
(NASA-CR- 14236) SSI: A SOFTWAIN

SPECIFICATION LAVGUAGE (Science

Applications, Inc., Huntsville,
Ala.) 74 p

CSCL 09B
G3/61

Unclas
21580

- RE?IiODUCx6 Wf

NATIONAL TECHNICAL
INFORMAON SERVICE

. S.i PEPARTMElT OFCOMMERESfljtICFIELD, VA. 2-1

ThGS SUBJECT 10CHN

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE

BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-

LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

TABLE OF CONTENTS

1 TES LAGUAGE . VI

1. INTRODUCTION -i

S1.1 Need for SS­

1.1.2 Unique Features of SSL 1-2:

1-1
Background...................
1.1.3

1.2 THE GRAMAP 1-4

1.2.1 Metalanguage Description 1-4

1.2.2 Overview of SSL Grammar 1-5

1.2.3 Basic Vocabulary 1-7

1.2.4 Basic Language Elements 1-9

1.2.5 Requirement Declaration 1-13

1..2.6 Data Type and Variable

Declaration 1-16

1.2.7 Constant Declaration 1-30

1.2.8 Data References................ 1-31

1.2.9 Expressions and Assertions... 1-33

1.2.10 Module Descriptions.......... 1-43

1.2.11 Subsystem Descriptions....... 1-54

1-57
1.3 EXAMPLE.................................

2-1
2. INDEX..

3-I
3. REFERENCES....................................

S

-LIST OF ILLUSTRATIONS

1-1 Syntactical Overview of an SSL Specification 1-6

1-2 Module Structure Chat for Example l-59

1-3- SSL Description for Example 1-61

LIST OF TABLES

1-1 SSL Special Symbols1-8

1-2 SSL Reserved Words 1-10

1-3 Arithmetic Operations 1-36

1-4 Operation Hierarchy 1-39

1-5 Logical Operator Truth Table 1-40

1-6 Boolean and Relational Operations 1-41

1-7 Module Descriptions for Example 1-60

ii

SAI -77-537-fHU

.......

SSL - A SOFTWARE SPECIFICATION LANGUAGE

Contract No. NAS8-31379

Prepared For:

George C. Marshall Space Flight Center

.Data Systems Laboratory-

Huntsville, Al. 35812

Prepared By:

Sandra L. Austin

Billy P. Buckles

J. Patrick Ryan

26 January 1976-

SCIENCE APPLICATIONS, INC.

2109 W. Clinton Avenue

Suite 800

Huntsville, Alabama 35805

(205) 533-5900
____________-fl

1.1

1. THE LANGUAGE

INTRODUCTION

SSL (Software Specification Language) is a new forma­

lism for the definition of specifications for software systems.

The language provides a linear format for the representation

of the info:mation normally displayed in a two-dimensional

module inter-dependency diagram. In caomparing SSL to FORTRAN
or ALGOL, one finds the comparison to be largely complementary

to the algorithmic (procedural) languages. SSL is capable of

representing explicitly module interconnections and global

data flow, information which is.deeply imbedded in the

agorithmic languages. On the other hand, SSL is not designed

to depict the control flow within modules. We refer to the

SSL level of software design which explicitly depicts inter­

module d.ta flow as a functional specification.

We wish to express our appreciation to Mr. Bobby

Hodges of Data System Labortory, George C. Marshall Space

Flight Center for his guidance and support in the performance

of this task.

1.1.1 Need for SSL

The current state of the art in software development

permits insufficient formal evaluation prior to implementation.

Such questions as:

* Are all requirements fulfilled?

* Have all software elements been defined?

* Are the element interconnections consistent?

cannot be answered in a manner that is independent of the

designer's opinion. The intent of SSL is to formalize, through

a language, the statement of the functional specification for

a software system. Given this formal statement expressed in

SSL and a translator for the SSL language, an independent

evaluation of the software may begin much earlier in the

development cycle.

1/M 1f;

In addition to evaluation, other aspects of SSI, can

aid both the designer and implementer. Several things that

are characteristically omitted or inadequately performed

during early design but required in SSL are:

* 	 A complete and consistent statement of the

software requirement

* 	 Unambiguous c6mmunication of software organiz2­
tion to the detailed designer

a 	 Enumeration of intraprogram consistency checks

(assertions) useful during checkout.

A translator also provides tables and summaries for the final

software documentation and a software element
cross reference

,
file. The latter could be used to statically verif the

fidelity of the final code to original specifications.

1.1.2 Unique Features of SSL

The major contribution of SSL is the formal approach
it brings to a phase of software development previously

relegated to heuristic techniques as discussed above. Within
this framework, there are several unique technical features

possessed by SSL. First, the projection of a specialized

form of software requirements onto the objects being defined

establishes a rationale for the software structure not present

in other methodologies. These requirements are an important

aspect of consistency checking when evaluating a specific

functional design. Second, the incorporation of levels of

abstractions directly in a design methodology is a step forward

in software engineering. Lastly, an automated SSL translator

is being designed that is one of several interlocking software

design and evaluation tools collectively called Software

Specification and Evaluation System (SSES). SSES includes a

static codb anaiyzer, a dynamic code analyzer, and a test

case analyzer. The specific capability that SSL brings SSES

is the ability to test and evaluate software design early in

the development cycle.

1-2

also incorporates a flexible data abstraction

capability and places emphasis-on assertions as a means of

describing the dynamic behavior of the-software being designed.

Although neither of these is unique, they are relatively new

concepts in the field of computer s-ience.

1SSL

1.1.3 Background

In evaluating a new software system, particularly a

programming language, it is important to trace the historical

developments to which it relates and upon which it is based.

The MIL (Module Interconnection Language),system [i] was a

principal contributor to the concepts of data creation and

data availability restrictions among modules within SSL.

Guidelines imposed for the partition of programs into sub­

systems are derived from the principles embodied in the concept

of levels of abstraction [2J Module descriptions in SSL

are a linearlized form of the information available in the

two-dimensional diagrams referred to as structure charts[3].

The data description capability'is largely the same as that of

PASCAL [4]. The syntax for expressions is derived from, but

not identical to, that of ALGOL 60 [5]. Assertions in SSL

have the form and appearance of those in the language

NUCLEUS [6].

1.2 THE GRAMMAR

The material in this section is arranged in the form

of a reference guide to the language, and not-tutorilly in the ".

manner of a user's manual. To aid the reader, a cross reference

index is provided in the last section.

1.2.1 Metalanguage Description

For the purposes of automatic translation and unambig­

uous communication, it is desirable to express SSL via a formal

grammar. The vehicle selected for this purpose is the Backus-

Naur-Form (BNF) metalanguage [53. BNF has the advantages of being
well known and compact in representation. In addition, most

formal methodologies for analyzing grammars are based upon

BNF representation.

Any nontrivial language contains an infinite number of

legal sentences. Each sentence, in turn, is composed of the

concatenation of strings; strings are composed of characters.

A grammar uses strings as operands and combines them under the

operation of concatenation to finitely depict, all legal senten­

ces. The way in which this is done in BNF cah best be inter­

preted via an example. Consider the following production:

<ab> :. albi <ab> a

Sequences of characters enclosed within the brackets < >repre­

sent metalinquistic variables called nonterminal symbols. The

marks "::=" and "I" are metalinquistic connectives meaning "is
composed of" and "or" respectively. Any string not a nonterminal

Dr connective denotes itself and is called a terminal-symbol.

Juxtaposition of symbols between connectives in a formula, such

as the example, signifies that the symbols must be in the exact

)rder denoted. The above production indicates that <ab> may

iave the values:

1-4.

O-	 a

• b

* 	 a, aa, aaa,

* 	 b, ba, baa, .

