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1.1 

1. THE LANGUAGE
 

INTRODUCTION
 

SSL (Software Specification Language) is a new forma­

lism for the definition of specifications for software systems.
 

The language provides a linear format for the representation
 

of the info:mation normally displayed in a two-dimensional
 

module inter-dependency diagram. In caomparing SSL to FORTRAN 
or ALGOL, one finds the comparison to be largely complementary
 

to the algorithmic (procedural) languages. SSL is capable of
 

representing explicitly module interconnections and global
 

data flow, information which is.deeply imbedded in the
 
agorithmic languages. On the other hand, SSL is not designed
 

to depict the control flow within modules. We refer to the
 

SSL level of software design which explicitly depicts inter­

module d.ta flow as a functional specification.
 

We wish to express our appreciation to Mr. Bobby
 

Hodges of Data System Labortory, George C. Marshall Space
 

Flight Center for his guidance and support in the performance
 

of this task.
 

1.1.1 Need for SSL
 

The current state of the art in software development
 

permits insufficient formal evaluation prior to implementation.
 

Such questions as:
 

* Are all requirements fulfilled?
 
* Have all software elements been defined?
 

* Are the element interconnections consistent?
 

cannot be answered in a manner that is independent of the
 

designer's opinion. The intent of SSL is to formalize, through
 

a language, the statement of the functional specification for
 

a software system. Given this formal statement expressed in
 

SSL and a translator for the SSL language, an independent
 

evaluation of the software may begin much earlier in the
 
development cycle.
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In addition to evaluation, other aspects of SSI, can
 
aid both the designer and implementer. Several things that
 
are characteristically omitted or inadequately performed
 

during early design but required in SSL are:
 

* 	 A complete and consistent statement of the
 
software requirement
 

* 	 Unambiguous c6mmunication of software organiz2­
tion to the detailed designer
 

a 	 Enumeration of intraprogram consistency checks
 
(assertions) useful during checkout.
 

A translator also provides tables and summaries for the final
 
software documentation and a software element 
cross reference
 

,
file. The latter could be used to statically verif the
 
fidelity of the final code to original specifications.
 

1.1.2 Unique Features of SSL 

The major contribution of SSL is the formal approach 
it brings to a phase of software development previously
 
relegated to heuristic techniques as discussed above. Within 
this framework, there are several unique technical features
 

possessed by SSL. First, the projection of a specialized
 
form of software requirements onto the objects being defined
 
establishes a rationale for the software structure not present
 
in other methodologies. These requirements are an important
 
aspect of consistency checking when evaluating a specific
 
functional design. Second, the incorporation of levels of
 
abstractions directly in a design methodology is a step forward
 
in software engineering. Lastly, an automated SSL translator
 

is being designed that is one of several interlocking software
 
design and evaluation tools collectively called Software
 
Specification and Evaluation System (SSES). SSES includes a
 
static codb anaiyzer, a dynamic code analyzer, and a test
 
case analyzer. The specific capability that SSL brings SSES
 
is the ability to test and evaluate software design early in
 

the development cycle.
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also incorporates a flexible data abstraction
 

capability and places emphasis-on assertions as a means of
 

describing the dynamic behavior of the-software being designed.
 

Although neither of these is unique, they are relatively new
 

concepts in the field of computer s-ience.
 

1SSL 


1.1.3 Background
 

In evaluating a new software system, particularly a
 

programming language, it is important to trace the historical
 

developments to which it relates and upon which it is based.
 

The MIL (Module Interconnection Language),system [i] was a
 
principal contributor to the concepts of data creation and
 

data availability restrictions among modules within SSL. 

Guidelines imposed for the partition of programs into sub­

systems are derived from the principles embodied in the concept
 

of levels of abstraction [2J Module descriptions in SSL
 

are a linearlized form of the information available in the
 

two-dimensional diagrams referred to as structure charts[3].
 
The data description capability'is largely the same as that of
 

PASCAL [4]. The syntax for expressions is derived from, but
 

not identical to, that of ALGOL 60 [5]. Assertions in SSL
 

have the form and appearance of those in the language
 

NUCLEUS [6].
 



1.2 THE GRAMMAR
 

The material in this section is arranged in the form
 

of a reference guide to the language, and not-tutorilly in the ".
 
manner of a user's manual. To aid the reader, a cross reference
 

index is provided in the last section.
 

1.2.1 Metalanguage Description
 

For the purposes of automatic translation and unambig­

uous communication, it is desirable to express SSL via a formal
 

grammar. The vehicle selected for this purpose is the Backus-


Naur-Form (BNF) metalanguage [53. BNF has the advantages of being 
well known and compact in representation. In addition, most
 
formal methodologies for analyzing grammars are based upon
 

BNF representation.
 

Any nontrivial language contains an infinite number of
 

legal sentences. Each sentence, in turn, is composed of the
 
concatenation of strings; strings are composed of characters.
 

A grammar uses strings as operands and combines them under the
 

operation of concatenation to finitely depict, all legal senten­

ces. The way in which this is done in BNF cah best be inter­

preted via an example. Consider the following production:
 

<ab> :. albi <ab> a
 

Sequences of characters enclosed within the brackets < >repre­

sent metalinquistic variables called nonterminal symbols. The
 

marks "::=" and "I" are metalinquistic connectives meaning "is 
composed of" and "or" respectively. Any string not a nonterminal
 

Dr connective denotes itself and is called a terminal-symbol.
 

Juxtaposition of symbols between connectives in a formula, such
 

as the example, signifies that the symbols must be in the exact
 

)rder denoted. The above production indicates that <ab> may
 

iave the values:
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O-	 a 

• b 

* 	 a, aa, aaa,
 

* 	 b, ba, baa, . 

In BNF, the null string is des,-gnated by <empty> = 

SSL is represented as a context-free grammar which
 

means:
 

* 	 There exist a finite number of productions
 

of the type of the above example.
 

* 	 The left part of each production (i.e., left
 

of ::=) consists of a single nonterminal
 
symbol.
 

0 	 There exists a unique nonterminal symbol (called
 

the distinguished symbol) which is in the right
 

part.of no production except its own.
 

1.2.2 Overview of SSL Grammar
 

Prior to examining the detailed structure of SSL com­

ponents, it will be useful to identify the overall structure of
 

a software specification expressed in SSL. Figure 1-1 depicts
 

the sequencing of the syntactical items used to describe an
 

SSL specification.
 

A specification consists of one or more subsystems,
 

each but the first having a name. The first subsystem is
 

referred to as the "main" subsystem and each subsystem is
 

composed of a preamble and one or more module descriptions.
 

The preamble defines the local environment for the subsystem
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(constants, requirements, data formats, etc.)'and the module
 

.descriptions indicate operational aspects of program units
 

(program units' are subprograms, procedures, etc.).
 

In the following subsections, the detailed syntactical
 

descriptions will be presented' To facilitate cross referenc­

ing, Sectien 2 contains an index of nonterminal symbols.
 

1.2.3 Basic Vocabulary
 

The basic vocabulary of SSL consists of special
 

symbols, letters, digits, and reserved words. Each special
 

symbol (Table 1-1) is primarily a singlecharacter except
 

where limited computer character fonts require the concatena­

tion of two characters. Where a special symbol consists of
 

more than one character, it must be written without an inter­

vening blank. Subsequently, special symbols other than ' ,
 
II", and '12 will be referred to as delimerers. Each char­

acter in Table 1-1 is available within the ANSI standard codes 

[7] for ASCII-S, EBCDIC-8, and HOLLERIT-256. Substitutions
 

may be necessary if an SSL translator is implemented in an
 

environment not conforming to the standard character codes.
 

Letters and digits do not have individual meanings
 

but are used to construct identifiers, numbers, and reserved
 

words. The following basic productions enumerate these ele­

ments of the yocabulary:
 

<letter> ::= albI ... 1z 

<digit> ::= 0111 . 19 
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Reserved words (Table 1-2) are composed entirely of
 

sequences of letters. In this document4-tbey are normally
 

underlined. A reserved word may not contain imbedded blanks
 

and must 	always be followed by A blank'or a "delimeter.
 

