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ABSTRACT

The motivation for this work emerges from a desire to explain the

experimental observation that a surprisingly small sample size vis-a-vis

dimension is needed to achieve good signal-to-interference ratio (SIR)

performance with an adaptive predetection filter. The adaptive filter re-

quires estimates as obtained by a recursive stochastic algorithm of the in-

verse of the filter input data covariance matrix. The SIR performance with

sample size is compared for the situations ►;here the covariance matrix esti-

mates are of unstructured (generalized) form and of structured (finite

Toeplitz) form; the latter case is consistent with weak stationarity of the

input data stochastic process. It is argued that a recursive stochastic algo-

rithm operating with a short update period(i.e., with statistically correlated

input data vectors) naturally constrains the covariance matrix estimates to be

of Toeplitz form and therefore should realize any gain achievable with a (correct)

structure assumption. The expected SIR performance for a generalized covariance

matrix estimate is shown to approach the optimum SIR as = (1 - N - 1J4 ), where
S	 S

N is the filter dimension and N S is the sample size. For a constrained Toeplitz

covariance matrix estimate, the expected SIR performance is shorn to approach

the optimum SIR as _ [1 - `^ ^y'- WtJ 7 1, where n'(P1;6)	 A + BrnN + 112N,
S	 s

where A is Euler's constunt and 15 15 . 41 is the irput data stochastic process

correla'Lion 'Lime. The constrained Toeplitz covoi`.ance matrix; estimate thcreforc

o p erates with an "effective sample size" t1' 	 11 )]{	 S	 ,r' N;[,	 t" S and offers the

potential of Iriyh eX11"L ted SIR dt	 size 14 S for r;hich the generalized

esti!iiator i;iay prov -1C._t ex.cr, ^din(':y poor r(-. ilts.	 In-Ji ht is also provided into

the effect of thri spec if it fo : of the de ; i cd signil on exnectnd ;IR p(-rforll;anc(^.



I
11	 ^

Although the work presented is cast within a specific problem framework that

arises in sonar, radar, or seismic signal processing, the results also apply

to the areas of pattern recognition concerned with nonparametric and para-

metric pattern classifier parameter estimation, e.g., biomedical image recogni-

tion and earth resource satellite multispectral data classification.
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1.	 I14TRODUCTION

A problem of considerable importance is that of detecting a known

signal imbedded in an additive interference noise stochastic process. The

physical implementation of the optimum 'predetection filter requires that certain

characterizations of the additive interference noise stochastic process be a priori

known. For example, if we constrain the filter structure to be causal and

linear, employ an output signal-to-interference ratio (SIR) optimality cri-

terion, and assume the interference noise covariance is arp iori known, the

optimum fitter is the Wiener fitter.

With specific regard to the detection problem as it arises in the

sonar, seismic, or radar f 4 elds, it is not possible to assume that the in-

terference noise covariance is a priori known. A reasonable approach then

is to estimate the completely unknown interference noise covariance required

for the implementation. This technique leads to an adaptive filter, which

designs itself based on estimates formed from the input data. A rather

popular selection for the adaptive filter mechanics is offered by the stochas-

tic version of the gradient search method [1-3].

For the first order, linearly constrained gradient search algorithm, it

is well known that the wei g ht vector (filter) iterates are asymptotically un-

biased, provided that the step size parameter is upper bounded by the inverse

of the maximum eigenvalue of the input data covariance matrix. The conver-

gence requirement for the variance of the weight vector iterates is consider-

ably more demanding; it is required that the step size be upper bounded by

(i)pproximately) the inverse of the trace of the input data covariance matrix.
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Therefore, the variance of the weight vector iterates and, consequently,

the achievable filter SIR, are directly related to the filter dimension N.

Theory establishes that in order to maintain the variance of the weight

vector iterates at an acceptable level, we must have a small step size when

N is large. This situation in turn suggests a possibly unbearable conver-

gence time encompassing a large number of statistically independent input

data vectors. The form of the optimum Wiener filter involves the inverse

of the input data covariance matrix and appears to reinforce the belief that

a long convergence time is necessary, because it would appear that N 2 ele-

ments (or, at best 2(N+1) elerants, if symmetry is invoked) of this matrix

must be estimated.

Recent work [4] provides qualitative arguments indicating that the

gradient search algorithm operating with a short updat ,, period o based solely

on the frequency content (i.e., Nyquist criteria) of the input data stochastic

process does not pretend to attempt to estimate the N 2 elements of the input

data covariance matrix. The sequence of input data vectors obtained at the

update period A is generally highly correlated; the use of these vectors

causes the estimate of the input data covariance matrix employed by the

gradient search algorithm to be constrained to he of (finite) Toeplitz form.

We denote the Toeplitz form estimate as R  K. The situation is illustrated
in Figure 1 

with 
specific parameters utilized to aid the visualization. 	 the

stochastic sequence tX,(iA)) or, more compactly, Qkh )} i=0,1,2,..., represents

the input data sequence with the input data vector X[(i +1 ) 1: ] formed from X(in)

by simply shifting the temporally o1(,*,:st sample out of QA) and shifting in

r



the most recent sample. Also shown in Figure 1 is the generalized form

n
input data covariance matrix estimate R  N that results when the update
period is lengthened to LA, where Lo is an integer multiple of the input

data stochastic process correlation time, i.e., the stochastic sequence

{X(iLA)} i=0,1,2,..., is mutually uncorreIated.