In BNF, the null string is des,-gnated by <empty> =

SSL is represented as a context-free grammar which

means:

* 	 There exist a finite number of productions

of the type of the above example.

* 	 The left part of each production (i.e., left

of ::=) consists of a single nonterminal

symbol.

0 	 There exists a unique nonterminal symbol (called

the distinguished symbol) which is in the right

part.of no production except its own.

1.2.2 Overview of SSL Grammar

Prior to examining the detailed structure of SSL com­

ponents, it will be useful to identify the overall structure of

a software specification expressed in SSL. Figure 1-1 depicts

the sequencing of the syntactical items used to describe an

SSL specification.

A specification consists of one or more subsystems,

each but the first having a name. The first subsystem is

referred to as the "main" subsystem and each subsystem is

composed of a preamble and one or more module descriptions.

The preamble defines the local environment for the subsystem

1-5

SPECIFICATION

SUBSYSTEMDEC PTION sus S E SUBSYSTEIDENTIF1IR SUBSYSTEMDESCRIPTION E

FA flE
O N S A

M
N T

,DE.CLARtATION

SU-SYSTE DECLARATION
DESCRIPTIONMOUEODL

Figure~~~ 1-ytcia vriw fa S pcfcto

(constants, requirements, data formats, etc.)'and the module

.descriptions indicate operational aspects of program units

(program units' are subprograms, procedures, etc.).

In the following subsections, the detailed syntactical

descriptions will be presented' To facilitate cross referenc­

ing, Sectien 2 contains an index of nonterminal symbols.

1.2.3 Basic Vocabulary

The basic vocabulary of SSL consists of special

symbols, letters, digits, and reserved words. Each special

symbol (Table 1-1) is primarily a singlecharacter except

where limited computer character fonts require the concatena­

tion of two characters. Where a special symbol consists of

more than one character, it must be written without an inter­

vening blank. Subsequently, special symbols other than ' ,

II", and '12 will be referred to as delimerers. Each char­

acter in Table 1-1 is available within the ANSI standard codes

[7] for ASCII-S, EBCDIC-8, and HOLLERIT-256. Substitutions

may be necessary if an SSL translator is implemented in an

environment not conforming to the standard character codes.

Letters and digits do not have individual meanings

but are used to construct identifiers, numbers, and reserved

words. The following basic productions enumerate these ele­

ments of the yocabulary:

<letter> ::= albI ... 1z

<digit> ::= 0111 . 19

A1-7.

C

,TABLE 1-1 SSL SPECIAL SYMBOLS

/ **

:/*

'--S

Reserved words (Table 1-2) are composed entirely of

sequences of letters. In this document4-tbey are normally

underlined. A reserved word may not contain imbedded blanks

and must 	always be followed by A blank'or a "delimeter.

The construct

1* any sequence of symbols not containing *7.

,may be inserted between any two identifiers, numbers, delimeters,

or -reserved words- It is called a comment any may be removed

from the program text without altering its meaning.

1.2.4 	 Basic Language Elements

1.2.4.1 	 Identifiers

Syntax

<identifier> 	::= <letter>I<identifier> <letter>

1<{dentifier> <digit> <identifier>

Examples

Legal Illegal

a 5ad

b27 sr$p

or !4dr

1-9

TABLE 1-2 SSL RESERVED WORDS

Access

Accesses

Analog

And

Array

Assume

Assumes

Boolean

-Case

Char

Conditionally

Constant

Constants

Constraint

Constraints

Create

Creates

Digital

Doubleprecision

End

Entry

Equ

Execute

Executes

False

File

For

Forall

From

Fulfil'

Fulfills

Global

Implies

In

Input

Inputs

Integer

Iteratively

Modify

Modifies

Module

Of

Or

Output

Outputs

Real

Receive

Receives

Record

Requirement

Requirements

Satisfies

Satisfy

Set

Subjectto

Subsystem

Text

To

Transduction

Transductions

Transmit

Transmits

True

Type

Types

Use

Uses

Usina

Variable

Variables

1-10

--- --- --

Semantics

Identifiers must begin With an alphabetic character

and contain only letters, digits, and the " " symbol. The

latter is known as the break character. Identifiers have no

inherent meaning, but serve as identification for variables;

modules, subsystdms, and other'elements-of a softWare specifica

tion.

-Identifiers may be of arbitrary length but must be

unique within the first twelve characters. No identifier may

be equivalent to the first twelve characters of a reserved word.

,h same identifier may not be used to denote two different
'auantities within a subsystem with the exception of field names

in different records.

1.4.4.2 Numbers

Syntax

< unsigned interger ::=<digir> I <unsigned integer>

<digit>

< sign > = + f ­

< exponent part > = e <unsigned integer >

le <sign> <unsigned integer>

Id <unsigned integer>

Id <sign> <unsigned integer>

< decimal number >: = <unsigned integer>

I<unsigned integer>
[<unsigned integer>

" unsigned number >:: = <decimal number >

I<decimal number> <exponent

part>

Examples

Legal Illegal­

57 3,746

14dlO- XII

3.7 e-5 e+7

0.2 ,14

Semantics

Decimal numbers have their conventional arithmetic

meaning. The exponent is a scale factor expressed as an integal

power of 10. A number expressed with neither a scale factor nor

a decimal fraction is assumed to be of type integer. A number

which uses the "d" form for the exponent part is assumed to be

double precision-. Otherwise, the number is assumed to be type

real. Note that if a number contains a decimal point, at least

one digit must precede and succeed the point.

1.2.4.3 Logical Values

Syntax

<logical value> ::= true Ifalse

Semantics

Logical values have their conventional meaning and may

be defined by describing their combination under the operations

"union" and "intersection". The union of the logical value true

with any other logical value always yields the result true. The

intersection of th- logical value false with any other logical

value always yields the result false.

1-12

1.2.5 Requirement Declaration

The several parts of the'requirement declaration-are

used to identify the dataflow between the software package

being described and other parts'of they total system. In add­

ition, they identify'processing steps-(called transductions)

and restrictions (called constraints) which are attached to both
modules and variables.

Syntax

<requirement declaration> <requirement or

requirements>

<requirement statement group> end

<requirement or requirements> requirement

Irequirements

<requirement 	statement group> <requirement

statement part>

I<requirement statement group>

<requirement 	statement part>

<requirement statement part> <input part>

]<output part> <transduction part>

]<constraint 	part>

1.2.5.1 Input and Output Parts

An input is a system level input (or stimulus) which

a software package receives from an external source. An output

is a system level response which has a purpose beyond the

immediate concern of the software package being described.

1-13

Syntax

<input part> :: = <input or inputs> <entire

variable list>;-­

<output part> . <output or, outputs> <entire variable

list>

<input or inputs> :: = inputlinputs

<output or outputs>:: = outputioutputs

Examples

* input state vector

o inputs mass, velocity, distance

* output concordance list

Semantics

A variable.may be in both an input and an output list.

A variable ih an output list not used within the subsystem

other than in the module in which it is initialized is not

required to have a requirement transduction attribute. The

structure of all variables in input and output lists must be

described within the variable statements of the subsystem pre­

amble. Each subsystem preamble must have a requirement declar­

ation with an output part.

1.2.5.2 Transduction Parts

.Transductions are identifiers representing processing

steps. They are derived by first writing a high level pseudo­

program to "transduce" the input variables *into the output

variables and then extracting and listing the major verbs of

the program. Just as the processing steps of.the pseudo-pro­

gram may be nested, the transductions may likewise be nested.

Ideally, for each subsystem there should be from three to

seven transductions that are not nested within any others.

