) G_{2} d \xi \pm \frac{S \bar{\sigma}}{2} \int_{-\infty}^{X} \frac{1}{H^{3}}\left[G_{4}-\left(\frac{G_{4}}{G_{2}}\right)_{X=X} * \cdot G_{2}\right] d \xi \tag{2,39}
\end{equation*}
$$

when S is a dummy variable for X, and X^{*} and H^{*} are determined by imposing $P\left(X^{*}\right)=0$. Eq. $(2,39)$ can be integrated numertcally to yield P for the pure rolling case $(S=0)$, simple sliding case $(S=2)$, as well as rolling and sliding case (any S). Once $P(X)$ is found, the dimensionless load W^{*}, can be determined by

$$
\begin{equation*}
W^{*}=\left[\frac{h_{0}^{2}}{6_{\mu}\left(u_{1}+u_{2}\right) R^{2}}\right] W=\int_{-\infty}^{X^{*}} p(X) d X \tag{2.40}
\end{equation*}
$$

For rigid rollers with longitudinal surface roughness, the stochastic Reynolds equation is

$$
\begin{equation*}
\frac{d}{d X}\left\{H^{3}\left[1+3\left(\frac{\bar{G}}{H}\right)\right] \frac{d P}{d X}\right\}=\frac{d H}{d X} \tag{2.41}
\end{equation*}
$$

Using boundary conditions, Eq. (2.38), one obtains

$$
\begin{equation*}
\mathrm{P}=\int_{-\infty}^{\mathrm{X}} \frac{\mathrm{H}-\mathrm{H}^{*}}{\mathrm{H}^{3}\left[1+3\left(\frac{\partial}{H}\right)^{2}\right]} \mathrm{d} \xi \tag{2.42}
\end{equation*}
$$

where X^{*} and H^{*} are determined by the condition $P\left(X^{*}\right)=0$. The dimensionless pressure and load can be determined in the same manner as that for rigid rollers with transverse surface roughness.

2.3.3 Infinitely-Wide Slider

For an infinitely-wide slider, the smooth, average surface profile can be represented by

$$
\begin{equation*}
H(x)=\frac{h(x)}{h_{0}}=1+\frac{m \ell}{h_{0}}(1-x) \tag{2,43}
\end{equation*}
$$

where

$$
\begin{aligned}
& h_{0}=h_{\min }=\text { minimum film thickness at the exit of the slider } \\
& m=s l o p e ~ o f ~ t h e ~ s l i d e r ~
\end{aligned} \begin{aligned}
& \ell=\text { length of the slider }
\end{aligned}
$$

Introducing dimensionless variables P, H_{T}, X, H and $\bar{\delta}$ as defined in the Nomenclature, one obtains the stochastic Reynolds equation for an infinitely-wide slider with transverse surface roughness,

$$
\begin{equation*}
\frac{d}{d X}\left[\frac{d P}{d X} \frac{1}{\varepsilon\left\{\frac{1}{H_{T}^{3}}\right\}}\right]=\frac{d H}{d X}-\frac{d}{d X}\left[\frac{\varepsilon\left\{\frac{1}{H_{T}^{3}}\right\}-\varepsilon\left\{\frac{\bar{H}^{\bar{\delta}}}{\mathrm{H}_{T}}\right\}}{\varepsilon\left\{\frac{1}{\mathrm{H}_{\mathrm{T}}^{3}}\right\}}\right] \tag{2.44}
\end{equation*}
$$

The boundary conditions for Eq. (2.44) are

$$
\begin{equation*}
P(\theta)=P(1)=0 \tag{2,45}
\end{equation*}
$$

For both surfaces having the same roughness characteristics,

$$
\begin{equation*}
\varepsilon\left\{\frac{\bar{H}^{\overline{8}} \frac{1}{3}}{\mathrm{H}_{\mathrm{T}}}\right\}=\varepsilon\left\{\frac{\bar{H}_{\mathrm{T}}^{\overline{8}}}{3}\right\} \tag{2.46}
\end{equation*}
$$

Eq. (2.44) becomes

$$
\begin{equation*}
\frac{d}{d X}\left[\frac{d p}{d X} \frac{H^{3}}{G_{2}}\right]=\frac{d H}{d X} \tag{2.47}
\end{equation*}
$$

Integrating twice, one obtains

$$
\begin{equation*}
P(X)=\int_{0}^{X} \frac{G_{2}}{H^{2}} d \xi-C \int_{0}^{X} \frac{G_{2}}{H^{3}} d \xi \tag{2.48}
\end{equation*}
$$

where C is evaluated by the boundary condition $P(1)=0$. For one surface rough, and the opposing surface smooth, Eq. (2.44) takes the form

$$
\begin{equation*}
\frac{d}{d X}\left[\frac{d P}{d X} \frac{1}{\varepsilon\left\{\frac{1}{3}\right\}}\right]=\frac{d H}{d X} \pm \frac{d}{d X}\left[\frac{\varepsilon\left\{\frac{\bar{B}}{3}\right\}}{\varepsilon}\left[\frac{1}{T} \frac{1}{H_{T}^{3}}\right\}\right] \tag{2.49}
\end{equation*}
$$

where the plus sign represents the case of a smooth surface sliding against a stationary rough surface, and the negative sign implies the rough siiding against smooth surface. Eq. (2.49), expressed in terms of G_{2} and G_{4}, becones

$$
\begin{equation*}
\frac{d}{d X}\left[\frac{d P}{d X} \frac{H^{3}}{G_{2}}\right]=\frac{d H}{d X} \pm \bar{\sigma} \frac{d}{d X}\left(\frac{G_{4}}{G_{2}}\right) \tag{2.50}
\end{equation*}
$$

Integration of the above equation yields

$$
\begin{equation*}
P(X)=\int_{0}^{X} \frac{G_{2}}{H^{2}} d \xi \pm \bar{\sigma} \int_{0}^{X} \frac{G_{4}}{H^{3}} d \xi-C \int_{0}^{X} \frac{G_{2}}{H^{3}} d \xi \tag{2.51}
\end{equation*}
$$

where C is determined by the boundary condition, $P(1)=0$.
For the infinitely-wide slider with longitudinal surface roughness, the stochastic Reynolds equation is

$$
\begin{equation*}
\frac{d}{d X}\left\{H^{5}\left[1+3\left(\frac{\bar{\sigma}}{H}\right)^{2}\right] \frac{d P}{d X}\right\}=\frac{d H}{d X} \tag{2.52}
\end{equation*}
$$

which, after integrating twice, yields

$$
\begin{equation*}
P(X)=\int_{-\infty}^{X} \frac{d \xi}{H^{2}\left[1+3\left(\frac{\bar{\sigma}}{H}\right)^{2}\right]}-C \int_{0}^{X} \frac{d \xi}{H^{3}\left[1+3\left(\frac{\sigma}{H}\right)^{2}\right]} \tag{2.53}
\end{equation*}
$$

with C determined by $P(1)=0$. In all the above cases, the load can be evaluated by

$$
\begin{equation*}
\mathrm{W}^{*}=\int_{0}^{1} P(\mathrm{X}) \mathrm{dx} \tag{2.54}
\end{equation*}
$$

2.3.4 Roughness Distribution Function

The roughness distribution function employed in this paper is the same as that used by Christensen' [7], namety,

$$
\begin{align*}
& g\left(\delta^{*}\right)= \begin{cases}\frac{35}{96}\left(1-\frac{8^{* 2}}{9}\right)^{3} & -8_{\max }^{*}<8^{*}<8_{\max }^{*} \\
0 & \text { Elsewhere }\end{cases} \tag{2.55}\\
& \delta_{\max }^{*}=3 \tag{2.56}
\end{align*}
$$

This polynomial distribution function is an approximation to Gaussian distribution. The reason using this polynomial function is that the roughness height distribution function of many engineering surfaces is very close to Gaussian [20], and that a Gaussian distribution always implies a finite probability of having asperities of very large sizes which are very unlikely in practice.

2.4 DISCUSSION OF RESULTS

2.4.1 EHD Contacts

The effect of surface roughness on the pressure generation at the inlet of EHD contacts can be presented conveniently by using a quantity K_{E}, defined as the ratio of the inlet pressure calculated from the stochastic theory, Q_{R}^{*}, to that calculated from the Grubin's smooth-film theory, $\mathrm{Q}_{\mathrm{S}}^{*}$. Thus,

$$
\begin{equation*}
K_{E}=Q_{R}^{*} / Q_{S}^{*} \tag{2,57}
\end{equation*}
$$

In Fig. (2.4), the ratio K_{E} is plotted against a surface roughness parameter, $\overline{6}_{\text {max }}$, for the following four cases

1) pure rolling with transverse surface roughness
2) pure rolling with longitudinal surface roughness
3) rolling and sliding with $S=0.2$ and $\delta_{1}=0$ (smooth surface is faster)
4) rolling and sliding with $S=0.2$ and $\delta_{2}=0$ (rough surface is faster) The dimensionless load and film thickness for the above cases are $\mathrm{W}=3 \times 10^{-5}$ and $H_{o}=\frac{h_{0}}{\mathrm{R}}=10^{-5}$.

These curves are obtained by changing the magnitude of $\overline{\delta_{\text {max }}}$. It is seen that, for pure rolling with longitudinal surface roughness, K_{E} is reduced very slightly due to surface roughness effects. Even for $\bar{\delta}_{\max }$ as high as 0.99 , the reduction is only about 7.5% 。

Contrast to the effect of longitudinal roughness, the transverse roughness has a much more pronounced effect on the integrated pressure. It tends to increase the dimensionless reduced pressure and hence also tends to increase the load capacity as $\bar{\delta}_{\text {max }}$ increases. For pure rolling, the transverse roughness causes an increase in Q^{*} from 7% to 30% as $\bar{\delta}_{\max }$ is increased from 0.6 to 0.99 . The effect of relative sliding between a smooth surface and a rough surface in EHD contacts is shown in the two curves for $S=0.2$. Even for such a small slip,there
is already noticeable departure from the pure rolling case. For the case where the smooth surface, is faster, there is an additional pumping effect, compared to the pure rolling case. The reverse is true if the roughness surface is faster.

The effect of H_{0} is studied in Fig. (2.6). It is shown that the three curves for $H_{0}=10^{-5}, 5 \times 10^{-5}, 9 \times 10^{-5}$ almost coincide with one another. This indicates that the roughness effect on $E H L$ is almost entirely independent upon H_{0} *

Fig. (2.6) shows the integrated value of Q^{*} against H_{o} for the condition of pure rolling with transverse roughness, for different ratio of $\bar{\delta}_{\max }$ ranging from 0.0 (smooth film theory) to 0.99 . It is interesting to note that the curves are parallel straight lines. Again it is readily seen that the magnitude of Q^{*} depends on the ratio of $\bar{\delta}_{\max }$. For $\bar{\delta}_{\max } \quad=0.99$, there is approximately a 20% gain in the mean film thickness over that based on smooth film theory. For $\bar{\delta}_{\text {max }}=0.9$, and 0.6 , the gain in mean $f i 1 m$ thickness is about 15% and 5% respectively.

In the case of simple sliding of an EHD contact, i.e. $S=2$, elastic deformation of asperities begins to be significant at $X=-1$. At this position, the values of $\bar{\sigma}$, the r.m.s. roughness amplitude and $g\left(\delta^{*}\right)$ the asperity distribution function, will no longer be the same as those of the undeformed asperities. Therefore Eq. (2.33) cannot be applied under this situation. One should notice that Eq. (2.33) is valid for rolling and sliding case, only when the elastic deformation of asperities near $X=-1$ can be assumed to be negligibly small. This occurs only when S is small.

2.4.2 Rigid Rollers

The effect of surface roughness on the dimensionless load of rigid rollers is presented in terms of K_{R} which is a quantity defined as the ratio of the dimensionless load from the stochastic theory, W_{R}^{*}, to that of the smooth film theory, W_{S}^{*}. Thus

$$
\begin{equation*}
\mathrm{K}_{\mathrm{R}}^{i}=\mathrm{W}_{\mathrm{R}}^{*} / \mathrm{W}_{\mathrm{S}}^{*} \tag{2.58}
\end{equation*}
$$

Results of K_{R} versus $\bar{\delta}_{\text {max }}$ for the following six cases are shown in Fig. (2.7):

1. simple sliding of a smooth roller against a stationary rough roller with transverse surface roughness, $S=2$,
2. rolling and sliding with transverse roughness; $S=0.2, \delta_{1}=0$ (smooth surface is faster),
3. pure rolling with transverse roughness,
4. rolling and sliding with transverse roughness; $S=0.2, \delta_{2}=0$ (rough surface is faster),
5. simple sliding of a rough roller against a stationary smooth roller with transverse roughness; $S=2$,
6. longitudinal surface roughness.

The center film thickness for the above cases is $h_{0} / R=5 \times 10^{-4}$.
Similar to elastic rollers, the effect of surface roughness on rigid rollers with longitudinal roughness is quite small. For $\boldsymbol{\sigma}_{\max }=0.99$, the reduction of. K_{R} is only about 5%.

For pure rolling with transverse roughness, K_{R} is increased by about 16% when $\bar{\sigma}_{\text {max }}=0.99$. For rolling and sliding with $S=0.2$ and smooth surface moving faster, there is an increase in load carrying capacity, compared to the pure rolling case. The reverse is true when the rough surface is faster in the rolling and sliding case. When a smooth roller is sliding against a stationary rough roller, there is a substantial increase in K_{R}. When $\bar{\delta}_{\max }=0.6$ and 0.99 , the gain in K_{R} are 8.5% and 39% respectively. However, when a rough roller is sliding against a stationary smooth roller, K_{R} is almost unaffected. When $\bar{\delta}_{\text {max }}$ is greater than $0.66, K_{R}$ begins to decrease $s 1 i g h t 1 y$ after a steady increase.

This small dip in K_{R} is suspected to be caused by using the above mentioned polynominal function as the surface roughness distribution function. When a sinusoidal distribution function [17] which is defined as,

$-3<8^{*}<3$
Elsewhere
is employed, the results which are not plotted here show that the dip disappears and that K_{R} increases with the increase of $\delta_{\max }$.

2.4.3 Infinitely-Wide Slider Bearing

In Fig. (2.8), W^{*} is plotted against $\bar{\delta}_{\max }$ for the following four cases:

1. simple sliding of a smooth surface against a rough surface with transverse roughness,
2. both surfaces having the same roughness distribution functions with transverse roughness,
3. simple sliding of a rough surface against a smooth one, with transverse roughness,
4. longitudinal surface roughness.

Qualitatively, the roughness effect on a slider checks very well with that on rollers. When the roughness direction is longitudinally oriented, the load carrying capacity of the oil film is reduced..

In the case of transverse roughness, the effect on load capacity is always beneficial. For both surfaces having the same kind of roughness distribution function, W^{*} is increased by 66% approximately, when $\overline{\mathrm{\delta}}$ max is 0.99 . For a smooth surface sliding against a rough one, the gain in W^{*} is even larger. W^{*} is increased by about 129% when $\bar{\delta}_{\max }$ is 0.99 . For a rough surface sliding against a smooth one, W^{*} is only increased slightly.

The authors' results agree very well to those obtained by Rhow and E1rod [18], who have studied the effects of two-sided straited roughness on the load-carrying capacity of an infinitely wide slider bearing. The only exception is that the authors' results show a small dip in W^{*}, when $\bar{\delta}_{\max }$ is larger than 0.9. This small dip in W^{*} is caused by employing the polynomial function as the surface roughness distribution. When the sinusoidal distribution is used, the dip in W^{*} disappears.
2.5

CONCLUSIONS

1. Based on Christensen's stochastic model of hydrodynamic lubrication, a Grubin type elastohydrodynamic analysis at the inlet of a Hertzian contact indicates that surface roughness can have a noticeable effect on the level of mean film thickness between EHD contacts.
2. For longitudinal surface roughness, ridges parallel to the direction of rolling, the present analysis predicts an inlet pressure or inlet film thickness smaller than that predicted by the smooth-film EHD theory.
3. For transverse surface roughness, ridges perpendicular to the direction of rolling, the inlet mean film thickness level is increased noticeably due to the additional pumping by transverse ridges. The level of increase is mainly a function of $\delta_{\max } / h_{o}$, the ratio of the maximum ridge height to the mean film thickness at the inlet and is not sensitive to other operating parameters. For $\delta_{\max ^{\prime}} / h_{0}$ approaching unity, which corresponds to $h_{0} / \sigma=3$ for $\delta_{\max }=3 \sigma$, one can expect an increase of 25% in mean film thickness compared to the smooth-film EHD film thickness for pure rolling. Results for small slide to roll ratios indicates that the case of smooth sliding over rough gives further enhancement in mean film thickness, whereas the case of rough sliding over smooth yields a slight reduction in mean film thickness comparing to pure rolling. For high slide to roll ratios, it was found that local elastohydrodynamic effect due to local pressure fluctuations will become significant, and the present analysis based on the Grubin approach will become invalid.
4. For rigid rollers and infinitely-wide slider bearings, load capacities calculated for rough surfaces show trends similar to those found in EHD contacts. However, the effects for infinitely-wide slider bearings are much stronger than that for rigid rollers.

TRANSVERSE ROUGHNESS

LONGITUDINAL ROUGHNESS

Figure 2-1 EHD Contacts Between Two Rough Surfaces

TRANSVERSE ROUGHNESS

Figure 2-2 Rigid Rollers With Rough Surfaces

TRANSVERSE ROUGHNESS

Figure 2-3 An Infinitely-Wide Siider Bearing with Rough Surfaces

EHD CONTACTS
POLY. DIST.
$W=3 \times 10^{-5} \quad H_{0}=10^{-5}$

Fig. 2-4 The Effect of Transverse and Longitudinal Roughness on the Ratio of the Reduced Pressure for Rough Surfaces to that for Smooth Surfaces, $K_{E}=Q_{R} / O_{S}$, of an EHD Contact

EHD CONTACTS

POLY. DIST.
PURE ROLLING

$$
W=3 \times 10^{-5}
$$

Fig. 2-5
The Effect of the Center Film Thickness, H_{o}, on the Ratio of the Reduced pressure for Rough Surfaces ${ }^{\circ}$ to that for Smooth Surfaces, $K_{E}=Q_{R} / Q_{S}$, of an EHD Contact

Fig. 2-6 The Effect of the Roughness Height to Center Film Thickness Ratio, $\bar{\delta}_{\text {max }}$, on the Normalized Reduced Pressure, Q_{R}^{*}, of an EHD Contact.

RIGID ROLLERS

POLY. DIST.
$h_{0} / R=5 \times 10^{-4}$

Fig. 2-7 The Variation of the Normalized Load Ratio, $K_{R}=W_{R}^{*} / W_{S}^{*}$, with
the Roughness Height, $\delta_{\text {max }}=\delta_{\text {max }} / h_{0}$, for Rigif Rollers

INFINITELY－WIDE SLIDER BEARING

二．二．二 RHOW \＆ELROD

－ニ．．ニ．．－CHOW \＆CHENG

Fig．2－8 The Variation of the Nor alized Load，$W^{*}=\frac{h_{0}^{2}}{6 \mu \mu_{1} \ell^{2}} w$ ， with the Roughness Height， $\bar{\delta}_{\text {max }}$ ，for an Infinitely－wide Slider Bearing

WAVINESS AND ROUGHNESS IN ETASTOHYDRODYNAMIC LUBRICATION

3.1 INTRODUCTION

A stochastic theory for elastohydrodynamic lubrication of contact with twosided roughness has been developed in Chapter II. The basic requirement of this theory is that the roughness pattern must be very dense within the contact zone. In other words, the largest wavelength in the roughness spectrum must be small compared to the contact width. If the largest wavelength is of the same order of the contact width, surface roughness becomes surface waviness. The stochastic theory may be invalid in this region.

In order to ascertain the conditions under which the stochastic theory becomes valid the reduced pressure based on the deterministic approach using a sinusoidal profile and that calculated from the stochastic theory using a surface roughness distribution equivalent to the sinusoidal profile is compared. The comparison is only made for the transverse roughness since the effect of longitudinal roughness is usually negligibly small comparing to the effect of transverse roughness.

3.2 GOVERNING EQUATION

In comparing the effect of waviness and roughness on the reduced pressure, the surface profile is assumed to be in the form of sinusoidal waviness. The reduced pressure is then solved by the deterministic approach for the waviness case. At the same time, a density distribution function equivalent to the chosen sinusoidal wave is evaluated. Using this equivalent roughness distribution function, the reduced pressure for the roughness case is then solved by the stochastic approach as illustrated in Chapter II. Then, the effect of surface waviness and roughness will be compared for the pure rolling case.

3.2.1 The Waviness Case

In the waviness case, the one-dimensional Reynolds equation governing the pressure in an EHD contact of an isothermal and incompressible lubricant is

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\frac{h_{T}^{3}}{12 \mu} \frac{\partial p}{\partial x}\right)=\frac{u_{1}+u_{2}}{2} \frac{\partial h_{T}}{\partial x}+\frac{\partial h_{T}}{\partial t} \tag{3.1}
\end{equation*}
$$

where h_{T} is the local total film thickness consisting of the following three parts $h, \delta_{1}, 8_{2}$
where $h=$ the nominal smooth part of the average film thickness

$$
\delta_{1}, \delta_{2}=\text { roughness amplitude measured from the mean level of surfaces }
$$

1 and 2
$\delta_{1}=\delta_{\max _{1}} \sin \left[\left(2 n_{1} \pi\right)\left(x-u_{1} t\right)\right]$
$\delta_{2}=\delta_{\max _{2}} \sin \left[\left(2 n_{2} \pi\right)\left(x-u_{2} t\right)\right]$
$\theta_{1}=u_{1} t$

$$
\theta_{2}=u_{2} t
$$

It is assumed that the asperities on both surfaces are straight ridges perpendicular to the direction of rolling. With the relations

$$
\begin{align*}
& \frac{\partial \delta_{1}}{\partial t}=-u_{1} \frac{\partial \delta_{1}}{\partial x} \tag{3.4}\\
& \frac{\partial \delta_{2}}{\partial t}=-u_{1} \frac{\partial \delta_{2}}{\partial x} \tag{3.5}
\end{align*}
$$

Eq. (3.1) is simplified as

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{h_{T}^{3}}{12 \mu} \frac{d p}{d x}\right)=\left(\frac{u_{1}+u_{2}}{2}\right) \frac{d h}{d x}-\left(\frac{u_{1}-u_{2}}{2}\right) \frac{d}{d x}\left(8_{1}-8_{2}\right)+\frac{d h}{d t} \tag{3.6}
\end{equation*}
$$

It is further assumed that there are enough number of asperities within the Hertzian contact zone such that h can be considered as a constant of time.

$$
\begin{equation*}
\text { i.e. } \quad \frac{d h}{d t}=0 \tag{3.7}
\end{equation*}
$$

Hence, in the case of pure rolling, one obtains

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{h^{3}}{12 \mu} \frac{d p}{d x}\right)=u \frac{d h}{d x} \tag{3.8}
\end{equation*}
$$

with dimensionless variables $Q_{W}, X, H, H_{T}, \bar{\sigma}, U, \bar{\delta}_{1}, \bar{\delta}_{2}$, and $\bar{\delta}$ as defined in the Nomenclature, Eq. (3.8) is transformed to

$$
\begin{equation*}
\frac{d}{d X}\left(H_{T}^{3} \frac{d Q}{d X}\right)=\frac{1}{H_{o}^{2}} \frac{d H}{d X} \tag{3.9}
\end{equation*}
$$

where H, the average surface profile in the inlet region is governed by

$$
\begin{equation*}
H-1=\frac{h-h_{0}}{h_{0}}=\frac{4 W}{\pi H}\left[|x| \sqrt{x_{0}^{2}-1}-\ln \left(|x|+\sqrt{x^{2}-1}\right)\right] \tag{3.10}
\end{equation*}
$$

The boundary conditions are:

$$
\begin{array}{lll}
\frac{d Q_{W}}{d X}=0 & \text { at } & X=-1 \\
Q_{W}=0 & \text { at } & X=-\infty \tag{3.12}
\end{array}
$$

Integrating Eq. (3.10) twice with these two boundary conditions, one obtains

$$
\begin{equation*}
Q_{W}^{*}=\left.Q_{W}\right|_{X=-1}=\int_{-\infty}^{-1}\left(\frac{H-1}{H_{0}^{2} H_{T}^{3}}\right) d X \tag{3.13}
\end{equation*}
$$

In the pure rolling case

$$
\begin{equation*}
\theta_{1}=\theta_{2}=\theta=u t \tag{3.14}
\end{equation*}
$$

In addition, it is assumed that

$$
\begin{align*}
& n_{1}=n_{2}=n \tag{3.15}\\
& \delta_{\text {max }}=\delta_{1 \text { max }}+\delta_{2 \text { max }} \tag{3.16}
\end{align*}
$$

For given $h_{0} / R, W, 8_{\max }, n$ and θ, Eq. (3.13) is solved numerically by Simpson's integration routine.

3.2.2 The Roughness Case

The probability density function corresponding to a sinusoidal wave is [17]

$$
\frac{1}{\pi} \sqrt{1-\frac{1}{9} \delta^{* 2}} \quad-3<\delta^{*}<3
$$

$$
\begin{equation*}
f\left(\delta^{*}\right)= \tag{3.17}
\end{equation*}
$$

$$
0 \quad \text { elsewhere }
$$

From Chapter II, the corresponding reduced pressure at the inlet is

$$
\begin{equation*}
Q_{R}^{*}=\int_{-\infty}^{-1}\left(\frac{H-1}{H_{0}^{2} H^{3}}\right) G_{2} d x \tag{3.18}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{2}=\frac{1}{\pi} \int_{-3}^{3} \frac{1}{\sqrt{1-\frac{1}{9} 6^{* 2}}}\left[1+8^{*}\left(\frac{\bar{\sigma}}{\mathrm{H}}\right)\right]^{3} \quad \mathrm{~d} 8 * \tag{3.19}
\end{equation*}
$$

$$
Q_{R}^{*}=Q^{*} \text { calculated by stochastic theory. }
$$

Hence Q_{R}^{*} is evaluated for different values of $\delta_{\text {max }}$.

