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1. THE LANGUAGE
1.1 INITRODUCTION

S8L (Software 8pecification Language) is a new forma-
lism for the definition of specifications for software systems.
The language provides a linear format for the representation
of the information nSrmally displayed in a two-dimensional
module inter-dependency diagram. In comﬁaring SSL to FORTERAN
© or ALGOL, ope finds the comparison to be largely complementary
to the algorithmic (procedural) languages. SSL is capable of
representing explicitly module intercomnections and global
data flow, information which is deeply imbedded in the
algorithmic languages. On the other hand, SSL is not designed
to depict the control flow within modules. Ve refer to the
SSL isvel of software design which explicitly depicts inter-
module data flow as o functicnal specification.

We wish to express our appreciation to Mr. Bobby
Hodges of Data System Labortory, George C. Marshall Space

Flight Center for his guidance and support in the performance
of this task. ' ’ “

1.1.1 Need for SSL

The current state of the art in software development
permits insufficient formal evaluation prior to implementation,
Such questions as:

s Are a3ll requirements fulfiiled?
@ Have all software elements been defined?
. Are the element interconnections consistent?

cannot be answered in a manner that is independent of the
designer's Qninion. The intent of SSL is to formalize, through
a langusage, the statement of the functional specification for

a software system. Given this formal statement expressed in
SEL and a translator for the SSL language, an independent
evaluation of the software may begin much earlier in the
development cycle.
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In addition to evaluation, other aspects of SSI can
aid both the designer and implementer. Several things that
are characteristically omitted or inzdequately performed
during early design but required in S§51. are:

° . A complete and cons1stent statenent of the

software requlremeqt

® Unamblguous communicalion of software organizec-
tion to the detailed designer

e Enumeration of intraprogram counsistency checks
{assertions) useful during checkout.

A translator also provides tables and summaries for the final
software documentation and az software element cross reference
file. The latter could be use& te statically veriiy the

fidelity of the final code to original specifications,.

1.1.2 Unique Features of SS8L

The major countribution of SSL is the formal approach
it brings to a pﬁase_of software development previously
relegated to heuristic techniques as discussed above.- Within
this framework, there are seversal unique'technical feétures
possessed by SSL. First, the projection of a speC1allzed
form of software regquirements conto the objects belng deflned )
establishes a rationale for the software structure not present
in other methodologies. These requirements are an important
aspect of consistency checking when evaluating a specific
functional design. - Second, the incorporation of levels of
abstractions directly in a design methodology is a step forward
in software engineering. Lastly, an automated SSL translator
is being designed that is one of several interlocking software
design and evaluation tools collectively called Sbftware
Specification and Evaluation System (SSES). SSES includes a
static codé'anaiyzer, a dynamic code ana}&zer, and a test
case analyzer. The specific capability that SSL brings SSES
is the ability to test and evaluate software design early in
the development cycle.
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| SSL also incorporates a flexible data abstraction
caﬁability and places emphasis on assertions as a means of
describing the dynamic behavior of the-software being designed.
Although neither of these is unlque, they are relatlvely new
concepts ir the field of computer s»ience, ‘

1.1.3 Bockground ’ ;

In evaluating a2 new software system, particularly a
programming language, it is important to trace the historical
developments to which it relates and upon which it is based.
The MIL (Module Interconnection Languzge) systenm {1] was a
rincipal contributor to the coéoncepts of data crsation and

3

~data availability restrictions among modules within SSL.
Guidelines imposed for the partition of programs into sub-
systems are derived from the principles embodied in the concept
of levels of abstraction [2] . Module descriptions in SSL

are 2 linearlized form of the information available in the
two-dimensional diagrams referred to as structure charts{3].
The data description capability is largely the same as that of
PASCAL [4]. The syntax for expressions is derived from, but
not identical to, that of ALGOL 60 [5]. Assertions in SSL
have the form and appearance of those in the language

NUCLEUS [6 ].




1.2 THE GRAMMAR

The material in this section is’arranged in the form

of a reference guide to the langéage, and not -tutorially in the
manner of a user's magual. To aid the reader, a cross reference
index is provided in the last section.

1.2.1 Metalangu&ge Descripiion

For the purposes of automatic translation and unambig-
uous communication, it is desirable to express SSL via a formal
grammar. The vehicle selected for this purpose is the Backus-
Naur-Form {BNF) metalanguage [53.8%? has the advantages of being
well known and compact in representation. In additicn, most
formal methodologies for analyzing grammars are based upon

BNF representation.

Any nontrivial language contains an infinite number of
legal sentences. Each sentence, in turn, is composed of the
concatenation of stﬁings; strings are composed of characters.

A grammar uses strings as operands and combines them under the
operation of concatenation to finitely depict, 21l legal senten-
ces. The way in which this is done in BNF cah best be inter-

preted via an example. Consider the following production:
<ab> :: = ajb] <ab> a

Sequences of characters enclosed within the brackets < >repre-
sent metalinguistiec variables called nonterminal symbols. The
marks "::=" apnd "|" are metélinquiétic connectives meaning "is
composed of'" and "or'" respectively. Any'string not a nonterminal
or connective denotes itself and is called a terminal- symbol.
Juxtaposition of symbols between connectives in a formula, such
a5 the example, gignifies that the symbols must be in the exact
order denoted. The above production indiéates that <ab> may

nave the values:




® . a
[ b-

® a, aa, aaa, ...
] b, ba, baa, ...

In BNF, the null string is designated by <empty> :: =
SSL is represented as a context-free grammar which
means: '

® There exist a finite number of preductions

of the type of the above example.

° The left part of each production (i.e., left
of ::=) consists of a single nonterminal
symbol,

] There exists a unique nonterminal symbol {called
the distinguished symbol) which is in the right

part .of no production except its own.

1.2.2 Overview of SSL Grammarx

Prior to examining the detailed structure of SSL com-~
ponents, it will be useful to identify the overall structure of
a software specification éxpressed in SSL. Figure 1-1 depicts
the sequencing of the syntactical items used to describe an
SSL specification.

A specification consists of one Or more subsystems,
each but the first having a name. The first subsystem is
referred to as the "main" subsystem and each subsystem is
composed of a préamble and one or more module descriptions.

The preamble defines the local environment for the subsystem

[
t -
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LY .
(constants, requirements, data formats, etc.) and the module

descriptions indicate operational aspects of program units
(program urits are subprograms, procedures, etc.).

In the following subsections, the detailed syntactical
descriptions will be presented,” To facilitate cross referenc-
ing, Secticn 2 contains an index of nonterminal symbols.

S

1.2.3 Basic Vocabulary

i The basic vocabulgry of S8L consists of special
symbols, letters, digits, and reserved words. ZEach special
symbol (fable 1-1) is primarily a single -character except
where limited computsr character fonts vequirs the concatena-
tion of two characters. Where a special symbol consists of
more than one eharaeter, it must be written without an inter-
vening blank. Subsequently, special symbols other than ".",
v@", and "_" will be referred to as delimeters. Bach char-
acter in Table 1-1 is available within the ANSI standard codes
[5] for ASCII-8, EBCDIC-8, and HOLLERITH-256. Subs;itutions
may be necessary if an SSL translator is implemented in an
environment not conforming to the standard character codes.