1-14

Syntax

< transduction part> = <transduction or

transductions >

<transduction clause>

I<transduction part> ; <transduction

clause >

< transduction or transductions >:: = transduction

I transductions

< transduction clause> = <transduction list>

I<transduction list> in <transduction

list >

< transduction list> :: = <transduction identifier>

<transduction list >, <transduction

identifier>

< transduction identifier >:: = <identifier>

Examples

transduction sum expense, sub_deduct in taxcompute;

write_paycheck;

* transductions saveoptiohs; read-card in parse;

Semantics

Within a transduction clause, each processing step re­

presented by a transduction identifier to the left of in must

be a subst6jof the processing steps listed on the right of in.

Each transduction identifier represents a unique processing step,

but may be reused to show different substep relationships. Sub­

step relationships must be consistent, i.e., the complete set of

substep relationships partially order the.transduction identif­

iers.

SIr1

1.2.5.3 	Constraint Parts

Syntax

< constraint part> <constraint or constraints>

< constraint list>

< constraint or constraints >::=' constraint

I constraints

< constraint list > = <constraint identifier >

I<constraint list >, <constraint

identifier>

< constraint identifier> := <identifier>

Examples

constraint carpool_size ;

* constraints max-targets, minimum-distance

Semantics-

Each constraint identifier defined must be attached

as an attribute to some module in the subsystem.

1.2.6 	 Data Type and Variable Declarations

Explicit description of data and the ability to define

and use new data types is one of the greatest assets of SSL.

A new data type may be described directly as part of a variable

declaration, or described independently for subsequent use.

Syntax

< type- declaration> <type or types>

<type definition>

1< type declaration> ; <type definition>

<type or types> ::= type I types I global type

Iglobal types

1-16

< type deXinition> <identifier> =.<type>

<type >: <simple type> 1<structured type>

I<pointer type>,

<variable deslaration> <variable or variables>

<variable definition>

.[<variable declaration> ; <variable definition>

,<variableor variables> variable I variables

<variable definition> <identifier list> :< type>

J<identifier list> <type> ; <for clause>

I<identifier list> <type> ; <subjectto clause>

[<identifier list> : <type> ; <for clause>;

<subjectto clause>

<for clause> ::= for <transduction list>

<subjectto clause> stLbjectto <assertion list>

<assertion list> <assertion>

I<assertion list> ; <assertioi>

<identifier list> ::=- <identifier> [<identifier list>

<identifier>

Semantics

A type declaration list is used to define new data

types. Each type is named and may be referenced by the identi­

fier to the left of "=" in the <type definition> production.

The normal spope of a type identifier is the subsystem in which

it is defined. HQwever, the scope of a gl6bal type is the

entire SSL program. Global types may be defined only in the

main subsystem.

1-17

data ;type need not be named if it is defined in­
trinsic to the variable declaration. Both type and variable

declarations may use
data types defined and named elsewh6re.

Examples of both are given in tle following subsections.

The <for clause> of the variable declaration is used

to attach requirement attributes. Requirement attributes limit

the availability 'of variables within the modules of the sub­

system. All variable declarations must contain a for clause

with the exception of output variables identified in the require­

ment statement.

The <subjectto clause> identifies the global assertions

associated with the variables being declared. A global

assertion is one that must be true upon exit from the module

creating the variable, and true on both entry and exit of modules

using the variable.

1.2.6.1 Simple Types

Simple types are data types for which the designer,

using SSL, need not define the internal structure or the inter­
nal structure has previously been defined and named.

Syntax

<simple type> <basic type> I<scalar type>

I<subrange type> j .<type identifier>

<type identifier> <identifier>

Semantics

A type identifier must previously.have been used to

the left of an "=" in a type definition.

1-18

1.2 f6 .1.I Basic Types

The basic data types are those which are implicity

defined by the SSL language.

< basic type> ::= interj_[r reali boolean

Idoubleprecision Icharl analog text

Examples

* variables I, J, K: integer; for count_people

a variables height: real;

for record 	status;

subjectto 	 height >0.0

height <= 10.0

employed: boolean

for record status

Semantics

The types integer, real, boolean, and doubleprecision

have the conventional meaning. The type char indicates a

single unit ofhollerith information. Type text indicates

hollerith data with unspecified length. Since the length of a

text item varies, it may not be combined with other variables

in forming structured data types. The type analog designates

a data item which contains analog signal information. Like the

text type, it may not be combined with other variables to form

structured types.­

1-19

1.2.6.1.2 Scalar Types

- Scalar types are used to designate a finite number cf

disjoint states which a variable may represent. In conventional

programming languages, it is customary to declare the variable

of type integer and assign it only the cardinal-numbers 1,-2, .. ,

n where 	each value represents.one state of the several possible.

Syntax

<scalartype> (<identifier list>)

Examples

a type 	marital status = (single, married, divorced);

variable ms: maritalstatus; for emprecord;

e variable color: (Red, blue, yellow, green)

Semantics

Conceptuaily, the elements of scalar types are ordered

regardless of whether 6r npt the underlying set of states is

ordered. The order is always the same as
that of the identifiers

in the identifier list. This enables a designer to use rela­

tional tests (< ,>, etc.) in assertidns involving scalar type

variables.

1.2.6.1.3 	Subrange Types

Subrange types are used to designate a subset of integ­

ers or scalars which a data item may assume.

Syntax

<subrange type> ::= <constant> .. <constant>

<constant> 	::= <unsigned integer>

j<sign> <unsigned integer>

I<constant identifier>

1-20

j<sign> <constant identifier>

[<logical value>

constant identifier> .= <identifier>

Nt

Examnples

,variables weight: 10..350; for ins_compute;

dependents: 0..15; for tax_compute;

otype- color = (purple, blue, red, yellow, green, black):

variable-> primarycolor: blue. .green;

Semantics

A subrange simply indicates the least and largest con­
stant values an item may assume. The lower bound (left-most

constant in the production) must be less than the upper bound.

A subrange with bounds'expressed in types other than integer or

scalar is not permitted.

Constant identifiers may arise from two contexts. The

first is the appearance of .an identifier to the left of "=' in

a constant declaration. The second (illustrated by the above

example) is th& appearance of an identifier as a scalar element.

Constant identifiers arising from the second context may not be

preceeded by a unary sign.

1.2.6.2 Structured-Types

A structured type is a data type composed of more

elementary data types.

L-.21

Syntax

< structured type> <array type>j<record type>

j<digital type>] <set type>

]<sequence type>

Semantics

An SSL structured data type is used to indicate the

general form and content of a data structure, not precise imple­

mentation word and storage formats. In SSL, the following

'definitions are used:

Array - A fixed number of data items, all of the

same type and length and accessed by

computed index.

Record - A fixed number of data items, each of fixed

length, and each equally accessible.

Digital- A record having additional restrictions which

are discussed in a subsequent subsection.

Set - An element of the powerset of a finite number

of basic elements.

Sequence A variable number of data items, all of the

or

File 	 same type and length; however, each element

is not equally accessible at all times.

Stronger connotations (such as elements of an array are seq­

uentially stored) arenot implied by the semantics of SSL.

1.2.16.2.1 	 Arrays

An array is a fixed number of data elements, each of

the same type-and length and each equally accessible. Elements

of an array are ordered and each element is accessed by a

cardinal number called its index.

Syntax "

< 	 array type >::= array[<index list>iof

<component type>

< index list> ::= <index type> f<index list>,

<index type>

< index type >::= <simple type>

< component type> <type>

Examples

* 	variable matrix:- array [i. .10, 0. .20] of real;

for ta;

" 	type people = (adams, .buckles, jones, smith);

variable employee: array [peoplej of 1..50

for ta;

1-23

Semantics

Index types must have a finite range and be ordered_'

This requirement eliminates index type of integer, real, and

double-precision. However, subranges of integers are permitted.

