General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA CR-134941 VOLUME IV

2930

SOF

ENERGY CONVERSION ALTERNATIVES STUDY -ECAS-

WESTINGHOUSE PHASE I FINAL REPORT

Volume IV - OPEN RECUPERATED AND BOTTOMED

GAS TURBINE CYCLES

by D.J. Amos and J.E. Grube

WESTINGHOUSE ELECTRIC CORPORATION RESEARCH LABORATORIES

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION NATIONAL SCIENCE FOUNDATION

> NASA Lewis Research Center Contract NAS 3-19407

N76-23695 HC \$5.50 Unclas 28169

G3/44

AND Report P HC -4) ENERGY COMVERSION (ECAS), WESTINGHOUSE RECUPERATED nal 117 •1 124 Research Labs. CYCLES CPEN (NASA-CR-134941-Vol-4) GAS TURBINE ... ALTERNATIVES STUDY 4 VOLUME (Westinghouse • BOTTOMED PHASE

1. Report No. NASA CR-134941 Volume IV	3. Recipient's Catalog No.
4. Title and Subtitle ENERGY CONVERSION ALTERNATIVES STUDY (ECAS),	5. Report Date February 12, 1976
WESTINGHOUSE PHASE I FINAL REPORT VOLUME IV - OPEN RECUPERATED AND BOTTOMED GAS TURBINE CYCLES	6. Performing Organization Code
7. Author(s) D. J. Amos and J. E. Grube	8, Performing Organization Report No. Westinghouse Report No. 76-9E9-ECAS-Riv.4
9. Performing Organization Name and Address	10, Work Unit No.
Westinghouse Electric Corporation	11. Continue or Grant No.
Research Laboratories Bittohuroh BA 15235	NAS 3-19407
	13, Type of Report and Period Covered
12. Spansoring Agency Name and Address	Contractor Report
Energy Research and Development Administration National Aeronautics and Space Administration National Science Foundation	14. Sponsoring Agency Code
Washington, D.C.	
 Project Managers; W. J. Brown, NASA Lewis Research Center, Cleveland, OH 44135 D. T. Beecher, Westinghouse Research Laboratories, Pittsburgh, PA 	15235
18. Abstract	
Open-cycle recuperated gas turbine plant with turbine inlet rempe	ratures of 1255 to 1644°K
Open-cycle recuperated gas turbine plant with turbine inlet rempe (1800 to 2500°F) and recuperators with effectiveness values of 0,	ratures of 1255 to 1644°K 70, 80 and 90% are considered.
Open-cycle recuperated gas turbine plant with turbine inlet rempe (1800 to 2500°F) and recuperators with effectiveness values of 0, A 1644°K (2500°F) gas turbine would have a 33.5% plant efficiency	ratures of 1255 to 1644°K 70, 80 and 90% are considered. in a situle cycle, 37.6%
Open-cycle recuperated gas turbine plant with turbine inlet rempe (1800 to 2500°F) and recuperators with effectiveness values of 0, A 1644°K (2500°F) gas turbine would have a 33.5% plant efficiency in a recuperated cycle and 47.6% when combined with a sulfur dio	ratures of 1255 to 1644°K. 70, 80 and 90% are considered. in a simple cycle, 37.6% wide bottomer. The
Open-cycle recuperated gas turbine plant with turbine inlet rempe (1800 to 2500°F) and recuperators with effectiveness values of 0, A 1644°K (2500°F) gas turbine would have a 33.5% plant efficiency in a recuperated cycle and 47.6% when combined with a sulfur dio distillate burning recuperated plant was calculated to produce el	ratures of 1255 to 1644°K 70, 80 and 90% are considered. in a simple cycle, 37.6% wide bottomer. The actricity at a cost of
Open-cycle recuperated gas turbine plant with turbine inlet remper (1800 to 2500°F) and recuperators with effectiveness values of 0, A 1644°K (2500°F) gas turbine would have a 33.5% plant efficiency in a recuperated cycle and 47.6% when combined with a sulfur dio distillate burning recuperated plant was calculated to produce el 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost \$1	ratures of 1255 to 1644°K 70, 80 and 90% are considered. in a situle cycle, 37.6% wide bottomer. The ectricity at a cost of .70 to 200 \$/kW, the open
Open-cycle recuperated gas turbine plant with turbine inlet rempe (1800 to 2500°F) and recuperators with effectiveness values of 0, A 1644°K (2500°F) gas turbine would have a 33.5% plant efficiency in a recuperated cycle and 47.6% when combined with a sulfur dio distillate burning recuperated plant was calculated to produce el 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost \$1 cycle gas turbine plant should see duty for peaking and intermedia	ratures of 1255 to 1644°K. 70, 80 and 90% are considered. in a simple cycle, 37.6% wide bottomer. The metricity at a cost of .70 to 200 \$/kW, the open ate load duty.
Open-cycle recuperated gas turbine plant with turbine inlet rempe (1800 to 2500°F) and recuperators with effectiveness values of 0, A 1644°K (2500°F) gas turbine would have a 33.5% plant efficiency in a recuperated cycle and 47.6% when combined with a sulfur dio distillate burning recuperated plant was calculated to produce el 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost \$1 cycle gas turbine plant should see duty for peaking and intermedia	ratures of 1255 to 1644°K. 70, 80 and 90% are considered. in a simple cycle, 37.6% oxide bottomer. The ectricity at a cost of .70 to 200 \$/kW, the open ate load duty.
Open-cycle recuperated gas turbine plant with turbine inlet rempe (1800 to 2500°F) and recuperators with effectiveness values of 0, A 1644°K (2500°F) gas turbine would have a 33.5% plant efficiency in a recuperated cycle and 47.6% when combined with a sulfur dio distillate burning recuperated plant was calculated to produce el 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost \$1 cycle gas turbine plant should see duty for peaking and intermedia	ratures of 1255 to 1644°K 70, 80 and 90% are considered. in a simple cycle, 37.6% wide bottomer. The ectricity at a cost of .70 to 200 \$/kW, the open the load duty.
Open-cycle recuperated gas turbine plant with turbine inlet rempe (1800 to 2500°F) and recuperators with effectiveness values of 0, A 1644°K (2500°F) gas turbine would have a 33.5% plant efficiency in a recuperated cycle and 47.6% when combined with a sulfur dio distillate burning recuperated plant was calculated to produce el 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost \$1 cycle gas turbine plant should see duty for peaking and intermedia	ratures of 1255 to 1644°K. 70, 80 and 90% are considered. in a simple cycle, 37.6% wide bottomer. The ectricity at a cost of .70 to 200 \$/kW, the open ate load duty.
Open-cycle recuperated gas turbine plant with turbine inlet rempe (1800 to 2500°F) and recuperators with effectiveness values of 0, A 1644°K (2500°F) gas turbine would have a 33.5% plant efficiency in a recuperated cycle and 47.6% when combined with a sulfur dio distillate burning recuperated plant was calculated to produce el 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost \$1 cycle gas turbine plant should see duty for peaking and intermedia	ratures of 1255 to 1644°K. 70, 80 and 90% are considered. in a sitple cycle, 37.6% wide bottomer. The metricity at a cost of .70 to 200 \$/kW, the open ate load duty.
Open-cycle recuperated gas turbine plant with turbine inlet rempe (1800 to 2500°F) and recuperators with effectiveness values of 0, A 1644°K (2500°F) gas turbine would have a 33.5% plant efficiency in a recuperated cycle and 47.6% when combined with a sulfur dio distillate burning recuperated plant was calculated to produce el 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost \$1 cycle gas turbine plant should see duty for peaking and intermedia	ratures of 1255 to 1644°K. 70, 80 and 90% are considered. in a simple cycle, 37.6% oxide bottomer. The ectricity at a cost of .70 to 200 \$/kW, the open ite load duty.
Open-cycle recuperated gas turbine plant with turbine inlet rempe (1800 to 2500°F) and recuperators with effectiveness values of 0, A 1644°K (2500°F) gas turbine would have a 33.5% plant efficiency in a recuperated cycle and 47.6% when combined with a sulfur dio distillate burning recuperated plant was calculated to produce el 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost \$1 cycle gas turbine plant should see duty for peaking and intermedia	ratures of 1255 to 1644°K. 70, 80 and 90% are considered. in a simple cycle, 37.6% wide bottomer. The ectricity at a cost of .70 to 200 \$/kW, the open ate load duty.
Open-cycle recuperated gas turbine plant with turbine inlet rempe (1800 to 2500°F) and recuperators with effectiveness values of 0, A 1644°K (2500°F) gas turbine would have a 33.5% plant efficiency in a recuperated cycle and 47.6% when combined with a sulfur dio distillate burning recuperated plant was calculated to produce el 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost \$1 cycle gas turbine plant should see duty for peaking and intermedia	ratures of 1255 to 1644°K. 70, 80 and 90% are considered. in a simple cycle, 37.6% wide bottomer. The ectricity at a cost of .70 to 200 \$/kW, the open ate load duty.
Open-cycle recuperated gas turbine plant with turbine inlet rempe (1800 to 2500°F) and recuperators with effectiveness values of 0, A 1644°K (2500°F) gas turbine would have a 33.5% plant efficiency in a recuperated cycle and 47.6% when combined with a sulfur dio distillate burning recuperated plant was calculated to produce el 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost \$1 cycle gas turbine plant should see duty for peaking and intermedia	ratures of 1255 to 1644°K. 70, 80 and 90% are considered. in a simple cycle, 37.6% wide bottomer. The ectricity at a cost of .70 to 200 \$/kW, the open ate load duty.
Open-cycle recuperated gas turbine plant with turbine inlet rempe (1800 to 2500°F) and recuperators with effectiveness values of 0, A 1644°K (2500°F) gas turbine would have a 33.5% plant efficiency in a recuperated cycle and 47.6% when combined with a sulfur dio distillate burning recuperated plant was calculated to produce el 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost \$1 cycle gas turbine plant should see duty for peaking and intermedia 17. Key Words (Suggested by Author(s)) 18. Distribution Statem	eratures of 1255 to 1644°K. 70, 80 and 90% are considered. in a simple cycle, 37.6% while bottemer. The ectricity at a cost of .70 to 200 \$/kW, the open ate load duty.
Open-cycle recuperated gas turbine plant with turbine inlet rempe (1800 to 2500°F) and recuperators with effectiveness values of 0, A 1644°K (2500°F) gas turbine would have a 33.5% plant efficiency in a recuperated cycle and 47.6% when combined with a sulfur dio distillate burning recuperated plant was calculated to produce el 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost \$1 cycle gas turbine plant should see duty for peaking and intermedia 17. Key Words (Suggested by Author(s)) gas turbine R-12 cost Unclassified	ratures of 1255 to 1644°K 70, 80 and 90% are considered. in a sitple cycle, 37.6% wide bottomer. The ectricity at a cost of .70 to 200 \$/kW, the open ate load duty.
Open-cycle recuperated gas turbine plant with turbine inlet rempe (1800 to 2500°F) and recuperators with effectiveness values of 0, A 1644°K (2500°F) gas turbine would have a 33.5% plant efficiency in a recuperated cycle and 47.6% when combined with a sulfur dio distillate burning recuperated plant was calculated to produce el 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost \$1 cycle gas turbine plant should see duty for peaking and intermedia 17. Key Words (Suggested by Author(s)) gas turbine 18. Distribution Statem Unclacesified recuperator	ratures of 1255 to 1644°K. 70, 80 and 90% are considered. in a simple cycle, 37.6% wide bottomer. The ectricity at a cost of .70 to 200 \$/kW, the open ate load duty.
Open-cycle recuperated gas turbine plant with turbine inlet remper (1800 to 2500°F) and recuperators with effectiveness values of 0, A 1644°K (2500°F) gas turbine would have a 33.5% plant efficiency in a recuperated cycle and 47.6% when combined with a sulfur dio distillate burning recuperated plant was calculated to produce el 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost \$1 cycle gas turbine plant should see duty for peaking and intermediate cycle gas turbine plant should see duty for peaking and intermediate set of the set of t	ratures of 1255 to 1644°K. 70, 80 and 90% are considered. in a simple cycle, 37.6% wide bottomer. The ectricity at a cost of .70 to 200 \$/kW, the open ate load duty.
Open-cycle recuperated gas turbine plant with turbine inlet rempered (1800 to 2500°F) and recuperators with effectiveness values of 0, A 1644°K (2500°F) gas turbine would have a 33.5% plant efficiency in a recuperated cycle and 47.6% when combined with a sulfur dio distillate burning recuperated plant was calculated to produce el 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost \$1 cycle gas turbine plant should see duty for peaking and intermedia cycle gas turbine plant should see duty for peaking and intermedia 17. Key Words (Suggested by Author(s)) gas turbine R-12 cost recuperator methyl amine temperature, bottoming sulfur dioxide efficiency 18. Distribution Statem Unclassified	ratures of 1255 to 1644°K 70, 80 and 90% are considered. in a simple cycle, 37.6% while bottomer. The ectricity at a cost of .70 to 200 \$/kW, the open ate load duty.

* For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-C-162 (Rev. 10-75)

ACKNOWLEDGMENTS

Section 5 entitled "Open Recuperated and Bottomed Gas Turbine Cycles" was centered in the Westinghouse Gas Turbine Engine Division and was coordinated by D. J. Amos.

Others contributing to the concept study were:

- R. G. Glenn, who prepared the turbine island arrangement drawings and turbine engine cross sectional drawings.
- J. E. Grube, who was responsible for the majority of the recuperated open cycle thermodynamic efficiency calculations and prepared the correlations for gas turbine pricing including the price variations for the several parametric points.
- R. M. Lee, who assisted in the open-recuperated cycle efficiency calculations.
- C. T. McCreedy and S. M. Scherer of Chas. T. Main, Inc. of Boston, who prepared the balance of plant description and costing, site drawings, and provided consultation on plant island arrangements and plant constructability.