Letters‘éﬁd digits do not have individual meanings
_bﬁt are used to construct iqeptifiers, numbers, and reserved
‘words. The following basic productions enumerate these ele-
ments of the vocabulary:

<letter> ::= albl ... |z

<digit> ::= 0]1] ... |9

1-7




;TABLE 1-1 SSI SPECIAL SYMBOLS

¥ L
- ]
/ * %
= L=
3 >=
3 —_ =
%

< */
>

- @
.) B
—

?5% ‘ 1-8
S 6 |
Q?;}'QQO% ;
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Reserved wordé (Table 1-2) are composed entirely of
sequences of letters. In this document, - they are normally
underlined. A reserved word may not contain imbedded blanks
anrd must always be followed by a blank’'or a delimeter,

The counstruct

* any sequence of symbols not containing "F/Y *
y )

L}

mey be inserted between any two identifiers, numbers, delimeters,
or ‘reserved words, It is calied a comment any may be removed
from the program text without sltering its meaning.

1.2.4 Basic Language Elements

1.2.4.1 Identifiers
Syntax
<identifier> ::= <letter>»]|<identifier> <letter>

|<identifier> <digit>|<identifier> _

Examples
Legal Illegal
" a S5ad
b27? srip
er_l4dr

i-9



. TABLE 1-2 SSL RESERVED WORDS

Access
Accesgses
Analog

And

Array
Assume
Assumes
Boolean
-Case

Char
Conditionally
Constant
Constants
Constraint
Congtraints
Create
Creates
Digital
Doubleprecision
End ’
Entry

Equ

Execute
Executes
False

File

For

Forall

From

e

Fulfil
Fulfills
Global
Implies
In

Input
Inputs

Integer

Iteratively

'Modify

Modifies
Module

of

Or

Output
Outputs
Real
Receive
Receives
Record
Reguirement
Requirementé
Satisfies
Satisfy

Set
Subjectto
Subsystem
Text

To

Transdnction
Transductions
Transmit
Transmits
True

Tyvpe

Types

Use

Uses

Using
Variable
Variables
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Semantics

Identifiers must begiﬁ with an alphabetic character
and contain only letters, digits, and the " " symbol. The
jlatter is known as the break chardcter. Identifiers have no
inherent meaning, but serve as identification for variables,
modules, subsystems, and other'elemen{s-of a software specifica-

!

tion.

‘Identifiers may be of arbitrary length but must be
unique within the first twelve characters. No identifier may
be equivalent to the first twelve characters of a reserved word.

L -

The same_identifier may not be used to denote two different
n

guantities within a subsystem with the exception of field names
in different records.
1.2.4.2 Xumbers
Syatax
< unsigned intergep- ::=<digit>'J <unsigned integer>
<digit>
<sign > 11 = + | -
< exponent part > I = e <unsigned integer >
e <sign> <unsigned integer>
N |d <unsigned integer>
[d <sign> <unsigned integer>
< decimal number > :: = <unsigned integer>
| <unsigned integer> .
<unsigned integer>
< unsigned number >:: = <decim2l number >

| <decimal number> <exponent

part>




Examples

Legal Illegal -

5? 3,746

léélﬁc XIt

3.7 e~-§5_ e+

0.2 14
Semantics

Decimal numbers have their conventional arithmetic
meaning. The exponent is a scale factor expressed as an integal
power of 10, A number expressed with neither a scale factor nor
a2 decimal fraction is assumed to be of type integer. A number
which uses the "d" form for the sxponent part is assumed to be
double vrecision.. Otherwise, the nunber is assumesd to be type

real. Note that if a number contains a decimal point, at least
one digit must precede and succeed the point.

1.2.4.3 Logical Values

Syntax

<logical value> ::= true |false

Semantics

Logical wvalues have their conventionzl meaning and may
be defin&d by describing their combination under the operations‘
Yunion” and "intersection”. The union of the logical value Irue
with any other logical value always yields the result true. The
intersection of the logical value falss wifh any other logical
value always yields the result false, '

1-12



1.2.5 Requirement Declaration

The several parts of the requirement declaration-are
used to .identify the data’ flow between the software package
being described and other parts’ of the total system. ~In add-
ition, they identify“processing steps. (called transductions)
and restrictions (called constraints) which are attached to botih|
modules and variables.

Syntax
<requirement declaration> ::= <requirement or
requirements>

<requirement statement group> end

<requirement or requirements> ::= requirement
| requirements

<requirement statement group> :!:= <requirement
statement part>
]<requirement statement group> ;
<requirement statement part>

<requirement statement part> ::= <input part>

|<output part>]<transduction part>

| <constraint part>

1.2.5.1 Input and QOutput Parts

An input:is a system .level input (or stimulus) which
a software package receives from an external source. An output
is a system level response which has a purpose beyond the

immediate concern of the software package being described.

1-13




Syntax

i

<input part> :: <input or inputss> <entire

variable list>-

<cutput part> :: = <oufbut 01" outputss <entire wvariable
- e - *
list>
<input or inputs> :: = input|inputs
<output or outputs>:: = output|cutputs
Examples

e input state_vector ;
s inputs mass, velocity, distance ;
¢ cutput concordance list

Semantics

A variable.may be in both an input and an output list.
A variable in an output list not used within the subsystem
other than in the module in which it is initialized is not
required to have a requirement transduction attribute. The
structure of all variables in input and output lists must be
described within the variable statements of the subsystem pre-
amble. Each subsystem preamble must have a requirement declar-
ation with an dhtput part.

1.2.5.2 Transduction Parts

. Transductions are identifiers representing processing
‘steps. They are derived by first &riting a2 high level pseudo-
program to "transduce" the input variables -into the output
variables and then;extracting and listing the major verbs of
the program.‘ Just as the processing steps of ,the pseudo-pro-
gram may be nested, the transductions may likewise be nested.
Ideally, for each subsystem %here should be from three to

seven transductions that are not nested within any others.
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Syntax

< transduction part> :: = <transduction or

, -
transductions >

<transduction clausse>

|<transduction part> ; <transduction
clause >

< transduction or transductions >:: = transduction
| transductions

< transduction clause> :: = <transduction list>
|<transduction list> in <transduction
list >
< transduction list> :: = <transduciion identifier>

|<transduction 1list >, <transduction
identifier>

< transduction identifier >:: = <identifier>

Examples

é transduction sum expense, sub_deduct 1in tax compute;
write paycheck; ‘

e transductions save optiohs; read card in parse;

Semantics

Within a transduction clause, each processing step re-
presented by a transduction identifier to the left of in must
be a substep of the processing steps listed on the right of in.
Each transduction identifier represents z unique processing step,|
but may be reused to show different substep relationships. Sub-
step relationships must be consistent, i.e., the complete set of
substep relationships partially order tha transduction idenfif-
iers,

TR
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1.2.5.3 Constraint Parts

Syntax
< constraint part> ::= <const;aint or constraints>
< consiraint list> .
< ccnstraint or constraints >::= constraint
~ )
| constraints
< constraint list > ::= <constraint identifier >
|<constraint list >, <constraint
identifier>
< constraint identifier> ::= <identifier>
Examples
@ constraint carpool size ;
e constraints max_ targets, minimum distance ;
Semantics -

Each constraint identifier defined must be attached
as an attribute to some module in the subsysteﬁ.

1.2.6 Data Type and Variable Declarations

Explicit description of data and the ability to define
and use new data types is one of ‘the greatest assets of SSL.
A new data type may be described directly as part of a variable
declaraticn, or described independently for subsequent use,.

Syntax
< 1¥ype declaration> ::= <type or types>

3 <type definition>

< type declaration> ; <type definition>
<type or types> ::= tivype | types| global type

|global types

,_{;g%“"““



<type definition> ::= <identifier>.=.<type>
<type >::= <simple type> |<structured type>

|<pointer type>.