For the purpose,of ordering, false <true for boolean type

indices.

1.2.6.2.2 Records

A record is a structure containing a number of com­
ponents called fields. Fields are not constrained to be of

identical type but must be of fixed length. A single record

type is permitted to have variants.

Syntax{
<.record typE > record <field list> end

< field list> : <fixed part> I <fixed part>

<Variant part> J<variant part>

< fixed part> ::= <record section> I<fixed part>

<record section >

<recordsection> ::= <field identifier list> : <type>

< field identifier list> <field identifier>

I< field identifier list>' , <field identifier>
<variant part> ::= case <tag field> <type identifier>

of <variant list>
<variant list> ::= <variant> I <variant list>

<variant>

<tag field> <field identifier>

<field identifier> ::= <identifier>

-<variant* ::= <case label list> (<field list>)

I<case label list> :()

<case label list> <case label> I<case label list>
< case label>

<.case label> < constant>

1-24

Examples

*aye eniployee Record

Number:Integer;

Salary:Real;

Name:Arra-y L[.-243 of char

End;,

a Variable machinepart:Record

Part_No, Order_Quantity:Integer;

Weight:Real

End;

for customer billing;

* Type complex = Record real_part, imag_part:real End;

* Type farm.=(peaches, cotton, soybeans);

Type land-use = Record

OwnerName:Array [I.. of char;

PlotNo:Integer;

Case Crop:Farm of

peaches:(treecount:Integer);

cotton, soybeans:(plantdate:Integer

herbicide, insecticide:boolean)

End;

o Variable sizes:Array D..103 of-Record

Height:Integer;

Weight:Real

End;

1-25

fPr healthfileupdate;

subjectto height >0; height <120;

:weight.5>0.0; weight <500.0

Semantics

Fields may not be of basic types text or analog. A

record may be a component of another record, but a digital type
may not. The

U
scope of a field identifier is the smallest record

in which it is defined. Field identifiers with disjoint scopes
jmay be reused. Access of a component is always by the field

identifier and never by a computed value.

The type associated with the tag field of a variant

must contain only a finite number of elements. This limits it

to boolean, subrange, and scalar. All elements of the type

must appear in some case label list of the variant. If. the

field list for case label L is empty, the form is:

L:()

A record may contain only one variant part and it must

succeed the fixed part. However, a variant may contain variants.

That is, it is possible to have nested variants. All field

names of the same record must be unique even if they are in

different variants.

1.2.6.2.3 Digital Types

Digital types are a restricted form of records to

represent real time digital signals.

Syntax

<digital type> := digital <fixed part> end

_ __ __ _ _ _ _ _ _ _ _ _ __1_ _9r/

* Variable Signal_In: digital

Valve 1: boolean;

LOX Switch: 1..3;

Command: (Idle, stopped, running)

End;

for checkstatus;

Semantics

Due to their physical interpretation, the type of

components within digital types may only be boolean, scalar,

or subrange. Digital types may not have variant parts and

they may not be used as components of any other type.

1.2.6.2.4 Set Types

Set types represent elements of powersets over a

finite set of elements called the base type. Conceptually,

a set type variable may be viewed as a bit string of length

equal to the number of elements in the base type. Each bit

is associated with a unique element and is "on" or "off"

if the element is a member or not a Thember of the powerset.

Syntax

<set type> ::= set of <base type>

<base type>::= <simple type>

Examples

* 	Type members = (father, mother, bigsister,

littlesister, bigsister, little_brother);

Variable family: set of members; for arrange;

-	 Variable Even numbers: set of -10..10;

for compute_something

1-27

Semantics

The'base type must be either -scalar or,--ubrange.

1.2.6.2.5 Seqfaence (File) Types

A sequence differs from an array in that it may vary

dynamically in-length and is referenced.through a "window"

called -its buffer (not by computed index). Examples of physical

representations of sequences include linked lists and mass

storage files.

Syntax

S<sequence type> := <file or sequence> of <type>

<file or sequence> ::= file j sequence

Examples

e Variable Assembly: sequence of record

partname: array fl..6j of char;

orderno: integer;

drilled, punched, stamped, purchased:

boolean

End; for updateorders

* Type-rosterentry = record

name: array [i..20] of char;

rank: 1..16; base cbde: 1000..5000

End;

Variable roster: file of rosterentry;

for assign new base

1-28

Semantics

Al] components of sequences must be of identical type.

and length. A sequence may not have sequence type or text type

components.: Furthermore, digital ant.oanalog types may not be

combined as-sequences.

1.2.6.3 Pointer Types

Variables of type pointer are "bound" to a particular

type. That is, the contents of a pointer is used to indicate

a second variable, and the second variable is required to be of

a predetermined, specific type.

Syntax

<pointer type> ::= @ <type identifier>

Examples

eType combination = record n, p: integer End

Variable combptr: @'combination; for select-band;

OType weatherstation = record hilo: integer;

rain: real End;

Variable wsptr: @ weather station;

for record-temperature;

Semantics

The contents of a pointer may be altered, but the

data element the pointer indicates is always of the same type.

1-29

1.2.7 Constant Declarations

In SSL, constant-declarations may appear in the

preamble of any subsystem and are used to communicate actual

values or parameters to the detailed designer. Normally,,

a constant declaration would be used only for critical values.

for which the effects are to be isolated in the final code.

Syntax

constant decliration> <constant or constants>

<constant definition list>

<constant or constants> constant constants

<constant definition list> <constant definition>

[<constant definition list>;<constant definition>

<constant definition> <identifier> = <constant>

j<identifier> = <simple type>

Examples

* Constant a = 10.0 ; max_count = Integer;

o 	Constants Low = true ,

Tax-cut 1-.5
-

Semantics

An identifier declared equal to a simple type indicates

that the exact value is not known at the time of specification,

but will be -provided before implementation. An identifier used

in a constant declaration may subsequently be used any place

that a constant (of the same type) may be used.

1-30

1.2.8 Data References

.Data elements may be referencedtby variable name;

by selected component, or pointer. A variable has components

only if it is a record, Aigital signal, file, or array.

Syntax

<variable> ::= <entire variable>­

I<eomponent variable>

<referenced variable>

1.2.8.1 Entire Variables

<entire variable> ::= <identifier>

Semantics

A refer6fece to an entire variable includes all fields

of a record or digital signal, all elements of an array, or all

records of a file. If the data element is a simple, unstruct­

ured variable (integer, boolean, etc.) it may only be refer­

enced as an entire variable.

1.2.8.2 Component Variables

Syntax

<component variable> <indexed variable >

J<field designator>

]<file buffer>

<indexed variable> <array variable>

[<expression list>J

1-31

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

<a2ray variable> <variable>-­

-<eXpression list> <expXession>. <expression list>,

<expression>

=
<field designator>:: <record variable> <field

I

identifier>

<record variable> <variable>

<file tuffer> ::= <file variable> @

<file variable> ::= <variable>

Examples

Char-Array [153

Inverse-Matrix L5, i, 161

Employee.Name

Owner [153 . AccessedValue

NameRecord.Character E63
Transaction-File @

Transaction-File @ Date
-

Transaction File @ .- Date. Month

Semantics

Indexed variables have the conventional meaning. Field

designators denote which field component of a record or digital

signal type is to be selected. A file buffer variable designatez

the current active element of the sequence of elements that

comprise the file.

a 1

Since arrays, files, and records can be combined in

various ways.(a~record of records, file of arrays, array of re­

cords, etc.) a component variable can be arbitrarily complex.
I

It is recommended that data structures be as limited in complex­

ity as the problem permits.

