

NASA CONTRACTOR REPORT

NASA CR-2670

INFLUENCE OF SURFACE ROUGHNESS AND WAVINESS ON FILM THICKNESS A TWIL TECHNICAL LIBRARY AND PRESSURE DISTRIBUTION IN ELASTOHYDRODYNAMIC CONTACTS

LOAN COPY: RETURN TO KIRTLAND AFB, N. M.

Lorac S. H. Chow and Herbert S. Cheng

Prepared by NORTHWESTERN UNIVERSITY Evanston, Ill. 60201 for Lewis Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. • APRIL 1976

1 Papart No			
NASA CP. 2670	Z. Government Access		3. Recipient's Catalog No.
4. Title and Subtitle INFLUENCE OF SURFACE ROUG	HNESS AND WAVEN	ESS ON FILM	5. Report Date April 1976
THICKNESS AND PRESSURE DIST DYNAMIC CONTACTS	FRIBUTION IN ELAS	STOHYDRO-	6. Performing Organization Code
7. Author(s)	Cheng	·	8, Performing Organization Report No. None
9. Performing Organization Name and Address			10. Work Unit No.
Northwestern University Evanston, Illinois 60201			11. Contract or Grant No. NGR-14-007-084 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address			Contractor Report
National Aeronautics and Space A Washington, D.C. 20546	dministration		14. Sponsoring Agency Code
15. Supplementary Notes			
Final report. Project Manager, Research Center, Cleveland, Ohi	Erwin V. Zaretsky, o	Fluid System Comp	onents Division, NASA Lewis
16. Abstract The Christensen theory of a stochastic model for hydrodynamic lubrication of rough surfaces was extended to elastohydrodynamic lubrication between two rollers. The Grubin-type equation including asperity effects in the inlet region was derived. Solutions for the reduced pressure at the entrance as a function of the ratio of the average nominal film thickness to the rms surface roughness (in terms of standard deviation o) were obtained numerically. Results were obtained for purely transverse as well as purely longitudinal surface roughness for cases with or without slip. The reduced pressure was shown to decrease slightly by consider- ing longitudinal surface roughness. The transverse surface roughness, on the other hand, had a slight bene- ficial effect on the average film thickness at the inlet. The same approach was used to study the effect of surface roughness on lubrication between rigid rollers and lubrication of an infinitely wide slider bearing. Results of these two cases showed that the effects of surface roughness have the same trend as those found in elastohydrodynamic contacts. A comparison was made between the results using the stochastic approach and the results using the conventional deterministic method for the inlet pressure in a Hertzian contact assuming a sinusoidal roughness. It was found that the validity of the stochastic approach depends upon the number of wave cycles n within the Hertzian contact. Using the flow balance concept, the perturbed Reynolds equation, which includes a single three-dimensional rigid asperity in one of the lubricating surfaces, was derived and solved for the perturbed pressure distribution. In addition, Cheng's numerical scheme, for EHD contacts, was modified to incorporate a single two-dimensional elastic asperity, or a waviness profile, on the station- ary surface. The perturbed pressures obtained by these three different models were compared.			
17. Key Words (Suggested by Author(s))	· · · · · · · · · · · · · · · · · · ·	18. Distribution Stateme	nt

17. Key Words (Suggested by Author(s))		18. Distribution Statement		
Transient viscosity; Elastohydrodynamic; Pressure viscosity; Lubricant film thickness		Unclassified – unlimited STAR Category 37 (rev.)		
19. Security Classif. (of this report) Unclassified	20. Security Classif. (Unclas	of this page) ssified	21. No. of Pages 157	22. Price* \$6.25

* For sale by the National Technical Information Service, Springfield, Virginia 22161

.

TABLE OF CONTENTS

. *	I	age
SUMMARY .		1
CHAPTER	I - INTRODUCTION	3
CHAPTER	II - THE EFFECT OF SURFACE ROUGHNESS ON THE AVERAGE FILM THICKNESS BETWEEN LUBRICATED ROLLERS	6
2.1	Introduction	6 8
	2.2.1 Transverse Surface Roughness	8 10
2.3	Method of Solution	11
	2.3.1 Elastohydrodynamic Contacts	11
	2.3.1.a Pure Rolling Case	12 13
	2.3.2 Rigid Rollers2.3.3 Infinitely-Wide Slider2.3.4 Roughness Distribution Function	15 17 19
2.4	Discussion of Results	20
	2.4.1EHD Contacts2.4.2Rigid Rollers2.4.3Infinitely-Wide Slider Bearing	20 21 23
2.5	Conclusions	25
CHAPTER I	II - WAVINESS AND ROUGHNESS IN ELASTOHYDRODYNAMIC LUBRICATION	34
3.1 3.2	Introduction	34 34
	3.2.1The Waviness Case	35 37
3.3 3.4	Discussion of Results	37 40

— ·

.

_

CHAPTER IV - PRESSURE PERTURBATION IN EHD CONTACTS DUE TO	
AN ELLIPSOIDAL ASPERITY	44
4.1 Introduction	44 45
4.2.1 Geometrical Configuration	45
4.2.2.1 The Smooth-Film Case.	47
4.2.2.2 The Discretized Reynolds Equation	48
4.2.2.3 The Perturbed Reynolds Equation	49
4.2.3 Method of Solution	55
4.3 Deformed Asperity on the Stationary Surface	55
4.4 Discussions of Results	56
4.5 Conclusions	61
CHAPTER V - THE EFFECT OF SINUSOIDAL WAVINESS ON THE PRESSURE FLUCTUATION WITHIN THE HERTZIAN CONTACT	79
5.1 Introduction	79
5.2 Mathematical Formulation	79
5.3 Discussions of Results	81
5.3.1 The Effect of Pressure Viscosity	01
$\begin{array}{c} \text{Parameter G}_{\bullet} \\ \text{5.3.2} \\ \text{The Effect of } c \\ \end{array}$	82 82
5.3.3 The Effect of n .	82
5.3.4 The Effect of h /R	83
5.3.5 The Effect of P_{Hz}	84
5.4 Conclusions	85
REFERENCES	01
APPENDIX A - JUSTIFICATION OF M AS A RANDOM QUANTITY OF ZERO	
(OR NEGLIGIBLE) VARIANCE 1	.03
APPENDIX B - FORTRAN IV LISTING OF COMPUTER PROGRAMS 1	.06

· —

LIST OF FIGURES

| "

· ____

Fig.	2-1	EHD Contacts Between Two Rough Surfaces	26
Fig.	2-2	Rigid Rollers With Rough Surfaces	27
Fig.	2-3	An Infinitely-wide Slider Bearing with Rough Surfaces	28
Fig.	2-4	The Effect of Transverse and Longitudinal Roughness on the Ratio of the Reduced Pressure for Rough Surfaces to that for Smooth Surfaces, $K_E = Q_R^2/Q_S^2$, of an EHD Contact	29
Fig.	2-5	The Effect of the Center Film Thickness, H , on the Ratio of the Reduced Pressure for Rough Surfaces to that for Smooth Surfaces, $K_E = Q_R^{/Q_S}$, of an EHD Contact	30
Fig.	2-6	The Effect of the Roughness Height to Center Film Thickness Ratio, δ_{max} , on the Normalized Reduced Pressure, Q_n^* , of an EHD Contact	31
Fig.	2-7	The Variation of the Normalized Load Ratio, $K_{\rm p} = W_{\rm p}^{\star}/W_{\rm s}^{\star}$, with the Roughness Height, $\delta_{\rm max} = \delta_{\rm max}/h_{\rm o}$, for Rigid Rollers	32
Fig.	2-8	The Variation of the Nor alized Load, $W^{*} = -5 - \frac{U_{0}}{5} - \frac{1}{2} - W_{1}$	
		with the Roughness Height, $\bar{\boldsymbol{\delta}}_{max}$, for an Infinitely-wide	
		Slider Bearing	33
Fig.	3-1	The Effect of the Number of Wave Cycles, n, and the Phase Angle, θ , on the Percentage of Deviation of the Normalized Reduced Pressure, K _D , for Roughness to Thickness Ratio $\delta_{max}/h_o = 0.3$	41
Fig.	3-2	The Effect of the Number of Wave Cycles, n, and the Phase Angle, θ , on the Percentage of Deviation of the Normalized Reduced Pressure, K _D , for Roughness to Thickness Ratio $\delta_{max}/h_o = 0.45$	42
Fig.	3-3	The Effect of the Number of Wave Cycles, n, and the Phase Angle, θ , on the Percentage of Deviation of the Normalized Reduced Pressure, K _D , for Roughness to Thickness Ratio $\delta_{max}/h_o = 0.6$	43
Fig.	4-1	Two Lubricated Rollers and the Equivalent Roller-Plane System	62
Fig.	4-2	A Single Ellipsoidal Rigid Asperity in and EHD Contact	63
Fig.	4-3	One-dimensional Grids for Smooth Contact	64
Fig.	4-4	Two-dimensional Grids for Rough Contact	65
Fig.	4-5	Grid Spacing	66

_ ____

_

Fig.	4-6	The Effect of the Nominal EHD Center Film Thickness, h /R, on the Double Amplitue of the Perturbed Pressure, $A_s = \sum_{max} - \sum_{max} -$	67
Fig.	4-7	The Effect of the Normalized Hertzian Pressure, $P_{Hz} = P_{Hz}/E'$, on $\Delta_{s} = \Phi_{min}$, for $h_0/R = 10^{-5}$	68
Fig.	4-8	The Effect of the Normalized Hertzian Pressure,	
		$P_{Hz} = p_{Hz}/E'$, on $\Delta_s = \overline{\Phi}_{max}$. for $h_o/R = 10^{-6}$	69
Fig.	4-9	The Effect of the Pressure Viscosity Parameter, $G = \mathcal{A} E'$, on $\Delta_5 = \overline{\Phi}_{max} - \overline{\Phi}_{max}$	70
Fig.	4-10	The Effect of the Position of the Asperity Center, X_3 , on $\Delta_5 = \overline{\Phi}_{max} = \overline{\Phi}_{min}$	71
Fig.	4-11	The Effect of the Asperity Size, $\bar{b} = b'/b$, on $\Delta_{s} = \frac{1}{2} \sum_{max} \frac$	72
Fig.	4-12	The Effect of the Asperity Height, c_1/h_0 , on $\Delta_s = \Phi_{max}$, Φ_{min} .	73
Fig.	4-13	The Effect of the Ellipticity Ratio, $Y = a'/b'$, on $\Delta_{3} = \Phi_{max} \cdot \Phi_{min}$	74
Fig.	4-14	The Effect of the Slide to Roll Ratio, $S = 2(u_1-u_2)/(u_1+u_2)$,
		on $\Delta_{s} = \underline{\delta}_{mAs} - \underline{\delta}_{min}$ for a Three-dimensional Rigid Asperity with Pressure Viscosity Parameter, $\Delta E' = 100$	75
Fig.	4-15	The Perturbed Pressure, ${f \Phi}$, Around the Tip of a Three- dimensional Rigid Asperity	76
Fig.	4-16	The Effect of Slide to Roll Ratio, $S = 2(u_1 - u_2)/(u_1 + u_2)$, on $A_s = \Phi_{max} = \Phi_{max}$ for a Three-dimensional Rigid Asperity with Pressure Viscosity Parameter, $A = 100$ and 500	77
Fig.	4-17	The Smooth-Film and the Perturbed Pressure Profiles for a Three-dimensional Rigid Asperity	78
Fig.	5-1	The Effect of the Pressure Viscosity Parameter, $G = \mathcal{A}E'$, on the Double Amplitude of the Perturbed Pressure $\Delta s = \Phi_{max} - \Phi_{min}$	87
	- 0		
Fig.	5-2	The Effect of the Pressure Viscosity Parameter, $G = \alpha E'$, on the Perturbed Pressure Profiles	88
Fig.	5-3	The Effect of the Asperity Height to Film Thickness Ratio, c_1/h_0 , on $\Delta_5 = \Phi_{max}$. Φ_{min} .	89
Fig.	5-4	The Effect of the Asperity Height to Film Thickness Ratio, c_1/h_o , on the Perturbed Pressure Profiles for E' = 100	90
Fig.	5-5	The Effect of the Asperity Height to Film Thickness Ratio, c_1/h_o , on the Perturbed Pressure Profiles for E' = 1000	91
		-	

Fig.	5-6	The Effect of the Number of Wave Cycles, n, on $\Delta_5 = \oint_{max} - \oint_{min} \cdots \cdots$
Fig.	5-7	The Effect of the Number of Wave Cycles, n, on the Perturbed Pressure Profiles for Pressure Viscosity Parameter, $\checkmark E' = 10093$
Fig.	5-8	The Effect of n, on the Perturbed Pressure Profiles for Pressure Viscosity Parameter, dE' = 1000
Fig.	5-9	The Effect of the Dimensionless Center Film Thickness, h_0/R , on $\Delta_s \cdot \Phi_{max} - \Phi_{min}$
Fig.	5-10	The Effect of the Dimensionless Center Film Thickness, h_{O}/R , on the Perturbed Pressure Profiles for $dE' = 100$ 96
Fig.	5-11	The Effect of the Dimensionless Center Film Thickness, h_{O}/R , on the Perturbed Pressure Profiles for $\alpha E' = 1000$
Fig.	5-12	The Effect of the Normalized Hertzian Pressure, $P_{HZ} = p_{HZ}^{/E'}$, on $\Delta_5 = \Phi_{max} - \Phi_{min}$
Fig.	5-13	The Effect of the Normalized Hertzian Pressure, $P_{Hz} = P_{Hz}/E'$,
		on the Perturbed Pressure and Film Profiles for $d E' = 10099$
Fig.	5-14	The Effect of the Normalized Hertzian Pressure, $P_{Hz} = P_{Hz}$, on the Perturbed Pressure Profiles for $A E' = 1000^{Hz}$

· •

. ².t

_ ___

-

LIST OF SYMBOLS

. 17

:

a'	= semi-major axis of the ellipsoidal asperity
b	= half width of Hertzian contact
Ъ'	= semi-minor axis of the ellipsoidal asperity
b	= b'/b
с	= integration constant
c,	= maximum asperity height
- -	$= c_1/h_0$
с _{UD}	= $48(U_{\rm D}/H_{\rm o}^2)(\overline{b})$
1/E'	$= 1/2 \left(\frac{1 - v_1^2}{E_1} + \frac{1 - v_2^2}{E_2} \right)$
^E 1, ^E 2	= Young's modulus for rollers 1 and 2
f(y)	= probability density function of random variable γ
g(ð*)	= probability density function of surface roughness distribution
	$= \begin{cases} 35/96 \ (1-\delta^{*2}/9)^3 & -3 < \delta^* < 3 & \text{for polynomial distribution function} \\ 0 & \text{elsewhere} \end{cases}$
	$=\begin{cases} 1/(\pi \sqrt{1-\delta^{*2}/9}) & -3 < \delta^{*} < 3 & \text{for sinusoidal distribution function} \\ 0 & \text{elsewhere} \end{cases}$
G	$= \alpha E'$
^G 2	$= \int_{-\infty}^{\infty} \frac{g(\delta^{*})}{\left(1 + \frac{\overline{\sigma}}{H} \delta^{*}\right)^{3}} d\delta^{*}$
G ₄	$= \int_{-\infty}^{\infty} \frac{\delta^* g(\delta^*)}{\left(1 + \frac{\overline{\sigma}}{H} \delta^*\right)^3} d\delta^*$
h	= average film thickness
h ₁	= smooth-film thickness of an EHD contact
hc	= average center film thickness of rigid rollers

:

h g	<pre>smooth-film thickness between two rigid rollers</pre>
h _o	= center film thickness at $x = 0$ for EHD contacts as well as for rigid roller; also used as the minimum film thickness for the slider bearing
h _T	= local film thickness
h [*]	= average reference film thickness at $p = dp/dx = 0$
h min	= nominal film thickness at the exit of the slider bearing (for the slider bearing analysis, $h_{min} = h_{o}$)
H	$= h/h_o$
^H 1	$= h_1/h_o$
но	$= h_o/R$
н _т	$= h_T/h_o$
к _D	= $(q_{W}^{*} - q_{R}^{*})/q_{R}^{*}$
к _Е	$= Q_R^* / Q_s^*$
ĸ _R	$= w_{R}^{*}/w_{s}^{*}$
i	= a dummy index
j	= a dummy index
L	= overall characteristic length of a slider bearing
m	= slope of the inclin ^{ed} surface of a slider
^m 1, ^m 2, ^m 3, ^m	^m 4
	= mass of lubricants flowing into or out of the grid
м	= the number of grids in the Y-direction such that $y/a' = \pm 5$ at M
M(x)	= see Eq. (2.10)
n	= number of wave cycles within the Hertzian contact
N	= the number of grids in the X-direction such that $x/b' = \pm 5$ at N
p	= local pressure
^p 1	= smooth film pressure
P _{Hz}	= maximum Hertzian pressure
p	= the expected or mean value of p
P	$= p/p_{Hz}$

I

ix

P	= p/p_{Hz} for EHD analyses
P	= $h_0^2 p / (6\mu (u_1 + u_2) R)$ for the analysis of rigid rollers
Р	= $h_0^2 p / (6 \mu u_1 \ell)$ for the analysis of a slider bearing
P ₁	$= p_1/p_{Hz}$
P _{Hz}	$= p_{Hz}/E'$
q	$=\frac{1-e^{-\alpha p}}{\alpha}$
q	= the expected or mean value of q
Q	$= \frac{R^2}{6\mu_0(u_1 + u_2)b} \cdot q = 48 \sqrt{\frac{W}{2\pi}} U\left(\frac{\overline{\delta}}{E}\right)$
Q _R	= Q calculated by the stochastic theory for roughness model
Qw	= Q calculated by the waviness model
q_{s}^{*}	= Q^* for the smooth film analysis
R	$= R_1 R_2 / (R_1 + R_2)$
^R 1, ^R 2	= radii of rollers 1 and 2
S	$= 2(u_1 - u_2)/(u_1 + u_2)$
t	= time
^u 1, ^u 2	= velocities of surfaces 1 and 2
u	$= (u_1 + u_2)/2$
U	$= \mu_{s} (u_{1} + u_{2}) / (2E'R)$
U _D	$= \mu_{s} (u_{1} - u_{2}) / (2E'R)$
w	= load per unit width
W	= w/E'R
w _R *	$= W^*$ calculated by stochastic theory for rigid rollers
₩ [*] s	= W^* calculated by smooth film theory for rigid rollers
w*	= $h_0^2 w/(6\mu(u_1 + u_2)R^2)$ for the analysis of rigid rollers
w*	= $h_0^2 w/(6 \mu u_1 l^2)$ for the analysis of a slider bearing

x	= coordinate along the sliding direction
*3	= distance between the asperity center and the contact center
* x	= reference coordinate at $p = dp/dx = 0$
x ₃	$= x_3/b$
x	= x/b for EHD analyses
x	= x/R for the analysis of rigid rollers
x	= x/g for the analysis of a slider bearing
Δt	= grid size in x-direction
Vχ	$= \Delta x/b$
У	= coordinate perpendicular to the sliding direction
Y	= y/R'
Δу	= grid size in Y-direction
ΔY	= ∆y/a'
њ	= viscosity
μ _s	= ambient viscosity
μ	$= \mu/\mu_s$
σ	$=\sqrt{\sigma_1^2 + \sigma_2^2}$
^σ 1' ^σ 2	= standard deviation of roughness amplitudes of surfaces 1 and 2
8	$= \delta_1 + \delta_2$
å ₁ ,å ₂	= roughness amplitude measured from the mean level of surfaces 1 and 2
° _{max}	= the maximum asperity amplitude
8 [*]	= å/o
ð _{max}	= 3
E.	= dummy variable
Ę	= ξ/b
^۷ 1' ^۷ 2	= Poison's ratio of rollers 1 and 2
α	<pre>= pressure viscosity coefficient</pre>

xi

α	$= \alpha p_{Hz}$
Y	= random variable, also used as ellipticity ratio a'/b'
e{ }	<pre>= the expected value of { }</pre>
θ	= the phase angle of the waviness surface profile measured from $X = 0$
^θ 1' ^θ 2	= θ of surfaces 1 and 2
Φ	= perturbed pressure
φ	$= \phi/p_{Hz}$
Φ_{max}, Φ_{min}	= the maximum and the minimum perturbed pressure measured from the average pressure profile
۵ _s	≖ Φ – Φ max min
ρ	= lubricant density
δ	= δ / h_o
٥ī	$= \delta_1/h_o$
ō2	$= \delta_2 / h_o$
ōmax	$= \delta_{max}/h_o$
σ	$= \sigma/h_{o}$

.

- -- --

SUMMARY

The Christensen Theory of a stochastic model for hydrodynamic lubrication of rough surfaces is extended to elastohydrodynamic lubrication between two rollers. The Grubin-type equation including asperity effects in the inlet region is derived. Solutions for the reduced pressure at the entrance as a function of the ratio of the average nominal film thickness to the r.m.s. surface roughness (in terms of standard deviation σ), have been obtained numerically. Results were obtained for purely transverse as well as purely longitudinal surface roughness for cases with or without slip. The reduced pressure is shown to decrease slightly by considering longitudinal surface roughness. The transverse surface roughness, on the other hand, has a slight beneficial effect on the average film thickness at the inlet.

The same approach was used to study the effect of surface roughness on lubrication between rigid rollers and lubrication of an infinitelywide slider bearing. Results of these two cases show that the effects of surface roughness have the same trend as those found in elastohydrodynamic contacts.

A comparison is made between the results using the stochastic approach and the results using the conventional deterministic method for the inlet pressure in a Hertzian contact assuming a sinusoidal roughness. It was found that the validity of the stochastic approach depends upon the number of wave cycles n within the Hertzian contact. For n larger than a critical number, which depends upon the ratio of asperity height to the nominal film thickness, δ_{max}/h_o , the stochastic theory yields the same results as that obtained by the deterministic approach.

Using the flow balance concept, the perturbed Reynolds equation, which includes a single three-dimensional rigid asperity in one of the lubricating surfaces, is derived and solved for the perturbed pressure distribution. In addition, the Cheng's numerical scheme , for EHD contacts, is modified to incorporate a single two-dimensional elastic asperity, or a waviness profile, on the stationary surface. The perturbed pressures obtained by these three different models are compared. Qualitatively, the results for the single 2D elastic asperity and the waviness profile model by using Cheng's scheme, are mostly the same. However, some results obtained for the single 3D rigid asperity exhibit different trends when compared with the single 2D elastic asperity or the waviness profile. In the case of the waviness profile in which the local elastic deformation is allowed, the magnitude of the pressure fluctuation Δ_{e} , is found to increase when the pressure viscosity parameter G, or the ratio of the asperity amplitude to the nominal film thickness, δ_{max}/h_{o} , increases. On the other hand, Δ_{c} is found to decrease as the magnitude of the Hertzian pressure $P_{\mu_{Z}}$, or the ratio of the nominal film thickness to the radius of the equivalent cylinder, h /R increases.

CHAPTER I

All shares and shares the

ې د د د

INTRODUCTION

In conventional sliding bearings, there usually exists a high degree of conformity between bearing surfaces, and this enables a substantial load to be generated by the thin oil film. The performance of these bearings can be satisfactorily predicted by solving the Reynolds equation for the pressure distribution within the lubricant film. However, for highly loaded concentrated contacts, such as gears, cams and rolling contact elements, the lubrication phenomenon cannot be predicted by Reynolds equation alone. Local elastic deformation of the solid under high pressure becomes influencial in determining the load capacity and film thickness of these contacts. The study of lubrication processes including the elastic effects is presently known as elastohydrodynamic lubrication (EHL).

To date, the theories for hydrodynamic and elastohydrodynamic lubrication have reached a very advanced stage. However, these theories are mostly based on the assumption that the lubricating surfaces can be described by smooth mathematical functions. In reality, surfaces are never perfectly smooth in a microscopic scale. In the hydrodynamic lubrication regime, the asperity heights of the rough surfaces are much smaller than the average lubricant film. Thus, the effect of surface roughness on hydrodynamic lubrication, in most cases, can be neglected. Hence, the smooth film hydrodynamic lubrication theories provides a very satisfactory prediction of lubrication performance. In elastohydrodynamic lubrication of concentrated contacts, there exist two distinctively different regimes, the full film and the partial film EHL. In the full film

regime, the average nominal film thickness is usually much greater than the asperity heights, and, in this regime, the behavior of the contact can be predicted quite satisfactorily by smooth-film EHL theories. In the partial film regime, the asperity heights are of the same order as the average nominal lubricant film. Thus, the effect of surface roughness in the regime must be considered.

....

EHD film thickness has been well accepted as an important bearing design parameter. The degree of asperity interactions, and the surface distress in the forms of wear, pitting and scuffing are associated with the ratio of the average nominal film thickness to the r.m.s. surface roughness (in terms of standard deviation σ), in EHD contacts. In many cases, bearing failures can be attributed to insufficient film thickness which leads to asperity contacts. Thus, there is a need to determine the surface on the film forming capability in EHD contacts. Therefore, the second chapter of this dissertation is focused on the effect of surface roughness on the average film thickness between lubricated rollers. The stochastic theory developed by Christensen $\lceil 7 \rceil$ is extended to determine the surface roughness influence on the inlet film thickness of EHD In addition, the roughness effect on the load capacity in contacts. rigid rollers and infinitely-wide slider bearing is also studied.

The third chapter compares the difference between the roughness effect and waviness effect on the average film thickness in EHD contacts. It also provides some criteria to determine the applicability of the stochastic theory.

The pressure profile enables one to predict the stress distribution of the lubricated contact. In the fourth and fifth chapters, the effect of surface roughness on the pressure distribution are discussed. In

Chapter IV, comparisons are made between the effect on the perturbed pressure due to a single three-dimensional rigid asperity and due to a single two-dimensional elastic asperity within an EHD contact. In Chapter V, the surface profile before elastic deformation is assumed to be in the form of sinusoidal waviness. The effects of the following non-dimensional variables: the Hertzian pressure P_{Hz} , the nominal center film thickness h_0/R , the pressure viscosity parameter G, the number of wave cycles within the Hertzian contact, n, and the asperity height h_0/R , on the magnitude of the pressure fluctuation as well as the perturbed pressure profile are studied.

CHAPTER II

THE EFFECT OF SURFACE ROUGHNESS ON THE AVERAGE FILM THICKNESS BETWEEN LUBRICATED ROLLERS 2.1 INTRODUCTION The inclusion of surface irregularities in lubrication analysis can be traced

he inclusion of sufface fifegularities in fubrication analysis can be fraced back to [1-3], in which the roughness is modelled as sinusoidal or saw-tooth waviness. Subsequently, Tseng and Saibel [6] introduced the stochastic concept based on random surface roughness analysis on lubrication. Their method deals with surfaces with one dimensional transverse roughness only. The stochastic model has been revived by Christensen and his colleagues [7,8,9,16,17] in studying the lubrication process between rigid surfaces containing surface roughness modelled as ridges oriented transversely or longitudinally. Recently, the effects striated roughness on both bearing surfaces have been obtained by Rhow and Elrod [18].

The effect of surface roughness on film thickness in EHD contact has not been fully explored. However, there have been some related work. For instance, Fowles [4] studied the EHD lubrication between identical sliding asperities. Lee and Cheng [5] have studied the effect of a single asperity on the film and pressure distribution during its entrance into an elastohydrodynamic contact. The load sharing between fluid film and asperity contacts as well as the traction in partial EHD contacts have been studied by Tallian [10], and Thompson and Bocci [12]. Johnson, Greenwood and Poon [11] have used an approximate analysis to ascertain the effect of roughness on the EHD film thickness. They concluded that, to a first approximation, the separation between two rough surfaces is very close to that calculated by the smooth film theory. Recently, pressure and traction rippling inEHD contact of rough surfaces have been calculated by Tallian [19], by using Christensen's stochastic model of hydrodynamic lubrication.

In the present analysis, Christensen's approach [7] is extended to determine the surface roughness influence on the inlet film thickness of EHD contacts. The Grubin-type hydrodynamic equation in the inlet region for the rough surfaces is derived and solved numerically. Results are compared with smooth-film theories. In addition, the load capacity in rigid rollers and in an infinitely-wide bearing is also presented for comparison.

and the second second second

1

7

÷,

2.2 GOVERNING EQUATION

Assuming that the lubricant is isothermal and incompressible and the sideleakage is negligible, the one-dimensional Reynolds equation governing the pressure in an EHD contact is

$$\frac{\partial}{\partial x} \left(\frac{h_T^3}{12\mu} \frac{\partial p}{\partial x} \right) = \left(\frac{u_1 + u_2}{2} \right) \frac{\partial h_T}{\partial x} + \frac{\partial h_T}{\partial t}$$
(2.1)

where $\boldsymbol{h}_{_{T\!T}}$ is the local total film thickness consisting of the following three parts

$$h_{T} = h + \delta_{1} + \delta_{2}$$
(2.2)

In the above, h is the local average film thickness, and δ_1 , δ_2 , the roughness profile measured from the mean level of surface profiles 1 and 2 (Fig. 2.1).

2.2.1 Transverse Surface Roughness

In this case the asperities on both lubricating surfaces are straight ridges perpendicular to the direction of rolling. Equation (2.2) becomes

$$h_{\mu} = h + \delta_1 (x - u_1 t) + \delta_2 (x - u_2 t)$$
(2.3)

With the relations,

$$\frac{\partial}{\partial t} \delta_1(x - u_1 t) = - u_1 \frac{\partial \delta_1}{\partial x}$$
(2.4)

$$\frac{\partial}{\partial t} \delta_2(x - u_2 t) = - u_2 \frac{\partial \delta_2}{\partial x}$$
(2.5)

Eq. (2.1) is simplified to

$$\frac{\partial}{\partial x} \left[\frac{h_T^3}{12\mu} \frac{\partial p}{\partial x} - \frac{u_1 + u_2}{2} \right] h + \frac{u_1 - u_2}{2} \left(\delta_1 - \delta_2 \right) = \frac{\partial h}{\partial t}$$
(2.6)

It is assumed here that there are enough numbers of asperities within the Hertzian zone such that h can be considered as a constant of time. Let the bracketed term in the left-hand side of Eq. (2.6) be denoted by

$$M = \frac{h_T^3}{12\mu} \frac{\partial p}{\partial x} - \frac{u_1 + u_2}{2}h + \frac{u_1 - u_2}{2} (\delta_1 - \delta_2)$$
(2.7)

For infinitely-wide slider bearing and rigid roller bearing, M is expressed as above. In elastohydrodynamic contact, the reduced pressure, q, and viscosity, μ , which are respectively

$$q = \frac{1 - e^{-dp}}{\alpha}$$
(2.8)

$$\mu = \mu_{s} e^{\alpha p}$$
 (2.9)

are introduced. Then, M in an EHD contact is

$$M = \frac{h_T^3}{12\mu_8} \frac{\partial q}{\partial x} - \frac{u_1 + u_2}{2} h + \frac{u_1 - u_2}{2} (\delta_1 - \delta_2)$$
(2.10)

It is shown in appendix A that M in the case of EHD contact, rigid roller bearing, or infinitely-wide slider bearing is a stochastic quantity with a negligible variance comparing to the variance of the terms on the right hand side.