쒂.

TABLE OF CONTENTS

NASA CR-134941		
Volume I	Section 1	INTRODUCTION AND SUMMARY
	Section 2	GENERAL ASSUMPTIONS
Volume II	Section 3	MATERIALS CONSIDERATIONS
Volume III	Section 4	COMBUSTORS, FURNACES, AND LOW- BTU GASIFIERS
Volume IV	Section 5	OPEN RECUPERATED AND BOTTOMED GAS TURBINE CYCLES
Volume V	Section 6	COMBINED GAS-STEAM TURBINE CYCLES
Volume VI	Section 7	CLOSED-CYCLE GAS TURBINE SYSTEMS
Volume VII	Section 8	METAL VAPOR RANKINE TOPPING-STEAM BOTTOMING CYCLES
Volume VIII	Section 9	OPEN-CYCLE MHD
Volume IX	Section 10	CLOSED-CYCLE MHD
Volume X	Section 11	LIQUID-METAL MHD SYSTEMS
Volume XI	Section 12	ADVANCED STEAM SYSTEMS
Volume XII	Section 13	FUEL CELLS

ii

EXPANDED TABLE OF CONTENTS

Volume IV

	· · · · ·		Page
ACK	NOWLEI	DGMENTS	i
TAB	LE OF	CONTENTS	ii
SUM	MARY		v
5.	OPEN	RECUPERATED AND BOTTOMED GAS TURBINE CYCLES	5-1
	5.1	State of the Art	5-1
	·	5.1.1 Open-Cycle Gas Turbine Engines	5_1
		5.1.1.1 Turbine Inlet Temperature Considerations	5-3
		Uncooled Turbing Components	7-2
		Transpiration Cooling	
			5-5
		Advanced Connection/Impingement/Film	
		Cooling	5-7
		Steam Cooling	5-7
		Water Cooling	5-7
		5.1.1.2 Combustion Considerations	5-7
		5.1.2 Gas Turbine Recuperators	5-9
		5.1.3 Organic Bottoming Cycles	5-11
	5.2	Description of Parametric Points to be Investigated	5-13
	5.3	Approach	5-21
	5.4	Results of Parametric Study	5-25
		5.4.1 Selected Case Results	5-27
		5.4.2 Results of Parametric Variations	5-39
	5.5	Capital and Installation Costs of Plant Components	5-43
		5.5.1 Description of the Base Case Power Plant	5-43
		5.5.1.1 Starting Package	5-47
		5.5.1.2 Generator and Exciter	5-47
			5-47
			3-47

iii

EXPANDED TABLE OF CONTENTS (Continued)

	`															Page
	5	.5.1.4	Recuper	ator	Syste	эш.	•	•••	•	• •	•	•	•	•	•	5-47
	5	.5.1.5	Gas Tur	bine	Auxi	liar	y S	kid	S .	• •	•	•	•	•	•	5-51
	- 5	.5.1.6	Switchg	ear	• • •	• •	•	• •	·	•	٠		•	•	•	5-51
	5	.5.1.7	Balance	of	Plant		•			•	•	•	•	•	•	5-51
	5.5.2	Approx	imate Si	zės a	and We	≥igh	ts	of 1	Majo	or (Com	po	nei	nt	s.	5-53
· ·	5.5.3	Gas Tu	rbine an	d Au:	xilia	ries	Pr	ice	Dei	er	ni.r	iat	io	n		6 1 1
		Proced	ure	••	• • .•		•		•		•	٠	•	٠	•	5-53
	5.5.4	Gas Tu	rbine Re	cupe	rator	Sys	tem	Pr	ici	ıg	•	•	•	•	•	5-73
	5.5.5	Tabula	tion of	Overa	a 11 P.	lant	Ma	ter	ial	an	1					
		Instal	lation C	osts		• •	٠	• •	•	• •	•	•	•	•	•	5-75
5.6	Analys	is of 0	verall C	ost	of Ele	ectr	ici	ty	•	• •		•.	•	•	•	5-89
5.7	Conclu	sions a	nd Recom	menda	ation	s .	•	• •	•	• •	•	•	•	•	•	5-107
	5.7.1	Conclu	sions .	• •	• • •	• •	•	• •	•	••	•	•	•	•	•	5-107
	5.7.2	Recomm	endation	s .	• • •	• •	•	• •	•		٠	•	•	•	•	5-108
5.8	Refere	nces .	• • • •	• •	• • •	• •			•	• •	•	•		•		5-109

SUMMARY

The open recuperated and bottomed gas turbine cycles includes both simple and recuperated gas turbine systems with and without intercooling and gas turbine topping-organic vapor Rankine bottoming cycles. The parametric investigation covers gas turbine inlet temperatures of 1255 to 1644°K (1800 to 2500°F) with a base case value of 1478°K (2200°F), a modest extension of present day state of the art. Pressure ratios ranging from 6 to 24 to 1 are investigated. These gas turbines have air cooled vanes and blades, burn clean fuels from coal and are fully assembled-rail shippable modules having power outputs of approximately 100 MW.

The generator is driven from the cold end, thereby allowing a minimum pressure loss axial arrangement of an exhaust duct, recuperator or waste heat boilers.

Tension braze recuperators with effectiveness values of 0, the unrecuperated case, 70, 80 and 90% are considered. A total pressure drop ratio of 3% is used. The cycle efficiency increases with turbine inlet temperature in all cases. An optimum pressure ratio of about 10 to 1 is found for recuperated cycles with higher pressure ratios resulting in improved efficiency for the simple cycles. Efficiencies of 33.5 and 37.6% are found for the simple and recuperated systems with a 1644°K (2500°F) turbine inlet temperature. The use of ceramic blades and vanes would reduce the needed cooling air and improve the cycle efficiency 3.5 to 5 points.

The sulfur dioxide bottoming cycle with a $1644^{\circ}K$ (2500°F) air cooled gas turbine would have an efficiency of 47.6%. The highly supercritical sulfur dioxide fluid with turbine inlet conditions of 17.236 MFa (2500 psi)/811°K (1000°F) has a nearly straight heating line which results in an excellent fit with the gas turbine exhaust gas cooling curve giving a cycle with relatively high availability. The sulfur dioxide superheats on expansion so no turbine moisture problems occur and a desuperheating feed heater is required.

The resultant sulfur dioxide turbine is much smaller than the equivalent steam turbine for the same duty.

The cost of electricity (COE) for the recuperated cycles is 8.19 mills/MJ (29.5 mills/kWh) and 8.75 mills/MJ (31.5 mills/kWh) for the simple cycle at a 65% capacity factor. The more capital intensive SO₂ bottoming cycle has a COE of 9.14 mills/MJ (32.9 mills/kWh). The simple and recuperated cycles have the lowest COE of any plants at capacity factors less than 40% due to their lower capital cost of 170 to 200 \$/kW, respectivel;, and are, therefore, recommended for peaking and intermediate load duty.

vi

5. OPEN RECUPERATED AND BOTTOMED GAS TURBINE CYCLES

5.1 State of the Art

5.1.1 Open-Cycle Gas Turbine Engines

The last two decades have seen a remarkable growth in the application of the industrial gas turbine. During that period, the specific output of the engines has doubled from about 150 to 300 kW/(kg/s airflow) [70 to 140 kW/(1b/s airflow)], and the thermal efficiency has increased from about 20 to 33%. Today, combined gas turbine and steam turbine power plants are commercially available with thermal efficiencies of about 43%. Current gas turbine engine unit sizes of up to approximately 100 MW are available as prepackaged, fully assembled, and rail-shippable power plants. The relatively low investment cost connected with installation of these units has made the open-cycle gas turbine the economic choice of the electric utilities for meeting their peak-load requirements.

The evolution of the industrial gas turbine to the current state of the art has resulted from combining the well-established longlife design features of steam turbines with the advanced technology of aircraft jet engines. The latter has contributed advances in such areas as the axial flow compressor, combustion system, and high-temperature metallurgy. Over the years, the use of gas turbines has covered a diversity of industrial applications including: electric power generation, natural gas transmission, compressor drives, oil-field repressurization, marine propulsion, petrochemical auxiliary power generation, steel mill blast furnace blowing, mobile power generation, mobile process air plant drives, and locomotive power plants. These applications have involved the use of a wide variety of fuels, environments, control systems, and installation arrangements and system configurations. This variation of

Fig. 5. 3 -4 Pt. flexural strength of high density Si₃N₄ & SiC vs ultimate tensile strength of metals

possible configurations has been attained through units installed with either one or two shafts, recuperators, evaporative coolers, superchargers, steam helpers, or as part of a combined cycle or waste heat recovery arrangement.

5.1.1.1 Turbine Inlet Temperature Considerations

The advancement and growth of the industrial gas turbine is primarily the direct result of increased turbine inlet temperature capability. Figure 5.1 illustrates the temperature growth history for industrial gas turbines over the past ten years. The model W-501 engine pictured in Figure 5.2 generally follows this trend. This advance in the state of the art has been made possible by two major technical efforts which resulted in materials with improved temperature capability and the cooling of hot parts with air.

For long-life duty, uncooled turbines using state-of-the-art superalloy blade and vane materials are limited by oxidation and corrosion to a turbine inlet temperature of about 1172°K (1650°F). Internal cooling of turbine vanes and blades with air has allowed inlet temperatures to alvance while maximum metal temperatures are maintained within allowable limits. Current industrial designs, employing combined impingement/convection/film-cooling techniques, are capable of operation at about 1478°K (2200°F) in peaking service.

Although performance continues to improve with increased turbine inlet temperatures in the convection/impingement/film air-cooled simple cycle arrangement, studies have indicated that the major benefits from higher inlet temperature air-cooled gas turbines accrue to the combined-cycle systems. Potential improvements for all types of cycle arrangements would be greatly enhanced if more efficient cooling coucepts could be developed.

There are several approaches to gas turbine design using improved cooling systems. Five such approaches are: high-temperature materials, transpiration cooling, advanced convection/impingement/film

Fig. 5.2 - Westinghouse Gas Turbine Engine Model W-501

air-cooling, steam cooling, and water cooling. These are discussed briefly below.

Uncooled Turbine Components - High Temperature Materials. Any reduction in the cooling air required would improve the cycle efficiency. Thus, if everything else remains the same, an uncooled turbine has the highest potential cycle efficiency. However, the oxidizing and sometimes highly corrosive atmospheres seen by the turbine element, as well as creep consideration, limits the temperatures of the uncooled turbine to about 1170°K (1650°F) using current materials. To advance this limit, development programs are under way for ceramic and composite blade and vane materials aimed at significant improvements in uncooled turbine temperature capability. A significant cycle efficiency improvement over the present state of the art would result as uncooled ceramics elements replace air-cooled metal blades and vanes. Two candidate materials, highdensity silicon nitride and silicon carbide ceramics, have superior strength at high temperatures, as shown by Figure 5.3. Laboratory stationary rig tests have been successfully run on full-size vanes at gas temperatures in excess of 1500°K (2250°F), and design and test work is continuing on designs suitable for temperatures of approximately 1644°K (2500°F). Composite materials also have great potential for extending the limitation of turbine temperatures. Their superior strength will be useful for last-stage turbine blade applications where extremely high stresses occur, and the required airfoil shape make this blade difficult to cool. The added strength of composite materials permit higher lastrow blade temperatures and enable the designer to maintain an efficient blade design.

<u>Transpiration Cooling</u>. The heat transfer coefficients on the flow surfaces of transpiration cooled turbine blades and vanes are very high. Ideal transpiration cooling is characterized by the coolant transpiring through the blade surfaces, issuing from that surface at close to the blade surface temperature, and thus requiring the minimum amount of coolant flow. Transpiration cooling, therefore, has the minimum cooling loss penalty on cycle efficiency. (These losses are due to the mixing of

Fig. 5. 4 $-NO_{x}$ emissions state of the art and proposed EPA regulation for gas turbines

the coolant with the main flow path fluid which results in a mixing pressure loss and a decrease in mixed-out main path fluid temperature.)

Advanced Convection/Impingement/Film Cooling. Advances in turbine inlet temperature to as high as 1589 to 1644°K (2400 to 2500°F) for industrial engines is considered possible by means of utilizing advanced cooling system designs based on combined convection/impingement/film techniques. Although this approach does not have the same growth potential as transpiration cooling, it is considered to be an important step in the progression of the state of the art.

<u>Steam Cooling</u>. Steam cooling offers advantages over air cooling because of the possibility of elevated coolant pressure, a clean inert coolant, superior heat transfer characteristics, and reduced pressure mixing losses since less fluid is required. The superior heat transfer characteristics provide means of absorbing more heat and permit high gas temperatures with fixed outside metal surface temperatures. Thus, steam cooling may increase permissible gas temperatures by as much as 222°K (400°F) above those arising from air cooling without changing coolant channel geometry.

<u>Water Cooling</u>. The use of water as a gas turbine blade and vane coolant has been and is currently the subject of considerable technology development. Water has excellent cooling characteristics, and as such it has cooling potential with gas-path temperatures well into the 1644 to 1922°K (2500 to 3000°F) range.

5.1.1.2 Combustion Considerations

In contrast to the advances in gas turbine engine size and performance, the state of the art of gas turbine combustion systems has not experienced a significant comparable change. The basic design technology employed today is not very different than that used 20 years ago. With the environmental difficulties already seen with increasing turbine firing temperature, however, a fundamental change in the way fuels are burned in gas turbines will be required. This is illustrated in Figure 5.4, which shows the effect of turbine inlet temperature on NO.