1.2.8.3 	Eeterenced Variables

Syntax

<referenced variable> <pointer variable> @

<pointer variable> <variable>

Examples

Symbol-Pointer @

Student-Name [6e @

Assembly@.Manufacturer@

Semantics

The data structure denoted by the contents of the

pointer variable is substituted for the referenced variable

in expression evaluation.

1.2.9 	 Expressions and Assertions

Expressions arise in two contexts: subscripts of

arrays and as terms within assertions. Assertions may appear

in either variable declarations or module descriptions.

1-33

mailto:Assembly@.Manufacturer

1.2.9.1 Arithmatic Expressions

Arithmetic expressions in SSL are similar to those in

other high level languages. Results of-expressions are single

valued with type determined by the operation and the-con­

stituent operands.

Syntax

<arithmetic expression> <term> <sign> <term>

1< arithmetic expression> <sign> <term>

<term> <factor> j <term> <multiplying operator>

<factor>

<factor> ::= <primary> <factor> ** <primary>J<set>

<primary>*::= <constant identifier> I <unsigned
nnmber>f <variable> I < function designator >

](<arithmetic-expression>)

<set> ::=[<element list>]

<element list> <empty> <element> 1 <element
list>, <element>

<element> ::=<expression> I <expression>
<expression>

< multiplying operator>::= *

<function designator> ::= <function identifier>

(<expression list>)

<function identifier> ::= <identifier>

Af ---­

Examples

a+b*

3.0 * sin (r + 1.0)

2 * (ifix(c) + blank_coinmon.icount)

name.feldl

name set + [oe, fred)

Semantics

Mixed mode expressions are prohibited with the excep­

tion of the exponentiation operator as indicated in Table 1-3.

In Table 1-3, any operand of type integer may be replaced by

an operand of type integer subrange. The symbol "dp" indicates

double precision. The unary "+" may be used with any operand

permitting a unary "-", but is semantically superfluous (i.e. +

is the identity operation). If a type is not included in the

operand type columns of Table 1-3 then its use with the desig­

nated operator is not permitted. Note, however, that integer

and integer subrange are interchangable.

SSL does not contain intrinsically defined functions.

All function identifiers are accepted, but it is suggested that

those embodied in the proposed implementation language be

adopted for each specification. Function types are not explic­

ity declared, but must be consistently used throughout the

specification. In addition to the basic types (integer, real,

etc.), the permissible function types include scalar and sub­

ranges of integers and scalars.

1-35

Operator

*

**

TABLE 1-3

Operation

Arithmetic,Negation

Addition, Subtraction

Set Union,

Set Difference

Multiplication,

Division

Set Intersection

Exponenciation

ARITHMETIC OPERATIONS

V1

V
"OP"
Type

V2
V2 Type

Integer
Real
dp

Integer
Real
dp

Integer
Real
dp

Set Set

Integer Integer

Real
dp

Real
dp

Set Set

Integer
Real
Real
dp
dp
dp

Integer
Integer
Real
Integer
Real
dp

Result Type

Integer

Real­
dp

Iteger

Real

dp

Set

Integer

Real

dp

Set

Integer

Real

Real

dp

dp

dp

1J2.9.2 Boolean Expressions

Combining arithmetic expressions with the boolean

operations produces the expressions used-in-SSL assertions

and array subscript lists.

Syntax

<expressio> <impiication>L<expression> equ

<implication>

'mplication > <boolean term>I<implication>

implies <boolean term>

<boolean ter> ::= <boolean factor>j<boolean term> or

<boolean factor>

<boolean factor> ::= <boolean secondary> <boolean

,factor> and <boolean secondary>

<boolean secondary> ::= <boolean primary>I-<boolean

primary>

<boolean primary> ::= <logical value>I<arithmetic

expression>J<relation> (<assertion>)

<relation> <arithmetic expression><relational

operator><arithmetic expression>

<relationgl operator> := <j= =>= I-- in

1-37

Rate = 7.0

Value and Qual

a>b Implies c>O.0

S--=t Equ p<t

Color A'[red,-green, yellow] -­

abs (buffer @.velocity) <16.0 and weight >= 140

Semantics

The arithmetic and boolean operators are grouped into

hierarchial.levels as exhibited in Table 1-4. Operations are

performed in the order of highest hierarchial level first

followed by equal hierarchial levels from left to right. This

sequence may be overridden by parentheses, in which case the

innermost operations are performed first. The meaning of the

logical operators ,.(not), and, or, implies, and equ (equi­

valent) is given in Table 1-5.

Table 1-6 depicts the required operand types for the

boolean and relational operators: For set types, the symbols

stand for the empty set. When comparing set types to

scalars, the base type of the set must be the same as that of

the scalars. The operators <, <=, =, >=, >,- = stand for less

than, less than or equal, equal, greater than or equal,

greater than,, and not equal respectively. Relational operators

(other than in) may be used to compare arrays of equal length

composed of characters, in which case they denote alphabetical

ordering.

1-38

TABLE 1-4 OPERATION HIERARCHY

Level -.Operations

I Eu_u

2 Implies

3 Or

4 And

5

6 <, <-, = >=,> ,-- =, In

7 +-
S *, /

9 **

1-39

TABLE 1-5

bl

b2

*- bl

bl And b2

bl Or b2

bl Implies b2

bl Equ b2

LOGICAL OPERATOR TRUTH TABLE­

false false true true

false true false true

true true false false

false false false true

false true true true

true true false true

true false false true

1-40

Operator

In

-I

And

l
JOr

IK 1Implies

Equ

TABLE 1-6

Operation

Compare

Set Inclusion

Logical Inversion

Logical "And"

Logical "Or"

Logical Impli-

cation

Logical Equi-

valence

BOOLEAN AND.RELATIONAL OPERATIONS

V1 "OP", V2

V1 Tyje

Integer

Real,

dp

Boolean

Char

Scalar

Scalar

Set

Set

Subrange

Set

Boolean

Boolean

Boolean

Boolen

Boolean

V2 Type

Intbger

Real

tp

Boolean

Char

Scalar

Set

Scalar

Set

Set

Subrange

Boolean

Boolean

Boolean

Doolean

Boolean

esiit Type

Bo61ean

Boolean

Boolean

Boolean

Boolean

Boolean

lBoolein

___ ___ ___ ___ ___

2.9.3 Assertions

Assertions are conditions which may assume only true/

false values. They are attached to variables at their point

of declaration and to modules. Modul; assertions depict entry

and exit x-ta.conditions.

Syntax­

<assertion> <expression><forall clause>

<forall clause> ::= <empty>j forall identifier =

<set>

Examples

* a'±] = 0.0 foral! i =[i..n-l

(b.c [i] t [kJ f orah j = [1,3,4- 163) torahl

k [16..30]

* big>smal!

. code = I implies (eof _g__true)

Semantics,

The scope of the identifier in the <forall clause> is

the assertion in which it is used and must not overlap that

of a local or global variable of the same name. Its type is

assumed to be the base type of the set within the <forall

clause>. The set must represent a finite number of elements

and may not be empty.

The expression within the assertion may assume only the

values true and false. If the <forall clause> is present, the

expression is evaluated once for each unique value which the

<forall identifier> can assume from the set. / /
cfliZ

Ii.2.10 Module Descriptions

Modules are basic system objects in an-SSL system

, description. In using SSL, one identifies for.each module:,

o 	 The module name­

* 	 Input and output data

-0 	 Conditions placed on data upon entry to and

exit from'the module

* 	 Dependence of the module on environmental

objects and other modules

The rule of correspondence between input and output data is

not stated in SSL. Its statement is a function of detailed

design.