We see that operation at the short update period is implicitly con-

sistent with the eft-invoked assumption of weak stationarity or quasi-sta-

tionarity, i.e., weak stationarity over some interval of time, of the input

data stochastic process and leads to a Toeplitz form input data covariance

matrix estimate which requires only N elements for complete description.

Operation at the short update period is generally considered in practice

to be normal operation, with operation at the long update period of academic

interest primarily because it leads to a much more tractable mathematical

treatment of the statistical moment properties of the weight vector iterates.

The implication of the above observation is that for a fixed real time interval

the transient behavior of the weight vector iterates should be better for

operation at the short update period vis-a-vis operation at the long update

period, assuming that the input data stochastic process is indeed weakly sta-

tionary. We do note that the reverse should be true of the steady state be-

haviors, simply because operation at the short update period involves large

rIur ►bers c-F highly correlated input data vectors. This 1<.tter point is really

of little practical concern, i.e., the weight vector iterates are generally

always in the transient state for real sonar, seismic, or radar data.

3
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There is experimental evidence which appears to substantiate these

qualitative arguments [4]. In the referenced work, real active sonar data

was processed utilizing a first order, linearly constrained gradient search

algorithm. The filter dimension utilized was N=256 (complex., i.e., analytic

signal samples) and the short update period n . 1/514, where 41 denotes the

bandwidth of the input data stochastic process. Quite good filter SIR per-

formance was obtained with a step size setting leading to a gradient search

algorithm averaging time which encompassed only a small number N S=N of sta-

tistically independent input data vectors. Results of this nature are very

important in signal detection problems where rapid convergence deriands must

be met. The suprisingly small sample size N S required is conjectured to be

a result of two factors: (1) possibility of proximity of the filter SIR

to the optimum SIR although the weight vector iterates

may not he near the optimum Wiener weight vector and (2) operation of the

gradient search method with a short update period wherein the input data

covariance matrix estimates employed are constrained to be of Toeplitz form.

We test these conjectures in this work. The starting point is the deri-

vation of the expected filter SIR performance for input data co-

variance matrix estimates of both the generalized and constrained Toeplitz

forms. The expected SIR is evaluated for several input data true covariance

matrix examples of interest. 	 -Ihe results are compared as a function of sample

size NS for two particular values of N with some yeneralization Liven for other

values of N.
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2.	 SIMAL-TO-INTERFERENCE NOISE RATIO PERFORMANCE CRITERION

With regard to a detection processor in which the primary goal is

a decision as to whether a desired signal is present (II 1 ) or absent (Ho)

in interference noise, the processor output signal-to-interference noise

power ratio (SIR) serves as a reasonably good performance criterion,. The

interference noise consists of ever-present ambient noise plus noises at-

tributed to other than the desired signal source, e.g., shipping traffic

noise or reverberation noise in the passive and active sonar cases, respec-

tively.

Using traditional binary hypothesis notation, the detection problem

may be expressed as,

Ho :	 X(i) = N(i)

II I :	 X(i) = S + N(i)

where X(i) and 11(i) are the NXl-dimensional stochastic (real) input data and

interference noise vectors obtained at the i th sampling instant and S is the

NXl-dimensional a priori known (real) signal vector. the total signal time

duration is Nn, the extent of the time interval I d on ^::hich the detection

problem is defined. The interference noise vector stochastic process is sir--ply

iiodr:led as zero-mean and weakly statiunary on a time interval several times the

length of I d and otherwise is assumed completely unkno:vn. We call

the longer tilde interval I . ;	 it is within I  that the interference noise

vector stochastic process must be estimated.

1



The detection processor SIR conditioned on the Nxl-dimensional

stochastic filter weight vector 14 is given by,

E[z(i)jH I ,W] - E[z(i)IHo,W]
[SIR, 4!] _

E[z(i) HO' W]	 (2)

where the output power statistic z(i) is,

z(i) = 1L(i)IT(i)l•!
	

(2a)

From Equations (1) and (2) we obtain.

[SIRjW] =	—

WTRNN14

where R 
141 

is the (NA)-dimensional zero lag interference noise

variance matrix. The conditional SIR given by Equation

(3) is seen to be equivalent to that obtained with 
RHN 

replace

zero lag input data covariance matrix, save for a constant bia

We make this replacemenL in the ensuing calculations; this is

assumption that H0 is true for iA a le.

To establish the relationship pertinent to this work, %-,

t-w-b- M--
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A
where (i i; a scalar and k is a nonsingular, unbiased estimate of R.