Alternative "Tension Braze" Design

0.075 Conventional Strong Back Design

Fig. 5.5—Plate-fin recuperator

emission levels with current dry combustion systems and with water injection. Superposed on this is the proposed EPA NO_x rule for utility gas turbines burning liquid fuels. Clearly, present dry combustors will not be satisfactory—and the NO_x problem grows rapidly worse as higher temperatures are achieved. Water injection is expedient to meet the current situation but has its own environmental drawbacks and is of limited effectiveness in controlling NO_x when the fuel has a relatively high nitrogen content, as do liquid fuels derived from coal, and with coal gases containing ammonia. For the long range, several advanced combustor design approaches will have to be developed to suit the turbine temperatures and fuels of the future. Concepts considered to hold the greatest promise include:

- Staged combustion
- Fuel/air premixing
- Catalytic combustion.

The advanced state-of-the-art gas turbines will include an advanced combustor concept in order to achieve high performance goals in an environmentally acceptable manner.*

5.1.2 Gas Turbine Recuperators

There are several approaches to gas turbine recuperator design, ranging from automotive moving-surface rotating regenerators to landbased gas turbine fixed-surface recuperators. Consideration here is limited to the latter. Two types of fixed-surface recuperator have found application in power generation gas turbine systems: plate-fin recuperators and shell-and-tube recuperators.

As shown in Figure 5.5, the plate-fin recuperator utilizes a basic counterflow arrangement to transfer heat from exhaust gases to compressor discharge air. The sectional view at the bottom left side of the figure shows the conventional design approach commonly referred to as the strong-back design. Extended surface is utilized on the gas side only,

* Conventional combustor costing has been used for this study.

Dwg.6250A65

and multiple layers of the air- and gas-side combinations are sandwiched together in compression by rigid strong-back end pieces.

The section at the bottom right of the figure illustrates an alternative plate-fin design approach known as the tension-braze recuperator. The principal difference between this and the strong-back approach is that extended surface is utilized on both air and ges sides. This has resulted in a lighter and more compact design. The distinguishing characteristic leading to the name tension braze is that instead of resisting the pressure loading between air and gas sides by massive strong-back end pieces, individual air-side channels are held together by high-temperature nickel alloy braze, loaded in tension between air-side extended surface and the adjacent channel walls.

Figure 5.6 illustrates the alternative shell-and-tube recuperator design approach. This design is characterized by relatively massive size and weight and higher cost. As shown in the figure, compressor discharge air is heated as it passes downward through vertical tubes while combustion gases sweep the exterior tube surfaces. The multiple tubes are supported at their relatively cool top ends and because of thermal growth are left to expand freely downward. The entire structure is supported by the central vertical pipe which directs the cooler compressor discharge air to the top of the unit.

Current design plate-fin and shell-and-tube recuperators are commonly constructed of relatively low-cost carbon steels. These designs are generally limited to turbine exhaust temperatures of about 811°K (1000°F). Advanced designs assumed herein utilize higher alloy materials (400 series SS).

5.1.3 Organic Bottoming Cycles

The electric power industry has utilized the exhaust heat of a gas turbine cycle to generate vapor and to heat the feed liquid of a Rankine bottoming cycle in the form of the combined gas and steam cycle. This is covered separately in detail in Section 6. The use of working fluids other than steam for the bottoming cycle has been studied extensively but has never been implemented in a commercial power plant application. In general, these studies have shown that the advantages associated with even the most promising and best suited fluids are not great enough to warrant developing the organic fluid power plant.

The requirements of fluids that should be considered for power cycle application have long been recognized because of the suitability of their chemical and physical properties. They are the types of fluid generally utilized in the refrigeration industry where water is usually an inappropriate working fluid. The rather mature state of the art of that industry suggests that the risk of developing an organic fluid cycle for power production may not be as great as generally considered in the past. The payoff will depend on achieving improvements in cycle performance that would result from overcoming some of the disadvantages of using steam.

The relatively large specific volume of steam at the heat rejection temperature makes it uneconomical to fully utilize lower sink temperatures even when available.

At the high-temperature end of the gas turbine bottoming cycle, the boiling characteristic of the most commonly used subcritical water cycles requires a relatively large heat input at constant temperature. This represents a relatively poor thermodynamic fit for effective utilization of heat from the falling temperature heat input line of the gas turbine exhaust.

Although the state of the art of the organic fluid bottoming cycle is not well developed, a firm analytical data base does exist. Information is available related to the fluid properties, stability, corrosiveness, toxicity, and general thermodynamic suitability of many candidate working fluids. Investigation continues into the results of implementing a better thermodynamic fit for a gas turbine bottoming cycle than is currently available with water. [This subject is discussed further in Section 7.2 where the criteria for selecting a bottoming cycle working fluid are covered in some detail (References 5.1 through 5.8).]

5.2 Description of Parametric Points to Be Investigated

The recuperated open-cycle gas turbine cycles studied were classified into two general categories: recuperated open cycles and combined recuperated open cycles with an organic fluid Rankine bottoming cycle.

The parametric points covered by the study are summarized on Table 5.1, which shows the range of parameters studied and the general grouping of parametric variation investigated. Of the 97 cases included, 94 are simple or recuperated gas turbine cycles. The remaining three cases examine combined cycles using three different working fluids: refrigerant R-12; methylamine, and sulfur dioxide (SO₂). All the cases investigated are enumerated in Section 5.4 (Table 5.2), where the study results are presented.

The recuperated cycle, typical of state-of-the-art air-cooled gas turbine systems, was chosen as the base case for this study. The performance parameters assumed for this case are: (See Section 5.3 for an explanation of terms and further assumptions.)

- Turbine inlet temperature = 1478°K (2200°F)
- Compressor pressure ratio . = 10 to 1
- Recuperator effectiveness = 0.80

• Recuperator pressure drop $(\frac{\Delta P}{P}) = 0.030$.

The fuel for this case is assumed to be a distillate oil derived from coal. The general cycle configuration represented by the base case and the bulk of the points calculated are shown on Figure 5.7. The major components contained in the system are the gas turbine engine and recuperator. As shown in Table 5.1, the parametric variation around the base case involved two major groupings: recuperator parameter variation and gas turbine engine parameter variation. First, the effect of varying the recuperator effectiveness was investigated. Values of 0, 0.7, 0.8, and 0.9 were selected, and the cycle performance was calculated at a fixed turbine inlet temperature of 1478°K (2200°F) and with compressor pressure ratios

TABLE 5.1- RECUPERATED OPEN CYCLE PARAMETRIC POINTS

	Turb. Inlet Temp, °F	Comp. Press. Ratio	Gas Turbine Cooling See Note B	Recuperator Effectiveness	Recuperator Pressure Loss, ∆P/P	Inter- cooling	Reheat See Note D	Fuei	Bottoming Cycle Organic Fluid	Organic Fluid Turbine Inlet Temp. °F	Organic Boiler Pinch Point Temp. Diff. AT, °F	Organic Boiler Exit Temp. Diff. AT°F	Boiler Gas Side Press. Drop, ∆P/P
Base Case	2200	10	1	0, 80	0.030	No	No	Dist. from Coal	None	-	-	-	1
Recuperator Parameter /ariations		8, 10, 12 16, 20		0.70, 0.80, 0.90	0. 020, 0. 030 0. 040								
	1800, 2000 2200, 2500	8, 10,12 16,20,24											
Gas Turbine Parameter	1800, 2000 2200, 2500	8, 10, 12 16, 20, 24		0	0								
Variations	2200 2500	8, 10, 12 16, 20, 24	2 3										
See Note C		12,16,20				Yes	Yes						
uel Variation								Hi-Btu Gas					
Bottoming	2000	8							R12	400	Super- Critical	100	0.05
Cycle Parameter	2000	8		•				•	Methyl- amine	600	Super- Critical	100	0.05
/ariations	2500	16		0	0				s0 ₂	1000	Super- Critical	100	0, 05

A. All blank spaces have same value as base case unless otherwise noted
B. Gas turbine blade cooling configurations

Turbine vanes and blades air cooled
Turbine vanes ceramic, blades air cooled
Turbine vanes ceramic, blades ceramic Notes:

5-14 Þ

C. For 1800°F turbine inlet temperature compressor pressure ratio will be varied as follows 6, 8, 10, 12, 16 instead of the values shown in the table D. The reheat case was omitted from the study in agreement with NASA

REPRODUCIPILITY OF TH

But. Sciuba.

Fig. 5.7—Schematic diagram of recuperated open-cycle gas turbine system

8, 10, 12, 16, and 20. Effectiveness values of 0.80 to 0.82 are common in current commercial practice. Variation of recuperator pressure drop was also examined. With effectiveness set at 0.8 and at 1477°K (2200°F) turbine inlet temperature, the recuperator pressure drop ratio, $\Delta P/P$, was assigned values of 0.02, 0.03, and 0.04. The compressor pressure ratio was varied from 8 to 20 for this group of parametric points in the same step as during the effectiveness investigation.

The gas turbine engine parametric study involved investigation of system performance and cost over a range of turbine inlet temperatures from 1255 to 1644°K (1800 to 2500°F) and compressor pressure ratios from 6 to 24. For the air-cooled cases, both recuperated and nonrecuperated cycles were included. The latter is the so-called simple cycle and parametrically represents the case of recuperator effectiveness and pressure drop set to zero. Also, included in the higher temperature recuperated cases are two variations in gas turbine cooling šchemes. In one case a design is assumed that combines ceramic (uncooled) stator vanes and air-^^led rotor blades; the second case assumes uncooled ceramic vanes and blades. The use of ceramics is accomplished parametrically by a programmed reduction in compressor bleed air used for cooling the turbine section (see Section 5.3).

A set of points was included to investigate gas turbine engine compressor intercooling. Figure 5.8 is a schematic illustrating the general cycle arrangement for this case. It assumes a single stage of intercooling and a similar pressure ratio for both the high- and lowpressure compressor sections. The intercooler was assumed to be fed with water from a cooling tower. The intercooler parameters selected for the study were an intercooler approach $(T_{Air, Out} - T_{Water, In})$ of 16.7°K (30°F) and a water range $(T_{Water, Out} - T_{Water, In})$ of 12.8°K (23°F).

The intercooled cases covered a pressure ratio range of 8 to 24, with all other system parameters set at the base case values.

One fuel variation was considered. In this case a high-Btu gas derived from coal was selected to replace the coal-derived liquid fuel.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Fig. 5.9—Schematic diagram of recuperated open-cycle gas turbine system combined with organic fluid bottoming cycle

Since the attraction of simple and recuperated open-cycle systems has historically been their relatively low investment cost (and, therefore, their economy in peaking and intermediate duty application), a capitalintensive integrated coal gasification low-Btu gas fuel system was not selected for inclusion in this portion of the study.

The three working fluids chosen for the bottoming cycles were selected primarily on the basis of their stability at the relatively high temperature associated with the gas turbine exhaust and their relatively high density at low temperature and pressure as would be reflected in the size of the bottom-cycle turbine exhaust area requirement. These selection criteria are discussed in more detail in Section 7.2. The cycle arrangement used for both the R-12 and methylamine bottoming cycles is shown schematically in Figure 5.9. The topping cycle (recuperated gas turbine cycle) parameters used for these cases were selected from among the values used in the overall parametric study to provide the best fit between the heat source (turbine exhaust) temperature and the bottom-cycle fluid heat absorption characteristic. This resulted in the selection of a turbine inlet temperature of 1366°K (2000°F) and pressure ratio of 8 to 1. The bottoming cycles were designed for supercritical operation; that is, above the constant temperature boiling regime to fit better the gas turbine exhaust gas cooling line.

The cycle arrangement for the culfur dioxide bottomed system is shown schematically in Figure 5.10. In this case the bottoming cycle is fitted beneath a simple gas turbine cycle and incorporates some added complexity as additional measures to optimize the match between the heat source and absorption temperature lines. The gas turbine parameters selected for this case [1644°K (2500°F) and 16 to 1] also reflect the attempt to optimize the fit with the sulfur dioxide bottoming cycle. (The importance of matching the topping and bottoming cycles is fully discussed for the closed-cycle systems in Sections 7.2 and 7.4.)

Fig. 5. 10-Schematic diagram of open-cycle gas turbine system combined with SO_2 bottoming cycle

5.3 Approach

With the exception of the organic fluid portions of the bottomed cycles, all performance evaluations for the gas turbine cycle parametric studies were made using the Westinghouse proprietary computer program OPTCYC. This program is a performance optimization tool for preliminary design. It is capable of handling simple or combined (gas and steam), and recuperated and intercooled cycles with a nonreheat or reheat steam cycle burning various types of fuels. It uses gas and steam properties based on U. S. National Bureau of Standards, Series III, data and the Keenan and Keyes steam tables. It also accounts for all losses encountered in power plants, such as cooling, pumping, and pressure drop, etc. No allowance has been made for the station-building power requirements.

a

The base case cycle calculation model and assumed specifications are shown in Figure 5.11. For a given airflow, ambient condition, component efficiencies, effectiveness, and losses; together with fuel properties, gas turbine inlet temperature, and compressor pressure ratio; and the steam cycle condition (in the combined plant case), the OPTCYC program computes the thermodynamic conditions (temperature, pressure, enthalpy, and flows) at each state point across the components. Compressor performance is determined by using an efficiency calculation as a function of pressure ratio based on a proprietary, empirical formula derived from various compressors built and tested. When an intercooler is present, the given pressure ratio is reached by assuming equal compression ratios for the high- and low-pressure compressors. The quantity of fuel required to attain a specified gas turbin inlet temperature is computed iteratively. A double iteration is performed for a recuperated cycle.