Syntax

<module description> = <module statement>;

<module definition part> end

<module definition part> ::= <module definition

statement>I<module definition part>

<module definition statement>

<module definition statement> ::= <assumes statement>

I<satisfies statement><fulfills statement>

1<accesses statement><modifies statement>

I<creates statement>j<uses statement>

I<receives statement>j<transmits statement>

1<executes statement>

1-43

1.2.10.1 Module Statement

The module statement is, always- the first statement.
of a module description. It identifies the module by name
and declares the local variables (if any).

Syntax

<module statement> <module or entry> <module

identifier> <release variable group>

<module or entry> :*= modulelentiy

<release variable group> <empty>I(<release variable

list>)

<release variable list> <release variable>j<release

variable list>; <release variable>

<release variable> <variable > [<local variables>
<local variables> <identifier list>:<simple type>

<module identifier> ::=<identifier>

Examples

* module matrix multiply;

* entry pushstack (stack-item:stackentry);

" -module permutation (m, n:integer; elements:p_array);

i-44

Semantics

*-moduie statement- intrpzducedby. module can only be

referencedTfr6m withifi the subsystem in which it is declared.

A-module statement introduced-by entry can be refer­
enced'only from'subsystems other than the one in which it is

declared.

Release variables occur both in module statements and

virtual references within execute statements. Local variables

within a release group serve strictly for communication bet­

ween the module and those calling it. In this respect, they

differ from global variables declared in the subsystem pre­

amble which serve to communicate among modules having common

requirement attributes. Local variable identifiers must be

unique throughout a subsystem. Only the module statements

introducing entry modules are permitted release vari&bles

which are not local variables. The variables of a release

group for a module statement of an entry module must agree

in type, number, and sequence to each virtual reference to

it from other subsystems.

1.2.10.2 Assumes and Satisfies Statements

The assumes and satisfies statements specify truth

conditions for data.

Syntax

<assumes~statement> <assume or assumes>

<assertion list>

<satisfies statement> ::= <satisfy or satisfies>

<assertion list>

<assume or assumes> : := assume I assumes

<satisfy or satisfies> satisfy i satisfies

1-45

Examples

0 Assume a >0.0

Satisfies big_-sister 'in familyi count-- = 0

Semantics

The assumes statement specifies data conditions

that must be true upon module entry. The satisfies statement

specifies data conditions that must be true upon module exit.

V1aIables used in assertions musf be either local variables

in the release-set or in the availability set pertinent to

the module. (The availability set consists of those variables

having requirement attributes which subsume all requirement

attributes of the module.)

1.2.10.3 Fulfills Statement

The fulfills statement attaches requirement attributes

to a module.

Syntax

<fulfills statement> ::=-<fulfil or fulfills>

<requirement attribute list>

<requirement attribute list> ::= <attribute identifier>

I<requirement attribute list> , <attribute

* identifier>

<attribute identifier> ::= <transduction identifier>

I<cqnstraint identifier>

<fulfil or fulfills> fulfil I fulfills

1-46

Examples

0 fulfills size-constraint, cluster;

fulfil namelist

Semantacs

All modules must have at least one transduction

identifier attached as a requirement attribute. All attribute

identifiers must be declared in the preamble to the subsystem

in which the module is declared.

1.2.10.4 Accesses Statement

The accesses statement is used to indicate which

environmental objects (chiefly peripherals) are utilized by

a module.

Syntax

<accesses statement> ::= <access or accesses>

<environmental object list>

<access or accesses> access f accesses

<.environmental object list> <environmental

object identifier>J <environmental object list>

<environmental object identifier>

<environmental object identifier> ::=<identifier>

1-47

Examples

i
. Access line_printer;

* Accesses real timeelo&k, system_disk.;

I

Semantics

For each environmental object there must be a unique

identifier for which the scope is the entire specification.

1.2.10.5 Receives and Transmits Statements

The receives and transmits statements are used to in­

dicate real time data activity such as is associated with

telecommunications, analog, and digital signals.

Syntax

<receives statement> <receive or receives>

<from clause>l<receives statement> ; <from clause>

<from clause> ::= <entire variable list> from

<environmental object identifier>

<transmits statement> <transmit or transmits>

<to clause>l<transmits statement>

<to clause>

<tcr clause> <entire variable list> to

<entironmental object identifier>

1-48

'<receiwe or receives> receive.[receives

<transmit or transmits> transmit transmits
< e

<ertin'e variable list> ,<entire variable>

I<entire variable list> ,<entire variable>

Examples

eReceive weight from strain gage_1;

,Tra:nsmits course-correction to ground control;

Semantics

The scope of the environmental object name is the

entire specification. Note that components of structured

variables may not be transmitted or received.

1.2.10.6 Creates, Modifies, and Uses Statements

The creates, modifies, and uses statements distinguish

between input and output-data variables. They may also in­

dicate how the two are related in a manner short of a rule of

correspondence. A complete rule of correspondence (algorithm)

is a task of detailed design and not of SSL.

Syntax

<creates statement> <create ot creates>

<create list>

<modifies statement> <modify or modifies>

<modify list>

<modify list> ::= <variabl list><using clause>

I<modify list>; <variable list><using clause>

=
<create"list>:: <entire variable list><using clause>

J<create list>;<entire variable list><using clause>

-<uses statement> <use or uses>' <variable list>

ecreate or creates> :: createlcreates

<modify or modifies> modify modifies

<use or uses> ::= useluses

<using clause> :: <empty>fusing <variable list>

<variable list> <variable>! <variable list >,

<variable>

Examples

edreate emplo'yee_array using namefile;

omodifies count, fica_rate using- taxtable,

salary_scales;o

emodify pressure-weight [4] names LioJ -initials;

*uses cluster@, transaction-file;

1-50

Semantics

The order of the variable references in any variable

list has no significance.

The variables within a using clausd or a uses state­
ment are input variables. A variable may be both input and out-­
put. An input ariable in a using clause indicates that its

contents are instrumental in determining the final contents of

the output-variables within the same statement extending to the

first semicolon on the left.

The presence of a variable in the output list of a

creates statement indicates the first use (in a dynamic sense)

of-that variable. This does not mean, however, that the vari­

able may not appekr previously in the sequential listing of the

SSL program. The implication of the creates statement is that

all variables in the output list are first computed or initia­

lized in the module'being described. All variables declared

in the subsystem prenamble must appiear'as an output variable in

exactly one creates statement within the subsystem unless it is

a release variable of an entry module.

All variables appearing in a creates, modifies or uses

statement (other than the output list of the qkeates statement)

must be in the availability set for the module. A variable is

in the availability set of a module if the transduction require­
ment attributes of the variable subsume all the transduction

requirement attributes of the module.

1-51

1.2 .10.7 Execute Statement

The execute -statement designates modules which are

called by the module being described. It may indicate that

specific modules arecalled iteratively, conditionally, or

both.

Syntax

<.executes statement> <execute or executes>

<call list>1<executes statement>; <call list> *

=
<call list> :: <module reference list>J <module

reference list> <call list tail>

j<call list tail>

<call list tail> ::= <iteratively clause >

I<conditionally clause>

<iteratively clause> iteratively <module

reference list> fiteratively <call list tail>

<conditionally clause> conditionally monle­

reference list>

<execute or executes >::= executelexecutes

<module reference list> <module reference>

j<module reference list> , <module reference>

<module reference> ::= <concrete reference>

I<virtual reference>

1-52

<concrete reference> <module identifier>

<virtual reference> <subsystem identifier>

<module identifier><release variable, group>

Examples

a Execute matrixmultiply, cluster-group (pointer@);

a Execut& 	 iteratively suba, subb;

conditionally subc, subd, sube;

a Executes sqrt; iteratively cos conditionally sin;

Semantics

The order of module identifiers in the module reference

lists is not significant. The domain of either an iteratively

or conditionally clause extends to the next semicolon. An

iteratively clause'may overlap another clause.