Precisely put, rre have W = W(11;N S ) and R == ROM ), but Wenrrinta in the

dependencies on dimension and statistically independent sample size im-

plicit, for notational convenience. Taking the expectation of Equation (41),
	 1 A

we obtain,

E[;1] ^ 41* = a R -1 S	 (5)

the optimum Wiener weight vector W*. Substituting Equation ( 1+) in Equa-

tion (?),
2

A

STR-IRR-1S	 (^)

The estimate {l of the input data covariance matrix may be written as,

R = R I. E	 (7)

wrherc L is a zero-mean stochastic error matrix. From Equation (7), we have,

z
[I - 

R 1
E 
+ (R-1L) ] 

R
-1	

()

taking up to the quadratic term in R - I E in the Neumann series expansion of

R -l .	 Substituting Lquation (3) ill EgUi-ition ((-,) ;nd wairntaining consi,^,(2nr y

with the quadratic approximation iu Equation (h), we have,
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 It] s 8W" TRW* - N*TRW*

W*TRR-1RW*

T^
(W k R4!'^ )

-3

W* TRl_!*	 (9)

utilizing the optimum weight vector of Equation (5) with u (arbitrarily) set

equal to unity. The result of Equation (9) provides a most useful means whereby

the expected SIR may be evtlluatcd conditioned on v+rious elements of the set of

nonsingular unbiased covoriance estim Lors Vii. Ele mention that the approxima-

tion of Equation (8) holds well for 1,10dei • Zt.e values of SIR and is biased slight-

ly high at low SIR. Eurthcrmnre, ti-, ,e deem it unnecessary to examine the condi-

tional variance of the SJI,, because the largest stochastic contribution, will be

to fourth order in R -1 E.

i
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3.	 RELIEVING THE COiIDITIoii f OR SPECIFIC COVARIANCE MATRIX S1RLICTUitf-S

In this section, we relieve the cend-ition of Equation (^)) for two

covariance watrix estimator structures of interest: (1) a generalized

,estimator	 (i! S ) and a constrained Toepl i t7 estimator fa (N	 of R. The

manipuliltions assume that the available input. data sequence {X(i)) iAr.I`,

say, i--0,1,2,...,tlS-1, is I iv••variate) Gaussian, zero-mncm, mutr,oliy

uncorrelated, and weakly stationary. The Gaussian asmimption facilitates

the evaluation of the fourth order moments that arise in the calculation,.

Case 1: The yens-ralized estimotor assumes no particular structure . -or	 ++

the input data covariance matrix, save for syruietry; it is given by,

iJS -1
I G ( N S ) = t^	 X(u));, (n)	 i4S>N	 (1J)	 i,

S 1t-. 0

It is well knoti•rn [5] Lhat this estimator is the maximum

likelihood estimator (MLE) of the input data covariance matrix R over the

domain of positi^c definit e IIA - di-mensional matrices. Inserting Lqua-

tion ( gin) 'in Equotion (9) ilDd taking the expectation, we have,

r .r r--- -	 ^	 }. !. L !. i: .}, If i * G jI ,Y1 s
+ E ( (.i

j ( il )nl, (I I)
! J S	 n m i j k

N S -1	 f

W^

( 'I 1 )
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where r•j i * denotes the ith element o-' W* and 1 ii (n) = Ex  (n)xj(n)]

with x i (n) the ith element of X(n). The scalar o ij is the 0j) th

element of R -l ; the matrix R has the (i,j) th element given by pij.

To evaluate Ec , !ation (11) we need the fourth order moment expression

for the (r,eakly stationar y ) Gaussian stochastic variE.tes, i.e.,

p i j p kx	 n # m

p ij p kA + p iic pjk " pikpjk n = m	 (12)

Utilizing Equation (l;'), Equation (11) reduces to the very simple and

revealing form,

N-R-^4
E[SIRJ',	 _ W* TRW*	 ( S Il	 )	 (13)

S

irres pective of R and S.

We note that the expected SIR for a covariance matrix estimate of gen-

eralized form is 0.8 times the optimum SIR (i.e., within _	 1	 d6)	 given

by bl* TRW* [cf. PluatJOP..	 (3) evaluated at W = W*] when NS = 511+20.51x',	 for

lame N. The indi;;;"ion is that a considerably smaller sample size is

required to achieve most acceptable expected SIR vis-a-vis what would be

required to estimate the matrix R (or R - ") to provide a refined estimate

of the optimum weight vector.	 Thus, the first conjecture is dispatched.

The behavior of Equation (13) is similar to th- result obtair ►ed by Allais as

discussed by Kanal, et, al. [11] for the ri`nimum mean squared error (1,111SE)

associated with the 11LE of thn ideal predictor assuming Gaussian statistics.

i

_/• jjiffJj—L-
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Case 2: The constrained Toeplitz form estimator assumes a structure

consistent with the weak: stationarity of the input data stochastic

a
process; the elements of "R T (N S )  are given by, 	 i

r
^jk	 ^j-E:^	 WSr+-	

l	 q
= r

	= 

1	

xq(n)>:q-I:^	 j^k=1,2,...1'	 (1C`)