Requirements for gas turbine cooling were deduced from heat transfer and flow network analyses of various high-temperature machines designed to date. These analyses were based on the use of state-of-theart gas turbine materials, as described in Section 3. The cooling air

Dwg. 1675957

to

Component or Location	Specification							
Ambient Air	Temperature Pressure Relative Humidity	59°F 14.7 psia 60%						
Inlet Duct Pressure Drop	ΔP/P	0.0075						
Compressor Adiabatic Efficiency	Function of Pressure Ratio							
Cold Pipe, Hot Pipe, and Burner Pressure Drop	ΣΔΡ/Ρ	0.055						
Recuperator Pressure Drop	$\Delta P/P$ Air Side $\Delta P/P$ Gas Side	0.012 0.018						
Fuel Dist From Coal	HEV LHV	18,700 Btu/ Ib 17,700 Btu/ Ib						

Fig. 5. 11 – Calculation model and specifications for Base Case recuperated open-cycle gas turbine

5--22

usage curves used in the calculations are shown in Figure 5.12 where, for simplicity, the cooling flow is assumed to be a function of turbine inlet temperature only. For a given inlet temperature, coolant is extracted from the compressor discharge according to the cooling scheme considered. It is returned to the turbine as required for each stage. In the turbine, expansion takes place with mixed gas properties at a given efficiency. Using the thermodynamic data acquired, the program then calculates the gas turbine and compressor power. Total net output of the plant is obtained after the mechanical and generator losses, as well as auxiliary power required, are deducted from the gross power. The auxiliary power, as applicable to the cycle analyzed, includes such items as boilen feed pump, circulating pump, cooling tower fan power, lubrication oil, and fuel pump, etc. Finally, combined plant efficiency is calculated on the basis of the high heating value of the fuel. Net plant specific power is computed per pound of airflow at compressor inlet.

In the cycle computations made with the OPTCYC program, system components are defined by performance parameters that are defined in conformance with accepted convention. For clarity, these definitions and, where applicable, assumed values, are presented below:

- Turbine inlet temperature is the gas temperature immediately upstream of the first-row stationary vane.
- Turbine efficiency is calculated on the basis of polytropic stage efficiency = 0.90.
- Compressor pressure ratio is the ratio of total pressures at the compressor outlet flange to those at the compressor inlet flange.
- Compressor efficiency is an empirical function of pressure ratio derived from tests.

 $\eta_{c} = \frac{\text{isentropic enthalpy rise for given pressure ratio}}{1}$ actual enthalpy rise

Fig. 5. 12—Gas turbine blade cooling flow usage

Curve 680348-B

Recuperator effectiveness:

$$\frac{T}{R} = \frac{\frac{T}{2} Combustor Inlet}{\frac{T}{2} Compressor Discharge}$$

Recuperator pressure drop ratio:

$$\frac{\Delta P}{P} = \frac{\Delta P_{T} \text{ Cold Side}}{P_{T} \text{ Cold Side, In}} + \frac{\Delta P_{T} \text{ Hot Side}}{P_{T} \text{ Hot Side, In}}$$

where, typically, for $\frac{\Delta P}{P}$ = 0.030.

$$\frac{\Delta P_{T} \text{ Cold Side}}{P_{T} \text{ Cold Side, In}} = 0.013$$

$$\frac{\Delta P_{T}}{P_{T}} \text{ Hot Side} = 0.018$$
P Hot Side, In

That is,

$$\frac{\Delta P_{T}}{P_{T}} \bigg|_{Hot} = 1.5 \left(\frac{P_{T}}{P_{T}} \right)_{Cold}$$

 Intercooler approach (T_{Air, Out} - T_{Water, In}) is assumed to be 16.7°K (30°F).

 Intercooler range (T_{Water}, Out - T_{Water}, In) is assumed to be 12.8°K (23°F).

5.4 Results of Parametric Study

This section presents the results of the parametric analysis of power system performance. For convenience in referring to the calculation

Dwg. 256C487

.

5

TABLE 5.2 - RECUPERATED OPEN CYCLE GAS TURBINE INVESTIGATION

						-										Shee	t 1 of 6
Parametric Point	1	2	3	4	5	6	7	8	9	10 .	11	12	13	14	15	16	17
Power Output, MWe										[[
Fuel																	
Distillate	X	X	X	X	X	X	X	X	<u> </u>	X	<u>X</u>	X	X	X	X	<u>X</u>	X
High - Btu Gas					I												<u> </u>
Gas Turbine						·											
Inlet Temp. °F	2200	1800	1800	1800	1800	1800	1800	1800	2000	2000	2000	2000	2000	2000	2200	2200	2200
Pressure Ratio	10	6	- 8	10	12	16	20	24	8	10	12	16	20	24	8	10	12
Cooling ①	0	a	[@		a	a	a	a	a	0	0	0		0	a	0	(d)
Recuperator																	
Effectiveness	0,8	0.0	0,0	0.0	0.0	0.0	0,0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ΔΡ/Ρ	0, 03	0,0	0.0	0,0	0.0	0.0	0.0	0, 0	<u> </u>	<u>0</u> ,0	0.0	0.0	0.0	0.0	0.0	0,0	0.0
Intercooler Effectiveness	0.0	0,0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Reheat	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Bottoming System																	
Fluid									· ·					1			
<u> </u>					ŀ				L	•					<u> </u>	L	<u> </u>
Methylamine			1	[1)							L			
SO ₂														í			
Turbine Inlet Temp. , °F										· —	{						
Bottoming Vapor Generator												· · · · · · · · · · · · · · · · · · ·	•			-	
Pinch Point AT, °F																	
Exit∆í, °F													<u>}</u>		~		
Gas Side, $\Delta P/P$							1										1
Specific Power, kW/lb/s	131.6	95.8	100.5	101.4	100.0	93.7	85.0	75.2	116.8	119.3	119.1	114.5	107.2	98.3	132.4	136.4	137.3

5-26

\$

Note:

Gas Turbine Blade Cooling Configurations

 (a) Turbine Vanes & Blades Air Cooled
 (b) Vanes Ceramic, Blades Air Cooled
 (c) Vanes Ceramic, Blades Ceramic
 (d) Vanes Ceramic, Blades Watercooled

REPRODUCIBLITY OF THE ORIGINAL PAGE IS POOR

results, the parametric variations investigated and summarized earlier in Table 5.1 have been numbered and presented in an expanded form in Table 5.2. Point 1 represents the base case, an air-cooled gas turbine with an inlet temperature of 1478°K (2200°F), a pressure ratio of 10 to 1, a recuperator effectiveness, ε_{p} , of 0.8, and a recuperator pressure drop, AP/P, of 0.03, which burned distillate fuel. Points 2 through 26 have been assigned to the simple-cycle gas turbine parametric evaluations, covering turbine inlet temperatures of 1255 to 1644°K (1800 to 2500°F) and pressure ratios of from 6 to 1 to 24 to 1. Points 27 through 44 cover the same range of gas turbine engine parameters for recuperated cycles with a recuperator effectiveness, ε_p , of 0.80 and a pressure drop ratio, AP/P, of 0.03. Points 45 through 64 provide for recuperator parametric variation covering ε_p of 0.7, 0.8, and 0.9 and $\Delta P/P$ of 0.02, 0.03, and 0.04. Points 65 through 70 examine the intercooled recuperated cycle, using the base cycle, with pressure ratio variation from 8 to 1 to 24 to 1. Points 71 through 92 repeat a portion of the high-temperature recuperated cases, except that turbine cooling air requirements are varied by assuming a substitution of ceramics for air-cooled components. Point 93 was assigned to a turbine reheat case. (This point was later omitted and was not calculated.) Point 94 is the base case variation burning high-Btu gas. Points 95, 96, and 97 cover the R-12, methylamine, and sulfur dioxide bottoming cycle cases, respectively.

In addition to the parametric description of each case point, Table 5.2 lists the corresponding results of specific power calculations. Selected case results and the results of the parametric investigation are discussed below.

5.4.1 Selected Case Results

Figure 5.13 presents a summary of calculated performance data for the base case recuperated open-cycle case. The calculation procedure and assumptions related to operating conditions and component parameters are discussed in Section 5.3. With the exception of long-time commercial demonstration of this turbine inlet temperature, this base case performance
TABLE 5.2- RECUPERATED	OPEN CYCLE GAS TURBINE	INVESTIGATION (CONT'D.)

Sheet 2 of 6

2560488

Two.

															•	1.11	
Parametric Point	18	19	20	21	-22	23	24	25	26	27	28	29	30	31	32	33	34
Power Output, MWe											l	l					
Fuel																	
Distillate	X	X	X	X	<u>X</u>	<u>X</u>	<u> </u>	X	<u> </u>	<u> </u>	X	<u> </u>	<u> </u>	X	X	<u>X</u>	<u> X</u>
High - Btu Gas											<u>}</u>		ŀ				<u> </u>
Gas Turbine													1000		0000	0000	0000
Inlet Temp. , °F	2200	2200	2200	2500	2500	2500	2500	2500	2500	1800	1800	1800	1800	2000	2000	2000	2000
Pressure Ratio	16	20	24	8	10	12	16	_20	24	6	8		12	8.	10	12	10
Cooling (I)	(a)	a	a	(a)	a	<u>_</u>	<u>a</u>	<u> </u>	<u> </u>		<u>a</u>	<u> </u>	<u> </u>		<u>(a)</u>	(a)	<u>(a)</u>
Recuperator									· · · · · ·						·		
Effectiveness	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.8	0.8	0.8	0.8	0, 8	0.8	8.0
ΔΡ/Ρ	0.9	0.0	0.0	0.0	0,0	0.0	0,0	0,0	0.0	0.3	0.3	0.3	0.3	0.3	0,3	0.3	0.3
Intercooler Effectiveness	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	<u> </u>	0.0	<u> </u>	0.0	0.0
Reheat	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	<u> </u>	0.0	0.0	<u> </u>	<u>u, u</u>
Bottoming System					·		. 	······		· · · · ·	—	·	··			<u> </u>	
Fluid			ļ			ļ		ļ	ļ	<u> </u>		 	 				
R - 12				<u> </u>	ļ	l		ļ		· · · - ·	ļ	ļ			·	· · · · ·	<u> </u>
Methylamine	_		ļ		ļ	[ļ				!	· · · · · · · · · · · · · · · · · · ·					
S02			<u>i</u>	L		ļ		ļ			<u>.</u>				· · · · · · · · · · · · · · · · · · ·	·	
Turbine Inlet Temp., °F			l		l		1		l		<u> </u>	<u> </u>	<u>i</u>	<u> </u>	i		<u>.</u>
Bottoming Vapor Generator			• 			,		r			1	 	T				·
Pinch Point ΔT , °F	_		ļ	ļ	ļ		<u> </u>					<u> </u>	ļ				
Exit <u>AT</u> , °F			L	<u> </u>	ļ		ļ			L	. .	ļ <u> </u>		 		·	
Gas Side, AP/P			<u> </u>		<u> </u>	<u></u>						00.1	07 1	110 4	115 0	175 5	111 0
Specific Power, kW/lb/s	13.46	128.3	120.6	154.4	160.6	163.2	162.9	158.4	151,9	91.6	<u>96.8</u>	98.1	1 41.1	<u>112.4</u>	115.2	112.2	111.0

Note:

Gas Turbine Blade Cooling Configurations

 Turbine Vanes & Blades Air Cooled
 Vanes Ceramic, Blades Air Cooled
 Vanes Ceramic, Blades Ceramic
 Vanes Ceramic, Blades Watercooled

Durg 2560489

TABLE 5. 2- RECUPERATED OPEN CYCLE GAS TURBINE INVESTIGATION (CONT'D.)

-	 -		- 10	
1.14			£	
- 11	 •			
	 ~	~	•	

		2										: N					T.,
Parametric Point	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51
Power Output, MWe					1.1			ann e e									1
Fuel					5 - <u>-</u>	11					· ·	••••					
Distillate	<u>X</u>	<u>X</u>	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
High -Btu Gas			1	1.1	1												
Gas Turbine														÷ 1			
Infet Temp, °F	2700	2200	2200	2200	2500	2500	2500	2500	2500	2500	_2200	2200	6,200	2200	2200	2200	2200
Pressure Ratio	8	12	16	20	8	10	12	16	20	24	8	10	12	16	20	8	10
Cooling (1)	<u>i</u> _()	(a)	(a)	a) _	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a)	(a	(a)	(a)	
Recuperator												·····			·		
Effectiveness	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0, 8	0.8	0.7	0.7	0.7	0.7	7.7	0.9	0.9
ΔΡ/Ρ	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Intercooler Effectiveness	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0,0	0.0	0.0	0.9
Reheat	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.C	00	0.0	0,0	0.0
Bottoming System				- 17 17	·		1.15	la tra	1.1			-			·.		
Fl uid	-					1997 - 1995 1997 - 1995 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1	-		1						11 A.	· ·	
R-12															100	1 · ·	
/ Melhylamine											1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				1.11		
S02															11 A.		
Turbine Inlet Temp., °F	· · ·					34 F.	1.1.1			1.1.1		1.1.1			1.		· · ·
Bolterning Vapor Generator			10.1	·.						1			•				
Pinch Point AT, °F							1.				· · · ·					· .	[]
Exit ∆T, °F		í.					1. 1.				12	:					
Gas Side, A P/P											1 .						
Specific Power, kW/lb/s	127.2	133.0	131.2	125.8	148.1	154.7	157.9	158.5	155.0	149.3	127:5	131.9	133.2	131.3	125.8	126.9	131.4

Note:

5-29

Gas Turbine Blade Cooling Configurations

 Turbine Vanes & Blades Air Cooled
 Vanes Ceramic, Blades Air Cooled
 Vanes Ceramic, Blades Ceramic
 Vanes Ceramic, Blades Watercooled

Owg. 256C490

TABLE 5.2 - RECUPERATED OPEN CYCLE GAS TURBINE INVESTIGATION (CONT'D.)