Re-arranging Eq. (2.7) and taking expected values on both sides, one obtains

$$\epsilon \left\{ \frac{M}{h_T^3} \right\} = \frac{1}{12\mu} \epsilon \left\{ \frac{dp}{dx} \right\} - \frac{u_1 + u_2}{2} h \epsilon \left\{ \frac{1}{h_T^3} \right\} + \frac{u_1 - u_2}{2} \left[\epsilon \left\{ \frac{\delta_1}{h_T^3} \right\} - \epsilon \left\{ \frac{\delta_2}{h_T^3} \right\} \right]$$
(2.11)

where

$$\varepsilon \left\{ \right\} = \int_{-\infty}^{+\infty} \left\{ \right\} f(r) \delta Y$$
 (2.12)

and f(r) is the probability density distribution of the random variable γ_{\star}

Since M is a stochastic quantity with zero (or negligible) variance, M and $\frac{1}{h_T^3}$ can be considered to be (approximately)stochastically independent quantities. Hence

$$\epsilon \left\{ \frac{M}{h_T^3} \right\} = M \epsilon \left\{ \frac{1}{h_T^3} \right\}$$
(2.13)

(⁶1) (⁶2)

Then Eq. (2.11) can be re-written as

$$M = \frac{1}{12\mu} \frac{d\bar{p}}{dx} \frac{1}{\epsilon \left\{\frac{1}{h_{T}^{3}}\right\}} - \frac{u_{1} + u_{2}}{2} h + \frac{u_{1} - u_{2}}{2} \frac{\epsilon \left\{\frac{1}{h_{T}^{3}}\right\} - \epsilon \left\{\frac{1}{h_{T}^{3}}\right\}}{\epsilon \left\{\frac{1}{h_{T}^{3}}\right\}}$$
(2.14)

where \overline{p} is now the expected or mean value of p. Substituting Eq. (2.14) into Eq. (2.6) and re-arranging, one obtains the stochastic Reynolds equation for rigid rollers bearing and infinitely-wide slider bearing.

$$\frac{\mathrm{d}}{\mathrm{dx}} \left[\frac{1}{12\mu} \frac{\mathrm{dp}}{\mathrm{dx}} \frac{1}{\varepsilon \left\{ \frac{1}{h_{\mathrm{T}}^3} \right\}} = \frac{\mathrm{u}_1 + \mathrm{u}_2}{2} \frac{\mathrm{dh}}{\mathrm{dx}} - \frac{\mathrm{u}_1 - \mathrm{u}_2}{2} \frac{\mathrm{d}}{\mathrm{dx}} \left[\frac{\mathrm{r}}{\mathrm{r}} \frac{\mathrm{r}}{\mathrm{r}} \frac{\mathrm{r}}{\mathrm{r}} \right]$$

$$(2.15)$$

Similarly, the stochastic Reynolds equation for EHD contact can be expressed as

$$\frac{\mathrm{d}}{\mathrm{dx}} \left[\frac{1}{12\mu_{\bullet}} \frac{\mathrm{d}\overline{q}}{\mathrm{dx}} \frac{1}{\varepsilon \left\{ \frac{1}{13} \right\}} \right] = \frac{u_1 + u_2}{2} \frac{\mathrm{dh}}{\mathrm{dx}} - \frac{u_1 - u_2}{2} \frac{\mathrm{d}}{\mathrm{dx}} \left[\frac{h_T}{\varepsilon \left\{ \frac{1}{13} \right\}} \right] \qquad (2.16)$$

2.2.2 Longitudinal Surface Roughness

When the asperity ridges are parallel to the direction of rolling, δ_1 and δ_2 are independent upon x, u_1 , u_2 and t. Again, assuming $\frac{\partial h}{\partial t} = 0$, then Eq. (2.1) can be simplified to

$$\frac{\mathrm{d}}{\mathrm{dx}} \left(\frac{\mathrm{h}_{\mathrm{T}}^{3}}{12_{\mathrm{\mu}}} \frac{\mathrm{dp}}{\mathrm{dx}} \right) = \frac{\mathrm{u}_{1} + \mathrm{u}_{2}}{2} \frac{\mathrm{dh}}{\mathrm{dx}}$$

$$(2.17)$$

• For the cases of rigid rollers and infinitely-wide slider bearings, with longitudinal surface roughness, it is shown in [7] that the stochastic Reynolds equation is of the form

$$\frac{d}{dx} \left[\frac{1}{12\mu} \frac{dp}{dx} \epsilon \left\{ h_T^3 \right\} \right] = \frac{u_1 + u_2}{2} \frac{dh}{dx}$$
(2.18)

Similarly, the stochastic Reynolds equation of an EHD contact can be shown to be

$$\frac{d}{dx} \left[\frac{1}{12\mu_s} \frac{d\overline{q}}{dx} \in \left\{ h_T^3 \right\} \right] = \frac{u_1 + u_2}{2} \frac{dh}{dx}$$
(2.19)

If the roughness distribution is symmetric to zero mean

$$\epsilon \left\{h_{T}^{3}\right\} = h^{3} \left(1 + 3 \frac{\sigma^{2}}{h^{2}}\right)$$
 (2.19a)

2.3 METHOD OF SOLUTION

2.3.1 Elastohydrodynamic Contacts

Using Grubin's approach, it is assumed that the average surface profile, h, in the inlet region is governed by the deformation produced by a Hertzian elliptical pressure distribution in the contacting region. From [14], this profile is given by

$$H - 1 = \frac{h - h_o}{h_o} = \frac{4W}{\pi H_o} \left[|x| \cdot \sqrt{x^2 - 1} - \ln(|x| + \sqrt{x^2 - 1}) \right]$$
(2.20)

Introducing dimensionless variables Q, X, H, H_T , $\overline{\sigma}$, U, $\overline{\delta}_1$, $\overline{\delta}_2$, $\overline{\delta}$ and S as defined in the Nomenclature, Eq. (2.16), for the transverse roughness becomes,

$$\frac{d}{dx} \left[\frac{dQ}{dX} - \frac{H_o^2}{\varepsilon \left\{ \frac{1}{H_T^3} \right\}} \right] = \frac{dH}{dX} - \frac{S}{2} \frac{d}{dX} \left[\frac{H_T}{\varepsilon \left\{ \frac{1}{H_T^3} \right\}} \right]$$
(2.21)

The boundary conditions are:

$$\frac{dQ}{dX} = 0 \quad \text{at} \quad X = -1 \quad (\text{at } H = 1) \quad (2.22)$$

$$Q = 0 \quad \text{at} \quad X = -\infty \quad (2.23)$$

2.3.1.a Pure Rolling Case

In this case, S = 0, and Eq. (2.21) becomes

$$\frac{d}{dX} \left[\frac{dQ}{dX} - \frac{H_o^2}{\varepsilon \left\{ \frac{1}{H_T^3} \right\}} \right] = \frac{dH}{dX}$$
(2.24)

Integrating Eq. (2.24) twice with the two boundary conditions, one obtains

$$q^* = q|_{X=-1} = \int_{-\infty}^{-1} \frac{H-1}{\frac{3}{H}H_0^2} \cdot G_2 dX$$
 (2.25)

where

$$G_2 = H^3 \epsilon^{-1}$$

 $\left(\frac{1}{H_{m}^{3}}\right)$

$$= H^{3} \int_{-\infty}^{\infty} \frac{g(\delta^{*})}{h_{o}^{3}} d\delta^{*}$$

$$= \int_{-\infty}^{\infty} \frac{g(\delta^{*})}{\left[1 + \delta^{*}(\frac{\delta}{H})\right]^{3}} d\delta^{*}$$

$$\delta^{*} = \overline{\delta}/\overline{\sigma}$$

$$(2.26)$$

. 1

and

$$\overline{\delta} = \overline{\delta}_1 + \overline{\delta}_2$$

 $\overline{\sigma}$ is the composite standard deviation and is defined as $\overline{\sigma}^2 = \overline{\sigma}_1^2 + \overline{\sigma}_2^2$, $g(\delta^*)$ is the roughness height distribution function.

Once $\overline{\sigma}$ and $g(\delta^*)$ are given, Eq. (2.25) can be evaluated numerically for Q^* .

2.3.1.b Rolling and Sliding

If there is relative sliding between surfaces, S will not be zero, and the last term in the stochastic Reynolds equation, Eq. (2.21), will not necessarily vanish. However, if the roughness distribution function of both surface profiles are the same, then

$$\epsilon \left\{ \frac{\overline{\delta}_{1}}{H_{T}^{3}} \right\} = \epsilon \left\{ \frac{\overline{\delta}_{2}}{H_{T}^{3}} \right\}$$
(2.27)

Using this relation, Eq. (2.21) becomes

$$\frac{d}{dx} \left[\frac{dQ}{dx} \quad \frac{H^2_o}{\varepsilon \left\{ \frac{1}{H^3_T} \right\}} \right] = \frac{dH}{dx}$$
(2.28)

which is the same as Eq. (2.24) of the pure rolling case. Q^* will accordingly be the same as that expressed in Eq. (2.25).

If, on the other hand, one of the contacting surfaces is considered rough while the other one smooth, then Eq. (2.21) becomes

$$\frac{d}{dx} \left[\frac{dQ}{dx} - \frac{H_{Q}^{2}}{\varepsilon \left\{ \frac{1}{H_{T}^{3}} \right\}} \right] = \frac{dH}{dx} \pm \frac{S}{2} \frac{d}{dx} \left[\frac{\varepsilon \left\{ \frac{\overline{0}}{3} \right\}}{H_{T}} \right]$$
(2.29)

where the plus sign is for $\overline{\mathbf{\delta}}_1 = 0$, and minus sign for $\overline{\mathbf{\delta}}_2 = 0$. (See Appendix B for the Fortran IV listing of the numerical analysis.) Defining

$$G_4 = \frac{H^3}{5} \quad \varepsilon \quad \left\{ \frac{\overline{\delta}}{H_T^3} \right\}$$

$$= \frac{H^{3}}{\overline{\sigma}} \int_{-\infty}^{\infty} \frac{\overline{\sigma} \,\delta^{*} g(\delta^{*}) \,d\delta^{*}}{H^{3} \left[1 + (\frac{\overline{\sigma}}{H})\delta^{*}\right]^{3}}$$
$$= \int_{-\infty}^{\infty} \frac{\delta^{*} g(\delta^{*})}{\left[1 + (\frac{\overline{\sigma}}{H})\delta^{*}\right]^{3}}$$
(2.30)

Eq. (2.29), expressed in G_2 and G_4 , becomes

$$\frac{d}{dx} \left[-\frac{H_0^2}{G_2} \frac{H^3}{dx} - H + \frac{S_0}{2} \frac{G_4}{G_2} \right] = 0$$
(2.31)

Using boundary condition (2.22), one obtains

$$H_{0}^{2} \frac{H^{3}}{G_{2}} \frac{dQ}{dX} - H + \frac{S_{0}}{2} \frac{G_{4}}{G_{2}} = -1 + \frac{S_{0}}{2} \left(\frac{G_{4}}{G_{2}}\right)_{X=-1}$$
(2.32)

Integrating Eq. (2.32) between $-\infty$ and -1, one obtains the expression for Q^*

$$Q^{*} = \frac{1}{H^{2}_{Q}} \left[\int_{-\infty}^{-1} \left(\frac{H - 1}{H^{3}} \right) G_{2} dx \pm \frac{S\overline{\sigma}}{2} \int_{-\infty}^{-1} \frac{1}{H^{3}} \left[G_{4} - G_{2} \left(\frac{G_{4}}{G_{2}} \right)_{X=-1} \right] dX \right]$$
(2.33)

Eq. (2.33) can be integrated numerically for Q^* for various slide to roll ratios from the pure rolling case, S = 0, to the simple sliding case for which $u_1 = u$, $u_2 = 0$, and S = 2.

For EHD contacts with longitudinal surface roughness, the stochastic Reynolds equation following Eq. (2.19) becomes

$$\frac{d}{dx} \left\{ H_0^2 H^3 \left[1 + 3 \left(\frac{\overline{o}}{H} \right)^2 \right] \frac{dQ}{dX} \right\} = \frac{dH}{dx}$$
(2.34)

The above equation is valid for any rolling and sliding EHD contacts. Using boundary conditions, Eqs. (2.22) and (2.23), the reduced pressure Q^* at X = -1 can be integrated as

$$q^{*} = \int_{-\infty}^{-1} \frac{H - 1}{H_{o}^{2}H^{3}\left[1 + 3\left(\frac{\bar{\sigma}}{H}\right)^{2}\right]} dX$$
(2.35)

2.3.2 Rigid Rollers

If the elastic deformation of the rollers is neglected, the smooth, average surface profile can be approximated by a parabolic profile

$$H = \frac{h}{h_0} = 1 + \frac{x^2}{2\left(\frac{h_0}{R}\right)}$$
(2.36)

where

X = x/R

 h_0 = the average center film thickness

Using the same approach as developed in EHD contacts, but with different dimensionless variables for P, X, X^* , H, H_T, H^{*}, $\overline{\sigma}$, $\overline{\delta}_2$ and $\overline{\delta}$ as defined in the Nomenclature, the stochastic Reynolds equation for rigid rollers with transverse surface roughness can be expressed as

$$\epsilon \left\{ \frac{\overline{\delta}_{1}}{\overline{3}} - \epsilon \left\{ \frac{\overline{\delta}_{2}}{\overline{3}} \right\} \right\}$$

$$\frac{d}{dx} \left[\frac{d}{dx} - \frac{1}{\epsilon} \frac{1}{\overline{H_{T}^{3}}} \right] = \frac{dH}{dx} - \frac{S}{2} \frac{d}{dx} \left[\frac{H_{T}}{\varepsilon} + \frac{H_{T}}{\varepsilon} \right]$$

$$\epsilon \left\{ \frac{1}{\overline{3}} \right\}$$

$$\frac{d}{H_{T}} \left[\frac{d}{\overline{3}} + \frac{1}{\varepsilon} \right] = \frac{dH}{dx} - \frac{S}{2} \frac{d}{dx} \left[\frac{H_{T}}{\varepsilon} + \frac{H_{T}}{\varepsilon} \right]$$

$$\epsilon \left\{ \frac{1}{\overline{3}} \right\}$$

$$H_{T}$$

$$(2.37)$$

This equation has the same form as Eq. (2.21) of the EHD contacts. However, the boundary conditions for the case of rigid rollers will be different from Eqs. (2.22) and (2.23). They are given by

1 1 1

$$\frac{dP}{dX} = 0 , P = 0 \quad \text{at } X = X^*$$

$$P = 0 \quad \text{at } X = -\infty$$
(2.38)

Using these boundary conditions, Eq. (2.37) can be readily integrated to yield

$$\mathbf{F}(\mathbf{X}) = \int_{-\infty}^{\mathbf{X}} \left(\frac{\mathbf{H} - \mathbf{H}^{*}}{\mathbf{H}^{3}}\right) G_{2} d\xi \pm \frac{S_{0}}{2} \int_{-\infty}^{\mathbf{X}} \frac{1}{\mathbf{H}^{3}} \left[G_{4} - \left(\frac{G_{4}}{G_{2}}\right)_{\mathbf{X}=\mathbf{X}^{*}} \cdot G_{2}\right] d\xi$$
(2.39)

when ξ is a dummy variable for X, and X^{*} and H^{*} are determined by imposing $P(X^*) = 0$. Eq. (2.39) can be integrated numerically to yield P for the pure rolling case (S = 0), simple sliding case (S = 2), as well as rolling and sliding case (any S). Once P(X) is found, the dimensionless load W^{*}, can be determined by

$$W^{*} = \left[\frac{h^{2}}{6\mu \left(u_{1} + u_{2}\right)R^{2}}\right] W = \int_{-\infty}^{X^{*}} P(X) dX$$
 (2.40)

For rigid rollers with longitudinal surface roughness, the stochastic Reynolds equation is

$$\frac{d}{dX} \left\{ H^{3} \left[1 + 3 \left(\frac{\tilde{\sigma}}{H} \right)^{2} \right] \frac{dP}{dX} \right\} = \frac{dH}{dX}$$
(2.41)

Using boundary conditions, Eq. (2.38), one obtains

$$\mathbf{P} = \int_{-\infty}^{X} \frac{\mathbf{H} - \mathbf{H}^{*}}{\mathbf{H}^{3} \left[1 + 3\left(\frac{\overline{\sigma}}{\mathbf{H}}\right)^{2}\right]} d\xi \qquad (2.42)$$

where X^* and H^* are determined by the condition $P(X^*) = 0$. The dimensionless pressure and load can be determined in the same manner as that for rigid rollers with transverse surface roughness.

2.3.3 Infinitely-Wide Slider

For an infinitely-wide slider, the smooth, average, surface profile can be represented by

$$H(X) = \frac{h(x)}{h_{o}} = 1 + \frac{m\ell}{h_{o}} (1 - X)$$
(2.43)

where

 $h_o = h_{min}$ = minimum film thickness at the exit of the slider m = slope of the slider ℓ = length of the slider

Introducing dimensionless variables P, H_T , X, H and $\overline{\delta}$ as defined in the Nomenclature, one obtains the stochastic Reynolds equation for an infinitely-wide slider with transverse surface roughness,

$$\frac{d}{dx} \left[\frac{dP}{dx} - \frac{1}{\varepsilon \left\{ \frac{1}{\frac{1}{3}} \right\}} \right] = \frac{dH}{dx} - \frac{d}{dx} \left[\frac{H_T}{\varepsilon \left\{ \frac{1}{H_T} \right\}} \right] = \frac{dH}{\varepsilon \left\{ \frac{1}{\frac{1}{H_T}} \right\}}$$
(2.44)

The boundary conditions for Eq. (2.44) are

$$\mathbf{P}(\mathbf{0}) = \mathbf{P}(1) = 0 \tag{2.45}$$

For both surfaces having the same roughness characteristics,

$$\epsilon \left\{ \frac{\overline{\delta}_{1}}{H_{T}^{3}} \right\} = \epsilon \left\{ \frac{\overline{\delta}_{2}}{H_{T}^{3}} \right\}$$
(2.46)

Eq. (2.44) becomes

$$\frac{d}{dx} \left[\frac{dp}{dx} \frac{H^3}{G_2} \right] = \frac{dH}{dx}$$
(2.47)

A. 1. 1. 1.

Integrating twice, one obtains

$$P(X) = \int_{0}^{X} \frac{G_2}{H^2} dg - C \int_{0}^{X} \frac{G_2}{H^3} dg \qquad (2.48)$$

where C is evaluated by the boundary condition P(1) = 0. For one surface rough, and the opposing surface smooth, Eq. (2.44) takes the form

$$\frac{d}{dx} \left[\frac{dP}{dx} - \frac{1}{\varepsilon \left\{ \frac{1}{H_{T}^{3}} \right\}} \right] = \frac{dH}{dx} \pm \frac{d}{dx} \left[\frac{\varepsilon \left\{ \frac{1}{H_{T}^{3}} \right\}}{\varepsilon \left\{ \frac{1}{H_{T}^{3}} \right\}} \right]$$
(2.49)

where the plus sign represents the case of a smooth surface sliding against a stationary rough surface, and the negative sign implies the rough sliding against smooth surface. Eq. (2.49), expressed in terms of G_2 and G_4 , becomes

$$\frac{d}{dx} \left[\frac{dP}{dx} \frac{H^3}{G_2} \right] = \frac{dH}{dx} \pm \overline{\sigma} \frac{d}{dx} \left(\frac{G_4}{G_2} \right)$$
(2.50)

Integration of the above equation yields

$$P(X) = \int_{0}^{X} \frac{G_2}{H^2} dg \pm \overline{\sigma} \int_{0}^{X} \frac{G_4}{H^3} dg - C \int_{0}^{X} \frac{G_2}{H^3} dg$$
(2.51)

where C is determined by the boundary condition, P(1) = 0.

For the infinitely-wide slider with longitudinal surface roughness, the stochastic Reynolds equation is

$$\frac{d}{dx} \left\{ H^{3} \left[1 + 3 \left(\frac{\overline{\sigma}}{H} \right)^{2} \right] \frac{dP}{dx} = \frac{dH}{dx}$$
(2.52)

which, after integrating twice, yields

$$P(X) = \int_{-\infty}^{X} \frac{d\xi}{H^2 \left[1 + 3\left(\frac{\overline{\sigma}}{H}\right)^2\right]} - C \int_{0}^{X} \frac{d\xi}{H^3 \left[1 + 3\left(\frac{\overline{\sigma}}{H}\right)^2\right]}$$
(2.53)

with C determined by P(1) = 0. In all the above cases, the load can be evaluated by

$$W^* = \int_0^1 P(X) dX$$
 (2.54)

2.3.4 Roughness Distribution Function

The roughness distribution function employed in this paper is the same as that used by Christensen [7], namely,

$$g(\delta^{*}) = \begin{cases} \frac{35}{96} (1 - \frac{\delta^{*2}}{9})^{3} & -\delta_{max}^{*} < \delta^{*} < \delta_{max}^{*} \\ 0 & \text{Elsewhere} \end{cases}$$
(2.55)

$$\delta_{\max} = 3$$
 (2.56)

This polynomial distribution function is an approximation to Gaussian distribution. The reason using this polynomial function is that the roughness height distribution function of many engineering surfaces is very close to Gaussian [20], and that a Gaussian distribution always implies a finite probability of having asperities of very large sizes which are very unlikely in practice.

2.4 DISCUSSION OF RESULTS

2.4.1 EHD Contacts

The effect of surface roughness on the pressure generation at the inlet of EHD contacts can be presented conveniently by using a quantity K_E , defined as the ratio of the inlet pressure calculated from the stochastic theory, Q_R^* , to that calculated from the Grubin's smooth-film theory, Q_S^* . Thus,

$$K_{\rm E} = Q_{\rm R}^* / Q_{\rm S}^*$$
 (2, 57)

In Fig. (2.4), the ratio K_E is plotted against a surface roughness parameter, $\overline{\delta}_{max}$, for the following four cases

1) pure rolling with transverse surface roughness

2) pure rolling with longitudinal surface roughness

3) rolling and sliding with S = 0.2 and $\delta_1 = 0$ (smooth surface is faster)

4) rolling and sliding with S = 0.2 and $\delta_2 = 0$ (rough surface is faster) The dimensionless load and film thickness for the above cases are W = 3 x 10⁻⁵ and $H_0 = \frac{h_0}{R} = 10^{-5}$.

These curves are obtained by changing the magnitude of $\overline{\delta}_{max}$. It is seen that, for pure rolling with longitudinal surface roughness, K_E is reduced very slightly due to surface roughness effects. Even for $\overline{\delta}_{max}$ as high as 0.99, the reduction is only about 7.5%.

Contrast to the effect of longitudinal roughness, the transverse roughness has a much more pronounced effect on the integrated pressure. It tends to increase the dimensionless reduced pressure and hence also tends to increase the load capacity as $\overline{\delta}_{max}$ increases. For pure rolling, the transverse roughness causes an increase in Q^* from 7% to 30% as $\overline{\delta}_{max}$ is increased from 0.6 to 0.99. The effect of relative sliding between a smooth surface and a rough surface in EHD contacts is shown in the two curves for S = 0.2. Even for such a small slip, there is already noticeable departure from the pure rolling case. For the case where the smooth surface is faster, there is an additional pumping effect, compared to the pure rolling case. The reverse is true if the roughness surface is faster.

The effect of H_o is studied in Fig. (2.6). It is shown that the three curves for $H_o = 10^{-5}$, 5 x 10^{-5} , 9 x 10^{-5} almost coincide with one another. This indicates that the roughness effect on EHL is almost entirely independent upon H_o .

Fig. (2.6) shows the integrated value of Q^* against H_0 for the condition of pure rolling with transverse roughness, for different ratio of $\overline{\delta}_{max}$ ranging from 0.0 (smooth film theory) to 0.99. It is interesting to note that the curves are parallel straight lines. Again it is readily seen that the magnitude of Q^* depends on the ratio of $\overline{\delta}_{max}$. For $\overline{\delta}_{max} = 0.99$, there is approximately a 20% gain in the mean film thickness over that based on smooth film theory. For $\overline{\delta}_{max} = 0.9$, and 0.6, the gain in mean film thickness is about 15% and 5% respectively.

In the case of simple sliding of an EHD contact, i.e. S = 2, elastic deformation of asperities begins to be significant at X = -1. At this position, the values of $\overline{\sigma}$, the r.m.s. roughness amplitude and $g(\delta^*)$ the asperity distribution function, will no longer be the same as those of the undeformed asperities. Therefore Eq. (2.33) cannot be applied under this situation. One should notice that Eq. (2.33) is valid for rolling and sliding case, only when the elastic deformation of asperities near X = -1 can be assumed to be negligibly small. This occurs only when S is small.

2.4.2 Rigid Rollers

The effect of surface roughness on the dimensionless load of rigid rollers is presented in terms of K_R which is a quantity defined as the ratio of the dimensionless load from the stochastic theory, W_R^* , to that of the smooth film theory, W_S^* . Thus

$$K_{R} = W_{R}^{*}/W_{S}^{*}$$
(2.58)

Results of K_R versus $\overline{\delta}_{max}$ for the following six cases are shown in Fig. (2.7):

- 1. simple sliding of a smooth roller against a stationary rough roller with transverse surface roughness, S = 2,
- 2. rolling and sliding with transverse roughness; S = 0.2, $\delta_1 = 0$ (smooth surface is faster),
- 3. pure rolling with transverse roughness,
- 4. rolling and sliding with transverse roughness; S = 0.2, $\delta_2 = 0$ (rough surface is faster),
- 5. simple sliding of a rough roller against a stationary smooth roller with transverse roughness; S = 2,
- 6. longitudinal surface roughness.

The center film thickness for the above cases is $h_0/R = 5 \times 10^{-4}$.

Similar to elastic rollers, the effect of surface roughness on rigid rollers with longitudinal roughness is quite small. For $\overline{\delta}_{max} \neq 0.99$, the reduction of K_R is only about 5%.

For pure rolling with transverse roughness, K_R is increased by about 16% when $\overline{\delta}_{max} = 0.99$. For rolling and sliding with S = 0.2 and smooth surface moving faster, there is an increase in load carrying capacity, compared to the pure rolling case. The reverse is true when the rough surface is faster in the rolling and sliding case. When a smooth roller is sliding against a stationary rough roller, there is a substantial increase in K_R . When $\overline{\delta}_{max} = 0.6$ and 0.99, the gain in K_R are 8.5% and 39% respectively. However, when a rough roller is sliding against a stationary smooth roller, K_R is almost unaffected. When $\overline{\delta}_{max}$ is greater than 0.66, K_R begins to decrease slightly after a steady increase. This small dip in K_R is suspected to be caused by using the above mentioned polynominal function as the surface roughness distribution function. When a sinusoidal distribution function [17] which is defined as,

$$g(6^*) = \begin{cases} -3 < 6^* < 3 \\ 0 & \text{Elsewhere} \end{cases}$$
 (2.59)

is employed, the results which are not plotted here show that the dip disappears and that K_R increases with the increase of $\overline{\delta}_{max}$.

2.4.3 Infinitely-Wide Slider Bearing

In Fig. (2.8), W^* is plotted against $\overline{\delta}_{max}$ for the following four cases:

- simple sliding of a smooth surface against a rough surface with transverse roughness,
- both surfaces having the same roughness distribution functions with transverse roughness,
- simple sliding of a rough surface against a smooth one, with transverse roughness,
- 4. longitudinal surface roughness.

Qualitatively, the roughness effect on a slider checks very well with that on rollers. When the roughness direction is longitudinally oriented, the load carry-ing capacity of the oil film is reduced.

In the case of transverse roughness, the effect on load capacity is always beneficial. For both surfaces having the same kind of roughness distribution function, W^* is increased by 66% approximately, when $\overline{\delta}_{max}$ is 0.99. For a smooth surface sliding against a rough one, the gain in W^* is even larger. W^* is increased by about 129% when $\overline{\delta}_{max}$ is 0.99. For a rough surface sliding against a smooth one, W^* is only increased slightly.
The authors' results agree very well to those obtained by Rhow and Elrod [18], who have studied the effects of two-sided straited roughness on the load-carrying capacity of an infinitely wide slider bearing. The only exception is that the authors' results show a small dip in W^* , when $\overline{\delta}_{max}$ is larger than 0.9. This small dip in W^* is caused by employing the polynomial function as the surface roughness distribution. When the sinusoidal distribution is used, the dip in W^* disappears.

a server i pa

2.5 CONCLUSIONS

- Based on Christensen's stochastic model of hydrodynamic lubrication, a Grubin type elastohydrodynamic analysis at the inlet of a Hertzian contact indicates that surface roughness can have a noticeable effect on the level of mean film thickness between EHD contacts.
- 2. For longitudinal surface roughness, ridges parallel to the direction of rolling, the present analysis predicts an inlet pressure or inlet film thickness smaller than that predicted by the smooth-film EHD theory.
- For transverse surface roughness, ridges perpendicular to the direction of з. rolling, the inlet mean film thickness level is increased noticeably due to the additional pumping by transverse ridges. The level of increase is mainly a function of δ_{max}/h_{o} , the ratio of the maximum ridge height to the mean film thickness at the inlet and is not sensitive to other operating parameters. For δ_{max}/h_0 approaching unity, which corresponds to $h_0/\sigma = 3$ for $\delta_{max} = 3\sigma$, one can expect an increase of 25% in mean film thickness compared to the smooth-film EHD film thickness for pure rolling. Results for small slide to roll ratios indicates that the case of smooth sliding over rough gives further enhancement in mean film thickness, whereas the case of rough sliding over smooth yields a slight reduction in mean film thickness comparing to pure rolling. For high slide to roll ratios, it was found that local elastohydrodynamic effect due to local pressure fluctuations will become significant, and the present analysis based on the Grubin approach will become invalid.
- 4. For rigid rollers and infinitely-wide slider bearings, load capacities calculated for rough surfaces show trends similar to those found in EHD contacts. However, the effects for infinitely-wide slider bearings are much stronger than that for rigid rollers.

LONGITUDINAL ROUGHNESS

Figure 2-1 EHD Contacts Between Two Rough Surfaces

TRANSVERSE ROUGHNESS

Figure 2-2 Rigid Rollers With Rough Surfaces

L

Fig. 2-4 The Effect of Transverse and Longitudinal Roughness on the Ratio of the Reduced Pressure for Rough Surfaces to that for Smooth Surfaces, $K_E = Q_R^2 / Q_S^2$, of an EHD Contact

Fig. 2-5 The Effect of the Center Film Thickness, H , on the Ratio of the Reduced Pressure for Rough Surfaces to that for Smooth Surfaces, $K_E = Q_R^2/Q_S^2$, of an EHD Contact

Fig. 2-7 The Variation of the Normalized Load Ratio, $K_p = W_p^*/W_s^*$, with the Roughness Height, $\tilde{\delta}_{max} = \delta_{max}/h_o$, for Rigid Rollers

INFINITELY-WIDE SLIDER BEARING

with the Roughness Height, $ar{m{\delta}}_{\max}$, for an Infinitely-wide Slider Bearing

CHAPTER III

WAVINESS AND ROUGHNESS IN ELASTOHYDRODYNAMIC LUBRICATION

3.1 INTRODUCTION

A stochastic theory for elastohydrodynamic lubrication of contact with twosided roughness has been developed in Chapter II. The basic requirement of this theory is that the roughness pattern must be very dense within the contact zone. In other words, the largest wavelength in the roughness spectrum must be small compared to the contact width. If the largest wavelength is of the same order of the contact width, surface roughness becomes surface waviness. The stochastic theory may be invalid in this region.