: - _
<variable deglaraticn> ::= <variable or variables>

<variable definition> -

.| <variable declaration> ; <variable definition>

‘<yariable or variables> ::= variable | variables

<variable definition> ::= <identifdier list> :< type>

<identifier list> : <type>
|<identifier list> : <type>

; <for clause>
; <subjectto clause>

[¢identifier list> : <type> ; <for clause>;

<subjectto clause>

<for clause> ::= Tfor <transduction 1iist>
<subjectto clause> ::= subjectto <assertion list>
<assertion list> ::= <assertion>

|<assertion list> ; <assertion>

<identifier list> ::= <identifier> |¥identifier list>
<identifiecr>

Semantics

" A type declaration list is used to define new data
types. Each type is named and may be referenced by the identi-
fier to the left of "=" in the <type definition> production.
The normal sgope of a type identifier is the subsystem in which
it is defined. Hqwever, the scope of a glébal type is the
entire SSL program. Global types may be defined only in the
main subsystenm.

119
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) A data type need not be named if it is defined in-
trinsic to the variable declaration. Both type and variable
declarations may use data types defined and named elsewhére.

Examples of both are given in thHe following subsections.

3 /
The <for clause> of the variable declaration is used
to attach requirement attributes. Requirement attributes limit
the availabilitynof variables within the modules of the sub-
. system. All variable declarations must contain a for clause
with the exception of output variables identified in the reguire-
ment statement.

The <subjectto clause> identifies the giocbal assertions
associated with the variables being declared. A global
assertion is one that must be true upon exit from the module
creating the variable, and true on both entry and exit of modulg§
using the variable.

1.2.6.1 Simple Types

Simple types are data types for which the designer,
using SSL, need not define the internal structure or the inter-

nal structure has previously been defined and named.

Syntax
<simple type> ::= <basic type> [<scalar type>
| <subrange type> | .<type identifier>
<type identifier> ::= <identifier>
Semantics

A type identifier must previously.have been used to

-

the left of an "=" in a type definition.
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1.2f6.1.1 Basic Types

The basic data types are those which are implicity
defined by the SSL language.

‘<basictype> = integer| real| boolean

“~

|doubleprecision |char| analog| text

Examples
@ Variables I, J, K: integer; for count_people ;
e Variables height: real;
X for record status;
subjectto  height >0.0 ;
height <= 10.0 ;
employed: boolean ;
for record_status
Semantics

The types integer, real, boolean, and doubleprecision
have the conventional meaning. The type char indicates a
single unit of hollerith information. Type text indicates
hollerith data with unspecified length. Since the length of a
text item varies, it may not be combined with other variables
in forming structured data types. The type analog degsignates
a data item which contains analog signal information. Like the
text type, it may not be combined with othgr variables to form
structured types. *




1.2.6.1.2 Scalar Types

Scalar itypes are'used‘to desigrate a finite number of -
disjoint states which a variable may represent. In conventional
programming languages, it is customary to declare the variable
of type integer and assign it only the cardinal numbers 1, -2,...,
n where each value represents.one state of the several possible.

Syntax

< scalar type> ::= { <identifier list> )

Examples
& type marital status = (single, married, divorced);

variable ms: marital_status; for emp record;

© variable color: (Red, blue, yellow, green) ;

Semantics

Conceptually, the elements of scalar types are ordered
regardless of whether or not the underlying set of states is
ordered. The order is always the same as that.of the identifiers
in the identifier list. 7This enables a designer to use rela-
tional tests (< ,>, ete.) in assertions involving scalar type
variables. '

1.2.6.1.3 Subrange Types

Subrange types are used to designate a subset of integ-
ers or scalars which a data item may assume. )

Syntax
< subrange type> ::= <constant> .. <constant>
<constan® ::= <unsigned integer>

|<sign> <unsigned integer>

|<constant identifier>

=
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¢ |<sign> <constant identifier> -
l<legical value>

constant identifier> .¢:= <identifier>

;

Examples
evariables weight: 10..350; for dins_compute;

dependents: 0..15; for tax compute;

etype color = (purple, blue, red, yellow, green, black):

variable - primary_color: blue..green;
Semantics

A subrange simply indicates the least and largest con-
stant values an item may assume. The lower bound (left-most
constant in the production) must be less than the upper bound.
A subrange with bounds expressed in types other than integer or
scalar is not permitted.

—

Constant identifiers may arise from two contexts. The
first is the appearaﬁce of an identifier to the left of "=" in
a constant declaration. The second (illustrated by the above
example} is thé appearance of an idenfifier as a scalar element.
Constant identifiers arising from the second context may not be

|preceeded by a unary sign.

1.2.6.2 Structured:Types

A structured type is a data type composed of more
elementary data types.




Syntax
< struéturedtyﬁe> Di= Larray t§§e>|<record type>

|<digital type>| <set type>
|<sequence type>

s

Semantics

An S8SS8L structured data type is used to indicate the
general form and content of a data structure, not precise imple-
mentation word and storage formats. In SSIL, the following

definitions are used:

Array - A fixed number of data items, all of the
same type and length and accessed by

computed index.

Record - A fixed number of data items, each of fixed
length, and each equally accessible.

Digital- A record having additional restrictions which

are discussed in a subsequent subsection.

Set ~ An element of the powerset of a finite number

of basic elements. ¥

-

Sequence A variable number of data items, all of the
Fi?g " same type and length; however, each element

is not equally accessible at all times.

Stronger connotations (such as elements of an array are seq-
uentially stored)-arenot implied by the semantics of SSL.




1.2.6.2.1 Arrays
An array is a fixed number of data elements, each of
Jthe same type and length and each equally accessible. Elements

of an array zre ordered and each element is azccessed by a
~

cardinal number called its index.

Syntax -~

1l

< array type >:: array [<index list> |- of

<component type>

< index list> <index type> [<index list>

2

<index type>

< 1index type >::= <simple type>
< component type> @:= éfype>
Examples -

¢ variable matrix: array [1..10, 0..2@] cf real;

for ta ;-

A
¢ type people = (adams, buckles, jones, smith);
variable employee: array [peopléj of 1..50 ;

or ta;

e
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Semantics

Index types must have a finite range and be ordered.:
This Trequirement eliminates inde; type of integer, real, and
double—precisibn. However, subranges of integers are permitted.
For the purrose .0f ordering, false <true for boolean type
indices.

1.2.6.2.2 Records

\ A record is a structure containing a number of com-
ponents callied fields. TFields are not constrained to be of
identical type but must be of fixed length. A single record
tﬁﬁe is permitted to have variants.

qutax

< record type ;:= record <field list> end

<field list> ::= <fixed part> | <fixed part> ;
<variant part> |<variant part> '

< fixed part> ::= <record section> |<fixed part> ;

. <record section >

< record section> ::= <field identifier list> : <type>

< field identifier list> ::= <field identifier>
| < field identifier list> , <field identifier>

< variant part> ::= case <tag field> <type identifier>
of <variant list>

<variant list> ::= <variant> | <variant list> ;
<variant>

< tag field> ::= <field identifier>

< field jdentifier> ::= <identifier>

.<variants ::= <case label list> : (<field list> )
|<case label list> :( )

< case label list> ::= <case label> |<case label 1ist>;

< case label>
<.case label> ::= < constant>

S —
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Examples
e Type employee = Record

Qumber:Integer;
Salary:Real; a
Name:Array E}.,243 of char

End;

© Variable machine part:Record

Part_No, Order_Quantity:Integer; "

Weight:éeal

End;

for customer billing;

¢ Type complex = Record real part, imag part:real End;

e Type farm =(peaches, cotton, soybeans);

Type 1land use = Record

Owner_Name:Array [1..123 of char;
Plot_No:Integer;
Case Crop:Farm of

peaches: (tree_count:Integer);

cotton, soybeans:(plant _date:Integer
herbicide, insecticide:boolean)

End; - N

& Variable;sizes:ﬁrray [?..10] of Record

Height:Integer;
Weight:Real

End;
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f%r health file_update;

sﬁbjectto height >0; height <120;
' :weightfﬁo.o; weight <500.0 ;

Semantics

Fields may not be of basiec types text or analog. A

record may be a component of another record, but a digital Type
may not. Th% scope of a field identifier is the smallest record
in which it is defined. TField identifiers with disjoint scopes
may be reused. Access of a component is always by the field
identifier and never by a computed value.