The construct 

1* any sequence of symbols not containing *7. 

,may be inserted between any two identifiers, numbers, delimeters, 

or -reserved words- It is called a comment any may be removed 

from the program text without altering its meaning. 

1.2.4 	 Basic Language Elements
 

1.2.4.1 	 Identifiers
 

Syntax
 

<identifier> 	::= <letter>I<identifier> <letter>
 

1<{dentifier> <digit> <identifier>
 

Examples
 

Legal Illegal 

a 5ad 

b27 sr$p 

or !4dr 
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TABLE 1-2 SSL RESERVED WORDS
 

Access 


Accesses 


Analog 


And 


Array 


Assume 


Assumes 


Boolean 


-Case 


Char 


Conditionally 


Constant 


Constants 


Constraint 


Constraints 


Create 


Creates 


Digital 


Doubleprecision 


End 


Entry 


Equ 


Execute 


Executes 


False 


File 


For 


Forall 


From 


Fulfil' 


Fulfills 


Global 


Implies 


In 


Input 


Inputs 


Integer 


Iteratively 


Modify 


Modifies 


Module 


Of
 

Or
 

Output
 

Outputs
 

Real
 

Receive
 

Receives
 

Record
 

Requirement
 

Requirements
 

Satisfies
 

Satisfy
 

Set
 

Subjectto
 

Subsystem
 

Text
 

To
 

Transduction
 

Transductions
 

Transmit
 

Transmits
 

True
 

Type
 

Types
 

Use
 

Uses
 

Usina
 

Variable
 

Variables
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--- --- --

Semantics
 

Identifiers must begin With an alphabetic character 

and contain only letters, digits, and the " " symbol. The 

latter is known as the break character. Identifiers have no 

inherent meaning, but serve as identification for variables; 

modules, subsystdms, and other'elements-of a softWare specifica 

tion. 

-Identifiers may be of arbitrary length but must be
 

unique within the first twelve characters. No identifier may
 

be equivalent to the first twelve characters of a reserved word. 

,h same identifier may not be used to denote two different 
'auantities within a subsystem with the exception of field names 

in different records.
 

1.4.4.2 Numbers 

Syntax
 

< unsigned interger ::=<digir> I <unsigned integer> 

<digit>
 

< sign > = + f ­

< exponent part > = e <unsigned integer > 

le <sign> <unsigned integer> 

Id <unsigned integer> 

Id <sign> <unsigned integer> 

< decimal number >: = <unsigned integer> 

I<unsigned integer> 
[<unsigned integer>
 

" unsigned number >:: = <decimal number > 

I<decimal number> <exponent
 

part>
 



Examples
 

Legal Illegal­

57 3,746
 

14dlO- XII
 

3.7 e-5 e+7 

0.2 ,14 

Semantics
 

Decimal numbers have their conventional arithmetic
 

meaning. The exponent is a scale factor expressed as an integal
 

power of 10. A number expressed with neither a scale factor nor
 

a decimal fraction is assumed to be of type integer. A number
 

which uses the "d" form for the exponent part is assumed to be
 

double precision-. Otherwise, the number is assumed to be type
 

real. Note that if a number contains a decimal point, at least
 

one digit must precede and succeed the point.
 

1.2.4.3 Logical Values
 

Syntax
 

<logical value> ::= true Ifalse
 

Semantics
 

Logical values have their conventional meaning and may
 

be defined by describing their combination under the operations
 

"union" and "intersection". The union of the logical value true
 

with any other logical value always yields the result true. The
 

intersection of th- logical value false with any other logical
 

value always yields the result false.
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1.2.5 Requirement Declaration
 

The several parts of the'requirement declaration-are 

used to identify the dataflow between the software package 

being described and other parts'of they total system. In add­

ition, they identify'processing steps-(called transductions) 

and restrictions (called constraints) which are attached to both 
modules and variables. 

Syntax
 

<requirement declaration> <requirement or
 

requirements>
 

<requirement statement group> end
 

<requirement or requirements> requirement
 

Irequirements
 

<requirement 	statement group> <requirement
 

statement part>
 

I<requirement statement group>
 

<requirement 	statement part>
 

<requirement statement part> <input part>
 

]<output part> <transduction part>
 

]<constraint 	part>
 

1.2.5.1 Input and Output Parts
 

An input is a system level input (or stimulus) which
 

a software package receives from an external source. An output
 

is a system level response which has a purpose beyond the
 

immediate concern of the software package being described.
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Syntax
 

<input part> :: = <input or inputs> <entire 

variable list>;-­

<output part> . <output or, outputs> <entire variable 

list>
 

<input or inputs> :: = inputlinputs 

<output or outputs>:: = outputioutputs 

Examples
 

* input state vector
 

o inputs mass, velocity, distance
 

* output concordance list
 

Semantics
 

A variable.may be in both an input and an output list.
 

A variable ih an output list not used within the subsystem
 

other than in the module in which it is initialized is not
 

required to have a requirement transduction attribute. The
 

structure of all variables in input and output lists must be
 
described within the variable statements of the subsystem pre­

amble. Each subsystem preamble must have a requirement declar­

ation with an output part.
 

1.2.5.2 Transduction Parts
 

.Transductions are identifiers representing processing
 

steps. They are derived by first writing a high level pseudo­

program to "transduce" the input variables *into the output
 

variables and then extracting and listing the major verbs of
 

the program. Just as the processing steps of.the pseudo-pro­

gram may be nested, the transductions may likewise be nested.
 
Ideally, for each subsystem there should be from three to
 

seven transductions that are not nested within any others.
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Syntax
 

< transduction part> = <transduction or 

transductions > 

<transduction clause>
 

I<transduction part> ; <transduction
 

clause >
 

< transduction or transductions >:: = transduction 

I transductions 

< transduction clause> = <transduction list> 

I<transduction list> in <transduction 

list > 

< transduction list> :: = <transduction identifier> 

<transduction list >, <transduction 

identifier> 

< transduction identifier >:: = <identifier> 

Examples 

transduction sum expense, sub_deduct in taxcompute; 

write_paycheck; 

* transductions saveoptiohs; read-card in parse;
 

Semantics
 

Within a transduction clause, each processing step re­

presented by a transduction identifier to the left of in must
 

be a subst6jof the processing steps listed on the right of in.
 

Each transduction identifier represents a unique processing step,
 

but may be reused to show different substep relationships. Sub­

step relationships must be consistent, i.e., the complete set of
 

substep relationships partially order the.transduction identif­

iers.
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1.2.5.3 	Constraint Parts
 

Syntax
 

< constraint part> <constraint or constraints> 

< constraint list> 

< constraint or constraints >::=' constraint 

I constraints 

< constraint list > = <constraint identifier > 

I<constraint list >, <constraint
 

identifier>
 

< constraint identifier> := <identifier> 

Examples
 

constraint carpool_size ;
 

* constraints max-targets, minimum-distance
 

Semantics-


Each constraint identifier defined must be attached
 
as an attribute to some module in the subsystem.
 

1.2.6 	 Data Type and Variable Declarations
 

Explicit description of data and the ability to define
 

and use new data types is one of the greatest assets of SSL.
 
A new data type may be described directly as part of a variable
 

declaration, or described independently for subsequent use.
 

Syntax
 

< type- declaration> <type or types>
 

<type definition>
 

1< type declaration> ; <type definition>
 

<type or types> ::= type I types I global type 

Iglobal types 
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< type deXinition> <identifier> =.<type>
 

<type >: <simple type> 1<structured type>
 

I<pointer type>,
 

<variable deslaration> <variable or variables>
 

<variable definition>
 

.[<variable declaration> ; <variable definition>
 

,<variableor variables> variable I variables
 

<variable definition> <identifier list> :< type>
 

J<identifier list> <type> ; <for clause>
 

I<identifier list> <type> ; <subjectto clause>
 

[<identifier list> : <type> ; <for clause>;
 

<subjectto clause>
 

<for clause> ::= for <transduction list>
 

<subjectto clause> stLbjectto <assertion list>
 

<assertion list> <assertion>
 

I<assertion list> ; <assertioi>
 

<identifier list> ::=- <identifier> [<identifier list> 

<identifier> 

Semantics
 

A type declaration list is used to define new data
 

types. Each type is named and may be referenced by the identi­

fier to the left of "=" in the <type definition> production.
 