We utilize the same notation for the elements of the covariance 1natrix esti-

mator as in Caso 1 with no fear of confusion. inserting Equation, (14)

in Equation (9) and taking the expectation, we obtain,

E[SIRJf - __5l1*TIzIPY

iJ	 1	 iJ	 r

1'--^--1, tt 	 1P!2 nra i j ks	 6i jk 
r r
9Ti-Ti	 i,_

14- 1i 	 '! - Ik-1,I	
I

E	 E	 E[x (n)x hi 	x (m)x 0m^l	 J )
p=l	

q
- 1	 P	 P" t 

- 1 	 q	 q 1 - 2 	
1

S - 
i	 N

2	 n r
>: e. > s F,	

^; i k%'* ► r *^.l; x 
'l (t!- i - j ) (!J- k- r, 	"	 I

, ,! S (_f* T RIP*)illi ,; k 9	 Ty

(J- +i	 11- 1k-ZI	 1
E	 F	 E[x (n)x , r	 x (n")r, fi,il	 4)
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Appealing to Equation (12),;,e may cast Equation (15) in the form,

E[SIR^RT I = 4t* T —

tJ
_	 1	 E x ^: E	 VI *^ kwQ*[a(^i - j^,^k-^.^) ^ b ( ^;-j^,^k-sl)^

t! s i j I: k	 '	 3	 I	 J

3 T	 E E E E w ; *wk*WPI *[a(ji-jj,jk-Qj) .i b(ji-jj,jk -r.D1
N S (14* RW*) i j k Q

(16)

where	 . -

IJ-^i-j^IJ-^I:-^^

a	 i-j^-)^f;=r:—^.^)	 1	 t_1	
p l p— ^al^ln— q+ ^ ;—j ^—^k—^

	

p '	 q

(16a)

jltJ-^k-Q^
b( ;-jI,II;-`I) --^_	 l

	

(I%;-jj-r,- _:^)	 F	 `'Ip-q-;k-r.^^^'^I;-^t+ ► ; ^i^	 M

	

p--1	 q= 1	 ^^

(16b) I

account

summing

data ve

The quantities a(•), h( - ) serve to

elements of RT (ht s ) are obtained by

diagonals of ^0 ' ) for each input

(td-^i-j^)(tJ-^h-r•!)/2 distinct term!

of R gives rise to the relations,

for the fact that the distinct

along the diagm,'I and suh-

ctor. There are Rio more than

) and h(- ), because the spmlietry
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a( i-j	 k-tII = i(jk-r.I,!i-iI)	 (17a)

b( i-j	 k -9 I) = b(Ik- tI,Ii -iI) 	 (17b)

It is difficult to reduce Equation (16) further; however, bounding iir-gu-

ments and the aid of Equation (17) permits the following to be established,

E[SIRIRG I <	 E[SIRJft	 (1B}

%%,hen the approxii,iaticn of Equation (C) Folds for Casa 1

It is important to note that wWl the op-

timum SIR held constant, Equation (13) depends simply on N S , 11; vdicreas,

Equation (16) depends also on the Toeplitz form input data covariance matrix

R and the signal vector S. The bound of' Equation (18) is thus over all R

and (non-trivial) S. We desire a more concrete idea of horn much the Case 2

results upper bound those of Case 1 for situations of practical interest;

the next sections assist: in this regard.

I

. ^ _-^rearn!^:=.-.; s:•--.r-z«^-.-F^^x-mow.+^r.«r ....+^-^-	 tom- ^.^-..-
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4.	 SEVERAL EXAMPLES OF FINITE TOEPLIT7. FORM

The approach we take is to select five examples of input data co-

variance matrices of finite Toeplitz form and evaluate Equation (16) for

each, comparing the results ohtained •with Fgtration (13). The initial re!;ijlts

presented are for N--5; this dimension avoids the non-inductive results that

scmetimes obtain with two dimensional examples, but is not so large as to re-

quire exhaustive computational time. All covariance matrix examples arc

normalized in the sense that the diagonal elements are unity.

Exam p le l: White Process

In this case, we have R= I, the NxN - dimensional identity matrix.

This situation corresponds to zun input data white noise stochastic

process (correlation time A). We use this example for comparative

purposes, realizing that rarely does this situation obtain, because

the detection processor will generally be proceeded by a filter

:which %,, ill increase the correlation time.

Exai^y^lr.- 2:	 Tridiagonal Correlation

This example provides a model for R twhich permits first sub-diagonal

correlation only, viz.,

C^

(19)
R	 ^,	 1

	

Cj	 n ' 1	 c

I	 u	 1,

J; -	 ---	 ^ 
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To insure that R is of positive definite form, care must be taken in

selecting the value of p. The eigenspectrum {a) of R is readily computed

to be,

an = 1 -	 Nlcus (N 1 )	 n=1,2,...,tJ	 (20)

From Equation (20) vie see that vie must have

i

Ipl <	 ( 21)
2 cos	

Nil1)

in order fcr R to be of positive definite form; furthermore, jpj<1/2

if R is to be of positive definite form for all N. For this example,

we choose the elements of R as,

	

P = 0.3679	 j i-j = 1

r 'i j	 p l i..j I =

	

1.0	 i-j	 = 0	 i ,j = 1 ,2, .. ,N= 5	 (22)

0	 otherwise

Exariy le 3: uarkov Process

The Markov process is one of extreme practical interest; the (con-

tinuous) cuvariance of the -input &Aa stochastic process is of ex-

ponential form, i . e. ,

If

p (-r) = e 1ILI	 Y'Q	
(23)

	
n !ME

We consider two situations, which differ in terms of stochastic process

correlation time: y = ?.5 -?nd y=5.0; the first has a correlation timu
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twice that of the second. It call 	 shown [61 that the eigenspectrum {a)

of the corresponding input data covariance matrix is given by,

1 - p?