In order to ascertain the conditions under which the stochastic theory becomes valid the reduced pressure based on the deterministic approach using a sinusoidal profile and that calculated from the stochastic theory using a surface roughness distribution equivalent to the sinusoidal profile is compared. The comparison is only made for the transverse roughness since the effect of longitudinal roughness is usually negligibly small comparing to the effect of transverse roughness.

3.2 GOVERNING EQUATION

In comparing the effect of waviness and roughness on the reduced pressure, the surface profile is assumed to be in the form of sinusoidal waviness. The reduced pressure is then solved by the deterministic approach for the waviness case. At the same time, a density distribution function equivalent to the chosen sinusoidal wave is evaluated. Using this equivalent roughness distribution function, the reduced pressure for the roughness case is then solved by the stochastic approach as illustrated in Chapter II. Then, the effect of surface waviness and roughness will be compared for the pure rolling case.

3.2.1 The Waviness Case

In the waviness case, the one-dimensional Reynolds equation governing the pressure in an EHD contact of an isothermal and incompressible lubricant is

$$\frac{\partial}{\partial x} \left(\frac{\mathbf{h}_{T}}{12\mu} \frac{\partial p}{\partial x} \right) = \frac{\mathbf{u}_{1} + \mathbf{u}_{2}}{2} \frac{\partial \mathbf{h}_{T}}{\partial x} + \frac{\partial \mathbf{h}_{T}}{\partial t}$$
(3.1)

where h_{T} is the local total film thickness consisting of the following three parts h, δ_{1} , δ_{2}

where h = the nominal smooth part of the average film thickness

$$\delta_{1}, \delta_{2} = \text{roughness amplitude measured from the mean level of surfaces}$$

$$1 \text{ and } 2$$

$$\delta_{1} = \delta_{\max_{1}} \sin \left[(2n_{1}\pi)(x - u_{1}t) \right] \qquad (3.2)$$

$$\delta_{2} = \delta_{\max_{2}} \sin \left[(2n_{2}\pi)(x - u_{2}t) \right] \qquad (3.3)$$

$$\theta_{1} = u_{1}t$$

$$\theta_{2} = u_{2}t$$

It is assumed that the asperities on both surfaces are straight ridges perpendicular to the direction of rolling. With the relations

$$\frac{\partial \delta_1}{\partial t} = -u_1 \frac{\partial \delta_1}{\partial x}$$
(3.4)

$$\frac{\partial \delta_2}{\partial t} = - u_1 \frac{\partial \delta_2}{\partial x}$$
(3.5)

Eq. (3.1) is simplified as

$$\frac{d}{dx}\left(\frac{h_{T}^{3}}{12\mu}\frac{dp}{dx}\right) = \left(\frac{u_{1}^{2}+u_{2}}{2}\right)\frac{dh}{dx} - \left(\frac{u_{1}^{2}-u_{2}}{2}\right)\frac{d}{dx}\left(\delta_{1}-\delta_{2}\right) + \frac{dh}{dt}$$
(3.6)

It is further assumed that there are enough number of asperities within the Hertzian contact zone such that h can be considered as a constant of time.

i.e.
$$\frac{dh}{dt} = 0$$
 (3.7)

Hence, in the case of pure rolling, one obtains

$$\frac{d}{dx} \left(\frac{h_T^3}{12\mu} \frac{dp}{dx} \right) = u \frac{dh}{dx}$$
(3.8)

with dimensionless variables Q_w , X, H, H_T , $\overline{\sigma}$, U, $\overline{\delta}_1$, $\overline{\delta}_2$, and $\overline{\delta}$ as defined in the Nomenclature, Eq. (3.8) is transformed to

$$\frac{d}{dx}\left(H_{T}^{3}\frac{dQ_{w}}{dx}\right) = \frac{1}{H_{Q}^{2}}\frac{dH}{dx}$$
(3.9)

where H, the average surface profile in the inlet region is governed by

$$H - 1 = \frac{h - h_0}{h_0} = \frac{4W}{\pi H_0} \left[|X| \sqrt{X^2 - 1} - \ln\left(|X| + \sqrt{X^2 - 1}\right) \right]$$
(3.10)

The boundary conditions are:

$$\frac{dQ_w}{dX} = 0 \quad \text{at} \quad X = -1 \tag{3.11}$$

$$Q_w = 0$$
 at $X = -\infty$ (3.12)

Integrating Eq. (3.10) twice with these two boundary conditions, one obtains

$$Q_{w}^{*} = Q_{w}|_{X=-1} = \int_{-\infty}^{-1} \left(\frac{H-1}{H_{o}^{2}H_{T}^{3}}\right) dX$$
 (3.13)

In the pure rolling case

.

L ... -

$$\theta_1 = \theta_2 = \theta = ut \tag{3.14}$$

In addition, it is assumed that

$$n_1 = n_2 = n$$
 (3.15)

$$\delta_{\max} = \delta_{1 \max} + \delta_{2 \max}$$
(3.16)

For given h_0/R , W, δ_{max} , n and θ , Eq. (3.13) is solved numerically by Simpson's integration routine.

3.2.2 The Roughness Case

i

The probability density function corresponding to a sinusoidal wave is [17]

$$f(\delta^{*}) = \frac{\frac{1}{\pi}\sqrt{1-\frac{1}{9}\delta^{*2}}}{0} - 3 < \delta^{*} < 3$$
(3.17)

From Chapter II, the corresponding reduced pressure at the inlet is

$$Q_{R}^{\star} = \int_{-\infty}^{-1} \left(\frac{H-1}{H_{o}^{2}H^{3}}\right) G_{2} dX$$
 (3.18)

where

I

$$G_{2} = \frac{1}{\pi} \int_{-3}^{3} \frac{\sqrt{1 - \frac{1}{9} \delta^{*2}}}{\left[1 + \delta^{*} \left(\frac{\overline{\sigma}}{\overline{H}}\right)\right]^{3}} d\delta^{*}$$
(3.19)

 $Q_R^* = Q^*$ calculated by stochastic theory. Hence Q_R^* is evaluated for different values of δ_{max} .

1

4

3.3 DISCUSSION OF RESULTS

Though the following examples are only connected with the pressure generation at the inlet of elastohydrodynamic contacts, yet, qualitatively, the general trends of the results will be relevant to other types of bearing and surface irregularity.

The comparison between waviness and roughness can be presented conveniently by using a quantity K_{D} which is defined as

$$K_{\rm D} = \frac{Q_{\rm W}^* - Q_{\rm R}^*}{Q_{\rm R}^*}$$
(3.20)

where Q_W^* and Q_R^* stand for the inlet reduced pressure calculated from the waviness model and the roughness model respectively. Hence, by definition, K_D is the fractional deviation of the inlet reduced pressure of the waviness model from that of the corresponding roughness model. The results of such a comparison are shown in Fig. 3.1 to Fig. 3.3. The dimensionless load and film thickness for these examples are W = 3 x 10⁻⁵ and $H_O = h_O/R = 10^{-5}$, while the ratio δ_{max}/h_O in these three figures are 0.3, 0.45 and 0.6 respectively. The phase angles chosen are 0, $\pi/2$, π and - $\pi/2$ while the n-values are integers.

It is readily seen that K_D heavily depends upon the phase angle θ for small n. Particularly, for $\theta = \pi/2$ and $-\pi/2$, the magnitude of K_D even changes signs. However, the effect of phase angle on K_D decreases rapidly as n increases. Furthermore, for larger δ_{max} which means more pronounced asperity interaction, K_D is larger for the same n. For smaller δ_{max} , K_D is smaller. The approximate values of K_D at n = 5 and n = 10 for the extreme cases of $\theta = -\pi/2$ and $\pi/2$ are listed as follows

	n = 5		n = 10				
δ _{max} /h _o	0.3	0.45	0.6	0.3	0.45	0.6	
K _D	±3.5%1	± 6%	±10%	±0.5%	± 1%	±1.5%	

These results provide a better understanding to the statistical roughness theory. First, they show that the effect of phase angle vanishes with increasing n. Second, the effect of n becomes less important when n is greater than some critical value for a given δ_{max} . The discrepancy between the waviness model and the roughness model becomes poorer as δ_{max}/h_o increases. It is quite evident that n and δ_{max}/h_o are both important parameters that determine the validity of the statistical theory for roughness surfaces. For the particular numerical example used in these

calculations, it is found that for n > 10, waviness is equivalent to roughness and that the stochastic theory holds. Even for n = 5, one can still apply the stochastic theory with reasonable accuracy.

١.

3.4 CONCLUSIONS

an a gin

For a given W and H

1. θ , n and δ_{max}/h_0 are the parameters to determine the deviation of the stochastic, roughness made from the deterministic waviness model.

2. The effect of phase angle diminishes with increasing n.

. .

3. The effect of n vanishes as n becomes large, and the stochastic theory for roughness surface is proved to be valid as n approaches a critical value depending on δ_{max}/h_0 for a given W and H₀.

•

Fig. 3-1 The Effect of the Number of Wave Cycles, n, and the Phase Angle, θ , on the Percentage of Deviation of the Normalized Reduced Pressure, K_D, for Roughness to Thickness Ratio $\delta_{max}/h_o = 0.3$

Fig. 3-2 The Effect of the Number of Wave Cycles, n, and the Phase Angle, θ , on the Percentage of Deviation of the Normalized Reduced Pressure, K_D , for Roughness to Thickness Ratio $\delta_{max}/h_0 = 0.45$

$$W = 3 \times 10^{-5}, \quad h_0/R = 10^{-5}, \quad \delta_{max}/h_0 = 0.6$$

$$K_D = \frac{(q_W^* - q_R^*)}{q_R^*} \times 100\%$$

Fig. 3-3 The Effect of the Number of Wave Cycles, n, and the Phase Angle, θ , on the Percentage of Deviation of the Normalized Reduced Pressure, $K_{\rm D}$, for Roughness to Thickness Ratio $\delta_{\rm max}/h_{\rm O} = 0.6$

CHAPTER IV

PRESSURE PERTURBATION IN EHD CONTACTS

DUE TO AN ELLIPSOIDAL ASPERITY

4.1 INTRODUCTION

Recently, there has been a growing interest in the effect of surface roughness on the bearing performance in thin film lubrication. In Chapter II, the stochastic theory is used to study the effect of surface roughness on the average EHD film thickness and the integrated pressure at the inlet of the lubricated Hertzian contacts. However, the stochastic theory is incapable of predicting any detailed local perturbations in pressure or deformation caused by the asperities. It was recently pointed out by Tallian [19] that the pressure ripples can rise to a very high level in rolling and sliding EHD line contacts. These ripples are very likely one of the chief attributing factors to contact fatigue.

In the last few years, there has been considerable interest in the basic event involving a single asperity entering an EHD contact [5] or the encounter between two identical asperities [4]. The work in this chapter is aimed towards gaining further understanding of the effect of a single asperity on pressure distribution in a line EHD contact. Special attention is given to the three-dimensional aspect of the asperity which is assumed to be ellipsoidal at the tip. The effects of ellipticity (aspect ratio) on the double amplitude of pressure fluctuations under various rolling and sliding condition is examined in detail.

44

4.2 MATHEMATICAL ANALYSIS

The present analysis consists of two parts. The first part studies the pressure fluctuations due to a single three-dimensional ellipsoidal asperity at the inlet region of an EHD contact assuming that the asperity shape is unaffected by the perturbed pressures. These pressure fluctuations are determined by solving a perturbed Reynolds equation, in which the unperturbed pressure profile is obtained by using a line contact EHD analysis [22]. Results are presented as the perturbed pressure profile, Φ , as well as the amplitude of the pressure ripple, Δ_s , as a function of ellipticity ratio, γ , maximum Hertzian pressure, P_{HZ} , nominal EHD film thickness h_0/R , asperity size, \overline{b} , asperity height, c_1/h_0 , pressure viscosity coefficient, G, slide to roll ratio, S, and the position of the asperity center X_3 .

In the second part, the line contact EHD analysis [22] is modified to include a two dimensional asperity ridge on the stationary side of the lubricated contacts. In this approach, the elastic deformation of the asperity is included. Results which are presented as the double amplitude of the perturbed pressure as a function of P_{Hz} , h_o/R , \overline{b} , c_1/h_o , G, and X_3 , are compared with those obtained for the three dimensional ellipsoidal asperity with large ellipticity ratio for the case of simple sliding between a smooth surface and a stationary asperity (S=2).

4.2.1 Geometrical Configuration

The contact between two cylinders as shown in Fig. (4.1a) can be described by an equivalent cylinder near a flat surface as shown in Fig. (4.1b). As the contact width is very small compared to the dimension of the cylinder, the film thickness for a rigid cylinder, h_g , without the asperity is

$$h_{g} \simeq h_{o} + \frac{x^{2}}{2R}$$
(4.1)

where x = coordinate along the film

$$R = \frac{R_1 R_2}{R_1 + R_2}$$

 $R_1R_2 = radius of rollers 1 and 2,$

h = undeformed center film thickness

With elastic deformation, the film thickness profile, still without the asperity [22] becomes

$$h_{1} = h_{o} + \frac{x^{2}}{2R} - \frac{4}{\pi E^{T}} \int_{-\infty}^{x_{f}} \ln \frac{|\xi - x|}{|\xi|} p_{1}(\xi) d\xi \qquad (4.2)$$

where

h₁

= smooth-film thickness

ho = center film thickness at x=0

$$\mathbf{E}' = \left[\frac{1}{2}\left(\frac{1-v_1^2}{E_1} + \frac{1-v_2^2}{E_2}\right)\right]^{-1}$$

 E_1, E_2 = Young's modulus for rollers 1 and 2 v_1, v_2 = Poisson's ratio of rollers 1 and 2 ξ = dummy variable for x $p_1(\xi)$ = smooth-film pressure profile

Referring to Fig. (4.2) the height of a three-dimensional ellipsoidal asperity can be written as

$$\delta = \delta_1 \cos \eta \tag{4.3}$$

As the contact width is very small compared to the radius of the cylinder, η is very small and

$$\cos \eta \simeq 1 \tag{4.4}$$

Thus the asperity height function of a three-dimensional asperity can be approximately written as

$$\delta(\mathbf{x},\mathbf{y}) \simeq \delta_1 = \begin{cases} c_1 \left[\left(\frac{\mathbf{x} - \mathbf{x}_3}{b^1} \right)^2 + \left(\frac{\mathbf{y}}{a^1} \right)^2 - 1 \right] \text{ for } \left| \frac{\mathbf{x} - \mathbf{x}_3}{b^1} \right| \le 1 \text{ and } \left| \frac{\mathbf{y}}{a^1} \right| \le 1 \\ 0 \text{ elsewhere} \end{cases}$$
(4.5)

Similarly, the asperity height function of a two dimensional asperity ridge can be expressed as

$$\delta(\mathbf{x}) \simeq \begin{cases} c_1 \left[\left(\frac{\mathbf{x} - \mathbf{x}_3}{\mathbf{b}'} \right)^2 - 1 \right] & \text{for } \left| \frac{\mathbf{x} - \mathbf{x}_3}{\mathbf{b}'} \right| \le 1 \\ 0 & \text{elsewhere} \end{cases}$$
(4.6)

The total local film thickness, $\mathbf{h}_{\mathrm{T}}^{},$ at any point under the surface asperity is

$$h_{\rm T} = h_1 + \delta \tag{4.7}$$

4.2.2 Governing Equations

4.2.2.1 The Smooth-Film Case

Referring to [22], the two coupled equations governing the pressure and film distributions in an elastohydrodynamic line contact between two rollers with iso-thermal and incompressible lubricant are:

The Reynolds equation

$$\frac{dp_1}{dx} = 6\mu (u_1 + u_2) \left(\frac{h_1 - h}{h_1^3}\right)$$
(4.8)

where p_1 , h_1 , h and x are already defined

 $\mu \equiv viscosity$ $u_1, u_2 \equiv velocity of rollers 1 and 2$

and the film thickness profile as described in Eq. (4.2). In non-dimensional form, Eqs. (4.8) and (4.2) become

$$\frac{\mathrm{dP}_{1}}{\mathrm{dX}} = \left(\frac{48}{\mathrm{H}_{0}^{2}}\right) \mathrm{U}_{\mu} \left(\frac{\mathrm{H}_{1}-1}{\mathrm{H}_{1}^{3}}\right)$$
(4.9)

$$H_{1} = 1 + \frac{16 P_{Hz}^{2}}{\frac{H^{2}}{\rho}} \left(\frac{x^{2}}{2} - \frac{1}{\pi} \int_{-\infty}^{x_{f}} P_{1}(\xi) \ln \frac{|\bar{\xi} - x|}{|\bar{\xi}|} d\bar{\xi} \right)$$
(4.10)

١,

where
$$P_1 = P_1/P_{Hz}$$
, $X = x/b$, $H_1 = h_1/h_0$, $H_0 = h_0/R$,
 $U = \frac{\mu_s(u_1 + u_2)}{2E'R}$, $\overline{\mu} = \frac{\mu}{\mu_s}$, $b/R = 4 P_{Hz}$, $P_{Hz} = P_{Hz}/E$
 $\overline{\xi} = \xi/b$, $X_f = x_f/b$.

Using the same numerical scheme as developed in [22], these two equations are solved by the Newton-Ralphson method. $P_1(X)$, $H_1(X)$ and \overline{U} are solved for a given set of h_o/R , P_{Hz} , and G. These smooth-film results are used as the inputs to the perturbed Reynolds equation described later.

4.2.2.2 The Discretized Reynolds Equation

It is assumed here that the viscosity is an exponential function of the pressure with a pressure viscosity coefficient α , i.e.

$$\mu = \mu_s e^{\alpha P} \tag{4.11}$$

In numerical form the steady Reynolds equation for an incompressible lubricant can be expressed by dividing the contact zone into small grids with irregular spacings. Referring to Fig. (4.3) and applying the principle of conservation of mass, one obtains for the ith grid

where
$$m_1 = -\left(\frac{\rho h_1^3}{12\mu} \frac{\partial P_1}{\partial x}\right)_{i-1/2} + \frac{u_1 + u_2}{2} (\rho h_1)_{i-1/2}$$

$$= -\frac{\rho}{12\mu_s} \left(h_1^3 e^{-\alpha P_1} \frac{\partial P_1}{\partial x}\right)_{i-1/2} + \rho \frac{u_1 + u_2}{2} (h_1)_{i-1/2}$$
(4.13)

$$m_{2} = -\frac{\rho}{12\mu_{s}} \left(h_{1}^{3} e^{-\alpha p_{1}} \frac{\partial p_{1}}{\partial x}\right)_{i+1/2} + \rho \frac{u_{1}^{+} u_{2}}{2} (h_{1})_{i+1/2}$$
(4.14)

$$\mathbf{m}_{\text{restored}} = \frac{\partial}{\partial t} \left[\rho(\mathbf{h}_1)_i \left\{ \frac{(\Delta x)_{i-1} + (\Delta x)_i}{2} \right\} \right] = 0$$
(4.15)

Combining Eqs. (4.12) to (4.15) and re-arranging, one obtains

$$\frac{1}{12\mu_{s}} \left[\left(h_{1}^{3} e^{-\alpha p_{1}} \frac{\partial p_{1}}{\partial x} \right)_{i+1/2} - \left(h_{1}^{3} e^{-\alpha p_{1}} \frac{\partial p_{1}}{\partial x} \right)_{i-1/2} \right]$$

$$= \frac{u_{1}^{+} u_{2}}{2} \left[\left(h_{1} \right)_{i+1/2} - \left(h_{1} \right)_{i-1/2} \right]$$
(4.16)

Thus p_1 , the smooth-film pressure profile and h_1 , the smooth-film thickness are functions of x only.

4.2.2.3 The Perturbed Reynolds Equation

The pressure distribution can be considered as the sum of the smooth-film pressure, p_1 and the perturbed pressure, ϕ . Define

$$\mathbf{p} = \mathbf{p}_1 + \phi \tag{4.17}$$

Since p_1 is a function of x only, the derivatives of p are:

$$\frac{\partial \mathbf{p}}{\partial \mathbf{x}} = \frac{\partial \mathbf{p}_1}{\partial \mathbf{x}} + \frac{\partial \phi}{\partial \mathbf{x}}$$
(4.18)

$$\frac{\partial \mathbf{p}}{\partial \mathbf{y}} = \frac{\partial \phi}{\partial \mathbf{y}} \tag{4.19}$$

For a two-dimensional flow field, the principle of conservation of mass as applied to the (i,j)th grid as shown in Fig. (4.4) yields

where $m_1 = \left\{-\frac{\rho h_T^3}{12\mu}\frac{\partial p}{\partial x} + \rho \left(\frac{u_1 + u_2}{2}\right)h_T\right\}_{i=1/2,j}$

$$= \left\{ -\frac{\rho h_{T}^{3}}{12\mu_{s}} e^{-\alpha \left(p_{1}+\frac{\Phi}{2}\right)} \left(\frac{\partial p_{1}}{\partial x} + \frac{\partial \phi}{\partial x}\right) + \rho \left(\frac{u_{1}+u_{2}}{2}\right) \left(h_{1}+\delta\right) \right\}_{i=1/2,j}$$
(4.21)

It is assumed that the value of $\alpha \phi$ is much smaller than unity such that $e^{-\alpha \phi}$ can be linearized as

$$e^{-\alpha\phi} = (1 - \alpha\phi) \tag{4.22}$$

by using Taylor's series expansion. Neglecting second order term, Eq. (4.21) can be re-written as

$$m_{1} = \left\{ -\frac{\rho h_{T}^{2}}{12\mu_{s}} e^{-\alpha p_{1}} \left(\frac{\partial p_{1}}{\partial x} + \frac{\partial \phi}{\partial x} - \alpha \phi \frac{\partial p_{1}}{\partial x} \right) + \rho \left(\frac{u_{1}^{+} u_{2}}{2} \right) (h_{1}^{+} \delta) \right\}_{i=1/2, j}$$
(4.23)

Likewise, m_2 , m_3 , and m_4 can be shown to be

3

2

$$m_{2} = -\left\{\frac{\rho h_{T}^{2}}{12\mu_{s}} e^{-\alpha p_{1}} \left(\frac{\partial p_{1}}{\partial x} + \frac{\partial \phi}{\partial x} - \alpha \phi \frac{\partial p_{1}}{\partial x}\right) + \rho \left(\frac{u_{1}^{+} u_{2}}{2}\right) (h_{1}^{+} \delta)\right\}_{i+1/2, j}$$
(4.24)

$$m_{3} = - \left\{ \frac{\rho h_{T}^{5}}{12\mu_{s}} e^{-\alpha p} t \xrightarrow{\partial \phi}_{\partial y} \right\}_{i, j=1/2}$$

$$(4.25)$$

$$\mathbf{m}_{4} = - \left\{ \frac{\rho \mathbf{h}_{T}^{3}}{12\mu_{s}} e^{-\alpha p} \mathbf{1} \quad \frac{\partial \phi}{\partial y} \right\}_{i, j+1/2}$$
(4.26)

Substituting Eqs. (4.23) to (4.26) into the left-hand side of Eq. (4.20), one obtains

$$\rho \left[\frac{(\Delta y)_{j-1} + (\Delta y)_{j}}{2} \right] \left\{ \left(\frac{1}{12\mu_{s}} \right) \left[\left(h_{T}^{3} e^{-\alpha P_{1}} \frac{\partial \phi}{\partial x}\right)_{i+1/2,j} - \left(h_{T}^{3} e^{-\alpha P_{1}} \frac{\partial \phi}{\partial x}\right)_{i-1/2,j} \right] \right\}$$

$$- \left(\frac{1}{12\mu_{s}} \right) \left[\left(h_{T}^{3} e^{-\alpha P_{1}} \alpha \phi \frac{\partial P_{1}}{\partial x}\right)_{i+1/2,j} - \left(h_{T}^{3} e^{-\alpha P_{1}} \alpha \phi \frac{\partial P_{1}}{\partial x}\right)_{i-1/2,j} \right] \right]$$

$$- \left(\frac{1}{12\mu_{s}} \right) \left[\left(h_{1}^{3} - h_{T}^{3}\right) e^{-\alpha P_{1}} \frac{\partial P_{1}}{\partial x} \right)_{i+1/2,j} - \left(\left(h_{1}^{3} - h_{T}^{3}\right) e^{-\alpha P_{1}} \frac{\partial P_{1}}{\partial x} \right)_{i-1/2,j} \right] \right]$$

$$- \left(\frac{u_{1}^{4} + u_{2}}{2} \right) \left[\frac{\delta_{i+1,j} - \delta_{i-1,j}}{2} \right] \left\{ \frac{1}{12\mu_{s}} \right) \left[\left(h_{T}^{3} e^{-\alpha P_{1}} \frac{\partial \phi}{\partial y} \right)_{i,j+1/2} \right]$$

$$- \left(h_{T}^{3} e^{-\alpha P_{1}} \frac{\partial \phi}{\partial y} \right)_{i,j-1/2} \right] \left\{ (4.27) \right\}$$

With the relations

$$\frac{\partial h_1}{\partial t} = 0 \tag{4.28}$$

.

3

and

+ . t

i

$$\frac{\partial}{\partial t} \delta(x - u_2 t) = - u_2 \frac{\partial \delta}{\partial x}$$
(4.29)

the right-hand side of Eq. (4.20) can be re-written as

.

$$\rho\left[\frac{(\Delta y)_{j-1} + (\Delta y)_{j}}{2}\right] (-u_{2}) \left(\frac{\delta_{i+1,j} - \delta_{i-1,j}}{2}\right)$$
(4.30)

Equating Eqs. (4.27) and (4.30) and simplifying, one obtains

$$\left[(\Delta y)_{j-1} + (\Delta y)_{j} \right] \left\{ \left[\left(h_{T}^{3} e^{-\alpha P_{1}} \frac{d\phi}{dx} \right)_{i+1/2,j} - \left(h_{T}^{3} e^{-\alpha P_{1}} \frac{d\phi}{dx} \right)_{i-1/2,j} \right] \right\}$$

$$- \left[\left(h_{T}^{3} e^{-\alpha P_{1}} \alpha \phi \frac{dP_{1}}{dx} \right)_{i+1/2,j} - \left(h_{T}^{3} e^{-\alpha P_{1}} \alpha \phi \frac{dP_{1}}{dx} \right)_{i-1/2,j} \right] \right\}$$

$$+ \left[(\Delta x)_{i-1} + (\Delta x)_{i} \right] \left[\left(h_{T}^{3} e^{-\alpha P_{1}} \frac{d\phi}{dy} \right)_{i,j+1/2} - \left(h_{T}^{3} e^{-\alpha P_{1}} \frac{d\phi}{dy} \right)_{i,j-1/2} \right]$$

$$= \left[(\Delta y)_{j-1} + (\Delta y)_{j} \right] \left\{ \left[\left(h_{1}^{3} - h_{T}^{3} \right) e^{-\alpha P_{1}} \frac{dP_{1}}{dx} \right]_{i+1/2,j} \right]$$

$$- \left[\left(h_{1}^{3} - h_{T}^{3} \right) e^{-\alpha P_{1}} \frac{dP_{1}}{dx} \right]_{i-1/2,j} + 6\mu_{s}(u_{1} - u_{2}) \left[\frac{\delta_{i+1,j} - \delta_{i-1,j}}{2} \right] \right\}$$

$$(4.31)$$

- --

.