The normal spope of a type identifier is the subsystem in which
 

it is defined. HQwever, the scope of a gl6bal type is the
 

entire SSL program. Global types may be defined only in the
 

main subsystem.
 

1-17
 



data ;type need not be named if it is defined in­
trinsic to the variable declaration. Both type and variable
 

declarations may use 
data types defined and named elsewh6re.
 

Examples of both are given in tle following subsections.
 

The <for clause> of the variable declaration is used
 
to attach requirement attributes. Requirement attributes limit
 
the availability 'of variables within the modules of the sub­

system. All variable declarations must contain a for clause
 

with the exception of output variables identified in the require­

ment statement.
 

The <subjectto clause> identifies the global assertions 

associated with the variables being declared. A global
 

assertion is one that must be true upon exit from the module
 

creating the variable, and true on both entry and exit of modules
 

using the variable.
 

1.2.6.1 Simple Types
 

Simple types are data types for which the designer,
 

using SSL, need not define the internal structure or the inter­
nal structure has previously been defined and named.
 

Syntax
 

<simple type> <basic type> I<scalar type> 

I<subrange type> j .<type identifier> 

<type identifier> <identifier>
 

Semantics
 

A type identifier must previously.have been used to
 

the left of an "=" in a type definition.
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1.2 f6 .1.I Basic Types
 

The basic data types are those which are implicity
 

defined by the SSL language.
 

< basic type> ::= interj_[r reali boolean 

Idoubleprecision Icharl analog text
 

Examples
 

* variables I, J, K: integer; for count_people
 

a variables height: real;
 

for record 	status;
 

subjectto 	 height >0.0
 

height <= 10.0
 

employed: boolean
 

for record status
 

Semantics
 

The types integer, real, boolean, and doubleprecision
 

have the conventional meaning. The type char indicates a
 
single unit ofhollerith information. Type text indicates
 

hollerith data with unspecified length. Since the length of a
 
text item varies, it may not be combined with other variables
 
in forming structured data types. The type analog designates
 
a data item which contains analog signal information. Like the
 

text type, it may not be combined with other variables to form
 

structured types.­
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1.2.6.1.2 Scalar Types
 

- Scalar types are used to designate a finite number cf
 

disjoint states which a variable may represent. In conventional 

programming languages, it is customary to declare the variable 

of type integer and assign it only the cardinal-numbers 1,-2, .. , 

n where 	each value represents.one state of the several possible.
 

Syntax
 

<scalartype> ( <identifier list> ) 

Examples
 

a type 	marital status = (single, married, divorced); 

variable ms: maritalstatus; for emprecord;
 

e variable color: (Red, blue, yellow, green)
 

Semantics
 

Conceptuaily, the elements of scalar types are ordered
 

regardless of whether 6r npt the underlying set of states is
 

ordered. The order is always the same as 
that of the identifiers
 

in the identifier list. This enables a designer to use rela­

tional tests (< ,>, etc.) in assertidns involving scalar type
 

variables.
 

1.2.6.1.3 	Subrange Types
 

Subrange types are used to designate a subset of integ­

ers or scalars which a data item may assume.
 

Syntax
 

<subrange type> ::= <constant> .. <constant> 

<constant> 	::= <unsigned integer>
 

j<sign> <unsigned integer>
 

I<constant identifier>
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j<sign> <constant identifier>
 

[<logical value>
 

constant identifier> .= <identifier>
 

Nt
 

Examnples
 

,variables weight: 10..350; for ins_compute;
 

dependents: 0..15; for tax_compute;
 

otype- color = (purple, blue, red, yellow, green, black): 

variable-> primarycolor: blue. .green; 

Semantics
 

A subrange simply indicates the least and largest con­
stant values an item may assume. The lower bound (left-most
 

constant in the production) must be less than the upper bound.
 

A subrange with bounds'expressed in types other than integer or
 

scalar is not permitted.
 

Constant identifiers may arise from two contexts. The
 
first is the appearance of .an identifier to the left of "=' in
 

a constant declaration. The second (illustrated by the above
 

example) is th& appearance of an identifier as a scalar element.
 

Constant identifiers arising from the second context may not be
 
preceeded by a unary sign.
 

1.2.6.2 Structured-Types
 

A structured type is a data type composed of more
 

elementary data types.
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Syntax
 

< structured type> <array type>j<record type> 

j<digital type>] <set type>
 

]<sequence type>
 

Semantics
 

An SSL structured data type is used to indicate the
 

general form and content of a data structure, not precise imple­

mentation word and storage formats. In SSL, the following
 

'definitions are used:
 

Array - A fixed number of data items, all of the 

same type and length and accessed by 

computed index. 

Record - A fixed number of data items, each of fixed 

length, and each equally accessible. 

Digital- A record having additional restrictions which
 

are discussed in a subsequent subsection.
 

Set - An element of the powerset of a finite number 

of basic elements. 

Sequence A variable number of data items, all of the
 
or
 

File 	 same type and length; however, each element
 

is not equally accessible at all times.
 

Stronger connotations (such as elements of an array are seq­

uentially stored) arenot implied by the semantics of SSL.
 



1.2.16.2.1 	 Arrays
 

An array is a fixed number of data elements, each of
 

the same type-and length and each equally accessible. Elements
 

of an array are ordered and each element is accessed by a
 

cardinal number called its index.
 

Syntax "
 

< 	 array type >::= array[<index list>iof 

<component type> 

< index list> ::= <index type> f<index list>, 

<index type> 

< index type >::= <simple type> 

< component type> <type> 

Examples 

* 	variable matrix:- array [i. .10, 0. .20] of real;
 

for ta;
 

" 	type people = (adams, .buckles, jones, smith);
 

variable employee: array [peoplej of 1..50
 

for ta;
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Semantics
 

Index types must have a finite range and be ordered_'
 

This requirement eliminates index type of integer, real, and
 

double-precision. However, subranges of integers are permitted.
 

For the purpose,of ordering, false <true for boolean type
 

indices.
 

1.2.6.2.2 Records
 

A record is a structure containing a number of com­
ponents called fields. Fields are not constrained to be of
 

identical type but must be of fixed length. A single record
 

type is permitted to have variants.
 

Syntax{ 
<.record typE > record <field list> end 

< field list> : <fixed part> I <fixed part> 

<Variant part> J<variant part> 

< fixed part> ::= <record section> I<fixed part> 

<record section > 

<recordsection> ::= <field identifier list> : <type> 

< field identifier list> <field identifier> 

I< field identifier list>' , <field identifier> 
<variant part> ::= case <tag field> <type identifier> 

of <variant list> 
<variant list> ::= <variant> I <variant list> 

<variant> 

<tag field> <field identifier> 

<field identifier> ::= <identifier> 

-<variant* ::= <case label list> (<field list> ) 

I<case label list> :( ) 

<case label list> <case label> I<case label list> 
< case label> 

<.case label> < constant>
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Examples 

*aye eniployee Record
 

Number:Integer;
 

Salary:Real;
 

Name:Arra-y L[.-243 of char
 
End;,
 

a Variable machinepart:Record
 

Part_No, Order_Quantity:Integer;
 

Weight:Real
 

End;
 

for customer billing;
 

* Type complex = Record real_part, imag_part:real End;
 

* Type farm.=(peaches, cotton, soybeans);
 

Type land-use = Record
 

OwnerName:Array [I.. of char;
 

PlotNo:Integer;
 

Case Crop:Farm of
 

peaches:(treecount:Integer);
 

cotton, soybeans:(plantdate:Integer
 

herbicide, insecticide:boolean)
 

End;
 

o Variable sizes:Array D..103 of-Record
 

Height:Integer;
 

Weight:Real
 

End;
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fPr healthfileupdate;
 

subjectto height >0; height <120;
 

:weight.5>0.0; weight <500.0
 

Semantics
 

Fields may not be of basic types text or analog. A
 
record may be a component of another record, but a digital type 
may not. The

U 
scope of a field identifier is the smallest record 

in which it is defined. Field identifiers with disjoint scopes
jmay be reused. Access of a component is always by the field 

identifier and never by a computed value.
 