- The type associated with the tag field of a variant
must contain only a finite number of elements. This limits it
to boolean, subrange, and scalar. All elements of the type
must appear 1n scme case label list of the variant. If the
field list for case label L is empty, the form is:

[y

L ( )

A record may contain only one variant part and if must
succeed the fixed part. However, a variant may contain variants.
That is, it is possible to have nested variants. A1l field
names of the séme record must be unique even if they are in
different variants.

1.2.6.2.3 Digital Types

Digital'types are a restricted form of records to
represent real time digital signals.

Syntax

<digital type> ::= digital <fixed part> end
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Example

i
¢ Variable Signal_In: digital
Valve_l; boolean;
LOX Switch: 1..3;
~ Command: (Jdle, stopped, running)
End;
for check status;

Semantics

Due to their physical interpretation, the type of
componants within digital types may only be boolean, scalar,
or subrange. Digital types may not have variant parts and
theé may not be_used as compenents of any other type.

1.2.6.2.4 Set Types

Set typeé represent elements of péﬁersetS over a
finiﬁe set éf elements called the base type. Conceptually,
2 set type variable may be viewed as a bitstring of length
egual t0 the number of elements in the base type. ZEach bit
is associated with a unique element and is ''on' or "ofi"
if the element is a member or not a Mmember of the powerset.

Syntax

<set type> ::= get of <basge type>

|

it

<basge type>:!:= <simple type>

Examples
¢ Type members = (father, mother, big sister,
little_sister, big sister, little_ brother);
Variable family: set of members; for arrange;
e Variable Even_numbers: set of -~10..10;

for computewsomething;




Semantics

The base type must be either scalar-ori subrange.

1.2.6.2.5 Seqéence (File) Typgé

A zequence differs from an array in that it may vary
dynamically in- length and is referenced.through a "window"
called dits buffef (not by computed index). Examples of physical
representations of sequences include linked lists and mass
storage fileg. -

Syntax

< sequence type> ::= <file or sequence> 0of <type>
<file or sequence> ::= file | seguence

Examples

e Variablo Assembly: sequence of record

part name: array [i..q].of char;
order no: integer; )
drilled, punched, stamped, purchased:
boolean
End; for update orders ;
I
- & Type roster_entry = record
name: array Eﬁ..20]_9§ char;
rank: 1..16; base_code: 1000..5000
End;
Variable roster: file of roster_eniry;

for assign_new_base ;

(B
!

o

oo




Semantics

A1l components of seqﬁénces must be of identical type.
and length. A sequence may not have sequence type or text type
components.: - Furthermore, digital anc.analog types may not be
combined as-sequences.

1.2.6.3 Pointer Types

_Va:iables of type pointer are "bound" to a particular
type. That is, the contents of a pointer is used to indicate
a2 second variable, and the second variablé is required to be of
a predetermined, specific type.

I

Syntax

It

<pointer type> @ <type identifier>

Examples

e Type combination = record n, pf'integer End ;

Variable comb_ptr: @ combination; for select_band,

¢ Type weather_station = record hi,lo: integer;

rain: real End;

Variable ws_ptrf @ weather station;
~ for record_temperature;

Semantics

The contents of a pointer may be altered, but the

data element the_pointer indicates is always of the same type.




1.2.7 Cansfant Declaraﬁions

In SSL constant- declaratlons may appear in the
preamble of any subsystem and are used to communicate actual .
values or parameters to the detalled designer. Yormally,,
a constant declaration would be used only for critical values

~

for which the effecis are to be isclated in the final code.

Syntax

< constant decliration> ::= <constant or constants>

<constant definition 1ist>

< constant or constants> ::= conStant] constanis
. < constant definition list> ::= <constant definition>

[<constant definition list>;<constant definition>
< constant definition> ::= <identifier> = <constant>

|<identifier> = <simple type>
Examples

Constant a = 10.0 ; maxX count = Integer;
Constants Low = 1ir

ucs.
Tax_cut = 1. ;

Semantics

An identifier declared egual to a simple type indicates
that the exact value is not known at the time of specification,
but will be provided before i&plementationﬂ An identifier used
in a constant declaratioﬁ may subsequently be used any place
that a constant (of the same type) may be used.
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1.2.8 Data References

. Data glements may be refersnced:by variable name;
by selected component, or pointer. A variable has components
only if it is a record, digital signal, file, or array.

§
Syntax

<variable> ::= <entire variable>-

¥

| <comporent variable>

|<referenced variable>

1.2.8.1 Entire Variables

<entire variable ::= <identifiers

Semantics

A referefice to an entire variable includes all fields
of a record or digital signal, all elements of an array, or all
records of a file. If the data element is a simple, unstruct-
ured variable (integer, boolean, etec.) it may only be refer-
enced as én entire variable.

-r

1.2.8.2 Component Variables

Syntax
<component variable> ::= <indexed wvariable >

j<field designator>
[<file buffer>

<indexed yariable> ::= <array variable>
[<expression 1ist>]
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<array!variable> :@:

E-l

.. <expression list>

.-
3

<field designetor>::

-

<record variable>
T

A e
*

. 1
<file buffer>»

<file varighle>

Examples

<garizble> --

<file variable> @

1= <variablie>

<expression>|<expression list> .
<expression>

<record variable> . <field

i .
identifier>

<yariable>

Char Array [}5]

frrcw K e v
Inverse Natrix [ 5, I, 16]
Exployee.Nams
Owner [153 . Accessed Value
Name Record.Character [?3
Transaction_File €
Transaction File @ . Date

Transaction File @ .- Date, Month

Semantics

Indexed variables have the conventional meaning.
designators denote which field component of a record or digital

signal type is to be selected.

the current active element of the sequence of elements that

comprise the filei

'

Field

A file buffer variable designates




PR

Since arrays, files, and records can be combined in
.various ways.(z,record of records, £ile of arrays, array of re-
cords, etc.) a component variable can be arbitrarily complex.
It is recommended that data structures %e as limited in complex-~
ity as the problem permits. ' o

1.2.8.3 Reterenced Variables

EO—

Syntax

<referenced variable> ::= <pointer variable> @

<pointer wvariable> ::= <vyariable>

Examples

Symbol Pointer @
Student_Name [é] @
Agsembly@. Manufacturer@

Semantics

The data structure denoted by the contents of the
pointer variable is substituted for the referenced variable

in expression evaluation.

~

!

1.2.9 Expressions and Asgertions

Expressions arise in two contexts: subscripts of
arrays and as terms within assertions. Assertions may appear L
in either variable declarations or module descriptions.
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1.2.9.1 Arithmetic Expressions
H
Arithmetic expressions in S3L are similar to those i
other high-levei 1anguages: Results of-expressions are singles
valued with typé determined by the operation and the-con-
stituent operands.