3.3 DISCUSSION OF RESULTS

Though the following examples are only connected with the pressure generation at the inlet of elastohydrodynamic contacts, yet, qualitatively, the general trends of the results will be relevant to other types of bearing and surface irregularity. The comparison between waviness and roughness can be presented conveniently by using a quantity K_{D} which is defined as

$$
\begin{equation*}
K_{D}=\frac{Q_{W}^{*}-Q_{R}^{*}}{Q_{R}^{*}} \tag{3.20}
\end{equation*}
$$

where Q_{W}^{*} and Q_{R}^{*} stand for the inlet reduced pressure calculated from the waviness model and the roughness model respectively. Hence, by definition, K_{D} is the fractional deviation of the inlet reduced pressure of the haviness model from that of the corresponding roughness model. \therefore The results of such a comparison are shown in Fig. 3.1 to Fig. 3.3. The dimensionless load and film thickness for these examples are $W=3 \times 10^{-5}$ and $H_{0}=h_{0} / R=10^{-5}$, while the ratio $\delta_{\text {max }} / h_{0}$ in these three figures are $0.3,0.45$ and 0.6 respectively. The phase angles chosen are $0, \pi / 2, \pi$ and $-\pi / 2$ while the n-values are integers.

It is readily seen that K_{D} heavily depends upon the phase angle θ for small n. Particularly, for $\theta=\pi / 2$ and $-\pi / 2$, the magnitude of K_{D} even changes signs. However, the effect of phase angle on K_{D} decreases rapidly as n increases. Furthermore, for larger $\delta_{\max }$ which means more pronounced asperity interaction, K_{D} is larger for the same n. For smaller $\delta_{\text {max }}, K_{D}$ is smaller. The approximate values of K_{D} at $n=5$ and $n=10$ for the extreme cases of $\theta=-\pi / 2$ and $\pi / 2$ are listed as follows

	$n=5$			$n=10$	
$\delta_{\text {max }} / h_{0}$	0.3	0.45	0.6	0.3	0.45
K_{D}	$\pm 3.5 \% 1$	$\pm 6 \%$	$\pm 10 \%$	$\pm 0.5 \%$	$\pm 1 \%$

These results provide a better understanding to the statistical roughness theory. First, they show that the effect of phase angle vanishes with increasing n. Second, the effect of n becomes less important when n is greater than some critical value for a given $\delta_{\text {max }}$. The discrepancy between the waviness mode 1 and the reugh -ness-model becomes poorer as $\delta_{\max } / h_{o}$ increases. It is quite evident that n and $\delta_{\text {max }} / h_{0}$ are both important parameters that determine the validity of the statistical theory for roughness surfaces. For the particular numerical example used in these
calculations, it is found that for $n>10$, waviness is equivalent to roughness and that the stochastic theory holds. Even for $n=5$, one can still apply the stochastic theory with reasonable accuracy.

3.4 CONCLUS IONS

For a given W and H_{O}

1. θ, n and $\delta_{\max } / \mathrm{h}_{\mathrm{o}}$ are the parameters to determine the deviation of the stochastic, roughness made from the deterministic waviness model.
2. The effect of phase angle diminishes with increasing n.
3. The effect of n vanishes as n becomes large, and the stochastic theory for roughness surface is proved to be valid as n approaches a critical value depending on $\delta_{\text {max }} / h_{o}$ for a given W and H_{0}.

Fig. 3-1 The Effect of the Number of Wave Cycles, n, and the Phase Angle, θ, on the Percentage of Deviation of the Normalized Reduced Pressure, K_{D}, for Roughness to Thickness Ratio $\delta_{\text {max }} / h_{0}=0.3$

Fig. 3-2 The Effect of the Number of Wave Cycles, n, and the Phase Angle, θ, on the Percentage of Deviation of the Normalized Reduced Pressure, K_{D}, for Roughness to Thickness Ratio $\delta_{\text {max }} / \mathrm{h}_{\mathrm{o}}=0.45$

$$
\begin{gathered}
W=3 \times 10^{-5}, \quad h_{0} / R=10^{-5}, \quad \delta_{\max } / h_{o}=0.6 \\
K_{D}=\frac{\left(Q_{W}^{*}-Q_{R}^{*}\right)}{Q_{R}^{*}} \times 100 \%
\end{gathered}
$$

Fig. 3-3 The Effect of the Number of Wave Cycles, n, and the Phase Angle, θ, on the Percentage of Deviation of the Normalized Reduced Pressure, K_{D}, for Roughness to Thickness Ratio $\delta_{\max } / \mathrm{h}_{\mathrm{o}}=0.6$

PRESSURE PERTURBATION IN EHD CONTACTS

DUE TO AN ELLIPSOIDAL ASPERITY

4.1 INTRODUCTION

Recently, there has been a growing interest in the effect of surface roughness on the bearing performance in thin film lubrication. In Chapter II, the stochastic theory is used to study the effect of surface roughness on the average EHD film thickness and the integrated pressure at the inlet of the lubricated Hertzian contacts. However, the stochastic theory is incapable of predicting any detailed local perturbations in pressure or deformation caused by the asperities. It was recently pointed out by Tallian [19] that the pressure ripples can rise to a very high level in roling and sliding EHD line contacts. These ripples are very likely one of the chief attributing factors to contact fatigue.

In the last few years, there has been considerable interest in the basic event involving a single asperity entering an EHD contact [5] or the encounter between two identical asperities [4]. The work in this chapter is aimed towards gaining further understanding of the effect of a single asperity on pressure distribution in a line EHD contact. Special attention is given to the three-dimensional aspect of the asperity which is assumed to be ellipsoidal at the tip. The effects of ellipticity (aspect ratio) on the double amplitude of pressure fluctuations under various rolling and sliding condition is examined in detail.

4.2 MATHEMATICAL ANALYSIS

The present analysis consists of two parts. The first part studies the pressure fluctuations due to a single three-dimensional ellipsoidal asperity at the inlet region of an EHD contact assuming that the asperity shape is unaffected by the perturbed pressures. These pressure fluctuations are determined by solving a perturbed Reynolds equation, in which the unperturbed pressure profile is obtained by using a line contact EHD analysis [22]. Results are presented as the perturbed pressure profile, Φ, as well as the amplitude of the pressure ripple, Δ_{S}, as a function of ellipticity ratio, γ, maximum Hertzian pressure, P_{Hz}, nominal EHD film thickness h_{0} / R, asperity size, \bar{b}, asperity height, c_{1} / h_{0}, pressure viscosity coefficient, G, slide to roll ratio, S, and the position of the asperity center X_{3}.

In the second part, the line contact EHD analysis [22] is modified to include a two dimensional asperity ridge on the stationary side of the lubricated contacts. In this approach, the elastic deformation of the asperity is included. Results which are presented as the double amplitude of the perturbed pressure as a function of $P_{H z}, h_{0} / R, \bar{b}, c_{1} / h_{0}, G$, and X_{3}, are compared with those obtained for the three dimensional ellipsoidal asperity with large ellipticity ratio for the case of simple sliding between a smooth surface and a stationary asperity ($\mathrm{S}=2$) 。

4.2.1 Geometrical Configuration

The contact between two cylinders as shown in Fig. (4.1a) can be described by an equivalent cylinder near a flat surface as shown in Fig. (4.1b). As the contact width is very small compared to the dimension of the cylinder, the film thickness for a rigid cylinder, h_{g}, without the asperity is

$$
\begin{equation*}
h_{g} \simeq h_{0}+\frac{x^{2}}{2 R} \tag{4.1}
\end{equation*}
$$

where $\quad \mathrm{x}=$ coordinate along the film

$$
\begin{aligned}
& R=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \\
& R_{1} R_{2}=\text { radius of rollers } 1 \text { and } 2, \\
& h_{0} \quad=\text { undeformed center film thickness }
\end{aligned}
$$

With elastic deformation, the film thickness profile, still without the asperity [22] becomes

$$
\begin{equation*}
h_{1}=h_{0}+\frac{x^{2}}{2 R}-\frac{4}{\pi E^{j}} \int_{-\infty}^{x_{f}} \ln \frac{|\xi-x|}{|\xi|} p_{1}(\xi) d \xi \tag{4.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& h_{1} \quad=\text { smooth-film thickness } \\
& h_{0}=\text { center film thickness at } x=0 \\
& E^{\prime} \quad=\left[\frac{1}{2}\left(\frac{1-v_{1}^{2}}{E_{1}}+\frac{1-v_{2}^{2}}{E_{2}}\right)\right]^{-1} \\
& E_{1}, E_{2}=\text { Young's modulus for rollers } 1 \text { and } 2 \\
& \nu_{1}, \nu_{2}=\text { Poisson's ratio of rollers } I \text { and } 2 \\
& \xi \quad=\text { dummy variable for } \mathrm{x} \\
& p_{1}(\xi)=\text { smooth-film pressure profile }
\end{aligned}
$$

Referring to Fig. (4.2) the height of a three-dimensional ellipsoidal asperity can be written as

$$
\begin{equation*}
\delta=\delta_{1} \cos \eta \tag{4,3}
\end{equation*}
$$

As the contact width is very small compared to the radius of the cylinder, η is very sma11 and

$$
\begin{equation*}
\cos \eta=1 \tag{4.4}
\end{equation*}
$$

Thus the asperity height function of a three-dimensional asperity can be approximately written as

$$
\delta(x, y)=\delta_{1}= \begin{cases}c_{1}\left[\left(\frac{x-x_{3}}{b^{\prime}}\right)^{2}+\left(\frac{y}{a^{\prime}}\right)^{2}-1\right. & \text { for }\left|\frac{x-x_{3}}{b^{i}}\right| \leq 1 \text { and }\left|\frac{y}{a^{i}}\right| \leq 1 \tag{4.5}\\ 0 \quad \text { elsewhere }\end{cases}
$$

Similarly, the asperity height function of a two dimensional asperity ridge can be expressed as

$$
\delta(x)= \begin{cases}\left.c\left[\frac{x-x_{3}}{b^{\prime}}\right)^{2}-1\right] & \text { for }\left|\frac{x-x_{3}}{b^{\prime}}\right| \leq 1 \tag{4.6}\\ 0 & \text { elsewhere }\end{cases}
$$

The total local film thickness, h_{T}, at any point under the surface asperity is

$$
\begin{equation*}
\mathrm{h}_{\mathrm{T}}=\mathrm{h}_{1}+\delta \tag{4.7}
\end{equation*}
$$

4.2.2 Governing Equations

4.2.2.1 The Smooth-Film Case

Referring to [22], the two coupled equations governing the pressure and film distributions in an elastohydrodynamic line contact between two rollers with isothermal and incompressible lubricant are:

The Reynolds equation

$$
\begin{equation*}
\frac{\mathrm{dp}_{1}}{\mathrm{dx}}=6 \mu\left(\mathrm{u}_{1}+\mathrm{u}_{2}\right)\left(\frac{\mathrm{h}_{1}-\mathrm{h}}{\mathrm{~h}_{1}^{3}}\right) \tag{4.8}
\end{equation*}
$$

where p_{1}, h_{1}, h and x are already defined

$$
\begin{aligned}
\mu & \equiv \text { viscosity } \\
\mathrm{u}_{1}, \mathrm{u}_{2} & \equiv \text { velocity of rollers } 1 \text { and } 2
\end{aligned}
$$

and the film thickness profile as described in Eq. (4.2). In non-dimensional form, Eqs. (4.8) and (4.2) become

$$
\begin{equation*}
\frac{\mathrm{dP}_{1}}{\mathrm{dX}}=\left(\frac{48}{\mathrm{H}_{\mathrm{o}}^{2}}\right) \mathrm{U} \bar{\mu}\left(\frac{\mathrm{H}_{1}-1}{\mathrm{H}_{1}^{3}}\right) \tag{4.9}
\end{equation*}
$$

$$
\begin{equation*}
H_{1}=1+\frac{16 \mathrm{P}_{\mathrm{Hz}}^{2}}{\mathrm{H}_{0}^{2}}\left(\frac{\mathrm{X}^{2}}{2}-\frac{1}{\pi} \int_{-\infty}^{\mathrm{X}_{\mathrm{f}}} \mathrm{P}_{1}(\xi) \text { \&n } \frac{|\overline{\bar{\zeta}}-\mathrm{X}|}{|\bar{\zeta}|} d \bar{\xi}\right) \tag{4.10}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{P}_{1}=\mathrm{p}_{1} / \mathrm{p}_{\mathrm{Hz}}, \quad \mathrm{X}=\mathrm{x} / \mathrm{b}, \quad \mathrm{H}_{1}=\mathrm{h}_{1} / \mathrm{h}_{\mathrm{o}}, \quad \mathrm{H}=\mathrm{h}_{\mathrm{o}} / \mathrm{R}, \\
& \mathrm{U}=\frac{\mu_{\mathrm{s}}\left(\mathrm{u}_{1}+\mathrm{u}_{2}\right)}{2 E^{\prime} \mathrm{R}}, \quad \bar{\mu}=\frac{\mu^{\prime}}{\mu_{\mathrm{s}}}, \quad \mathrm{~b} / \mathrm{R}=4 \mathrm{P}_{\mathrm{Hz}}, \quad \quad P_{\mathrm{Hz}}=\mathrm{p}_{\mathrm{Hz}} / \mathrm{E}^{\prime}, \\
& \bar{\xi}=\xi / \mathrm{b}, \quad \mathrm{X}_{\mathrm{f}}=\mathrm{x}_{\mathrm{f}} / \mathrm{b} .
\end{aligned}
$$

Using the same numerical scheme as developed in [22], these two equations are solved by the Newton-Ralphson method. $P_{1}(X), H_{1}(X)$ and \bar{U} are solved for a given set of $h_{0} / R, P_{H z}$, and G. These smooth-film results are used as the inputs to the perturbed Reynolds equation described later.

4.2.2.2 The Discretized Reynolds Equation

It is assumed here that the viscosity is an exponential function of the pressure with a pressure viscosity coefficient α, i.e.

$$
\begin{equation*}
\mu=\mu_{s} e^{\alpha p} \tag{4.11}
\end{equation*}
$$

In numerical form the steady Reynolds equation for an incompressible lubricant can be expressed by dividing the contact zone into small grids with irregular spacings. Referring to Fig. (4.3) and applying the principle of conservation of mass, one obtains for the ith grid

$$
\begin{align*}
m_{1}-m_{2} & =m_{\text {restored }} \tag{4.12}\\
m_{1} & =-\left(\frac{\rho h_{1}^{3}}{12 \mu} \frac{\partial p_{1}}{6 x}\right)_{i-1 / 2}+\frac{u_{1}+u_{2}}{2}\left(\rho h_{1}\right)_{i-1 / 2} \\
& =-\frac{\rho}{12_{j}}\left(h_{1}^{3} e^{-\alpha p_{1}} \frac{\partial p_{1}}{\partial x}\right)_{i-1 / 2}+\rho \frac{u_{1}+u_{2}}{2}\left(h_{1}\right)_{i-1 / 2} \tag{4.13}
\end{align*}
$$

$$
\begin{align*}
& m_{2}=-\frac{\rho}{1 \mu_{1}}\left(h_{1}^{3} e^{-\alpha p_{1}} \frac{\partial p_{1}}{\partial x}\right)_{i+1 / 2}+\rho \frac{u_{1}+u_{2}}{2}\left(h_{1}\right)_{i+1 / 2} \tag{4.14}\\
& m_{\text {restored }}=\frac{\partial}{\partial t}\left[\rho\left(h_{1}\right)_{i}\left\{\frac{(\Delta x)_{i-1}+(\Delta x)_{i}}{2}\right\}\right]=0 \tag{4.15}
\end{align*}
$$

Combining Eqs. (4.12) to (4.15) and re-arranging, one obtains

$$
\begin{gather*}
\frac{1}{12 \mu_{s}}\left[\left(h_{1}^{3} e^{-\alpha p_{1}} \frac{\partial p_{1}}{\partial x}\right)_{i+1 / 2}-\left(h_{1}^{3} e^{-\alpha p_{1}} \frac{\partial p_{1}}{\partial x}\right)_{i-1 / 2}\right] \\
\quad=\frac{u_{1}+u_{2}}{2}\left[\left(h_{1}\right)_{i+1 / 2}-\left(h_{1}\right)_{i-1 / 2}\right] \tag{4.16}
\end{gather*}
$$

Thus p_{1}, the smooth-film pressure profile and h_{1}, the smooth-film thickness are functions of x only.

4.2.2.3 The Perturbed Reynolds Equation

The pressure distribution can be considered as the sum of the smooth-film pressure, P_{1} and the perturbed pressure, ϕ. Define

$$
\begin{equation*}
p=p_{1}+\phi \tag{4.17}
\end{equation*}
$$

Since p_{1} is a function of x only, the derivatives of p are:

$$
\begin{align*}
& \frac{\partial p}{\partial x}=\frac{\partial p_{1}}{\partial x}+\frac{\partial \phi}{\partial x} \tag{4.18}\\
& \frac{\partial p}{\partial y}=\frac{\partial \phi}{\partial y} \tag{4.19}
\end{align*}
$$

For a two-dimensional flow field, the principle of conservation of mass as applied to the (i, j) th grid as shown in Fig. (4.4) yields

$$
\begin{align*}
& {\left[\frac{(\Delta y)_{j-1}+(\Delta y)_{j}}{2}\right]\left(m_{1}-m_{2}\right)+\left[\frac{(\Delta x)_{i-1}+(\Delta x)_{i}}{2}\right]\left(m_{3}-m_{4}\right)} \\
& =\frac{\partial}{\partial t}\left\{\left(\rho h_{T}\right)_{i-1 / 2, j}\left[\frac{(\Delta y)_{j-1}+(\Delta y)_{j}}{2}\right] \frac{(\Delta x)_{i-1}}{2}\right. \\
& \left.+\left(\rho h_{T}\right)_{i+1 / 2, j}\left[\frac{(\Delta y)_{j-1}+(\Delta y)_{j}}{2}\right] \frac{(\Delta x)_{i}}{2}\right\} \tag{4.20}
\end{align*}
$$

where $\quad m_{I}=\left\{-\frac{\rho h_{T}^{3}}{12 \mu} \frac{\partial p}{\partial x}+\rho\left(\frac{u_{1}+u_{2}}{2}\right) h_{T}\right\}_{i-1 / 2, j}$

$$
\begin{equation*}
=\left\{-\frac{\rho h_{T}^{3}}{1 \mu_{s}} e^{-\alpha\left(p_{1}+\Phi\right)}\left(\frac{\partial p_{1}}{\partial x}+\frac{\partial \phi}{\partial x}\right)+\rho\left(\frac{u_{1}+u_{2}}{2}\right)\left(h_{1}+8\right)\right\}_{i-1 / 2, j} \tag{4.21}
\end{equation*}
$$

It is assumed that the value of $\alpha \phi$ is much smaller than unity such that $e^{-\alpha \phi}$ can be linearized as

$$
\begin{equation*}
e^{-\alpha \phi}=(1-\alpha \phi) \tag{4.22}
\end{equation*}
$$

by using Taylor's series expansion. Neglecting second order term, Eq. (4.21) can be re-written as

$$
\begin{equation*}
m_{1}=\left\{-\frac{\rho h_{T}^{3}}{12 \mu_{s}} e^{-\alpha p_{1}}\left(\frac{\partial p_{1}}{\partial x}+\frac{\partial \phi}{\partial x}-\alpha \phi \frac{\partial p_{1}}{\partial x}\right)+\rho\left(\frac{u_{1}+u_{2}}{2}\right)\left(h_{1}+\delta\right)\right\}_{i-1 / 2, j} \tag{4.23}
\end{equation*}
$$

Likewise, m_{2}, m_{3}, and m_{4} can be shown to be

$$
\begin{align*}
& m_{2}=-\left\{\frac{\rho h_{T}^{3}}{12 \mu_{s}} e^{-\alpha p_{1}}\left(\frac{\partial p_{1}}{\partial x}+\frac{\partial \phi}{\partial x}-\alpha \phi \frac{\partial p_{1}}{\partial x}\right)+\rho\left(\frac{u_{1}+u_{2}}{2}\right)\left(h_{1}+\delta\right)\right\}_{i+1 / 2, j} \tag{4.24}\\
& m_{3}=-\left\{\frac{\rho h_{T}^{3}}{12 \mu_{s}} e^{-\alpha p_{i}} \frac{\partial \phi}{\partial y}\right\}_{i, j-1 / 2} \tag{4.25}\\
& m_{4}=-\left\{\frac{\rho h_{T}^{3}}{12 \mu_{s}} e^{-\alpha p_{1}} \frac{\partial \phi}{\partial y}\right\}_{i, j+1 / 2} \tag{4.26}
\end{align*}
$$

Substituting Eqs. (4.23) to (4.26) into the 1eft-hand side of Eq. (4.20), one obtains

$$
\begin{align*}
& \rho\left[\frac{(\Delta y)_{j-1}+(\Delta y)_{j}}{2}\right]\left\{\left(\frac{1}{12_{j}}\right)\left[\left(h_{T}^{3} e^{-\alpha p_{1}} \cdot \frac{\partial \phi}{\partial x}\right)_{i+1 / 2, j}-\left(h_{T}^{3} e^{-\alpha p_{1}} \frac{\partial \phi}{\partial x}\right)_{i-1 / 2, j}\right]\right. \\
& \begin{array}{l}
-\left(\frac{1}{12 \mu_{s}}\right)\left[\left(h_{T}^{3} e^{-\alpha p_{1}} \alpha \phi \frac{\partial p_{1}}{\partial x}\right)_{i+1 / 2, j}-\left(h_{T}^{3} e^{-\alpha p_{1}} \alpha \phi \frac{\partial p_{1}}{\partial x}\right)_{i-1 / 2, j}\right]^{\prime} \\
\left.-\left(\frac{1}{12 \mu_{s}}\right)\left[\left(h_{1}^{3}-h_{T}^{3}\right) e^{-\alpha p_{1}} \frac{\partial p_{1}}{\partial x}\right)_{i+1 / 2, j}-\left(\left(h_{1}^{3}-h_{T}^{3}\right) e^{-\alpha p_{1}} \frac{\partial p_{1}}{\partial x}\right)_{i-1 / 2, j}\right]
\end{array} \\
& \left.-\left(\frac{u_{1}+u_{2}}{2}\right)\left[\frac{\delta_{i+1, j} j^{-\delta} i-1, j}{2}\right]\right\} \\
& +\rho\left[\frac{(\Delta x)_{i-1}+(\Delta x)_{i}}{2}\right]\left(\frac{1}{12_{\mu_{s}}}\right)\left[\left(h_{T}^{3} e^{-\alpha p_{1}} \frac{\partial \phi}{\partial y}\right)_{i, j+1 / 2}\right. \\
& \left.-\left(h_{T}^{3} e^{-\alpha P_{1}} \frac{\partial \phi}{\partial y}\right)_{i, j-1 / 2}\right] \tag{4.27}
\end{align*}
$$

With the relations

$$
\begin{equation*}
\frac{\partial h_{1}}{\partial t}=0 \tag{4.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial t} \delta\left(x-u_{2} t\right)=-u_{2} \frac{\partial \delta}{\partial x} \tag{4.29}
\end{equation*}
$$

the right-hand side of Eq. (4.20) can be re-written as

$$
\begin{equation*}
\rho\left[\frac{(\Delta y)_{j-1}+(\Delta y)_{j}}{2}\right]\left(-u_{2}\right)\left(\frac{{ }_{i+1, j} j^{-\delta_{i-1, j}}}{2}\right) \tag{4.30}
\end{equation*}
$$

Equating Eqs. (4.27) and (4.30) and simplifying, one obtains

$$
\begin{align*}
& {\left[(\Delta y)_{j-1}+(\Delta y)_{j}\right]\left\{\left[\left(h_{T}^{3} e^{-\alpha p_{1}} \frac{d \phi}{d x}\right)_{i+1 / 2, j}-\left(h_{T}^{3} e^{-\alpha p_{1}} \frac{d \phi}{d x}\right)_{i-1 / 2, j}\right]\right.} \\
& \left.\quad-\left[\left(h_{T}^{3} e^{-\alpha p_{1}} \alpha \phi \frac{d p_{1}}{d x}\right)_{i+1 / 2, j}-\left(h_{T}^{3} e^{-\alpha p_{1}}{ }_{\alpha \phi} \frac{d p_{1}}{d x}\right)_{i-1 / 2, j}\right]\right\} \\
& \quad+\left[(\Delta x)_{i-1}+(\Delta x)_{i}\right]\left[\left(h_{T}^{3} e^{-\alpha p_{1}} \frac{d \phi}{d y}\right)_{i, j+1 / 2}-\left(h_{T}^{3} e^{-\alpha p_{1}} \frac{d \phi}{d y}\right)_{i, j-1 / 2}\right] \\
& \quad=\left[(\Delta y)_{j-1}+(\Delta y)_{j}\right]\left\{\left[\left(h_{1}^{3}-h_{T}^{3}\right) e^{-\alpha p_{1}} \frac{d p_{1}}{d x}\right]_{i+1 / 2, j}\right. \\
& \left.\quad-\left[\left(h_{1}^{3}-h_{T}^{3}\right) e^{-\alpha p_{1}} \frac{d p_{1}}{d x}\right]_{i-1 / 2, j}+\sigma_{u_{s}}\left(u_{1}-u_{2}\right)\left[\frac{\delta_{i+1, j}-\delta_{i-1, j}}{2}\right]\right\} \tag{4.31}
\end{align*}
$$