The type associated with the tag field of a variant
 
must contain only a finite number of elements. This limits it
 
to boolean, subrange, and scalar. All elements of the type
 
must appear in some case label list of the variant. If. the
 

field list for case label L is empty, the form is:
 

L:( ) 

A record may contain only one variant part and it must
 
succeed the fixed part. However, a variant may contain variants.
 
That is, it is possible to have nested variants. All field
 
names of the same record must be unique even if they are in
 

different variants.
 

1.2.6.2.3 Digital Types
 

Digital types are a restricted form of records to
 

represent real time digital signals.
 

Syntax
 

<digital type> := digital <fixed part> end 

_ __ __ _ _ _ _ _ _ _ _ _ __1_ _9r/ 



* Variable Signal_In: digital
 

Valve 1: boolean;
 

LOX Switch: 1..3;
 

Command: (Idle, stopped, running)
 

End;
 

for checkstatus;
 

Semantics
 

Due to their physical interpretation, the type of
 

components within digital types may only be boolean, scalar,
 

or subrange. Digital types may not have variant parts and
 

they may not be used as components of any other type.
 

1.2.6.2.4 Set Types
 

Set types represent elements of powersets over a
 

finite set of elements called the base type. Conceptually,
 

a set type variable may be viewed as a bit string of length
 

equal to the number of elements in the base type. Each bit
 

is associated with a unique element and is "on" or "off"
 

if the element is a member or not a Thember of the powerset.
 

Syntax
 

<set type> ::= set of <base type>
 

<base type>::= <simple type>
 

Examples
 

* 	Type members = (father, mother, bigsister,
 

littlesister, bigsister, little_brother);
 

Variable family: set of members; for arrange;
 

-	 Variable Even numbers: set of -10..10; 

for compute_something 
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Semantics
 

The'base type must be either -scalar or,--ubrange.
 

1.2.6.2.5 Seqfaence (File) Types
 

A sequence differs from an array in that it may vary
 

dynamically in-length and is referenced.through a "window"
 

called -its buffer (not by computed index). Examples of physical
 

representations of sequences include linked lists and mass
 

storage files.
 

Syntax
 

S<sequence type> := <file or sequence> of <type> 

<file or sequence> ::= file j sequence 

Examples
 

e Variable Assembly: sequence of record
 

partname: array fl..6j of char;
 

orderno: integer;
 

drilled, punched, stamped, purchased:
 

boolean
 

End; for updateorders
 

* Type-rosterentry = record
 

name: array [i..20] of char;
 

rank: 1..16; base cbde: 1000..5000
 

End;
 

Variable roster: file of rosterentry;
 

for assign new base
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Semantics
 

Al] components of sequences must be of identical type.
 

and length. A sequence may not have sequence type or text type
 

components.: Furthermore, digital ant.oanalog types may not be
 

combined as-sequences.
 

1.2.6.3 Pointer Types
 

Variables of type pointer are "bound" to a particular
 

type. That is, the contents of a pointer is used to indicate
 

a second variable, and the second variable is required to be of
 

a predetermined, specific type.
 

Syntax
 

<pointer type> ::= @ <type identifier>
 

Examples
 

eType combination = record n, p: integer End
 

Variable combptr: @'combination; for select-band;
 

OType weatherstation = record hilo: integer;
 

rain: real End;
 

Variable wsptr: @ weather station;
 

for record-temperature;
 

Semantics
 

The contents of a pointer may be altered, but the
 

data element the pointer indicates is always of the same type.
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1.2.7 Constant Declarations
 

In SSL, constant-declarations may appear in the
 

preamble of any subsystem and are used to communicate actual
 

values or parameters to the detailed designer. Normally,,
 

a constant declaration would be used only for critical values.
 

for which the effects are to be isolated in the final code.
 

Syntax
 

constant decliration> <constant or constants>
 

<constant definition list> 

<constant or constants> constant constants 

<constant definition list> <constant definition> 

[<constant definition list>;<constant definition> 

<constant definition> <identifier> = <constant> 

j<identifier> = <simple type> 

Examples
 

* Constant a = 10.0 ; max_count = Integer;
 

o 	Constants Low = true ,
 

Tax-cut 1-.5
-

Semantics
 

An identifier declared equal to a simple type indicates
 

that the exact value is not known at the time of specification,
 

but will be -provided before implementation. An identifier used
 

in a constant declaration may subsequently be used any place
 

that a constant (of the same type) may be used.
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1.2.8 Data References
 

.Data elements may be referencedtby variable name;
 

by selected component, or pointer. A variable has components
 

only if it is a record, Aigital signal, file, or array.
 

Syntax
 

<variable> ::= <entire variable>­

I<eomponent variable>
 
<referenced variable>
 

1.2.8.1 Entire Variables
 

<entire variable> ::= <identifier>
 

Semantics
 

A refer6fece to an entire variable includes all fields
 

of a record or digital signal, all elements of an array, or all
 

records of a file. If the data element is a simple, unstruct­

ured variable (integer, boolean, etc.) it may only be refer­

enced as an entire variable.
 

1.2.8.2 Component Variables
 

Syntax
 

<component variable> <indexed variable >
 

J<field designator>
 

]<file buffer>
 

<indexed variable> <array variable>
 

[<expression list>J
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_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

<a2ray variable> <variable>-­

-<eXpression list> <expXession>. <expression list>,
 

<expression>
 

=
<field designator>:: <record variable> <field
 
I 

identifier>
 

<record variable> <variable>
 

<file tuffer> ::= <file variable> @
 

<file variable> ::= <variable>
 

Examples
 

Char-Array [153 

Inverse-Matrix L5, i, 161 

Employee.Name 

Owner [153 . AccessedValue 

NameRecord.Character E63 
Transaction-File @
 

Transaction-File @ Date
-

Transaction File @ .- Date. Month
 

Semantics
 

Indexed variables have the conventional meaning. Field
 

designators denote which field component of a record or digital
 

signal type is to be selected. A file buffer variable designatez
 

the current active element of the sequence of elements that
 

comprise the file.
 

a 1 



Since arrays, files, and records can be combined in
 

various ways.(a~record of records, file of arrays, array of re­

cords, etc.) a component variable can be arbitrarily complex.
I 

It is recommended that data structures be as limited in complex­

ity as the problem permits.
 

1.2.8.3 	Eeterenced Variables
 

Syntax
 

<referenced variable> <pointer variable> @
 

<pointer variable> <variable>
 

Examples
 

Symbol-Pointer @
 

Student-Name [6e @
 

Assembly@.Manufacturer@
 

Semantics
 

The data structure denoted by the contents of the
 

pointer variable is substituted for the referenced variable
 

in expression evaluation.
 

1.2.9 	 Expressions and Assertions
 

Expressions arise in two contexts: subscripts of
 

arrays and as terms within assertions. Assertions may appear
 

in either variable declarations or module descriptions.
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1.2.9.1 Arithmatic Expressions
 

Arithmetic expressions in SSL are similar to those in
 

other high level languages. Results of-expressions are single
 

valued with type determined by the operation and the-con­

stituent operands.
 