Presence of a-module identifier in a iteratively clause

connotates that it is called from within a loop. Presence in

a conditionally clause connotates the module is not always

called. If present in neither, the module is called uncont

ditionally but not from within a loop...

A concrete reference is a call to-a module within the.';

same subsystem. A concrete refarqnce may-never be to.an entry

module. A virtual reference is a call to a module of a ". ­

different subsystem and-must always be to an entry modulei-.-­

- 0 Q ' 1-53

Within'the releasevariable group, the-local variable

format must be used for-variables never before defined. A :1

variable may have been defined in the preamble to the sub­

system or in.the last module statemenV. The entry module

to which the virtual reference.refers must have the same

release list with respect to number, order, and type of

variables. All variable types used in a virtual reference

release list must be either intrinsically defined (boolean,

real, text, etc.) or global types.

1.2.11 Subsystem Descriptions

Subsystems are independent software units, each with

its own requirement declaration. Subsystems may not share

global variables but communicate via the release group var­

iables of virtual references and entry modules. The only

identifiers with scope greater than a single subsystem are

global type identifiers, environment object identifiers,

subsystem identifiers, and function identifiers.

Syntax

<subsystem description> <subsystem preamble>

<module description list> end

<module description list> ::= <module description>

f< module description list>; <module

description>

<subsystem preamble> := preamble declaration list>

I snbsystem <subsystem identifier> ; <preamble

declaration list>

1-54

<subsystem identifier> ::= <identifier>

<preamble declaration list> :-:= <preamble declaration>

I<preamble declaration list> ; <preamble

declaration>

<preamble de'aration> : <requirement declaration>

I<type declaration>j<variable declaration>

I<constant declaration>

<subsystem description list> <subsystem

description>l<subsystem description list>

<subsystem description>

<specification*> <subsystem description list>

end

Example

* 	Requirement transduction sortdescend; input n,

sortarray; output sortarray end:

Variable 	 sort array:array [1..1000] of real;

for sortdescend;

subjectto sortarray[i] >0.0 forall i =

L.n-;13

n:l. .1000; for sortdescend;

Module.- sort;

fulfills sortdescend;

accesses cardreader, line_printer;

creates n, sort_array;

modifies sort-array using n, sortarray;

1-55

satisfies 	 sortarrayr] >= sortarray i+l
forall i =[-'n-13

End

End

End

Semantics

Each subsystem must have a requirement declaration

that contains at least one transduction identifier and one

output variable. There must also be at least one module

description. The first subsystem declared (called the "main"

subsystem) does not have a subsystem identifier; all others

must have a unique identifier. The scope of the subsystem

identifier is th6 entire specification.

The nonterminal symbol <specificatiofi> is the

distinguished symbol of the SSL grammar.

1-56

1.3 EXAMPLE

The example of this section was selected to demonstrate

both-the Cescriptive level of SSL.and as-many language elements

as-possiblez The requirement.bf theproblem may be stated-as

follows LB]

"A program is required to process a stream

o-ftelegrams. This stream is available as a

sequence of letters, digits'and blanks on some

device and can be-transferred in sections of

predetermined size into a buffer where it is to

be processed, The words in the telegram are

separated by sequences of blanks and each

telegram is delimited by the word 'ZZZZ'.

The strebhm is terminated by the occurrence

of the empty telegram, that is a telegram'

with no words. Each telegram is to be pro­

cessed to determine the number of chargeable

words and to check for occurrences of over­

length words. The words 'ZZZZ' and 'STOP' are

not chargeable and words of more than twelve

letters are considered overlength. The

result of the processing is to be a neat

listing of the telegrams, each accompanied

by the word count and a message indicating

the-occurrence of an overlength word."

To complete the problem statement, several assumptions are

necessary. The following alternatives were.selected for the

purpose of this exposition:

1I-57

http:requirement.bf

* The character stream from which the telegrams

are constructed resides on a drum having fixed
length records; the record length itself is left
a§ an implementation option. -

a The chargeable word count is the value to be
printedtand overlength words count as one word.

*
 If a physical end of file is encountered before

the logical end of the data stream, an error

message and the partial telegram is printed.

The software is organized into four modules as indicated

by Figure 1-2. The purpose of each module is given in Table

1-7. Figure 1-3 contains the SSL description of the telegram

processor. The right margin of the statement listing contains

reference notes to subsections containing detailed descriptions

of the language elements used.

A careful examination of Figure 1-3 will indicate an

interesting application of the subsystem capability. The

subroutines GETCHAR and FILLBUFFER occupy a separate sub­
system with the sole purpose of handling file I/O. The char­
acteristics of the device on which the telegrams'are stored

are encapsulated within thLse two modules.

171

LINE-
GET-TELEGRAM PRINTER

LINE-
GETWORD PRINTER

t

GETCHAR

NOTES:"

~ CLL F ',A- CALLS "Er
CYCLICALLY L 1 CONDITIONALLY

"A" US --SYSTEM SERVICE "BR"

PAGTJ~SA!-03'12

Figure 1-2 Module Structure Chart for Example

1-59

TABLE)-7 MODULE DESCRIPTIONS.FOR EXAMPLE

MODULE .. PURPOSE'

GETTELEGRA2. -Collects words belonging to each

telegram and prints them in a neat

manner along with the chargeable

word count.

GET WORD ColIects characters into words and

prints error messages denoting over­

length word or physical record end

of file.

GET CHAR Returns the next character in the

telegram file.

FILL-BUFFER Enters the next physical record

from,the drum into the character buffer.

1-GO

Sbeginning of matin subsystem preamble _1.2.

requirement

transductions
collect in print;
telegram, charge count.2

end­

variable telegram:text;

chargPe_count:integer;

for print;
subjectro chargecount >0

word-count:integer;
for print,
subject o ord count > charge count;

word:arrav . f char;
for print; !LI c

eofflag:boolean;
for print

1.2.6.2.1)

1.­

end; /* end of min subsystem preamble */

/" main routine to collect words and /
/- print telegram with chargeable word count-/

module ,get_-telegram;

fulfills print;
creates telegram. charge_count using word;
creates wvord count;
modifies word _count;
uses eof flag;
accesses-line printer;
executes cvclicallv getuord;
satisfies

eof flag or wordcount = 0end-­

5w
/* subroutine to collect characters into -1
* words */

module get-word; -

fulfills collect; I
executes cclically I o.get char(a char:chareof flag);
c -reates.o, :oz ha;.
accesses lineoranter /-prints error messages V

.

1.2.10.4

end; /t end of main subsystem */

Figure 1-3 SSL Description for Example

1DpRINAI PAGE 12
OF POOR QUALITY -6S

/* beginning of Ip subsystem preamble */

subsystem i-o:­

requirement -­

/ ait charactertilet;

transductions r
read in separate;

t achar, eot flag 2.52

I -I

ft parameterize 2-ecord length t

constant record length integer:
 1.2.7

type character record -array [i. .record length! of char;

variable character filezseiuerce of character-record; 1.2.6.2.5
for read:

bufferzcharacter-record:

for separate;

a-cbarchar

chrfor-separate;

for separate;

eoffl-g:boolean;

for separate

end; /* end of subsystem preamble 41

/0 subroutine to fetch next *,

/f character from file */

entry getchar (a char; eof flag)

fulfills separate;

executes conditiopnlv fill buffer­
modifies nrid,­
creates a char using buffer [char indexj eelflag;

creates character file, char index:1..1.

satisfies eof flag ir'olies E char buffer [char indeX]3

end; - 12.10, 6
/ subroutine to fetch next-physical /
 -

/J record from character file t/

module fill-buffer;

fulfills read,

assumes char index = record length: !i 0
accesses disk;
creates buffer, eof fla~g using ehara~e:rerrzloe
satisfies

eof flag imolies buffet = character-file, 1 2.8.2

end 1* end of subsystem */
end; /- end of specification Sf

Figure 1-3 SSL Description for Example (continued)

2. INDEX

Each reference in the left column is-to a nonterminal

symbol. The right column contains the number of the.sub­
section i-which the nonterminal

ductions.