Using the central difference approximation for the pressure gradients, Eq. (4.31)
is discretized to

$$\begin{bmatrix} (\Delta y)_{j-1} + (\Delta y)_{j} \end{bmatrix} \{ \begin{bmatrix} (h_{T}^{3} e^{-\alpha p_{1}})_{i+1,j} + (h_{T}^{3} e^{-\alpha p_{1}})_{i,j} \\ \frac{1}{2} \end{bmatrix} \begin{pmatrix} \phi_{i+1,j} - \phi_{i,j} \\ \phi_{i,j} \end{pmatrix} - \begin{bmatrix} (h_{T}^{3} e^{-\alpha p_{1}})_{i,j} + (h_{T}^{3} e^{-\alpha p_{1}})_{i-1,j} \end{bmatrix} & (\phi_{i,j} - \phi_{i-1,j}) \\ - \begin{bmatrix} (h_{T}^{3} e^{-\alpha p_{1}} \alpha \phi)_{i+1,j} + (h_{T}^{3} e^{-\alpha p_{1}} \alpha \phi)_{i,j} \end{bmatrix} \begin{bmatrix} (p_{1})_{i-1} - (p_{1})_{i} \\ (\Delta x)_{i} \end{bmatrix} \\ - \begin{bmatrix} (h_{T}^{3} e^{-\alpha p_{1}} \alpha \phi)_{i+1,j} + (h_{T}^{3} e^{-\alpha p_{1}} \alpha \phi)_{i,j} \end{bmatrix} \begin{bmatrix} (p_{1})_{i-1} - (p_{1})_{i} \\ (\Delta x)_{i} \end{bmatrix} \\ + \begin{bmatrix} (h_{T}^{3} e^{-\alpha p_{1}} \alpha \phi)_{i,j} + (h_{T}^{3} e^{-\alpha p_{1}} \alpha \phi)_{i-1,j} \end{bmatrix} \begin{bmatrix} (p_{1})_{i-1} - (p_{1})_{i} \\ (\Delta x)_{i-1} \end{bmatrix} \}$$
(4.32)

$$+ \left[(\Delta x)_{i-1}^{+} (\Delta x)_{i} \right] \left\{ \left[\frac{\left(h_{T}^{3} e^{-\alpha P_{1}}\right)_{i,j+1}^{+} + \left(h_{T}^{3} e^{-\alpha P_{1}}\right)_{i,j}^{-}\right]}{2} \frac{\left(\phi_{i,j+1}^{-} \phi_{i,j}^{-}\right)}{(\Delta y)_{j}} \right] \right\}$$

$$- \left[\frac{\left(h_{T}^{3} e^{-\alpha P_{1}}\right)_{i,j}^{+} + \left(h_{T}^{3} e^{-\alpha P_{1}}\right)_{i,j-1}^{-}\right]}{2} \frac{\left(\phi_{i,j}^{-} \phi_{i,j-1}\right)}{(\Delta y)_{j-1}} \right] }{(\Delta y)_{j-1}}$$

$$= \left[(\Delta y)_{j-1}^{+} (\Delta y)_{j} \right] \left\{ \frac{\left[\left(h_{1}^{3} - h_{T}^{3}\right) e^{-\alpha P_{1}}\right]_{i+1,j}^{-} + \left[\left(h_{1}^{3} - h_{T}^{3}\right) e^{-\alpha P_{1}}\right]_{i,j}^{-} \frac{\left[\left(h_{1}^{3} - h_{T}^{3}\right) e^{-\alpha P_{1}}\right]_{i+1,j}^{-} + \left[\left(h_{1}^{3} - h_{T}^{3}\right) e^{-\alpha P_{1}}\right]_{i,j}^{-} \frac{\left[\left(h_{1}^{3} - h_{T}^{3}\right) e^{-\alpha P_{1}}\right]_{i,j}^{-} + \left(h_{1}^{3} - h_{T}^{3}\right) e^{-\alpha P_{1}}\right]_{i-1,j}^{-} \left[\frac{\left(p_{1}^{-} - \left(p_{1}^{-}\right)_{i-1}^{-}\right)}{\left(\Delta x\right)_{i-1}^{-}} \right]$$

+
$$6\mu_{s}(u_{1}-u_{2})\left(\frac{\dot{b}_{i+1,j}-\dot{b}_{i-1,j}}{2}\right)$$
 (4.32)

After re-arranging and the following non-dimensional variables are introduced:

$$\begin{split} \Delta X &= \Delta x/b', \quad \Delta Y = \Delta y/a', \quad Y = a'/b', \quad H_{T} = h_{T}/h_{o}, \quad H_{1} = h_{1}/h_{o}, \quad \overline{c}_{1} = c_{1}/h_{o}, \\ X &= x/b, \quad X_{3} = x_{3}/b, \quad Y = y/a', \quad \overline{b} = b'/b, \quad p_{1} = p_{1}/p_{Hz}, \quad \Phi = \phi/p_{Hz}, \\ P_{Hz} = p_{Hz}/E', \quad G = \alpha E', \quad E' = \left[\frac{1}{2}\left(\frac{1-v_{1}^{2}}{E_{1}} + \frac{1-v_{2}^{2}}{E_{2}}\right)\right]^{-1}, \quad \overline{\alpha} = \alpha p_{Hz}, \\ U_{D} &= \frac{\mu_{s}(u_{1} - u_{2})}{2E'R}, \quad H_{o} = h_{o}/R, \quad C_{UD} = 48 \ U_{D}/H_{o} \cdot \overline{b}, \\ \overline{\delta} &= \delta/h = c_{1}/h_{o} \left[\left(\frac{x - x_{3}}{b'}\right)^{2} + \left(\frac{y}{a'}\right)^{2} - 1\right] = \overline{c}_{1} \left[\left(\frac{X - X_{3}}{\overline{b}}\right)^{2} + (Y)^{2} - 1\right] \end{split}$$

the governing equation becomes:

Ð

$$\begin{bmatrix} \frac{(\Delta Y)_{j-1} + (\Delta Y)_{j}}{(\Delta X)_{i-1}} \end{bmatrix} \left\{ \left(H_{T}^{3} e^{-\overline{\alpha}p_{1}} \right)_{i,j} + \left(H_{T}^{3} e^{-\overline{\alpha}p_{1}} \right)_{i-1,j} + \overline{\alpha} \left(H_{T}^{3} e^{-\overline{\alpha}p_{1}} \right)_{i-1,j} \begin{bmatrix} (p_{1})_{i} - (p_{1})_{i-1} \end{bmatrix} \right\} = (4.33)$$

53

- ---

-

$$\begin{split} &+ \frac{1}{v^{2}} \Big[\frac{(\Delta X)_{i-1}^{+} (\Delta X)_{i}}{(\Delta Y)_{j-1}} \Big] \Big[\Big(H_{T}^{3} e^{-\bar{\alpha}P_{1}} \Big)_{i,j}^{+} + \Big(H_{T}^{3} e^{-\bar{\alpha}P_{1}} \Big)_{i,j-1}^{-} \Big] \stackrel{\bullet}{\bullet}_{i,j-1}^{-} \Big] \\ &+ \Big\{ - \Big[(\Delta Y)_{j-1}^{+} (\Delta Y)_{j} \Big] \Big[\frac{(H_{T}^{3} e^{-\bar{\alpha}P_{1}})_{i+1,j}^{+} + (H_{T}^{3} e^{-\bar{\alpha}P_{1}})_{i,j}^{-} + (H_{T}^{3} e^{-\bar{\alpha}P_{1}})_{i+1,j}^{-} + (H_{T}^{3} e^{-\bar{\alpha}P_{1}})_{i+1,j}^{-} + (H_{T}^{3} e^{-\bar{\alpha}P_{1}})_{i+1,j}^{-} + (H_{T}^{3} e^{-\bar{\alpha}P_{1}})_{i,j}^{-} + (H_{T}^{3} e^{-\bar{\alpha}P_{1}})_{i+1,j}^{-} + (H_{T}^{3} e^{-\bar{\alpha}P_{1}})_{i+1,j}^{-} + (H_{T}^{3} e^{-\bar{\alpha}P_{1}})_{i+1,j}^{-} + (H_{T}^{3} e^{-\bar{\alpha}P_{1}})_{i,j}^{-} + (H_{T}^{3} e^{-\bar{\alpha}P_{1}})_{i+1,j}^{-} + (H_{T}^{3} e^{-\bar{\alpha}P_{1}})_{i+1,j}^{-} + (H_{T}^{3} e^{-\bar{\alpha}P_{1}})_{i+1,j}^{-} + (H_{T}^{3} e^{-\bar{\alpha}P_{1}})_{i+1,j}^{-} + (H_{T}^{3} e^{-\bar{\alpha}P_{1}})_{i+1,$$

 $= \left[(\Delta Y)_{j-1} + (\Delta Y)_{j} \right] \left(\left\{ \left[\left(H_{1}^{3} - H_{T}^{3} \right) e^{-\overline{\alpha}P_{1}} \right]_{i+1,j} \right] \right\}$

. . . .

2011 - P. 13

.....

$$+ \left[\left(H_{1}^{3} - H_{T}^{3} \right) e^{-\overline{\alpha}p_{1}} \right]_{i,j} \left[\frac{\left(p_{1}^{} \right)_{i+1}^{- \left(p_{1}^{} \right)_{i}}}{\left(\Delta X \right)_{i}} \right] - \left\{ \left[\left(H_{1}^{3} - H_{T}^{3} \right) e^{-\overline{\alpha}p_{1}} \right]_{i,j} \right]_{i,j}$$

$$+\left[\left(H_{1}^{3}-H_{T}^{3}\right)e^{-\overline{\alpha}p_{1}}\right]_{i-1,j}\left[\frac{\left(p_{1}\right)-\left(p_{1}\right)}{\left(\Delta^{X}\right)_{i-1}}\right]+C_{UD}\left(\overline{\delta}_{i+1,j}-\overline{\delta}_{i-1,j}\right)\right)$$
(4.33)

4.2.3 Method of Solution

In Eq. (4.33), $\Phi_{i-1,j}$, $\Phi_{i,j-1}$, $\Phi_{i,j}$, $\Phi_{i,j+1}$, $\Phi_{i+1,j}$ are the only unknowns. H₁ and p₁ considered as known are determined by the method outlined in [22] for the smooth lubricated contacts. Thus, Eq. (4.33) can be re-written in the following matrix form:

$$\begin{bmatrix} \mathbf{A}_{i} \end{bmatrix} \left\{ \Phi_{i-1} \right\} + \begin{bmatrix} \mathbf{B}_{i} \end{bmatrix} \left\{ \Phi_{i} \right\} + \begin{bmatrix} \mathbf{c}_{i} \end{bmatrix} \left\{ \Phi_{i+1} \right\} = \left\{ \mathbf{R}_{i} \right\}$$
(4.34)

where $[A_i]$ and $[c_i]$ are M x M diagonal square matrix; $[B_i]$ is a M x M tri-diagonal square matrix; $\{\Phi_{i-1}\}$, $\{\Phi_i\}$, $\{\Phi_{i+1}\}$ and $\{R_i\}$ are M x 1 column matrix; M and N are the number of grids used in the x and y directions.

In prescribing the boundary conditions for Eq. (4.34), it is necessary to assume that the effect of the asperity on the pressure distribution at $|X-x_3/b'| \ge 5$ or $|y/a'| \ge 5$ is negligible. This assumption justifies the prescription of the contact. Thus the boundary conditions are $\Phi = 0$ along $X-x_3/b' = \pm 5$ and along $y/a' = \pm 5$, or

$$\left\{ \Phi_{1} \right\} = \left\{ \Phi_{N} \right\} = 0$$

$$\Phi_{i,j} = 0 \quad \text{for } j = M$$

$$(4.35)$$

Along y=0 or j=1, the flow is considered to be symmetric, and this gives the following additional boundary condition,

$$\Phi_{i,j-1} = \Phi_{i,j+1}$$
 for j=1 (4.36)

Eq. (4.34) is solved numerically by the Columnwise Matrix Inversion Method [25].

4.3 DEFORMED ASPERITY ON THE STATIONARY SURFACE

In the case of simple sliding of a smooth surface against a stationary asperity, the non-dimensional Reynolds equation and elasticity equation are respectively

$$\frac{\mathrm{dP}}{\mathrm{dX}} = \left(\frac{48}{\mathrm{H}^2}\right) \, \mathrm{U} \, \frac{\mathrm{H}}{\mathrm{\mu}} \left(\frac{\mathrm{H}_{\mathrm{T}}^{-1}}{\mathrm{H}_{\mathrm{T}}^3}\right) \tag{4.37}$$

$$H_{\rm T} = H_1 + \frac{\delta}{h_1} \tag{4.38}$$

In this case, δ is a function of x only. Thus, $\partial \delta / \partial t = 0$. Therefore these coupled equations can be solved simultaneously using the same numerical scheme as described in [22]. The results are compared with those obtained by solving the perturbed Reynolds equation.

4.4 DISCUSSIONS OF RESULTS

The results of the perturbed pressure Φ are presented as $\boldsymbol{\Delta}_{_{\mathbf{S}}},$ which is defined as

$$\Delta_{s} = \left(\Phi_{\max} - \Phi_{\min} \right) \quad \text{at } j=1$$
(4.39)

where the position j=l is at the centerline of the asperity along the sliding direction. At this position, the effect of asperity on Φ is most severe. Since Φ is a function of P_{Hz} , G, h_0/R , \overline{b} , Y, c_1/h_0 , x_3 , and the slide to roll ratios, the effects of these variables on Δ_c are studied separately.

(1) Effect of ^h9/R

With $P_{Hz} = 0.003$, G = 100, $X_3 = -0.5$, $\overline{b} = 1/32$, $c_1/h_o = 0.3$, the results of h_o/R versus Δ_s are shown in Fig. (4.6). In the case of 2-D elastic asperity, the magnitude of Δ_s increases as h_o/R increases from 1.0 x 10^{-6} to about $h_o/R = 5 \times 10^{-6}$ (approximate) after which the magnitude of Δ_s decreases with further increase in h_o/R . This phenomenon is attributable to the local elastic effect of the asperity. In general, one might imagine that the effect of roughness on Φ should be much more severe as the ratio h_o/R becomes smaller. However, in an elastohydrodynamic contact,

the elastic effect becomes more significant as h_0/R becomes smaller. Thus, for a fixed ratio of c_1/h_0 , the elastic effect tends to flatten out the asperity and produces a trend which shows a decrease in Δ_s as h/R decreases. On the other hand, for the 3D rigid asperity analysis the elastic effect is not accounted; therefore, the magnitude of Δ_s consistently increases with a decrease in h_0/R .

Based on the results shown in Fig. 4.6, it appears that further comparisons between the 2D-elastic asperity and 3D-rigid asperity results are more meaningful for values of h_o/R greater than 1.0 x 10⁻⁵, since below this value no good agreement is expected.

(2) Effect of P_{Hz}

In hydrodynamic lubrication, with a rigid asperity, it is expected that the effect of asperity on Δ_{g} will become more severe as the load increases. However, for EHD contacts, this simple trend is only expected to be true if the load parameter P_{Hz} is sufficiently small. For very heavy loads, the elastic effect will iron out the asperity and this may decrease the magnitude of Δ_{g} . Such trend is demonstrated in Fig. (4.7). In the 2D-elastic asperity curve, the magnitude of Δ_{g} increases with P_{Hz} until P_{Hz} = 0.0045. Beyond this point, the magnitude of Δ_{g} flattens out and shows a tendency to decrease as load further increases. On the other hand, the 3D-rigid asperity curve shows a steady increase in Δ_{g} with P_{Hz} even for very heavy loads. The lack of agreement at these heavy loads is definitely due to the local elastic effect.

Referring to Fig. (4.8), with the ratio h_0/R changing from 10^{-5} to 10^{-6} , the discrepency between the 3D-rigid asperity results and the 2D-elastic asperity is greatly enlarged. In this regime of extremely thin film, the local elastic effect is so overwhelming that one cannot expect any validity of the 3D-rigid asperity perturbation analysis.

(3) Effect of G

The effect of pressure-viscosity dependence is examined by varying G from 100 to 500 for $P_{Hz} = 0.003$, $h_0/R = 10^{-5}$, $X_3 = -0.5$, $\overline{b} = 1/32$, and $c_1/h_0 = 0.3$. The reason for using a mild pressure-viscosity dependence is because recent studies in EHD traction has indicated that the effective pressure-viscosity coefficient within the Hertzian conjunction is only a small fraction of those measured under static equilibrium. For this reason, it is believed that values of G around 500 should not be unreasonable to represent the effective pressure-viscosity dependence in the conjunction. It can be readily seen in Fig. 4.9 that the magnitude of Δ_s increases with G for both 3D-rigid asperity and 2D-elastic asperity cases. However, the rigid-asperity model is slightly more influenced by G than the elastic asperity model. It is also interesting to note that the pressure perturbation Δ_s is depending exponentially on the pressure-viscosity coefficient. This is somewhat expected since pressure is directly portionally to the viscosity.

(4) Effect of X₃

With $P_{Hz} = .003$, $h_0/R = 10^{-5}$, G = 100, $\overline{b} = 1/32 c_1/b_0 = 0.3$, Fig. (4.10) shows the relation between Δ_s and X_3 , the location of the center of the asperity. Qualitatively, the effects on Δ_s due to rigid and elastic asperity have the same trend. The magnitude of Δ_s increases as X_3 moving toward the center of the contact. This trend is certainly expected, since a higher pressure level inevitably would lead to a stronger asperity interaction, hence higher pressure perturbation.

(5) Effect of \overline{b}

Fig. (4.11) shows the effect of \overline{b} , asperity size, on Δ_s for $P_{Hz} = 0.003$, h₀/R = 10⁻⁵, G = 100, $X_3 = -0.5$, $c_1/h_0 = 0.3$. From the two curves shown, a similar trend is seen to exist in the relation between Δ_s and the asperity size for both the rigid model and the elastic model. In both cases, Δ_s increases with the asperity size; however, the increase in Δ_s is much larger in the case of rigid asperity model than that in the elastic-asperity model.

(6) Effect of
$$c_1/h_o$$

With $P_{Hz} = .003$, $h_0/R = 10^{-5}$, G = 100, $X_3 = -0.5$, $\overline{b} = 1/32$, Fig. (4.12) shows the effect of asperity height, c_1/h_0 , on Δ_s for both 3D-rigid-asperity and 2D-elastic asperity models. It is readily seen that the two curves almost coincide with each other and the magnitude of Δ_s for both cases increases with c_1/h_0 . As c_1/h_0 becomes larger, the two curves begin to divert slightly.

(7) Effect of Y

As defined earlier, γ is the ratio of half of the asperity length to half of the asperity width, known as the ellipticity ratio of the asperity. As the 2D elastic asperity model only describes straight asperity ridges, Fig. (4.13) only shows the results for the 3D-rigid-asperity model. It is seen that the magnitude of Δ_s increases with γ as expected. When γ is less than 1, Δ_s increases sharply with a small increase in γ . As γ becomes larger the change of Δ_s becomes much more gentle. In fact, for $\gamma > 5$, the change of γ is practically negligible.

(8) Effect of Slide to Roll Ratio S

Fig. (4.14) shows the effect of S on Δ_s for $P_{Hz} = .003$, G = 100, $h_0/R = 10^{-5}$, X₃= -0.5, $\overline{b} = 1/32$ and $c_1/h_0 = 0.3$. For $\gamma = 1,2$ and 10, Δ_s decreases when S increases from -2.0 to 0.3, and then increases when S increases from 0.4 to 2.0. These trends show that between S = 0.3 and 0.4, the perturbed pressure Δ_s reaches a minimum. This phenomenon can be explained by Fig. (4.15) in which the perturbed pressures Φ around the asperity center are plotted for S = 0.3 and S = 0.4. In the case of S = 0.3, the value of Φ is mostly negative for x/b' \leq 0, and positive for x/b' \geq 0.
In the case of S = 0.4, the pressure exhibits an opposite trend. Thus, one would expect that between S = 0.3, and 0.4, the trend for Φ begins to reverse itself.

With P_{Hz} , h_0/R , X_3 , \overline{b} , c_1/h_0 and γ having the same values as those used for Fig. (4.14), Fig. (4.16) shows the effect of G on S. For G = 100 and 500, the qualitative trends of Δ_s versus S are the same. However, for G = 100, the minimum Δ_s is located between S = 0.3 and 0.4, whereas, for G = 500, the minimum Δ_s is shifted to a position between S = 0.1 and 0.2. Thus when the magnitude of G is increased, the minimum Δ_s is shifted toward the asperity center. This agrees very well with Lee and Cheng's [5] results in which the G value is equal to 3180, the perturbed pressure is negligibly small when S=0.

The pressure profiles obtained from the smooth film theory and the perturbation theory are compared in Fig. (4.17). Again, it shows that in the case of pure rolling (S=0), the perturbed pressure can be neglected. For |S| = 2, the perturbed pressure is relatively more important.

4.5 CONCLUSIONS

The perturbed pressure distribution around an ellipsoidal asperity tip within an EHD line contact can be calculated by solving the perturbed Reynolds equation based on the assumption of a rigid asperity. The magnitude of the perturbed pressure Δ_s , was found to be a function of the following dimensionless variables: The Hertzian pressure, P_{Hz} , the smooth film center film thickness h_0/R , the pressure viscosity parameter G, the position of the asperity center X_3 , the size of the asperity \overline{b} , the height of the asperity c_1/h_0 , the ellipticity ratio γ and the slide to roll ratio S. Δ_s was shown to increase with an increase of P_{Hz} , G, \overline{b} , c_1/h_0 , γ , or X_3 . However, it decreases as h_0/R increases. The manner in which Δ_s varies with S is dependent upon the pressure viscoisty parameter G. For a large G, Δ_s is at its minimum when S approaches zero (pure rolling condition); it increases as the magnitude of S increases. For a small G, the value of S at which Δ_s reaches a minimum shifts from zero to some small positive values.

A comparison was made between the results obtained by the perturbation analysis based on an ellipsoidal asperity for $\gamma = 10$ and S=2, and those obtained by the 2D asperity analysis. The comparison indicated that the perturbation analysis which ignored the local elastic effect yielded a very good approximation on the magnitude of the pressure fluctuation for certain cases, provided that $h_o/R \ge 10^{-5}$, $P_{Hz} \le 0.003$, $G \simeq 100$, $c_1/h_o \le 0.3$ and $\overline{b} \simeq 1/32$. Beyond these limitations, the perturbation analysis would over-estimate the pressure fluctuation.

Figure 4-2 A Single Ellipsoidal Rigid Asperity in an EHD Contact

Figure 4-3 One-Dimensional Grids for Smooth Contact

Figure 4-4 Two-Dimensional Grids for Rough Contact

.

Figure 4-5 Grid Spacing

Fig. 4-6 The Effect of the Nominal EHD Center Film Thickness, h. /R, on the Double Amplitue of the Perturbed Pressure, $\Delta_s = \overline{g}_{max} = \overline{g}_{min}$.

Fig. 4-10 The Effect of the Position of the Asperity Center, X_3 , on $\Delta_s = \Phi_{max} - \Phi_{min}$

Fig. 4-11 The Effect of the Asperity Size, $\overline{b} = b'/b$, on $\Delta_5 = \overline{b}_{max} - \overline{b}_{max}$

. ·

Fig. 4-13 The Effect of the Ellipticity Ratio, Y = a'/b', on $\Delta_s = \Phi_{max} - \Phi_{min}$

Fig. 4-14 The Effect of the Slide to Roll Ratio, $S = 2(u_1 - u_2)/(u_1 + u_2)$, on $\Delta_s = \sum_{max} - \sum_{m$

Fig. 4-16 The Effect of Slide to Roll Ratio, $S = 2(u_1 - u_2)/(u_1 + u_2)$, on $A_S = \sum_{max} \overline{\Delta}_{min}$ for a Three-dimensional Rigid Asperity with Pressure Viscosity Parameter, $\checkmark E' = 100$ and 500

L

Fig. 4-17 The Smooth-Film and the Perturbed Pressure Profiles for a Three-dimensional Rigid Asperity

CHAPTER V

THE EFFECT OF SINUSOIDAL WAVINESS ON THE PRESSURE

FLUCTUATION WITHIN THE HERTZIAN CONTACT

5.1 Introduction

In the previous chapter, the emphasis has been placed on the pressure perturbation around a single asperity. Such analysis with a single asperity is useful only in determining qualitatively the effects of asperity geometry, lubricant property, speed, and load upon the perturbed pressure amplitude; but it is not suitable in making quantitative predictions of pressure fluctuations within these contacts. In order to simulate the effect of continuous transverse ridges on the pressure fluctuation in an elastohydrodynamic contact, one may assume these ridges can be represented by a series of sinusoidal waviness.

In the case the surface roughness is located on the stationary surface only, the pressure and deformation profiles become time-independent, and one can modify the method described in [22] to solve for the compatible pressure and film thickness profiles. The analysis in this chapter is confined to seek the EHD performance at the inlet of a Hertzian contact with a sinusoidal roughness on the stationary surface.

5.2 Mathematical Formulation

The roughness model is assumed to be continuous transverse ridges which can be represented by a sine wave on the stationary side of the contact. Thus the asperity height δ , is a function of x only. Therefore one would obtain the relations

$$\overline{\delta} = c_1 / h_o \sin(2n \pi X)$$
(5.1)

$$\frac{\partial \overline{\delta}}{\partial t} = 0$$
(5.2)
where $\overline{\delta} = \delta/h_0$
 $n = \frac{1}{4} \times \frac{1}{b'/b}$ or $= \frac{1}{4} \frac{1}{5}$
 $X = x/b$
 $h = center film thickness of the smooth-film EHD contact$
 $c_1 = maximum$ asperity height
 $b' = half$ of the asperity width
 $b = half$ of the Hertzian contact width
 $x = coordinate$ axis along the sliding direction

• • = - •

. :*

The Reynolds equation and the elasticity equation are respectively

$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}\mathbf{X}} = \frac{48}{\mathrm{H}_{\odot}^{2}} \ \mathrm{U} \ \overline{\mu} \ \left(\frac{\mathrm{H}_{\mathrm{T}}^{-1}}{\mathrm{H}_{\mathrm{T}}^{3}}\right) \tag{5.3}$$

$$H_{T} = H_{1} + \overline{\delta}$$
 (5.4)

$$H_{1} = 1 + \frac{16 P_{Hz}^{2}}{H_{o}^{2}} \left(\frac{x^{2}}{2} - \frac{1}{\pi} \int_{-\infty}^{x} P(\bar{\xi}) \ln \frac{|\bar{\xi} - x|}{|\bar{\xi}|} d\bar{\xi} \right)$$
(5.5)

where
$$P = p/p_{Hz}^{-1}$$
, $H_o = h_o/R$, $R = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)^{-1}$,

$$U = \frac{\mu_{g}(u_{1} + u_{2})}{2E'R}, \quad H_{T} = h_{T}/h_{o}, \quad h_{T} = h_{1} + \delta, \quad \overline{\mu} = \frac{\mu}{\mu_{g}}$$
$$P_{Hz} = p_{Hz}/E', \quad E' = \left[\frac{1}{2}\left(\frac{1 - v_{1}^{2}}{E_{1}} + \frac{1 - v_{2}^{2}}{E_{2}}\right)\right]^{-1},$$

$$\overline{\xi} = \xi/b$$
, $G = \alpha E'$

Using the same numerical scheme stated in [22], P(X), $H_T(X)$ and U are solved for a given set of non-dimensional variables, namely nominal center film thickness h_o/R , Hertzian pressure P_{Hz} , pressure viscosity parameter G, maximum asperity height c_1/h_o and asperity width b'/b.

5.3 Discussions of Results

The effect of the pressure viscosity parameter G, the maximum asperity height c_1/h_o , the asperity width b'/b, the nominal center film thickness h_o/R , and the Hertzian pressure P_{Hz} , on the magnitude of the perturbed pressure, Δ_s , (which is defined as the difference between the maximum and the minimum pressure ripples deviated from the nominal smooth-film pressure profile), and the actual pressure distribution will be discussed in the following sections.

5.3.1 The Effect of Pressure Viscosity Parameter G

For $P_{Hz} = 0.003$, $h_o/R = 10^{-5}$, $c_1/h_o = 0.3$ and n = 2(b'/b = 1/8). Fig. (5.1) shows the effect of G on Δ_s . Similar to the results obtained for the single asperity ridge in an EHD contact, as discussed in Chapter IV, the magnitude of Δ_s increases with G for this case with a waviness surface profile. With the same set of values for P_{Hz} , h_o/R , c_1/h_o and b'/b, the effect of G on the pressure profile is shown in Fig. (5.2). As expected, the pressure fluctuation from the nominally smooth-film pressure profile is more pronounced when the value of G is larger and within the Hertzian contact zone. Since G represents a significant parameter, the effects of other parameters on Δ_s are compared in the subsequent sections for G = 100 and G = 1,000. An attempt was made for cases with G greater than 1,000, some of the solutions failed to converge.

5.3.2 The Effect of c1/h

The asperity interaction will be more severe when the amplitude of the asperity is larger. This phenomenon has been shown earlier in the single asperity-ridge analysis and is exhibited again here in Fig. (5.3) for the case of wavy surface roughness with $P_{Hz} = 0.003$, $h_0/R = 10^{-5}$, and n = 2(b'/b = 1/8). For both cases with G = 100 and 1,000, the magnitude of the perturbed pressure increases with the ratio c_1/h_0 . This phenomenon can also be observed in Fig. (5.4) with G = 100 and Fig. (5.5) with G = 1,000 in which the perturbed pressure profiles are shown.

5.3.3 The Effect of n

For $P_{Hz} = .003$, $h_o/R = 10^{-5}$ and $c_1/h_o = 0.3$, Fig. (5.6) shows the effect of n on the magnitude of the perturbed pressure Δ_s , for both G = 100 and 1,000. It seems that the two curves shown here do not have the same qualitative trend. However, it is believed that the further increase of n for the case with G = 1,000 will decrease the magnitude of Δ_s due to the elastic effect, so that the shape of the curve in this case will be similar to that with G = 100.

Let's recall that $n = 1/4 \times b/b'$. Thus increasing the value of n implies the closer the distance between the center of each individual asperity ridge and the center of the EHD contact. Therefore the effect of n actually consists of the effects of elastic deformation, the ratio b'/b and the distance between the individual asperity center and the contact center.

The perturbed pressure profiles for G = 100 and 1,000, due to the effect of n, are shown in Figs. (5.7) and (5.8) respectively. The results obtained for these two cases are the same qualitatively. For

G = 1,000 in which the elastic effect is more severe, the magnitude of the pressure ripple deviated from the nominally smooth-film pressure profile is much larger than those with G = 100.

5.3.4 /R Effect

The effect of h_o/R on the magnitude of the perturbed pressure Δ_s , for both G = 100 and 1,000 are shown in Fig. (5.9). In these examples, the values of P_{Hz} , c_1/h_o , n and b'/b are 0.003, 0.3, 2 and 1/8 respectively. It is observed that the magnitude of Δ_s increases with the ratio h_o/R . This increase is larger when the magnitude of G is larger.

In Chapter IV, it has been shown that the magnitude of Δ_s decreases with the increase of h_0/R when there is a single 3D rigid asperity within the contact zone. This opposing trend between the case of a single 3D rigid asperity and continuous elastic asperities can be explained in the following manner:

In the case of sinusoidal elastic asperities, the pressure amplitude is reduced by the local elastic deformation of the asperity. If c_1/h_o is held constant, the reduction in pressure due to local elastic deformation becomes much greater as h_o/R decreases, because at a smaller h_o/R , it requires only a very small pressure amplitude to flatten out the asperity. This phenomenon of elastic effect is best illustrated by Fig. (5.10) which shows the perturbed pressure and surface profiles for $h_o/R = 10^{-5}$, 5×10^{-6} and 10^{-6} respectively, for the sinusoidal elastic asperities with G = 100. The shapes of these perturbed pressure and surface profiles are consistent with one another. However, the smaller the h_o/R , the more the asperity being flattened out. For the case of a 3D rigid asperity, the effect of local elastic deformation is ignored, and thus the opposing trend is found.

83 ...

The perturbed pressure and surface profiles for the sinusoidal elastic asperities with G = 1,000 are shown in Fig. (5.11). The results for both G = 100 and 1,000 are shown to have the same characteristics and the magnitude of Δ_s is larger with G = 1,000 as expected.

5.3.5 P_{Hz} Effect

|| |

For $h_0/R = 10^{-5}$, $c_1/h_0 = 0.3$, n = 2 and b'/b = 1/8, the results of the magnitude of the perturbed pressure Δ_s , versus the nominal value of the maximum Hertzian pressure P_{Hz} , are shown in Fig. (5.12). It is readily seen that, for both cases with G = 100 and 1,000, the increase in P_{Hz} results in a decrease in Δ_s . This phenomenon is due to the reduction of the pressure amplitude caused by the local elastic deformation of the asperity. The larger the P_{Hz} , the easier the asperity being flattened, and thus the smaller the Δ_c .

The perturbed pressure profiles are shown in Figs. (5.13) and (5.14) respectively. The results for G = 100 and 1,000 are found to have the same trend qualitatively. As expected, the magnitude of Δ_s is larger in the case of G = 1,000. In addition the perturbed surface profiles for the case of G = 100 as shown in Fig. (5.13) illustrates the effect of the local elastic deformation of the asperity as explained previously. It tells that the larger the P_{Hz}, the more severe the asperity being deformed.

5.4 CONCLUSIONS

In the case of the simple sliding of a smooth surface against a stationary rough one, the magnitude of the pressure deviation from the nominally smooth-film profile and the perturbed pressure profile in the inlet of an elastohydrodynamic contact, can be determined quantitatively when the undeformed rough surface profile is given.

In the examples given in this chapter, the undeformed rough surface profile is simulated by continuous transverse ridges represented by a series of sinusoidal waviness. The effect of the following nondimensional parameters on the magnitude of the pressure fluctuation Δ_s and the perturbed pressure profile are obtained: the pressure viscosity parameter G, the maximum height of the asperity c_1/h_o , the number of wave cycles within the contact zone, n, (which in turn determines the width of the asperity, b'/b), the nominal smooth-film center film thickness h_o/R and the Hertzian pressure P_{Hz} .