"n = —
	 -	 n=1,2,...,11

1 - 2pcosgh n + p2

where the fi n , n= 1,2,... ,N; Ckq, l < ^ 2	 <q'rl<fi, are the solutions of,

sill[ (IJ11)w n ]	 2psin(NQ.11)	 p?s -in[	 n]
+	 = 0	 n-1,2,... ,Nsill^5 n 	 sinbn	 sin¢,n

end

P = e-yA

17

(24a)

(24b)

(24c)

For this example, we choose the elements of R as,

1.0 ji -jj = 0

0.6065 ji - jj =	 1

=	 - jj	 - YA j i
-jj

p	
pji = 	 e

- 0.3679 ji -jj = 2	 y =	 2.5

^^ 0.2231 ji -jj = 3

0.1353 ji -ji = 4

1.0 j i-j j = 0

0.3679 ji -jj =	 1

0.1353 5.0

0.049E ji-jj =	 3

,,0.0133 ji -jj = 4

(25a)

(?5b)

f



Exalpp I e	 Periodic Process

When the input data stochastic process is periodic v. , ith Period Nn,

the resulting covariance matrix is a cii-cu1ant, i.e.,

p 	 P l	 P 2	 ePi-1

R =	 ON-1 00 c' 1	 "11-2

	

P I P 2 P 3 	 Po

18

(2b)

Such matrices are a special type of Toeplitz matrix, ar-;se in the

modeling of certain spatial-temporal interference noise field models

P_1, and are utilized to explain the asymptotic (N-)-A--)behavior of Tocplitz

matrices. We may vrite R in the following manner 171,

1J= 1 n
R = ? piJ

n=U

where

r0 1 •• ° 0 0

J- 00•:•00

0 0 • "0 1

Ll 0•••0 0

From the eigcnvectors of J, vie directly obtain the (nor pialized)eigen-

vectors E^ n=1,2,...,N, of R,

(27a)

(271))
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E = W 2 e-2rj(n-1)(k—l)/N'
	

k =	 (28)

The eigenshectrum {A) is given by,

N	 -21rj(n- 1)(k-1) /li
^n

	

	 ek=1

= P O + 2p 1 cos	 2,^ (r	 ^+ 2n 2 cos	 a,r n-1 j+ ...	 n=1 ,2, ... ,Ii,
L	 N	 •f

(29)

invoking the symmetry of R. The 13st terar in the continued series of

Equation (29) depends on whether N is even or odd. We see from Equation (29)

that the eigenvalues of a circulant matrix are siuiply given by the discrete

Fourier transform (UFT) of the first row of clemcnts. For this example,

^•re choose the elements of R as,

	

1.0	 i-j	 = 0

	_ 	 ^^ -
c

ij	 ^^Ii•-ji 	 P Iil- Ii -j^^	
0.3679	 i-j	 1

	

0.1353	 ji-jj = 2	 (30)

ti

r
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5.	 PERFOR111VICE EVALUATION

Figure 2 presents the results of evaluating Equation (13) and

Equation (16) for the four covariance matrix examples of Section 4 as

a function of sample size N S . In the calculations, the optimum SIR is

fixed at unity, viz., l•1* TRW* = 1. The (Case 2) curves of Figure 2 are

dependent on the choice of signal vector S, as mentioned in Section 3.

The discussion below provides some insi g ht into the detection performance

behavior as a function of S and the rationale for the choice of S used

for the curves of Figure 2.

We find that the quantity E[SJRJJ T I appears to be close to its

minimum ►•:hen the N elements of S are chosen to be equal, e.g., S = 1,

each element equal to unity. The quantity E[SIRIR T I is close to its

maximum if the first element of S is chosen as unit with the remaining I1-1

elements zero; we denote this signal vector as S = Sl. A heuristic argument

for these er.treina may be given in terms of the asymptotic (11-)-+W) properties

of the input data stochastic process. We note that the covariance matrix ex-

amples of Section 4, with the exception of Example 1, correspond to lowpass

input data stochastic processes, which have continuous power spectral density

(pscl) functions. A periodogran ► estimate of the psd (under the zero me-an,

Gaussian assumption) is not consistent;specifically, the asymptotic variance

at a frequency is proportional to the square of the psd at that frequency [8].

A choice S = 1 - accentuates the zero frequency component of the input data

stochastic process, for which the spectral estimation variance is greatest;
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I
	

M

thus, the detection performance with such a signal is expected to be poor.

A selection of S = S1 causes all frequency components of the lowpass stochas-

tic processes to be utilized, thereby reducing the statistical variability 	

i

of E[SIRJk I through an averaging. This situation is strongly exhibited

in the case of Example 1, and less so for Example 2, wherein a choice S = Sl
	

I#

gives rise to good detection performance by permitting the constrained Toeplitz

form estimator of Equation (14) to utilize the statistical independence of the

elements within each input data vector X(n) to further reduce estimate variance. 	 i

Such a choice is therefore expected to provide nearly optimum detection per-

formance for finite 11 and no signal bandwidth constraint, if the eigenvalue

dispersion (condition number) of the input Ota covariance matrix is small.