Using the central difference approximation for the pressure gradients, Eq. (4.31)

$$
\begin{aligned}
& \text { is discretized to } \\
& {\left[(\Delta y)_{j-1}+(\Delta y)_{j-1}\right] \int_{i}\left[\frac{\left(h_{T}^{3} e^{-\alpha p_{1}}\right)_{i+1, j}+\left(h_{T}^{3} e^{-\alpha p_{1}}\right)_{i, j}}{2}\right]\left(\frac{\phi_{i+1, j}-\phi_{i, j}}{(\Delta x)_{i}}\right)}
\end{aligned}
$$

$$
-\left[\frac{\left(h_{T}^{3} e^{-\alpha p_{1}}\right)_{i, j}+\left(h_{T}^{3} e^{-\alpha p_{1}}\right)_{i-1, j}}{2}\right] \frac{\left(\phi_{i, j}-\phi_{i-1, j}\right)}{(\Delta x)_{i-1}}
$$

$$
-\left[\frac{\left(h_{T}^{3} e^{-\alpha p_{1}} \alpha \phi\right)_{i+1, j}+\left(h_{T}^{3} e^{-\alpha p_{1}} \alpha \phi\right)_{i, j}}{2}\right]\left[\frac{\left(p_{1}\right)_{i+1}-\left(p_{1}\right)_{i}}{(\Delta x)_{i}}\right]
$$

$$
\begin{equation*}
\left.+\left[\frac{\left(h_{T}^{3} e^{-\alpha p_{1}} \alpha \phi\right)_{i, j}+\left(h_{T}^{3} e^{-\alpha p_{1}} \alpha \phi\right)_{i-1, j}}{2}\right]\left[\frac{\left(p_{1}\right)_{i}\left(p_{1}\right)_{i-1}}{(\Delta x)_{i-1}}\right]\right\} \tag{4.32}
\end{equation*}
$$

$+\left[(\Delta x)_{i-1}+(\Delta x)_{i}\right]\left\{\left[\frac{\left(h_{T}^{3} e^{-\alpha P_{1}}\right)_{i, j+1}+\left(h_{T}^{3} e^{-\alpha p_{1}}\right)_{i, j}}{2}\right] \frac{\left(\phi_{i, j+1}-\phi_{i, j}\right)}{(\Delta y)_{j}}\right.$

$$
\begin{gathered}
-\left[\frac{\left.\left(h_{T}^{3} e^{-\alpha p_{1}}\right)_{i, j}+\left(h_{T}^{3} e^{-\alpha p_{1}}\right)_{i, j-1}\right]}{2} \frac{\left(\phi_{i_{2}, j}-\phi_{i_{2} j-1}\right)}{(\Delta y)_{j-1}}\right\} \\
=\left[(\Delta y)_{j-1}+(\Delta y)_{j}\right]\left\{\frac{\left.\left[\left(h_{1}^{3}-h_{T}^{3}\right) e^{-\alpha p_{1}}\right]_{i+1, j}+\left[\left(h_{1}^{3}-h_{T}^{3}\right) e^{-\alpha p_{1}}\right]_{i_{2}, j} \frac{\left[\left(p_{1}\right)\right.}{2}-\left(p_{i+1}\right)\right]}{(\Delta x)_{i}}\right.
\end{gathered}
$$

$$
-\frac{\left.\left[\left(h_{1}^{3}-h_{T}^{3}\right) e^{-\alpha p_{1}}\right]_{i, j}+\left(h_{1}^{3}-h_{T}^{3}\right) e^{-\alpha p_{1}}\right]_{i-1, j}}{2}\left[\frac{\left(p_{1}\right)_{i}-\left(p_{1}\right)}{(\Delta x)_{i-1}}\right]
$$

$$
\begin{equation*}
+6 \mu_{s}\left(u_{1}-u_{2}\right)\left(\frac{{ }_{i+1, j} j^{-8}{ }_{i-1, j}}{2}\right) \tag{4.32}
\end{equation*}
$$

After rearranging and the following non-dimensional variables are introduced:
$\Delta X=\Delta x / b^{\prime}, \quad \Delta Y=\Delta y / a^{\prime}, \quad Y=a^{\prime} / b^{\prime}, \quad H_{T}=h_{T} / h_{0}, \quad H_{1}=h_{1} / h_{0}, \quad \bar{c}_{1}=c_{1} / h_{0}$,
$\mathrm{X}=\mathrm{x} / \mathrm{b}, \quad \mathrm{X}_{3}=\mathrm{x}_{3} / \mathrm{b}, \quad \mathrm{Y}=\mathrm{y} / \mathrm{a}^{\prime}, \quad \overline{\mathrm{b}}=\mathrm{b}^{\prime} / \mathrm{b}, \quad \mathrm{p}_{1}=\mathrm{p}_{1} / \mathrm{p}_{\mathrm{Hz}}, \quad \Phi=\phi / \mathrm{p}_{\mathrm{Hz}}$,
$P_{H z}=P_{H z} / E^{\prime}, \quad G=\alpha E^{\prime}, \quad E^{\prime}=\left[\frac{1}{2}\left(\frac{1-v_{1}^{2}}{E_{1}}+\frac{1-v_{2}^{2}}{E_{2}}\right)\right]^{-1}, \quad \bar{\alpha}=\alpha p_{H z}$,
$U_{D}=\frac{\mu_{s}\left(u_{1}-u_{2}\right)}{2 E^{\prime} \cdot R}, \quad H_{0}=h_{0} / R, \quad C_{U D}=48 U_{D} / H_{0} \cdot \bar{b}$,
$\bar{\delta}=8 / h=c_{1} / h_{0}\left[\left(\frac{x-\dot{x}_{3}}{b^{\prime}}\right)^{2}+\left(\frac{y_{1}}{a^{\prime}}\right)^{2}-1\right]=\bar{C}_{1}\left[\left(\frac{X-X_{3}}{\bar{b}}\right)^{2}+(Y)^{2}-1\right]$
the governing equation becomes:
$\left[\frac{(\Delta Y)_{j-1}+(\Delta Y)}{(\Delta X)_{i-1}}\right]\left\{\left(H_{T}^{3} e^{-\bar{\alpha}_{1}}\right)_{i, j}+\left(H_{T}^{3} e^{-\bar{\alpha} p_{1}}\right)_{i-1, j}\right.$
$\left.+\bar{\alpha}\left(H_{T}^{3} e^{-\bar{\alpha} p_{1}}\right)_{i-1, j}\left[\left(p_{1}\right)_{i}-\left(p_{1}\right)_{i-1}\right]\right\} \Phi_{i-1, j}$

$$
\begin{align*}
& +\frac{1}{v^{2}}\left[\frac{(\Delta X)_{i-1}+(\Delta X)_{i}}{(\Delta Y)_{j-1}}\right]\left[\left(H_{T}^{3} e^{-\bar{\alpha} p_{1}}\right)_{i, j}+\left(H_{T}^{3} e^{-\bar{\alpha} P_{1}}\right)_{i, j-1}\right] \Phi_{i, j-1} \\
& +\left\{-\left[(\Delta Y)_{j-1}+(\Delta Y)_{j}\right]\left[\frac{\left(H_{T}^{3} e^{-\bar{\alpha} p_{1}}\right)_{i+1, j}+\left(H_{T}^{3} e^{-\bar{\alpha} p_{1}}\right)_{i, j}}{(\Delta X)_{i}}+\frac{\left(H_{T}^{3} e^{-\bar{\alpha} p_{1}}\right)_{i, j}+\left(H_{T}^{3} e^{-\bar{\alpha} p_{1}}\right)_{i-1, j}}{(\Delta X)_{i-1}}\right.\right. \\
& \left.+\bar{\alpha}\left(H_{T}^{3} e^{-\bar{\alpha} p_{1}}\right)_{i, j} \frac{\left(p_{1}\right)_{i+1}-\left(p_{1}\right)_{i}}{(\Delta X)_{i}}-\bar{\alpha}\left(H_{T}^{3} e^{-\bar{\alpha} p_{1}}\right)_{i, j} \frac{\left(p_{1}\right)-\left(p_{1}\right)_{i-1}}{(\Delta X)_{i-1}}\right] \\
& -\frac{1}{\gamma^{2}}\left[(\Delta X)_{i-1}+(\Delta X)_{i}\right]\left[\frac{\left(H_{T}^{3} e^{-\bar{\alpha} p_{1}}\right)_{i, j+1}+\left(H_{T}^{3} e^{-\bar{\alpha} p_{1}}\right)_{i, j}}{(\Delta Y)_{j}}\right. \\
& \left.\left.+\frac{\left(H_{T}^{3} e^{-\bar{\alpha} p_{1}}\right)_{i, j}+\left(H_{T}^{3} e^{-\bar{\alpha} p_{1}}\right)_{i, j-1}}{(\Delta Y)_{j-1}}\right]\right\} \Phi_{i, j} \\
& +\frac{1}{\gamma^{2}}\left[\frac{(\Delta \mathrm{X})_{i-1}+(\Delta \mathrm{X})_{i}}{(\Delta Y)_{j}}\right]\left[\left(H_{T}^{3} e^{-\bar{\alpha} p_{1}}\right)_{i, j+1}+\left(H_{T}^{3} e^{-\bar{\alpha} p_{1}}\right)_{i, j}\right]_{i, j+1} \\
& +\left[\frac{(\Delta Y)_{j-1}+(\Delta Y)_{j}}{(\Delta X)_{i}}\right]\left\{\left(H_{T}^{3} e^{-\bar{\alpha} p_{1}}\right)_{i+1, j}+\left(H_{T}^{3} e^{-\bar{\alpha} p_{1}}\right)_{i, j}\right. \\
& -\bar{\alpha}\left(H_{T}^{3} e^{-\bar{\alpha} p_{1}}\right)_{i+1, j}\left[\left(p_{1}\right){ }_{i+1}-\left(p_{1}\right)_{i}\right] j_{i+1, j} \\
& =\left[(\Delta Y)_{j-1}+(\Delta Y)_{j}\right]\left(\left\{\left[\left(H_{1}^{3}-H_{T}^{3}\right) e^{-\bar{\alpha} p_{1}}{ }_{-1+1, j}\right.\right.\right. \\
& \left.+\left[\left(H_{1}^{3}-H_{T}^{3}\right) e^{-\bar{\alpha} p_{1}}\right]_{i, j}\right\}\left[\frac{\left(p_{1}\right)_{i+1}-\left(p_{1}\right)_{i}}{(\Delta X)_{i}}\right]-\left\{\left[\left(H_{1}^{3}-H_{T}^{3}\right) e^{-\bar{\alpha} p_{1}}\right]_{i, j}\right. \\
& \left.\left.+\left[\left(H_{1}^{3}-H_{T}^{3}\right) e^{-\bar{\alpha} p_{1}}\right]_{i-1, j}\right\}\left[\frac{\left(p_{1}\right)-\left(p_{1}\right)}{(\Delta X)_{i-1}}\right]+C_{U D}\left(\bar{\delta}_{i+1, j}-\bar{\delta}_{i-1, j}\right)\right) \tag{4.33}
\end{align*}
$$

4.2.3 Method of Solution

In Eq. $(4,33), \Phi_{i-1, j}, \Phi_{i, j-1}, \Phi_{i, j}, \Phi_{i, j+1}, \Phi_{i+1, j}$ are the only unknowns. H_{1} and p_{1} considered as known are determined by the method outlined in [22] for the smooth lubricated contacts. Thus, Eq. (4.33) can be re-written in the following matrix form:

$$
\begin{equation*}
\left[A_{i}\right]\left\{\Phi_{i-1}\right\}+\left[B_{i}\right]\left\{\Phi_{i}\right\}+\left[c_{i}\right]\left\{\Phi_{i+1}\right\}=\left\{R_{i}\right\} \tag{4.34}
\end{equation*}
$$

where $\left[A_{i}\right]$ and $\left[c_{i}\right]$ are $M \times M$ diagonal square matrix; $\left[B_{i}\right]$ is a $M \times M$ tri-diagonal square matrix $;\left\{\Phi_{i-1}\right\},\left\{\Phi_{i}\right\},\left\{\Phi_{i+1}\right\}$ and $\left\{R_{i}\right\}$ are $M \times 1$ column matrix; M and N are the number of grids used in the x and y directions.

In prescribing the boundary conditions for Eq. (4.34), it is necessary to assume that the effect of the asperity on the pressure distribution at $\left|X-x_{3} / b^{\prime}\right| \geq 5$ or $\left|y / a^{\prime}\right| \geq 5$ is negligible. This assumption justifies the prescription of the contact. Thus the boundary conditions are $\Phi=0$ along $X-x_{3} / b^{\prime}= \pm 5$ and along $y / a^{\prime}= \pm 5$, or

$$
\begin{align*}
& \left\{\Phi_{1}\right\}=\left\{\Phi_{N}\right\}=0 \tag{4.35}\\
& \Phi_{i, j}=0 \quad \text { for } j=M
\end{align*}
$$

Along $y=0$ or $j=1$, the flow is considered to be symmetric, and this gives the following additional boundary condition,

$$
\begin{equation*}
\Phi_{i, j-1}=\Phi_{i, j+1} \quad \text { for } j=1 \tag{4.36}
\end{equation*}
$$

Eq. (4.34) is solved numerically by the Columnwise Matrix Inversion Method [25].

4.3 DEFORMED ASPERITY ON THE STATIONARY SURFACE

In the case of simple sliding of a smooth surface against a stationary asperity, the non-dimensional Reynolds equation and elasticity equation are respectively

$$
\begin{align*}
& \frac{\mathrm{dP}}{\mathrm{dX}}=\left(\frac{48}{\mathrm{H}_{\mathrm{o}}^{2}} ; \mathrm{U}-\frac{\mathrm{H}_{\mathrm{T}}-1}{\mathrm{H}_{\mathrm{T}}^{3}}\right) \tag{4.37}\\
& \mathrm{H}_{\mathrm{T}}=\mathrm{H}_{1}+\frac{\delta}{\mathrm{h}_{\mathrm{o}}} \tag{4.38}
\end{align*}
$$

In this case, δ is a function of x only. Thus, $\partial \delta / \partial t=0$. Therefore these coupled equations can be solved simultaneously using the same numerical scheme as described in [22]. ,The results are compared with those obtained by solving the perturbed Reynolds equation.

4.4 DISCUSSIONS OF RESULTS

The results of the perturbed pressure Φ are presented as Δ_{s}, which is defined as

$$
\begin{equation*}
\left.\Delta_{S}=\Phi_{\max }-\Phi_{\min }\right) \quad \text { at } j=1 \tag{4.39}
\end{equation*}
$$

where the position $\mathrm{j}=1$ is at the centerline of the asperity along the sliding direction. At this position, the effect of asperity on Φ is most severe. Since Φ is a function of $P_{H z}, G, h_{o} / R, \bar{b}, \gamma, c_{1} / h_{o}, x_{3}$, and the slide to roll ratios, the effects of these variables on Δ_{s} are studied separately.
(1) Effect of ${ }^{h}{ }^{g} / R$

With $\mathrm{P}_{\mathrm{Hz}}=0.003, \mathrm{G}=100, \mathrm{X}_{3}=-0.5, \overline{\mathrm{~b}}=1 / 32, \mathrm{c}_{1} / \mathrm{h}_{\mathrm{o}}=0.3$, the results of h_{0} / R versus Δ_{s} are shown in Fig。(4.6). In the case of 2-D elastic asperity, the magnitude of Δ_{S} increases as h_{o} / R increases from 1.0×10^{-6} to about $h_{o} / R=5 \times 10^{-6}$ (approximate) after which the magnitude of Δ_{S} decreases with further increase in h_{0} / R. This phenomenon is attributable to the local elastic effect of the asperity. In general, one might imagine that the effect of roughness on Φ should be much more severe as the ratio h_{o} / R becomes smaller. However, in an elastohydrodynamic contact,
the elastic effect becomes more significant as h / R becomes smaller. Thus, for a fixed ratio of c_{1} / h_{0}, the elastic effect tends to flatten out the asperity and produces a trend which shows a decrease in Δ_{s} as h / R decreases. On the other hand, for the 3D rigid asperity analysis the elastic effect is not accounted; therefore, the magnitude of Δ_{s} consistently increases with a decrease in h_{0} / R.

Based on the results shown in Fig. 4.6, it appears that further comparisons between the 2D-elastic asperity and 3 -rigid asperity results are more meaningful for values of h_{o} / R greater than 1.0×10^{-5}, since below this value no good agreement is expected.

(2) Effect of P_{Hz}

In hydrodynamic lubrication, with a rigid asperity, it is expected that the effect of asperity on Δ_{s} will become more severe as the load increases. However, for EHD contacts, this simple trend is only expected to be true if the load parameter $P_{H z}$ is sufficiently small. For very heavy loads, the elastic effect will iron out the asperity and this may decrease the magnitude of Δ_{s}. Such trend is demonstrated In Fig. (4.7). In the 2D-elastic asperity curve, the magnitude of Δ_{s} increases with $P_{H z}$ until $P_{H z}=0.0045$. Beyond this point, the magnitude of Δ_{s} flattens out and shows a tendency to decrease as load further increases. On the other hand, the 3D-rigid asperity curve shows a steady increase in Δ_{S} with $P_{H z}$ even for very heavy loads. The lack of agreement at these heavy loads is definitely due to the local elastic effect.

Referring to Fig. (4.8), with the ratio h_{0} / R changing from 10^{-5} to 10^{-6}, the discrepency between the $3 \mathrm{D}-\mathrm{rigid}$ asperity results and the $2 \mathrm{D}-\mathrm{elastic}$ asperity is greatly enlarged. In this regime of extremely thin film, the local elastic effect is so overwhelming that one cannot expect any validity of the 3D-rigid asperity perturbation analysis.

(3) Effect of G

The effect of pressure-viscosity dependence is examined by varying G from 100 to 500 for $P_{H z}=0.003, h_{0} / R=10^{-5}, X_{3}=-0.5, \bar{b}=1 / 32$, and $c_{1} / h_{0}=0.3$. The reason for using a mild pressure-viscosity dependence is because recent studies in EHD traction has indicated that the effective pressure-viscosity coefficient within the Hertzian conjunction is on1y a small fraction of those measured under static equilibrium. For this reason, it is believed that values of G around 500 should not be unreasonable to represent the effective pressure-viscosity dependence in the conjunction. It can be readily seen in Fig. 4.9 that the magnitude of Δ_{s} increases with G for both 3D-rigid asperity and 2D-elastic asperity cases. However, the rigid-asperity model is slightly more influenced by G than the elastic asperity model. It is also interesting to note that the pressure perturbation Δ_{s} is depending exponentially on the pressure-viscosity coefficient. This is somewhat expected since pressure is directly portionally to the viscosity.
(4) Effect of X_{3}

With $P_{H z}=.003, h_{o} / R=10^{-5}, G=100, \bar{b}=1 / 32, c_{I} / b_{0}=0.3$, Fig. (4.10) shows the relation between Δ_{s} and X_{3}, the location of the center of the asperity. Qualitatively, the effects on Δ_{s} due to rigid and elastic asperity have the same trend. The magnitude of Δ_{s} increases as X_{3} moving toward the center of the contact. This trend is certainly expected, since a higher pressure level inevitably would lead to a stronger asperity interaction, hence higher pressure perturbation.

(5) Effect of $\overline{\mathrm{b}}$

Fig. (4.11) shows the effect of \bar{b}, asperity size, on Δ_{s} for $P_{H z}=0.003$, $h d^{\prime}=10^{-5}, G=100, X_{3}=-0.5, c_{1} / h_{0}=0.3$. From the two curves shown, a similar trend is seen to exist in the relation between Δ_{s} and the asperity size for both
the rigid model and the elastic model. In both cases, Δ_{s} increases with the asperity size; however, the increase in Δ_{s} is much larger in the case of rigid asperity......... model than that in the elastic-asperity model.

(6) Effect of c_{1} / h_{0}

With $P_{H z}=.003, h_{o} / R=10^{-5}, G=100, X_{3}=-0.5, \bar{b}=1 / 32$, Fig. (4.12) shows the effect of asperity height, c_{1} / h_{0}, on Δ_{s} for both 3D-rigid-asperity and 2D-elastic asperity models. It is readily seen that the two curves almost coincide with each other and the magnitude of Δ_{s} for both cases increases with c_{1} / h_{0}. As c_{1} / h_{0} becomes larger, the two curves begin to divert slightly.;

(7) Effect of Y

As defined earlier, γ is the ratio of half of the asperity length to half of the asperity width, known as the ellipticity ratio of the asperity. As the 2D elastic asperity model only describes straight asperity ridges, Fig. (4.13) only shows the results for the 3D-rigid-asperity model. It is seen that the magnitude of Δ_{s} increases with v as expected. When γ is less than $1, \Delta_{s}$ increases sharply with a small increase in γ. As γ becomes larger the change of Δ_{s} becomes much more gentle. In fact, for $\gamma>5$, the change of γ is practically negligible.

(8) Effect of S1ide to Roll Ratio S

Fig. (4.14) shows the effect of S on Δ_{s} for $\mathrm{P}_{\mathrm{Hz}}=.003, \mathrm{G}=100, \mathrm{~h}_{\mathrm{o}} / \mathrm{R}=10^{-5}$, $X_{3}=-0.5, \bar{b}=1 / 32$ and $c_{1} / h_{0}=0.3$. For $\gamma=1,2$ and $10, \Delta_{S}$ decreases when S inereases from -2.0 to 0.3 , and then increases when S increases from 0.4 to 2.0. These trends show that between $S=0.3$ and 0.4 , the perturbed pressure Δ_{s} reaches a minimum. This phenomenon can be explained by Fig. (4.15) in which the perturbed pressures Φ around the asperity center are plotted for $S=0.3$ and $S=0.4$. In the case of $S=0.3$, the value of Φ is mostly negative for $x / b^{\prime} \leq 0$, and positive for $x / b^{\prime} \geq 0$.

In the case of $S=0.4$, the pressure exhibits an opposite trend. Thus, one would expect that between $S=0.3$, and 0.4 , the trend for Φ begins to reverse itself.-

With $P_{H z}, h_{o} / R, X_{3}, \bar{b}, c_{1} / h_{o}$ and γ having the same values as those used for Fig. (4.14), Fig. (4.16) shows the effect of G on S. For $G=100$ and 500 , the qualitative trends of Δ_{S} versus S are the same. However, for $G=100$, the minimum Δ_{s} is located between $S=0.3$ and 0.4 , whereas, for $G=500$, the minimum Δ_{S} is shifted to a position between $S=0.1$ and 0.2 . Thus when the magnitude of G is increased, the minimum Δ_{s} is shifted toward the asperity center. This agrees very well with Lee and Cheng's [5] results in which the G value is equal to 3180 , the perturbed pressure is negligibly small when $S=0$.

The pressure profiles obtained from the smooth film theory and the perturbation theory are compared in Fig. (4.17). Again, it shows that in the case of pure rolling $(S=0)$, the perturbed pressure can be neglected. For $|S|=2$, the perturbed pressure is relatively more important.

4.5 CONCLUS IONS

The perturbed pressure distribution around an ellipsoidal asperity tip within an EHD line contact can be calculated by solving the perturbed Reynolds equation based on the assumption of a rigid asperity. The magnitude of the perturbed pressure Δ_{s}, was found to be a function of the following dimensionless variables: The Hertzian pressure, $P_{H z}$, the smooth film center film thickness h_{o} / R, the pressure viscosity parameter G, the position of the asperity center X_{3}, the size of the asperity \bar{b}, the height of the asperity c_{1} / h_{o}, the ellipticity ratio γ and the slide to roll ratio S. Δ_{S} was shown to increase with an increase of $P_{H z}, G, \bar{b}, c_{1} / h_{0}, \gamma$, or X_{3}. However, it decreases as h_{0} / R increases. The manner in which Δ_{s} varies with S is dependent upon the pressure viscoisty parameter G. For a large G, Δ_{s} is at its minimum when S approaches zero (pure rolling condition); it increases as the magnitude of S increases. For a small G, the value of S at which Δ_{S} reaches a minimum shifts from zero to some small positive values.

A comparison was made between the results obtained by the perturbation analysis based on an ellipsoidal asperity for $\gamma=10$ and $S=2$, and those obtained by the 2D asperity analysis. The comparison indicated that the perturbation analysis which ignored the local elastic effect yielded a very good approximation on the magnitude of the pressure fluctuation for certain cases, provided that $h_{0} / R \geq 10^{-5}$, $P_{H z} \leq 0.003, G \approx 100, c_{1} / h_{0} \leq 0.3$ and $\bar{b} \approx 1 / 32$. Beyond these 1 imitations, the perturbation analysis would over-estimate the pressure fluctuation.
(a)

(b)

Figure 4-1 Two Lubricated Rollers and the Equivalent Roller-Plane System
(a)

(b)

Figure 4-2 A Single Ellipsoidal Rigid Asperity in an EHD Contact

Figure 4-3 One-Dimensional Grids for Smooth Contact

Figure 4-4 Two-Dimensional Grids for Rough Contact

Figure 4-5 Grid Spacing

Fig. 4-6 The Effect of the Nominal EHD Center Film Thickness, h_{0} / R, on the Double Amplitue of the Perturbed Pressure, $\Delta_{s}=\Phi_{\text {max }}-\Phi_{\text {min }}$.

$$
\begin{aligned}
& \begin{array}{ll}
\mathrm{h}_{\mathrm{O}} / \mathrm{R} & =10^{-5} \\
\mathrm{G} & =100 \\
\mathrm{X}_{3} & =-0.5 \\
\overline{\mathrm{~b}} & =1 / 32 \\
\mathrm{c}_{1} / \mathrm{h}_{\mathrm{O}} & =0.3
\end{array} \\
& \text { ——3D-RIGID ASPERITY, } Y=10, S=2 \\
& \text { — - - 2D-ELASTIC ASPERITY }
\end{aligned}
$$

Fig. 4-7 The Effect of the Normalized Hertzian Pressure, $\mathrm{P}_{\mathrm{Hz}}=\mathrm{p}_{\mathrm{Hz}} / \mathrm{E}^{\prime}$, on $\Delta_{\mathrm{s}} \mathbf{\Sigma}_{\text {maz }}$ - $\Phi_{\text {mir }}$, for $\mathrm{h}_{\mathrm{o}} / \mathrm{R}=10^{-5}$

Fig. 4-8 The Effect of the Normalized Hertzian Pressure, $\mathrm{P}_{\mathrm{Hz}}=\mathrm{p}_{\mathrm{Hz}} / \mathrm{E}^{\prime}$, on $\Delta_{s}=\Phi_{\text {max }}-\Phi_{\text {min }}$, for $\mathrm{h}_{\mathrm{o}} / \mathrm{R}=10^{-6}$

Fig. 4-9 The Effect of the Pressure Viscosity Parameter, $G=\alpha^{\prime}$, on $\Delta_{S}=\Phi_{\text {min }}-\Phi_{\text {min }}$.