The effects of G and c_1/h_o on the magnitude of Δ_s for this case with a waviness surface profile have the same characteristics compared to those obtained for the single asperity ridge in an EHD contact as presented in Chapter IV. Namely, the magnitude of Δ_s increases when the magnitude of G or c_1/h_o increases.

The results of A_g versus P_{Hz} and h /R are found to be consistent for both G = 100 and 1,000. The magnitude of A_g decreases as the magnitude of P_{Hz} or h_o/R becomes larger. These results for the waviness surface profile have the opposing trend when compared to those obtained by the 3D rigid asperity analysis. The reason for the opposing trend is due to the pressure reduction caused by the local elastic deformation of the asperity for the waviness surface profile, whereas the effect of local elastic deformation is ignored for a 3D rigid asperity.

The effect of the number of wave cycles within the contact zone on the magnitude of the perturbed pressure Δ_s is found to be very complicated. The local elastic effect, the ratio b'/b, and the distance between each individual asperity center and the contact center are important factors affecting the magnitude of Δ_s caused by changing the magnitude of n.

...

I

G

Fig. 5-1 The Effect of the Pressure Viscosity Parameter, G = dE', on the Double Amplitude of the Perturbed Pressure

on the Perturbed Pressure Profiles

Fig. 5-3 The Effect of the Asperity Height to Film Thickness Ratio, c_1/h_0 , on $\Delta_5 = \Phi_{max} - \Phi_{min}$.

- --

Fig. 5-6 The Effect of the Number of Wave Cycles, n, on $\Delta_5 = \oint_{max} - \oint_{min}$.

Parameter, $\checkmark E' = 100$

Fig. 5-8 The Effect of n, on the Perturbed Pressure Profiles for Pressure Viscosity Parameter, dE' = 1000

Fig. 5-9 The Effect of the Dimensionless Center Film Thickness, h_o/R , on $\Delta_s : \Phi_{max} - \Phi_m i_n$.

.g. 5-10 The Effect of the Dimensionless Center Film Thickness, h_o/R , on the Perturbed Pressure Profiles for dE' = 100

Fig. 5-12 The Effect of the Normalized Hertzian Pressure, $P_{Hz} = p_{Hz}/E'$, on $\Delta_5 = \Phi_{max} - \Phi_{min}$.

on the Perturbed Pressure and Film Profiles for d E' = 100

REFERENCES

- Citron, S. J., "Slow Viscous Flow Between Rotating Concentric Infinite Cylinder With Axial Roughness," K. Appl. Mech., Trans. ASME, Vol. 29, Ser. E (1962), p. 188.
- Burton, R. A., "Effect of Two-Dimensional, Sinusoidal Roughness on the Load Support Characteristics of a Lubricant Film," J. Basic Eng., Trans. ASME, Ser. D, 85, (1963), p. 258.
- 3. Davies, M. G., "The Generation of Pressure Between Rough, Fluid Lubricated, Moving, Deformable Surface," Lub. Engineering, 19, (1963), p. 246.
- 4. Fowles, P. E., "The Application of Elastohydrodynamic Lubrication Theory to Individual Asperity-Asperity Collisions," Trans, ASME, J. of Lub. Tech., (July 1969), p. 464.
- 5. Lee, K., and Cheng, H. S., "The Effect of Surface Asperity on the Elastohydrodynamic Lubrication," NASA Report No. CR-2195, (February 1973).
- 6. Tseng, S. T., and Saibel, E., "Surface Roughness Effect on Slider Lubrication," ASLE Trans, 10, (1967), p. 334.
- Christensen, H., "Stochastic Models for Hydrodynamic Lubrication of Rough Surfaces," Proc. Instn. Mech. Engrs., Tribology Group, Vol. 184, Pt. 1, 55, (1969-70), p. 1013.
- Christensen, H., "A Theory of Mixed Lubrication," Proc. Instn. Mech. Engrs., Tribology Group, Vol. 186, 41, (1972), p. 421.
- Christensen, H., and Tonder, K., "The Hydrodynamic Lubrication of Rough Bearing Surfaces of Finite Width," ASME-ASLE Lub. Conf., Paper No. 70-Lub-7, Cincinnati, Ohio, Oct. 12-15, 1970.
- Tallian, T. E., "The Theory of Partial Elastohydrodynamic Contacts," Wear, 21, (1972), p. 49.
- Johnson, K. L., Greenwood, J. A., and Poon, S. Y., "A Simple Theory of Asperity Contact in Elastohydrodynamic Lubrication," Wear, 19, (1972), p. 91.
- 12. Thompson, R. A., and Bocchi, W., "A Model for Asperity Load Sharing in Lubricated Contacts," ASLE, 71LC-9, p. 67.
- Greenwood, J. A., and Tripp, J. H., "The Contact of Two Nominally Flat Rough Surfaces," Proc. Instn. Mech. Engrs., Tribology Group, Vol. 135, 48/71, (1970-71), p. 625.
- 14. Dowson, D., and Higginson, G. R., "Elastohydrodynamic Lubrication," Pergamon Press, New York, 1966.
- 15. Meyer, P. L., "Introductory Probability and Statistical Application," Addison-Wesley Publishing Co., 1965.

- Christensen, H., and Tonder, K., "The Hydrodynamic Lubrication of Rough Journal Bearings," Trans, ASME, J. of Lub. Tech., (April 1973), p. 166.
- Tonder, K., and Christensen, H., "Waviness and Roughness in Hydrodynamic Lubrication," Proc. Instn. Mech. Engrs., Tribology Group, Vol. 186, 72/72, (1972), p. 807.
- Rhow, S. K., and Elrod, H. G., "The Effects on Bearing Load-Carrying Capacity of Two-Sided Straited Roughness," Trans. ASME, J. of Lub. Tech., Paper No. 73-Lub-42.
- 19. Tallian, T. E., "Pressure and Traction Rippling in Elastohydrodynamic Contact of Rough Surfaces," Trans. ASME, J. of Lub. Tech., Paper No. 73-Lub-18.
- Greenwood, J. A., and Williamson, J. B. P., "Contact of Nominally Flat Surfaces," Proc. R. Soc. (1966), p. 295 (Series A), 300.
- Grubin, A. N., and Vinogradova, I. E., "Central Scientific Research Institute for Technology and Mechanical Engineering, Book No. 30," Moscow, 1949, (D.S.I.R. Translation No. 337)
- 22. Cheng, H. S., " Isothermal Elastohydrodynamic Theory for the Full Range of Pressure-Viscosity Coefficient," NASA CR-1929 (September 1971).
- Cheng, H. S., and Sternlicht, B., " A Numerical Solution for the Pressure, Temperature, Film Thickness Between Two Infinitely Long Lubricated Rolling and Sliding Cylinders, Under Heavy Loads," ASME Transaction, Journal of Basic Engineering, Vol.87, 1965, pp.695-707.
- 24. Dowson, D., and Whitaker, A. V., "A Numerical Procedure for the Solution of Elastohydrodynamic Problem of Rolling and Sliding Contacts Lubricated by Newtonian Fluid," Proceeding of the Institute of Mechanical Engineers, Vol. 180, Part 3, Series B, 1965, pp. 57-71.
- Castelli, V., and Pirvics, J., "Equilibrium Characteristics of Axial Groove Gas Lubricated Bearings," Trans. ASME, J. of Lub. Tech., Vol. 89, Ser. F, No. 2 (April 1967), pp. 177-196.

APPENDIX A

Justification of M as a Random Quantity of Zero (or Negligible) Variance When $\frac{\partial h}{\partial t}$ is assumed to be zero, Eq. (2.6) becomes

$$\frac{\partial M}{\partial x} = 0 \tag{A.1}$$

where M is defined by Eqs. (2.7) and (2.10). Hence M is a constant of x. However, this constant can be a stochastic quantity in the time domain.

EHD Contact

Re-arrange Eq. (2.10) to obtain

$$\frac{1}{12\mu_{s}} \frac{\partial q}{\partial x} = \frac{M}{h_{T}^{3}} - \frac{u_{1}^{2} + u_{2}^{2}}{2} \frac{h}{h_{T}^{3}} + \frac{u_{1}^{2} - u_{2}}{2} \left(\frac{\delta_{1}^{2} - \delta_{2}}{h_{T}^{3}}\right)$$
(A.2)

At $x = -\infty$, the asperity effect is negligible so that q = p = 0. However, the pressure p, must reach a significant fraction of the Hertzian maximum at x = -1, such that $e^{-\alpha p} \ll 1$, i.e. $q \approx \frac{1}{\alpha}$. Therefore q at x = -1, can be assumed to be a stochastic variable with extremely small variance. Integrate Eq. (A.2) from $x = -\infty$ to -1, and obtain

$$\frac{1}{12\mu_{s}\alpha} = \int_{-\infty}^{-1} \frac{M}{h_{T}^{3}} dx - \frac{u_{1} + u_{2}}{2} \int_{-\infty}^{-1} \frac{h}{h_{T}^{3}} dx + \frac{u_{1} - u_{2}}{2} \int_{-\infty}^{-1} \frac{\delta_{1} - \delta_{2}}{h_{T}^{3}} dx$$
(A.3)

As M is a constant of x, Eq. (A.3) can be re-written as

$$M = \frac{\frac{1}{12\mu_{s}} \frac{1}{\alpha} + \frac{u_{1}}{2} \int_{-\infty}^{-1} \frac{h - \delta_{1} + \delta_{2}}{h_{T}^{3}} dx + \frac{u_{2}}{2} \int_{-\infty}^{-1} \frac{h + \delta_{1} - \delta_{2}}{h_{T}^{3}} dx}{\int_{-\infty}^{-1} \frac{1}{h_{T}^{3}} dx}$$
(A.4)

When there are enough asperities within the contact zone, the integrals in Eq. (A.4)

are independent of the precise arrangement of the roughness and also independent on time. Therefore M can be assumed to be a stochastic quantity with zero (or negligible) variance.

Rigid Rollers

Eq. (2.7) can be re-written as

$$\frac{1}{12\mu} \frac{dp}{dx} = \frac{M}{h_T^3} - \frac{u_1 + u_2}{2} \frac{h}{h_T^3} + \frac{u_1 - u_2}{2} \left(\frac{\delta_1 - \delta_2}{h_T^3}\right)$$
(A.5)

Integrate Eq. (A.5) with the boundary conditions:

$$p = 0 \qquad \text{at} \quad x = -\infty$$

$$p = \frac{dp}{dx} = 0 \qquad \text{at} \quad x = x^*$$
(A.6)

one obtains

$$M = \frac{\frac{u_1}{2} \int_{-\infty}^{x} \frac{h - \delta_1 + \delta_2}{h_T^3} dx + \frac{u_2}{2} \int_{-\infty}^{x} \frac{h + \delta_1 - \delta_2}{h_T^3} dx}{\int_{-\infty}^{x} \frac{1}{h_T^3} dx}$$
(A.7)

Even though x^* is a random quantity, its deviation from the mean is expected to be of the same order of the wavelength of the asperity, and is small compared with the size of the bearings. The integrals in Eq. (A.7) are only slightly affected by x^* , and therefore can be considered as stochastic quantities with negligible variances. Thus, M is also a stochastic quantity with negligible variance.

Infinitely-Wide Slider

Integrate Eq. (A.5) with the boundary conditions:

$$p = 0$$
 at $x = 0$ and L (A.8)

one obtains

$$M = \frac{\frac{u_1}{2} \int_{0}^{L} \frac{h - \delta_1 + \delta_2}{h_T^3} dx}{\int_{0}^{L} \frac{1}{h_T^3} dx}$$
(A.9)

Following the above argument, M is also a stochastic quantity with zero (or negligible) variance.

APPENDIX B

FORTRAN IV LISTINGS OF COMPUTER PROGRAMS

- PROGRAM ROLSLIP: This program which is used in Chapters II and III, is to calculate the integrated pressure at the inlet of an EHD contact with random surface roughness by the stochastic approach.
- PROGRAM RIGROL7: This program which is used in Chapter II, is to compute the load of a rigid roller bearing with random surface roughness by stochastic approach.
- 3. PROGRAM SLIDER5: This program which is used in Chapter II, is to compute the load of an infinitely-wide slider bearing with random surface roughness by stochastic approach.
- 4. PROGRAM DAPOL2: This program which is used in Chapters II and III, is to generate data for functions G_2 , G_4 and G_5 for the corresponding σ/h_o . These data are input to programs ROLSLIP, RIGROL7 and SLIDER5. The data for functions G_2 , G_4 and G_5 in the case when the asperity height distribution functions are in the form of polynominal function as well as sinusoidal function are tabulated respectively.
- 5. PROGRAM ROLWAV1: This program which is used in Chapter III, is to compute the integrated pressure at the inlet of an EHD contact with waviness surface roughness by the deterministic approach.
- PROGRAM ASPERITY: This program which is used in Chapter IV, is to compute the perturbed pressure distribution due to a single 3D-Rigid Asperity.

106

· . . · .

```
PROGRAM ROLSLIP(INPUT,OUTFUT)
 THIS PROGRAM IS TO CALCULATE THE INTEGRATED PRESSURE AT THE INLET OF AN EHD
С
    CONTACT BY THE STOCHASTIC APPROACH
С
  THIS PROGRAM CONSISTS OF FIVE SUBROUTINES
C
                         IS TO CALCULATE THE INLET INTEGRATED PRESSURE OF AN
  1 - SUBPOUTINE GRUBIN
С
    EHD CONTACT BY SMOOTH FILM GRUBIN THEORY
C
С
  2 -
     SUBROUTINE CONS
                        IS TO CALCULATE THE CONSTANT C FOR VARIOUS DSIG DATA
  3 - SUBROUTINE FUNC
                        IS TO EVALUATE FUNCTIONS FI AND F2 FOR DIFFERENT S/H
С
                         IS TO SET UP FUNCTIONS F1 AND F2 IN THE FORM OF ARRAYS
С
  4 - SUBROUTINE TABLE
  5 - SUBROUTINE INT
С
                       IS AN INTEGRATION ROUTINE TO CALCULATE THE INTEGRATED
    PRESSURES WLOADI, WLOAD2, AND WLUAD3
С
С
  THE PRESSURE IS INTEGRARED FROM X=-5 TO X=-1.
С
                                                   BECAUSE OF THE NONLINEAR
    PROPERTY OF THE INTEGRAND NEAR X=-1, THE INTERVAL OF INTEGRATION IS DIVIDED
С
С
    INTO TWO PARTS, I.E. FROM x=-5 TO x=-2, AND FROM x=-2 TO x=-1.
С
  DATA CARD NO. 1
C
С
    KF = TOTAL NO. OF GRIDS
С
    KM = GRIU NC. AT X=-2
С
    NSIG = NU. OF DSIG(1) DATA
C
    NHO = NUMBER OF HO DATA
С
  DATA CARD NO. 2
    W = LOAD PER UNIT WIDTH
C
    SLIP = SLIPPAGE COEFFICIENT
C
    PI = 3.141593
С
C
  DATA CARD NO. 3
    USIG(I) = DATA FOR
                         SIGMA/HO
C
С
   DATA CARD NO. 4
    DHO(I) = VARIOUS HO
С
                          DATA
  DATA CARD NO. 5
С
    THESE DATA ARE THE OUTPUT FROM PROGRAM SUCHAS PROGRAM DATPOL2 WHICH EVALUATE
С
C
      THE INTEGRAL OF ( DISTRIBUTION FUNCTION*HSS)/(1.+SH*HSS)**3 AND
С
      (DISTRIBUTION FUNCTION/(1.+SH*HSS)**3
С
    THIS DISTRIBUTION FUNCTION CAN BE POLYNOMIAL .GAUSSIAN, SINUSOIDAL OR ANY
С
      OTHER FUNCTION
С
    USH(I) = THE ABSCISSA RANGING FROM 0 TO 0.333
С
    UV(I) = THE NONDIMENSIONAL DSH(I)
С
    DG4(I) = THE INTEGRAL OF 35/96*(1.-HSS**2/9)**3/(1+SH*HSS)**3*HSS
С
      IN THE CASE OF POLYNOMIAL DISTRIBUTION
    DG2(I) = THE INTEGRAL OF 35/96*(1.-HSS**2/9)**3/(1+SH*HSS)**3
С
      IN THE CASE OF POLYNOMIAL DISTRIBUTION
С
С
    DG5(I) = DG2(I) / \cup G4(I)
С
  THE OUTPUT OF THIS PROGRAM WERUB, WLOADI, WLOADZ, WLOAD3, WI, W2, W3
С
                                                                           ARE ALL
С
    INTEGRATED PRESSURE AT THE INLET
С
С
      COMMON WLCAD1(14) + WLUAD2(14) + WLOAD3(14) + DSIG(14) + T1(14, 301) +
     1 T2(14+301),XX(301)+KK+KF+KM+NF+H0+W+P1+S+X+F1+F2+C+SLIP+
     2 G(301) +F+WGRUB(14) +DG4(201) +DG2(201)
      DIMENSION Q1(14+301)+G2(14+301)+Q3(14+301)+DSH(201),DV(201) +
     C DG5(201), DHO(14), W1(14), W2(14), W3(14)
```

С

```
PRINT 1
      READ C.KF.KM.NSIG.NHO
             3.W.SLIP.PI
      READ
      READ J, (DSIG(I) + I=1+NSIC)
            3, (DHO(1), I=1, NHO)
       READ
       DO 100 I=1,201
100
       READ 5,DSH(I) + DV(I) + DG4(I) + DG5(I) + DG2(I)
      PRINT 51
      PRINT 2, KF, KM, NSIG, NHO
      PRINT 52
      PRINT 4, W+SLIP+PI
      PRINT 53
      PRINT 4+(DSIG(1)+I=1+NSIG)
      PHINT 54
      PRINT 4, (DHO(I), I=1, NHO)
      XX(1) = -5.
      DO 98
             I=5+KW
      XX(I) = XX(I-1) + 0.015
98
      KMM = KM + 1
      D0 99 I=KMM+KF
99
      XX(I) = XX(I-1) + 0.01
      PRINT 56
      00 97
             I=1,NH0
      IGRUB = I
      HO = DHO(I)
      CALL GRUBIN(IGRUB)
97
      PRINT 7, I, DHO(1), WGRUB(1)
      DO 101 LL =1,NSIG
      PRINT 55,DSIG(LL)
      PRINT 6
      CALL CUNS(LL)
      DO 103 I=1+NHO
      KK = I
      HO = DHO(KK)
      S = DSIG(LL) + HO
      CALL TABLE
      CALL INT
      W1(I) = WLOAD1(I), / WGRUE(I)
      W2(I) = WLOAD2(I) / WGRUE(I)
      w3(I) = wLOAD3(I) / wGRUB(I)
      PRINT 7,I+DHO(1)+WLOAD1(I)+WLOAD2(I),WLOAD3(I)+W1(I),W2(I)+W3(I) +
     7 WGRUB(I)
103
      CONTINUE
101
      CONTINUE
С
1
      FORMAT(1H1)
2
      FORMAT (2015)
3
      FORMAT(SF10.8)
4
      FORMAT(9(2X,E13.6))
5
      FORMAT(F10.6,F10.2,3F20.10)
6
      FORMAT(/3X,414,6X,4DH04,5X,4WLUAD14,9X,4WLUAD24,9X,4WLOAD34,13X,
     6 #W1#,13X,#W2#,13X,#W3#,10X,#WGRUB#)
```

مرد معرفهم ا

7	FORMAT(15+8(2X+E13.6))
51	FORMAT(/3x,*KF*,3x,*KM*,x,*NSIG*,2x,*NHO*)
52	FORMAT(/7X,***11X,*SL1P*,13X,*PI*)
53	FURMAI(/6X+*DSIG(I)*)
54	FORMAT(/6X,*DHO(I)*)
55	FORMAI(///6X,*USIG=*•F10.6/)
90	FURMAT(//3X+*I*+6X+*DHU*+5X+*WGRUB*)
	STOP
	SUBROUTINE GRUBIN (IGRUB)
	CUMMON WLUADI(14), WLUAD2(14), WLUAD3(14), DSIG(14), T1(14,301),
	1 12(14,301) • XX(301) • KK • KF • KM, NF • HO • W • P1 • S • X • F1 • F2 • C • SL IP •
	2 - C(301) + F + WGRUB(14) + DG4(201) + DG2(201)
c	DIMENSION F3(301)
C	
	H-HU+4.*W/PI*(ABS(X)*SUR)(ABS((-X)**2-1.U))-ALOG(ABS(X)+SQRT(ABS
400	I ((=/)""(=I.0)///) F3(/) - (U_U0) / U003
	KWK = KW - 3
	DC = 401 + = 1 + KMK + 2
401	WGPUB(IGPUB)=WGPUB(IGPUB)+ 0.015/3.*(F3(J)+4.*F3(J+1)+F3(J+2))
	KFF = NF - 2
	DO 402 J=KM.KFF.2
402	WGRUB(IGRUB)=WGRUB(IGRUB)+ 0.01 /3.*(F3(J)+4.*F3(J+1)+F3(J+2))
	RETURN
	FND
	SUBROUTINE CONSILL)
	COMMON wLCAD1(14).wL0AD2(14),wL0AD3(14),DSIG(14),T1(14,301),
	1 T2(14+301)+Xx(301)+KK+KF+KM+NF+H0+W+PI+S+X+F1+F2+C+SLIP+
	2 G(301)+F+WGRU3(14)+DG4(201)+DG2(201)
С	
	V = 1. + DSIG(LL) / 0.001665
	MV = V
	VM = MV
	G2 = (DG2(MV+1) - DG2(MV)) * (V-VM) + DG2(MV)
	$G4 = (\Box G4(MV+1) - DG4(MV)) * (V-VM) + DG4(MV)$
	C = G4 / G2
	RETURN
	END
	SUBRUUTINE TABLE
	(0MMUN WLUADI(14) + WLUADZ(14) + WLUADJ(14) + DS16(14) + 11(14+301) + 11(14+3001) + 11(14+3001) + 11(14+3001) + 11(14+3001) + 11(14+3001) + 11(14+3001) + 11(14+3001) + 11(14+3001) + 11(14+3001) + 11(14+30000) + 11(14+30000) + 11(14+30000) + 11(14+30000) + 11(14+30000) + 11(14+30000) + 11(14+30000) + 11(14+30000) + 11(14+30000) + 11(14+30000) + 11(14+30000) + 11(14+300000) + 11(14+300000) + 11(14+300000) + 11(14+300000) + 11(14+300000) + 11(14+300000) + 11(14+300000) + 11(14+300000) + 11(14+3000000) + 11(14+3000000) + 11(14+30000000) + 11(14+3000000000000000000000000000000000000
	1 [(149301) +XX\301) +KK+KF+KM9NF+M09W9P1+3+K9F19F2+U93L1P9
	C 01301/9F9W0K0D114/90041201/90921201/
	UU ZUI U-19NF X XX(I)
	TI (KK. 1) - FI
	$\frac{1}{1} \frac{1}{1} \frac{1}$
201	
LV1	RETURN
	END
	- ·

-	SUBROUTINE FUNC
C	$C_{CMMON} = \{(C, C, D, 1, L, u), (A, D, 2, L, 2, u), (A, D, 2, L, 2, u), (B, C, 1, 2, 1,$
١	1 T2(14,30)},XX(30)},KK,KF,KM,NF,H0,W,PI,S,X,F],F2,C,S(10,
	2 G(301) • F • WGRUB(14) • DG4(201) • DG2(201)
с	
•	H=H0+4.*W/PI*(ABS(X)*SQRT(ABS((-X)**2-1.0))-ALOG(ABS(X)+SQRT(ABS
	1 ((-x)**2-1.0))))
	SH = S / H
	V = 1. + S/H/0.001665
	MV = V
	VM = MV
	G2 = (JG2(MV+1) - DG2(MV)) * (V-VM) + DG2(MV)
	G4 = (UG4(MV+1) - DG4(MV)) * (V-VM) + DG4(MV)
	$F1 = (n-H_0)/H^{**}3^{*}62$
	$F_{Z} = (64 - (*62) / H**3*3)$
	SUBDOUT INF INT
C	305K00 / INL - INI
U	COMMON WECAD1(14) + WEOAD2(14) + WEOAD3(14) + DSIG(14) + T1(14+301) +
	1 T2(14,301),XX(301),KK,KF,KM,NF,HO,W,PI,S,X,F1,F2,C,SLIP,
	2 G(301) + F + WGRUD(14) + DG4(201) + DG2(201)
	DIMENSION P1(14), +2(14)
С	
	P1(KK) = 0.
	P2(KK) = 0.
	KMK = KM-2
	DO 301 J=1,KMK,2
	P1(KK) = P1(KK) + 0.015/3.*(T1(KK.J)+4.*T1(KK.J+1)+T1(KK.J+2))
	P2(KK) = P2(KK) + 0.015/3.*(T2(KK,J)+4.*T2(KK,J+1)+T2(KK,J+2))
301	CONTINUE
	KFF = KF - 2
	$UU = 302 = J = KM_{0}KFF_{0}Z$
	P((RR) = P((RR) + 0.01/3.*(1)((R+0)+4.*(1)((R+0)+1)+1)((R+0)+2)) $P((RR) = P((RR) + 0.01/3.*(1)((R+0)+4.*(1)((R+0)+1))+1)((R+0)+2))$
302	CONTINUE
202	W(0AD)(KK) = PL(KK) - P2(KK) + SLIP
	WI (AD2(KK) = PI(KK) + P2(KK) + SLIP
	WLOAD3(KK) = P1(KK)
С	
	RETURN
	END
00000	600000000000000 END OF FECORD
30	1 201 9 6
0.0	0003 0.1 J.14159265
0.05	b 0.1 0.15 0.2 0.25 0.3 0.31 0.3
0.3	
0.04	0001 0.00002 0.00003 0.00005 0.00007 0.00009
	UATA FUR USHTIJA UVIJA UGATIJA 462(1)A UGDTIJARC UMITICU UDDDUDDDUDDUDDUDCEUD CE INFUNITO:
00000	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

PROGRAM RIGROL7(INPUT,OUTPUT)

```
С
  THIS PROGRAM IS TO COMPUTE THE LOAD OF A RIGID ROLLER BEARING BY STOCHASTIC
 С
 С
     APPROACH
 С
 C THIS PROGRAM CONSISTS OF 4 SUBROUTINES
С
                          IS TO SET UP A PRESSURE ARRAY CORRESPONDING TO THE GRID
  1 - SUBROUTINE TABLE
     POSITIONS
C
 С
  2 - SUBROUTINE CONS
                         IS TO CALCULATE THE CONSTANT
                                                        C
 C 3 - SUBROUTINE FUNC
                         IS TO EVALUATE FUNCTIONS F1, F2, AND
                                                                  F
C 4 - SUBROUTINE INT IS A SIMPSON INTEGRATION ROUTINE TO COMPUTE THE LOAD W(KK)
С
  THE OUTPUT OF THIS PROGRAM IS w(I) AND THE CORRESPONDING DSIG(I)
С
  DATA CARD NO. 1
С
    NI = NO. OF UNIFORM GRIDS FROM
С
                                     X=-1
                                           TO X=0
    NF = NO. OF UNIFURM GRIDS FROM
                                     AX=X OT 0=X
С
  KO = NI + I
С
C KF = NF + I
    ND = NO. OF DSIG(I)
                          DATA
С
C DATA CARD NO. 2
С
  XA(1) • XA(2) INITIAL VALUES ASSIGNED TO XA(I) • ASSUMING THAT THE PRESSURE AT
С
     THIS LOCATION IS 0.
С
    HO = CENTER FILM THICKNESS
Ċ
     SLIP = SLIPPAGE COEFFICIENT
С
    PI = 3.141593
  DATA CARD NC. 3
С
     DSIG(I) = SIGMA / HO , DATA
С
С
  DATA CARD NO. 4
     THESE DATA ARE THE OUTPUT FROM PROGRAM SUCHAS PROGRAM DATPOL2 WHICH EVALUATE
C
С
       THE INTEGRAL OF
                         ( DISTRIBUTION FUNCTION*HSS)/(1.+SH*HSS)**3 AND
       (DISTRIBUTION FUNCTION/(1.+SH*HSS)**3
С
С
     THIS DISTRIBUTION FUNCTION CAN BE POLYNOMIAL ,GAUSSIAN, SINUSOIDAL OR ANY
С
       OTHER FUNCTION
С
    DSH(I) = THE ABSCISSA RANGING FROM 0 TO 0.333
    UV(I) = THE NONDIMENSIONAL DSH(1)
С
    UG4(I) = THE INTEGRAL OF 35/96*(1.-HSS**2/9)**3/(1+SH*HSS)**3*HSS
С
С
       IN THE CASE OF
                       POLYNOMIAL DISTRIBUTION
С
    DG2(I) = THE INTEGRAL OF 35/96*(1.-HSS**2/9)**3/(1+SH*HSS)**3
      IN THE CASE OF POLYNOMIAL DISTRIBUTION
С
С
    DG5(I) = DG2(I)/DG4(I)
·C
      COMMON XX(121) + P(20,121) + CSIG(10) + W(10) + H0 + HA + K0 + KF + K + KK + S0 + SF + X +
     C F,F1.F2,DELA.PI,C,DG4(201),DG2(201),SLIP
      DIMENSION XA(21), DSH(201), DV(201), DG5(201), XB(10), IK(10)
С
      PRINT 1
      READ
             2,NI,NF,KO,KF,ND
             4•XA(1)•XA(2)•H0•SLIP•PI
      READ
             4.(DSIG(1).I=1.ND)
      READ
      DO 95 i=1.201
            5.DSH(I).DV(I).DG4(I).DG5(I).DG2(I)
95
      READ
       PRINT 51
      PRINT 2.NI.NF.KO.KF.ND
```

```
PRINT 52
      PRINT 9,XA(1),XA(2),HO,SLIP,PI
      PRINT 53
      PRINT y, (DSIG(1), I=1, ND)
      S0 = 1./NI
      D0 99 J=1+K0
99
      XX(J) = -1_{*} + (J-1)*SO
      DO 100 II=1,ND
      KK = 11
      PRINT 0.II.DSIG(II)
      XA(1) = 0.01
      XA(2) = 0.02
      DO 101 I=1,2
      K = I
      HA = 1. + 0.54XA(1) + 2/HC
      SF = XA(I) / NF
      PRINT 54
      PRINT J.I.XA(I) .HA.SO.SF
      CALL CUNS
      CALL TABLE
101
      CONTINUE
      XA(3) = (XA(1)*P(2+KF) - XA(2)*P(1+KF)) / (P(2+KF) - P(1+KF))
      DO 102 I=3,20
      \kappa = I
      HA = 1. + 0.5 * XA(I) * 2/HC
      SF = XA(I) / NF
      PRINT 54
      PRINT 3.1.XA(1), HA.SO, SF
      CALL CUNS
      CALL TABLE
      DIFF = P(I \cdot KF) / P(I \cdot KO)
      IF (AB5(DIFF) .LE. 0.001 ) GO TO 103
      PRUD = P(I_{*}KF)^{*}P(I-1_{*}KF)
      IF (PRUD .GE. U.) GC TO 104
      XA(I+1)= (XA(I-1)*P(I,KF)-XA(I)*P(I-1,KF))/(P(I,KF)-P(I-1,KF))
      GO TO 102
104
      CONTINUE
      P(1-1,KF) = P(1-2,KF)
      XA(I-1) = XA(I-2)
      XA(I+1)= (XA(I-1)*P(I,KF)-XA(I)*P(I-1,KF))/(P(I,KF)-P(I-1,KF))
      CONTINUE
102
103
      CONTINUE
      CALL INT
      XB(II) = XA(K)
      IK(II) = K
100
      CONTINUE
      PPINT 7
      DO 105 II=1.ND
      PRINT &, II, DSIG(II), W(II), XB(II), IK(II)
105
С
1
      FORMAT(1H1)
2
      FORMAT (2015)
3
      FORMAT(15+8(2X+E13.6))
4
      FORMAT(8F10.8)
```

```
FORMAT(F10.6,F10.2,3F20.1G)
5
       FORMAT(/////x+*II=*,I4,1CX,*USIG=*,F8.4//)
6
       FORMAT(////3X+*1I*+10X+*CSIG*+16X+*W*+19X+*XA*+12X+*K*/)
7
       FORMAT(15,3(3X,E17.10),3X,12)
8
       FORMAT(9(2x+E13+6))
9
       FORMAT(/3×+*NI*+3×+*NF*+3×+*KO*+3×+*KF*+3×+*ND*)
51
       FCRMAT(/6x,*x4(1)*,10x,*x4(2)*,13x,*HO*,11x,*SLIP*,13x,*PI*)
52
53
       FORMAT(/6X, #DSIG(I)*)
       FORMAT(/4X,*I*,6X,*XA(I)*,13X,*HA*,13X,*SO*,13X,*SF*)
54
С
       RETURN
       END
       SUBROUTINE TABLE
С
       COMMON XX(121) + P(20+121) + CSIG(10) + W(10) + H0 + HA + K0 + KF + K + KK + S0 + SF + X +
     C F,F1,F2,DELA,PI,C,DG4(201),DG2(201),SLIP
       DIMENSION E(121)
С
       FRINT 21
       \overline{J} = 1
       X = X \times \{J\}
       CALL FUNC
       E(J) = F
       P(K \cdot J) = 0.
       DO 201 J=C,KO
       X = XX(J)
       CALL RUNC
       E(J) = F
       X = (X \land (J-1) + X \land (J)) / 2.
       CALL FUNC
       P(K,J) = P(K,J-1) + SO/2./3.*(E(J-1)+4.*F+E(J))
201
      CONTINUE
       KO1 = KO + 1
      D0 202 J=K01.KF
       XX(J) = XX(J-1) + SF
       X = XX(J)
      CALL FUNC
      E(J) = F
      X = (XX(J-1)+XX(J))/2.
      CALL FUNC
      P(K_{*}J) = P(K_{*}J-1) + SF/2_{*}/3_{*}(E(J-1)+4_{*}F+E(J))
      CONTINUE
202
      DO 203 J=1.KO.4
203
      PRINT 22+J+XX(J)+P(K+J)
      00 204 J=K01+KF+2
204
      PRINT 22, J, XX(J), P(K, J)
С
21
      FORMAT(//3X,#J# ,10X,#XX#,18X,#P#/)
22
      FORMAT(15,2(3X,E17.10))
      RETURN
      END
```