Syntax
 

<arithmetic expression> <term> <sign> <term>
 

1< arithmetic expression> <sign> <term>
 

<term> <factor> j <term> <multiplying operator> 

<factor> 

<factor> ::= <primary> <factor> ** <primary>J<set> 

<primary>*::= <constant identifier> I <unsigned 
nnmber>f <variable> I < function designator > 

](<arithmetic-expression> ) 

<set> ::=[<element list>]
 

<element list> <empty> <element> 1 <element 
list>, <element> 

<element> ::=<expression> I <expression> 
<expression> 

< multiplying operator>::= * 

<function designator> ::= <function identifier> 

(<expression list> ) 

<function identifier> ::= <identifier> 

Af ---­



Examples
 

a+b*
 

3.0 * sin ( r + 1.0)
 

2 * (ifix(c) + blank_coinmon.icount)
 

name.feldl
 

name set + [oe, fred)
 

Semantics
 

Mixed mode expressions are prohibited with the excep­

tion of the exponentiation operator as indicated in Table 1-3.
 

In Table 1-3, any operand of type integer may be replaced by
 

an operand of type integer subrange. The symbol "dp" indicates
 

double precision. The unary "+" may be used with any operand
 

permitting a unary "-", but is semantically superfluous (i.e. +
 

is the identity operation). If a type is not included in the
 

operand type columns of Table 1-3 then its use with the desig­

nated operator is not permitted. Note, however, that integer
 

and integer subrange are interchangable.
 

SSL does not contain intrinsically defined functions.
 

All function identifiers are accepted, but it is suggested that
 

those embodied in the proposed implementation language be
 

adopted for each specification. Function types are not explic­

ity declared, but must be consistently used throughout the
 

specification. In addition to the basic types (integer, real,
 

etc.), the permissible function types include scalar and sub­

ranges of integers and scalars.
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Operator 


* 

** 

TABLE 1-3 


Operation 


Arithmetic,Negation 


Addition, Subtraction 


Set Union, 

Set Difference
 
Multiplication, 


Division 


Set Intersection 


Exponenciation 


ARITHMETIC OPERATIONS
 
V1 

V 
"OP" 
Type 

V2 
V2 Type 

Integer 
Real 
dp 

Integer 
Real 
dp 

Integer 
Real 
dp 

Set Set 

Integer Integer 

Real 
dp 

Real 
dp 

Set Set 

Integer 
Real 
Real 
dp 
dp 
dp 

Integer 
Integer 
Real 
Integer 
Real 
dp 

Result Type
 

Integer
 
Real­
dp
 

Iteger
 
Real
 
dp
 

Set
 

Integer
 

Real
 
dp
 

Set
 

Integer
 
Real
 
Real
 
dp
 
dp
 
dp
 



1J2.9.2 Boolean Expressions
 

Combining arithmetic expressions with the boolean
 

operations produces the expressions used-in-SSL assertions
 

and array subscript lists.
 

Syntax
 

<expressio> <impiication>L<expression> equ
 

<implication>
 

'mplication > <boolean term>I<implication>
 

implies <boolean term>
 

<boolean ter> ::= <boolean factor>j<boolean term> or
 

<boolean factor>
 

<boolean factor> ::= <boolean secondary> <boolean
 

,factor> and <boolean secondary>
 

<boolean secondary> ::= <boolean primary>I-<boolean
 

primary>
 

<boolean primary> ::= <logical value>I<arithmetic
 

expression>J<relation> (<assertion>)
 

<relation> <arithmetic expression><relational
 

operator><arithmetic expression>
 

<relationgl operator> := <j= =>= I-- in 
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Rate = 7.0
 

Value and Qual
 

a>b Implies c>O.0 

S--=t Equ p<t 

Color A'[red,-green, yellow] -­

abs (buffer @.velocity) <16.0 and weight >= 140 

Semantics
 

The arithmetic and boolean operators are grouped into
 

hierarchial.levels as exhibited in Table 1-4. Operations are
 

performed in the order of highest hierarchial level first
 

followed by equal hierarchial levels from left to right. This
 

sequence may be overridden by parentheses, in which case the
 

innermost operations are performed first. The meaning of the
 

logical operators ,.(not), and, or, implies, and equ (equi­

valent) is given in Table 1-5.
 

Table 1-6 depicts the required operand types for the
 

boolean and relational operators: For set types, the symbols
 

stand for the empty set. When comparing set types to 

scalars, the base type of the set must be the same as that of 

the scalars. The operators <, <=, =, >=, >,- = stand for less 

than, less than or equal, equal, greater than or equal, 

greater than,, and not equal respectively. Relational operators 

(other than in ) may be used to compare arrays of equal length 

composed of characters, in which case they denote alphabetical 

ordering. 
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TABLE 1-4 OPERATION HIERARCHY 

Level -.Operations 

I Eu_u 

2 Implies 

3 Or 

4 And 

5 

6 <, <-, = >=,> ,-- =, In 

7 +-
S *, / 

9 ** 
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TABLE 1-5 


bl 


b2 


*- bl 


bl And b2 


bl Or b2 


bl Implies b2 


bl Equ b2 


LOGICAL OPERATOR TRUTH TABLE­

false false true true
 

false true false true
 

true true false false
 

false false false true
 

false true true true
 

true true false true
 

true false false true
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Operator 


In 


-I 


And 


l
JOr 

IK 1Implies 


Equ 


TABLE 1-6 


Operation 


Compare 


Set Inclusion 


Logical Inversion 


Logical "And" 


Logical "Or" 

Logical Impli-

cation
 

Logical Equi-

valence
 

BOOLEAN AND.RELATIONAL OPERATIONS
 

V1 "OP", V2
 

V1 Tyje 


Integer 


Real, 


dp 


Boolean 


Char 

Scalar 


Scalar 


Set 


Set 


Subrange 


Set 


Boolean 


Boolean 


Boolean 


Boolen 


Boolean 


V2 Type 


Intbger
 

Real
 

tp 


Boolean
 

Char
 
Scalar
 

Set
 

Scalar
 

Set 


Set
 

Subrange
 

Boolean 


Boolean 


Boolean 


Doolean 


Boolean 


esiit Type
 

Bo61ean
 

Boolean
 

Boolean
 

Boolean
 

Boolean
 

Boolean
 

lBoolein
 



___ ___ ___ ___ ___ 

2.9.3 Assertions
 

Assertions are conditions which may assume only true/ 

false values. They are attached to variables at their point 

of declaration and to modules. Modul; assertions depict entry 

and exit x-ta.conditions. 

Syntax­

<assertion> <expression><forall clause> 

<forall clause> ::= <empty>j forall identifier = 

<set> 

Examples
 

* a'±] = 0.0 foral! i =[i..n-l 

(b.c [i] t [kJ f orah j = [1,3,4- 163) torahl 

k [16..30]
 

* big>smal!
 

. code = I implies (eof _g__true)
 

Semantics,
 

The scope of the identifier in the <forall clause> is
 

the assertion in which it is used and must not overlap that
 

of a local or global variable of the same name. Its type is
 

assumed to be the base type of the set within the <forall
 

clause>. The set must represent a finite number of elements
 

and may not be empty.
 

The expression within the assertion may assume only the
 

values true and false. If the <forall clause> is present, the
 

expression is evaluated once for each unique value which the
 

<forall identifier> can assume from the set. / /
cfliZ 



Ii.2.10 Module Descriptions
 

Modules are basic system objects in an-SSL system
 

, description. In using SSL, one identifies for.each module:,
 

o 	 The module name­

* 	 Input and output data
 

-0 	 Conditions placed on data upon entry to and
 

exit from'the module
 

* 	 Dependence of the module on environmental
 

objects and other modules
 

The rule of correspondence between input and output data is
 

not stated in SSL. Its statement is a function of detailed
 

design.
 

Syntax
 

<module description> = <module statement>; 

<module definition part> end 

<module definition part> ::= <module definition
 

statement>I<module definition part>
 

<module definition statement>
 

<module definition statement> ::= <assumes statement>
 

I<satisfies statement><fulfills statement>
 

1<accesses statement><modifies statement>
 

I<creates statement>j<uses statement>
 
I<receives statement>j<transmits statement>
 

1<executes statement>
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1.2.10.1 Module Statement
 

The module statement is, always- the first statement. 
of a module description. It identifies the module by name 
and declares the local variables (if any). 