Fig. 4-10 The Effect of the Position of the Asperity Center, X_{3}, on
$\Delta_{s}=\Phi_{\text {max. }}-\Phi_{\min }$

Fig. 4-11 The Effect of the Asperity Size, $\overline{\mathrm{b}}=\mathrm{b}^{\prime} / \mathrm{b}$, on $\Delta_{5}=\Phi_{\text {max }} \boldsymbol{\Phi}_{\text {min }}$

Fig. 4-12 The Effect of the Asperity Height, c_{1} / h_{0}, on $\Delta_{s}=\boldsymbol{\Phi}_{\text {max }}$, $\boldsymbol{\Phi}_{\text {min }}$

Fig. 4-13 The Effect of the Ellipticity Ratio, $\gamma=a^{\prime} / b^{\prime}$, on $\Delta_{S}=\Phi_{\text {max. }}-\Phi_{\text {min }}$

Fig. 4-14 The Effect of the Slide to Roll Ratio, $S=2\left(u_{1}-u_{2}\right) /\left(u_{1}+u_{2}\right)$,
 Pressure Viscosity Parameter, $\alpha^{\prime} E^{\prime}=100$

Fig. 4-15 $\begin{aligned} & \text { The Perturbed Pressure, } \Phi \text {, Around the Tip of a Three- } \\ & \text { dimensional Rigid Asperity }\end{aligned}$ dimensional Rigid Asperity

Fig. 4-17 The Smooth-Film and the Perturbed Pressure Profiles for a Three-dimensional Rigid Asperity

CHAPTER V

THE EFFECT OF SINUSOIDAL WAVINESS ON THE PRESSURE

FLUCTUATION WITHIN THE HERTZIAN CONTACT

5.1 Introduction

In the previous chapter, the emphasis has been placed on the pressure perturbation around a single asperity. Such analysis with a single asperity is useful only in determining qualitatively the effects of asperity geometry, lubricant property, speed, and load upon the perturbed pressure amplitude; but it is not suitable in making quantitative predictions of pressure fluctuations within these contacts. In order to simulate the effect of continuous transverse ridges on the pressure fluctuation in an elastohydrodynamic contact, one may assume these ridges can be represented by a series of sinusoidal waviness.

In the case the surface roughness is located on the stationary surface only, the pressure and deformation profiles become time-independent, and one can modify the method described in [22] to solve for the compatible pressure and film thickness profiles. The analysis in this chapter is confined to seek the EHD performance at the inlet of a Hertzian contact with a sinusoidal roughness on the stationary surface.

5.2 Mathematical Formulation

The roughness model is assumed to be continuous transverse ridges which can be represented by a sine wave on the stationary side of the contact. Thus the asperity height δ, is a function of x only. Therefore one would obtain the relations

$$
\begin{equation*}
\bar{\delta}=c_{1} / h_{\circ} \sin (2 n \pi x) \tag{5.1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \bar{\delta}}{\partial t}=0 \tag{5.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \overline{8}=8 / h_{0} \\
& n=\frac{1}{4} \times \frac{1}{b^{\prime} / b} \quad \text { or }=\frac{1}{4 \bar{b}} \\
& x=x / b \\
& h=\text { center film thickness of the smooth-film EHD contact } \\
& c_{1}=\text { maximum asperity height } \\
& b^{\prime}=\text { half of the asperity width } \\
& b=\text { half of the Hertzian contact width } \\
& x=\text { coordinate axis along the sliding direction }
\end{aligned}
$$

The Reynolds equation and the elasticity equation are respectively

$$
\begin{align*}
& \frac{d P}{d X}=\frac{48}{H_{0}^{2}} U \bar{\mu}\left(\frac{H_{T}-1}{H_{T}{ }^{3}}\right) \tag{5.3}\\
& H_{T}=H_{1}+\overline{8} \tag{5.4}
\end{align*}
$$

$$
\begin{equation*}
H_{1}=1+\frac{16 P_{H z}^{2}}{H_{0}^{2}}\left(\frac{X^{2}}{2}-\frac{1}{\pi} \int_{-\infty}^{X_{f}} P(\bar{\xi}) \ln \frac{|\bar{\xi}-X|}{|\bar{\xi}|} d \bar{\xi}\right) \tag{5.5}
\end{equation*}
$$

where $\quad \mathrm{P}=\mathrm{p} / \mathrm{p}_{\mathrm{Hz}}, \quad \mathrm{H}_{0}=\mathrm{h}_{0} / \mathrm{R}, \quad \mathrm{R}=\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}\right)^{-1}$,

$$
\begin{array}{ll}
U=\frac{\mu_{s}\left(u_{1}+u_{2}\right)}{2 E^{\prime} R}, \quad H_{T}=h_{T} / h_{0}, \quad h_{T}=h_{1}+\delta, \quad \bar{\mu}=\frac{\mu_{1}}{\mu_{s}} \\
P_{H z}=P_{H z} / E^{\prime}, & E^{\prime}=\left[\frac{1}{2}\left(\frac{1-v_{1}^{2}}{E_{1}}+\frac{1-v_{2}^{2}}{E_{2}}\right)\right]^{-1}, \\
\bar{\xi}=\xi / b, & G=\alpha E^{\prime}
\end{array}
$$

Using the same numerical scheme stated in $[22], P(X), H_{T}(X)$ and U are solved for a given set of non-dimensional variables, namely nominal center film thickness h_{o} / R, Hertzian pressure $P_{H z}$, pressure viscosity parameter G, maximum asperity height c_{1} / h_{o} and asperity width $b^{\prime} / b_{\text {. }}$

5.3 Discussions of Results

The effect of the pressure viscosity parameter G, the maximum asperity height c_{1} / h_{o}, the asperity width b^{\prime} / b, the nominal center film thickness h $/ R$, and the Hertzian pressure $P_{H z}$, on the magnitude of the perturbed pressure, Δ_{S}, (which is defined as the difference between the maximum and the minimum pressure ripples deviated from the nominal smooth-film pressure profile), and the actual pressure distribution will be discussed in the following sections.

5.3.1 The Effect of Pressure Viscosity Parameter G

For $\mathrm{P}_{\mathrm{Hz}}=0.003, \mathrm{~h}_{\mathrm{o}} / \mathrm{R}=10^{-5}, c_{1} / h_{\mathrm{o}}=0.3$ and $\mathrm{n}=2\left(\mathrm{~b}^{\prime} / \mathrm{b}=1 / 8\right) . \quad$ Fig. (5.1) shows the effect of G on Δ_{s}. Similar to the results obtained for the single asperity ridge in an EHD contact, as discussed in Chapter IV, the magnitude of Δ_{S} increases with G for this case with a waviness sur-
 b^{\prime} / b, the effect of G on the pressure profile is shown in Fig. (5.2). As expected, the pressure fluctuation from the nominally smooth-film pressure profile is more pronounced when the value of G is larger and within the Hertzian contact zone. Since G represents a significant parameter, the effects of other parameters on Δ_{S} are compared in the subsequent sections for $G=100$ and $G=1,000$. An attempt was made for cases with G greater than 1,000 , some of the solutions failed to converge.

5.3.2 The Effect of c_{1} / h_{0}

The asperity interaction will be more severe when the amplitude of the asperity is larger. This phenomenon has been shown earlier in the single asperity-ridge analysis and is exhibited again here in Fig. (5.3) for the case of wavy surface roughness with $P_{H z}=0.003, h_{0} / R=10^{-5}$, and $\mathrm{n}=2\left(\mathrm{~b}^{\prime} / \mathrm{b}=1 / 8\right)$. For both cases with $\mathrm{G}=100$ and 1,000 , the magnitude of the perturbed pressure increases with the ratio c_{1} / h_{0}. This phenomenon can also be observed in Fig. (5.4) with $G=100$ and Fig. (5.5) with $G=1,000$ in which the perturbed pressure profiles are shown.

5.3.3 The Effect of n

For $P_{H z}=.003, h_{0} / R=10^{-5}$ and $c_{1} / h_{0}=0.3$, Fig. (5.6) shows the effect of n on the magnitude of the perturbed pressure Δ_{S}, for both $G=100$ and 1,000. It seems that the two curves shown here do not have the same qualitative trend. However, it is believed that the further increase of n for the case with $\mathrm{G}=1,000$ will decrease the magnitude of Δ_{s} due to the elastic effect, so that the shape of the curve in this case will be similar to that with $G=100$.

Let's recall that $n=1 / 4 \times b / b$ '. Thus increasing the value of n implies the closer the distance between the center of each individual asperity ridge and the center of the EHD contact. Therefore the effect of n actually consists of the effects of elastic deformation, the ratio b^{\prime} / b and the distance between the individual asperity center and the contact center.

The perturbed pressure profiles for $G=100$ and 1,000 , due to the effect of n, are shown in Figs. (5.7) and (5.8) respectively. The results obtained for these two cases are the same qualitatively. For
$G=1,000$ in which the elastic effect is more severe, the magnitude of the pressure ripple deviated from the nominally smooth-film pressure profile is much larger than those with $G=100$.

5.3.4 /R Effect

The effect of h_{o} / R on the magnitude of the perturbed pressure Δ_{S}, for both $G=100$ and 1,000 are shown in Fig. (5.9). In these examples, the values of $P_{H z}, c_{1} / h_{0}, n$ and b / b are $0.003,0.3,2$ and $1 / 8$ respectively. It is observed that the magnitude of Δ_{s} increases with the ratio h_{0} / R. This increase is larger when the magnitude of G is larger.

In Chapter IV, it has been shown that the magnitude of Δ_{s} decreases with the increase of h_{0} / R when there is a single 3D rigid asperity within the contact zone. This opposing trend between the case of a single 3D rigid asperity and continuous elastic asperities can be explained in the following manner:

In the case of sinusoidal elastic asperities, the pressure amplitude is reduced by the local elastic deformation of the asperity. If c_{1} / h_{0} is held constant, the reduction in pressure due to local elastic deformation becomes much greater as h_{0} / R decreases, because at a smaller h_{0} / R, it requires only a very small pressure amplitude to flatten out the asperity. This phenomenon of elastic effect is best illustrated by Fig. (5.10) which shows the perturbed pressure and surface profiles for $h_{0} / R=10^{-5}, 5 \times 10^{-6}$ and 10^{-6} respectively, for the sinusoidal elastic asperities with $G=100$. The shapes of these perturbed pressure and surface profiles are consistent with one another. However, the smaller the h_{0} / R, the more the asperity being flattened out. For the case of a 3D rigid asperity, the effect of local elastic deformation is ignored, and thus the opposing trend is found.

The perturbed pressure and surface profiles for the sinusoidal elastic asperities with $G=1,000$ are shown in Fig. (5.11). The results for both $G=100$ and 1,000 are shown to have the same characteristics and the magnitude of Δ_{S} is larger with $G=1,000$ as expected.
5.3.5 $\quad \mathrm{P}_{\mathrm{Hz}}$ Effect

For $h_{0} / R=10^{-5}, c_{1} / h_{0}=0.3, n=2$ and $b^{\prime} / b=1 / 8$, the results of the magnitude of the perturbed pressure Δ_{s}, versus the nominal value of the maximum Hertzian pressure P_{Hz}, are shown in Fig. (5.12). It is readily seen that, for both cases with $G=100$ and 1,000 , the increase in P_{Hz} results in a decrease in Δ_{S}. This phenomenon is due to the reduction of the pressure amplitude caused by the local elastic deformation of the asperity. The larger the P_{Hz}, the easier the asperity being flattened, and thus the smaller the Δ_{s}.

The perturbed pressure profiles are shown in Figs. (5.13) and (5.14) respectively. The results for $G=100$ and 1,000 are found to have the same trend qualitatively. As expected, the magnitude of Δ_{s} is larger in the case of $G=1,000$. In addition the perturbed surface profiles for the case of $G=100$ as shown in Fig. (5.13) illustrates the effect of the local elastic deformation of the asperity as explained previously. It tells that the larger the P_{Hz}, the more severe the asperity being deformed.

5.4 CONCLUS IONS

In the case of the simple sliding of a smooth surface against a stationary rough one, the magnitude of the pressure deviation from the nominally smooth-film profile and the perturbed pressure profile in the inlet of an elastohydrodynamic contact, can be determined quantitatively when the undeformed rough surface profile is given.

In the examples given in this chapter, the undeformed rough surface profile is simulated by continuous transverse ridges represented by a series of sinusoidal waviness. The effect of the following nondimensional parameters on the magnitude of the pressure fluctuation Δ_{s} and the perturbed pressure profile are obtained: the pressure viscosity parameter G, the maximum height of the asperity c_{1} / h_{0}, the number of wave cycles within the contact zone, n, (which in turn determines the width of the asperity, b^{\prime} / b), the nominal smooth-film center film thickness h_{0} / R and the Hertzian pressure $P_{H z}$.

The effects of G and c_{1} / h_{0} on the magnitude of Δ_{s} for this case with a waviness surface profile have the same characteristics compared to those obtained for the single asperity ridge in an EHD contact as presented in Chapter IV. Namely, the magnitude of Δ_{s} increases when the magnitude of G or c_{1} / h_{0} increases.

The results of Δ_{s} versus $P_{H z}$ and h / R are found to be consistent for both $G=100$ and 1,000 . The magnitude of Δ_{S} decreases as the magnitude of P_{Hz} or $\mathrm{h}_{\mathrm{o}} / \mathrm{R}$ becomes larger. These results for the waviness surface profile have the opposing trend when compared to those obtained by the 3D rigid asperity analysis. The reason for the opposing trend is due to the pressure reduction caused by the local elastic deformation of the asperity for the waviness surface profile, whereas the effect of local elastic deformation is ignored for a 3D rigid asperity.

The effect of the number of wave cycles within the contact zone on the magnitude of the perturbed pressure Δ_{s} is found to be very complicated. The local elastic effect, the ratio b^{\prime} / b, and the distance between each individual asperity center and the contact center are Important factors affecting the magnitude of Δ_{s} caused by changing the magnitude of n.

$$
\begin{aligned}
\mathrm{P}_{\mathrm{HZ}} & =0.003 \\
\mathrm{~h}_{\mathrm{o}} / \mathrm{R} & =10^{-5} \\
\mathrm{c}_{1} / \mathrm{h}_{\mathrm{o}} & =0.3 \\
\mathrm{n} & =2
\end{aligned}
$$

Fig. 5-1 The Effect of the Pressure Viscosity Parameter, $G=\alpha E^{\prime}$, on the Double Amplitude of the Perturbed Pressure

$$
\begin{aligned}
\mathrm{P}_{\mathrm{HZ}} & =0.003 \\
\mathrm{~h}_{\mathrm{o}} / \mathrm{R} & =10^{-5} \\
\mathrm{n} & =2
\end{aligned}
$$

Fig. 5-3 The Effect of the Asperity Height to Film Thickness Ratio, c_{1} / h_{0}, on $\Delta_{5}=\Phi_{\text {max. }}-\Phi_{\text {min. }}$

$$
P_{H Z}=0.003, \quad h_{0} / R=10^{-5}, \quad G=100, \quad n=2
$$

Smooth-Film Pressure Profile

$$
\begin{aligned}
& \ldots c_{1} / h_{0}=0.1 \\
& c_{1} / h_{0}=0.2 \\
& c_{1} / h_{0}=0.3
\end{aligned}
$$

Fig. 5-4 The Effect of the Asperity Height to Film Thickness Ratio, c_{1} / h_{o}, on the Perturbed Pressure Profiles for $E^{\prime}=100$

$$
P_{H Z}=0.003, \quad h_{0^{\prime}} R=10^{-5}, \quad G=1,000, \quad n=2
$$

Smooth-Film Pressure Profile

$\ldots-. . . c_{1} / h_{0}=0.1$
$-c_{1} / h_{0}=0.2$
-..... $c_{1} / h_{0}=0.3$

91

$$
P_{H Z}=0.003, \quad h_{0} / R=10^{-5}, \quad c_{1} / h_{0}=0.3
$$

Fig. 5-6 The Effect of the Number of Wave Cycles, n, on $\Delta_{s}=\Phi_{\text {max }}-\Phi_{\text {min }}$.

$$
P_{H Z}=0.003, \quad h_{0} / R=10^{-5}, \quad G=100, \quad c_{1} / h_{0}=0.3
$$

Smooth-Film Pressure Profile

—......... $n=1$
$\ldots n=2$
$\ldots-n=4$

Fig. 5-7 The Effect of the Number of Wave Cycles, n, on the Perturbed Pressure Profiles for Pressure Viscosity Parameter, ${ }^{(E \prime}=100$

A_{1}

Fig. 5-8 The Effect of n, on the Perturbed Pressure Profiles for Pressure Viscosity Parameter, $\alpha^{\prime} E^{\prime}=1000$

Fig. 5-9 The Effect of the Dimensionless Center Film Thickness, h_{o} / R, on $\Delta_{s}=\Phi_{\text {max. }}-\boldsymbol{\Phi}_{m i m}$.

$\begin{array}{ll}\text { Fig. 5-10 } & \begin{array}{l}\text { The Effect of the Dimensionless Center Film Thickness, } \\ \text { on the Perturbed Pressure Profiles for } \alpha_{0} / R\end{array}=100\end{array}$

$$
\begin{aligned}
& h_{0} / R=10^{-5}, \quad c_{1} / h_{0}=0.3, \quad n=2 \\
& -G=1,000 \\
& G-G=100
\end{aligned}
$$

Fig. 5-12 The Effect of the Normalized Hertzian Pressure, $\mathrm{P}_{\mathrm{Hz}}=\mathrm{P}_{\mathrm{Hz}} / \mathrm{E}^{\prime}$,
on $\Delta_{5}=\Phi_{\text {max. }}-\Phi_{\text {min. }}$.

Fig. 5-13 The Effect of the Normalized Hertzian Pressure, $\mathrm{P}_{\mathrm{Hz}}=\mathrm{p}_{\mathrm{Hz}} / \mathrm{E}^{\prime}$,
on the Perturbed Pressure and Film Profiles for $\alpha E^{\prime}=100$

Fig. 5-14 The Effect of the Normalized Hertzian Pressure, $P_{1}{ }^{H z}=P_{H z}$,
on the Perturbed Pressure Profiles for $\alpha E^{\prime}=1000$

REFERENCES

1. Citron, S. J., "Slow Viscous Flow Between Rotating Concentric Infinite Cylinder With Axial Roughness," K. App1. Mech., Trans. ASME, Vol. 29, Ser. E (1962), p. 188.
2. Burton, R. A., "Effect of Two-Dimensional, Sinusoidal Roughness on the Load Support Characteristics of a Lubricant Film," J. Basic Eng., Trans. ASME, Ser. D, 85, (1963), p. 258.
3. Davies, M. G., "The Generation of Pressure Between Rough, Fluid Lubricated, Moving, Deformable Surface," Lub. Engineering, 19, (1963), p. 246.
4. Fowles, P. E., "The Application of Elastohydrodynamic Lubrication Theory to Individual Asperity-Asperity Collisions," Trans, ASME, J. of Lub. Tech., (July 1969), p. 464.
5. Lee, K., and Cheng, H. S., "The Effect of Surface Asperity on the Elastohydrodynamic Lubrication," NASA Report No. CR-2195, (February 1973).
6. Tseng, S. T., and Saibel, E., "Surface Roughness Effect on Slider Lubrication," ASLE Trans, 10, (1967), p. 334.
7. Christensen, H., "Stochastic Models for Hydrodynamic Lubrication of Rough Surfaces," Proc. Instn. Mech. Engrs., Tribology Group, Vol. 184, Pt. 1, 55, (1969-70), p. 1013.
8. Christensen, H., "A Theory of Mixed Lubrication," Proc. Instn. Mech. Engrs., Tribology Group, Vol. 186, 41, (1972), p. 421.
9. Christensen, H., and Tonder, K_{0}, "The Hydrodynamic Lubrication of Rough Bearing Surfaces of Finite Width," ASME-ASLE Lub. Conf., Paper No. 70-Lub-7, Cincinnati, Ohio, Oct. 12-15, 1970.
10. Tallian, T. E., "The Theory of Partial Elastohydrodynamic Contacts," Wear, 21, (1972), p. 49.
11. Johnson, K. L., Greenwood, J. A., and Poon, S. Y., "A Simple Theory of Asperity Contact in Elastohydrodynamic Lubrication," Wear, 19, (1972), p. 91.
12. Thompson, R. A., and Bocchi, W., "A Model for Asperity Load Sharing in Lubricated Contacts," ASLE, 71LC-9, p. 67.
13. Greenwood, J. A., and Tripp, J. H., "The Contact of Two Nominally Flat Rough Surfaces," Proc. Instn. Mech. Engrs., Tribology Group, Vol. 135, 48/71, (1970-71), p. 625.
14. Dowson, D., and Higginson, G. R., "Elastohydrodynamic Lubrication," Pergamon Press, New York, 1966.
15. Meyer, P. L., "Introductory Probability and Statistical Application," Addison-Wesley Publishing Co., 1965.
16. Christensen, H., and Tonder, K., "The Hydrodynamic Lubrication of Rough Journal Bearings," Trans, ASME, J. of Lub. Tech., (April 1973), p. 166.
17. Tonder, K., and Christensen, H., 'Waviness and Roughness in Hydrodynamic Lubrication," Proc. Instn. Mech. Engrs., Tribology Group, Vol. 186, 72/72, (1972), p. 807.
18. Rhow, S. K., and E1rod, H. G., "The Effects on Bearing Load-Carrying Capacity of Two-Sided Straited Roughness," Trans. ASME, J. of Lub. Tech., Paper No. 73-Lub-42.
19. Tallian, T. E., "Pressure and Traction Rippling in Elastohydrodynamic Contact of Rough Surfaces," Trans. ASME, J. of Lub. Tech., Paper No. 73-Lub-18.
20. Greenwood, J. A., and Williamson, J. B. P., "Contact of Nominally Flat Surfaces," Proc. R. Soc. (1966), p. 295 (Series A), 300.
21. Grubin, A. N., and Vinogradova, I. E., " Central Scientific Research Institute for Technology and Mechanical Engineering, Book No. 30," Moscow, 1949, (D.S.I.R. Translation No. 337)
22. Cheng, H. S., " Isothermal E1astohydrodynamic Theory for the Full Range of Pressure-Viscosity Coefficient," NASA CR-1929 (September 1971).
23. Cheng, H. S., and Sternlicht, B., " A Numerical Solution for the Pressure, Temperature, Film Thickness Between Two Infinitely Long Lubricated Rolling and Sliding Cylinders, Under Heavy Loads," ASME Transaction, Journal of Basic Engineering, Vol.87, 1965, pp.695-707.
24. Dowson, D., and Whitaker, A. V., " A Numerical Procedure for the Solution of Elastohydrodynamic Problem of Rolling and Sliding Contacts Lubricated by Newtonian Fluid," Proceeding of the Institute of Mechanical Engineers, Vol. 180, Part 3, Series B, 1965, pp. 57-71.
25. Castelli, V., and Pirvics, J., "Equilibrium Characteristics of Axial Groove Gas Lubricated Bearings;" Trans. ASME, J. $6 \mathfrak{f}$ Lub. Tech., Vo1. 89, Ser. F, No. 2 (April 1967), pp. 177-196.

APPENDIX

Justification of M as a Random Quantity of Zero (or Negligible) Variance When $\frac{\partial h}{\partial t}$ is assumed to be zero, Eq. (2.6) becomes

$$
\begin{equation*}
\frac{\partial M}{\partial x}=0 \tag{A.1}
\end{equation*}
$$

where M is defined by Eqs. (2.7) and (2.10). Hence M is a constant of x. However, this constant can be a stochastic quantity in the time domain.

EHD Contact

Re-arrange Eq. (2.10) to obtain

$$
\begin{equation*}
\frac{1}{12_{\mu_{s}}} \frac{\partial g}{\partial x}=\frac{M}{h_{T}^{3}}-\frac{u_{1}+u_{2}}{2} \frac{h^{3}}{h_{T}^{3}}+\frac{u_{1}-u_{2}}{2}\left(\frac{\delta_{1}-\delta_{2}}{h_{T}^{3}}\right) \tag{A.2}
\end{equation*}
$$

At. $x=-\infty$, the asperity effect is negligible so that $q=p=0$. However, the pressure p, must reach a significant fraction of the Hertzian maximum at $x=-1$, such that $e^{-\alpha p} \ll 1$, i.e. $q \approx \frac{1}{\alpha}$. Therefore q at $x=-1$, can be assumed to be a stochastic variable with extremely small variance. Integrate Eq. (A.2) from $x=-\infty$ to -1 , and obtain

$$
\begin{equation*}
\frac{1}{12 \mu_{s^{\alpha}}}=\int_{-\infty}^{-1} \frac{M}{h_{T}^{3}} d x-\frac{u_{1}+u_{2}}{2} \int_{-\infty}^{-1} \frac{h}{h_{T}^{3}} d x+\frac{u_{1}-u_{2}}{2} \int_{-\infty}^{-1} \frac{\delta_{1}-\delta_{2}}{h_{T}^{3}} d x \tag{A.3}
\end{equation*}
$$

As M is a constant of x, Eq. (A.3) can be re-written as

$$
\begin{equation*}
M=\frac{\frac{1}{12 \mu_{s}} \cdot \frac{1}{\alpha}+\frac{u_{1}}{2} \int_{-\infty}^{-1} \frac{h-8_{1}+8_{2}}{h_{T}^{3}} d x+\frac{u_{2}}{2} \int_{-\infty}^{-1} \frac{h+8_{1}-6_{2}}{h_{T}^{3}} d x}{\int_{-\infty}^{-1} \frac{1}{h_{T}^{3}} d x} \tag{A.4}
\end{equation*}
$$

When there are enough asperities within the contact zone, the integrals in Eq. (A.4)
are independent of the precise arrangement of the roughness and also independent on time. Therefore M can be assumed to be a stochastic quantity with zero (or neg1igible) variance.