ŧ

```
SUBROUTINE CONS
       COMMON XX(121) + P(23+121) + ESIG(10) + w(10) + H0+HA+KO+KF+K+KK+SO+SF+X+
      C F+F1+F2+DELA+F1+C+DG4(201)+DG2(201)+SLIP
       V = 1. + DSIG(KK)/HA/0.001665
       MV = V
       VM = MV
       G2 = (DG2(MV+1) - DG2(MV)) * (V - VM) + DG2(MV)
       G4 = (UG4(MV+1)-DG4(MV))*(V-VM) + DG4(MV)
       C = G4/G2
       PRINT 41.KK.K.C
41
       FORMAT(/3X,*KK*,4X,*K*,10X,*C*/215,3X,E17.10/)
       RETURN
       END
       SUBROULINE FUNC
       COMMON XX(121) + P(20,121) + ESIG(10) + W(10) + H0 + H4 + K0 + KF + K + KK + S0 + SF + X +
      C F,F1,F2,DELA,PI,C,DG4(201),DG2(201),SLIP
С
      H = 1. + 0.5 * X * * 2/H0
      V = 1. + DSIG(KK)/H /0.001665
      MV = V
      VM = MV
      G2 = (UG2(MV+1)-UG2(MV))*(V-VM) + DG2(MV)
      G4 = (DG4(MV+1) - DG4(MV)) * (V - VM) + DG4(MV)
      F1 = (h-HA)/H^{**}3^{*}G2
      F_2 = (04 - C + G_2) / h + 3
      F = F1 + DSIG(KK) + F2 + SLIP
      RETURN
      END
      SUBROULINE INT
      COMMON XX(121) + P(20+121) + ESIG(10) + w(10) + H0+HA+K0+KF+K+KK+S0+SF+X+
     C F,F1,F2,DELA,PI,C,DG4(201),DG2(201),SLIP
С
      W(KK) = 0.
      K02 = K0-2
      DO 301 J=1, KO2,2
      W(KK) = W(KK) + SU/3.*(P(K,J) + 4.*P(K,J+1) + P(K,J+2))
      CONTINUE
301
      KFF = KF - 2
      DO 302 J =KO,KFF,2
      w(KK)' = w(KK) + SF/3.*(P(K,J) + 4.*P(K,J+1) + P(K,J+2))
      CONTINUE
302
      PRINT 31+KK+W(KK)
С
31
      FORMAT(////X,*KK=*,13,10X,*W=*,E17.10//)
      RETURN
      END
000000000000000000000 END OF HECORD
             41
                   51
                         10
   4 Ü
        10
                                           3.14159265
                       0.0005
                                -0.1
 0.01
            0.02
                                            0.22
                                                                             0.31
                                                       0.26
                                                                  0.3
            0.1
                       0.14
                                 6.18
  0.06
 0.32
            0.33
    DATA FOR DSH(I) + DV(I) + DG4(I) + 4G2(I) + DG5(I) ARE OMITTED
С
```

```
0000000000000000000000 END OF INFORMATION
```

```
PROGRAM SLIDERS(INPUT+OUTFUT)
С
C THIS PROGRAM IS TO COMPUTE THE LOAD OF AN INFINITELY-WIDE SLIDER BEARING BY
С
    STOCHASTIC APPROACH
С
C THIS PROGRAM CONSISTS OF 3 SUBROUTINES
C 1 - SUBROUTINE TABLE IS TO FORM THE T1. T2. T3 ARRAYS WHICH WILL BE USED TO
    COMPUTE THE PRESSURE PROFILE
С
                        15 TO EVALUATE THE FUNCTIONS F1. F2 AND F3
С
  2 - SUBROUTINE FUNC
  3 - SUBROUTINE INT
С
                       IS THE INTEGRATION ROUTINE TO CALCULATE THE PRESSURE
С
    PROFILE AND THEN THE TOTAL LUAD
С
 THE OUTPUT OF THIS PROGRAM ARE WLOADI . WLOADZ . WLOAD3 AND THE CORRESPONDING
С
    DSIG(I)
      wLOAD1 = LOAD IN SLIDING ROUGH SURFACE FIXED SMOOTH SURFACE CASE
С
      WLOAD2 = LOAD IN FIXED ROLGH SURFACE+SLIDING SMOOTH SURFACE CASE
С
С
      WLOAD3 = LOAD IN BOTH SURFACES WITH SAME ROUGHNESS DISTRIBUTION
С
 DATA CARD NO. 1
С
    KF = TOTAL NO. OF GRID POINTS
С
    WF = NO. OF DSIG(I) DATA
С
    PI = 3.141593
Ċ
С
 DATA CARD NO. 2
    DSIG(I) = DATA FUR SIGMA / H(MIN) RATIO
С
 DATA CARD NO.3
С
    THESE DATA ARE THE OUTPUT FROM PROGRAM SUCHAS PROGRAM DATPOL2 WHICH EVALUATE
С
С
      THE INTEGRAL OF
                        ( DISTRIBUTION FUNCTION*HSS)/(1.+SH*HSS)**3 AND
С
      (DISTRIBUTION FUNCTION/(1.+SH*HSS)**3
С
    THIS DISTRIBUTION FUNCTION CAN BE POLYNOMIAL , GAUSSIAN, SINUSOIDAL OR ANY
С
      OTHER FUNCTION
    DSH(I) = THE ABSCISSA RANGING FROM
С
                                        0 TO 0.333
С
    DV(I) = THE NONDIMENSIONAL DSH(I)
    UG4(I) = THE INTEGRAL OF 35/96*(1.-HS5**2/9)**3/(1+SH*HSS)**3*HSS
С
С
      IN THE CASE OF POLYNOMIAL DISTRIBUTION
    UG2(I) = THE INTEGRAL OF 35/96*(1.-HSS**2/9)**3/(1+SH*HSS)**3
С
с
с
      IN THE CASE OF POLYNCHIAL DISTRIBUTION
    UG5(I) = DG2(I)/UG4(I)
ç
      COMMON DSH(201), DV(201), DG4(201), UG5(201), DG2(201), WLOAD1(14),
     1 wLOAD2(14),wLUAU3(14),USIG(14),T1(14,101),T2(14,101),T3(14,101),
     2 KK, KF, NF, S, X, F1, F2, F3, C1, C2, C3, P1, XX(101)
      PRINT 1
      PEAD 2,KF.NF.FI
PRINT 2,KF.NF.FI
      READ 3, (DSIG(I), I=1, NF)
      PRINT 4. (DSIG(1).I=1.NF)
      DO 100 I=1,201
      READ 5,DSH(I),DV(I),DG4(I),DG5(I),DG2(I)
100
      DO 99 J=1.KF
99
      XX(J) = (J-1)*0.01
      WREF = ALCG(2.) - 2./3.
```

I

```
DO 101 I=1+NF
       KK = I
       S = DSIG(KK)
       CALL TABLE
       C1 = (-T1(KK,KF) + S*T3(KK,KF)) / T2(KK,KF)
       C2 = (-T1(KK,KF) - S*T3(KK,KF)) / T2(KK,KF)
       C3 = -11(KK \cdot KF) / T2(KK \cdot KF)
       CALL INT
101
       CONTINUE
       PRINT GOWREF
       00 102 I=1.NF
      PRINT 7.I.DSIG(I).WLOAD1(I).WLOAD2(I).WLOAD3(I)
102
       CONTINUE
С
      FORMAT(1H1/2X,**KF*,3X,*NF*,10X,*PI*/)
1
2
      FORMAT(215+F20+14)
3
      FORMAT (20F5.3)
      FORMAT(X,*(DSIG(I),I=1,NF)*,5X,20(X,F5.3)/)
4
5
      FORMAT(F10.6,F10.2,JF20.10)
6
      FORMAT(///X,++++E17.10/3X,++I++6X,++)SIG++12X,+++CAD1++14X,
     6 #WLOAU2#+14X+#WLOAD3#/)
      FORMAT(15.5X.F>.3.5(3X.E17.10))
7
      STOP
      ENÚ
      SUBROUTINE TABLE
С
      COMMON DSH(201), DV(201), DC4(201), DG5(201), DG2(201), WLOAD1(14),
     1 WLOAD<(14).WLUAD3(14).USIG(14),T1(14,101).T2(14,101),T3(14,101).
     2 KK, KF, NF, S, X, F1, F2, F3, C1, C2, C3, PI, XX(101)
С
      DIMENSION E1(101), E2(101), E3(101)
      J = 1
      X = XX(J)
      CALL FUNC
      E1(J) = F1
      E2(J) = F2
      E3(J) = F3
      T1(KK,J) = 0.
      T_{2}(KK,J) = 0.
      T3(KK,J) = 0.
      DO 201 J =2,KF
      X = XX(J)
      CALL FUNC
      E1(J) = F1
      E2(J) = F2
      E3(J) = F3
      X = (X \times (J-1) + X \times (J))/2.
      CALL FUNC
      T1(KK_{J}) = T1(KK_{J}-1) + C_{0}01/2_{J} + (E1(J-1) + 4_{F} + E1(J))
      T_2(KK_3J) = T_2(KK_3J-1) + 0.01/2./3.*(E_2(J-1) + 4.*F_2 + E_2(J))
      T3(KK,J) = T3(KK,J-1) + 0.01/2./3.*(E3(J-1) + 4.*F3 + E3(J))
201
      CONTINUE
      RETURN
      END
```

```
SUBROUTINE FUNC
       COMMON DSH(201) + DV(201) + DG4(201) + DG5(201) + DG2(201) + WLOAD1(14) +
      1 WLOAD2(14),WLOAD3(14),DS1G(14),T1(14,101),T2(14,101),T3(14,101),
      2 KK+KF+NF+S+X+F1+F2+F3+C1+C2+C3+P1+XX(101)
       H = 2_{\bullet} - X
       SH = S/H
       V = 1.+SH/0.001665
      MV = V
       VM = MV
       D2 = (ALOG(DG2(Mv+1)) - ALCC(DG2(Mv))) + (v - vM) + ALOG(DG2(Mv))
       G2 = EAP(D2)
       D4 = (ALOG(-DG4(MV+1))-ALCG(-DG4(MV)))*(V-VM) + ALOG(-DG4(MV))
       G4 = -LXP(D4)
       F1 = Gc/H##2
      F2 = G2/H**3
       F3 = G4/H**3
       RETURN
       END
      SUHROUIINE INT
      COMMON DSH(201)+DV(201)+DC4(201)+DG5(201)+DG2(201)+WLOAD1(14)+
     1 WLOADZ(14),WLUAD3(14),US1G(14),T1(14,101),T2(14,101),T3(14,101),
     2 KK+KF+NF+S+X+F1+F2+F3+C1+C2+C3+PI+XX(101)
      DIMENSION P1(14,101), P2(14,101), P3(14,101)
      PRINT 31,KK,DSIG(KK)
      D0 301 J=1+KF
      P1(KK_{9}J) = T1(KK_{9}J) + C1*T2(KK_{9}J) - S*T3(KK_{9}J)
      P2(KK_{,J}) = T1(KK_{,J}) + C2*T2(KK_{,J}) + S*T3(KK_{,J})
      P3(KK_{+}J) = T1(KK_{+}J) + C3*12(KK_{+}J)
      PPINT J2+J+P1(NK+J)+P2(KK+J)+P3(KK+J)
301
      CONTINUE
      WLUAD1(KK) = 0.
      WLOAD2(KK) = 0.
      WLOAD3(KK) = 0.
      KFF = NF-2
      DC 302 J=1,KFF,2
      WLOAD1(KK) = WLOAD1(KK) + 0.01/3.*(P1(KK,J) + 4.*P1(KK,J+1) +
     1 P1(KK \cdot J + 2)
      WL(AD2(KK) = WLOAD2(KK) + 0.01/3.*(P2(KK)J) + 4.*P2(KK)J+1) +
     2 F2(KK+J+2))
      wLUAD3(KK) = wLOAD3(KK) + 0.01/3.*(P3(KK,J) + 4.*P3(KK,J+1) +
     3 P3(KK+J+2))
      CONTINUE
302
      PRINT 5
      PRINT 7.KK.DSIG(KK).WLOAD1(KK).WLOAD2(KK).WLOAD3(KK)
      FORMAT(/X+*KK=*,14,5X,*USIG=*,+7,4//3X,*J*,10X,*P1*,18X,*P2*,18X,
31
     C #P3#/)
32
      FORMAT(15+3(3x+±17-10))
      FORMAT(/3X+*I*+6X+*DSIG*+12X+*WLUAD1*+14X+*WLUAD2*+14X+*WLUAD3*/)
      FORMAT(15,5X,F5.3,5(3X,E17.10))
      RETURN
      END
```

С

6 7

С

I

.

PROGRAM DATPOLC (INPUT.OLTPUT.PUNCH) С С THIS PROGRAM IS TO CALCULATE DATA FOR FUNCTIONS G2 AND G4 FOR THE CASE WHEN THE ASPEKITY HEIGHT EISTHIELTION FUNCTION IS IN THE FORM OF POLYNOMIAL С С FUNCTION 35/96*(1-HSS++2/5)**3 G2 = THE INTEGRAL OF 35/96*(1-nSS**2/9)**3/(1+SH*HSS)**3 FOR HSS = -3 TO 3 G4 = THE INTEGPAL OF 35/96*(1-nSS**2/9)**3/(1+SH*HSS)**3*HSS FOR HSS = -3 TO 3 С C SINCE HSS RANGES FROM -3 TO 3 , SH MUST BE LESS THAN 1/3. THUS SH VALUES C USED IN THIS PROGRAM RANGES FROM '0 TO 0.333 C SH(I) + I=1,201, WITH 200 UNIFORM GRIDS OF SIZE 0.001665 V(I) = NONDIMENSIONAL SH(I) C V(I) = NONDIMENSIONAL С С С С THIS PROGRAM CONSISTS OF THREE SUBROUTINES IS TO CALCULATE RIL AND RIZ FROM SUBROUTINES С 1 - SUBROUTINE MAIN INT С AND INT2 SUBROUTINE INTI IS TO INTEGRATE THE FUNCTION С 2 -(1.-H5S##2/9.)##3/(1.+SF#HSS)##3#HSS С 3 - SUBROUTINE INTZ IS TO INTEGRATE THE FUNCTION C (1.-HS5##2/9.)##3/(1.+5H#FS5)##3 C С THE RESULTS OF G2(I), G4(I), G5(I) TOGETHER WITH THE CORRESPONDING SF(I), V(I) С С VALUES WHICH ARE THE OUTPUT OF THIS PROGRAM ARE IN THE FORM OF DATA CARD С С COMMON A, B, RI1, RI2, SIMPSCN DIMENSION G2(201),G4(201),G5(201),V(201),SH(202) PRINT 1 SH(1)=0.0 DO 10 1=1,201 CALL MAIN (SH(1)) G2(I) = 35./96. *RI2G4(I) = 35./96. *RI1 G5(I) = G2(I) / G4(I)V(I)=1.0+SH(I)/0.001665 PRINT J PRINT 4.I.SH(I),V(1),G4(I),G5(1),G2(I) SH(I+1)=SH(I)+0.001665 CONTINUE 10 PRINT C 00'20 I=1+201 PRINT >,SH(I),V(I),G4(I),G5(I),G2(I) PUNCH 5,SH(I),V(I),G4(I),G5(I),G2(I) 20 CONTINUE FORMAT(1H1) 1 FORMAT (5X+*SH*+8X+*V*+16X+*G4*+18X+*G5*+18X+*G2*/) 2 FORMAT(/2X,*I*,5X,*SH(I)*,5X,*V(I)*,7X,*G4(I)*,15X,*G5(I)*,15X, 3 C*G2(1)*/) FORMAT(X+I3+2X+F9+6+2X+F6+1+3(2X+E17+10)/) 4 5 FORMAT(F10.6+F10.2+3F20.10) STOP END

	SUBROUTINE MAIN (SH)
	CCMMON A, B, RII, RIZ, SIMPSCN
	DIMENSION $D(3) \cdot E(3) \cdot SM(3) \cdot SIM(3)$
	DATA (D(I)+I=1+2)/-3.+ -2.8/+(E(I)+I=1+2)/-2.8+3./
С	
	DO 100 J=1,2
	(L) (C)
	B=E(J)
	CALL INTI(SH)
	SM(J)=SIMPSON
	CALL INT2(SH)
	SIM(J)=SIMPSON
	PRINT 11, J, A, H, SM (J), SIM (L)
100	CONTINUE
100	RII = SM(I) + SM(2)
	RI2 = SIM(1) + SIM(2)
	PRINT 12. RTI-RT2
C	
ž	FORMAT(X.# 1=#.1].4X.#A=#.Fo.3.4X.#6=#.F6.3.4X.#SM=#.F17.10.4X.
• •	C*SIM=#•F17.10/)
12	FOPMAT(X * 801) = * * F17, 10 * 5X * 8012 = * * F17, 107)
16	RETURN A CONTRACT OF A CONTRACT
	SUBROULINE INTI (SE)
	COMMON A-H-RII-RIZ-SIMPSON
	PRINT 21
	FA#(1_1=HSS&&>>/C_A\&&>/(1_A_SH&HSS\&&>&HSS
	LV#(I*0~100~~5/3*0)/~~2/(I*0+20~600)~~0.4000
	NJJ→D FR→/1 /466803/0 0)0032//) Alchy466000000
	EI-EV/FD
	□33-\AYE//C∎U E/=/1 ==================================
	r4+(1.0V=n33**2/9.0)**3/(1.0V*3n*n33)**3*4.0V*n33
	SIMPSUN=1/3.0% (F1+F2+F4)
	DG = 10 N = 1.9500
	I = (B - A) / N
	F2=F2+F4/2.0
	F4=0.0
~ ~	F4=(I.UH55**2/9.0)**3/(I.U+5H*H55)**3*4.U*H55 + F4
20	CONTINUE
	SIMP=SIMPSON
	SIMPSON=11,/3,0*(F1+F2+F4)
	DELTA=ABS((SIMPSON-SIMP)/(SIMPSON+SIMP))
	PRINT 22. N. SIMP. DELTA
	N=2*N

10	IF (DELTA-LE.0.0005) GO TC 26 CONTINUE PRINT c2-N-SIMPSON
C	
21	FCRMAT(4X,*N*,¤X,*SIMPSON*,10X,*DELTA*/)
22	FORMAT(X+14+4X+E17+10+4X+F8+5)
	RETURN
	END
	SUBROULINE INTZ(SH)
	COMMON A+B+RI1+RI2+SIMPSCN
	PRINT 21
	FA=(1.0-H55**2/9.0)**3/(1.0+5H*H55)**3
	ПЭЭ∓В ГБ-// Л-ПСЕЛКЭ/О (\ККЭ//) С.КЧАНСС\АКЭ
	F1-FA+FP
	HSS=(A+P)/2_0
	F4=()_v+HSS##2/9_0)##3/()_0+SH#HSS)##3#4_0
	N=2
	T = (B - A) / N
	SIMPSON=T/3.0*(F1+F2+F4)
	DC 10 n=1+500
	T=(B+A)/N
	TN=T/2.0
	F2=F2+F4/2.0
	F4=0.0
	DO 20 J=1.N
	HSS=A-IN+J*T
_	F4=(1.0-HSS**2/9.0)**3/(1.0+SH*HSS)**3*4.0+F4
20	CONTINUE
	SIMP=SIMPSON
	SIMPSON=1N/3.0%(F1+F2+F4)
	DELIA=ABS((SIMPSUN-SIMP)/(SIMPSUN+SIMP))
	PRINT ZZINISIMPIULTA
	NELAN TEADERTA LE A DAARN GO TO 26
10	
26	
с С	
21	FORMAT (AY . SNO . SY . SCINESCN S.) (X . SOFL TAS/)
22	FORMAT(x+14+4x+E17+10+4x+E3+5)
~	GFTIDN
	END
000000	00000000000000000 END OF RECORD
0.000	USU0000000000000 END OF INFORMATION

.

Data for G_2 , G_4 and G_5 with polynomial distribution of the asperity height.

-

- SH = $\overline{\sigma}/H$
- V = non-dimensional SH

$$G_{2} = \int_{-\infty}^{\infty} \frac{g(\delta^{*})}{\left[1 + \delta^{*}(\overline{\sigma}/H)\right]^{3}} d\delta^{*}$$

 $G_4 = \int_{-\infty} \frac{\delta g(\sigma)}{\left[1 + \delta^*(\sigma/H)\right]^3} d\delta^9$

$$G_5 = G_2/G_4$$

۷

$$g(\delta^{\star}) = \begin{cases} \frac{35}{96} \left(1 - \frac{\delta^{\star 2}}{9}\right)^3 & -3 \le \delta^{\star} \le 3\\ 0 & \text{elsewhere} \end{cases}$$

G4

C	LL.
3	п.

G5

G2

0.00000	1.00	.0000000008#7	3508622.8972244263	•9999937040
.001665	2.00	0049951360	-200.1968247935	1.0000103701
.003330	3.00	0099912933	-100.0931790408	1.0000603055
004995	4.00	0149884332	-66.7276896773	1.0001435203
.006660	5.00	0199876140	-50.0439939147	1.0002600317
.008325	6.00	0249895170	-40.0331812483	1.0004098635
.009990	7.00	0299948249	-33.3588560485	1.0005930462
.011655	8.00	0350042216	-28.5911118930	1.0008096174
.013320	9.00	0400183928	-25.0149881471	1.0010596214
•014985	10.00	0450380259	-22.2332815146	1.0013431094
.016650	11.00	0500638108	-20.0076686839	1.0016601395
.018315	12.00	0550964396	-18.1864886970	1.0020107769
•019980	13.00	0601366075	-16.6686338844	1.0023950934
.021645	14.00	0651850124	-15.3841064170	1.0028131682
•023310	15.00	0702461021	-14.2821460160	1.0032650874
024975	16.00	0753129297	-13.3277373168	1.0037509442
.026640	17.00	0803901121	-12.4924672077	1.0042708389
.028305	18.00	0854783624	-11.7553127078	1.0048248792
•029970	19.00	0905783984	-11.0999222553	1.0054131799
.031635	20.00	0956909428	-10.5133864718	1.0060358632
.033300	21.00	1008167234	-9.9853776741	1.0066930586
.034965	22.00	1059564734	-9.5075352232	1.0073849032
.036630	23.00	1111109320	-9.0730184962	1.0081115416
•038295	24.00	1162808444	-86761764664	1.0088731260
•039960	25.00	1214669623	-8.3122998848	1.0096698164
.041625	26.00	1266700439	-7.9774329347	1.0105017804
.043290	27.00	1318908551	-7.6682283475	1.0113691938
.044955	28.00	1371301688	-7.3818347149	1.0122722402
.046620	29.00	1423887658	-7.1158079458	1.0132111113
.048285	30.00	1476674354	-6.8688410430	1.0141860071

.049950	31.00	1529669751	-6.6367079229	1.0151971358
.051615	32.00	1582881916	-6.4202181087	1.0162447141
.053280	33.00	1636319007	-6.2171799186	1.0173289673
.054945	34.00	1689989282	-6.0263703463	1.0184501295
.056610	35.00	1743901098	-5.8467102566	1.0196084435
.058275	36.00	1798062917	-5.6772438332	1.0208041609
.059940	37.00	1852483314	-5.5171214518	1.0220375429
.061605	38.00	1907170973	-5.3655853297	1.0233088596
.063270	39.00	1962134701	-5.2215363317	1.0245357631
.064935	40.00	2017383425	-5.0802341398	1.0248780151
.066600	41.00	2072926201	-4.9508585771	1.0262764462
.068265	42.00	2128772216	-4.8277327210	1.0277143282
.069930	43.00	2184930795	-4.7104100548	1.0291919985
.071595	44.00	2241411406	-4.6027585049	1.0316675410
.073260	45.00	2298223663	-4.4957019781	1.0332128666
074925	46.00	2355377334	-4.3933455139	1.0347986442
.076590	47.00	2412882345	-4.2953824033	1.0364252365
.078255	48.00	2470748786	-4.2015320339	1.0380930172
.079920	49.00	2528986917	-4.1115371720	1.0398023717
.081585	50.00	2587607174	-4.0251615764	1.0415536970
.083250	51.00	2645620173	-3.9421878997	1.0433474022
.034915	52.00	- 2706036722	-3-8624158356	1.0451839087
.036580	53.00	2765867821	-3.7856604805	1.0470636503
088245	54.00	- 2826124672	-3.7117508799	1.0489870739
.189911	55.00	- 2886 81 8687	-3.6405287375	1.0509546391
.191575	56.00	- 2947961494	-3-5718472638	1.0529668195
.093240	57.00	- 3009564942	-3.5055701487	1.0550241022
.094905	58.00	- 3071641114	3.4415706427	1.0571269883
.096570	59.00	- 3134202331	-3-3797307319	1.0592759937
.098235	60.00	- 3197261160	-3.3199L03982	1.0614716488
.099900	61.00	- 3260830426	-3.2620969524	1.0637144994
101565	62.00	3324923217	-3.2061044340	1.0660051069
103230	63.00	3389552897	-3.1518730679	1.0683440488
.104895	64.00	3454733118	-3.0993187738	1.0707319187
.106560	65.00	3520477796	-3.0483627208	1.0731693274
108225	66.00	3586801197	-2.9989309240	1.0756569029
.109890	67.00	3653717869	-2.9509538769	1.0781952911
.111555	68.00	3721242692	-2.9043662172	1.0807851561
.113220	69.00	3789390883	-2-8591064219	1.0834271808
.114885	70.00	3858178006	-2-8151165293	1.0861220677
.116550	71.00	3927619984	-2-7723418840	1.0888705387
.118215	72.00	3997733116	-2-7307309043	1.0916733368
-119880	73.00	4068534083	-2,6902348687	1.0945312255
.121545	74.00	- 4140039967	-2.6508077195	1.0974449905
.123210	75.00	4212268264	-2.6124058831	1.1004154394
124875	76.00	- 4285236897	-2.5749881038	1.1034434032
.126540	77.00	- 4358964234	-2.5385152918	1.1065297365
.128205	78.00	4433469102	-2.5029503817	1.1096753182
.129870	79.00	4508770805	-2.4682582034	1.1128810527
.131535	80.00	- 4584889140	-2.4344053612	1.1161478703
			THE FERRET	

.