Syntaf

<arithmetic expression> ::= <term> | <sign> <term>
|< arithmetic expression> <sign> <term>
<term> ::= <factor> } <term> <multiplying operators

<factor>

<factor> ::= <primary> | <factor> ** <primary>|<set>
<primary>’::= <constant identifier> | <unsigned
number>| <variable> | < function designator >

| (<arithmetic -expression> )

<set> ::= [<e1ement list>]
' - i
<element list> ::= <empty> | <element> | <element

list>, <element>

<element> ::=<expression> | <expression> ..
<expression>

< multiptying operator>::= * [/

<function designator> ::= <function identifier>

(<expression 1ist> )

<function jdentifier> ::= <identifier>




Examples

a + b -

3.0 * gin { r + 1.0}

2 * (ifix(c) + blank common.icount)
name.fieldl ’

namemsét + Tjoe, freﬁ]

Semantics

Mixed mode expressions are prohibited with the excep-
tion of the exponentiaticn operator as indicated in Table 1-3.
In Table 1-3, any operand of tyﬁe integer may be replaced by
an operand of type integer subraznge. The symbol "dp" indicates
éeuﬁle precision., The unary "+" may be used with any operand
permitting a unary "-", but is semantically superfluous (i.e. +
is the identity operation). If a type is not included in the
operand type columns of Table 1-3 then ifs use with the desig-
nated operator is not permitted. Note, however, that integer
and integer suhranée are interchangable.

SSL does not contain intrinsically defined functions.
All function identifiers are accepted, but it is suggested that
those embodied in the proposed implementation language be
adopted for each specifica%icn. Function types are not explic-
ity declared, but must be consistently used throughout the
specification. In addition to the basic types (integer, real,
etc.), the permissible function types include scalar and sub-
ranges of integers and scalars.




R
(9]

Operator

Aok

TABLE 1-3 ARITHMETIC OPERATIONS

. Vi
Operation.

Arithmetic, Negation

Addition, Subtraction

Set Union,
Set Dif{ference

Multiplication,
Division
Set Intersection

Exponenciation

HOP'II
V1 Type

Integer
Real
dp

Set

Integer
Real

dp
Set

Integer
Real
Real

dp

dp

dp

Va

V2 Type

Integer
eal

dp

Integer
Real

dp
Set

Integer
Real
dp

Set

Integer
Integer
Real
Integer
Real

dp

Result Type.

Integer
Real- -
dp

Integer
Real
dp

Set

Inteéer
Real

ap

Set

Integer
Real
Real

dp

dp

dp




liz.9.2 Boolean Expressions
t

Comhihing arithmetic expressions with the boolean

operations produces the expressions -used.-in 831 assertions
and array subscript iists. ’

'

Syntax

2

< expressior ::= <implication>|<expression> equ

<implication> ,

dmplication > ::= <hoolean term>|<implication>
implies <boolean term>

<boolean term ::= <boolean factor>]<boolean term> or
<boclean factor>

<boolean factor> ::= <boolean secondary>|<boolean
.factor> and <boolean secondary>

<poolean secondarv> ::= <boclean primary>|-<boolean
primary>

<boolean primary> ::= <logical value>|<arithmetic
expression> |<relation>|(<assertion>)

<relation> ::= <arithmetic expression><relational
operator><arithmetiic expression>

" @welational operator> :i= <|<=| =I>= |—4 = [ in
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Exzmples

Rate = 7.0

Value égg Qua;

a>b'imélies\¢>0.0

5—=1t Equ p<t

Color égf{reé,-green, yellowj -

abs (buffer @.velocity) <16.0 and weight >= 14,0

Semantics

The arithmetic and boclean operators are grouped into
hierarchial levels as exhibited in Table 1~4. Operations are
performed in the order of highest hierarchial level first
followed by equal hierarchial levels from left to right. This
sequence may be overridden by parentheses, in which casze the
innermost operations are periformed first. The meaniﬁg of the
logical operators - (not), and, or, implies, and equ (equi-
valent) is given in Table 1-5. o

Table 1-€ depicts the required operand types for the
boolean and relational operators. TFor set types, the symbols
”1:3" stand ?or the empty set. When comparing set types to
scalars, the base type of the set must be the same as that of
the scalars. The operators <, <=, =, >=, > — = stand for less
than, less than or equal, egual, greater than or equal,
greater than, and not egual respectively. Relational operators
(other than in ) may be used to compare arrays of egual length
composed of characters, in which case théy denofe alphabetical
ordering.
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. TABLE 1-~4 OPERATION HIERARCHY

R P

Level _Operations

-

Eau

L%

Implies
Or .
And

¥ * ) ;““‘]”all},

o w} O e
A
-
A
]
i
v
H]
A’
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TABQE 1-5 " LOGICAL. OPEEATOR TRUTH TABLE "
bl falge falge true true
b2 falsze true false true

st bl true true false false
bl And b2 false false falzne true
bl Or b2 false true true true
bl Implies b2 true true false true
bl Egqu b2 true false false true
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Operator

; -
TABLE 1-6 BOOLEAN AND RELATIONAL OPERATIONS

Operation

Compare

Set Inclumion

Logical Inversion
Logical "And"
Logiceal "Or™

Logical Impli-
cation

Logical Bgui-
valence

VI "OP", V2

V1 Type

Integer
Real-
dp
Boolean
Char
Scalar
Scalar
Set

Set
Subrange
Set

Boolean

- Boolean

Boolean

Boolean

Boolean

3

Y2 nge

‘Intéger

Real

&p X E
Boolean
Char
Scalar
Set
Sealar !

Set 4

Set
Subrange

Boolean
Boolean
Boolean

Boolean

Boplean

P PS4

Nesult Type

Boélean

Booieun -

Boaglean
Boolean
Boolean

Boolean
H

Baplean




%.2.9‘3 Assertions

Assertions are conditions which may assume only true/
false values. They are attached to variables at their point
of daclaratioﬁ and to modules, Module assertions depict entry

and exit cdaia:conditions.
Syntax
<assertion> ::= <expression><forall clause>
<forall clause> ::= <empty>| forall didentifier =

<ggt>

Examples

It

s 2 [i] =0.0forall i =[1..n-i
(b.e[3]= t[x]forarr j =[1,3,4..16]) forall

x = [16..30]

o big>rsmall

-¢ code = 1 implies (eof gqu true)

Semanties

The scope of the identifier in the <forall clause> is
the assertion in which it is used and must not overlap that
of g ,lJocal or global variable of the same name, Its type is
assumed to be the base type of the set within the <forall
clause>. The set must represent a finite number of elements
an@ may not be empty.

The expression within the assertion may assume only the
values true and false. If the <forall clause> is present, the
expression is evaluated once for each unique value which the

<forall identifier> can assume from the szet. ol
& 47 |
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1;2.10 Modulé Descriptions
i
:
Modules are basic system objects in-an SSL system
. deseription. ;In using SSL, one identifies for. each module: °
; K
The module name
Input and output data
-® Coﬂditions placed on data upon entry to and
' exit from’ the module
) Dependence of the module on environmental

1

objects and other modules

The rule of cor&espondence between input and output data is
not stated in SSL., Its statement is a function of detailed
design.

Syntax

<module description> ::= <module statement>;
<module definition part> end

<module definﬁtion part> ::= <module definition
statement>|<module definition part> ;
<module definition statement>

<module definition statement> ::= <assumes statement>
|<satisfies statement>|<fulfills statement>
]<accesses statement >|<modifies statement>
|<creates statement>|<uses statement®
|<receives statement>|<transmits statement>

| <executes statement>
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1.2.10.1 Mod%le Statement

{

.: .The module statement is always the first statement:
i

of a module déscription. It identijies the module by name
and declares @he local variables (if any).