Syntax
 

<module statement> <module or entry> <module
 

identifier> <release variable group>
 

<module or entry> :*= modulelentiy
 

<release variable group> <empty>I(<release variable
 

list>)
 
<release variable list> <release variable>j<release
 

variable list>; <release variable>
 

<release variable> <variable > [<local variables> 
<local variables> <identifier list>:<simple type> 

<module identifier> ::=<identifier>
 

Examples
 

* module matrix multiply; 

* entry pushstack (stack-item:stackentry); 

" -module permutation (m, n:integer; elements:p_array); 
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Semantics
 

*-moduie statement- intrpzducedby. module can only be
 
referencedTfr6m withifi the subsystem in which it is declared.
 

A-module statement introduced-by entry can be refer­
enced'only from'subsystems other than the one in which it is
 

declared.
 

Release variables occur both in module statements and
 

virtual references within execute statements. Local variables
 
within a release group serve strictly for communication bet­

ween the module and those calling it. In this respect, they
 

differ from global variables declared in the subsystem pre­

amble which serve to communicate among modules having common
 

requirement attributes. Local variable identifiers must be
 

unique throughout a subsystem. Only the module statements
 

introducing entry modules are permitted release vari&bles
 

which are not local variables. The variables of a release
 

group for a module statement of an entry module must agree
 

in type, number, and sequence to each virtual reference to
 

it from other subsystems.
 

1.2.10.2 Assumes and Satisfies Statements
 

The assumes and satisfies statements specify truth
 

conditions for data.
 

Syntax
 

<assumes~statement> <assume or assumes>
 

<assertion list>
 

<satisfies statement> ::= <satisfy or satisfies>
 

<assertion list>
 

<assume or assumes> : := assume I assumes 

<satisfy or satisfies> satisfy i satisfies
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Examples
 

0 Assume a >0.0 

Satisfies big_-sister 'in familyi count-- = 0 

Semantics
 

The assumes statement specifies data conditions
 

that must be true upon module entry. The satisfies statement
 

specifies data conditions that must be true upon module exit.
 
V1aIables used in assertions musf be either local variables
 
in the release-set or in the availability set pertinent to
 

the module. (The availability set consists of those variables
 
having requirement attributes which subsume all requirement
 

attributes of the module.)
 

1.2.10.3 Fulfills Statement
 

The fulfills statement attaches requirement attributes
 

to a module.
 

Syntax
 

<fulfills statement> ::=-<fulfil or fulfills>
 

<requirement attribute list>
 

<requirement attribute list> ::= <attribute identifier>
 

I<requirement attribute list> , <attribute
 

* identifier>
 
<attribute identifier> ::= <transduction identifier>
 

I<cqnstraint identifier>
 
<fulfil or fulfills> fulfil I fulfills
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Examples
 

0 fulfills size-constraint, cluster;
 

fulfil namelist
 

Semantacs
 

All modules must have at least one transduction
 

identifier attached as a requirement attribute. All attribute
 

identifiers must be declared in the preamble to the subsystem
 

in which the module is declared.
 

1.2.10.4 Accesses Statement
 

The accesses statement is used to indicate which
 

environmental objects (chiefly peripherals) are utilized by
 

a module.
 

Syntax
 

<accesses statement> ::= <access or accesses>
 

<environmental object list>
 

<access or accesses> access f accesses 

<.environmental object list> <environmental
 

object identifier>J <environmental object list>
 

<environmental object identifier>
 
<environmental object identifier> ::=<identifier>
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Examples 

i 
. Access line_printer;
 

* Accesses real timeelo&k, system_disk.;
 
I 

Semantics 

For each environmental object there must be a unique
 

identifier for which the scope is the entire specification.
 

1.2.10.5 Receives and Transmits Statements
 

The receives and transmits statements are used to in­

dicate real time data activity such as is associated with
 

telecommunications, analog, and digital signals.
 

Syntax
 

<receives statement> <receive or receives>
 

<from clause>l<receives statement> ; <from clause>
 

<from clause> ::= <entire variable list> from
 

<environmental object identifier>
 

<transmits statement> <transmit or transmits>
 

<to clause>l<transmits statement>
 

<to clause>
 

<tcr clause> <entire variable list> to
 

<entironmental object identifier>
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'<receiwe or receives> receive.[ receives
 

<transmit or transmits> transmit transmits 
< e 

<ertin'e variable list> ,<entire variable>
 
I<entire variable list> ,<entire variable>
 

Examples
 

eReceive weight from strain gage_1;
 

,Tra:nsmits course-correction to ground control;
 

Semantics
 

The scope of the environmental object name is the
 

entire specification. Note that components of structured
 

variables may not be transmitted or received.
 

1.2.10.6 Creates, Modifies, and Uses Statements
 

The creates, modifies, and uses statements distinguish
 

between input and output-data variables. They may also in­

dicate how the two are related in a manner short of a rule of
 
correspondence. A complete rule of correspondence (algorithm)
 

is a task of detailed design and not of SSL.
 

Syntax
 

<creates statement> <create ot creates>
 

<create list>
 

<modifies statement> <modify or modifies>
 

<modify list>
 



<modify list> ::= <variabl list><using clause>
 

I<modify list>; <variable list><using clause>
 
=
<create"list>:: <entire variable list><using clause>
 

J<create list>;<entire variable list><using clause>
 

-<uses statement> <use or uses>' <variable list> 


ecreate or creates> :: createlcreates
 

<modify or modifies> modify modifies
 

<use or uses> ::= useluses
 

<using clause> :: <empty>fusing <variable list>
 

<variable list> <variable>! <variable list >,
 
<variable>
 

Examples
 

edreate emplo'yee_array using namefile;
 

omodifies count, fica_rate using- taxtable, 

salary_scales;o 

emodify pressure-weight [4] names LioJ -initials; 

*uses cluster@, transaction-file; 

1-50
 



Semantics
 

The order of the variable references in any variable
 

list has no significance.
 

The variables within a using clausd or a uses state­
ment are input variables. A variable may be both input and out-­
put. An input ariable in a using clause indicates that its
 

contents are instrumental in determining the final contents of
 
the output-variables within the same statement extending to the
 

first semicolon on the left.
 

The presence of a variable in the output list of a
 

creates statement indicates the first use (in a dynamic sense)
 

of-that variable. This does not mean, however, that the vari­

able may not appekr previously in the sequential listing of the
 
SSL program. The implication of the creates statement is that
 
all variables in the output list are first computed or initia­

lized in the module'being described. All variables declared
 
in the subsystem prenamble must appiear'as an output variable in
 

exactly one creates statement within the subsystem unless it is
 

a release variable of an entry module.
 

All variables appearing in a creates, modifies or uses
 
statement (other than the output list of the qkeates statement)
 
must be in the availability set for the module. A variable is
 

in the availability set of a module if the transduction require­
ment attributes of the variable subsume all the transduction
 

requirement attributes of the module.
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1.2 .10.7 Execute Statement
 

The execute -statement designates modules which are
 

called by the module being described. It may indicate that
 

specific modules arecalled iteratively, conditionally, or
 
both.
 

Syntax
 

<.executes statement> <execute or executes> 

<call list>1<executes statement>; <call list> * 

=
<call list> :: <module reference list>J <module
 

reference list> <call list tail>
 

j<call list tail>
 

<call list tail> ::= <iteratively clause >
 

I<conditionally clause>
 

<iteratively clause> iteratively <module
 

reference list> fiteratively <call list tail>
 

<conditionally clause> conditionally monle­

reference list>
 

<execute or executes >::= executelexecutes
 

<module reference list> <module reference> 

j<module reference list> , <module reference> 

<module reference> ::= <concrete reference>
 

I<virtual reference>
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<concrete reference> <module identifier>
 

<virtual reference> <subsystem identifier>
 

<module identifier><release variable, group>
 

Examples
 

a Execute matrixmultiply, cluster-group (pointer@);
 

a Execut& 	 iteratively suba, subb;
 

conditionally subc, subd, sube;
 

a Executes sqrt; iteratively cos conditionally sin; 

Semantics
 

The order of module identifiers in the module reference
 

lists is not significant. The domain of either an iteratively
 

or conditionally clause extends to the next semicolon. An
 

iteratively clause'may overlap another clause.
 