.1 33200	81.00	4661844416	-2.4013601233	1.1194767281
134865	82.00	4739657472	-2.3690923186	1.1228686109
.136530	83.00	4818349697	-2.3375732418	1.1263245322
. 138195	84.00	4897943053	-2.3067755645	1.1298455350
.1 39860	85.00	4978460090	-2.2766732533	1.1334326929
•141525	86.00	5059923974	-2.2472414935	1.1370871108
.143190	87.00	5142358509	-2.2184566178	1.1408099265
.144855	88.00	5225788159	-2.1902960406	1.1446023114
.146520	89.00	5310238076	-2.1627381961	1.1484654718
.148185	90.00	5395734124	-2.1357624808	1.1524006499
.149850	91.00	5482302910	-2.1093491998	1.1564091255
.151515	92.00	5569971807	-2.0834795170	1.1604922170
.153180	93.00	5658768992	-2.0581354079	1.1646512829
.154845	94.00	5748723473	-2.0332996159	1.1688877229
.156510	95.00	5839865120	-2.0089556112	1.1732029801
.158175	96.00	5932224706	-1.9850875521	1.1775985421
.159840	97.00	6025833939	-1.9616802495	1.1820759426
.161505	98.00	6120725501	-1.9387191326	1.1866367633
.163170	99.00	6216933087	-1.9162541838	1.1913224038
.164835	100.00	6314491450	-1.8941383961	1.1960520706
.166500	101.00	6413436442	-1.8724283612	1.2008700286
.168165	102.00	6513805062	-1.8511116757	1.2057780603
.169830	103.00	6615635504	-1.8301764135	1.2107780060
.171495	104.00	6718967209	-1.8096111019	1.2158717656
.173160	105.00	6823840917	-1.7894047000	1.2210613009
.174825	106.00	6930298724	-1.7695465774	1.2263486387
.176490	107.00	7038384143	-1.7500264946	1.2317358729
178155	108.00	7148142166	-1.7308345845	1.2372251675
.179820	109.00	7259619328	-1.7119613347	1.2428187595
.181485	110.00	7372863781	-1.6933975710	1.2485189617
.183150	111.00	7487925362	-1.6751344411	1.2543281667
.184815	112.00	-,7604855676	-1.6571634006	1.2602488493
.186480	113.00	7723708173	-1.6394761979	1.2662835709
.188145	114.00	7844538238	-1.6220648613	1.2724349830
.189810	115.00	-,7967403281	-1.6049216864	1.2787058309
•191475	116.00	8092362831	-1.5880392234	1.2850989587
•193140	117.00	8219478646	-1.5714102663	1.2916173128
.194805	118.00	8348814812	-1.5550278414	1.2982639475
.196470	119.00	8480437864	-1.5388851972	1.3050420294
•198135	120.00	8614416905	-1.5229757946	1.3119548430
.199800	121.00	8750823736	-1.5072932970	1.3190057961
.201465	122.00	8889732995	-1.4918315618	1.3261984258
.203130	123.00	9031222298	-1.4765846316	1.3335364049
.204795	124.00	9175372398	-1.4615467257	1.3410235485
.206460	125.00	9322267347	-1.4467122327	1.3486638207
.208125	126.00	9471994673	-1.4320757029	1.3564613430
.209790	127.00	-,9624645568	-1.4176318408	1.3644204014
•211455	128.00	9780315083	-1.4033754984	1.3725454555
•213120	129.00	9939102345	-1.3893016685	1.3808411471
.214785	130.00	-1.0100755107	-1.3754539099	1.3893123104

÷

•

.216450	131.00	-1.0266066512	-1.3617328315	1.3979639819
218115	132.00	-1.0434818142	-1.3481800950	1.4068014115
-219780	133.00	-1.0607127742	-1.3347911976	1.4158300742
.221445	134.00	-1.0783118426	-1.3215617472	1.4250556828
.223110	135-00	-1.0962918997	-1.3084874581	1.4344842012
.224775	136.00	-1.1146664290	-1.2955641449	1.4441218590
.226440	137 00	-1.1336695539	-1.2827877178	1.4539751665
-728105	178 00	-1 1526560771		1.4640509318
320770	130.00			1. 4743562783
02417E	139.00			1
0231433	140.00			4 4056850814
•233100	141.00	-1.2129751731		1.4970079011
•234765	142.00	-1.2340384668	-1.2209/18099	
•236430	143.00	-1.2556109760	-1.2089955583	
•238095	144.00	-1.2///126009	-1.1971398388	1.5296000572
.239760	145.00	-1.3003643011	~1.1854011565	1.5414533464
•241425	146.00	-1.3235881683	-1.1737760706	1.5535961192
•243090	147.00	-1.3474075073	-1.1622611896	1.5660394524
.244755	148.00	-1.3718469225	-1.1508531677	1.5787943763
.246420	149.00	-1.3969324127	-1.1395486991	1.5918725137
-248085	150.00	-1.4226914752	-1.1283445145	1.6052861219
•249750	151.00	-1.4491532185	-1.1172373758	1.6190481389
•251415	152.00	-1.4763484864	-1.1062240711	1.6331722330
.253080	153.00	-1.5043099939	-1.0953014106	1.6476728583
.254745	154.00	-1.5689740923	-1.0596512219	1.6625653141
•256410	155.00	-1.5626728537	-1.0737153380	1.6778658113
.258875	156.00	-1.5931508057	-1.0630453430	1.6935915447
.259740	157.00	-1.6245474222	-1.0524535936	1.7097607724
.261405	158.00	-1.6569077095	-1.0419365718	1.7263929044
.263070	159.00	-1.6902793368	-1.0314913997	1.7435085990
•264735	160.00	-1.7247132771	-1.0211145788	1.7611298714
.266400	161.00	-1.7602641108	-1.0108030863	1.7792803959
.268865	162.00	-1.7969903641	-1 0005534568	1.7979849206
.269730	163.00	-1.8349548881	- 9903624798	1.8172704733
.271395	164.00	-1.8742252835		1.8371658353
.273060	165.00	-1.9148743788	- 9776494784	1.8720759376
.274725	166.00	-1.9569807696	- 9601074765	1.8789118683
276390	167.00	-2-0006294286	- 9501167408	1,90.08315122
-278055	168.00	-2.04501234200		1. 9236996137
-279720	169.00	-2.1929295794	- 9302545583	1,9469572815
.281385	170 00	-200525255154		1.0710082664
-283858	174 00	-20141/050021	- 01045272	1.0062665525
286716	472 80			2 0223700238
204712	172.00		- 9006231018	2 0/0/600250
-200300	176 DU	-2 7592008504	- 09U0192104	2 0776940KEA
-200042 .28074 f	175 00	-2 4492077647	- 001UCC7UC4	2.1860178178
+ C 0 7 / L U . 201 7 7 5	175 UU	-2.4410293/843	- 0/1/41130/ _ 0644645064	2.137.1027.
+C710/7	177 00	-2 5577005657	T ● 0014042004 A ↓ 002702525 A ↓ 0027025 A ↓ 002702 A ↓ 00270 A ↓ 0027 A ↓ 0027 A ↓ 0027 A ↓ 0027 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓ 002 A ↓	2.1601055570
+C 73040 - 201715	479 00	-2 633340505/	- 049939393930 - 0300676355	2026007017
96 74 / UD 206770	170.00	-2.00222448358	03990/0395	2020001743
• 2 9 0 3 / U	1/9.00	-2.0883841314	0321982189	2.23/2004090
•290035	180.00	-Z.7645820112	8231330153	2.212010/2/0

_

.299700	181.00	-2.8448574004	8132303512	2.3135243828
.301365	182.00	-2.9295837773	8026515603	2.3514349899
.303030	183.00	-3.8191861865	7927200956	2.3933695625
.304695	184.00	-3.1148547519	7825532498	2.4375397086
.306360	185.00	-3.2157067681	7725087533	2.4841616264
.308025	186.00	-3.3231128883	7623829977	2.5334847655
.309690	187.00	-3.4377280336	7521826144	2.5857992600
.311355	188.00	-3.5607511491	7418116002	2.6414065078
.313020	189.00	-3.6926708634	7314022390	2.7008277372
•314685	190.00	-3.8356120648	7207272646	2.7644301914
.316350	191.00	-3.9907195912	7098576193	2.8328427082
.318015	192.00	-4.1600027090	6987670850	2.9068729666
.319680	193.00	-4.3459461393	6873990259	2.9873991428
.321345	194.00	-4.5517992396	6756874658	3.0755936932
.323010	195.00	-4.7819084722	6635495434	3.1730331832
•324675	196.00	-5.0423682502	6508665451	3.2819088021
.326340	197.00	-5.3418762853	6374769757	3.4053231387
.328005	198.00	-5.6942797548	6231104791	3.5481653859
.329670	199.00	-6.1236624056	6072920562	3.7188515337
•331335	200.00	-6.6809166008	5889847030	3.9349576800
333000	201.00	-7.5462070183	- 5642247053	4.2577564311

126

هد به . ,

Data for G_2 and G_4 with sinusoidal distribution of the asperity height

ţ

SH =
$$\overline{\sigma}/H$$

V = non-dimensional SH

$$G_{2} = \int_{-\infty}^{\infty} \frac{g(\delta^{*})}{\left[1 + \delta^{*}(\overline{\sigma}/H)\right]^{3}} d\delta^{*}$$

۷

$$G_{4} = \int_{-\infty}^{\infty} \frac{g(\delta^{*})}{\left[1 + \delta^{*}(\overline{\sigma}/H)\right]^{3}} d\delta^{*}$$

$$g(\delta^*) = \begin{cases} \frac{1}{\pi} \sqrt{9 - \delta^{*2}} & -3 \le \delta^* \le 3\\ 0 & \text{elsewhere} \end{cases}$$

SH

G2

-G 4

0 • 0 0 0 0 0 0	1.000	.99701659	00000000
.001665	2.000	•99709ñ99	02234477
.003330	3.000	•99731426	0446978R
004995	4.000	•9976865õ	06706769
006660	5.000	•99820793	0894425A
008325	6.000	•99887885	11189092
009990	7.000	•99969962	••13436115
•011655	8.000	1,00067771	15689172
013320	9.000	1.00179267	17946112
<u>•</u> 014985	10.000	1.00306613	20210792
• 016650	11.000	1.00449180	22483N7j
•018315	12.000	1.00607750	24763819
•019980	13.000	1.00780312	2705391ī
021645	14.000	1.00969663	29354229
•023310	15.000	1.01173413	31665667
•024975	16.000	1.01393476	33989127
<u>•</u> 026640	17.000	1.01629380	· - •36 <u>325523</u>
• 028305	18.000	1.01881259	38675779
029970	19.000	1.02149259	41040833
<u>.031635</u>	20.000	1.02433534	· - • 4 342 <u>1</u> 635
033300	21.000	1.02734249	45819157
034965	22.000	1.03051580	4823435A
036630	23.000	1.03385712	-,50668256
038295	24.000	1.03736840	 53121856
039960	25.000	1.04105172	•• 5559619 [
.041625	26.000	1,04490926	••58092311
.043290	27.000	1.04894331	-,606112AA
.044955	28.000	1.05315628	63154212
.046620	29.000	1.05755072	65722201
048285	30.000	1.06212927	68314392

.049950	31.000	1.06689471	- 70937950
.051615	32,000	1.07184996	- 7358P063
053280	33,000	1.07699806	- 76267951
054945	34.000	1.08234221	- 78978859
.056610	35.000	1.08788571	- 81722065
058275	36.000	1.09363206	- 8449P877
059940	37.000	1.09958486	- 87317638
061605	38.000	1,10574791	- 90154725
063270	39.000	1,11212514	- 93044553
064935	40.000	1,11872667	- 95969572
.066600	41.000	1,12553877	- 9893=276
068265	42.000	1,13258391	-1.01947266
.069930	43.000	1.13986773	-1.04994923
.071595	44.000	1.14737407	-1.0809206R
.073260	45.000	1.15512896	-1.11236311
.074925	46.000	1,16313064	-1.14429373
076590	47,000	1.17138457	-1.1767-032
078255	48.000	1.17989642	-1.20969119
079920	49.000	1,18867210	-1.24319525
081585	50.000	1,19771776	-1.2772619R
083250	51.000	1.20703979	-1,31191154
.084915	52,000	1.21664484	-1.34714471
.086580	53.000	1,22653983	-1.383ñ43ññ
088245	54.000	1,23673196	-1.41956861
.089910	55,000	1.24722873	-1.45676454
091575	56.000	1.25803794	-1.49465454
•093240	57.000	1.26916770	-1.53324325
•0949n5	58.000	1.28062644	-1.57261613
•096570	59.000	1.29242297	-1.61273958
•098235	60.000	1.30456643	-1.65366096
•099900	61.000	1.31706633	-1.6954-864
•103565	62.000	1.32993260	-1-73801201
•103230	63.000	1.34317556	-1.78153161
•104895	64.000	1.35680597	-1.82593909
·106560	65.000	1.37083501	-1.87126736
·108225	66.000	1.38527437	-1.91761056
•109890	67.000	1.40013620	-1.96497427
•111555	68.000	1.41543317	-2.01339517
•113220	69.000	1.43117849	-2.06291185
•114085 114550	70.000	1.44738594	-2.11356416
•110550	/1.000	1.46406988	=2+16539364
•118215	/2.000	1.48124530	-2.21844354
+11700V	73.000	1.49892783	-2.27275893
•151545	74000	1.51/13379	-2.32838673
12/846	130UUU 76 AAA	1.0000000	-2.J0537588
1240/3		1.00018490	=2.44377740
120240	<i>[[</i> •000 7 9 • 00	1.5/506642	-2.50364456
130830		1.07554418	-2.56507274
•1270/0	17.000	1.01663R49	-2.62800009
•131333	000•Ua	1.003837054	-2.69261/]]

- -- ---

· _

122244	81 000	1 66376553	-3.75001712
133200	01.000	1.000/0203	
.134065	82.000	1.00303705	-2.02044614
•136530	83.000	1.70/02021	=2.89691354
•138195	84.000	1.73213561	-2.96874153
.139860	85.000	1.75741749	-3.14255588
141525	86.000	1.78347273	-3.11842597
143190	87.000	1-81035156	-3.19646464
144855	88.000	1.83807763	-7-27672915
144535		1 06660306	-3 35032075
•140520	07.000	1.0000300	
•148185	90.000	1.89020158	-3.44433702
•149850	91.000	1.92666857	-3.53187256
•151515	92.000	1.95812119	-3.65503880
153180	93.000	1.99059848	-3.71494455
.154845	94.000	2.02414147	-3.81077609
156510	95,000	2.05879328	-3.90944596
158175	96.000	2-09459929	-4.01129286
150840	97.000	2.13160725	-4-11638229
109040		3 16986763	-4.22485602
101202	90.000	2.10700/42	-4 33694730
•163170	99.000	5.50443511	44.3304F/AS
<u>164835</u>	100.000	2.25035910	-4.45757117
.166500	101.000	2.29270526	-4.57213622
168165	102.000	2.33653334	-4.69573865
169830	103.000	2.38190886	-4.82356456
171495	104.000	2.42890103	-4.95581058
.173160	105-000	2.47758298	-5.09268455
-1748-5	105.000	2.52803203	-5-23447629
176490		2.58032098	-5-38120841
• 1 / 0 4 7 9		2.50132498	
.110122	100.000	2+03450340	-2-533337721
01/9020	109.000	2.69082401	-5.69105368
0101485	110.000	2.14450848	-5,85463449
<u>183150</u>	111.000	2+80982139	-6.02437319
•184815	112.000	2•87277ñ59	-6.20058137
41 86480	113.000	2.93817273	-6.383590ñ8
188145	114.000	3.00615122	-6.57375121
189810	115.000	3.07683725	-6.77143911
191475	116.000	3.15037746	-6.9775-228
193140	117.000	3,22689952	-7.19101528
194805	118.000	3.3658386	-7.41379075
196470	119.000	3 38958044	-7 44599150
100176		3.50750944	
•140195	120.000	3.4/009959	=/.88/69351
•199000	151.000	3.56630592	-8.1398476n
201465	122.000	3.66041432	-8.40303329
•203130	123.000	3.75864509	-8.67775152
•204795	124.000	3.86123411	-8.96471827
.206460	125.000	3.96843423	-9.2646-845
.208125	126.000	4.08051663	-9.5783500A
209790	127.000	4.19777255	-9-9366629
211455	128.000	4.32051495	-10.25030412
213120	129.000	4 . 6 6 0 0 1 4 7 J	-10-610619912
2016705		4 E0101-00	-10.00001595
•CI4/80	130.000	841E8584+	-10.48837794

-

.216450	131.000	4.72516611	-11-38466369
.218115	132.000	4.87348682	-11.80082438
219780	133.000	5.02926786	-12-2381=257
221445	134.000	5-19299615	-12-69853867
.223110	135.000	5.36520547	-13-18207168
224775	136.000	5.54647449	-13-69181103
.226440	137.000	5.73743136	-14-22915989
228105	138.000	5-93875877	-14-79609008
229770	139.000	6.15119970	-15-39475873
231435	140.000	6.37556380	-16-02738708
233100	141.000	6-61273463	-16-69667155
.234765	142.000	6-86367781	-17-40535760
236430	143.000	7,12945816	-18,1565,662
238095	144.000	7.41121518	-18-95347641
-230760	145.000	7.71022070	-19,7999576
241425	146.000	8.02790777	-20-70000374
.242090	147.000	8.36578545	-21.65886468
-273070		9 70554015	
244133	140.000	0.10011016	-22 76960210
340405	142+000	9 5195007Å	
-240003	151 000	7 0 0 5 4 1 3 9 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-24 -73677611
277100	101+000	7073913723	-20+1/17-042
252080	152.000	10.42447007	
2222000	153:000	10.42041407	
0234143	154+000	11.40017847	
.230410	122+000	12.004433241	-32+13401440
•2580/5	150.000	12.00/90326	
•237140	121+000	13.34041657	
.201403	158.000	14.0004/811	-3/-92343465
•203070	159.000	14.80336381	-40-17914399
.204/33	100.000	13.(0012600	-42-02046030 45-00053668
•200400	101+000	10.032/2304	-43.20331065
.200000	162.000	17.64166741	
•209/30	103.000	18.14210805	-51.30194021
•2/1395	104.000	19.94/05202	-54-H332596A
2/3060	165.000	21.20/62710	-58.04356254
•214125	100.000	22./1940464	-02-030/8936
276390	167.000	24.31979390	-6/.40410309
•278055	168.000	26.08912611	-72-58527861
•279720	169.000	28.05125438	-78-27049609
281385	170+000	30.23429958	-84.60249937
·283050	171.000	32.67158524	-91.67946432
•284715	172.000	35.40281739	-99.61839362
•286380	173.000	38,47558456	-108-55961214
-288045	174.000	41.94728.49	-118.67245693
.289/10	1/5.000	45.48758960	-130+15254897
•291375	1/0.000	50.38173002	-143-28191516
293040	1//+000	55.53412611	-158.34067722
.294705	178.000	61.47710291	-175-72492607
•296370	179.000	68.37254675	-195.91914829
.278035	180.000	76.42837128	-219.53685932

· ...-

1

.

.299700	181.000	85.90997735	-247,36462767
301365	182.000	97.16115232	-280-42144202
.303030	183.000	110.63302537	-320-04536453
304695	184.000	126.92611767	-368.01859650
306360	185.000	146,85263210	-426.7529634ñ
308025	186.000	171,53078349	-499.57092217
309690	187.000	202.53122672	-591,14194190
311355	188,000	242,11078656	-708.17933905
313020	189.000	293,59756930	-860.5889 <u>0</u> 020
314685	190.000	362 04904862	-1763 43244201
316350	191.000	455,42518837	-1340.4296609R
318015	192.000	586,78626400	-1730.52155087
319680	193.000	778,66214058	-2300.92092246
321345	194.000	1072.38841174	-3175,01959219
323010	195.000	1549,93125683	4597.63681103
324675	196,000	2391,14703390	-7106.29179548
326340	197.000	4049,10940934	-12755-84967513
328005	198,000	7919,06795274	-23621,17873278
329670	199,000	19947.59913754	-596 <u>0</u> 6.81488887
331335	200.000	88627 89187290	-265304.23177560
333000	201.000	6822046.68510997	-20457670,58057237
PROGRAM ROLWAVI (INPUT; OLTPUT) C C THIS PROGRAM IS TO COMPUTE THE EFFECT OF SURFACE ROUGHNESS AND WAVINESS ON THE INTEGRATED PRESSURE OF AN EHD CONTACT r CONLY THE CASE OF PURE ROLLING IS STUDIED C ASSUMING SINUSOIDAL WAVINESS AND SINUSOIDAL ROUGHNESS DISTRIBUTION C THIS PROGRAM CONSISTS OF 3 SUBRUUTINES IS TO CALCULATE WORUB . THE REDUCED PRESSURE AT THE 1 - SUBROULINE GRUDIN C INLET BY THE SMOUTH FILM GRUBIN APPROACH С C 2 - SUBROUTINE ROUGH IS TO CALCULATE WROUGH(I) . THE REDUCED PRESSURE AT THE INLET BY STOCHASTIC THECKY FUR ROUGH SURFACES C IS TO CALCULATE WSIN(I) . THE REDUCED PRESSURE AT THE С 3 - SUBROUTINE WAVI С INLET FOR THE SINUSOIDAL WAVINESS SURFACE PROFILE C C DATA CARD NO. 1 KF = TOTAL NUMBER OF GRID PCINTS С C KM = GRIU NUMBER + XX(KM) = -2.0 NAMP = NUMBER OF AMPLITUDE CATA NCYC = NUMBER OF WAVINESS CYCLES DATA С C С DATA CARD NO. 2 HO = CENTER FILM THICKNESS С С W = DIMENSIONLESS CONTACT LCAD С $PI = \bar{3}.141593$ DATA CARD NO. 3 С DCYC(I) = WAVINESS CYCLES CATA C DATA CARD NO. 4 С С DAMP(I) = AMPLITUDE DATA С DATA CARD NO. 5 THESE DATA ARE THE OUTPUT FROM PROGRAM SUCHAS PROGRAM DATPOL2 WHICH EVALUATE С THE INTEGRAL OF (DISTRIBUTION FUNCTION*HSS)/(1.+SH*HSS)**3 AND С С (DISTRIBUTION FUNCTION/(1.+SH*HSS)**3 C THIS DISTRIBUTION FUNCTION CAN BE POLYNOMIAL +GAUSSIAN, SINUSCIDAL OR ANY UTHER FUNCTION С С OSH(I) = THE ABSCISSA RANGING FROM 0 TO 0.333 C UV(I) = THE NONDIMENSIONAL DSH(I) DG4(I) = THE INTEGRAL OF 35/96*(1.-HSS**2/9)**3/(1+SH*HSS)**3*HSS С IN THE CASE OF POLYNUMIAL DISTRIBUTION С С UG2(I) = THE INTEGRAL OF 35/96*(1.-HSS**2/9)**3/(1+SH*HSS)**3 С IN THE CASE OF POLYNCHIAL DISTRIBUTION С 005(1) = DG2(1)/064(1)С С COMMON KF .KM .NAMP .NCYC .KMY .KMK .KFF COMMON HO, W. PI . WGRUE, CYC, AMP, KK.S , DG2(201), DG4(201) CCMMON XX(1501), H(1501), WSIN(16), WROUGH(16), G(1501) DIMENSION DCYC(20), DAMP(16), SW5IN(16), SWR0(16), FERR(16), DSH(201), : DV(201) С PRINT 1 READ 2+KF+KM+WAMP+NCYC READ 3.HU.W.PI READ 3, (DCYC(1), I=1, NCYC) READ 3, (DAMP(I), I=1, NAMP) DO 100 I=1.201 100 READ 5,DSH(I),DV(I),DG2(I),DG4(I)

-- -

- - ---

```
PRINT 51
      PRINT 2,KF,KM,NAMP,NCYC
      PRINT 52
      PRINT 4.HO,W.PI
      PRINT >3
      PRINT 4, (DCYC(I), I=1, NCYC)
      PRINT 54
      PRINT 4, (DAMP(I), I=1, NAMP)
      KMM = KM + 1
      KMK = KM - 2
      KFF = KF - 2
      XX(1) = -5.
      DO 101 J =2.KM
101
      E00.0 + (1-L)XX = (L)XX
      DO 102 J =KMM+KF
      xx(J) = xx(J-1) + 0.002
102
      DO 103 J=1.KF
      x = \chi\chi(J)
      H(J) = H0 + 4.*W/PI*(ABS(X)*SQRT(ABS((-X)**2-1.)) - ALOG(ABS(X) +
     H SQRT(ABS((-X)**2-1. ))))
103
      CONTINUE
      PRINT 55
      PRINT 4,XX(KM),XX(KF)
С
      CALL GRUBIN
      DO 104 I=1.NAMP
      κκ = I
      S = DAMP(I) / 3 + HO
      CALL RUUGH
      SWRD(I) = WROUGH(I) / WGRLB
104
      CONTINUE
      DC 1006 II=1+NCYC
      CAC = \Gamma CAC(II)
      PRINT 7. II.CYC
      DO 105 I = 1.NAMP
      KK = I
      \Delta MP = \cup \Delta MP(I) + HO
      CALL WAVI
      SWSIN(I) = WSIN(I) / WGRLE
      PERR(I) = (WSIN(I) - WROLCH(I)) / ##000#(])
                        .WSIN(I),SWSIN(I), WAGUGH(I),SWRO(I),PERR(I)
      PRINT O, I,AMP
105
      CONTINUE
      DO 106 I=1.NAMP
      KK = I
      AMP = -DAMP(I) + HO
      CALL WAVI
      SWSIN(1) = WSIN(1) / WGRUE
      PERR(1) = (WSIN(1) - WROLGH(1)) / WROUGH(1)
                        >wS1N(1)+SwSIN(1)+mRGUGH(1)+SwRG(I)+PERR(I)
      PRINT D. I.AMP
106
      CONTINUE
1000 CONTINUE
```

C 1	FORMAT(1H1)
2	FORMAT (2015)
3	
4 E	$FURMAI(Y(ZX)EIJ \bullet D))$
5	$F \cup F M A + ZF + U = 0 + 3F Z \cup - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$
07	FORMAT(1);0;0(2,7);0;0); FORMAT(1)//////3;#TT=#+T3+10x+#CYC=#+F6,1//4X+#T#+6X+#DAMP#+11X
'	7 .#WSING.101.#SWSIN#.4X.#NHOUGH#.11X.#SNRU#.11X.#PERR#/)
51	$ \begin{array}{c} f \in \mathcal{A} \\ f \in$
52	FORMAT (/6x.*#0**)4x.*#**)2X.*#21*)
53	FOKMAT(/6x,*DCYC(1)*)
54	EQRMAT $(/6X, *DAMP(I)*)$
55	FORMAT (/6X+#XX (KM)*+9X+#XX (KF)*)
C	
-	STOP
	ENU
	SUBROUTINE GRUDIN
С	
	CCMMON KF,KM,NAMP,NCYC,KMP,KMK,KFF
	COMMON HO, W, PI, WGRUB, CYC, AMP, KN, S + DG2 (201), DG4 (201)
_	COMMON XX (1501) + H(1501) + WSIN (16) + WROUGH (16) + G(1501)
C	
	$\frac{1}{2} \frac{1}{2} \frac{1}$
	G(J) = (H(J) - H(J) / H(J) - J
401	
	$MGRUB = V_{\bullet}$
	U(-4UZ = J = 1 + NMN + Z W = O(D) = W = O(D) + (-0.03/3, #(G(1) + 4, #G(1+)) + G(J+2))
402	WGRUB - WGRUB - 0.000000 - 000000 - 48.0000000
403	
403	
41	FORMAT (/////5X **H0=**F10.6*20X **WGRUB=**E13.6//)
C	
C	RETURN
	END
	SUBROUTINE ROUGH
	COMMON KF9KM9NAMP9NCYC9KMM9KMK9KFF
	COMMON HO+W+PI+WGRUB+CYC+AMP+KN+S +DG2(201)+DG4(201)
	COMMON XX(1501) +H(1501) +WEIN(16) +WROUGH(16) +G(1501)
	DIMENSION IR (1501)
	DC 301 J=1.KF
	$V = I_{\bullet} + S / H(J) / U_{\bullet} U U I C O S$
	V = MV
	$D = \{A \cup B \cup D \cup C \cup M \lor I \} = A \cup B \cup D \cup C \cup D \cup C \cup M \lor I \} = A \cup B \cup D \cup C \cup D \cup C \cup D \cup C \cup M \lor I \}$
301	$b_{2} = c_{A}r(b_{2})$
201	$WROUGE(KK) = 0_{-}$
302	WROUGE(KK) = WROUGH(KK) + 0.003/3*(TR(.I) + 4*TR(.I+1) + TR(.I+2))
	DO 303 J =KM+KFF+2
303	$WROUGH(KK) = WROUGH(KK) + 0_002/3_*(TR(J) + 4_*TR(J+1) + TR(J+2))$
	RETURN
	END