Syntax:
<module statement> ::= <module or entrv> <module

identifier> <release variable group>

<module or entry>

= module|entry

<release varizble group> = <empty>|(<release variable
list>)

<release variable list> ::= <release variable>|<release
variable list>; <release variable>

<release variable> ::= <variable > |<local variables>
<local variables

<identifier list>:<simple type>

<module identifier> ::=<identifier>

‘Examples

-

e module matrix multiply;

e eniry-push_stack (stack_item:stack entry);

e Mmodule permutation (m, n:integer; elements:p_array);
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i
Semantics
© Amodule statement introducerd- by module can only be
referénced frém within the subsystem in which it is declared.

. -

A.module statement introduced by entry can be refer-
enced only from subsystems other than the one in which it is
deciared.

Release variables occur both in module statements and
virtual references within execute statements. Local variasbles
within a release group serve strictly for communication bet-
ween the module and those calling it. In this respect, they
differ from global variables declared in the subsystem pre-
emble which serve to communicate among modules having common
requirement attributes. Local variable identifiers must be
unique throughout a subsystem. Only the module statements
introducing entry modules are permitted‘release variibles
which are not local variables. The variables of a release
group for a module statement of an entry module must agree
in type, number, and sequence tfo eéch virtual reference to
it from other subsystems.

1.2.10.2 Assumes and Satisfies Statements

The assumes and satisfies statements specify truth
conditions for data.

Syntax

<assumes, statement> ::= <assume Or assumes>
<assertion list> '

<satisfies statement> ::= <gatisfy or satisfies>
<agsertion list>

<assume or assumes> !:= assume| assumes

<satisfy or satisfies> ::= satisfy| satisfies




Examples
e Assume " a >0.0 ;

p_Satisfies big 'sister’in family; count-— = 0 ;

Semantics

The assumes statement specifies data conditions
that must be true upon module entry. The satisfies statement
specifies data conditions that must be true upon module exit.

Variables used in asserticns must be either lcc

al variables
in the release set or in the availability set pertinent to

the module. (The availability set consists of those variables
having requirement attributes which subsume all requirement
attributes of the module.) ’
1.2.10.3 Fulfills Statement

The fulfills statement attaches requirement attributes
to a module,

Syntax

<fulfills statement> ::= <fulfil or fulfills>
‘<requirement attribute list>

<requirement attribute list> ::= <attribute identifier>
|<requirement attribute list> , <attribute

‘- identifier>

<attribute jdentifier> ::= <transduction identifier>
| <constraint identifier> .

<fulfil or fulfills> ::= fulfil | Fulfills




= wme eI,

Examples - .
o Iulfills sizemcbnstraint, cluster;
’! . I
p- Thlfil name list
N ~ -

Sementics
A1l modules must have at least one transduction
identifier attached as a requirement attribute, All attribute
identifiers must be declarzsd in the preamble to the subsystem
in which the module is daclared.

i

1.2.10.4 Accesses Statemént

The accesses siatement is used to indicate which
environmental objects (chiefly peripherals) are utilized by

a module,

Syntax

<accesses gtatement> 1= <gccess Oor accesses®
<environmental object list>

<access or accesses> ::= access | accesses

<environmental object list> ::= <environmental
object identifier>] <environmental object list> ,
<environmental object identifier>

.<environmental ghject identifier> ::=<identifier>

e —
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Eggmgiés

>

‘e Access 1line printer;

e Accesses real_time_clock, system disk ;
] 7 ; -

13
L

Semantics
t
For each environmental object there must be a unigue
identifier for which the scope is the entire specification.

1.,2.10.5 Receives and Transmits Statements

The receives and transmits statements are used to in-
dicate real time data activity such as is associated with
telecommunications, analog, and digital signals.

Syntax

<receives statement> ::= <receive or receives>

<from clause>]|<receives statement> ; <from clause>

<from clause> ::= <entire variable list> from
<environmental object identifier>

<trapsmits statement> ::= <transmit or transmits>
<to clause>|<transmits statement> ;
<to clause>

<tg clause> ::.= <entire variable list> to
<environmental object identifier>
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‘<receiye or receives> ::= réceive.| receives

<transmit or transmits> ::= transmit | transmits

: . !v‘ * ;
<entirie variable list> ::= <entire variable>
|<entire variable list> , <entire variable>

Examples

oRéceive weight ;zgg strain_gage 1;

e Transmits course correction io ground control;
Semantics

The scope of the environmental cbject name is the
entire specification. Note that components of structured

variables may not be transmitted or received.

1.2.10.6 Creates, Modifies, and Uses Statements

The creates, modifies, and uses statements distinguish
between input and output data variables. They may also in-—
dicate how tpe two are related in a manner short of a rule of
correspondence. A complete rule of correspondence (algorithm)
is a task of detailed design and not of SSL.

Syntax -

<creates statement> ::= <create or creates>

<create list>

<modifies statement> ::= <modify or modifies>
<modify list>




Aty et = =

"
s

<modify list> ::= <variable list><using clause>

|<modify list>; <variable listx<using clause>
- - 3
3 e

ccreate  list>: = <entire variable listr<using clause¥

|<create list>;<entire variable list><using clause> ’
: §

.

<uses statement> ::= <uge or uses> <variable list>
. - “ N -

cecreate or creates> ::= createlcreates )

<m0dify'or modifies> :(:= mcdify]modifies

<use or uses> ::= use|uses

<using clause> ::= <empty>|using <variable lisi>

<variable list> ::= <variable>| <variable list >,
<variable>
Examples . .

e éreate employee_array using name_file;

-

emodifies count, fica_rate using tax table,

salaryﬂscales;
emodify pressure-weight [43 , names [ﬁé] +initials;

suses cluster@, transaction_ file;
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Semantics
i .

The order of the variasble references in any variable .
.t H

list has no significance,

The vériahlgs within‘é’using‘ciausé or a uses state-
ment are input -variasbles. A variable may be both input and out-
put. An input §ariable in a using clause indicates that its
contents are instrumental in determining the final contents of
the output-variables within the same statement extending to the
first semicolon on the left.

The presence of a variable in the output list of a
creates statement indicates the first use (in a dvnamic sense)
of that wvariable. This does not mean, however, that the vari-
able may not appear previously in the seguential listing of the
SSL program. The implication of the creates statement is that
all variables in the output list zare first computed or initia-
lized in the module being described. All variables deciared
in the subsystem preamble must appear as an output variable in
exactly one creates statemént within the subsystem uniess it is

a release variable of an entry module.

All variables appearing in a creates, modifies of uses‘
statement (other than the output list of the c¢reates statement)
must be in the availability set for the module. A variable is
in the availability set of a module if the transduction require-
ment attributes of the variable subsume zll the transduction
requirement atiributes of the module.




‘ ~
1.2.10.7 Execute Statement

The execute - statement designates modules which are
called by the module helng descrlbed It may indicate tha;

specific modules are_ called
both.

Syntax

<executes statement>

1terat1vmly, condltlonally or .-}

s
Amlrary

::= <execute or executes>

<call list> |<executes statement>; <call list> e

<call lis3> ::= <module reference list>| <module

reference list>

f<call list tail>

<call list tail> ::=
|<conditionally

<iteratively clause>

reference list>

~

<call list tail>
<iteratively clause >
clause>

::= iteratively <module
| iteratively <call 1list tail>

<conditionally clause> ::= conditionally gmodule.-

reference list>

—

<execute or executes >::= execute|executes

<module reference list> ::= <module reference>
<module reference list> , <module reference>

<module reference>

:= <concrete reference>

| <virtual reference>
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<concr?t8 reference> := -<module identifier>

<virtual reference> ::= <subsystem identifier>
- /
<module identifier><release variable group>

L

Exgamples

e

@ Execute matrix multiply, cluster-group (pointer@);

o Execute iteratively suba, subb;

-

conditionally sube, sub&, sube;

e IExecutes sgrt; iteratively cos conditionally sin;

Semantics

The order of module identifiers in the module reference
lists is not significant. The domain of either an iteratively
or conditionally clause extends to the next semicolon. An
iteratively claunse may overlap another clause.