Access or accesses

Access statement

Arithmetic expression

Array type

Array variable

Assertion

Assertion list

Assume or assumes

assumes statement

attribute identifier

Base type

Basic type

Boolean factor

Boolean primary

Boolean secondary

Boolean term

Call List

Call list tail

Case Label

Case label list

is..4de-fined via one more' pro---,

1.2.10.4

1.2.10.4

1.2.9.1

1.2.6.2.1

1.2.8.2

1.2.9.3

1.2.6

1.2.10.2

1.2.10.2

1.2.10.3

1.2.6.2.4

1.2.6.1.1

1.2.9.2

1.2.9.2

1.2.9,.2

1.2.9.2

1.2.10.

1.2.10.7

1.2.6.2.2

1.2.6.2.2

2-.

Concrete reference 1.2-.10.7

- Conditionally cLause i1;2.10.7

Component type 1.2.6.2.1

Component variable 1.2.8.2

Constant 1.2.6.1.3

Constant declaration 1..2.7

Constant definition 1.2.7

Constant definition list 1.2.7

Constant identifier 1.2.6.1.3

Constant or constants 1.2.7

Constraint identifier 1.2.5.3

Constraint list 1.2.5.3

Constraint or constraints 1.2.5.3

Constraint part 1.2.5.3

Create list 1.2.10.6

Create or creates 1.2.1'0.6

Creates statement 1.2.10.6

Decimal number 1.2.4.2,

Digit 1.2.3

Digital type 1.2.6.2.3

Element 1.2.9.1

Element list 1.2.9:1

Empty 1.2,1

Entire variable 1.2.8.1

Entire variable list 1.2.10.5

Environmental object identifier 1.2.10.4

Environmental object list 1.2.10.4

2-2

2-2

Execute or executes

Executes statement

Exponent part.

Expression

Expression list

Factor

Field designator

Field identifier

Field identifier list

Field list

File buffer

File or sequence

File variable

Fixed part

For clause

Forall clause

From clause

Fulfil or fulfills

Fulfills statement

Function designator

Function identifier

Identifier

Identifier list

Implication

Index list

1.2.10.7

. 1.2.10.7

1.2.4.2

1.2.9.2..

1.2.8.2

1.2.9.1

1.2.8.2

1.2.6.2.2

1.2.6.2.2

1.2.6.2.2

1.2.8.2

1.2.6.2.5

1.2.8.2

1.2.6.2.2

1.2.6

1.2.9.3

1.2.10.5

1.2.10.3

1.2.10.3

1.2.9.1

1.2.9.1

1.2.4.1

1.2.6

1.2.9.2

1.2.6.2.1

2-3.

Index type

Indexed variable

Input or inputs.

Input part

Iteratively clause

Letter

Local variables

Logical value

Modifies statement

Modify or modifies

Module definition part

'Module definition statement

Module description

Module description list

Module identifier

Module or entry

Module reference

Module reference list

Module statement

Multiplying operator

Output or outputs

Output part

Pointer type

Pointer variable

1.2.6.2.1

:,32.8.2

-l.2.5.1

1:.2.10.7

1.2.3

1.2.10.1

1.2.4.3

1.2'.10.6

1.2.10.6

1.2.10

1.2.10

1.2.10

1.2.11

1.2.10.1

1.2.10.1

1.2.1027

1.2.10.7

1.2.10.1

1.2.9.1

1.2.5.1

1-2.5.1

1.2.6.3

1.2.8.3

2-4

Preanble declaration

Preamble declaration list

Primiry

Receive or receives

Receive statement

Record section

Record type

Record variable

Referenced variable

Relation

'Relational operator

Release variable

Release variable group

Release variable-list

Requirement attribute list

Requirement declaration

Requirement or requirements

Requirement statement group

Requirement statement part

Satisfies statement

Satisfy or satisfies

Scalar type .

Set

Set type

Sequence type

Sign

1.2.11

1.2.11

1.2.9.1

1.2.10.5

1.2.10.5

1.2.6.2.1

1.2.6.2.2

1.-2.8.2

1.2.8.3

1.2.9.2

1.2.9.2

1.2.10.1

1.2.10.1

1.2.10.1

1.2.10.3

1.2.5

1.2.5

1.2.5

1.2.5

1.2.10.2

1.2.10.2

1.2.6.1.2

1.2.9.1

1.2.-6.2.4

1.2.6.2.5

1.2.4.2
 z4 ­

Simple type

Specification

Structured type

Subjeetto clauise

Subrange type

Subsystem description

Subsystem description list

Subsystem identifier

Subs,,ste preamble

Tag field

Term

To clause

Transduction clause

Transduction identifier

Transduction list

Transduction or transductiGns

Transduction part

Transmit or transmits

Transmits statement

Type

Type declaration

Type definition

Type identifier

Type or types

Unsigned integer

Unsigned number

1.2.6.1

1.2.11

'.1.2.6.2

v 1.2.6

1.2.6.1.3

I'.2I1

1.2.11

1.2.11

1.2.11

1.2.6.2.2

1.2.9.1

1.2.1O.5

1.2.5.2

1.2.5.2

1.2.5.2

1.2.5.2

1.2.5.2

1.2.10.5

1.2.10.5

1.2.6

1.2.6

1.2.6

f.2.6.1

1.2.6

1.2.4.2

1.2.4.2

2-6

Use or uses 1.2.10.6

Uses -statement 1.2.10.6

Using clause 1.2.10.6

Variant 1.2.6.2.2

Variant list 1.2.6.2.2

Variant part 1.2.6.2.2

Variable 1.2.8

Variable declaration 1.2.6

Variable definition 1.2.6

Variable list 1.2.10.6

..Variable or variables 1.2.6

Virtual Reference 1.2.10.7

2-7

3.1 REFERENCES

... 	 Frank DeRemer and Hans Kron, "Programming-In-The-

Large Versus Prbgramming-In-The-Small'"t Proceedings

1975 In.ternational Conference wn Reliable Software,

114-121 (1975)>"

2. 	 B. H. Liskov, "A Design Methodology for Reliable

Software Systems," Proceedings Fall Joint Computer

Conference, 191-199 (1972).

3. 	 Larry L. Constantine, "Structure Charts, A Guide,"

unpublished manuscript (1975).

4. 	 Kathleen Jensen and Niklaus Wirth, PASCAL User Manual

and Report, Springer-Verlag, New York, N.Y. (1975).

5. 	 Peter Naur (ed.), "Revised Report on the Algorithmic

Language ALGOL 60," Comm. ACM 6, 1-17 (Jan. 1963).

6. 	 D.I. Good and L. C. Ragland, "NUCLEUS - A Language of

Provable Programs," In William C. Hetzel (ed.),

Program Test Methods, Prentice-Hall, Englewood Cliffs,

N.J., 29-40 (1973).

7. 	 E. Lohse (ed.), "Correspondence of 8-Bit Hollerith

Codes for Computer Environments," Comm. ACM 11

783-789 (Nov. 1968).

8. 	 P. Henderson and R. Snowdon, "An Experiment in

Structured Programming," BIT 21, 38-53 (1972).

3-1