SUBROUTINE WAVE

r

C	COMMON REAR			~F5				
	COMMON Kryk		· 7 N F F 7 N F K F K	KFF 6 - DC2(20)	1-064 (201	,		
	COMMON HOTW	9P19WGRUB9C	TU PAMPORA	95 90021201	110041201			
	CUMMON XX(I)	5017 H(1501	1.4#210(10) • WROUGH (IC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	DIMENSION	(1201)	5 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 1					
С			. <u>.</u>					
	نل DO 201 ا	= 1, KF						
	DEL = AMP + COS(2.+CYC+PI+XX(J))							
	T(J) = (H(J))) - HO) / (H() + DE	_)**3 [`] ``				
201	CONTINUE							
	WSIN(KK) = 0	0.						
	DO 202 J=1	•KMK•2						
202	WSIN(KK) = 1	STN(KK) +	0.003/3.*	(T(J) + 4.*	FT (J+1) + 3	[(J+2))		
	DO 203 J=KI	4.KFF.2						
203	WSIN(KK) = V	SIN(KK) +	0.002/3.*	(T(.)) + 4.*	T(J+1) + '	[(.]+2))		
C C								
C	DETHON							
	END							
0.2000	0000000000000000	100000 END	of if course				·····	
1501	100000000000000000000000000000000000000	10000 END	OF RECORD				1	
1201	1001 9	14						
0.00	001 0.0000.	3 3.141592	60	-		15	~ ~	
1.	2.	• ك	4.	5.	10.	12.	20.	
25.	30.	35.	40.	45.	50.		_	
0.15	0.3	0.45	0.6	0.75	0.9	0.93	0.96	
0.99								
C D	ATA FOR DSH	(I), DV(I),	DG4(1), [0G2(1) + DG5	(I) ARE (DMITTED		
00000	00000000000000000	10000 END	OF INFORMA	TION				

```
PROGRAM ASPERTY (INPUT+OUTPUT+PUNCH)
C THIS PROGRAM IS TO SOLVE FOR THE PERTURBED PRESSURE DUE TO A SINGLE 3-D
    RIGID ASPERITY WITHIN AN ELASTOHYDRODYNAMIC CONTACT
С
 THIS PROGRAM CONSISTS OF 4 SUBROUTINES
C
                            IS USED TO TRANSORM THE INPUT DATA OF CHENG PROGRAM
С
 1 - SUBROUTINE TRANSFN
    FROM GLODAL COORDINATE TO ASPERITY COORDINATE
C
Ċ
 2 - SUBROUTINE INTEREN
                            IS USED TO INTERPOLATE SOME NEW DATA IN ASPERITY
    COORDINATE BY SECOND ORDER INTERPOLATION ROUTINE
С
 3 - SUBROLLINE ABCR IS TO FCRM THE A(29,14,14), B(29,14,14), C(29,14,14) AND
С
    R(29+14)
               MATRICES
С
 4 - SUBROUTINE TEFPHI
                           IS TC FORM MATRICES T(29,14,14), E(30,14,14), F(30,14)
С
    AND SOLVE FOR THE PERTURBED PRESSURE PHI (29,14) BY THE COLUMNWISE MATRIX
С
С
    INVERSION METHOD
С
С
 DATA CAPD NO. 1
С
    NC1 = NUMBER OF THE MAXIMUM ASPERITY AMPLITUDE
С
    NUB = NUMBER OF DIFFERENT VELOCITIES DATA
С
    NGAMAR = NUMBER OF THE ELLIFSTICITY RATIO OF ASPERITY
NPLOT = 0 +DO NOT PLOT THE RESULTS
С
С
    NPRINT2 = 0 , DO NOT PRINT THE RESULTS
С
    NPRINT = 0 , DO NOT PRINT THE RESULTS
С
С
C DATA CARD NO. 2
    BSTAR = THE RATIG OF THE MINUR AXIS OF THE ASPERITY TO THE HALF HERTZIAN
С
С
     CONTACI WIDTH
    X3 = THE DISTANCE BETWEEN THE ASPERITY CENTER AND THE CONTACT CENTER
¢
С
    DI = THE DISTANCE IN X-DIRECTION WHERE THE PERTURBED PRESSURE PHI IS
С
      ASSUMED TO BE ZERO
С
 DATA CARD NO. 3
С
    GAMMA(I) = ELLIPSTICITY KATIO DATA
С
C DATA CARD NO. 4
CIH(I) = ASPERITY AMPLITUDE DATA
C DATA CARD NO. 5
    U1(I), U2(I) = VELOCITY DATA
C
C DATA CARD NO. 6
    PHZ = HERTIZIAN PRESSURE
С
    ALSE = THE PRODUCT OF PRESSURE VISCOSITY COEFFICIENT AND THE EQUIVALENT
С
      YOUNGS MODULUS,
С
С
  DATA CARD NO. 7
    HO = CENTER FILM THICKNESS
С
С
C DATA CARD NO. 8
    KO = IN GLOBAL CUORDINATES, THE GRID NO. OF HERTZIAN CONTACT CENTER WITH
С
С
      XS(KO) = 0
    KF = IN GLOBAL COORDINATES, THE GRID NO. OF CONTACT EXITWITH XS(KF) = 1
С
    NC = IN ASPERITY COORDINATE. THE GRID NO. OF HERTZIAN CONTACT CENTER
С
    NX+NY = THE NO. OF TOTAL GRID POINTS IN X AND Y DIRECTION OF ASPERITY COORD.
С
С
    IDEG=2 MEANS & PARABOLIC INTERPOLATION ROUTINE USED IN SUBROUTINE INTERPN
С
```

```
C DATA CARD NG. 9
С
          DXS(I) = GRID SIZES DATA IN GLOBAL COORD. (FRUM CHENG PROGRAM)
C DATA CARD NO. 10
С
          PS(I) = STEADY STATE PRESSURE DATA FROM CHENG PROGRAM
C DATA CARD NO. 11
С
          HS(I) = STEADY STATE FILM THICKNESS DATA FROM CHENG PROGRAM
    DATA CARD NO. 12
С
C
          DX(I) = URID SIZES DATA IN X-DIRECTION OF ASPERITY COORD.
С
    DATA CARD NO. 13
С
          DY(I) = GRID SIZES DATA IN Y-DIRECTION OF ASPERITY COORD.
   DATA CAPD NO. 14
С
С
          MIN(I) = NO. USED IN SUBROLTINE INTERPN TO IDENTIFY THE GRID POSITION
С
С
              COMMON BSTAR, X3,C1
              COMMON ALPHA, ALAMDA, GINV
              CCMMON NX+NX1+NY+NY1+DI+CX(28)+ DY(14)+DEL(29+15)+ HTEP(29+15)+
            C H1HTEP(29,15), P1(29), F1(29), X(29)
              COMMON A(29+14+14)+ B(29+14+15)+ C(29+14+14)+ R(29+14)
              COMMON PHI(29,14), P1PHI(29,14), HT(29,15), NPRINT, NPRINT2
С
              DIMENSION DXS(00) + XS(80) + XXS(80) + PS(80) + HS(80) + MIN(29) + PS(80) + HS(80) + MIN(29) + PS(80) + PS(80
            1×0C(29) • PPLOT(49) • Y(15) • F1EP(29) • C1H(5) • EP1(29) • U1(3) • U2(3)
              DIMENSION GAMAR(5)
С
С
              READ CONSTANT
С
              READ D.NC1.NUD.NGAMAR.NPLOT.NPRINT2.NPRINT
              READ 2.6STAR.X3.DI
              READ C+ (GAMAR(I) + I=1+NGAMAR)
              READ 2, (C1H(I), I=1, NC1)
              DC 100 I=1.NUB
100
              READ 3,01(I), 02(I)
              READ COPHZOALSE
              READ 2.HO
              PEAD S+KO+KF+NC+NX+NY+IDEG
              KFF = KF-1
              NX1 = NX-1
              NYI = NY-1
              NCC = NC + 1
              ALPHA = AL3E*PHZ
С
              READ SMOOTH FILM SOLUTION DATA
              READ 2, (DXS(I), I=1, KFF)
              READ 3, (PS(I), I=1,KO)
              READ 3, (HS(I)+1=1,KO)
              FEAD 2+(DX(I)+I=1+NX1)
              PEAD 2+(DY(I)+I=1+NY1)
              READ >, (MIN(I), I=1.NC)
              PRINT 1
              PRINT 53
              PRINT 0.NC1.NUE.NGAMAR.NFLOT.NPRINT2.NPRINT
              PRINT 31
              PRINT 4,BSTAR,A3,DI
              PPINT 44
```

ł

	PRINT 4,(GAMAR(I),I=1,NGAMAR)
	PRINT 55
	PRINT 4,(ClH(I),I=1,NCl)
	PRINT 32
	DO 99 1=1.NUB
99	PRINT 9, I, U1(I), U2(I)
	PRINT 33
	PRINT 4,PHZ,ALJE,ALPHA
	PRINT 34
	PRINT 4.HO
	PRINT 36
	PRINT 0,KC,KF,NC,NX,NY,ICEG,KFF,NCC,NX1,NY1
	$x_{S(1)} = -5$.
	DO 101 I=2.KF
101	xS(I) = xS(I-1) + DxS(I-1)
	DO 102 I=1,KO
102	XXS(I) = (XS(I) - X3) / BSTAR
	X(1) = DI
	DO 103 I=2,NX
103	X(I) = X(I-1) + OX(I-1)
	DO 106 I=1,NX
106	XOC(I) = X(I) *BSTAR + X3
	$Y(1) = \hat{U}_{\bullet}$
	DO 110 J=2.NY
110	Y(J) = Y(J-1) + DY(J-1)
	PRINT 38
	PRINT / + (I + PS(1) + I = 1 + KO)
	PRINT 39
	PRINT 7, $(I,HS(I),I=1,KO)$
	PRINT 40
	PRINT 7. (I.DXS(I).I=1.KFF)
	PRINT 37
	PRINT 7, $(1, XS(1), 1=1, KO)$
	PRINT 45
	PRINT 7. $(I \times XXS(I) \times I = 1, KO)$
	PRINT 42
	PRINT 7, (I, DX(I), I=1, NX1)
	PRINT 43
	$PRINT 7 \cdot (1 \cdot DY(1) \cdot I = 1 \cdot NY1)$
	PRINT 47
	PRINT $7 \cdot (T \cdot X(T) \cdot I = 1 \cdot NX)$
	PRINT 50
	$PRINT 7 \cdot (I \cdot XOC(I) \cdot I = 1 \cdot NX)$
	PRINT 51
	PRINT 7. $(J,Y(J),J=1,NY)$
	PRINT 41
	PRINT 6. (MIN(I), I=1, NC)
С	
-	D0 104 I=1,NC
104	CALL TRANSFN(XXS, PS, HS, KC, X(I), P1(I), H1(I), MIN(I), IDEG)
	IF (NC .EQ. NX) GO TO 107
•	DO 105 1=NCC.NX
	$P1(I) = SQRT(A \forall S(1 XUC(I) * * 2))$
105	$H_1(1) = 1$.
107	CONTINUE

н

11 0

....

. .

.

.

....

.

-- .

```
DO 111 I=1+NX
      EPI(I) = EXP(-PI(I) * ALPHA)
111
      H1EP(I) = H1(I) * *3*EP1(I)
      PRINT 48
      PRINT 7, (I, P1(I), I=1, NX)
      PRINT 49
      PRINT 7, (1, H1(I), I=1, NX)
      PRINT 54
      PRINT 7, (I, EP1(I), I=1, NX)
      PRINT 55
      PRINT 7, (I, HIEP(I), I=1,NX)
С
      DO 1000 IIK=1,NGAMAR
      GAMMA = GAMAR(IIK)
      GINV = 1./GAMMA##2
      DO 1000 IIJ=1,NUB
      UD = (U1(IIJ) - U2(IIJ)) *0.5
      US = (U1(IIJ)+U2(IIJ))*0.5
      ALAMDA = 48.*UU/HO**2*BSTAR
      ALAM2 = 48.*US/HO**2*BSTAR
      ALAM3 = 46./32./ALAM2
      ALAM4 = ALAM3 / GAMMA
С
               III=1,NC1
      DO 1000
      C1 = C1H(III)
      PRINT 56
      PRINT Y, IIJ, UD, US, ALAMCA, ALAM2, ALAM3, ALAM4
      PRINT 52
      PRINT Y, III, C1, PHZ, UD, ALSE, BSTAR, GAMMA, X3
С
      TO TRANSFORM KNOWN DATA TO NEW COORDINATES
С
С
      TO INTERPOLATE NEW RESULTS FRON KNOWN DATA AT NEW COORDINATES
      CALL INTERPN(Y+HIEP,EP1)
С
С
      TO FORM MATRICES A(I,J,K), B(I,J,K), C(I,J,K), R(I,J)
      CALL ABCR
С
С
      TO FORM MATRICES T(I,J,K), E(1,J,K), F(I,J) AND
С
      SOLVE FOR PHI(I,J), PIRFI(I,J)
      CALL TEFPHI
С
      J = 1
      PRINT 8.J
      DO 108 I=1,NX
108
      PPLOT(1) = PHI(I,J)
C STPLT1
          IS A LIBRARY SUBROUTINE TO PLOT RESULTS
      CALL STPLT1(1,X,PPLOT,29,1H*,5,5HPHI-X)
      CALL STPLT1(1+ACC+PPLOT+29+1H*+7+7HPHI-XOC)
      DO 109 I=1.NX
109
      PPLOT(I) = PIPHI(I,J)
      CALL SIPLT1(1,X,PPLOT,29,1H*,7,7HP1PHI-X)
      CALL STPLT1(1+XOC+PPLOT+25+1H*+9+9HP1PHI-XOC)
1000
      CONTINUE
                                                         5
```

139

- - -

1, 1.

```
С
1
      FORMAT(1H1)
2
      FORMAT (8F10.6)
3
      FORMAT(5(2X,E13.6))
4
      FORMAT(9(2X+F13.6))
5
      FORMAT(1615)
6
      FORMAT (18(2X.15))
7
      FORMAT(8(X+12+X+E13-6))
8
      FORMAT(////6X,*J=*,I3////)
9
      FCRMAT(15,8(2X,E13.6))
      FORMAT (10X+2F10.6)
10
      FORMAT(X,14E9.2)
11
      FORMAT(7X, #BSTAR#, 13X, #A3#, 13X, #DI#)
31
32
      FORMAT(4x,*I*,/x,*U1(1)*,11x,*U2(1)*)
      FORMAT(7X,*PHZ*,11X,*AL3E*,10X,*ALPHA*)
33
34
      FORMAT(//7X,*HO*/)
35
      FORMAT(6X, *C1H(1)*)
      FORMAT(4X,**KO*,5X,**KF*,5X,**NC*,5X,**NX*,5X,**NY*,3X,*IDEG*,4X,**KFF*,
36
     6 4X**NCC*+4X**RX1*+4X+*NY1*)
37
      FORMAT(//6X+#X5(I)#/)
      FORMAT(//6X+#P5(1)#/)
38
39
      FCRMAT(//6X+#HS(I)#/)
40
      FCRMAT(//6X, #DAS(1)#/)
      FORMAT(6X+*MIN(I)*)
41
      FORMAT(//6X,*DA(I)*/)
42
43
      FORMAT (//6x, #DY(I) #/)
44
      FORMAT(6X, #GAMMA(I)#)
45
      FORMAT(//6X,#XXS(I)#/)
47
      FORMAT(//6X+#X(I)#/)
48
      FCRMAT(//6X,*P1(1)*/)
49
      FCRMAT(//6X+#H1(I)#/)
50
      FORMAT(//6X+*xUC(I)*/)
51
      FCRMAT(//6x,*Y(J)*/)
      FORMAT(//2X,*Ili*,7X,*Cl*,12X,*PHZ*,14X,*UD*,14X,*G*,10X,*BSTAR
52
     2 * • 10X • * GAMMA* • 12X • * X3*/)
53
      FORMAT(4X+*NC1*++X+*NU6*+X+*NGAMAR*+2X+*NPLOT*+X+*NPRINT2*+X+
     3 #NPRINT#)
54
      FORMAT(//6X,*EP1(I)*/)
55
      FORMAT(//6X+#HIEP(I)#/)
56
      FORMAT(/////////////X+*IIJ*+X+*+D*+13X+*US*+9X+*ALAMDA*+10X+*ALAM2*
     6 .10X.**ALAM3*,10X.**ALAM4*/)
С
С
      STUP
С
      END
```


 $\delta < 1$

```
SUBROUTINE TRANSFN (XXS+PS+HS+KU+X+P1+H1+MIN+IDEG)
      DIMENSION XXS(OU), PS(OU), HS(BO)
      IF (X .NE. XXS(MIN)) GO TC 755
      P_1 = PS(MIN)
      H1 = F5(MIN)
      GO TO 756
755
      FACTOR = 1.
      MAX = MIN + IDEG
      DO 701 J=MIN.MAX.
701
      FACTOR = FACTOR*(X-XXS(J))
С
      EVALUATE INTERPOLATING POLYNOMIAL
      P1 = 0.
      H1 = 0.
      DC 702 I=MIN.MAX
      TERMP = PS(I) * FACTOR/(X-XXS(I))
      TERMH = HS(I) + FACTOR/(X-XXS(I))
      DO 703 J=MIN,MAX
      IF(I . NE. J) GO TO 757
      GC TO 703
757
      TERMP = TERMP/(XXS(1)-XXS(J))
      TERMH = TERMH/(XXS(I)-XXS(J))
703
      CONTINUE
      P1 = P1 + TERMP
      H1 = H1 + TERMH
702
      CONTINUE
756
      RETURN
С
      END
      SUBROULINE INTERPN(Y, HIEF, EP1)
С
      COMMON BSTAR, X3, C1
      COMMON ALPHA, ALAMDA, GINV
      COMMON NX+NX1+NY+NY1+DI+CX(26)+ DY(14)+DEL(29+15)+ HTEP(29+15)+
     C H1HTEP(29,15), P1(29), F1(29), \chi(29)
      COMMON A(29,14,14), B(29,14,15), C(29,14,14), R(29,14)
      COMMON PH1(29,14), PIPHI(25,14), HT(29,15), NPRINT, NPRINT2
      COMMON PHIOP(29)
      DIMENSION Y(15), H1EP(29), EP1(29)
С
      DO 406 I=1+NX
      DO 407 J=1,NY
      XYI = X(I) * 2 + Y(J) * 2 - 1.
      IF (XYI .GE. 0.) GO TO 451
      DEL(I+J) = CI+XYI
      GC TO 452
451
      DEL(I \cdot J) = 0.
452
      HT(I,J) = HI(I) + DEL(I,J)
      HTEP(I \bullet J) = HT(I \bullet J) * *3*EF1(I)
      H1HTEP(I,J) = H1EP(I) - HTEP(I,J)
407
      CONTINUE
406
      CONTINUE
      J=1
      PRINT 416
      PRINT 7, (I, DEL(1, J), I=1, NX)
```

```
141
```

PRINT 417 PRINT 7.(I. HT(I.J).I=1.NX) IF (NPRINT .EQ. 0) GO TC 490 PRINT 418 FRINT 10, ((HTEP(I,J),J=1.NY),1=1.NX) PRINT 419 PRINT 10, ((HIHTEP(I,J)+J=1,NY), I=1,NX) С FORMAT(8(X,12,X,E13.6)) 7 FORMAT (X, 15E9.2) 10 416 FORMAT (//GX, * DEL */) 417 FORMAT (//GX, * HI */) 418 FORMAT (//6X, +HIEP+/) 419 FORMAT(//6X.*HiHTEP*/) С 490 RETURN С END SUBROUTINE ABCK С COMMON BSTAR, X3, C1 COMMON ALPHA.ALAMDA.GINV COMMON NX, NX1, NY, NY1, DI, C/(28), DY(14), DEL(29, 15), HTEP(29, 15), C +1+TE+(29,15), +1(29), +1(29), x(29)COMMON A(29+14+14) + B(25+14+15) + C(29+14+14) + R(29+14) COMMON PHI(29,14), PIPHI(25,14), HT(29,15), NPRINT, NPRINT2 COMMON PHIOP(29) С DO 501 I=1,NX DC 501 J=1.NY1 DO 501 K=1,NY1 A(I,J,K) = 0.B(1,J,K) = 0. $C(I \cdot J \cdot K) = 0.$ 501 CONTINUE D0 502 I=1.NX.NX1 D0 502 J=1+NY1 B(I,J,J) = 1. $R(I_{\bullet}J) = 0_{\bullet}$ CONTINUE 502 DO 503 I=2.NX1 J = 1A(I,J,J) = DY(J)/DX(I-1)*(HTEP(I,J) + HTEP(I-1,J) + ALPHA*HTEP(I-1,J)A * (P1(i) - P1(I - 1)))B(1,J,J) = -DY(J)*((HTEP(I+1,J)+HTEP(I,J))/DX(I)+(HTEP(I,J)+ B HTEP(i-1,J))/UX(I-1) + ALPHA*HTEP(I,J)*((P1(I+i)-P1(I))/DX(I)-B (P1(I)-P1(I-1))/DX(I-1)) - GINV*(DX(I-1)+DX(I))*(HTEP(I+J+1)* B + TEP(I,J))/DY(J) $B(I \cdot J_{J} + 1) = GINV*(DX(I-1) + DX(1))*(HTEP(I, J+1) + HTEP(I, J))/DY(J)$ C(I+J+J) = DY(J)/D)(I)*(FTEP(1+1+J)+HTEP(I+J)-ALPHA*HTEP(I+1+J)* C (P1(I+1)-P1(I)))R(I•J) = UY(J)*((HiHTEP(I+1,J)+HIHTEP(I,J))*(P1(I+1)-P1(I))/DK(I)+ R (H1HTEP(I,J)+H1HTEP(I-1,J))*(P1(I)-P1(I-1))/DX(I-1) + ALAMDA* R (DEL(1+1,J)-DLL(1-1,J))

.. ..

.....

```
С
                                                ۲
      DDX = (DX(I-1)+DX(I))/2.
      D0 504 J=2+NY1
      DDY = (DY(J-1)+DY(J))/2.
      A(I+J+J) = DY/DX(I-1)*(FTEP(I+J)+HTEP(I-1+J)+ALPHA*HTEP(I-1+J)*
     A (P1(I)-P1(I-1)))
      B(I,J,J,J-1) = GINV*DDX/DY(J-1)*(HTEP(I,J)+HTEP(I,J-1))
      B(I,J,J) = -DDY*((HTEF(I+1,J))+HTEP(I,J))/DX(I) + (HTEP(I,J))
     B HTEP(I-1,J))/UX(I-1) + ALPHA*HTEP(I,J)*((P1(I+1)-P1(I))/DX(I)-
     E (P1(I)-P1(I-1))/Dx(I-1))) = GINV*DDX*((HTEP(I,J+1)+HTEP(I,J))/
     B DY(J) + (HTEP(I,J) + HTEP(I, -1))/DY(J-1))
      B(I \cdot J \cdot J + 1) = GINV \oplus DDX/DY(C) \oplus (HTEP(I,J+1) \oplus HTEP(I,J))
      C(I+J+J) = DDY/DX(I)*(HTEF(I+1+J)+HTEP(I+J) - ALPHA*HTEP(I+1+J)*
     C (P1(1+1)-P1(1))
      R(I.J) = DDY*((H1HTEP(I+1,J)+H1HTEP(I,J))*(P1(I+1)-P1(I))/DX(I) -
     R (H1HTEP(I+J)+H1HTEP(I-1+J))*(P1(I)-P1(I-1))/DX(I-1) + ALAMDA*
     R (UEL(I+1,J)-OLL(I-1,J))
504
      CONTINUÉ
      CONTINUE.
503
С
                   .Eu. 0) GC TC 590
      IF (NPRINT
      PRINT 521
      DC 505 I=1+NX
      PRINT 525.I
505
      PRINT 11. ((A(I.J.K), K=1., N.1), J=1., N.1)
      PRINT 522
      DO 506 I=1.NX
      PRINT 525,I
506
      PRINT 11+((R(I+J+K)+K=1+N+1)+J=1+N+1)
      PRINT ,523
      DO 507 I=1.NX
      PRINT 525.I
507
      PRINT 11+((C(I+J+K)+K=1+NY1)+J=1+NY1)
      PRINT 524
      PRINT 11+((R(I+J)+J=1+M;Y1)+I=1+M;X)
С
11
      FORMAT(X,14E9.c)
521
      FORMAT(////6X, *A(I, J,K) #/)
522
      FCRMAT(////6X,**B(I,J,K)*/)
523
      FORMAT(////6X,*C(I,J,K)*/)
524
      FORMAT(////6X+*R(I,J)*/)
525
      FCHMAT(/6X,#I=#,I3)
590
      RETURN
С
      END
```

```
SUBROUTINE TEFPHI
С
       COMMON BSTAR, X3, C1
       COMMON ALPHA, ALAMDA, GINV
       COMMON NX, NX1, NY, NY1, DI, CX (28), DY (14), DEL (29, 15), HTEP (29, 15),
      C H1HTEP(29,15), P1(29), F1(29), X(29)
       COMMON A (29,14,14), B (29,14,15), C (29,14,14), R (29,14)
       COMMON PHI(29,14), PIPHI(25,14), HT(29,15), NPRINT, NPRINT2
С
       DIMENSION T(29,14,14), E(30,14,14), F(30,14), RAF(14)
       DIMENSION TT(14+14), TI(14+14), IR(14), EE(14)
С
       D0 601 I=1+NX+NX1
       DG 602 J=1+NY1
       DO 603 K=1,NY1
       T(I_{\bullet}J_{\bullet}K) = 0_{\bullet}
       E(1+1,J,K) = 0.
603
      CONTINUE
      T(I \bullet J \bullet J) = 1 \bullet
      F(I+1+J) = 0.
602
      CONTINUE
601
      CONTINUE
С
      DO 604 I=2,NX1
      D0 605 J=1.NY1
      DO 605 K=1.NY1
      TT(J_{,K}) = B(I_{,J_{,K}})
      DO 607 L=1+NY1
607
       TT(J_{9}K) = TT(J_{9}K) + A(I_{9}J_{9}L) + E(I_{9}L_{9}K)
605
      CONTINUE
С
С
      CALL LIBRARY SUBROUTINE FOR MATRIX INVERSION
      CALL MI(TT,NY1,NY1,DET,ICET,TI,IR,IER,EE)
      D0 608 J=1,NY1
      DO 608 K=1.NY1
      T(I,J,K) = TI(J,K)
608
      DO 609 J=1+NY1
      RAF(J) = R(I \cdot J)
      D0 609 L=1+NY1
609
      RAF(J) = RAF(J) - A(I,J) + F(I)
      DO 610 J=1+NY1
      F(1+1+J) = 0.
      DO 610 L=1,NY1
      F(I+1,J) = F(I+1,J) + T(I,J,L) * RAF(L)
610
      D0 611 J=1+NY1
      DC 611 K=1+NY1
      E(I+1, J, K) = 0.
      D0 612 L=1.NY1
      E(I+I+J+K) = E(I+I+J+K) - T(I+J+L)*C(I+L+K)
612
611
      CONTINUE
604
      CONTINUE
```

```
NX2 = NX + 1
       IF (NPRINT .EQ. 0) GO TC 690
       PRINT 661
       D0 631 I=1.NX
       PRINT 066.1
631
       PRINT 11,((T(I+J+K)+K=1+NY1),J=1+NY1)
       PRINT 062
       D0 632 1=2,NX2
       PRINT 066.1
632
       PRINT 11, ((E(I+J+K)+K=1+N+1), J=1+N+1)
       PRINT 663
                           DO 633 I=2.NX2
633
       PRINT 11, (F(1,J), J=1,NY1)
С
690
       CONTINUE
       I = NX
       D0 621 J=1,NY1
       P \vdash I(I \bullet J) = \vdash (I + I \bullet J)
621
       P1PHI(I,J) = PI(I) + PHI(I,J)
       DO 622 II=1.NX1
       I = NX - II
       D0 623 J=1,NY1
       PHI(I,J) = F(I+1,J)
       DO 624 K=1.NY1
624
       PHI(I,J) = PHI(I,J) + E(I+1,J,K) * PHI(I+1,K)
623
       P1PHI(I \cdot J) = P1(I) + PHI(I \cdot J)
622
       CONTINUE
       IF (NPRINT2 .EQ. 0) GO TC 691
       PRINT 064
      DO 625 I=1.NX
      PRINT 066,1
      PRINT 7. (J.PHI(I.J).J=1.NY1)
625
      PRINT 665
      D0 626 I=1.NX
      PRINT 666+1
626
      PRINT 7, (J, P1PHI(1, J), J=1, NY1)
691
      CONTINUE
С
7
      FORMAT(8(X,12,X,E13.6))
11
      FORMAT(X,14E9.2)
      FORMAT(////6X,*T(I,J,K)*/)
661
662
      FORMAT(////6X,*E(I,J,K)*/)
663
      FURMAT(////6X,*F(1,J)*/)
664
      FOPMAT(////6X,*PHI(I,J)*/)
665
      FORMAT(////6X,*P1PhI(I,J)*/)
666
      FORMAT(6X, +1=+,13)
С
      RETURN
С
      END
```

С

0000000	0000000000	000000 EN	0 OF	FECORD					
1	1 2	1 1	0						
0.0312	25 -0.25	-5.							
1.	10.								
0.3									
7.54	3660E-13	0.							
0.003	160.								
0.0000	01								
61	69 29	29 15	2						
0.5	0.5	0.5		0.5	0.25	0,25	0.25	0.25	
0.25	0.45	v.125		0.125	0.0625	0.0625	0.031	25 0.031	25
0.01562	5 0.01562	25 0.007	8125	0.0075125	0.00781	25 0.0078129	0.0078	125 0.007	8125
0.0078	125 0.0078	8125 0.015	625	0.015025	0.0312	25 0.03125	0.0625	5 0.06	25
0.0312	5 0.0312	25 0.031	25	0.03145	0.0312	25 0.03125	0.0150	625 0.01	5625
0.0078	125 0.0078	3125 0.007	6125	0.007612	5 0.0078	3125 0.007812	5 0.0078	8125 0.00	78125
0 0156	25 0.0156		25	6.03165	0.0312	25 0.03125	0.0312	25 0.03	125
0.0625	0.0625	5 0.062	5	0.0625	0.125	0.125	0.125	0.12	5
0 125	0.125	0 126	5	6.125	0.125	0.123	0.125	0.12	5
0.125	0.125	4 721456	F-06	1 2505	925-05	2 6818795-0	5 5 5 6	803255-05	
0.10		4.721430		1.0305	745 04	2 3516475-0		10323E-05	
8.10	45261-05	1.220191		1.9393	19E-04	1 1267/65 0		++007E-04	
1.70	6840E-03	3.050854		0.00/9	43E-03	1.135/456-6	2 2.10	0//152-02	
3.20	3592E-02	4.993023	E-02	6.3442	OUE-02	0.1032196-0	2 9.20	54604E-02	
1.05	6967E-01	1.202896	E-01	1.3666	92E-01	1.54/9546-0	1 1.14	+53172-01	
1.95	6441E-01	2.178178	E-01	2.0266	99E-01	3.0/3501E-0	1 3.90	00927E-01	
4.59	0188E-01	5.079945	E-01	6.5128	94E-01	6.866959E-0	1 7.18	B/712E-01	
7.48	0454E-01	7.748653	E-01	7.9950	05E-01	8.221692E-0	1 8.32	23140E-01	
8.43	02705-01	8.479759	E-01	8.5282	27E-01	8.575694E-0	1 8.62	22175E-01	
8.66	7687E-01	8./12246	E-01	8 .7 558	66E-01	8.798561E-0	1 8.88	31239E-01	
8.96	03685-01	9.108461	E-01	9.2434	99E-01	9.366079E-0	1 9.47	76705E-01	
9.57	5759E-01	9.063579	E-01	9.3U76	18E-01	9.908762E-0	1 9.97	74024E-01	
1.00	0000E+00								
1.60	0004E+03	1.2656801	E+03	9.6828	92E+02	7.080937E+0	2 4.85	54906E+02	
3.88	4724E+02	3.011240	E+02	2.2360	86E+02	1.561616E+0	2 9.91	4780E+01	
5.31	86712+01	3.4695888	E+01	1.9547	57E+01	1.337918E+0	1 8.29	92149E+00	
6.20	7885E+00	4.4726221	E+60	3.7470	U8E+00	3.122434E+0	0 2.84	+8927E+00	
2.60	1504E+00	2.379973	E+00	2.1038	26E+00	2.012162E+0	G 1.86	53708E+00	
1.73	6796E+00	1.029467	E+00	1.4642	92E+00	1.350633E+0	0 1.21	9590E+00	
1.15	2006E+00	1.0954406	E+UU	1.0713	96E+00	1.062275E+0	0 1.09	5176E+00	
1.04	9277E+00	1.0442826	E+00	1.0399	55E+00	1.036181E+0	0 1.03	34440E+00	
1.03	2793F+00	1.032001	E+00	1.0312	295+00	1.030474E+0	0 1.02	9738E+00	
1.02	S019F+00	1.028316	+00	1.0276	28E+00	1.026954E+0	0 1.02	5648E+00	
1.02	4392F+00	1. 1220346	+00	1.0198	46E+UU	1.017787E+0	0 1.01	5850E+00	
1.010	4002F+00	1.012247	+00	1.0090	23E+00	1.005711E+0	0 1.00	3650E+00	
1.00	00005+00						• • • • • •		
1 0	1-0	0.5		0.5	0.375	0.375	0.125	0.129	5
0 125	0.125	0.125		0.125	0.25	1.25	0.25	0.25	-
0.125	0.125	0.125		0.125	0.125	0,125	0.375	0.379	5
0.100	0-125	3-0		1.0	V . 1 C J		0.0.0	v.J/.	-
0.2	0.35	1•U ∧ 1⊃⊑		0.125	0 125	0.125	0.125	0.120	š
V • C J 0 375	V•C5	0 • I C J		0.5	1.0	1.0	0.125	0.12.	-
V.3/3			55	55 E	5 54	56 56 5	6 56	56 57	57
52	53 54	54 55	53	55 5	J 50 7 68	56 50 5 58 58 5	0 50 0 50	50 51	
1000000	51 51	51 51 000000 END	20 05		1 20	JU JU J	, ,,		
000000000			, UF	THE OWNER	100				

. 1