Presence of a-module identifier in a iteratively clause
 

connotates that it is called from within a loop. Presence in
 

a conditionally clause connotates the module is not always
 

called. If present in neither, the module is called uncont
 

ditionally but not from within a loop...
 

A concrete reference is a call to-a module within the.';
 

same subsystem. A concrete refarqnce may-never be to.an entry 

module. A virtual reference is a call to a module of a ". ­

different subsystem and-must always be to an entry modulei-.-­
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Within'the releasevariable group, the-local variable 

format must be used for-variables never before defined. A :1 

variable may have been defined in the preamble to the sub­

system or in.the last module statemenV. The entry module 

to which the virtual reference.refers must have the same 

release list with respect to number, order, and type of 

variables. All variable types used in a virtual reference 

release list must be either intrinsically defined (boolean,
 

real, text, etc.) or global types.
 

1.2.11 Subsystem Descriptions
 

Subsystems are independent software units, each with
 

its own requirement declaration. Subsystems may not share
 

global variables but communicate via the release group var­

iables of virtual references and entry modules. The only
 

identifiers with scope greater than a single subsystem are
 

global type identifiers, environment object identifiers,
 

subsystem identifiers, and function identifiers.
 

Syntax
 

<subsystem description> <subsystem preamble>
 

<module description list> end
 

<module description list> ::= <module description>
 

f< module description list>; <module
 

description>
 

<subsystem preamble> := preamble declaration list> 

I snbsystem <subsystem identifier> ; <preamble 

declaration list> 
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<subsystem identifier> ::= <identifier>
 

<preamble declaration list> :-:= <preamble declaration> 

I<preamble declaration list> ; <preamble 

declaration> 

<preamble de'aration> : <requirement declaration>
 

I<type declaration>j<variable declaration>
 

I<constant declaration>
 

<subsystem description list> <subsystem
 

description>l<subsystem description list>
 

<subsystem description>
 

<specification*> <subsystem description list>
 

end
 

Example
 

* 	Requirement transduction sortdescend; input n,
 

sortarray; output sortarray end:
 

Variable 	 sort array:array [1..1000] of real;
 

for sortdescend;
 

subjectto sortarray[i] >0.0 forall i =
 

L.n-;13
 
n:l. .1000; for sortdescend;
 

Module.- sort;
 

fulfills sortdescend;
 

accesses cardreader, line_printer;
 

creates n, sort_array;
 

modifies sort-array using n, sortarray;
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satisfies 	 sortarrayr] >= sortarray i+l 
forall i =[-'n-13 

End
 

End
 

End
 

Semantics
 

Each subsystem must have a requirement declaration
 

that contains at least one transduction identifier and one
 

output variable. There must also be at least one module
 

description. The first subsystem declared (called the "main"
 

subsystem) does not have a subsystem identifier; all others
 

must have a unique identifier. The scope of the subsystem
 

identifier is th6 entire specification.
 

The nonterminal symbol <specificatiofi> is the
 

distinguished symbol of the SSL grammar.
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1.3 EXAMPLE 

The example of this section was selected to demonstrate
 

both-the Cescriptive level of SSL.and as-many language elements
 

as-possiblez The requirement.bf theproblem may be stated-as
 

follows LB] 

"A program is required to process a stream
 

o-ftelegrams. This stream is available as a
 

sequence of letters, digits'and blanks on some
 

device and can be-transferred in sections of
 

predetermined size into a buffer where it is to
 

be processed, The words in the telegram are
 

separated by sequences of blanks and each
 

telegram is delimited by the word 'ZZZZ'.
 

The strebhm is terminated by the occurrence
 

of the empty telegram, that is a telegram'
 

with no words. Each telegram is to be pro­

cessed to determine the number of chargeable
 

words and to check for occurrences of over­

length words. The words 'ZZZZ' and 'STOP' are
 

not chargeable and words of more than twelve
 

letters are considered overlength. The
 

result of the processing is to be a neat
 

listing of the telegrams, each accompanied
 

by the word count and a message indicating
 

the-occurrence of an overlength word."
 

To complete the problem statement, several assumptions are
 

necessary. The following alternatives were.selected for the
 

purpose of this exposition:
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http:requirement.bf


* The character stream from which the telegrams 

are constructed resides on a drum having fixed 
length records; the record length itself is left 
a§ an implementation option. -

a The chargeable word count is the value to be 
printedtand overlength words count as one word. 

* 
 If a physical end of file is encountered before
 

the logical end of the data stream, an error
 
message and the partial telegram is printed.
 

The software is organized into four modules as indicated
 
by Figure 1-2. The purpose of each module is given in Table
 
1-7. Figure 1-3 contains the SSL description of the telegram
 
processor. The right margin of the statement listing contains
 
reference notes to subsections containing detailed descriptions
 

of the language elements used.
 

A careful examination of Figure 1-3 will indicate an
 
interesting application of the subsystem capability. The
 
subroutines GETCHAR and FILLBUFFER occupy a separate sub­
system with the sole purpose of handling file I/O. The char­
acteristics of the device on which the telegrams'are stored
 
are encapsulated within thLse two modules.
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LINE-
GET-TELEGRAM PRINTER 

LINE-
GETWORD PRINTER 

t
 
GETCHAR
 

NOTES:" 

~ CLL F ',A- CALLS "Er 
CYCLICALLY L 1 CONDITIONALLY 

"A" US --SYSTEM SERVICE "BR" 

PAGTJ~SA!-03'12 

Figure 1-2 Module Structure Chart for Example
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TABLE )-7 MODULE DESCRIPTIONS.FOR EXAMPLE 

MODULE .. PURPOSE' 

GETTELEGRA2. -Collects words belonging to each 

telegram and prints them in a neat 

manner along with the chargeable 

word count. 

GET WORD ColIects characters into words and 

prints error messages denoting over­

length word or physical record end 

of file. 

GET CHAR Returns the next character in the 

telegram file. 

FILL-BUFFER Enters the next physical record 

from,the drum into the character buffer. 
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Sbeginning of matin subsystem preamble _1.2. 

requirement 

transductions 
collect in print; 
telegram, charge count.2 

end­

variable telegram:text; 

chargPe_count:integer; 

for print;
subjectro chargecount >0 

word-count:integer; 
for print, 
subject o ord count > charge count; 

word:arrav . f char; 
for print; !LI c 

eofflag:boolean; 
for print 

1.2.6.2.1 ) 

1.­

end; /* end of min subsystem preamble */ 

/" main routine to collect words and / 
/- print telegram with chargeable word count-/ 

module ,get_-telegram; 

fulfills print; 
creates telegram. charge_count using word; 
creates wvord count; 
modifies word _count; 
uses eof flag; 
accesses-line printer; 
executes cvclicallv getuord; 
satisfies 

eof flag or wordcount = 0end-­

5w 
/* subroutine to collect characters into -1 
* words */ 

module get-word; -

fulfills collect; I 
executes cclically I o.get char(a char:chareof flag); 
c -reates.o, :oz ha;. 
accesses lineoranter /-prints error messages V 

. 