Rigid Rollers

Eq. (2.7) can be re-written as

$$
\begin{equation*}
\frac{1}{12 \mu} \frac{d p}{d x}=\frac{M}{h_{T}^{3}}-\frac{u_{1}+u_{2}}{2} \frac{h}{h_{T}^{3}}+\frac{u_{1}-u_{2}}{2}\left(\frac{\delta_{1}-\delta_{2}}{h_{T}^{3}}\right) \tag{A.5}
\end{equation*}
$$

Integrate Eq. (A.5) with the boundary conditions:

$$
\begin{array}{ll}
p=0 & \text { at } \\
p=\frac{d p}{d x}=0 & \text { at } \tag{A.6}\\
x=x^{*}
\end{array}
$$

one obtains

$$
M=\frac{\frac{u_{1}}{2} \int_{-\infty}^{x^{*} h-\delta_{1}+\delta_{2}}}{h_{T}^{3}} d x+\frac{u_{2}}{2} \int_{-\infty}^{x^{*}} \frac{h+\delta_{1}-\delta_{2}}{h_{T}^{3}} d x
$$

Even though x^{*} is a random quantity, its deviation from the mean is expected to be of the same order of the wavelength of the asperity, and is small compared with the size of the bearings. The integrals in Eq. (A.7) are only slightly affected by x^{*}, and therefore can be considered as stochastic quantities with negligible variances. Thus, M is also a stochastic quantity with negligible variance.

Infinitely-Wide Slider

Integrate Eq. (A.5) with the boundary conditions:

$$
\begin{equation*}
p=0 \quad \text { at } \quad x=0 \quad \text { and } L \tag{A.8}
\end{equation*}
$$

one obtains

$$
\begin{equation*}
M=\frac{\frac{u_{1}}{2} \int_{0}^{L} \frac{h-\delta_{1}+8_{2}}{h_{T}^{3}} d x}{\int_{0}^{L} \frac{1}{h_{T}^{3}} d x} \tag{A.9}
\end{equation*}
$$

Following the above argument, M is also a stochastic quantity with zero (or negligible) variance.

APPENDIX B
 FORTRAN IV LISTINGS OF COMPUTER PROGRAMS

1. PROGRAM ROLSLIP: This program which is used in Chapters II and III, is to calculate the integrated pressure at the inlet of an EHD contact with random surface roughness by the stochastic approach.
2. PROGRAM RIGROL7: This program which is used in Chapter II, is to compute the load of a rigid roller bearing with random surface roughness by stochastic approach.
3. PROGRAM SLIDER5: This program which is used in Chapter II, is to compute the load of an infinitely-wide slider bearing with random surface roughness by stochastic approach.
4. PROGRAM DAPOL2: This program which is used in Chapters II and III, is to generate data for functions G_{2}, G_{4} and G_{5} for the corresponding σ / h_{0}. These data are input to programs ROLSLIP, RIGROL7 and SLIDER5. The data for functions G_{2}, G_{4} and G_{5} in the case when the asperity height distribution functions are in the form of polynominal function as well as sinusoidal function are tabulated respectively.
5. PROGRAM ROLWAV1: This program which is used in Chapter III, is to compute the integrated pressure at the inlet of an EHD contact with waviness surface roughness by the deterministic approach.
6. PROGRAM ASPERITY: This program which is used in Chapter IV, is to compute the perturbed pressure distribution due to a single 3D-Rigid Asperity.
```
            PROGRAM ROLSLIH(INPUT,OUTFUT)
C this frogram IS to Calculate the integrated pressure at the inlet of aN eho
    CONTACT DY THF STOCHASTIC AFPROACH
    IHIS PROGFAM CONSISTS OF FIVE SUBROUTIINES
    1 - SUBPOUTINE GRUOIN IS TC CALCULATE THE INLET INTEGRATED PRESSURE OF AN
        EHD CONTACT BY SHOOTH FILM GFUBIIV THEORY
    2 - SUBROUTINE CONS IS TO CALCULATE THE CONSTANT C FOR VARIOUS DSIG DATA
    3 - SLGROUTINE FUNC IS TO EVALUATE FUNCTIONS FI AND F2 FCR DIFFERENT S/H
4 - SUBROUTINE TABLE IS TO SET UH FUNCTIONS Fl AND FZ IN THE FORM OF ARRAYS
5 - SUBROUTINE INT IS AN INTEGRATION ROUTINE TO CALCULATE THE INTEGRATED
    PRESSURES WLOADI, WLGADZ. AND WLUAD3
THE PRESSURE IS INIEGRARED FFCM }x=-5\mathrm{ TO }x=-1. BECAUSE OF THE NONLINEAR
        PPOPERTY OF THE INTEGRAND NEAR 
        1NTO TWO PARTS, 1.E. FROM }x=-5\mathrm{ TO }x=-2\mathrm{ , AND FROM }x=-2 TO x=-1.
    DATA CARD NO. 1
        KF = TOTAL NO. OF GRIDS
        KM = GRIU NO. AT X=-2
        NSIG = NU. OF DSIG(I) DATA
        NHO = NUMEER GF HO DATA
    DATA CARD NO. द
        w = LOAC FEF UNIT WIDTH
        SLIP = SLIPFAGE COEFFICIENT
        PI = 3.141593
DATA CAPD ivO. 3
        USIG(I) = DATA FOR SIGMAAHO
    DATA CARD NO. 4
        DHO(I) = VAFIIOUS HO DATA
    DATA CARD NO. 5
        THESE dATA ARE THE DUTPUT FFOM PROGRAM SUCHAS PrOGRAM DATPOLE WHICH EVALUATE
            THE INTEGRAL OF ( DISTKIGUTIUN FUNCTION*HSS)/(1.*SH*HSS)**3 AND
            (DISTFIEUTICN FUNCTION/(1.+SH*HSS)**3
        THIS DISTRIGUTIGIV FUNCTION CAN BE POLYNCMIAL ,GAUSSIAN, SINUSOIDAL OR ANY
            OTHER FUNCTION
        USH(I) = THE ABSCISSA RANGING FKOM 0 TO 0.333
        UV(I) = THE NONDIMENSIONAL DSH(I)
        DG4(I) = THE INTcGKAL OF 35/90*(1.-HSS*#2/9)*#3/(1*SH*HSS)*#3#HSS
            IN THE CASE GF FOLYNOMIAL DISTRIEUTION
        DGZ(I) = THE INTLGRAL OF 3E/96*(1.-HSS**2/9)**j/(1+SH*HSS)**3
        IN THE CASE OF POLYINOMIAL DISTFIEUTION
        DG5(I) = DG己(I)/UG4(I)
THE OUTPUT OF THIS PKOGRAM WERUB, WLOADI, WLOADZ, WLOAD3,W1, W2, w3 ARE ALL
        INTEGRATEC PRESSURE AT THE INLET
            COMmOir wLCAD1(24),WLUADË(14),wLOAD3(14),DSIG(14),T1(14,301),
            l TC(14.301).XX(301),KK,KF,KM,NF,HO,W,P1,S,X,F1,F2,C,SLIP.
        2 E(301),F,WGRU心(14),DG4(201),0G2(201)
            DIMENSION Q1(14.361),GC(14.301).03(14.301),DSH(201),DV(201).
        C DG5(2U1), DHO(14), wi(14), w己(14), W3(14)
C
```

```
    PRINT i
    READ C,KF,KM,INSIG,NHO
    READ S.W,SLIP,PI
    READ S.(CSIG(I),I=I,NSIC)
    READ s.(DHO(I),I=1,NHO)
    OO 100 I=1,201
    PFINT 7,I,DHO(I),WGRUB(I)
    DO 101 LL =2,NSIG
    PRINT ל5,DSIG(LL)
    PRINT 6
    CALL CUNS(LL)
    CO 103 I=1,NHO
    KK = I
    HO = DHO(KK)
    S = DSIG(LL) # HO
    CALL TABLE
    CALL INT
    Wl(I) = WLOADI\ID,/ WGन̈UE(I)
    w2(I) = wLOADZ(I) / WGRUE(I)
    W3(I) = WLOAD3(I) / WGKUE(I)
    PRINT I,I,DHO(I),WLOADI(I),WLOAOC(I),WLOAD3(I),W1(I),W2(I),W3(I)
    7 WGRUE(I)
    CONTINUE
1Cl CONTINUE
C
    FORHAT(IHI)
    FORMAT (20I5)
    FORMAT (8F10.8)
    FORMAT(9(2x,E13.6))
    FORMAT(F10.6.F10.2,3F20.10)
    FOKMAT(/3X,*I*,6x**OHO*,Sx,*WLUADI*,9X.*WLOAOC*,9X,*WLOAD3*,13X.
    6*wl*,13x,*w2*,13x,*wj*,1CX,*WURUP*)
```

FOKMAT（I5， $8(2 X, E 13.6))$

52 FORMAT（ $/ 7 x, * w^{*}, 11 x$ ，＊SLIF＊， $13 x$ ，＊PI＊）
53
FCRMAT（／6x，＊DSIG（I）＊）
FORMAT（ $/ 6 x$ ，＊DHU（I）＊）
FORMAT（／／／6X，＊USIG＝＊，F10．E／）
FORMAT（／ラx，\＃I＊， $6 x$ ，＊DHO＊， $5 x, *$ WGKUB＊）
STOP
ENO
Sudroltine grudin（lGKuv）
CGMMON WLOADI（14），：ULOADZ（14），WLOAD3（14），DSIG（14），T1（14，301），
1 TC（14，301），XX（301），KK，KF，KM，NF，HO，W，PI，S，X，F1，FZ，C，SLIP，
$2 \mathrm{E}(301), F, W G R U_{0}(14)$, UG4（ 201 ），DG2（2U1）
DIMENSION F3（301）
C
DO $400 \quad J=1, K F$
$x=x \times(J)$
$H=H O+4$＊$H / P I *(A B S(X) * S U K T(A B S S(-X) * * 2-1.0))-A L O G(A E S(X)+S O R T(A S S$
$1((-X) * * 2-1.0)))$
$400 \mathrm{~F} 3(J)=(\mathrm{H}-\mathrm{HO}) / \mathrm{H}_{4}^{4} 3$
WGRUB（IGRUB）$=0$ ．
$K M K=K M-2$
DC 401 J＝1，KMK，Z
401 WGKUB（IGRUB）＝WGRUE（IGRUB）＋0．015／3．＊（F3（J）＋4．\＃F3（J＋1）＋F3（J＋2））
$K F F=K F-2$
DO $402 \mathrm{~J}=K \mathrm{~K}, \mathrm{KFF}, 2$
402 WGRUB（IGRUG）＝WGRUB（IGRUB）＋0．01 13．＊（F3（J）＋4．\＃F3（J＋1）＋F3（J＋2））
RETURN
END
SUHROUIINE CJIVSTLL）
CCMMON WLCAD1（14），WLUADC（14），WLOAD3（14），OSIG（14），T1（14．301），
I T く（14， 301 ），Xx（301），KK，KF，KM，NF，HO，W，PI，S，X，FI，F2，C，SLIP，
こ G（301）．F，WGRUs（14），DG4（こC1），DG2（201）
C
$V=1 .+\operatorname{USIG}(L L) / 0.001 \in 65$
$M V=V$
$V M=M V$
$G \bar{E}=(L G 2(M V+1)-D G 2(M V)) *(V-V M)+D G 2(M V)$
$G 4=(\sim G 4(M V+1)-D G 4(\operatorname{liV})) *(V-V M)+D G 4(M V)$
$C=G 4 / G 2$
RETURN
END
SLDROUIINE TABLE
COMMOA WLOAD1（14），WLOAD2（14），WLOAD3（14），DSIG（14），T1（149301）．
1 T C（14，3U1），XX（301），KK，KF，KM，NF，HO，W，PI，S，X，FI，FZ，C，SLIP，
$2 \mathrm{G}(301), F, W G R U_{0}(14), \mathrm{UG}(\overline{C C l}), \mathrm{DG}(201)$
DO $201 \mathrm{~J}=1$ ，KF
$x=X X(J)$
CALL FUNC
Tl（KK．J）$=$ FI
TZ（KK，J）$=\mathrm{F} 2$
CONTINUE
RETURN
ENO

```
C
    SUOKOUT INE FUNC
            CGMMON WLGAD1(14), WLOALĊ(14),WLOAU3(14),DSIG(14),T1(14,301),
            1 TZ(14,301), XX(301), KK,KF,KM,NF,HO,W,PI,S,X,F1,FZ,C,SLIP,
            2 G(301),F,WGRUb(14), UG4(2C1), DG2(2U1)
C
```



```
C
            COMMON WLCADI(14), wLOAD2(14), wLOAD3(14),DSIG(i4),T1(14,301),
            1 Tど (14, 301), XX(301), KK,KF,KM,NF,HO,W,PI,S,X,F1,F2,C,SL1P,
            2 G(301), F, WGRUn(14)•DG4 (टし1), DÚ2(201)
            DIMENSION Pl(14) وト2(14)
C
    \(P 1(K K)=0\).
    \(P 2(K K)=0\).
    \(K M K=K M-2\)
    DO \(301 \mathrm{~J}=1\),KMK, 己
    \(P 1(K K)=F l(K K)+0.015 / 2 . *(T 1(K K \cdot J)+4 . * T 1(K K \cdot J+1)+T 1(K K, J+2))\)
        \(P 2(K K)=F 2(K K)+0.015 / 3 . *(T 2(K K, J)+4 . * T C(K K, J+1)+T 2(K K, J+2))\)
301
        continue
        \(K F F=\mathrm{KFF-2}\)
        DO \(302 J=K M, K F F, 2\)
        \(P l(K K)=P l(K K)+0.01 / 3 . *(T 1(N K, J)+4 . * T l(K K, J+1)+T 1(K K, J+2))\)
        \(P 己(K K)=P 2(K K)+0.01 / 3 . *(T 2(K K, J)+4 . \# T 2(K K, J+1)+T 2(K K, J+2))\)
302 CCNTINUE
        WLOADI \((K K)=P i(K K)-P 2(K K)\) \#SLIP
        WLOADE \((K K)=P I(K K)+P Z(K K) * S L I P\)
        KLOAD3(KK) \(=P 1(K K)\)
C
        RETURN
END
000000000000500000010
\(301201 \quad 9 \quad 6\)
    \(0.00003 \quad 0.1 \quad 3.14159265\)
    \(\begin{array}{llllllll}0.05 & 0.1 & 0.15 & 0.2 & 0.25 & 0.3 & 0.31 & 0.32\end{array}\)
    0.33
    \(0.00001 \quad 0.00\) U02 \(0.00003 \quad\) C.0UUUS \(0.00007 \quad 0.00009\)
C OATA FOR DSH(I), DV(I), UG+(I), \(4 G \bar{z}(I)\), DGS(I) ARE OMITTED
\(0000000000000000000000 E N D\) OF INFORMATION
```

PROGRAF RIGROL (INPUT,OUTFUT)
C
C THIS PROGRAN is TO COMFUTE THE LOAU OF A RIGID ROLLER BEARING BY STOCHASTIC APPROACT

THIS PROGPAM CONSISTS OF 4 SUBROUTINES
1 - SUGROUTINE TABLE IS TO SET UH A PRESSURE ARRAY CORRESPONDING TO THE GRIO pOSITIONS
C - SUBROUTINE CONS IS TO CALCULATE THE CONSTANT C
C 3 - SUGROUTINE FUNC IS TO EVALUAIE FUNCTIONS FI, FZ, AND F
C 4 - SUBROUTINE INT IS A SIMFSUN INTEGRATION ROUTINE TO COMPUTE THE LOAD W(KK)
THE OUTPUT OF THIS FROGHAM. IS W(I) AND THE CORRESPONDING DSIG(I)
DATA CARD INO. 1
NI $=$ NO. OF UNIFORM GFIDS FFUM $x=-1$ TO $x=0$
$N F=$ NO. OF UNIFURH GRIUS FFOM $x=0$ TO $x=x A$
$K O=N I+1$
$K F=N F+i$
NO = NO. OF DSIG(I) DATA
DATA CARD IVO. 2
XA(1).XA(Z) IWITIAL VALUES ASSIGNED TO XA(I), ASSUMING THAT THE PRESSURE AT
THIS LOCHTIUN IS 0.
HO = CENTER FILM ThickNESS
SLIP = SLIPFAGE CCEFFICIENT
$P I=3.141593$
DATA CARD NC. 3
USIG(I) $=$ SIGMA / HO , DATA
DATA CARD IVO. 4
these daia are the output ffúm program suchas program datpolz which evaluate
THE INTEGRAL OF (DISTFIBUTIUN FUNCTION*HSS)/(1.*SH*HSS)**3 AND (DISTRIEUTION FUNCTION/(1.+SH*HSS) $\# * 3$
THIS DISTRIEUTION FLNCTION CAN BE POLYNOMIAL, GAUSSIAN, SINUSOIDAL OR ANY OTHER FUNCTION
DSH(I) $=$ THE ABSCISSA RANGIAG FRUM 0 TO 0.333
UV(I) $=$ THE NONDIMENSIONAL DSH(1)

in the case of pOLYNGMIAL UISTRIBUTION

If THE CASE OF rOLYNOMIAL DISTRIBUTION
DGS(I) $=$ CGZ(I)/UG4(I)
COMMON $x \times(121), P(20,121),[S I G(10), W(10), H O, H A, K O, K F, K, K K, S O, S F, X$,
C F,FIOF Z, DELA.PI,C,CG4 (201), UGC(201),SLIP
DIMENSION XA(21), DSH(EUl), UV(くい1), UGS(201), XB(10), IK(10)
C
PRINT :
READ 2,NI,NF,KO,KF,ND
READ 4.XA(1), XA (2), hO,SLIP,PI
READ $4,(D S I G(1), I=1, N D)$
DO $95 \mathrm{i}=1.201$
READ \quad, DSH(I), DV(I), DG4(I), DGS (I), DG2(I)
PGINT 51
FGINT Z,NI•NF•KO.KF,NO

```
PRINT ゝ2
PRINT Y,XA(1),XA(2),HO,SLIP,PI
PFINT }5
PRINT y,(DSIG(I),I=1,ND)
SO = i./NI
CO 99 N=1,KO
xx(J) = -1. + (J-1)*S0
DO 100 II:I,ND
KK = II
FEINT OQII,DSIG(II)
XA(1) = 0.01
xA(2) = 0.02
DO 101 I=1,2
K=I
HA}=1.+0.5*XA(I)**2/H
SF = XA(I) / NF
PRINT S4
PRINT S.I.XA(I),HA,SO:SF
CALL CUNS
CALL TABBLE
CONTINUE
XA(3) = (XA(1)*P(2,KF) - xA(2)*P(1,KF))/ (P(2,KF) - P(1,KF))
DO 102 I=3,20
K = I
HA = 1. + 0.5*xA(I)*&2/HC
SF = XA(I) / NF
PRINT b4
PRINT 3.I,XA(I),HA.SO,SF
CALL CUNS
CALL TABLE
DIFF=P(I,KF)/P(I,KO)
IF (AES(DIFF).LE. O.OU1) GO TO 103
PROD = P(I,KF)*P(I-1,KF)
IF (PRUD .GE. U.) GC TO 104
XA(I+1)=(XA(I-1)#P(I,KF)-XA(I)*P(I-I,KF))/(P(I,KF)-P(I-I,KF))
GO TO iO2
104 CONTINUE
P(I-1.KF)=P(I-2,KF)
XA(I-1)= XA(I-2)
XA(I+I)=(XA(I-I)*P(I,KF)-XA(I)*P(I-I,KF))/(P(I,KF)-P(I-1,KF))
CONTINUE
CONTINUE
CALL INT
XB(II) = XA(K)
IK(II) = K
CONTINUE
PRINT }
DO 105 II=1,ND
PRINT O,II,OSIG(II),N(II),XB(II),IK(II)
105
C
1 FCRMAT (1HI)
FORMAT (2015)
FORMAT(I5.8(2X,E13.6))
FORMAT(EF1O.8)
```



```
            SUSROUTINE CONS
            COMMON XX(121),P(zu,1\ddot{11),LSIG(10),W(10),HO,HA,KO,KF,K,KK,SO,SF,X,}
            C F,Fl,FZ,LELA,rI,C,UG4(ZOL),DGで(201),SLIP
                V =10 + DSIG(KK)/HA/0.001665
            MV=V
            VM = MV
            G2 = (DG2(MV +1;-DG2(HV))*(V-VM) + DG2(MV)
            G4 = (UGG4(MV +1)-DG4(MV))*(V-VM) + DG4(MV)
            C = G4/G2
            PFINT 41,KK,K,C
    41 FCKMAT(/3x,*KK*,4x,#K*,10X,*C*/2I5,3X,E17.10/)
            RETURN
            EN|
                            SUGROUIINE FUNC
                            COMMON XX(121),F(20,121),[SIG(i0),w(10),HO,HA,KO,KF,K,KK,SO,SF,X,
                            C F,Fl,F2,OELA,PI,C,DG4(CO1),DG2(201),SLIP
C
    H=1. + 0.5* (**2/Hio
    V = 1. + CSIG(KK)/H /0.001065
    MV = V
    VM = MV
    G2 = (UG2(MV +1)-LGG2(MV))*(V-VM) + DGZ(MV)
    G4 = (UG4(MV +I)-DG4(MV)) #(V-VM) & DG4(MV)
    F1 = (h-HA)/H**3*G2
    FZ = (u4-C*G2)/H**3
    F=Fl * ESIG(KK) * FE * SLIP
    KETURN
    EN:D
    SUSROLIINE INT
                            COMMON XX(121),F(20,121),[SIG(10),W(10),HO,HA,KO,KF,K,KK,SO,SF,X,
        C F,F1,FZ,DELA,HI,C,CG4(2C1),UGC(2U1),SLIP
    C
        W(KK) = 0.
        KC2 = KCO-i
        DO 30i J=1, KO2,2
        W(NK) = W(KK) + SU/J.F(F(K,J) + 4.*P(K,J+1) + P(K,J+2))
301 CONTINUE
            KFF=KF-2
            DO 302 J =KO,KFF,Z
            w(KK) = W(KK) + SF/3.k(P(K,J) + 4.*P(K,J+1) +P(K,J+2))
302 CONTINUE
    PFINT Sl,KK.W(KK)
C
31 FGKMAT(/////X,*KK=#,13,10X,*W=*,E17.10//1
            RETURN
            ENU
0000U000UOCOU0000000UU END UF RECORU
\begin{tabular}{ccccccccc}
40 & 10 & 41 & 51 & 10 & & & & \\
0.01 & 0.02 & 0.0005 & \(-C .1\) & 3.14159265 & & \\
0.06 & 0.1 & 0.14 & 0.18 & 0.22 & 0.26 & 0.3 & 0.31
\end{tabular}
    C0.3C OATA FOR DSH(I), UV(I). UG4(I), 4GZ(I), DG5(I) ARE OMITTED
    0000U0000000U00U000UUO ENU UF SNFORMATION
```

```
PROGRAM SLIDERO(INPUT,OUTFUT)
C
C
C
C THIS PROGRAM CONSISTS OF 3 SUGROUTINES
1 - SUBROUTINE TASLE IS TO FORM THE TI, TZ, T3 ARRAYS WHICH WILL GE USED TO
    COMPUTE THE FRESSURE PKOFILE
2 - SUBROUTINE FUNC IS TO EVALUAIE THE FUNCTIONS FI. F2 AND F3
3 - SUbROUIINE INT IS THE INTEGRATION ROUTINE TO CALCULATE THE PRESSURE
    PROFILE aND THEN THE TOTAL LUAD
THE OUTPUT OF THIS PROGRAM AFE, WLOAD1, WLOADZ, WLOAD3 AND THE CORRESPONDING
    DSIG(I)
        WLOADI = LOAD IN SLIDING \tilde{nUUGH SURFACE,FIXED SMOOTh SURFACE CASE}
        WLOADZ̈ = LOAD IN FIXEL KCLGHi SUFFACE,SLIDING SMOOTH SURFACE CASE
        WLOAD3 = LOAD IN EOTH SUFFACES WITH SAME ROUGHNESS DISTRIBUTION
DATA CARD NO. l
        KF = TOTAL NO. OF GRID FOIATS
        NF = NO. OF DSIG(I) UATA
        PI = 3.1415%3
DATA CARD INO. 2
    DSIG(I) = DATA FUR SIGMA / H(MIN) RATIO
DATA CARD INC.J
        THESE DATA ARE THE OUTPUT FFOM PKOGRAM SUCHAS PROGRAM DATPOLZ WHICH EVALUATE
        THE INTEGRAL OF ( DISTFIOUTIUN FUNCTION*HSS)/11.+SH*HSS;##3 AND
        (DISTKIEUTION FUNCTION/(1.+SH*HSS)**3
        THIS DISTRIEUTIOIN FUNCTION CAN BE POLYNOMIAL,GAUSSIAN, SINUSOIDAL OR ANY
        OTHER FUNCTION
        DSti(I) = THE ABSCISSA KANGIAG FRUM 0 TO 0.333
        UV(I) = THE NONDIMENSIONAL DSH(I)
        UG4(1) = THE INTLGKAL OF 25/Чó"(1.-HSS**2/9)**3/(1+SH*HSS)##3*HSS
        IA ThE CASE OF PClynOmiAL DiSTRIBUTION
        OGट(I) = The INTEGRAL OF 35/70*(1.-HSS**2/9)**3/(1+SH*HSS)*#3
        IN thE CASE OF POLYINCHIAL DISTRIGUTION
        LGS(I) = DGE(I)/UG4(I)
        CCMMON DSH(201),DV(2G1),[E4(201).LG5(201),DG2(201),WLOADI(14),
        1 WLOACC(14),WLUAU3(14),USIG(14),T1(14,101),T2(14,101),T3(14,101),
        2 KK,KF,NF,S,X,F1,F2,F3,Cl,C2,C3,FI,XX(101)
            PRINT &
            PEAD <,KF,NF,FI
        PFINT <,KF,NF,FI
        HEAD 3,(DSIG(I), I=1,NF)
        PRINT 4,(CSIG(I),I=1,NF)
        DS 100 I=1,201
        READ S,DSH(I),DV(I),DG4(I),DGS(I),OGC(I)
        00 99 J=1,KF
99 x x(J) = (J-1)#U.01
        WFEF = ALCG(2.) - 2./3.
```

```
    DO 101 I=1,NF
    KK = I
    S = DSIG(KK)
    CALL TABLE
    Cl = (-T1(KK,KF.) + S*T3(KK,KF)) / TZ (KK,KF)
    C2 = (-Tl(KK,KF) -S#T3(KK,KF)) / T2(KK,KF)
    C3 = - \l(KK,KF) / T¿己(KKoKF)
    CALL INT
101 CONTINUE
    PRINT 6,WREF
    UC 10C I=1,MNF
    PRINT l,I,DSIG(I),WLOSUI(I),WLUAD2(I),WLOAD3(I)
l02 CONTINUE
C FORMAT(1H1/2X,*KF*,3X,*NF*,10X,*PI*/)
F FORMAT(2I5.F20.14)
3 FORMAT(20F5.3)
4 FOKMAT(X,*(DSIG(I),I=1,NF)*,5X,20(X,F5.3)/)
5 FCRMAT(F10.6.F10.2,SFZ0.10)
    FORMAT(///AX,*WKEF=*,E17.10/3X,*I*,6X,*USIG*,12X,*WLOADI*,14X*
    6 *LOAU2*.14X.*WLOAL3*/)
    FORMAT(15.5x,F`.3.5(3x,E17.10))
    STOP
    ENi
    SUGROUIINE TABLE
C
    COMMON DSH(201),OV(Z01),CG4(201),DG5(201),DG2(201),WLOAD1(14),
    1 WLOADC(14).WLUAD3(14),LSIG(14),T1(14,101),T2(14,101),T3(14,101).
    2 KK,KF,NF,S,X,F1,FZ,F3,Cl,C2,C3,PI,XX(101)
C
    OIMENSION El(i01),EZ(101),E3(101)
    J=1
    x = XX(J)
    CALL FUNC
    El(J) = Fl
    E2(J)=F2
    E3(J) = F3
    T1(KK,J) = 0.
    T2(KK,J) = 0.
    T3(KK,J) = 0.
    CO 201 J =2,KF
    x = XX(J)
    CALL FUNC
    El(J) = Fl
    E2(J) = F2
    E3(J) = F3
    x = (XX(J-1) +XX(J))/2.
    CALL FUNC
    Tl(KK,J) = Tl(KK,J-l) + C.0l/2./3.*(El(J-i) + 4.*Fl + El(J))
    Tこ(KK,J) = T2(KK,J-i) + 0.01/&./3.*(E2(J-i) + 4.*F2 + E2(J))
    T3(KK,J) = T3(KK,J-1) + 0.01/2./3.F(E3(J-1) + 4.*F3 + E3(J))
201
    CONTINUE
    RETURN
    END
```