The situation is not unlike the use of diversity to improve communications

system performance.

•	 In view of the above, the signal vector S admits a useful representation

in terms of the members of the complete orthonormal (CON) set of (real) eigeri-
I

.vectors (E) associated with the input data covariance matrix R, i.e.,
i

i
I

N	 ^
-S = E s n F n 	(31a)

n=1

where the expansion coefficients are given by,

'
sn = E 

T
{I S	 n = 1, 2,	 (316)	 I
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When sn =1	 n-1,7.,...,ld, S possesses unit length along cacti principal

component associatck, with the input data stochastic process. For finite

N, this choice for S parallels the asymptotic arguments that obtain when

S=S1, except for the case of Example 1, for which S degenerates to 1,

causing poor detection performance. The exclus'on of Example 1 is ex-

plained simply by noting that the white stochastic process may be expanded

in terms of anh CON set. The poor c'etection performance t-re refer to obtains

when 
Ear 

has unity in the n th position and zeroes elsewhere; however, we can

choose thr CON set (E) differently so that the white stochastic process, and

S as in Equation (.',la) %.ith the expansion coefficients equal to unity, does

not give rise to anomalous detection performance. For S as in Equation (31a)

with the expar- ,, inn coefficients equal to unity, the optimum weight vector _*

is calculated from Equation (5) (with n = 1) to be,

N

n-1 n
	 -n
	

(32)

where {a) is the eige.ispectr • um of R. Since S shows no preference for one

principal component vis-a-vis another, the optimum weighting for a principal

component Ss simply inversely proportional to the respective eigenvalue.

The Case 2 solid curves of Fiyure 2 are for S as computed from Equa-

tion (31) with the expansion coefficients equal to unity. In arriving at S for

the covariance matrix examples shown, the eigenvector set (E) was computed

for each of the examples. The eigenspectrum {},1 was also computed for each of

.-
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the_ examples and checked against Equations (20), (24), and (29). The

eigenvalues are arranged in descending order (over ^^ ;n the case of

Example 4) iriverted, scaled to a maximum of unity, and displayed in Figure 3

as the optimum weighting applied to each principal component. The Case 2

dashed curves of Figure 2 are for Examples 1 and 2 when S=S1.

the data presente:l in Figure 2 may be coalesced in a most meaningful

form. Examination of Equation (13) indicates that the expected SIR for the

generalized covariance matrix estimator varies as ` --s tl	^; ttie trend in the
s

curves of Figure 2 suggests that the expected SIR for the constrained Tocplitz

covariance matrix estimator varies with sam)-Au size in the following manner,

E[SIRi T1 Nl!*TRt!*	 s I, --	 (33a)
t^
s

where the "(ffective sample size" tts is given by,

11  = PW s	K?1	 (331))

and C= R(S), i.e., B carries implicit dependence on S. Evaluating the

Multiplicative factor R from Equation (33) and the data of Figure 2, we

obtain the results shown in Table 1.

.-
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Covariance
Matrix

Example
R

wf' ) 1.06
4:('	 S=S1) 2.3f:II,,

,	 S::S1)
gg

l: ZO
3 ^1',=>r;U) 2.41

3 011',	 ; = 2.5) 1.87

4 (PP) 2.53

TABLE 1

EFFEC1IVE SAMPLE SIZE 1NCREASL

OF TOLPLITZ ESTIMATOR OVER

GENERALIZED ESTIMATOR, N-5

We infer from the values of Table 1 that, on ,he average, a sample siz. 	 e-

duction of 2.12 is possible with the constrained Toeplitz estimator vis-a-vi:.

the generalized estirat.or for N = 5. This result is highly significant when the

input data stocImstic process is quasi-stationary, because the (real) time

necessary to achieve rood detection perfurmance is reduced to approximately

0.47 times that normally required.

Since the above results are tendered on a specific dimensionality, ti,re

male an attempt to establi!.h the dependence of R on N. to do this, are repeat

tt:e calculations for 11=10. The larger Exaciple 1 and 2 ratrices are natural

extensions of those in Section 4; the elements of the larger E;:awpl y 3 rn3t-

rices are readily computed from Lquation (25) with t, = 0.1, •V =2.5 and S.C;

and the Example 4 matrix elements are given by,

I'

i_
''	 I

1

{
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i^

1.0 ji-jj	 =	 0

0.6065 ji-jj 	=	 1

0.3679 ji-jj 	 =	 2

P
ij	 r'ji-jj 	 p1N -^i-j^^

0.2231 ji-jj	 =	 3

0.1353 ji-jj 	=	 4

0.0821 ji-jl 	 =	 5

I

(34)

I!

Figure n, displays the expected SIR curves for N=10, and Figure 5

illustrates the optimum principal component weighting. Generally, we

observe the same trends in Figure 4 as exhibited by the curves of Figure 2,

except for the results pertaining to the Example 2 (tridiagonal) covariance.