Sheet 4 of 6

Parametric Point	52	53	54	55	56	57	_58_	59	60	61	62	.63	64	65	66	67	68
Power Output, MWe																	
Fuel																	
Distillate	X	X	X	X	_X	_X	X	X	X	X	_X_	_ X_	X_	_ X_	X	_ X_	_ X:
High-Btu Gas																	
Gas Turbine												-					
Inlet Temp, °F	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
Pressure Ratio	12	16	20	8	10	12	16	20	8	10	12	16	20	8	10	12	16
Cooling (1)	a	ิด	ົ	(a)	(a)	(a)	a	a	(a)	a	(a)	(a)	(a)	a	a	(8)	a
Recuperator					,										· ·		
Effectiveness	0.9	0.9	0.9	0.8	0,8	0.8	0.8	0.8	0.8	0.8	0,8	0.8	0,8	0.8	0,8	0.8	0.8
ΔΡ/Ρ	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0,02	0.04	0.04	0.04	0.04	0.04	0.03	0.03	0.03	0.03
Intercooler Effectiveness	0,0	0,0	0.0	0,0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.844	0.862	0.875	0.891
Reheat	0.0	0.0	0.0	0,0	0,0	0,0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Bottoming System	· · · ·																
Fluid									:								
R - 12																·	
Methylamine			· · · ·														
S02																	
Turbine Inlet Temp., °F																	
Bottoming Vapor Generator																	
Pinch Point AT, °F																	
Exit AT. °F									/								
Gas Side, △P/P							· .										
Specific Power, kW/ib/s	132.9	131.1	125.8	128.2	132.6	134.0	132.1	126,6	126, 2	130,7	132.1	130.4	125.0	139.4	148.2	154.2	161.8

Note:

.

Gas Turbine Blade Cooling Configurations (a) Turbine Varies & Blades Air Cooled (b) Vanes Ceramic, Blades Air Cooled (c) Vanes Ceramic, Blades Ceramic (d) Vanes Ceramic, Blades Watercooled (1)

TABLE 5. 2- RECUPERATED OPEN CYCLE GAS TURBINE INVESTIGATION (CONT'D.)

Ding. 2560491

E	ь.	~~	4	£	~1	
	T	ĽĽ	L	2	UI	0

												• · · ·				JIIGGU	010
Parametric Point	69	70	71	72	73	74	75 -	76	77	78	79	80	81	82	83	84	85
Power-Output, MWe				1	1		1	1	1	<u> </u>	1				<u> </u>		<u> </u>
Fuel												· · · · · · · · · · · · · · · · · · ·			• <u> </u>	·	1
Distillate	X	X	X	X	X	X	X	X	X	X	X	X	Ι X	X	X	X	X
. High - Blu Gas								1	1		1	· · ·		<u> </u>	<u> </u>	<u> </u>	<u> </u>
Gas Turbine					-				÷		.	·			:		1
Intet Temp, °F	2200	2200	2200	2200	2200	2200	2200	2500	2500	2500	2500	2500	2500	2200	2200	2200	2200
Pressure Ratio	20	24	8	10	12	16	20	8	10	12	16	20	24	8	10	12	16
Cooling (1)	a	()	(a)	a	(3)	a	(a)	(a)	െ	ര	ി	a	a	ด	6	6	เดิ
Recuperator						· · · · · · · · · · · · · · · · · · ·			1		<u> </u>	1	<u>,</u> ,	1		1	1. 397
Effectiveness	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	8.01	0.8	0.8
ΔΡ/Ρ	0.03	0.03	0.03	0.03	0,03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Intercooler Effectiveness	0,901	0,908	0,0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0
Reheat	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	00	0.0	0.0	0.0
Bottoming System					•		<u> </u>	<u></u>		<u> </u>			0.5	1		1.0.0	<u></u>
Fluid			[I	1		l		1	<u> </u>		1	·····
R - 12							1						1			1	
Methylamine							1	<u> </u>					·	<u> </u>			
S02							· · ·				····			· · ·			
Turbine Inlet Temp., °F]									<u> </u>
Boltoming Vapor Generator		·		• • • • •	f		ł	1						ſ <u>. </u>	·	<u> </u>	
Pinch Point &T, °F	1						[[<u> </u>	· · · ·	· · · · ·	1	
Exit AT, °F	· ·			· · · · · ·		·	[·								
Gas Side, △P/P						·											
Specific Power, kW/1b/s	165.7	167.9	138.9	144.1	146.2	145.6	141.1	156.4	163.6	167.2	168.8	165.9	160.8	147.3	153.1	155.7	156.0

Note:

Gas Turbine Blade Cooling Configurations

 (a) Turbine Vanes & Blades Air Cooled
 (b) Vanes Ceramic, Blades Air Cooled
 (c) Vanes Ceramic, Blades Ceramic
 (d) Vanes Ceramic, Blades Watercooled

Dvrg. 256C492

Supercritical

TABLE 5.2- RECUPERATED OPEN CYCLE GAS TURBINE INVESTIGATION

Sheet 6 of 6

													·	· · · · ·		<u> </u>	l
Parametric Point	86	87	88	89	90	<u>91</u>	92	93	94	_ 95	96	.97					
Power Output, MWe														[L		ا سر ا
Fuel												~~~~		·	r	r	<u> </u>
Distillate	X	X	X	X	X	<u> </u>	X	<u> </u>		<u> </u>	<u> </u>	<u> </u>					
High-Stu Gas									X					L		I	L
Gas Turbine						0500	0700	0000	2:100	2000	2000	2500			· · · ·	(·····	1
Inlet Temp. °F	2250	2500	2500	2500	2500	2500	2500	2200	2200	2000	2000	16					
Pressure Ratio	20	8	10	12	16	20	24		10	0	<u> </u>	10	i			 	<u> </u>
Caoling (D)	į						ļ			L		L		I	·	ii	L
Recuperator		<u> </u>							0.0	0.0	00	00	<u> </u>	r	TT	T	1
Effectiveness	0.8	0, 8	0.8	0.8	80	0.8	0,8	0.8	0.0	0.07	0.0	0.0				┨━━━━━	
ΔΡ/Ρ	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.05	0.0					
Intercooler Effectiveness	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			↓				
Reheat	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2200	0,0	00	0.0	0.0		L	<u> </u>	<u> </u>	<u> </u>
Bottoming System									-	r ·	·····	T	1	T	T		T
Fluid				ļ	l	<u> </u>		ļ	 .	<u> </u>	ļ		 	<u> </u>			-{·
R-12					L			ļ	ļ	<u> </u>		ļ	↓	<u> </u>			
Methylamine			ļ	ļ	·		ļ]	ļ	}	<u>^</u>						
50 ₂				ļ	ļ	l	ļ		 	400	600						
furbine Inlet Temp., °F			<u> </u>	<u> </u>	l	L	<u> </u>	L	↓	400	000	11000	l	L		1	
Bottoming Vapor Generator						,			r	<u> </u>		1	T	T	1		1
Pinch Point AT, °F		L	I		ļ					100		[<u></u>		 			
Exit AT. °F				l	ļ	ļ	<u> </u>	_	1	100		 	<u> </u>	<u> </u>			
Gas Side, $\Delta P/P$			L	Ļ	<u> </u>	L		ļ		0.05	ļ	<u> </u>		_	<u> </u>		
Specific Power, kW/1b/s	152.1	178.8	187.6	192.6	1%.6	195.5	191.7	ļ	135.7	<u> </u>	<u> </u>	<u></u>		 	4	- 	

Note:

5-32

<u>___</u>

BOOÀ ET I UHL AO AA

Gas Turbine Blade Cooling Configurations (a) Turbine Vanes & Blades Air Cooled (b) Vanes Ceramic, Blades Air Cooled (c) Vanes Ceramic, Blades Ceramic (d) Vanes Ceramic, Blades Watercooled 1

Dwg. 1679348

5

BASELINE CASE CYCLE DATA SUMMARY (Point 1)

Station	Pressure, psia	Temperature, °F	Flow, Ib/s
' 1	14, 7	59	750
2	147. 0	600	642
ž		991	642
4	144, 0	2200	654
5.	15.0	1102	763
6	14, 7	773	763
7		600	108

Fuel: distillate from coal (18, 700 Btu/lb HHV); Flow = 13 25 lb/s Cycle Efficiency: 37.8% Specific Power: 131.6 kW/(lb/s)

Fig. 5. 13-Base Case recuperated open-cycle results

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Dwg, 1679851

CYCLE DATA SUMMARY (Point 69)

<u>Station</u>	<u>Pressure, psia</u>	<u>Temperature</u> , °F	<u>Flow, Ib/s</u>
1	14, 7	59	750
2	147. 0	367	750
3		96	750
4	294.0	425	642
5		777	642
6	283.0	2200	657
7	15.0	865	765
8	14. 7	581	765
9		425	108
10		66	
11		89	

Fuel: distillate from coal (18,700 Btu/lb HHV); Flow = 15.4 lb/s Cycle Efficiency = 41.0% Specific Power = 165.7 kW/(lb/s)

Fig. 5. 14--Sample recuperated intercooled open-cycle results

4

is typical of state-of-the-art systems currently available on the commercial market.

Figure 5.14 provides sample results of the recuperated/ intercooled open-cycle cases. The results are shown for Point 69 with a turbine inlet temperature of 1478°K (2200°F) and a combined LP and HP compressor pressure ratio of 20 to 1, which, as shown later, represents the most economical case of this type investigated. It should be noted that the same amount of turbine cooling airflow was used for this case as for the base case. This is because of the simplifying assumption that the cooling air requirement is a function of turbine inlet temperature only. In reality, however, the lower temperature cooling air available in an intercooled system (at a given pressure ratio) would result in a lower cooling flow requirement. This would be reflected in even greater cycle performance improvements with intercooling than those shown here.

Figure 5.15 shows the cycle data for the bottoming cycles cases with the R-12 and methylamine working fluids (Points 95 and 96, respectively). The gas turbine topping cycle parameters selected for these cases were those of Point 31, that is, 1366° K (2000°F) and 8 to 1. The cycle efficiency for that case was 36.7%, so that the effect of adding the bottoming cycles is a 16.6 and 20.7% improvement in efficiency with the R-12 and methylamine cycles, respectively. The bottoming cycle turbine inlet parameters used for both cases were set at 589° K (600° F) and 17.23 MPa (2500 psi) abs.

The results for the sulfur dioxide bottoming cycle, Point 97, are summarized on Figure 5.16. For this case the gas turbine cycle parameters selected are 1644° K (2500°F) and 16 to 1. Note that the results for this case are for compressor airflow rates of 442 kg/s (975 lb/s) compared to 340 kg/s (750 lb/s) for all other cases. Also, the sulfur dioxide bottoming cycle was fitted beneath a simple gas turbine topping cycle, rather than a recuperated cycle as in the cases of R-12 and methylamine. Point 24 represents the corresponding simple-cycle case for which a cycle efficiency of 33.5% was calculated. This indicates that the

CYCLE DATA SUMMARY (Point 95 and 96)

Station	P, psia	<u>ĭ, °</u> F	h, Btu/Ib	<u>G, Ib/s</u>
Gas Turbine				
1	14, 7	59		750, 0
. 2	117.0	529		659, 0
. 3		959		659. 0
4	109, 0	2000		670. 5
5	15.8	1067		761, 5
6	15, 5	708	191. 3°	761.5
7	14. 7	290	85, 4	761, 5
8		529		91.0
<u>R-12</u>				
. 101	135. 0	102	31.5	695.2
102	2941.0	111	40.3	
103	2500. 0	600	156, 3	
104	135. 0	312 .	124. 1	
Methylamine				
101	83, 4	104	109. 3	163.4
102	2694.0	111	125, 5	
103	2500. 0	600	619.1	
104	83.4	227	484.0	

Fuel: distillate from coal (18,700 Btu/lb); Flow = 11.5 lb/s Cycle Efficiency = 42.8% (R-12); 44.3% (Methylamine) Specific Power = 129.5 kW/(lb/s) (R-12); = 134.0 kW/(lb/s) (Methylamine)

Fig. 5. 15-Organic fluid bottoming cycle results

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Gas Turbine Generator

CYCLE DATA SUMMARY (Point 97)

Station	<u>P, psia</u>	<u>T, °F</u>	h, Btu/Ib	<u>G, lb/ s</u>
1	14, 7	59, 0		975, 0
2	233, 0	769. 0		801.4
3	220, 0	2500.0		825.8
4	15, 0	1090, 0	295. 3	999.4
5		693.0	188, 7	999.4
6		408.0	115.4	999, 4
7		306, 0	89. 8	999, 4
8	14. 7	769, 0		173.6
101	86, 0	101. 3	65, 7	824, 0
102	449.0	110, 0	66, 8	824. 0
103	436, 0	158, 0	9L 7	824. 0
104	436, 0	220, 0	110, 8	950, 5
105	2768.0	250, 0	119. 1	950, 5
106	2713.0	368. 0	167, 5	349.7
107	2632, 0	550, 0	250, 6	70, 4
108	2500.0	1000, 0	362.8	950, 5
109	450, 0	662.0	308. 3	126, 5
119	89, 5	408, 0	266. 7	824, 0
111	87.8	290, 0	246. 2	824, 0
112	86.0	145. 0	221. 3	824. 0
113	436. 0	290.0	235.2	126. 5

Fuel: distillate from coal (18, 700 Btu/lb); Flow = 24, 4 lb/s Cycle Efficiency = 48, 2% Specific Power = 238, 7 kW/(lb/s)

2

Fig. 5 16-SO₂ bottoming cycle results

Fig. 5. 17-Gas turbine cycle efficiency vs specific power

effect of the sulfur dioxide bottoming cycle was to increase efficiency by 43.9% over the simple-cycle case. Compared to the corresponding recuperated cycle (Point 42), the sulfur dioxide bottoming cycle represents an efficiency improvement of 28.1%.