Presence of z-module identifier in a iteratively clause
eonnotates that it is ealled from wiithin atloop.' Presehce'in
& conditionally clause connotates the module is not always .
calied, If present in ngitﬁer, tﬁe module is called uncon-
ditionally but not from within a 1oop.n

R

* v

A concrete reference is a call to -a module within thej

R Y I

same subsystem. A concrete reference may -never be to.an entryl.
module., A virtual reference is a call to a module of a =1

different subsystem and‘ﬁust alwavs be to an.entrﬁ modﬁie:ﬁ“:g




Within- the release -variable group, the local variable
format must be used for. variables never before defimed. 4
variable may ﬁave_been defined in the preamble to the sub-
system or in.the last module statement. The entry module
to which the virtual reference, refers must have the same
.release list with respect to ﬁﬁmber, order, and type of
variables. All variable types used in a virtual reference
release list must be either intrinsically defined (boolean,

resl, text, etc:} or globzl types.

1.2.11 Sﬁbsystem Descriptions

Subsystems are independent software units, each with
its own requirement declaration. Subsystems may not share
global variables but communicate via the release group var-
iables of virtual references and entry modules. The only
identifiers with scope greater than a single subsystem are
global type identifiers, envivonment objeci identifiers,
subsystem identifiers, and function identifiers.

R

Syntax

<subsysten description> ::= <subsystem p;eamble> :
<module description list> end

<module description list> ::= <module description>
|< module description list>; <module
description>

<subsystem preamble> :!:= <preamble declaration lisi>
| suhsystem <subsystem identifier> ; <preamble
declaration list>

1-54



<subsystem iden;ifier> ;1= <identifier>

<pream61e declafation list> :9v= <preamble declaration>
|<preamble declaration list> ; <preamble
déclaration>

<preamble deelaration> ::= <requirement declaration>
|<type declaration>|<variable declaration>

|<constant declaration>

<Subsystem desecription list> ::= <subsystem
descr1nt10n>|<subsystem descr1p+1on list> ;

<gsubsystem description>
<gpecification> ::= <subsystem description list>

end

Example

o Requirement transduction sort descend; input n,

sort_array; output sort_array end;

Variable sort_array.array [ﬁ..lOOOJ of real;
for sort_descend;
subjectto sort_array[i] >0.0 forall i =

- [1..n-1] ;

n:1..1000; for sort descend;

Module.. sort;

fulfills sort_descend; ]

accesses  card_reader, liqe;printer;
creates n, sort_array;

modifies sort_array using n, sort_array;




sétisfies sort arraylij >= sort array[}+ij
forall i = [1..n- 1:]

End
End
End
Semantics

Each subsystem must have a reguirement declaration
that contains at least one transduction identifier and one

output wvariable. There must also be at least one module

Tt

description. The first subsystem declared (called the 'main
subsystem) does not have a subsystem identifier; all others
must have a unique identifier. The scope of the subsystem
identifier is theé entire specification.

The nonterminal symbol <specification> is the
distinguished symbol of the SSL grammar.




1.3 EXAMPLE

The example of this section was selected to demonstirate
both-the éesgr%ptive level of SSLw@qd_&S‘many language elements
as- possible: The requirement.bf the.problem may be stated-as
follows [ 8] : ' ' -

“A:pregram is required to process a stream

of télegrams, iﬁis stream is available as a
sequence of letters, digiis ‘and blanks on some
device and can be-transferred in sections of
predetermined size into a buffer where it is to
be érocessed. The words in the telegram are
separated by sequences of blanks and each
telegram is delimited by the word 'ZZZ&'.

The strefim is terminated by the occurrence

of the empty telegram, that is a telegram®
with no words. Each telegram is to be pro-
cessed to determine the number of chargeable
words and to check for occurrences of over-
length words., The words '2ZZZ' and 'STOP' are
not chargeable and words of more than twelve
ietters Qre considered overiength. The

result of the processing is to be a neat
Iigting of the telegrams, each accompanied

by the word count and a message indicating

the occurrence of an overlength word."”

To complete the problem statement, several assumptions are
necessary. The following alternatives were.selected for the
purpose of this exposition:



http:requirement.bf

) The character stream from which‘the telegrams
are constructed resides on a drum having fixed
léngth records; the record length itself is left
a§ an implementation option. .

o The chargeable word count is fhe value to be

printedfand oveflength words count as one word,

° If a physical end of file is encountered before
the logical end of the data stream, an error
message and the partial telegram is printed.

The software is organized into four modules as indicated
by Figure 1-2. The purpose of each module is given in Table
i-7. Figure 1-3 contains the SSL description of the telegram
processor. The right margin of the statement listing contains
reference notes to subsections containing detailed descriptions
of the language elements used.

A careful examination of Figure 1-3 will indicate an
interesting application of the subsystem capability. The
subroutines GET CHAR and FILL BUFFER occupy a separate sub-
system with the sole purpose of handling file I/0. The char-
acteristics of the device on which the telegrams are stored
are encapsulated within these two modules. .

LY
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Figure 1-2

GET_TELEGRAM
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CONDITIONALLY

T—0

A" USEI SYSTEM SERVICE ¥B”

SAID3I2

Module Structure Chart for Example
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TAPLE 1-7

MODULE

GET TELEGRA:

GET_WORD

GET CHAR

FILL. BUFFER

MODULE DESCRIPTIONS. FOR EXAMPLE

. PURPOSE *

’
~Collects words belonging to each
telegram and prints them in 2 neat
manner along with the chargeable
ward comnt.

Collects characters into words and
prints error messages denoting over-—
lengih word or physical record end
of file.

Returns the next character in the
telegram file,

Enters the next physical record
from the drum into the character buffer.
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/¥ print

/* beginning of mtin subsystem preamble */

requirement

variable

module get_word;

end; /* end of main subsystem */

T o s

[P

transductlons
collect :a print;
output -

telegram, charge_pount
end; :

telegram: text;

for pring;

charge count:integer; }

sublectto charge _count 20
word _couat:integer;

for print,

subjectio word count > charge count;

word:arrav {1..12] of char;
for print;
eci_flzg:boolean:

for prant

ernd; /* end of main subsystem preamble */

4
/* main routine to collect words and */

teliegran with chargeable word count®/

module get_telegram;

fulfills print;
creates ielegram. charge count using word;
creates word_count; -
modifiss word_count;
uses eof_flag;
accesses line printer;
executes cvelically get _word;
satisfies
eoi_flag or word_count = 0

end;

/* subroutine To collect characters into */
/* words */

1.2.6.1.1

— 1.2.10 )

{ 1.2.10 )

fulfills collect:

’ -
executes cyclically 1 o.get_char(a_char:ch

creates w0rd, eoi_Ilag:

el

:
arieof_Tlag);

accesses line_printer /*prints error messages */ ( 1.2.10.4 )
g .