In this case, the difference in detection performance obtained with S as in

Equation (31) and S = S1 is cirticeably less at the higher dimension. The in-

ferencu, s that asymptotic arguments appear to hold for the Example 2 co-

variance at the moderate dimension N=10, i.e., the eigenvectors of the Ex-

amljle 2 covariance matrix are apparently near those of Equation (28). Eve.„

ating the multiplicative factor R from Equ-ttion (33) and the data of Figure 4,

we O tain the results shown -in Table 2.
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1P

Covariance

Matrix
Exanip1 e

B

1	 l!f')
'd p	 S = S1) 3.86_

2	
TD,	

S = S1) 3: PP
3	 (M1),	 y= 5.0) 3.17
3	 (IfP,	 y=2.5) 2.16

4	 (PP) 3.57

TABLE 2

EFFECTIVE SIV- 11PLE SIZE Ii;CREASE
OF TOEPLITZ FSTMATOR OVER
GENERALIZED EST IiiATOR, N=10

We infer from the values of Table 2 that, on the average, a sample size re-

duction of 3.12 is possible with the constrained Toeplitz estim,tor for 1,M0.

We not . ., attempt to generalize detection performance behavior for

Case 2 and N>10; in doing this, ,.e obtain a rather interesting result. The

expected SIf, of Equation (16) may be solved -in closed form vihen the input data

stochastic process is white (Example 1) and S=S1.	 Performing the calculations,

we obtain,

I'

r

PSIR	
N	 7	

1
C^RT J	 _ lJ*T U ,	 ,r(11 ) Ns - N - 1r tJ)-	 -	 -- !J	

J

where

(^	 1
n

n=1

1% +	 n iJ + 1 ^2i!

F
;f



,J

'	
g,EpRODUCIB1G11'Y OF THL

PO
URIGINAL PAGC 

Pool,

and A = 0.577 is Euler's constant. The harmonic series ,r(N) exhibits a

behavior for small N and is divergent with an asymptotic approach consistent with

the natural logarithm. The result of Equation (35) is felt to hold for a wide

variety of signal vectors whose psd's are relatively flat over the unconstrained

band%.tidth. Examination of the behavior of Equation (16) appears to indicate that

the approximation to the series r(N) is modified to ,r'(N) in the following manner

%.then the input data stochastic process is not white, but tine input data vectors

still contain a large number of degrees of freedom,

r-(N;B) = A + BtnN + 1/2N	 Bel	 (36)

%.there BA is the input data stochastic process correlation time, e.g., B=2

for the Example 2 (triadiagonal) case. Now, comparing Equation (33) to Equa-

tions (35) and (36) we obtain a generalization for the multiplicative factor

s, i.e.,

iT

N
(37)

A + BQ ntj + 1/2N

27
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Several observations concerning Equation (37) are wurth mentioning:

(1) use of Equation (37) -in Equation (33) with B selected appropriately provides

results ^,rhich compare favorably with the data of Figures 2 and 4 and Tables 1 and

2, and (2) the multiplicative factor s is divergent. The second point is very

significant, indicating that a sample size N S < N for which the generalized es-

timator, 
G 

of Equation (10) is not even of full rank may be equivalent to an ef-

fective sample size N S ' which provides good detection performance when used with

the constrained Toeplitz estimator T of Equation	 (14).	 An example will	 aid	 in

understanding these remarks and also serve to dispatch the second conjecture put

forth in Section 1. For the short update experimental results mentioned in Section

1, the filter dimension N=256. The correlation time of the input data stochastic

process is approximately BA = 8/511, where W denotes the bandwidth of the stochastic

process; thus, there are approximately 32 uncorrelated time segments within each

input data vector. The value of B as computed from Equation (37) is 5.70. A

sample size N S - N = 256 then provides us with an expected SIR of .827 tines the

optimum SIR (performance equivalent to 0.82 dB from the optimum SIR) from Equation

(33). The real time required to gather the input data necessary to achieve this

performance is 4 s, the gradient search algorithm averaging time ulA l-ized. Ile

note that for N S = N = 2.56, Equation (13) for the generalized estimator is way out

6 the range for which the approximation of Equation (8) is valid.
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6 CONCLUDING REMARKS

33

We have examined two conjectures put forth in Section 1 pertaining

to the suprisingly small sample size required to achieve good 5,1R perform-

an;e ►-rith an adaptive signal detection filter. The first conjecture involves

the possibility of convergence of the SIR well before convergence of the

filter impulse response; the second, with the ponsihility that the mechanics

of a certain adaptive filter algorithm are intelligent enough to capitalize

on the structure of the input data stochastic procz r ss. Specifically, the

structure referred to is the (finite) Toeplitz form of the input data co-

variance matrix.

The principal results of this work are as follows:

(1) Equation (9), the expected S1R, conditioned on the estimator R

of the input data covariance matrix R;

(2) Equations (13) and (16), the expected SIR (urdcr the stated assump-

tions) with the condition relieved for generalized R  and con-

strained Toeplitz T estimators, respectively; and
(3) Equations (33), (35), (36) and (37), synergistically providing a

model of the behavior of the constrained Tuerilitz estimator r.1th

dimension, sample size, true covariance matrix, and signal vector.