SUBROLIINE FUNC
COMMON DSH(201).DV(201), [C4(201), DG5(201), DG2(201), WLOAD1 (14),
1 WLOACC(14),WLCAC3(14), LSIG(14).T1(14,101),T2(149101), T3(14,101).
$2 \mathrm{KK}, \mathrm{KF}, \mathrm{NF}, \mathrm{S}, \mathrm{X}, \mathrm{FL}, \mathrm{F} 2, \mathrm{~F} 3, \mathrm{Cl}, \mathrm{C} 2, \mathrm{C} 3, \mathrm{PI}, \mathrm{XX}(101)$
$H=2 .-X$
$S H=S / H$
$v=1 .+S H / 0.001665$
$M V=V$
$V M=M V$
$D 2=(A L O G(D G 2(M V+1))-A L C E(D G 2(M V))) *(V-V M)$ * ALOG(DGZ(MV))
$G 2=E A P(D 2)$
$D 4=(A L O G(-D G 4(M V+1))-A L C G(-D G 4(M V))) \pm(V-V M)+A L O G(-D G 4(M V))$
G4 $=-$ ᄃX.P(D4)
$F 1=G \angle / H^{*} \mathrm{~F}_{2}$
$F 2=G \angle / H * * 3$
F3 $=\mathrm{G} 4 / \mathrm{H}^{\text {4* }} 3$
RETURA
END
SURROUIINE INT

$2 \mathrm{KK}, \mathrm{KF}, N \mathrm{~F}, \mathrm{~S} \cdot \mathrm{X} \cdot \mathrm{F} 1, F 2, F \mathrm{~F}, \mathrm{Cl}, \mathrm{C} 2, \mathrm{CJ} \cdot \mathrm{PI}, \mathrm{XX}(101)$
DIMENSION PI(I4,1U1),PC(14,1U1), P3(14,101)
PRINT 3l,KK,DS」G(KK)
DO $301 \mathrm{~J}=1 \cdot \mathrm{KF}$
$P_{1}(K K, J)=T 1(K K, J)+C l \sharp T C(K K, J)-S * T 3(K K, J)$
$P 2(K K, J)=T l(K K, J)+C<\sharp 1 ट(K K, J)+S \sharp T 3(K K, J)$
Pj(KK,J) $=$ Tl(KK,J) + C3*12(KK,J)
PPINT د2•J,Pl(KK,J),P2(KK•J), Pت (KK,J)
CONTINUE
WLUADI $(K K)=0$.
WLOADC $(K K)=0$.
KLOAD? $(K K)=0$.
$K F F=N F-\ddot{Z}$
DC 302 J=1,KFF,2
WLOAOl(KK) = WLOAD1 (KK) + O.O1/3.\#(Pl(KK,J) + 4.\#Pl(KK,J+1) +
1 F1(KK•J+Z))

2 Fí(KK,J+2))
WLUAD3(KK) = NLOAD3(KK) + 0.01/3.*(F3(KK9J) + 4.*P3(KKgJ+1) +
3 F3(KK,J+2))
CONTIAUE
PRINT =
PRINT 7,KK•DSIG(KK),WLOACI (KK) •WLOADC(KK),WLOAD3 (KK)
31

C 4 P3*/)
FOKMAT (15.3(3x9t17.10))

FCKMAT(I5,5x,Fっ.S.S (3x,E17.10))
RETURN
END

```
0000:00UG0ULUOOCOUOS~U END UF SECURU
    101 10 3.1415y<05359
    0.00 0.1 0.14 0.13 U.22 0.26 0.3 u. u.31 0.32 0.33
C OATA FOR DSH(I), UV(I), DC4(I), 4GZ(I), DGS(I). ARE OMITTED
O000C0000000U0000000UO END OF INFORMATION
```

```
PROGRAM DATPULE（IFPAUT，ULIPUT，PUNCH）
C
C THIS PKOGRAM IS TO CALCULAIE CATA FOR FUNCTIONS GZ AND G4 FOR THE CASE WHEN
C
C FUNCTION 35/96*(1-NSS**2/S)**3
C G2 = THE INTEGRAL OF 3S/Y6"(1-NSS##2/9)*#3/(1+SH#HSS)##3 FOR HSS = -3 TO 3.
C G4 = THE INTEGPAL UF 35/90*(l-NSS**2/9)##3/(1+SH#HSS)##3*HSS FOR HSS = -3 TO 3
SINCE HSS KANGES FKCM -j TO : SH MUST BE LESS THAN 1/3. THUS SH VALUES
    USED IN THIS PROURAN RANGES FROA"O TO 0.333
C SH(I). I=1,Z0I, WITr cOD LNIFORMGGKIOS OF SIZE 0.001665
V(I) = NONUIMENSIONAL SH(1)
THIS PFOGRAM CONSISTS OF THHEE SUHROUTINES
1 - SUBROUTINE MAIN IS TO CALCULATE RII AND RIL FROM SUBROUTINES INTI
    AND INTC
2 - SUBRCUTINE INT1 IS TO IluTEGRATE THE FUNCTION
(1.-HSS**2/9.)**3/(10+SranSS)*#3#nSS
3 - SUBROUTINE INTE IS TO INIEGKATE THE FUNCTION
    (1.-HSつ**2/9.)*#3/(1.+SH&rSS)**3
THEE RESULTS OF GZ(I),G4(I),GS(I) TOGETHER WITH THE CORRESPONDING SH(I),V(I)
    VALUES WHICH ARE THE OUTHLT OF THIS PRUGRAM ARE IN THE FORM OF DATA CARD
        COMMON A,B,RII,RIZ,SIMPSCN
        DIMENSION G2(201),G4(201),G5(201),V(201),SH(202)
        PFINT 1
        SH(i)=0.0
        DO 10 i=1,201
        CALL MAIN (SH(1))
        G2(I) = 35./96. #RI2
        G4(I) = 35./96. *RII
        GS(I) = G己(I) /G4(I)
        V(I)=1.0+SH(I)/0.001665
        PRINT &
        PRINT 4.I.SH(I),V(I),G4(I),G5(I),G2(I)
        SH(I+1)=St(I)*U.001665
        CONTINUE
        PRINT <
        00'20 I=1,201
        PRINT O,SH(I),V(I),G4(I),Cb(I),GZ(I)
        PUNCH S,SH(I),V(I),G4(I),GS(I),G2(I)
        CONTINUE
            FORMAT (1H1)
            FORMAT (5X,*SH**8X,*V*,16X,*G4*,18X,*G5*,18X,*GZ*/)
            FCRMAT(/2X,*I*,5X,*SH(I)*,5X,*V(I)*,7X,*G4(I)*,15X,*G5(I)*,15X,
        C*G2(I)*/)
            FORMAT(X,I3.2X,FY.6,2X,F゙E.1,3(2X,E17.10)/)
            FORMAT(F10.6.F10.2.3FEU.10)
            STOP
            END
```

```
    SUQROLIINF:.1AIN(SH)
    CCMMON A,B,RII,RIZ,SIMPSSA
    UIMENSION D(3), t(3), SM(ミ), SIM(3)
    DATA (D(I),I=i,2)/-3., -c.&/,(E(I),I=1,2)/-č.8.3./
C
    DO 100 J=1,2
    A=D(J)
    B=E(J)
    CALL INTI(SH)
    SN.(J)=SIMPSON
    CALL INTZ(SH)
    SIM(J)=SIMPSON
    PRINT Il,J,A,B,SM(J),SIM(`)
100 CONTINUE
    RIl = SM(1) + SN(2)
    RI2 = SIM(I) + SIM(2)
    PRINT +2,RII,RIZ
C
```



```
    C*SIM=*,E17.101)
12 FCFMAT(X,#RII=*,E17.10.5x,*RI2=*,E17.10/)
    HETURN
    END
    SUSFOLIINE INTI(SH)
    COMMON A,E,RIL,RIZ,SIMFSCA
    FRINT <1
    HSS=A
    FA=(1.U-HSS**2/G.0)**3/(1.0+SH*HSS)**3*HSS
    HSS=B
    FB=(1.t-HSS**2/9.0)**3/(1.0+SH*HSS)**3*HSS
    Fl=FA+rB
    F2=0.0
    HSS=(A+E)/2.0
    F4=(1.U-HSS**2/7.0)**3/(1.0 +SH\ddot{HHSS)**3*4.0*HSS}
    N=2
    T=(E-A)/N
    SIMPSCiv=T/3.0*(F1+F2+F4)
    DC 10 n=1,500
    T=(B-A)/N
    TN=T/2.0
    F2=F2+r4/2.0
    F4=0.0
    DO 20 J=1.N
    HSS=A-TN+J*T
    Fu=(1.v-HSS**2/9.0)**3/(1.U +SH*HSS)**3*4.U*HSS + F4
20 CONTINUE
    SIMP=SIMPSON
    SIMPSON=T:, 3.0*(F1+F2+F4)
    DELTA=ABS((SIMWSUN-SIMN)/(SIMPSDN+SIMP))
    PRINT <2,N,SIMF,DELTA
    N=2*N
```


Data for G_{2}, G_{4} and G_{5} with polynomial distribution of the asperity height.
$\mathrm{SH}=\bar{\sigma} / \mathrm{H}$
V $=$ non-dimensional SH
$\mathrm{G}_{2} \quad=\int_{-\infty}^{\infty} \frac{\mathrm{g}\left(8^{*}\right)}{\left[1+\delta^{*}(\bar{\sigma} / \mathrm{H})\right]^{3}} \mathrm{~d} 8^{*}$
$\mathrm{G}_{4}=\int_{-\infty}^{\infty} \frac{\delta^{*} g\left(8^{*}\right)}{\left[1+\delta^{*}(\sigma / H)\right]^{3}} \mathrm{~d} 6^{*}$
$G_{5}=G_{2} / G_{4}$
$g\left(\delta^{*}\right)=\left\{\begin{array}{l}\frac{35}{96}\left(1-\frac{8^{* 2}}{9}\right)^{3} \\ 0\end{array}\right.$
$-3 \leq 8^{*} \leq 3$
elsewhere

. 049950 . 051615 .053280 . 054945 -056610 - 058275 .059940 .051605 .063270 .064935 .066600 - 068265 .069930 .071595 -073260 :074925 .076590 .078255 .079920 . 081585 - 0.33250 .034915 - 036580 . 038245 .089910 .091575 .093240 .094905 .096570 .098235 .099900 .101565 .103230 .104895 .106560 .108225 .109890 . 111555 .113220 .114885 .116550 .118215 .119880 .121545 .123210 .124875 -126540 .128205 .129870 -131535
31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00 55.00 56.00 57.00 58.00 59.00 60.00 61.00 62.00 63.00 64.00 65.00 66.00 67.00 68.00 69.00 70.00 71.00 72.00 73.00 74.00 75.00 76.00 77.00 78.00 79.00 80.00
-. 1529669751
-. 1582881916
-. 1636319007
-. 1689989282
-. 1743901098
-. 1798062917
-. 1852483314
-. 1907170973
-. 1962134701
-. 2017383425
-. 2072926201
-. 2128772216
-. 2184930795
-. 2241411406
-. 2298223663
-. 2355377334
-. 2412882345
-. 2470748786
$-.2528986917$
-. 2587607174
$-.2545620173$
-. 2706036722
-. 2765867821
$-.2826124672$
-. 2886818687
-. 2947961494
$-.3009564942$
-. 3071641114
-. 3134202331
-. 3197261160
-. 3260830426
-. 3324923217
-. 3389552897
-. 3454733110
-. 3520477796
-. 3586801197
-. 3653717869
-. 3721242692
-. 3789390883
-. 3858178006
-. 3927619984
-. 3997733116
-. 4068534083
-. 4140039967
-. 4212268264
-. 4285236897
$-.4358964234$
-. 4433469102
$-.4508770805$
$-.4584889140$
-5.6367079229
-6.4202181087
-6.2171799186
-6.0263703463
-5.8467102566
-5.6772438332
-5.5171214518
-5.3655853297
-5.2215363317
-5.0802341398
-4.9508585771
-4.8277327210
-4.7104100548
-4.6027585049
-4.4957019781
-4.3933455139
-4.2953824033
-4.2015320339
-4.1115371720
-4.0251615764
-3.9421878997
-3.8624158356
-3.7856604805
-3.7117508799
-3.6405287375
-3.5718472638
-3.5055701487
3.4415706427
-3.3797307319
-3.3199403982
-3.2620969524
-3.20E1044340
-3.1518730679
-3.0993187738
-3.0483627208
-2.9989309240
-2.9509538769
-2.9043662172
-2.8591064219
-2.8151165293
-2.7723418840
-2.7307309043
-2.6902348687
-2. 6508077195
-2.6124058831
-2.5749881038
-2.5385152918
-2.5029503817
-2.4682582034
-2.4344053612

1. 0151971358
2. 0162447141 1.0173289673 1. 0184501295
1.0196084435
1.0208041609
1.0220375429
1.0233088596 1. 0245357631 1. 0248780151 1.0262764462 1.0277143282 1.0291919985 1. 0316675410 1.0332128666 1.0347986442 1.03E4252365 1.0380930172 1.0398023717 1.0415536970 1.0433474022 1. 0451839087 1.0470636503 1.0489870739 1.0509546391 1.0529668195 1.0550241022 1. 0571269883 1. 0592759937 1.0614716488 1. 0637144994 1.0660051069
3. 0683440488
4. 0707319187
1.0731693274
1.0756569029 1.0781952911 1.0807851561 1.0834271808 1.0861220677 1.0888705387 1.0916733368 1.0945312255 1.0974449905 1.1004154394 1. 1034434032 1. 1065297365 1.1096753182 1.1128810527
1.1161478703
.133200
.134865
.136530
.138195
.139860
.141525
.143190
.144855
.146520
.148185
.149850
.151515
.153180
.154845
.156510
.158175 .159840 .161505 .163170 .164835 .166500 .168165 .169830 .171495 .173160 .174825 .176490 .178155 .179820 .181485 .183150 .184815 .186480 .188145 .189810 .191475
.193140
.194805
.196470
.198135 .199800 .201465 .203130 .20 .4795 - 206460 - 208125 .209790 .211455 - 213120 -214785

81.00	4739657472
82.00	-. 4739657472
83.00	-. 4818349697
84.00	-.4897943053
85.00	-. 4978450090
86.00	-. 5059923974
87.00	-. 5142358509
88.00	-. 5225788159
89.00	-. 5310238076
90.00	-. 5395734124
91.00	-. 5482302910
92.00	-. 5569971807
93.00	-. 5658768992
94.00	-. 5748723473
95.00	-. 5839865120
96.00	-. 5932224706
97.00	-.6025833939
98.00	-. 6120725501
99.00	-. 6216933087
100.00	-. 6314491450
101.00	-. 6413436442
102.00	-.6513805062
103.00	-. 5615635504
104.00	-. 6718967209
105.00	-. 5823840917
106.00	-. 5930298724
107.00	-. 7038384143
108.00	-. 7148142166
109.00	-. 7259619328
110.00	-. 7372863781
111.00	-. 7487925362
112.00	-. 7604855676
113.00	-. 7723708173
114.00	-. 7844538238
115.00	-. 7967403281
116.00	-. 8092362831
117.00	-. 8219478646
118.00	-. 8348814812
119.00	-.8480437364
120.00	-.8614416905
121.00	-.8750823736
122.00	-.8889732995
123.00	-.9031222298
124.00	-. 9175372398
125.00	-.9322267347
126.00	-. 9471994673
127.00	-.9624E45568
128.00	-.9780315083
129.00	-.9939102345
130.00	-1.0100755107

81.00 82.00 83.00 84.00 85.00 6. 0 88.00 89.00 90.00 91.00 92.00 93.00
94.00
96.00
97.00
98.00
99.00
100.00
101.00
102.00
103.00
104.00
105.00
106.00
107.00
109.00
110.00
111.00
112.00 113.00 114.00 115.00 116.00 117.00 118.00 119.00 120.00 121.00 122.00 124.00 125.00 126.00 127.00 128.00 129.00 130.00
-2.4013601233
-2.3690923186
-2.3375732418
-2.3067755645
-2.2766732533
-2. 2472414935
-2.2184566178
-2.1902960406

- 2.1627381961
-2.1357624808
-2.1093491998
-2.0834795170
-2.0581354079
-2.0332996159
-2.0089556112
-1.9850875521
-1.9616802495
-1.9387191326
-1.9162541838
-1.8941383961
-1.8724283612
-1.8511116757
-1.3301764135
-1.8096111019
-1.7394047000
-1.7695465774
-1.7500264946
-1.7308345845
-1.7119613347
-1.6933975710
-1. 6751344411
-1.6571634006
-1.6394761979
-1.6220648613
-1. 6049216864
-1.5880392234
-1.57141026E3
-1. 1.5550278414
-1.5388851972
-1.5229757946
-1.5072932970
-1.4918315618
-1.4765846316
-1.4615467257
-1.4467122327
-1.4320757029
-1.4176318408
-1.4033754984
-1.3893016685
-1.3754539099
1.1194767281
1.1228686109
1.1263245322

1. 1298455350
1.1334326929
2. 1370871108
3. 1408099265
4. 1446023114
1.1484654718
1.1524006499
1.1564091255
1.1604922170
5. 1646512829
1.1688877229
6. 1732029801
7. 1775985421
8. 1820759426
1.1866367633
9. 1913224038
10. 1960520706
11. 2008700286
12. 2057780603
13. 2107780050
14. 2158717656
15. 2210613009
16. 2263486387
17. 2317358729
18. 2372251675
19. 2428187595
20. 2485189617
21. 2543281667
22. 2602488493
23. 2662835709
24. 2724349830
25. 2787058309
26. 2850989587
27. 2916173128
28. 2982639475
29. 3050420294
1.3119548430
1.3190057961
30. 3261984258
31. 3335364049
32. 3410235485
33. 3486638207
34. 3564613430
35. 3644204014
36. 3725454555
37. 3808411471
38. 3893123104
.216450
. 218115
.219780
. 221445
.223110
.224775
. 226440 .228105 .229770 .231435 .233100 - 234765 .236430 .238095 .239760 .241425 -243090 .244755 .246420 .248085 . 249750 . 251415 . 253080 .254745 . 256410 .258075 .259740 - 261405 .263070 . 264735 . 266400 .268065 - 269730 .271395 .273060 .274725 .276390 .278055 .279720 .281385 .283050 .284715 .286380 - 288045 - 289710 .291375 .293040 -294705 .296370 .298035
131.00 132.00 133.00 134.00 135.00 136.00 137.00 138.00 139.00 140.00 141.00 142.00 143.00 144.00 145.00 146.00 147.00 148.00 149.00 150.00 151.00 152.00 153.00 154.00 155.00 156.00 157.00 158.00 159.00 160.00 161.00 162.00 163.00 164.00 165.00 166.00 167.00 168.00 169.00 170.00 171.00 172.00 173.00 174.00 175.00 176.00 177.00 178.00 179.00 180.00
-1.0266066512
-1.0434818142
-1. 0607127742
-1.0783118426
-1.0962918997
-1.1146664290
-1.1334495539
-1.1526560771
-1.1723015235
-1.1924021855
-1.2129751731
-1. 2340384668
-1.2556109760
-1.2777126009
-1. 3003643011
-1.3235881683
-1.3474075073
-1.3718469225
-1. 3969324127
-1.4226914752
-1.4491532185
-1.4763484864
-1. 5043099939
-1.5689740923
-1.5626728537
-1.5931508057
-1.6245474222
-1.6569077095
-1.6902793368
-1. 7247132771
-1.7602641108
-1.7969903641
-1.8349548881
-1.8742252835
-1.9148743788
-1.9569807696
-2.0006294286
-2.0459123983
-2.0929295794
-2.1417896321
-2.1926110099
-2.2455231493
-2. 3006678470
-2.3582008586
-2.4182937643
-2.4811361584
-2.5533905657
-2.6222448358
-2.6883841314
-2.7645820112
-1. 3617328315
-1.3481800950
-1.3347911976
-1. 3215617472
-1.3084874581
-1. 2955641449
-1.2827877178
-1.2701541777
-1.2576596113
-1.2453001863
-1.2330721471
-1.2209718099
-1.2089955583
-1.1971398338
-1.1854011565
-1.1737760706
-1.1622611896
-1.1508531677
-1.1395486991
-1.1283445145
-1.1172373758
-1.1062240711
-1.0953014106
-1.0596512219
-1.0737153380
-1.0630453430
-1.0524535936
-1.0419365718
-1.0314913997
-1.0211145788
-1.0108030863
-1.0005534568
-. 9903624798
$-.9802267910$
-. 9776494784
$-.9601074765$
$-.9501167408$
$-.9401670450$
$-.9302545583$
-. 9203043272
-. 9104513037
-. 9006231018
-. 8908152164 -. 8810229024 -. 8712411387 $-.8614645864$ -. 8495353536 -. 8399676355 -. 8321982189 -. 8231330153
39. 3979639819
1.4068014115
1.4158300742
1.4250556828
1.4344842012
1.4441218590
1.4539751665
1.4640509318
1.4743562783
1.4848986638
1.4956859011
1.5067261804
1.5180280930
1.5296006572
1.5414533464
1.5535961192
1.5660394524
1.5787943763
1.5918725137
1.6052861219
1.6190481389
1.6331722330
1.6476728583
1.6625653141
1.6778658113
1.6935915447
1.7097607724
1.7263929044
1.7435085990
1.7611298714
1.7792803959
1.7979849206
1.8172704733
1.8371658353
1.8720759376
1.8789118683
1.9008315122
40. 9234994137
1.9469572815
41. 9710982664
1.9962655525
42. 0223700238
2.0494699260
2.0776289650
2.1069170130
2.1374109344
43. 1691955570
44. 2026007943
45. 2372684858
2.2756187270
.299700 .301365 .303030 .304695 .306360 .308025 .309690 . 311355 .313020 . 314685 .316350 -318015 .319680 .321345 .323010 .324675 .326340 .328005 .329670 .331335 .333000
181.00
182.00 183.00 184.00 185.00 186.00 187.00 188.00 189.00
$190.00-3.8356120648$ $191.00-3.9907195912$ $192.00-4.1600027090$ $193.00-4.3459461393$ $194.00-4.5517992396$ $195.00-4.7819084722$ $196.00-5.0423682502$ 197.00 -5.3418762853 $198.00-5.6942797548$ $199.00-6.1236624056$ $200.00-6.6809165008$ $201.00-7.5462070183$
-2.8448574004 -2.9295837773

- 3.0191861865
-3.1148547519
-3.2157067681
-3.3231128883
-3.4377280336
-3.5607511491
-3.6926708634
-4.1600027090
-4.3459461393
-4.5517992396
-. 8132303512
-. 8026515603
-. $792720095 E$
-. 7825532498
$-.7725087533$
-. 7623829977
$-.7521826144$
$-.7418116002$
$-.7314022390$
$-.7207272646$
-. 7098576193
-. 6987670850
$-.6873990259$
$-.6756874658$
-. 6635495434
$-.6508665451$
-. 6374769757
-. 6231104791
$-.6072920562$
$-.5889847030$
$-.5642247053$

2. 3135243828
3. 3514349899
2.3933695625
2.4375397086
2.4841616264
4. 5334847555
2.5857992600
2.6414065078
2.7008277372
2.7644301914
2.8328427082
5. 9068729666
2.9873991428
3.0755936932
6. 1730331832
7. 2819088021
3.4053231387
3.5481653859
3.7188515337
3.9349576800
8. 2577564311

Data for G_{2} and G_{4} with sinusoidal distribution of the asperity height

$$
\mathrm{SH}=\bar{\sigma} / \mathrm{H}
$$

V \quad non－dimensional SH
$\mathrm{G}_{2}=\int_{-\infty}^{\infty} \frac{g\left(\delta^{*}\right)}{\left[1+\delta^{*}(\bar{\sigma} / \mathrm{H})\right]^{3}} \mathrm{~d} \delta^{*}$
$G_{4}=\int_{-\infty}^{\infty} \frac{g\left(\delta^{*}\right)}{\left[1+\delta^{*}(\bar{\sigma} / \mathrm{H})\right]^{3}} \mathrm{~d} \delta^{*}$.