Figure 1-3 SSL Description for Example
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i P

J* beginning of Lo subsystem preamble */

subsystem i o; .

regquirement - .-
input character file; O

- transdugrions } .
read 1n separate; . T

output z char, eor;_f_l\a.g —

end; -

/* parameterize zecord lenygth */
constant record lengih = ipteser:

type charzcter record = array EI..recsrd_}e::gzh} of char;

variable character_file:sequence of character record; (“";;';’2_'5"’“‘\
for read: . AN nrmEes S
buffer:character_record; \
Toy separate;
& char:ichar

fof separate;

) ehar imdex:l,.record-length; { 1.2.6.1.3  }
for separate;

eof flazg:boolean;
for separate 1.2.86

end; f* end of sphsystem preamble 3/

/* subroutine to fetch next */
/* character from file ¥f

entry get echar {a_chapr; eof flag} ; f'—‘—‘)
entry -
fylfills separate; 12101 o

exgeutsy cogdiriopnlly f£ill buffer: 1
modrfies coar_iadex, 210.3
eraates a_char wsing buffer [char_.index_] , eoi flag;
ereates character rile, char”:index;
satisfiss eof fiag irplieg & char = buffer {ehar indexj
e = eSS T S e
enud; e

/* subroutine to fetch next-physical >/
/* record from character file */

*

module i1l buffer;

fulfzlls read; { 1.2.10.3 )
asgumes char index = record length: -
aceessas  disgk: -\N
gcrestes buifer, enf filag uﬁiﬁgtcharaeter_flle‘gj H m
Satisfieg ~ T r;
eof Tlag implies buffer = character filez —(__ 1782 . )

end L }_

. s { 1.25.2 )

end /* end of stbsystem */ . :

ead; /* epd of specification %/

Figure 1-3 SSL Description for Example {(continued)
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2, INDEX

Each reference in the left column is to a nonterminsl
symbol. ‘The right column contains the number of the .sub-
_ section iﬂ;which the nonterminal is. .defined via one more pro-—-|

ductions.

1.2.10.4

Access or accesses

Access statement 1.2.10.4
Arithmetic expression 1.2.9.1
Array tyﬁe 1.2.6.2.1
Array variable 1.2.8.2
Assertion 1.2.9.3
Assertion list 1.2.6
Assume or assumes 1.2.10.2
assumes statement 1.2.10.2
attribute identifier 1.2.10.3
Base type 1.2.6.2.4
Basic type 1.2.6.1.1
Boolean facgor 1.2.9.2
Boolean primary _ 1.2.9.2
Boolean secondary 1.2.9.2
Boolean term %.2.9.2
Call List ; 1.2.10.
Call 1list tail 1.2.10.7
Case Label 1.2.6.2.2
Case label list 1.2.6.2.2

A7
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Concrete reference
g‘Cenditianally'ckause
Component type '
Component varia&le
Constant

Constant deciargtion
Constant defini{ién
Constant definition list
Constant identifier
Constant or constants
Constraint identifier
Constraint list

| Constraint or constraints
Constraint part

Create list

Create or creates
Creates statement
Decimal number

Digit

Digital type

Element

Element 1list

Empty ’ .

Entire vari;ble

Entire variable list
Environmental object identifier

Environmental objéat i1ist

1.2.10.7
121:2.10.7
1.2.6.2.1
" 1.2.8.2 -
1.2.6.1.3
1.2.7
1.2.7
1.2.7
1.2.6.1.3
1.2.7
1.2.5.3
1.2.5.3
1.2.5.3
1.2.5.3
1.2.10.6
1.2.10.6
1.2.10.6
1.2.4.2.
1.2.3
1.2.6.2.3
1.2.9.1
1.2.9:1
1.2.1
1.2.8.1
1.2.10.5
1.2.10.4
1.2.10.4

fa )

é? !
=
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Eéecute or éxécﬁtes
Executes statement
Exponent partz
Expression e
Expression liét‘
Factor

Field designator
Field identifier
Field identifier list
Field list |
'File buffer

File or sequence

File variable

Fixed part

For clause

Forall clause

From clause

Fulfil or fulfills
Fulfills statement
Function designator
Function identifier
Identifier

Identifier list;
Implication

Index list

1.
1.
1.

1.

S
1.
1.
1.
1.

1.

1

1

1

1.
1.
1.

1.

$1.2.10.7

2.10.7
2.4.2
2.9.2.
2.8.2
2.92.1
2.8.2
2.6.2.2
2.6.2.2
2.6.2.2

2.8.2

.2.8.2.5
.2.8.2
.2.6.2.2
.2.6
.2.9.3
.2.10.5
.2.10.3
.2.10.3
.2.9.1
.2.9.1

2.4.1
2.6
2.9.2
2.6.2.1

S —



Index type

Indexed variab@e

Input or inputs

Input part

Iteratively clause

Letter

Local variableé

logical wvalue

Modifies statement

Modify or modifies

Module
‘Module
Module
Module
Module
Module
Module
Module

Module

definition part
definitiqn statement
description
description list
identifier..

or entry

reference

reference list

statement

-~

Multiplying operator

Output

Output

or outputs

part

Pointer type

Pointer variable;

1.2.6.2.1

142.8.2

1:2.5.1
3.2.5.1
1.2.10.7 -
1.2.3
1.2.10.1
1.2.4.3
1.2.10.6
1.2.10.6
1.2.10
1.2.10

1.2.10

S 1.2.11

1.2.10,
1.2.10.
1.2.10.

1.2.10.

e T T =

1.2.10.
1.2.9.1
1.2.5.1
1.2.5.1
1.2.6.3
1.2.8.3




~

Preamble declaratién
Preamble declaration list
Primdry

Receive or reteives

Receive statement

Record section .

Record type

Record variable

Referenced variable
Relation

Relational operator

Release variable

Release variable group
Releass variable—iist
Reguirement attribute list
Requirement declaration
Requirementhor requirements
Regquirement statement group
Requifemenf‘statement part
Satisfies statement

Satisfy or satisfies

Scalar type .

Set
Set type
Sequence type

Sign

PER-R
11.2.“11

. 1.2.9.1
£1.2.10.5
1.2.10.5
1.2.6.2.¢
1.2.6.2.1
1.2.8.2
1.2.8.3
1.2.9.2
1.2.9.2
1.2.10.1
1.2.10.1
1.2.10.1
1.2.10.3
1.2.5
1.2.5
1.2.5
1.2.5
1.2.10.2
'1.2.10.2
1.2.6.1.2
1.2.9.1
1.2:6.2.4
1.2.6.2.5
1.2.4.2




 ya—
o ATy et e

Simple type
Speéification:
Structured fy?e
Subjectto cla?se
Subrange {ﬁpe: ~
Subsystem des?ziption,
Subsystem description list
Subsystem identifier
Subsystem preamble

Tag field i

Term

To clause

Transduction
Transduction
Transduction
Transduction

Transduction

clause
identifier

list

or transduetions

part'

Transmit or transmits
Transmits-statement
Type

Type declaration

Type definitioﬁ

Typé identifier;-
Type or types
Unsigned integer

Unsigned number

)

1.2.6.1
1.2.11
.1.2l6.2
1.2.6

1.2.6.1.3

T 1v2v11

1.2.11
%.2.11
1.2.11
1.2.86.2.2
1.2.9.1
1.2.16.3

1.2.5.2

1.2.5.2

1.2.5.2
1.2.5.2
1.2.5.2
1.2.10.5
1.2.10.5
1.2.6
1.2.6
1.2.6

1.2.6.1

1.2.6

1.2.4.2

> 2.8




Use or usez 1.2.10.6

Uses -statement ' 1.2.10.6
Usiﬂé clause é % l.2.10.§
* Variant 1 1.2.6.2.2
Variant list 1.2.6.2.2
Variant parv 1.2.6.2.2
Variable  _ . 1.2.8
Variable declaration 1.2.6
Variable definition 1.2.6
Variable 1list 1.2,.10.6
.-Variable or varizbles . 1.2.6
Virtual Reference 1.2.10.7
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