0
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Use of thegeneralized estimator results in the expected SIR approach-..	
__-

ing the optimum SIR as	 0 - R - R ), where N is the filter dimension and his z
S	 S

is the sample size. In this case, NS = 5N + 20 samples are needed to come within

1 dB of the optimum SIR; this is a relatively small number of samples, being

considerably less than that required to estimate the (N 2 + N)/2 unique elements

of a generalized covariance matrix. Use of the constrained Toeplitz estimator

results in the expected SIR approaching the optimum SIR as = [l - w'(N;B)
	

7 ]
S	 N NS

=	 where ,r'(N;B) behaves as W N, 1<B«N for large N. This result is derived from a

combination of the data analyses presented in Section 5 for small-to-moderate.

N using the covariance matrix examples of Section 4, and heuristic asymptotic

arguments. The importance of the results is evident. The constrained Toeplitz

estimator operates with an "effective sample size" N' =[ nN ^r ^1N S and therefore

has the potential to provide high expected SIR at a sample size N S for which

the generalized estimator may provide exceedingly poor results. The reduction

in required sample size reflects as a reduction in the amount of (real) time

required for the adaptive algorithm performance to converge and, therefore,

corresponds to an increase in the ability of the filter to acconnnodate realistic

situations wherein the input data stochastic process is quasi-stationary.

The improved performance is naturals achieved with an adaptive algorithm,

e.g., a first order, linearly constrained gradient search algorithm, operating

at a so-called slow update rate, because the covariance matrix estimate formed

is of constrained Tooplitz form. This observation suggests that the proposed

scheme of Farden [9] for first forming a constrained Toeplitz form estimate of

the input data covariance matrix and then inserting the estimate in the adaptive

algorithm is unnecessary, if a slow update rate is employed. We do note that
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there isA s1WAifference-in the estimate utilized by a gradient search

aqo	 _ that of Equation (14) employed for the calculations in this work

_in that the 	 order) gradient search algorithm introduces exponential

oral weighting, whereas Equation (14) employs uniform temporal weigh*ing.

s difference is second order to the calculations presented here.

In many problems of interest, we deal with an adaptive filter which

operates concurrently on a number, say K, of N-dimensional input data vectors

Xk (i)	 W, 2,...,K, at the i th sampling instant. The index on k ntity be a

spatial reference, i.e., time records of length NA from K sensor locations are

processed by the algorithm. If the (spatial) sequence of input data vectors

are organized as in reference [4] and the resulting KN-dimensional input data

vector stochastic process is assumed to be weakly stationary, then the input

data covariance matrix if of (finite) block Toeplitz form. Extension of the 	
i

results presented in this work to this case are iinmediate.

To broaden the areas of study that may benefit from this work, we mention

the general area of pattern recognition. The problem discussed here corresponds

to the situation where the form for the discriminant function is known and the

samples are used to estimate the values of parameters of the classifier, i.e.,

the nonparametric problem. The results provided are also useful for relating

sample size and dimensionality for the parametric problem, i.e., the form of the

underlying probability distribution is known and the samples are used to estimate

the values of parameters of the classifier [10].



36

REFERENCES

[1] l-lidrow, B., P. E. Mantcy, L. J. Gri f fiths, and B. B. Goode,

"Adaptive Antenna Systems", Proc. IEEE, Vol. 55, ho. 12, Dec. 1967,

pp. 2113 - 2159.

[2] Griffiths, L., "A Simple Adaptive Algorithm for Real-Time Processing in

Antenna Arrays", Proc. IEEE, Vol. 57, No. 10, Oct. 1969, pp. 1696 - '1704.

[3] Frost, 0. L. III, "An Algorithm for Linearly Constrained Adaptive Array

Processing", Proc. IEEE, Vol. 60, Aug. 1972, pp. 926 - 931.).

[4] i urgera, S. D. , "Selective Spatial and Spectral Adaptive 1 1 1-0cessincl of

the Acoustic Field", Doctoral Dissertation, Division of Engineering,

Grown University, June 1975.

(5] Goodman, N. R., "Statistical Analysis Based on a Certain Multivariate

Complex Gaussian Distribution (an liltroduction)", Annals of Vath, Stat.,

Vol. 34, Ho. 1, 1963, pp. 152 - 177.

[6] Grenander, U. and G. Szego, ToeLitz Forms and Their Applications,

University of California, Berkeley, 1958.

[7] Grenander, U. and M. Rosenblatt, Statistical Analysis of Stationary Time

Series, John Wiley, New York, 1957.

[8] Koopmans, L. H., The Spectral Analysis of Time Series, Academic Press,

i;ew York, 1974.

^I



-_f

37

[9] Farden, D., "Stochastic Approximation with Correlated Ddta",

Doctoral Dissertation, EnOnecrin3 Department, Colorado State University,

SprinD 1975.

[10] Duda, R. 0. and P E. Hart, Pattern Classification and Sccnc Analy-sis ..,_	 ' 0

Jnkn Wiley, New York, 1973.

[11] Kanal, L. and D. Chandrasekaran; "Oil Dimensionality and Sample Size in

Statistical Pattern Classification", Proc. 1968 Nat. Clect. Conf., pp. 2 - 7.