1.2.10.4 

end; /t end of main subsystem */ 

Figure 1-3 SSL Description for Example
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/* beginning of Ip subsystem preamble */ 

subsystem i-o:­

requirement -­

/ ait charactertilet;
 
transductions r 
read in separate; 

t achar, eot flag 2.52 

I -I
 

ft parameterize 2-ecord length t
 
constant record length integer: 
 1.2.7 

type character record -array [i. .record length! of char; 

variable character filezseiuerce of character-record; 1.2.6.2.5 
for read: 

bufferzcharacter-record:
 
for separate;
 

a-cbarchar
 
chrfor-separate;
 

for separate;
 
eoffl-g:boolean;
 

for separate
 

end; /* end of subsystem preamble 41 

/0 subroutine to fetch next *, 

/f character from file */
 

entry getchar (a char; eof flag)
 
fulfills separate;

executes conditiopnlv fill buffer­
modifies nrid,­
creates a char using buffer [char indexj eelflag;
 
creates character file, char index:1..1.
 
satisfies eof flag ir'olies E char buffer [char indeX]3
 

end; - 12.10, 6 
/ subroutine to fetch next-physical / 
 -

/J record from character file t/ 

module fill-buffer;
 
fulfills read,
 

assumes char index = record length: !i 0 
accesses disk; 
creates buffer, eof fla~g using ehara~e:rerrzloe 
satisfies 

eof flag imolies buffet = character-file, 1 2.8.2 

end 1* end of subsystem */
end; /- end of specification Sf 

Figure 1-3 SSL Description for Example (continued)
 



2. INDEX
 

Each reference in the left column is-to a nonterminal
 
symbol. The right column contains the number of the.sub­
section i-which the nonterminal 

ductions.
 

Access or accesses 


Access statement 


Arithmetic expression 


Array type 


Array variable 


Assertion 


Assertion list 


Assume or assumes 


assumes statement 


attribute identifier 


Base type 


Basic type 


Boolean factor 


Boolean primary 


Boolean secondary 


Boolean term 


Call List 


Call list tail 


Case Label 


Case label list 


is..4de-fined via one more' pro---, 

1.2.10.4
 

1.2.10.4
 

1.2.9.1
 

1.2.6.2.1
 

1.2.8.2
 

1.2.9.3
 

1.2.6
 

1.2.10.2
 

1.2.10.2
 

1.2.10.3
 

1.2.6.2.4 

1.2.6.1.1
 

1.2.9.2
 

1.2.9.2
 

1.2.9,.2
 

1.2.9.2
 

1.2.10.
 

1.2.10.7
 

1.2.6.2.2
 

1.2.6.2.2
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Concrete reference 1.2-.10.7 

- Conditionally cLause i1;2.10.7 

Component type 1.2.6.2.1 

Component variable 1.2.8.2 

Constant 1.2.6.1.3 

Constant declaration 1..2.7 

Constant definition 1.2.7 

Constant definition list 1.2.7 

Constant identifier 1.2.6.1.3 

Constant or constants 1.2.7 

Constraint identifier 1.2.5.3 

Constraint list 1.2.5.3 

Constraint or constraints 1.2.5.3 

Constraint part 1.2.5.3 

Create list 1.2.10.6 

Create or creates 1.2.1'0.6 

Creates statement 1.2.10.6 

Decimal number 1.2.4.2, 

Digit 1.2.3 

Digital type 1.2.6.2.3 

Element 1.2.9.1 

Element list 1.2.9:1 

Empty 1.2,1 

Entire variable 1.2.8.1 

Entire variable list 1.2.10.5 

Environmental object identifier 1.2.10.4 

Environmental object list 1.2.10.4 

2-2
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Execute or executes 


Executes statement 


Exponent part. 


Expression 


Expression list 


Factor 


Field designator 


Field identifier 


Field identifier list 


Field list 


File buffer 


File or sequence 


File variable 


Fixed part 


For clause 


Forall clause 


From clause 


Fulfil or fulfills 


Fulfills statement 


Function designator 


Function identifier 


Identifier 


Identifier list 


Implication 


Index list 


1.2.10.7
 

. 1.2.10.7 

1.2.4.2
 

1.2.9.2..
 

1.2.8.2
 

1.2.9.1
 

1.2.8.2
 

1.2.6.2.2
 

1.2.6.2.2
 

1.2.6.2.2
 

1.2.8.2
 

1.2.6.2.5
 

1.2.8.2
 

1.2.6.2.2
 

1.2.6
 

1.2.9.3
 

1.2.10.5
 

1.2.10.3
 

1.2.10.3
 

1.2.9.1
 

1.2.9.1
 

1.2.4.1
 

1.2.6
 

1.2.9.2
 

1.2.6.2.1
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Index type 


Indexed variable 


Input or inputs.
 

Input part 


Iteratively clause 


Letter 


Local variables 


Logical value 


Modifies statement 


Modify or modifies 


Module definition part 


'Module definition statement 

Module description 

Module description list 

Module identifier 

Module or entry 

Module reference 

Module reference list 

Module statement 

Multiplying operator 

Output or outputs 

Output part 

Pointer type 

Pointer variable 

1.2.6.2.1
 

:,32.8.2
 

-l.2.5.1
 

1:.2.10.7
 

1.2.3
 

1.2.10.1
 

1.2.4.3
 

1.2'.10.6
 

1.2.10.6
 

1.2.10
 

1.2.10
 

1.2.10
 

1.2.11
 

1.2.10.1
 

1.2.10.1
 

1.2.1027
 

1.2.10.7
 

1.2.10.1
 

1.2.9.1
 

1.2.5.1
 

1-2.5.1
 

1.2.6.3
 

1.2.8.3
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______ 

Preanble declaration 


Preamble declaration list 


Primiry 


Receive or receives 


Receive statement 


Record section 


Record type 


Record variable 


Referenced variable 


Relation 


'Relational operator 


Release variable 


Release variable group 


Release variable-list 


Requirement attribute list 


Requirement declaration 


Requirement or requirements 


Requirement statement group 


Requirement statement part 


Satisfies statement 


Satisfy or satisfies 


Scalar type .
 

Set 


Set type 


Sequence type 


Sign 


1.2.11
 

1.2.11
 

1.2.9.1 

1.2.10.5
 

1.2.10.5
 

1.2.6.2.1
 

1.2.6.2.2
 

1.-2.8.2
 

1.2.8.3
 

1.2.9.2
 

1.2.9.2
 

1.2.10.1
 

1.2.10.1
 

1.2.10.1
 

1.2.10.3
 

1.2.5
 

1.2.5
 

1.2.5
 

1.2.5
 

1.2.10.2
 

1.2.10.2
 

1.2.6.1.2
 

1.2.9.1 

1.2.-6.2.4
 

1.2.6.2.5
 

1.2.4.2
 z4 ­



Simple type 


Specification 


Structured type 


Subjeetto clauise 


Subrange type 


Subsystem description 


Subsystem description list 


Subsystem identifier 


Subs,,ste preamble 

Tag field 

Term 

To clause 

Transduction clause 

Transduction identifier 

Transduction list 

Transduction or transductiGns 


Transduction part 


Transmit or transmits 


Transmits statement 


Type 


Type declaration 


Type definition 


Type identifier 


Type or types 


Unsigned integer 


Unsigned number 


1.2.6.1
 

1.2.11
 

'.1.2.6.2
 

v 1.2.6
 

1.2.6.1.3
 

I'.2I1
 

1.2.11
 

1.2.11
 

1.2.11
 

1.2.6.2.2
 

1.2.9.1
 

1.2.1O.5
 

1.2.5.2
 

1.2.5.2
 

1.2.5.2
 

1.2.5.2
 

1.2.5.2
 

1.2.10.5
 

1.2.10.5
 

1.2.6
 

1.2.6
 

1.2.6
 

f.2.6.1
 

1.2.6
 

1.2.4.2
 

1.2.4.2
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Use or uses 1.2.10.6 

Uses -statement 1.2.10.6 

Using clause 1.2.10.6 

Variant 1.2.6.2.2 

Variant list 1.2.6.2.2 

Variant part 1.2.6.2.2 

Variable 1.2.8 

Variable declaration 1.2.6 

Variable definition 1.2.6 

Variable list 1.2.10.6 

..Variable or variables 1.2.6 

Virtual Reference 1.2.10.7 
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