'5.4.2 Results of Parametric Variation

The results of the basic gas turbine cycle parametric investigation are presented on Figure 5.17. Curves of cycle efficiency and/or heat rate as functions of specific power (gas turbine generator net output divided by compressor inlet airflow) are drawn at constant turbine inlet temperature and constant compressor pressure ratio for both recuperated (at $\varepsilon_R = 0.8$ and $\Delta P/P = 0.03$) and simple ($\varepsilon_R = 0.0$ and $\Delta P/P = 0$) cases. These show the general trends of improved cycle efficiency with increased turbine inlet temperature.

At constant temperature, the nature of the pressure ratio effect upon efficiency is seen to be reversed for the two cases. For the recuperated cycle, efficiency peaks at a relatively low pressure ratio and falls off steeply as the pressure ratio is increased. This is actually the result of decreasing gains through recuperation as the compressor discharge temperature increases, with increased pressure ratio, to approach the turbine exhaust temperature. At higher pressure ratios, the turbine exhaust would actually be colder than the compressor discharge and negative recuperation would occur, resulting in an efficiency loss. This can be seen where the efficiency curves for the recuperative cycles fall below those for the corresponding simple-cycle cases.

In general, Figure 5.17 shows that a substantial gain in efficiency can be realized by recuperation. For example, the base case at 1478°K (2200°F) and 10 to 1 has a cycle efficiency of 37.8% which represents a 25.2% improvement over the corresponding simple-cycle efficiency of 30.2%. Comparing the peak efficiencies shown for a 1644°K (2500°F) turbine inlet temperature, a recuperative cycle with a 10 to 1 pressure ratio would have an efficiency 13.3% greater that a simple cycle with a 24 to 1 compressor.

Also of significance is the observation that efficiency gains through turbine inlet temperature increases at a given pressure ratio are greater for the recuperated cycles. For example, at a pressure ratio of 12 to 1, an increase in turbine inlet temperature from 1366 to 1644°K (2000 to 2500°F) results in a 9.4% gain in efficiency with recuperation, but the corresponding simple-cycle parametric variation results in only a 2.2% gain.

The results of varying recuperator design parameters are shown on Figures 5.18 and 5.19. The former shows the recuperator effectiveness on cycle efficiency, and the latter shows the effect of recuperator pressure drop (gas side + air side) at constant effectiveness. The significant impact of effectiveness at a lower cycle pressure ratio is evident. This is expected since, as discussed earlier, the benefit of recuperation is greatest with large temperature differences between turbine exhaust and compressor discharge. At 20 to 1, there is essentially no improvement in performance with an increase in recuperator effectiveness from 0.70 to 0.90.

Only a negligible effect on performance was observed over the whole range of pressure drop variation investigated.

The results of investigating the effect of substituting uncooled ceramics for air-cooled components in a recuperative cycle are presented on Figure 5.20. Efficiency as a function of specific power curves is shown for the air-cooled ceramic vanes and ceramic vanes/blades cases evaluated at 1478 and 1644°K (2200 and 2500°F) with parametric variation of compressor pressure ratio. The cooling air usage variation assumed for this investigation was discussed earlier and was shown in Figure 5.12. The results show that a gain of about five points in efficiency (or a 12.7% improvement) and an increase of nearly 21.3% in power output can be realized with the indicated reduction in the required amount of cooling air at the 1644°K (2500°F) turbine inlet temperature. Further, it is shown that a ceramic turbine at 1478°K (2200°F) inlet temperature provides a significant performance advantage over an air-cooled system operating

Curve 679872-8

Fig. 5, 20—Cycle efficiency vs specific power for gas turbine recuperative cycle blading variations

at 1644°K (2500°F). Although this turbine cooling variation was examined for only the recuperative-cycle, similar results would be expected for the simple-cycle case.

Figure 5.21 displays the results of the investigation of the effect of intercooling upon recuperative cycle performance. The curves show efficiency versus specific power for the 1478°K (2200°F) turbine inlet temperature selected for the study. Significant effects were observed. The optimum cycle pressure ratio shifts upward from about 10 to 1 to 16 to 1. This results from the lowering of the compressor discharge temperature and the effect that this has upon the benefits of recuperation. Also, a gain of about 3.6 points (or nearly a 9.6% improvement) in peak efficiency and of 23.9% in power output (at peak efficiency) were calculated.

Figure 5.22 displays the results of the computations of the bottomed cycles in relation to other selected open-cycle parametric . pcints. It can be seen that the bottomed cycles resulted in the highest efficiencies, even though the R-12 and methylamine cases utilized a relatively low-temperature [1366°K (2000°F)] gas turbine. (The unbot-tomed cycle point is also shown for comparison.) The sulfur dioxide bottoming cycle represented the highest efficiency (48.2%) and specific power [nearly 529 1 kW/(kg/s) (246 kW/(1b/s)] of all cases studied in this category. The various other cycle points with the same gas turbine parameters are plotted for comparison, as is the base case point and an intercooled recuperated-cycle point. The result of the case calculated with high-Btu gas fuel is also shown.

5.5 Capital and Installation Costs of Plant Components

The approach for developing plant capital costs has been first to develop, as completely as possible in the available time, a description of the base case plant. Pricing data are developed for this plant and subsequently expanded for the remaining parametric points.

Fig.5. 22 — Organic bottomed cycles cycle efficiency versus specific power (Iso Ambient Distillate Fuel from Coal Unless Noted)

> REPROSTOCIONATY OF THE ORIGINAL LINE IS POOR

REPRODUCIENTLY OF THE ORIGINAL FACE IS POOR

5.5.1 Description of the Base Case Power Plant

The power plant arrangement for the base case is shown in Figure 5.23, and the overall ECAS study plot plan arrangement is illustrated by Figure 5.24. The power plant consists of four nominal 100 MW recuperated gas turbines for an overall plant rating of approximately 400 MW. The fuel selected for use is a distillate derived from coal. No major heat rejection equipment, such as cooling towers, is required.

5.5.1.1 Starting Package

The starting package is a self-contained module which provides break-away torque for initial rotation and acceleration to self-sustaining speed. This electrically operated device also contains provision for slow roll of the combined turbine and generator shafting during cool-down periods.

5.5.1.2 Generator and Exciter

The generator and exciter are directly coupled to the gas turbine shaft at the compressor end. The generator is hydrogen-cooled and uses shaft-mounted axial blowers for hydrogen circulation within the generator.

5.5.1.3 Gas Turbine

The conceptual design selected for the base case gas turbine is shown in Figure 5.25. The 60 rps (3600 rpm), single-shaft design incorporates an axial-flow compressor passing 340 kg/s (750 lb/s) at a pressure ratio of 10 to 1. The multiple-can burner system raises the products of combustion temperature to 1478°K (2200°F) at the turbine inlet. The three-stage turbine utilizes air cooling of vanes and blades, incorporating impingement/convection/film-cooling techniques. The unit utilizes two fluid film journal bearings, horizontal joint construction, and compressor end drive; and features fully assembled rail shipment capability.

5.5.1.4 Recuperator System

The heart of the recuperator system is an advanced type tensionbraze plate-fin heat exchanger. A conceptual picture of one module of

N -----

Fig. 5.24—Recuperated open-cycle gas turbine plant base case

Dwg.1674848

Dvig. 1679873

REPRODUCTION OF THE ORIGINAL CONTROL OF THE

such a heat exchanger is shown in Figure 5.26. The unit uses thin gauge, 400 series SS, in a lightweight design optimized for cyclic duty operation at turbine exhaust temperatures of about 866°K (1100°F). The coldair piping is constructed of carbon steel, and the hot-air return piping is 1-1/4 Cr alloy steel. Series 300 SS bellows-type expansion joints are used for this design.

5.5.1.5 Gas Turbine Auxiliary Skids

The self-contained mechanical skid assembly includes lubricating oil pumps, filters and reservoir, air-system pressure switch and gauge cabinet, and seal oil system. Included in the electrical and control skid are the battery equipment, motor control center, voltage regulator, generator relay panel, and certain control equipment. The fuel skid includes fuel pumps, filters, and related equipment.

5.5.1.6 Switchgear

The switchgear equipment includes the isolated phase bus, oilcircuit breakers, the disconnect switch, and the main and auxiliary transformers.

5.5.1.7 Balance of Plant

Due to the compact nature of the power plant, a site located outside of a city near an industrial area—not the Middletown site—has been selected. Railroad service consisting of two parallel spurs, each with a 20 tank-car capacity, has been provided for fuel delivery. Two oil-storage tanks of API standard construction are sized for 2.592 Ms (30 day) operation at a capacity factor of 45%. The tanks are positioned on a compacted sand foundation and are surrounded by a retaining dike system.

Foundations for the power plant are reinforced concrete not requiring pile supports.

The station building— 557 m^2 (6000 ft²) floor area—includes all mecessary offices, plant maintenance, control room, and toilet and locker facitilies. It is designed for steel frame and concrete block or

5~51

Component	Basic Dimensions, m (ft)		Mass (Weight), kg (1b)	
Gas Turbine	Length	Diameter		
Turbine section	3.0	4.0		75,300*
	(10.0)	(13.3)	ł	(166,000)*
Compressor section	7.1	3.2		88,000*
	(23.3)	(10.4)		(194,000)*
Recuperator, Module	Length	Width	Height	
(Three required)	8.3	3.0	3.6	34,000
	(27.0)	(9.8)	(11.8)	(75,000)

Table 5.3 - Approximate Size and Mass of Base Case Recuperated-Cycle Major Components

* Includes recuperator piping mass (weight).

insulated metal siding. Steel frame metal siding enclosures are provided for fuel oil tank farm fire protection equipment.

The fuel unloading station is designed for rail or truck delivery and includes three 94.63 1/s (1500 gpm) pumps. Three 50% capacity fuel transfer pumps supply the gas turbine units through a common header. Complete fire protection is provided, including a liquid foam system for the fuel oil tank farm and unloading station and a deluge system at the main transformers.

The control room, located in the station building, includes the computer control package for the gas turbine units.

One three-phase, 500 kV transformer is supplied for each gas turbine unit.

5.5.2 Approximate Sizes and Weights of Major Components

Major components of the recuperated open-cycle gas turbine system, simplest of the ECAS energy conversion concepts, include the gas turbine engine and the recuperator. The relative sizes of these components are illustrated by the power plant arrangement plan view of Figure 5.23. A more detailed listing of the size and mass of these major components of the base case is given in Table 5.3.

It is important to note the arbitrary nature of the classification of the sections of the gas turbine unit. The compressor, turbine, and combustion sections (for most open-cycle turbines) are integral parts of each turbomachine unit, and, therefore, the combustion section has been grouped arbitrarily with the compressor section. The gas turbine would be rail shippable as a single unit, as would the individual recuperator modules.

5.5.3 Gas Turbine and Auxiliaries Price Determination Procedure

For the determination of parametric variations in gas turbine price a macro (as opposed to a micro) viewpoint has been selected. That is, gas turbine components have been segregated into groups of major

REPRODUCIBILITY OF THE

functional areas for examination with respect to price analysis. For example, compressor section stationary vane blading, combustion system, and turbine section rotating elements have been classified as wholes for representation by a single price as opposed to identifying single items such as individual turbine disk forgings or individual turbine or compressor section blades.

The model for partitioning of the whole gas turbine into the major functional groups is illustrated by Figure 5.27. A group of production and conceptual design engines were analyzed with respect to selling price and with prices segregated according to the functional group breakdown of the model. These engines all reflect current heavyduty design practice and span a range in power output from approximately 25 to 130 MW. The segregated data were correlated with respect to selected independent parametric variables and were found to be representative over a wide range of parametric values. Additional price correlations were developed for the gas turbine auxiliaries and ancillary equipment necessary for a complete gas turbine plant. The data in normalized form are displayed by Figures 5.28 through 5.43, and incorporate the nomenclature given in Table 5.4.

Table 5.4 - Nomenclature

_			
	Guc	1	Comprêssor inlet airflow
	^р с	8	Compressor pressure ratio
	N		Shaft rotational speed
•	ΔH Combustor	2	Enthalpy rise from compressor discharge to turbine inlet
	∆H Turbine	=	Enthalpy drop from turbine inlet to tur- bine exit
	T _{1T}	=	Turbine inlet temperature (temperature at inlet to first stationary vane row)
	^T 2c	Ħ	Compressor discharge temperature.

Fig. 5. 28- Inlet manifold price

5--56

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Curve 682273-A

Fig. 5. 31- Compressor stationary vane assemblies price

5--59

Curve 682271-A

Fig. 5. 33- Combustor assembly price

÷

Fig.5. 35- Turbine stationary vane assemblies price

Fig.5. 36 - Turbine rotating element price

Fig.5. 37- Turbine diffuser price

Fig. 5.38- Turbine exhaust manifold price

Fig.5. 39-Turbine support system price

Fig.5. 40- Price for assembly of complete rotating element

REPRODUCIELLITY OF THE ORIGINAL PAGE IS POOR

5--68

· Curve 682285-A

Fig. 5. 41- Price for assembly of complete gas turbine

Fig. 5. 42- Generator/Exciter prices

Certain aspects of the price correlation curves are worthy of further description.

5

Dual curves, for different compressor pressure ratio ranges, are shown for pricing cert; in gas turbine elements. This representation was arbitrarily selected as an optimum means of reporting prices determined from manufacturing experience and conceptual design studies of these selected components. The price variations reflect fundamental changes in the design philosophy incorporated as pressure ratio is increased.

At higher pressure ratios, greater sensitivity to compressor surge or stall during start-up and higher operating temperatures at compressor discharge are encountered. Typical design approaches involve the use of higher-temperature alloys in the final compressor sections. In certain cases the use of variable stationary vanes or the use of a series compressor section arrangement is incorporated for higher pressure ratios. Such design changes can be identified as occurring in the range of pressure ratios 12 and 16 to 1; arbitrarily, the cutoff point for price representation was assumed to occur at a compressor pressure ratio of 12 to 1.