SH	V	G2	G4
0.000000	1.000	.99701659	－ 0000000000
． 001665	2.000	.9970979	－．02234477
．003330	3.000	.99731426	－044697RA
．004995	4.000	． 99768850	－ 06706769
$\bigcirc 006660$	5.000	．9982n793	－ 08946258
.008325	6.000	－99887AR5	－ 1119909
$\bigcirc 009990$	7.000	．99969962	－．13438115
$\bigcirc 011655$	8.000	1．00067テ71	－156R？17？
$\bigcirc 013320$	9.000	1．00179767	－ $1794611 ?$
$\bigcirc 014985$	10.000	1．00306613	－20210702
－016650	11.000	1．004491RO	－ 22483 ¢71
－018315	12.000	1．00607n50	－．24764819
－019980	13.000	1－ñ78n312	－． 27053911
－021645	14.000	1．00969ヘ̄63	－． 29354279
$\bigcirc 023310$	15.000	1．01173413	－． 31665667
$\bigcirc 024975$	16.000	1． 11393476	－．33989127
$\bigcirc 026640$	17.000	1． 11629380	－． 36325573
－028305	18.000	1．ñ1881259	－．38675779
． 029970	19.000	1．02149259	－． 41040833
$\bigcirc 031635$	20.000	1．02433534	－．4342j635
0033300	21.000	1－072734249	－ 04581915
034965	22.000	1．03651580	－ 48234359
2036630	23.000	1．0゙3385712	－ 500669256
$.038295$	24．000	1.03736940	－ $5312 \overline{1856}$
039960	25.000	1.04105172	－$\cdot 55596191$
041625	26.000	1．04490926	－．5809？311
043290	27.000	1.04894331	－60̃6172an
$\bigcirc 044955$	28.000	1.05315628	． $6315421 ?$
0046620	29.000	1．05755n72	－657222त̄1
048285	30.000	1．0̃6212927	－6831439？

.049950	31.000	1．0゙6689471
.051615	32.000	1．07184996
$\bigcirc 053280$	33.000	1．07699906
$\bigcirc 054945$	34.000	1．n8234721
．056610	35.000	1．087RRE71
．058275	36.000	1．n9363206
－059940	37.000	1．0995R486
.061605	38.000	1．10574791
0063270	39.000	1．11212514
．064935	40.000	1．11872ヘ̃．7
． 066600	41.000	1．12553a77
．068265	42.000	1．1325R391
．069930	43.000	1．13986ヘ̄73
.071595	44.000	1.14737407
．073260	45.000	1．15517896
.074925	46.000	1． 16313 nit 4
.076590	47.000	1．1713R457
－078255	48.000	1.17999642
－079920	49．000	1．18867710
．081585	50.000	1．19771776
－083250	51.000	1．？ 2703079
.084915	52.000	1． 21664484
．086580	53.000	1． 22653083
－088245	54.000	1． 23673196
.089910	55.000	1．74722R73
.091575	56.000	1． 25803794
－093240	57.000	1． 26916770
.094905	58.000	1．78067644
．096570	59.000	1． 29242797
.098235	60.000	1．3n45RR43
.099900	61.000	1.31706633
－101565	62.000	1．72993760
$\underline{-103230}$	63.000	1.34317556
－104895	64.000	1．35680597
.106560	65.000	1.37083501
$\underline{-108225}$	66.000	1． 38527437
－109890	67．000	1.40013620
.111555	68.000	1.41543317
.113220	69.000	1.43117849
．114885	70.000	1.4473 P594
－116550	71.000	1．46406088
－118215	72.000	1．48124530
.119880	73.000	1.49892783
． 121545	74.000	1.51713379
.123210	75.000	1．535RRへ̈22
$\cdot 124875$	76.000	1．55518490
.126540	77.000	1.57506642
.128205	78.000	1.59554418
.129870	79.000	1．61663R49
.131535	80.000	1．63837r54

.049950 .051615 .053280 .054945 .056610 .058275 .059940 .061605 .063270 .068265
.069930
.073260
.074925
.076590
.078255
.079920
.081585
.083250
.084915
.086580
． 088245
.089910
.091575
.093240
.094905
.096570
． 098235
.099900
． 101565
$\bullet 103230$
． 104895
106560
-108225
111555
.113220
－114885
－116550
.118215
.119880
.121545
.123210
－ 124875
－ 126540
.129870
.131535
31.000
32.000
33.000
34.000
35.000
36.000
37.000
38.000
39.000
． 000
． 000
43.000
4.000
46.000
47.000
49.000
50.000
51.000
52.000
53.000
55.000
56.000
57.000
58.000
60.000
61.000
63.000
64.000
65.000
67.000
68.000
70.000
71.000
73.000
74.000
75.000
77.000
78.000
80.000
1.06689471

1．n7184996
1．07699a06
1．n8234721
1．087RR571
． 1.9363206
． 0 095R486
1.10574791
1.11212514

1．11872ヘ̃． 7
1.12553 月77
1.13258391
．13986～73
． 14737407
1．15517896
1．16313nf4
1.17138457

1．17999642
1．18867710
． 19771776
1．？ 0703079
1． 21664484
1．2？653083
1．73673196
1．74722873
1.25803794

1．26916770
1．78067644
1．29242297
1．3n45RA43
1．31706R33
1．72993760
1.34317556
1.35680597
1.37083501
1.38527437
1.40013620
1.41543317
1.43117849
1.4473 R594

1．464C6088
1.48124530
1.51713379

1．535RRĀ2？
1.55518490
1.57506642
1.59554418
1.63837 r．54
－． $7093795 n$
. .73592063 76257951
. .78978850
－．R17アコロロ5
－． 8449 ロR77
－R731－87R
－－ 9015 157ア5
－．93044557
－．959んG57？
－．9R935276
－1．0194？20̄
－1．04991977
－1．nROQ nara
－1．1123F311
-1.14479377
-1.17677 ก7？
－1．7n969110
－1．24319575
$-1.2772419 \mathrm{a}$
-1.31191154
-1.34714471
$-1.383 \pi 43 n ̃$
－1．4195FRAT
-1.45676454
-1.49465454
-1.5332×375
－1．57261617
－1．61277ロ日の
-1.6536 An96
－1． 1.7954 íB64

－1．7815i1ィ1
－1．82597909
－1．871267．36
-1.91761056
$-1.9649747 \mathrm{n}$
-2.01339517
－2．06291185
－2．11354416
－2．16539364
－2．21844354
－2．2727＝89．
－？ 3 3R30 677
－2．385375RR
－2．4437774n
－2． 2 万i36445n
－2．565ก7274

－2．か92ヒテ711

－133200	81.000
－134865	82.000
.136530	83.000
． 138195	84.000
.139860	85.000
．141525	86.000
． 143190	87.000
． 144855	88.000
.146520	89.000
.148185	90.000
． 149850	91.000
．151515	92.000
.153180	93.000
． 154845	94．000
$\bigcirc 156510$	95.000
.158175	96.000
159840	97.000
－161505	98.000
$\because 163170$	99.000
－164835	100.000
． 166500	101.000
． 168165	102.000
.169830	103.000
－171495	104.000
． 173160	105.000
． 174825	106.000
.176490	107.000
．178155	108.000
179820	109．000
－181485	110.000
－183150	111.000
． 184815	112.000
－186480	113.000
－188145	114.000
$\bigcirc 189810$	115.000
．191475	116.000
.193140	117.000
$\bigcirc 194805$	118.000
.196470	119.000
.198135	120.000
$\bigcirc 199800$	121.000
$\bigcirc 201465$	122.000
． 203130	123.000
－204795	124.000
． 206460	125.000
－208125	126.000
－209790	127.000
． 211455	128.000
－213120	129.000
． 214785	130.000

-133200
.136530
.138195
.139860
.141525
.143190
.144855
.146520
． 148185
.149850
.151515
.154845
.156510
.158175
.159840
－161505 .163170 -164835 － 166500 .168165 .169830 .171495 －173160 .174825 .17649 I -178155
.179820
－181485
183150 －184815 1864月0 188145 189810 191475 193140 194805 196470 .198135 .199800 .201465 ． 203130 .204795
－206460 －208125 209790 211455 -213120 ． 214785
81.000
82.000
83.000
84.000
85.000
86.000
87.000
88.000
89.000
90.000
92.000
93.000
95.000
96.000
98.000
99.000
100.000
101.000
103.000
104.000
105.000
106.000
107.000
109.000
110.000
112.000
114.000
115.000
116.000
118.000
119.000
121.000
122.000
124.000
125.000
127.000
128.000
130.000

1．66076753
1．68383765
1.70762 「21
1.73213561

1．757417449
1．78347273
1． 11035156
1.83807763

1．R666R306
1．89620158
1．92666R57
1．95812119
1．99059R4R
2．n2414147
2．r5879328
2．n9459929
2．1316n725
2．16986742
2．？0943277
2.25035910

2．29270526
2.33653334
2.38190286

2．42月90103
2．4775R79月
2．52803203
2.58032998
2.63456 .340
2.69082401
2.74920898

2．8098？139
2．R7277ก59
2．93817773
3．00615122
3．n7683725
3．15037r46
3．22689952
3．3n65Rつ86
3．38958944
3．47609959
3．5663059？
3.66041432

3．75月64509
3．R6123411
3.96843423

4．08051A63
4.19777255
4.32051495
 4．5838319R
－2．7589ŋ7ヶ
－2．82699619
－2．89691354
-2.96874157
－3．0425559月
-3.1184259 त
0.3 .19644464
－3． 27677915
－3．35932ก7ก
－ 3.444335 n̄？
-3.53187256

$-3.7149445 \overline{\text { a }}$
-3.8107 नífica
$-3.9094459 \mathrm{~K}$
－4．011？92RA
－4．1163月229
－4．224REAQ？
－4．336R\＆7ก̄5
－4．45757117
－4．5721？ 4 2？

－4．R P 3 3F4 4 F
－4．955R in5月
－5．ก9？ 2 म455
－5． 2344 ディつの
－5．3812ベR4i
－5．533397ヶ亩
－5．691
－5．85467449
－6．n2437319
－6．20058177
－6．3R3590ñ
-6.5737 ¹7
-6.77149911

- 6．977年27R
- 7．191才̃1578
－7．4137ロ073
－7． 7 64597159
－7．8R76935i

－\＆．67775157
－R． 9647 1827
－9．26465845
－9．5783сの日ロ

-10.75039417
－10．6105129？
-10.9 RA3 3704

－216450	131.000
－218115	132.000
－219780	133.000
－221445	134.000
－223110	135.000
－224775	136.000
－226440	137.000
－228105	138.000
$\bigcirc 229770$	139.000
－231435	140.000
． 233100	141.000
． 234765	142．000
． 236430	143.000
－238095	144.000
－239760	145.000
－241425	146.000
． 243090	147.000
－ 244755	148.000
.246420	149.000
－ 248085	150.000
－249750	151.000
．251415	152.000
． 253080	153.000
． 254745	154.000
－256410	155.000
$\bigcirc 258075$	156.000
$\bigcirc 259740$	157.000
－261405	158.000
．263070	159.000
． 264735	160.000
－266400	161.000
． 268065	162.000
－269730	163.000
－271395	164.000
．273060	165.000
$\bigcirc 274725$	166.000
.276390	167.000
.278055	168.000
． 279720	169.000
$\bigcirc 291385$	170.000
.283050	171.000
．284715	172.000
.286380	173.000
.288045	174.000
.289710	175.000
.291375	176.000
.293040	177.000
.294705	178.000
． 296370	179.000
.298035	180.000

4．72516011
4．9734RAR2
5．r2926786
5.19299615

5．36520547
5．54647449
5．73743136
5.93875077
6.15119970
6.37556380
6.61273463
6.86367781

7．12945ñ16
7．41121ヶ1月
7．71n22079
8． r 2790777
R． 3657 R505
8．72556715
9.10911916
9.51853070
9.95613723
10.42447 5 5

10．92641907
11.46517847

12．04433247
12.66790326
13.34041657

14．n6697811
14．85336．381
15．70617665
16.63272764

17．64166741
18.74770705

19．94705202
21．76767710
22.71940469
24.31970390

26．108917211
2月．05125438
30.23429058

32．A715R524
35．4n2R1739
38．4755R456
41．9472R～49
45．9875R960
50．7B173ñ？
55.53472677
61.47710791

68．37254675
76．42837128
-11.38466369
－İ1．800Rフ47R
－ 12.23 1F $=257$

－13．182̄̃7169
－ 13.6918 iñ
－14．7291E9RQ
－14．796グロกテ̃の
－ 15.3947 7872
-16.027387 ก8
－ 16.69667155
-17.4 ก5757スベ
-18.1565 ラGR 2
-18.95347641
-19.79995575
-20.700 万̃ラ374
－21．658nc4
－22．6791s．89の
－23．76RGロ212
-24.93272211
－26．17790642
－27．51197185
－28．943ラシ7ロク
-30.480497 n7
-32.134 बñ44ñ
$-33.9177 \overline{149}$
－35．R42．4E75云
－ 37.92399465
-40.179 ก4399
－42．6269\＆n7
－45．2R95IFAF
－48．1916E1Aの
-51.36194 К71
－54．月332696云
－5A． 64356794
-62.83679976
-67.4641 万̈ 3ña
－72．585コ7RA1
－78．2．70406nの
－94．60̃249977
-91.67944477
－99．61939347

-118.67246697
－130．16261897
-143.28191516
－158．34067732
－175．7249このヘ̆フ
－ 795.919 グ4 920
－719．53685979

299700	181.000
$\bigcirc 301365$	182.000
303030	183.000
304695	184.000
306360	185.000
308025	186.000
309690	187.000
311355	188.000
-313020	189.000
-314685	190.000
316350	191.000
318015	192.000
319680	193.000
321345	194.000
-323010	195.000
324675	196.000
326340	197.000
328005	198.000
329670	199.000
331335	200.000
333000	201.000

$$
\begin{array}{r}
85.90997735 \\
97.16115232 \\
110.63302537 \\
126.92611767 \\
146.85263210 \\
171.53078349 \\
202.53122672 \\
242.11078656 \\
293.5975693 \overline{0} \\
362.04904862 \\
455.42518937 \\
586.7862640 \overline{0} \\
778.66214758 \\
1072.3884174 \\
1549.93125683 \\
2391.14703390 \\
4049.10940934 \\
7919.06795274 \\
19947.59913754 \\
88627.89187990 \\
6822046.68510907
\end{array}
$$

-247.36469767
-280.42144727
-320.04534453
-369.0185965त̄ -426.7529634ñ -499.57097217
-591.14194190
-7ñ.179329ñ5

- 8600.5889 กiñ
-1 ñ3.432462ñ
-1340.4296 R 19 AR
-1730.521 万̄
-2300.92093246
.3175 .01959219
.4597 .636811 ก̄3
-7106.29179548
- 12й55.84967513
-23621.1787327R
-59606.81480RR7
-265704.23173560
-20457670.58057237

PROGRAM RCL'WAVI (INPUT,OLIFUT)
C

```
THIS PROGRAM IS TO COMPUTE THE EFFECT UF SURFACE ROUGHNESS AND WAVINESS ON THE
    INTEGRATED PRESSURE OF AN EHD CONTACT
conly the case of puke rolling IS stuoieg
C ASSUMING SINUSOIDAL WAVINESS AND SINUSOIDAL ROUGHNESS DISTRIBUTION
C THIS PHOGRAM CONSISTS OF 3 SUBKUUTINES
C 1 - SUBPCUIINE GRUSIN IS TC CALCULATE WGRUB - THE FEDUCED PRESSURE AT THE
C INLET EY THE SMOUTH FILN: GFLEIN APPKOACH
C 2 - SUGROLTINE ROUGH IS TO CALCULATE WROUGH(I), THE REDUCED PRESSURE AT
C THE INLET BY STOCHIASTIC IHECKY FUR ROUGH SURFACES
C 3-SUEROUTINE WAVI IS TO CALCULATE WSIN(I), THE REDUCED PRESSURE AT THE
C INLET FOK the sinusOIDAL wAVINESS SURFACE PRGFILE
C DATA CARD :NO. 1
C KF = TOTAL NUMBEN OF GRID FCINTS
C KM = GRIU NLIMREN, XX(KM) = -2.0
C INAMP = AUMEER OF AMFLITUUE [ATA
C NCYC = AUMBER OF WAVINESS CYCLES DATA
C DATA CARD NO. ?
        HO = CENTER FILM THICKNESS
        * = OIMENSIONLESS CONTACT LCAD
        PI = 3.141593
DATA CARD NO. }
        DCYC(I) = WAVINESS CYCLES CATA
DATA CARD NO. 4
        DAMF(I) = AMPLITUDE DATA
    DATA CARD NO. 5
        ThESE DATA ARE THE OUTPUT FFOM PROGRAM SUCHAS PROGRAM DATPOLZ WHICH EVALUATE
            THE IAIEGFAL OF ( DISTFIEUTIUN FUNCTION*MSS)/(1.+SH\psiHSS)*#3 AND
            IEISTRIBUTION FUNCTION/(1.+SH*HSS)**3
        IHIS DISTFIEUTION FUNCTION CAN EE POLYNOMIAL ,GAUSSIAN, SINUSOIDAL OR ANY
            UTHER FUNCTION
        OSH(I) = THE AESCIISSA RANGING FRUM 0 TO 0.333
        UV(I) = THE NONDIMENSIONAL DSHI(I)
        0G4(I) = THE INTEGFAL OF 3E/96*(1.-HSS**2/9)**3/(1+SH*HSS)**3*HSS
            in the case of polynumial distrieution
        UG2(I) = THE INTEGFAL OF 3E/96*(1.-HSS**2/9)**3/(1+SH*HSS)**3
            IA THE CASE OF PGLYNCMIAL DISTRIGUTION
        UGS(I) = DGEZ(I)/UG4(I)
```