For the case of the compressor stationary vane assembly price, Figure 5.31, the higher price curve reflects changes in materials for high-temperature sections such as higher alloy vanes, shroud material, and changes in design such as the use of variable stationary vanes.

In the case of the compressor rotating elements price, as reported in Figure 5.32, the increased price reflects the higher-temperature alloys materials price and the generally increased complexity in design and manufacturing processes. Similar price effects are shown on the assembly cost of the rotating element, Figure 5.40, reflecting the increased complexity of assembling higher-pressure design rotating elements.

Figure 5.42 shows the form of price correlation used for gas turbine generators. The majority of parametric point calculations were

Fig.5. 43- Plant accessories

made using the hydrogen-cooled 60 rps (3600 rpm) correlation. For certain calculations regarding the effect of gas turbine unit output on overall plant cost, the air-cooled 60 rps (3600 rpm) generator price relation was used. This type of unit is most often available commercially in the 25-to-75 MW size. Although shown at a slightly lower price, the units have a somewhat lower efficiency relative to hydrogen-cooled generators as a result of higher windage losses and other effects. A price correlation for 30 rps (1800 rpm) generator is also shown in Figure 5.42.

. Figure 5.43 shows the pricing correlations used for the associated gas turbine plant auxiliaries.

Two investigations regarding the accuracy of the gas turbine price correlations were made. First, the degree of accuracy with which the price relations reproduced the original gas turbine price data was determined. The relations were found to be accurate to within 5% over the whole range of variables.

A second check was made to assess the validity of using the price relations for extrapolation beyond the range of data used in their generation. The relations were used to estimate the price of the conceptual design engine shown in Figure 5.44. This design, consisting of multiple compressor sections and separate power turbine, and projected to operate at a firing temperature of 1644°K (2500°F) and a compressor pressure ratio of 25 to 1, was independently priced by value engineering personnel. The price values from the correlations and independent estimation agreed to within approximately 10%.

Parametric price variation determination was implemented by curve fitting and computer calculation of the many individual parametric point values.

5.5.4 Gas Turbine Recuperator System Pricing

The recuperator system used in this study is based on an advanced plate-fin tenzion-braze design of the Airesearch Manufacturing Division of the Garrett Corporation (Reference 5.9). The approach used

5--73

Dwg. 6366A97

Fig. 5. 44-Large Multiple Shaft Gas Turbine Engine

in expressing parametric price variation is summarized in Figure 5.45. This plot expresses the variation of weight and price as a function of pressure drop and effectiveness relative to the base recuperator for which an accurate price estimate has been made. For parametric point variations where turbine exhaust temperature is different from the base case value, the recuperator price is further modified relative to this value according to the relationship of Figure 5.46.

The recuperator piping system consists of carbon steel piping for the cold lines, 1-1/4 Cr alloy steel piping for the hot return lines, and an extensive system of bellows-type expansion joints.

5.5.5 Tabulation of Overall Plant Material and Installation Costs

The prices of major components were determined by the procedures previously described. Additional price estimates for balance of plant equipment was provided by Chas. T. Main, Inc. of Boston. The pricing of heat rejection equipment, including steam turbine condensers and cooling towers, was handled by means of parametric relations incorporated in the actual cost of the electricity calculation computer program (Section 2). The input used for these and other aspects of the calculation is summarized for the base case (Point 1) in Table 5.5. (Inclusion of this table is made for the sake of completeness only, as none of the recuperated open-cycle parametric points utilized steam bottoming cycles. Note also that the auxiliary power requirements of the recuperated-cycle tabulation have been set to zero, as the originally calculated plant powers and efficiencies had been calculated with auxiliary power allowances.)

The direct costs for materials (equipment) as well as estimates for installation costs were then tabulated according to account code listing (itemized by categories, e.g., 1.0 Site Development through 21.0 Stack-Gas Cleaning) for each parametric point.

Table 5.6 illustrates the detailed account listing for Point 1, the recuperated-cycle base case. The account listing gives first the

REPRODUCIPILITY OF THE ORIGINAL FAGE IS POOR

Fig. 5. 46 — Recuperator price variation with turbine exhaust temperature

Table 5	. 5	OPEN CYC	E GAS	TURBINE			
A COOUNT TOTALS	TND AUX PO	OWER+MWS PERC P	LANT PO	ON OPERATION COST	MAINTENANCE CO -000	5T 00	
NDHIN/ NOM HE OFF DE	AL POWER. HWE TAT RATE, BTU/P SIGN HEAT RATE	OPEN CYCLE GAS T 394-8 KW-HR 9033-2 E 0	URBINE 300 186 000	BASE CASE INPUT NET POWER, HWE NET HEAT RATE, BTU	- XW-HR 90	94.8800 33.2185	
DESIGN NUHBEN U. BIL HEAT	PRESSURE, IN OF TUBES/SHC1 HB-FI2-F	HGA •0 LL •0 •0	000 000 000	NUHBER OF SHELLS TUBE LENGTH. FT TERMINAL TEMP DIFF	• F	•0000 •0000 •0000	
DESISN RANGE OFF DE	I TEHP+ F F SIGN PRES: IN	HEA		APPROACH: F OFF DESIGN SEMF: F LP TURBINE BLADE L	EN, IN	•0000 •0000 •0000	
1 6161616161 2336161 46	98.720 .0000 .000 .0000 .000 .000 .000 .000 .000 .000 .000 .0	2 • 37 7 • 000 12 • 000 17 • 40.000 22 • 4950 • 000 27 • 6000 • 000 32 • 6000 • 000 32 • 000 42 • 000 47 • 000	8 3 8 13 18 28 28 38 38 38 38 38 38 38 38 38 38 38 38 38	.000 4 .000 9 1.000 14 4.000 19 .000 24 .000 34 1.000 34 1.000 4/ 3.000 4/	- 000 - 000	5 105 205 350 350 450 50	2.500 .000 .000 .000 .000 .000 .000 .000
5 11 16 21 26	4.000 4.000 2061200-000 1881100-000	32 4.000 7 4.000 12 2165900.000 17 090 22 385000.000 27 .150	0 3 13 18 23 28	4.00', 4 1026700.000 9 940700.000 14 231600.000 24 .000 29	4.000 -050 1160100-000 -108 -000 4.000	5 15 20 25 30	4_008 307300-000 *140 274700-000 4.000 *000

.

5-78

•

REPRODUCIBILITY OF THE ORIGINAL FAGE IS POOR

OPEN CYCLE GAS TURBINE ACCOUNT LISTING Parametric point no. 1 Table 5.6 ACCCUNT NO. & NAME+ UNIT AMOUNT HAT \$/UNIT INS \$/UNIT HAT COST+\$ INS COST+\$ SITE DEVELOPMENT

 1. 1 LAND COST
 ACRE
 40.0
 10000.00
 00
 00

 1. 2 CLEARING LAND
 ACRE
 13.3
 00
 600.00

 1. 3 GRADING LAND
 ACRE
 40.0
 15000.00
 3000.00

 1. 4 ACCESS RAILROAD
 MILE
 00
 15000.00
 10000.00

 1. 5 LOOP RAILROAD
 MILE
 0
 120000.00
 70000.00

 1. 5 SIDING R R TRACK
 MILE
 10
 125000.00
 80000.00

 1. 6 SIDING R R TRACK
 MILE
 1.0
 125000.00
 80000.00

 1. 7 OTHER SITE COSTS
 ACRE
 0
 125000.00
 80000.00

 PERCENT TOTAL DIRECT COST IN ACCOUNT
 1 = 1.675
 ACCCUNT TOTAL, \$

409080.00 .00 .00 +00 7999-20 120000-00 .õõ 00. 00 125000 00 95557 31 620557 30 80000.00 95557-31 303556-51 EXCAVATION & FILINE 2. 1 COMMON EXCAVATION YD3 14850.0 .00 3.00 2. 2 PILING FT 3500.0 6.50 8.50 PERCENT TOTAL DIRECT COST IN ACCOUNT 2 = 1.158 ACCOUNT TOTAL:5 44550.00 336600.00 381150.00 3.00 257400.00 257400.00 PLANT ISLAND CONCRETE 3. 1 PLANT IS. CONCRETE YD3 4950.0 76.00 80.00 3. 2 SPECIAL STRUCTURES YD3 .0 .00 PERCENT TOTAL DIRECT COST IN ACCOUNT 3 = 1.346 ACCOUNT TOTAL. 80.00 346500.00 396000.00 346500.00 396000.00 HEAT REJECTION SYSTEM 4. 1 COOLING TOHERS SACH 4. 2 CIRCULATING H20 SYS EACH 4. 3 SURFACE CONDENSER FT2 PERCENT TOTAL DIRECT COST IN ACCOUNT .00 .00 .00 .00 ACCOUNT TOTAL 0 0 0 -00 -00 -00 .00 .00 .00 :00 .00 `= STRUCTURAL FEATURES 5. 1 STAT. STRUCTURAL ST. TON 500.0 5. 2 SILOS & BUNKERS TPH 50 5. 3 CHINNEY FT 50 5. 4 STRUCTURAL FEATURES EACH 100 PERCENT TOTAL DIRECT COST IN ACCOUNT 5 1800.00 175.00 390000-00 105000.00 .897 ACCOUNT TOTAL :00 390000-00 00 105000.00 \$ BUILDINGS 6. 1 STATION BUILCINGS FT3 .0 6. 2 ADMINSTRATION FT2 6000.0 6. 3 HAREHOUSE & SHOP FT2 .0 PERCENT TUTAL DIRECT COST IN ACCOUNT 6 = .16 .1 16.00 14.0 12.00 8.0 .326 ACCOUNT TOTAL+\$.00 .00 .16 84000.00 00 84000.00 96000.00 14 00 8 00 FUEL HANDLIING & STORAGE 7. 1 COAL HANDLING SYS 7. 2 DOLOMITE HAND. SYS 7. 3 FUEL OIL HAND. SYS PERCENT TOTAL DIRECT COM \5 TPH 0 00 00 5 TPH 0 00 00 5 GAL 895000000 00 5 GAL 895000000 00 COST IN ACCOUNT 7 = 2.578 ACCOUNT TOTAL\$\$.00 .00 .00 809080.00 809080.00 -00 613051.83 613051.87 809080.00 FUEL FROCESSING PERCENT TOTAL DIRECT COST IN ACCOUNT 8 = .DGD ACCOUNT TOTAL. .00 -00 -00 .00

Table 5.6				P	OPEN CYC Arametri	CLE G <i>i</i> IC Poi	AS TUR	EINE A	CCO	UNT LIST	ING	
ACCOUNT	N0- 8	NAME.	UN	IT	AHOL	JNT 1	1AT 5/1	JNIT I	NS	S/UNIT	MAT COST+\$	INS COST#\$
FIRING SYS	STEM Total	DIRECT	COST	IN	ACCOUNT	۽ ₀ 5	.000	ACCOUN	1T T	•00 •01AL+\$	- DC - CO	•00 •00
VAPOR GENI	ERATOF Total	IFIRE DIRECT	C) COST	IN	ACCOUNT	10 ⁰ =	.000	ACCOUN	7 T	OTAL:5	- 00 - 00	•00 •00
ENERGY COU 11. 1 GAS 11. 2 GAS 11. 3 GAS 11. 4 GAS 11. 5 GAS 11. 5 GAS 11. 7 GAS PERCENT	NVERTE TURB TURB TURB TURB TUR3 MUFFI TURB TOTAL	ER COMP S COMB S TURB S ENG AU GENERAC ERG MI ENG MI DIRECT	ECT ECT ECT IX TOR COLER: SC COST	EEEEEEN EEEEN IN	ACCOUNT	4.00 4.00 4.00 4.00 4.00 4.00 4.00 11	10267 3073 21681 20612 9407 2747 62 • 802	00+00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1335.00 15365.00 28345.00 2534.00 35500.00 34070.00 96145.00 10TAL.\$	4106800.00 1229200.00 8667500.00 4672400.00 3762800.00 1038800.00 31782400.00	205340.00 61460.00 433380.00 654136.00 742031.99 376280.00 384580.00 2857207.04
COUPLING	HEAT I Total	EXCHANG DIRECT	ER f cost	IN	ACCOUNT	12 =	.000	-00 ACCOUI	NT 7	.00 Total#s	• 00 • 00	•00 •60
HEAT RECO 13. 1 REC Percent	UPERA Total	HEAT EX Tor & F Direct	CH. PIPING COST	E/ IN	ACCOUNT	4.0 13 =	13811 15.688	00.00 ACCOU	NT ²¹	62165.00 Total;\$	7524400.00 7524400.00	1123660.00 1128660.00
WATER TRE 14.1 PERCENT	ATHEN TOTAL	T DIRECT	F COST	IN	ACCOUNT	14 ^C =	.000	ACCOUI	NT	₀0J Total∳\$	00. 05.	.00 .00
POWER CON 15. 1 STD PERCENT	TRAN	NING SFORME DIREC	R T COST	KV. In	A 4826 Account	31 .1 15 =	: 4.991	ACCOU	NT	.00 TOTAL:\$	2698623.56 2698623.58	53972.47 53972.47
AUXILIARY 16. 1 BOJ 16. 2 OTH 16. 3 MI3 16. 4 AUX PERCENT	Y MECH Eler F Her Pu Sc Ser Xiliar Total	EQUIP EZD PU MPS VICE S V &QIL DIREC	HENT MP 8DR YS Er T Cost	KW KW PP IN	E E 1367 H Account	-0 40-2 1 1 5 =	471	.00 .88 1.17 4.00 4.00 L ACCOU	NT	.00 .12 .73 .80 Total,\$	00 200 159906.07 00 159986.07	• 00 • 07 • 99820•37 • 99820•37
PIPE & FJ 17.1 CON	ITTING NVENTI YOTAI	S ONAL P		TO	N	60.C	52	00.00 2 ACCOU	INT	1800.00 TOTAL+\$	180000 .00 180000 .00	108000.00 108000.00