 COMMON KF,KMONAMP,NCYC,KNV,KMK•KFF
 COMMON HO,W,PI,WGRUE,CYC,AMP,KK•S ,DG2(201),DG4(201)
 CCMMON XX(1501), H(1501), WSIN(26), WFOUGH(16),G(1501)
 DIMENSION DCYC(20), DAMP(IE), SWISN(16), SWRO(16),FERR(16),DSH(201),
 : DV(201)
 C

```
            PRINT &
            READ \angle.KF,KM,IVAMP,NCYC
            READ 3,HC,K,FI
            READ 3,(DCYC(1),I=1,NCYC)
            READ 3,(DAMP(I),I =1,NAMF)
            DO 100 I=1.20L
            KEAD 5,DSH(I),DV(I),DGZ(1),DG4(I)
```

```
    PRINT כI
    FRINT C,KF,KM!,NAMP,NCYC
    PFINT b己
    PRINT 4,HO,W&PI
    PRINT 53
    PRINT 4,(DCYC(I),I=1,NCYC)
    PRINT S4
    PFINT 4,(DAMP(I),I=1,NAMF)
    KNM = KM + 1
    KMK =KM - 2
    KFF= NF-2
    x(1) = -5.
    00 101 J =2.KM
101 x X(J) = XX(J-1) +0.00j
    DO 102 J =KMM,KF
    xx(J)= x\times(J-1)+0.002
    DO 103 J=1,KF
    x = xx(J)
    H(J)=HO 4 4.*W/PI*(AES(x)#SOKT(ABS((-x)**2-1.)) - ALOG(ABS(X) *
    H SGRT(нBS((-x)*#2-1. ))))
103 CONTINUE
    PFINIT bS
    PFINT &, XX(KM), XX(KF)
C
    CALL GRUBIN
    DO 104 I=1, NAAIAP
    KK = I
    S = DAAIP(I) / j. % HO
    CALL RUUGH:
    SbtKO(I) = WROUGM(I) / NGKLB
    COMTINUE
    DC 100C II=1,NCYC
    CYC= LCYC(II)
    PFINT 7, II,CYC
    DC 105 I = 1.NAMP
    KK=I
    AMD = UAMP(I) # %O
    CALL WmVI
    SWSIN(I) = WSIIN(I) / WGKLE
    PERR(I) = (KSIV(I) - wKOLGH(I)) ; mimubsm(i)
```



```
105 COINTINLE
    DO 10E I=1,NAMF
    KK=1
    AMP = -DAMP(I) # HO
    CALL WAVI
    SWSIN(L) = WSIN(I) / WGKLE
    PERR(1) = (&SIN(I) - wROLCH(1)) / WFOUGmil)
    PRINT O. I,AMF ,WSIN(I).SWSIN(I).WRUUGH(I).SWRC(I),PERR(I)
106 CONTINUE
1000 CCNTINUE
```

```
C
l FORMAT (1H1)
2 FORMAT (20I5)
3 FCRMAT (8F10.7)
4 FORMAT (9(CX,E13.6))
5 FORMAT (2FI0.6.3F20.10)
6 FOKMAT(I5.8(2X,EI3.6))
```



```
    51 FCRMAT (/3x,*KF*, 3X,*KM*,X,*NAMF&,X,*NCYC*)
    52 FOPMAT (/6x,*HO*,14X,***,1 ミx,**It)
    53 FOKMAT (/6X,*DCYC(I)*)
    54 FOPMAT (/6X,*DAMP (I)*)
    55 FORMAT (/6x,#XX(KM)*,9X**X*(KF)*)
    C
        STOP
        EAU
        SUGROUIINE GRUOIN
    C
        CCMMON KF,KN,NAMP,NCYC,KNN,KMAKOKFF
        COMMON HO,W,PI,WGKUB,CYC,AMP,KK,S .DGZ(201),DG4(201)
        COMMON XX(1501),H(1501),nSIN(10),WKOUGH(16),G(1501)
    C
        00401 J=1,KF
        G(J)=(H(J) - HO)/H(J)**3
401 CONTINUE
    WGRUB = 0.
    DC 402 J=1,KMK.C
    402 WGRUB = WGRUE + 0.003/3.*(G(J) + 4.#G(J+1) +G(J+2))
        DO 403 J=KM,KFF,C
    403 WGRUB = WGRUB + 0.002/3.*(G(J) + 4.*G(J+1) +G(J+C))
        PFINT 4I, HO,NGRUE
    41 FORMAT(//////SX.*HO=*,F1O.C. 20X,*WGKUU=**E13.6//)
C
        RETURN
    EAD
        SUNROUTINE RUUSF
        CCIMMON KF,KIN,NMMN,NCYC,KNN,KMK,KFF
    COMMON HO,W,PI,WGRUE,CYC.AMP,KK.S .DGZ(201),DG4(201)
    COM&ON XX(1501),m(1501),wSIN(10),WHOUGH(16),G(1501)
    OIMENSICIN TR(1دO1)
    DC 301 J=1,KF
    V = 1. + S/H(J)/0.001\in65
    MV =V
    VM=MV
    D2 = (ALOG(DGZ(MV+1)) - ALOG(DGZ(MV)))* (V-VM) + ALOG(DGZ(MV))
    G2 = EXP(C2)
301 TF(J)=G(J) # G2
    WROUGF(KK) = 0.
    DO 302 J= 1,KMK,2
    WROUGF(KK) = WMOUGH(KK) + 0.003/3.#(TR(J) + 4.#TR(J+1) +TR(J+2))
    DO 303 J =KM.KFF,2
    WROUGF(KK) = WROUGH(KK) + 0.0UL/3.*(TP(J) + 4.ETP(J+1) + TR(J+2))
    RETURN
    END
```

```
    SUtiROUIINE WAVI
C
    COMMON KF,KM,NAMP,NCYC,KNN,KMKOKFF
    CCMR!ON HO,W,PI,WGRUB,CYC,ANP,KK,S ,DG2(201),DG4(201)
    COMMON XX(1501),H(1501),nSIN(16),WIROUGH(16),G(1501)
    DIMENSION.T(15U1)
    C
        DO 201 J = 19KF
        DEL = AMP # cos(Ë.#CYC*PI#xX(J))
        T(J) = (H(J) - HO) / (H(Iv) + DEL)##3
201 CONTINUE
        WSIN(KK) = 0.
        DO 202 J=1,KIAK,2
    202 WSIN(KK) = WSIN(KK) + 0.003/3.*(T(J) + 4.#T(J+1) + T(J+2))
        DO 203 J=KM,KFF,2
    203 WSIN(KK) = WSIN(KK) + 0.002/3.*(T(J) + 4.*T(J+i) +T(J+2))
C
        RETURN
        ENO
000000000000U0000000SOU END OF HECOKU
    15011001 9 14
    0.00001 0.00003 j.14159265
    llllllll
    0.99
C DATA FOR DSH(I), OV(I), DG4(I), DGZ(I), DGS(I) ARE OMITTED
000000000000UOOUNOOOUO ENO}\mathrm{ OF INFURMATIUN
```

```
            PROGRAM ASOERTY (INPUT,OLTFUT,PUNCH)
THIS DROGRam IS TO SOLVE FOR THEE NERTURHED PRESSURE DUE TO A SINGLE 3-D
    KIGID ASPEFITY WITHIN AN EL ASTUHYDKCUYNAMIC CONTACT
THIS PKOGFmM CONSIDTS OF 4 EU8ROUTINES
1- SUEROLTINE TRAINSFN IS LSEE TC THANSORM THE INPUT DATA OF CMENG FROGRAM
    FROM GLCOAL COORLINATE TU ASPERITY CUOROINATE
2 - SUEROLIINE INTERHN IS USED TU INTERPOLATE SOME NEW DATA IN ASFERITY
    COORUINATE GY SECOND ORDER INTERFOLATION ROUTINE
3 - SUBROLIINE ABCK IS TU FCKM THE A(2゙9,14,i4),B(29,14,14), C(29,14,14) AND
    &(29.14) F'ATRICES
4 - SUGROUTINE TEFPHI IS TC FORM MATRICES T (29,14,14), E(30,14,14),F(30,14)
    AND SOLVL FCR THE PERTURBEC PRESSUKE PHI(29,14) BY THE COLUMNWISE MATRIX
    INVERSICN METHOD
DATA CAPD ivC. 1
    NCl = NU:1EEK OF THE MAXIHUN ASPERITY AMPLITUDE
    NUE = NUGEER OF LIFFEFEINT vELOCITIES DATA
    NGAMAR = NUMEER OF THE ELLIFSTICITY RATIO OF ASPERITY
    NPLOT = U,DO NOT FLOT THE FEESULTS
    NPRINTZ = 0, DO NOT HRINT THE KESULTS
    NPRRINT = 0, DO INOT PRII.T TIE RESULTS
DATA CARD NO. 2
    BSTAF = THE RLTIU UF THE MINUR AXIS OF THE ASPERITY TO THE HALF HERTZIAN
        CONTACl WIDTH
    *3 = the distance betweem tre asherity centek ard the contact centef
    CI = THE CISTANCE IN X-DIKECTION WHERE THE PERTURGED PRESSURE PHI IS
        ASSUHED TO EE LERC
DATA CARD mO. 3
    gamNa(I) = ELLIFSTICITY kATIO jATA
data cagd ivO. i
ClH(I) = ASFERITY AINRLITUCE URTA
DATA CARD NO. }
    |l(I),UZ(I) = VELOCITY DATA
DATA CARD ivO. %
    HHZ = HERTIZIAN! HRESSURE
    AL3E = THE FRODUCT OF PRESSLKE VISCOSITY COEFFICIENT AND ThE EGUIVALENT
        YCUNGS MOUULUS,
DATA CARD NO. 7
    HO = CENTER FILM THICKNESS
DATA CARD NO. }
    KO = IN ULOBAL CUORDINATÉS, THE GRID NO. OF HERTZIAN CONTACT CENTER WITH
        XS(KO) = 0
    KF = IN GLOBAL CUORDINATES, THE UFID NU. OF CONTACT EXITwITH XS(KF) = 1
    NC = IN ↔SPERITY COCROIVATE, THE GRIU NO. OF HEKTZIAN CCNTACT CENTER
    NX,NY = ITE fo. GF TOTAL GFIU POINTS IN X AND Y DIRECTIUN OH ASPERITY COORD.
    IDEG=2 MEANS A PARASGLIC INTEKPOLATIUN ROUTINE USED IN SUBROUTINE INTERFN
```

```
C DATA CARD IVC. }
C DXS(I) = ENID SILES DATA IN GLOBAL COORD. (FHUM (HENG PROGRAIA)
C DATA CARD IVO. }1
C HS(I) = STEADY STATE PRESSLFE DATA FROM CHENG PFOGRAM
C DATA CARD :OO. 11
C HS(I) = STEADY STATE rILF: THICKNESS DATA FROM CHENG PROGRAM
C DATA CARD ivO. 12
C DX(I) = URIL SIZES DATA IN X-DIRECTIGN OF ASPERITY COORD.
C DATA CARD INO. 13
C DY(I) = GRIE SIZES DATA IN Y-DIRECTION OF ASPERITY COORD.
C DATA CARD iNO. 14
C MIN(I) = NO. USEU IN SUEROLTINE INTERPN TO IDENTIFY THE GRID POSITION
C
C
            CCMMON, BSTAR,X3,Cl
            CCMMON ALPHA,ALAMDA,GINV
                CCMMOA NX,NXI,NY,NYI,CI,CX(28), DY(14),DEL(29,15), HTEP(29,15),
                C HlHTEH(24,15), F!(29), ト1(29), X(29)
                    COMMON A(29.14,14), B(\kappay,i4,15), C(29.14,14), R(29,14)
                    CCMMON PHI(29,&4),PIPHI(C゙5,14),HT(29,15),NHRINT,NPFINTZ
C
                DIMENSION DXS(C0),XS(80),XXS(8u),FS(80),HS(80),MIN(29),
                1\timesOC(2G).PPLOT(C9),Y(15),FIEP(24),C1H(5),EP1(29),U1(3),U2(3)
                    DIMENSION GAIIAR(5)
C
C READ CUNSTANT
C
            READ כ,NCl,NUD,IVGAMAR,NFLOT,INFFINTZ,NPRINT
            READ C.ESTAR,X3,DI
            READ C.(GAMAR(I),I=1,NGANAR)
            HEAD C,(ClH(I),I=1,NCL)
            DC 100 I=1.NUG
100 PEAD د,U1(I), UZ(I)
            READ C,PHZ,ALJE
            RE\triangleD 2.HO
            READ =,KC,KF,INC,NX,NY,ICEG
            KFF=KFF-1
            NXI=NX-1
            AYL=NY-1
            NCC = NC +1
            ALPHA = AL 3ENPHZ
C KEAD SNOOTH FILM SOLUTION DATA
            READD <, (DXS(I),I=1,KFF)
            FEAD i,(PS(I),I=I,KO)
            READ j,(rS(I), 1=1,KO)
            FEAD c,(SX(I),I=1,NXI)
            HEAD <.(DY(I),I=I,NYI)
            READ }~,(NIN(I),I=1,NC
            PRINT 1
            PRINT ל3
            PEINT O,NCI,NUE,NEANAK,NFLUT,NPRINTZ,NPRINT
            HEINT Jl
            PFINT 4,BSTAR,A3,DI
            PFINT 44
```

```
        PRINT 4:(GAMAR(I),I=1,NGANAR)
        PRINT =5
        PRINT 4,(CIH(I),I=1,NCl)
        PRINT 32
        OO 99 1=1,NUB
        99 PRINT ל9I,U1(I),UZ(I)
        PRINT j3
        PRINT 4,PHZ,ALSE,ALPHA
        PRINT }3
        PFINT 4,HO
        PRINT 36
        PRINT O,KC,KF,NC,NX,NY,ICEG,KFF,NCC,NXI,NYI
        XS(1) = -5.
        DO 101 I=2.KF
101 XS(I)=XS(I-1) + DXS(I-1)
    DO 102 I=1,KO
102 XXS(I) = (XS(I)-X3)/BSTAF
    X(1) = DI
    DO 103 I=C,NX
103 X(I)=X(I-1)+DX(I-1)
    O0 106 I=1,NX
106 XOC(I) = X(I)*BSTAR * X3
    Y(1)=0.
    DO 110 J=2,NY
110 Y(J)=Y(J-1) + DY(J-1)
    PRINT 38
    PRINT l,(I,PS(I),I=1,KO)
    PRINT 39
    PRINT 7,(I,HS(I),I=I,KO)
    PRINT 40
    PRINT 7,(I,DXS(I),I=1,KFF)
    PRINT ST
    PRINT 7,(I,XS(I),I=1,KO)
    PFINT 45
    PRINT 7,(I,XXS(I),I=1,KO)
    PRINT 42
    PRINT 7,(I,DX(I),I=1,NX1)
    PRINT }4
    PRINT 7,(I,DY(I),I=1,NYI)
    PRINT 47
    PRINT 7.(I,X(I),I=1,NX)
    PRINT 5O
    PRINT 7,(I,XOC(I),I=1,NX)
    PRINT לl
    PRINT 7,(J,Y(J),J=1,NY)
    PRINT 4l
    PRINT 6,(MIN(I),I=1,NC)
C
    OO 104 I=1,NC
104 CALL TRANSFN(XXS,FS,HS,KC,X(I),PI(I),HI(I),MIN(I),IDEG)
    IF (NC .EQ. NX) GO TO 107
    DO 105 I=iNCC,NX
    P1(I)=SQRT(AOS(1. - xUC(I)##2))
    H1(I)=1.
107 CONTINUE
```

```
    DO 111 I=1.NX
    ED1(I)=EXP(-FI(I)*ALPHA)
111 HIEP(I)=HI(I)ねねうれEPI(I)
    PRINT 48
    PRINT 7,(I,PI(I),I=I,NX)
    PRINT 49
    PRINT 7,(I,HI(I),I=1,NX)
    PRINT 54
    PRINT 7,(I,EPI(I),I=1,NX)
    PRINT 55
    PFINT 7,(I,HIEP(I),I=1,NX)
C
    DO 1000 IIK=1,NGAMAR
    GAMMA = GAMAR(IIK)
    GINV = 1./GAMMA##2
    DO 100u IIJ=igNUB
    UD=(UI(IIJ)-UZ(IIJ))*0.E
    US = (U1(IIJ) +UZ(IIJ))*0.5
    ALAMDA = 4B.*UU/HO**2*BSTAR
    ALAMZ = 4&.#US/HO**ごEBST.AF
    ALAM3 = 4%./32./ALAM2
    ALAM4 = ALAM3 / GAMMA
C
    DO 100v III=1,NC1
    Cl=C!1H(III)
    PRINT bG
    PFINT צ,IIJ, UD, US, ALAN[A, ALAM2, ALAM3, ALAM4
    PRINT う己
    PRINT Y,III, Cl, PHZ, UD, AL3E, BSTAR, GAMMA, X3
C
C TO TRANSFORM KNOWN DATA TC NE:N COORDINATES
C TO INTERPOLATE NEW RESULTS FRON KNOWN DATA AT NEW COORDINATES
    CALL INTERPN(Y,MIEP,EPI)
C
C TO FORM MATRICES A(I,J,K), B(I,J,K),C(I,J,K),R(I,J)
CALL ABCR
C
C TO FORM MATRICES T(I,J,K), E(I,J,K),F(I,j) AND
C SOLVE FOR PHI(I,J), PIFirI(I,J)
    CALL TEFPHI
C
    J=1
    PRINT B,J
    DO 10& I=1,NX
108 PPLOT(1) = PHIII,J)
C STPLTI IS A LIBRARY SUBRUUTINE TU PLOT RESULTS
    CALL STPLT1(1,X,PPLOT, 29,1H*,5,5HPHI-X)
    CALL STPLTI(1,^CC,PPLOT,ZS,IH**7,7HPHI-XOC)
    DO 109 I=&,NX
109 PPLOT(I) = PlPHI(I.J)
    CALL STPLTI(1,X,PPLCT, 2`,1H*,7,7HP1PHI-X)
```



```
1000 CONTINUE
```

```
C
1
3
4
5
6
7
8
9
10
11
31
32
33
34
35
36
37
38
39
40
4 1
42
4 3
4 4
45
4 7
48
4 9

```

 6,10X:*ALAH3*,10X;*ALAHM*/)
 C
C
STUP
C
FORMAT(1HI)
FCRIMAT (8F10.6)
FCRMAT(5(2X,E13.6))
FCFMMT(S(2X.E13.6))
FCRMAT (1615)
FORMAT(18(2X,IS))
FORMAT(8(x,I2,X,E13.6))
FOFMAT (/////6x,*J=*, [3/////)
FCRMAT(I5.8(2X,E13.6))
FOKMMAT(10X,2F1U.6)
FORMAT (X,14E9.C)
FOKMAT(7x,*BSTAR*,13x,*A3*,13x,*DI*)
FOKMAT(4x,*I*,lx,*UI(I)*, 1 \& X,*UC(I)*)
FCRMAT (7X,*PHZ*,11\lambda,*AL3E*,10X,*ALFHA*)
FCRMAT(//7X,*HC\#/)
FORMAT(6X,*CIH(I)*)
FOKMAT(4X,*KO*,5X,*KF*,SX,*NC*,5X,*NX*,5X,*NY*,3X,*IDEG*,4X,*KFF*,
\epsilon4X.*NCC*,4X.\#NX1%,4X,\#NY\&*)
FORMAT(//6x**x$I)*/)
 FGR!MAT(//Ex,*PS(I)*/)
 FCR:MAT(///6X.*HS(I)*/)
 FCHMAT(//6X,*DAS(I)*/)
 FCRMAT(EX,*MIN(I)*)
 FORMAT(///OX0*DA(I)*/)
 FCRMAT(//&X**OY(I)*/)
 FORMAT (6X**GAMMA(I)*)
 FGRMAT (//ÓX,*XAS(I)*/)
 FOKMAT(//EX,*X(I)*/)
 FCRMAT(//6X.%Pi(i)*/)
 FCRMAT (//OX.*HL(I)*/)
 FCRMAT (//6X**xUC(I)*/)
 FCKMAT(//6x,#Y(J)*/)
```

```
 2*,10X,*GANMA*, 12X,*X3*/1
```

```
 3 #NPRI(\T*)
 FCRMAT(//6X,*EFI(I)*/)
 FCRMAT (//SX0*H1EP(I)*/)
STUP
END
```

```
 OIMENSION XXS(CU), FS(OU), HS(B0)
 IF (X -NE. XXS(MIN)) GO IC 75S
 PI = PS(MIN)
 Hl = FS(MIN)
 gO TO . }75
 FACTOR = 1.
 MAX = MIN + IDEG
 DO 701 J=MIN,MAX.
701 FACTOF = FACTOR*(X-XXS(J))
C Evaluate inteprolating pClynomial.
 P1 = 0.
 Hl = 0.
 DC 702 I=MINGMAX
 TERMP = PS(I)*FACTOR/(X-XXS(I))
 TERMH = HS(I)WFACTOR/(x-xXS(I))
 DO 703 J=MIN,MAX
 IF(I . NE. J) GO TO 757.
 GC TO 703
757 TERMP = TERMP/(xxS(I)-xxS(J))
 TEKMH = TERMH/(XXS(I)-XXS(J))
703 CONTINLE
 P1 = FI + TERMP
 Hl=Hi + TERMH
702 CONTINUE
756 RETURN
C
ENO
SUGKOLIINE INTERPN(Y,MIEF,EPI)
C
 COMMON BSTAR,X3,Cl
 COMMON ALPHA,ALAMDA,GINV
 COMMON NX,NXI,NY,NY1,DI,CX(26), DY(14),DEL(29,15), HTEP(29,15),
 C HlHTER(29,15), Pl(<9), +1(29), x(29)
 COMMON A(29,14,14), B(29,14,15), C(29.14,14), R(29,14)
 COMMON PHI(29,14),P1PHI(É5,14),HT(29,15),NPRINT,NPRINT2
 COMMON PHIOP(2y)
 DIMENSION Y(15),HIEP(29), EPI(29)
C
 DO 40E I=1,NX
 DO 407 J=1,NY
 XYI = X(I)*#2 + Y(J)##2 - 1.
 IF(XYI .GE. O.) GO TO 451
 DEL(I:J) = CI*XYI
 GC TO 452
451 DEL(I.J) = 0.
452 HT(I,J) = HI(I) + DEL(IMv)
 HTEP(I,J) = HT(I,J)**3*EFI(I)
 HlHTEP(I,J) = HlEP(I) - FTEP(I,J)
407 CONTINUE
406 CONTINUE
J=1
PRINT 416
PRINT 7,(I,DEL(I,J),I=1,\X)
```
```
 PAINT 417
 PRINT 7,(I• HT(I, J), I=1, NX)
 IF(NPRINT •EQ. 0) GO TC 490
 PRINT 418
 FRINT \(10,((H T E P(I, J), J=1, N Y), I=1, N X)$
PRINT 419
PKINT $i 0,($ (HInTEP $(I, j) 9(=I, N Y), I=I, N X)$
C
7 FORMAT $(8(x, I 2, X, E 13.6))$
10 FCRMAT $(X, 15 E 9 . Z)$
416 FORMAT (//6x,* DEL */)
417 FORMAT (//GX,*HI*/)
418 FORMAT $(/ / 6 X, * H I E P: /)$
419 FORMAT (//6X.*HIFTEP*/)
C
490 RETURN
C
END
SUGROU-IINE AECK
C
COMMON BSTAF,XS:Cl
COMMON ALFHA. ALAMDA,GINV
COMMON NX,NXI:NY,iYYL,LI.[x(2B), DY(14), DEL(29.15), HTEP(29,15),
C FlHTEH(29,15), rl(cy), rl(2y), $x(29)$
``` ```
COMMON PHIOP (27)
C
DO 501 I=1,NX
DC $501 \mathrm{~J}=1, \mathrm{NYI}$
DO 501 $K=1, N Y 1$
$A(I, J, K)=0$.
$B(I, J, K)=0$.
$C(I \cdot J . K)=0$.
501 CONTIAUE
DO $502 \mathrm{I}=1$, NX.NX1
DO $502 \mathrm{~J}=\mathrm{i}$.NYI
$P(I, J, J)=1$.
$R(I, J)=0$.
CONTINUE
DO $503 \mathrm{I}=\tilde{\text { Con }}$ N1
$J=1$
``````
A 4 (Pl(i)-P1(I-1)))
E(I, J.J) $=-\operatorname{UY}(J) *((H T E P(I+1, J)+\operatorname{HTEP}(I, J)) / D X(I)+(H T E P(I, J)+$
B HTEP(i-l.J))/UX(I-1) +ALFHA*HTEF(I,J)*((PI(I+i)-PI(I))/DX(I)-
``````
B トTEP(I:J))/DY(J)
$B(I \cdot J, J+1)=G I N V \approx(D X(I-1)+D X(I)) *(H T E H(I, J+I)+H T E P(I, J)) / D Y(J)$
$C(I \cdot J \cdot J)=D Y(J) / \emptyset \times(I) 女(ト T E P(i+1, J)+H T E P(I, J)-A L P H A * H T E P(I+I, J) *$
C (PI(I+1)-PI(I)))
``````
$R(H I H T E P(I, J)+\operatorname{HIHTEr}(I-I, v)) *(H I(I)-P I(I-I)) / O X(I-1)+$ ALAMDA*
F (DEL(i+1,J)-DLL(I-1,J)))
```

C

```
 IF INFKINT .EW. U) GC TC 5Y0
 PFINT 521
```

    DC \(505 I=1, N X\)
    PRINT 525, I
    505 PCIMT $11,((A(I, j, K), K=1, A Y 1), J=1, N Y 1)$
PFINT 522
U0 $506 \mathrm{I}=1$, NX
PRINT 325 ,I
506 PRINT $11 \cdot((R(i \cdot J, K), K=1, N Y 1), J=1, N Y 1)$
PRINT Dころ
CO $507 \mathrm{I}=1 \cdot \mathrm{NX}$
PFINT 525 .I
507 PRINT $11,((C(I \cdot J \cdot K) \cdot K=1, N Y 1), J=1, N Y 1)$
PFINT 524
PRINT 11,((R(I,J) $J=1, P: Y 1), I=1 \cdot(\mathbb{X})$
C
11 FCRMAT $(x, 14 E 9 . C)$
521 FCKHAT (////RX,*A(I,J,K) $5 /$ )
522 FCKMAT (////6X,*E(I,J,K)*/)
523 FCKMAT $(/ / / / 6 x, * C(I, J, K) * /)$
524 FORNAT $/ / / / / 6$ **F(I, J)*/)
$\begin{array}{ll}523 & \text { FCKMAT }(/ / / / 6 X, * C(I, J, K) * \\ 524 & \text { FORMAT }(/ / / / 6 X, * \mathrm{~F}(I, J) * /)\end{array}$
525 FCHMAT (/6X,*I=\#, I3)
590 KETURN
C
$D E X=(D X(I-I)+D X(I)) / L$.
$00504 \mathrm{~J}=2$, NYY
DEY $=(D Y(J-1)+D Y(J)) / 2$.
A (P1(I)-PI(I-I)))
$E(I, J, J-1)=G \perp V * O C X / L Y(\sim-1) *(\operatorname{HTEP}(I, J)+\operatorname{HEP}(I, J-1))$
$B(I \cdot J, J)=-\operatorname{DDY} *((H T E H(I+I, J)+H T E P(I, J)) / D X(I)+(H T E P(I \cdot J) *$
$E-D Y(J)+(H T E P(I \cdot J)+M T E F(I, N-1)) / D Y(J-1))$
B(I.J.J+1) = GINV*DOX/DY(U)*(HTEP(I,J+I)+HTEP(I,J))
C (P1(I+I)-P1(I)))
$R(\operatorname{UEL}(1+1, J)-\operatorname{OLL}(I-1, J)))$
CONTIAVUE
C
continue.
$A(I, J, J)=\operatorname{DDY} / \mathrm{OX}(I-1) *(+T E P(I, J)+\operatorname{HTEP}(I-1, J)+A L P H A * H T E P(I-1$ •J)*
E HTEP (I-I,J))/UX(I-1) +ALPHA*HTEP(I,J)* ((PI(I+1)-PI(I))/DX(I)-


$R(I \cdot J)=\operatorname{DOY} \#((H I H T E P(I+1, J)+H I H T E P(I \cdot J)) *(P I(I+I)-F I(I)) / D X(I)-$
$R(H 1 H T \dot{C}(I, J)+H I H T E F(I-1, n) *(H 1(I)-P I(I-I)) / D \times(I-1)+$ ALAMDA*
En?

```
 SUHROUIIINE TEFrHI
```

C
COMNOA BSTAR，XI，Cl
COMMON ALPHA，ALAMOA，GINV
COMMON NX，NXI，NY，NYI，DI，CX（28），OY（14），DEL（29，15），HTEP（29，15），
C H1HTEF（29，15），Pl（ご9），トl（2乌），$\lambda(29)$
CCMMON $A(29,14,14), B(\angle 9,14,15), C(29,14,14), R(29,14)$
COMMON PHI（29，14），PIPHI（c5，14），HT（29，15），NPRINT，NPRINT2
C

C
DIMENSION T（29，14，14），E（ $\because 0,14,14), F(30,14)$, RAF（14）
DIMENSICN TT（1＋，14），TI（14，14），IR（14），EE（14）
DO 601 I $=1, N \times, N \times 1$
DO $502 \mathrm{~J}=1$ ，NYI
$00603 \mathrm{~K}=1, \mathrm{NY} 1$
$T(I, J, K)=0$ ．
$E(I+1, J, K)=0$ ．
CONTINUE
$T(I, J, J)=1$ 。
$F(I+I \cdot J)=0$ ．
602 CONTINUE
601 CONTINUE
C

```
DO \(604 \mathrm{I}=2, \mathrm{NXI}\)
\(00605 \mathrm{~J}=1\) ，NYI
\(00605 \mathrm{~K}=1\) ，NY1
\(T T(J, K)=B(I, J, K)\)
DO \(607 \mathrm{~L}=1\) ，NY1
607 TT（J，K）＝TT（J，K）＋A（IgU，L）＊E（IgL，K）
```

605 CONTINUE
C CALL LIBRARY SUBKOUTINE FCR MATRIX INVERSION
CALL NI（TT，NYI，NYL，DET，ICET，TI，IR•IER，EE）
DO $608 \mathrm{~J}=\mathrm{I}$ ，NY1
$00608 K=1$ ．NYI
$T(I, J, K)=T I(J, K)$
DO 60 G J＝1，NYI
$R \Delta F(J)=R(I \cdot J)$
DO $605 \mathrm{~L}=1$ ．N！Yl
$R \Delta F(J)=F A F(J)-A(I, J, L) * F(I, L)$
［O G10 J＝1．NY1
$F(1+1, J)=0$ ．
DO 610 L＝1，NY1
$610 \quad F(I+1, j)=F(I+I, J) * T(I, J, L)$＊RAF（L）
DO G1L J＝1．NY1
DO $611 K=1$ ．NYI
$E(I+1, v, K)=0$ ．
DO $61 \bar{L}=1$ ．NYI
612
$E(I+I \cdot J \cdot K)=E(I+I \cdot J \cdot n)-T(I \cdot J \cdot L) * C(I \cdot L \cdot K)$
611 CCNTINUE
604 CCNTISUE

```
C
 NXZ = NX +1
 IF (NFKINT .EW. 0) GO TC 690
 PRINT 0G1
 DO b31 I=1,NX
 PRINT 066.I
 PRINT 11,((T(I,J,K),K=1,NY1),J=1,NY1)
 PRINT 062
 DO 632 I=2.NX2
 PRINT 066.I
 PRINT 1l,((E(I,J,K),K=1,NYl),J=1,NY1)
 PRINT OG3
 D0 633 I=Z.NX2
 PRINT ill,(F(I,J),J=1,NYI)
 CONTINUE
 I = NX
 DO 621 J=1,NY1
 PHI(I,J)=F(I+I,J)
621 P1FHI(i,J) = P1(I) + PHI(I,J)
 DO कこ己 II=1:NX1
 I=NX-II
 DO 623 J=1,NY1
 PHI(I,J)=F(I+I,J)
 DO 624 K=1.NY1
 PHI(I,J)= PHI(I:J) + E(I+I,J,K)*PHI(I+I,K)
 PlPiI(I\cdotJ) = Pi(I) + PHI(I,J)
 CONTINUE
 IF (NPKINT2 .EQ. O) GO TC 691
 PRINT 0S4
 CO 625 I=1.NX
 PHINT 066,I
 FRINT
 PRINT 065
 00626 I=1,NX
 PEINT 066.I
 PRINT 7,(J:PIPHI(I,J),J=1,NY1)
 CONTINUE
 FORRAAT (8(X,I2,X,E13.6))
 FORMAT(X,14E9.<)
 FORMAT(/////5X,*T(I,J,K)*/)
 FORMAT(/////&X,*E(I,J,K)*/)
 FORMAT (/////6X;*F(I*J)#/)
 FORMAT(/////6X, अFHI(I,J)#/)
 FOKMAT(/////6X,*PIFHI(I,J):/)
 FORMAT (6x,*I=*:Ij)
RETURN
C
END
```




[^0]:    * For sale by the National Technical Information Service, Springfield, Virginia 22161