OPEN CYCLE GAS TURBINE ACCOUNT LISTING PARAMETRIC POINT NO. 1 Table 5.6 Continued ACCOUNT NO. & NAME. UNIT AMOUNT MAT S/UNIT INS S/UNIT MAT COST+S LNS COST+S AUXILIARY ELEC EQUIPMENT 19. 1 MISC MOTERS,ETC 91160.2 1.40 .17 18. 2 SWITCHGEAR & MCC PAN KWE 91160.2 1.95 .45 18. 3 CONDUIT,CABLES,TRAYS FT 200000.0 1.32 1.35 18. 4 ISOLATED PHASE BUS FT 0 510.00 450.00 18. 5 LIGHTING & COMMUN KWE 455300.8 .35 .43 PERCENT TOTAL DIRECT COST IN ACCOUNT 18 = 5.455 ACCCUNT TOTAL.5 127624 1717762 254000 256622.07 30 .00 -00 59530-27 68916-72 .00 195 74 n 159530 2268916 CONTROL, INSTRUMENTATION 19- 1 COMPUTER SACH 1.0 .00 .00 19- 2 OTHER CONTROLS EACH 1.0 E0000.00 36000.00 PERCENT TOTAL DIRECT COST IN ACCOUNT 19 = 2.039 ACCOUNT TOTAL;\$ 926400.00 60000.00 986400.00 129696.00 36000.00 165696.00 PROCESS WASTE SYSTEMS PERCENT TOTAL DIRECT COST IN ACCOUNT 20 = .000 ACCOUNT TOTAL . •00 •00 -00 -00 STACK GAS CLEANING 21 T TOTAL DIRECT COST IN ACCOUNT 21 - .000 ACCOUNT TOTAL. .00 -00 -00 TOTAL DIRECT COSTS.S 43120263.00 7036228.56

Table 5.7

OPEN CYCLE GAS TURBINE SUMMARY PLANT RESULTS

1

.

.

P	ARAMETRIC POINT	1	2	3	4	5	6	7	8
PLANT RUNDLE BREAKDOWN	TO TAL CAPITAL CUST , MS GAS JURBINE COMPRESSOR SECT.MS GAS JURBINE COMPRESSOR SECT.MS GAS JURBINE COMPRESSOR SECTION.MS MISC GAS TURBINE JURBINE SECTION.MS GAS TURBINE TURBINE AUXILIARY .MS GAS TURBINE SENERAUXILIARY .MS GAS TURBINE SENERAUXILIARY .MS GAS TURBINE SENERAUXILIARY .MS GAS TURBINE SENERAUXILIARY .MS GAS TURBINE SENERAUXI TOT MAJOR COMPONENT COST .S.YKWE SITC LASCR COMPONENT COST .S.YKWE SITC LASCR COST .S.YKWE SITC LASCR COST .S.YKWE INDI RECT COST .S.YKWE CONTINGENCY COST .S.YKWE CONTINGENCY COST .S.YKWE CONTINGENCY COST .S.YKWE COST OF ELEC-COPENAIN.MILLS/KWE COST OF ELEC-COPENAIN.MILLS/KWE COE C.S CAP. FACTOR .MILLS/KWE COE C.S CAP. FACTOR .MILLS/KWE COE C.S.CAP. FACTOR .MILLS/KWE COE [1.2XCAP.COST .MILLS/KWE COE [2.2XCAP.COST .MILLS/KWE	47998454719908440541766414559765 402065427491787829717651698939765 9.405441799917547491789177551888270 9.40544179991754749459197551888270 9.4054574111111112211054259821570 9.4109907591711111112211054259315705 9.41099075917511111112211054259315705 9.4109907591755110542591851105450 9.410907591755110545591851105455 9.4109075917551105455510545555 9.41090755511111111111111111111111111111111	82146690C6555C7182C62776518857755 82759C8C574518751876776518857755 53 676 657451875199817771054857755 63776 657451875199817771054857755 747711 112 7 4447414						
PLANT	ARAMETRIC POINT TOTAL CAFITAL COST GAS TURBINE COMPRESSOR SECTIS GAS TURBINE COMPRESSOR SECTION HA GAS TURBINE TURBINE AUXILIARY HA GAS TURBINE DENERATOR RECUPERATOR & FIPHE SYSTEM HA RECUPERATOR & FIPHER SYSTEM HA RECUPERATOR SYSTEM HA RECUP	9 53 58 58 58 58 58 58 58 58 58 58	1C 5C 107 7*9574 8*9560 7*6560 *6650	11 50 26 59 59 59 50 59 50 50 50 50 50 50 50 50 50 50	12 5445938 1445938 1445938 7 18440 8 7 400 7 7 400 7 7 7 7	13 64 54 55 8 44 55 8 44 55 8 44 55 8 44 55 8 44 55 8 44 55 8 44 55 8 4 55 7 8 4 55 7 8 4 55 55 8 4 55 55 8 4 55 55 8 4 55 55 8 4 55 55 8 4 55 55 8 4 55 55 8 4 55 55 8 4 55 55 8 4 55 55 8 4 55 55 8 4 55 55 8 4 55 55 8 4 55 55 8 4 55 55 8 4 55 55 8 8 4 55 55 8 8 4 55 55 8 8 4 55 55 8 8 4 55 55 8 8 4 55 55 8 8 4 55 55 8 8 4 4 55 55 8 8 4 55 55 8 8 4 55 55 8 8 4 55 55 8 8 4 4 55 55 8 8 4 55 55 8 8 8 4 55 55 8 8 8 4 55 55 8 8 8 8	14 3382 1.50 8.50 8.50 8.50 700 6.700 6.50 7000	154099 154099 154099 15748099 15748099 1575 1575 1575 1575 1575 1575 1575 15	16 66.1077 8.0771 9.0766 8.0050
RUTUL DEWAKDOWN	TOT MAJOR COMPONENT COST	28014577088045770855305530 80144679678800459508530 80144679679677566700010 11 11 11 11 15 15 15 15 15 15 15 15 15	82.18819C22C9911565620749 925749192709115656207749 925749192791217774489649 9257491927191217774489649 92574919217754489649 92574919217754489649 9257491921775469649 9257491921775469697	2921487945910515168896769 9227487961745769568769 11487967751516886769 11487967751518886769 11487967751518886769 11487967751518886769	30556565659754 732567924487956556556593545 9924791522083384146593545 9924757575757556565 99248359577510935755 1075957751093575 1075957751093575 1075957751095575 1075957755 10759575 10759575 10759575 10759575 10755655655 10755655 10755655 10755655 10755655 10755655 10755655 10755655 1075565 1075555 1075555 1075555 1075555 1075555 1075555 1075555 1075555 1075555 1075555 1075555 1075555 10755555 1075555 1075555 10755	32 24 C2 24 7 2561 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	32175618977145556497713956649719586497195864977195864977195864977195864977195864971958649719586497539557557557557557557557557557557557557557	318076959674440336555555555555555555555555555555555	3239559149228 780272422812279 112779622779204 1342957977920 1342957977920 1342979977920 1342979797920 134297797920 1342977920 1342977920 1342977920 1342977920 1342977920 1356976976 134977920 1356976976976 1356976976976 1356976976976976 1356976976976976 1556976976976976976976976976976976976976976

unit measure and quantity for each item, followed by the unit cost and unit installation cost, and finally the total equipment and installation cost. At the end of each account section is listed the percent of the total equipment and installation cost contained within that account.

¢

Similar cost tabulations were provided to NASA Lewis Research for the remaining parametric points. Only the summary sheets are included here as Table 5.7. In this tabulation, major component (e.g., gas turbine compressor, combustor, turbine section, etc.) total direct material costs are itemized for each parametric point. Additional information tabulated includes those remaining costs going to make up the total plant cost.

These are each expressed on a dollar per kilowatt basis. Note that line 1, "Total Capital Cost," for each point expresses the total cost on a straight dollar basis for the categories making up the total plant cost, namely the costs of:

- Total direct major component material
- Balance of plant direct material
- Site labor
- Indirect expenses
- Professional services and ownership costs
- Contingency
- Escalation
- Interest during construction.

Cost of electricity data for each parametric point are given in this tabulation and list the breakdown with respect to capital, fuel, and operating and maintenance costs; as well as the effect of selected parameters on the cost of electricity.

.

OPEN SYCLE GAS TURBINE SUMMARY PLANT RESULTS

PARAMETRIC POINT	17	19	19	20	21	22	23	24
TOTAL CAFITAL COST , M4 P GAS TURBINE COMPRECION SECT.M3 GAS TURBINE COHB BASKETS . M4 A GAS TURBINE TURBINE SECTION.M5 N MISC GAC TURBINE AUXILIARY .M5 T GAS TURBINE AUXILIARY .M5 RECUPERATOR & PIPINC SYSTEP.M5	65.73 4.254 1.063 7.924 9.807 3.513 .000	70,55 7.430 1.109 8.471 9.674 8.383 *000	7C +29 7 •943 1 •113 8 •820 9 •378 8 •089 • • • • • • • • • • • • • • • • • • •	69 •44 8 • 398 1 • 095 9 • 095 9 • 015 7 • 728 • 000	7C •59 3 •929 1 •C22 3 •769 1C •64C 3 •326 •CCC	73.28 4.107 1.099 9.307 IC.949 9.614 .000	74.85 4.264 1.147 9.724 11.083 9.741 .CCC	80.52 7.430 1.194 10.412 11.067 9.726 +CCC
R TOT MAJOR COMPONENT COST , 4% E TOT MAJOR COMPONENT COST , 1/KWE S BALANCE OF PLANT COST , 5/KWE U SITE LABOR L TOTAL DIRECT COS* , 5/KWE T THOIRECT COSTS , 5/KWE PROF B COMPERCISTS , 5/KWE E CONTINGENCY COST , 5/KWE COST OF ELEC-CAFITAL MILLS/KWE D COST OF ELEC-FUEL , MILLS/KWE N COST OF ELEC-FUEL , MILLS/KWE COE I.8 CAP. FACTOR , MILLS/KWE COE I.22KFUEL COST , MILLS/KWE COE I.22KFUEL COST , MILLS/KWE COE I.22KFUEL COST , MILLS/KWE COE I.22KFUEL COST , MILLS/KWE	31.57282 77632 152282 17756331 117756331 117756331 117756331 1157553 2057753575555555555555555555555555555555	**************************************	35.3489525525525525525525525525525525525525525	21111157528847720005550168937 36662427768847720005550168937 15377177589428005777777568937 153771775894280057777775568937 15691625777777777558937 1569162577777777777558937 15691625777777777777777777777777777777777777	21 C 21 L C 24 C C 21 C C 21 C C 21 C C 21 C C 24 C C C 21 C C 24 C C C 21 C C	35.4.5087586 55.4.5087586 111,4.50	35.42537676 9425376762 9425376762 9425376762 942537676 9425376 9425376 9425376 9426377988 9426377988 94263779798 94263779775 9437775776 9447677757775 9447677757775 9447677757757775 9447677757757775 94476775775775775775775775 9447677577577577577577577577577577577577577	
PARAMETRIC POINT	25	25	27	Z 8	29	30	31	32
TOTAL CAPITAL COST ,HS P OAS TURBING COPPRESSOR SECT 45 L GAS TURBINE CCHP EASKE 15 ,HS A GAS TURBINE TURBINE SECTION.HS N HISC GAS TURBING AUXILIARY .HS T GAS TURBING ENERATOR ,MS RECUPERATOR & PIPING SYSTEM.HS	78.69 7.943 1.196 9.413 10.842 9.512 .000	78.14 8.398 1.165 9.716 10.517 9.202 .CCC	64 *27 3 *721 *938 6 *008 7 *728 6 *399 7 *335	67 +14 3 - 929 1 - 650 7 - 948 7 - 948 7 - 455	66 • C3 4 • 107 1 • 120 6 • 605 6 • 691 6 • 179	66.47 4.267 1.157 7.961 6.66 6.166	71.62 3.929 1.1029 6.690 7.348 7.348 7.439	72.99 4.107 1.175 7.197 8.771 7.481 7.481 7.475
R TOT HAJOR COMPONENT COST			31003190241103478055688447687 1903429827978749855688447687 1903429827998849985568847687 19138779888997715888797887 1913877988879771588797887 191387797878779887 1913877988779887 1913877988779887 1913877988778877 19138779887798877 19138779887798877 19138779887798877 19138779887798877 19138779887798877 19138779887798877 19138779887798877 19138779887798877 19138779887798877 19138779887798877 19138779887798877 19138779887798877 19138779887798877 19138779887798877 19138779887798877 1913877988779887798877 1913877988779887798877 191387798877988779887798877 1913877988779887798877 19138779887798877988779887798877 1913877988779887798877988779887798877 1913877998779988779887798877988779887798	55711557150209055485530725 45427595551570209055485530725 1125952155472792091577598755725 1125952155477598755725 112595215547755 112575557555755 112575557555755 112575557555755 112575557555755 112575557555755 11257555755755 112575557555755 11257555755575 112575557555 112575555755 11257555755 11257555575 11257555575 11257555755 1125755575 11257555575 11257555575 11257555575 1125755557 11257555575 11257555575 1125755557 11257555575 11257555557 1125755557 11257555557 11257555557555 11257555557 11257555557 1125755557 11257555557 1125755557 1125755557 1125755557 1125755557 1125755557 1125755557 1125755557 1125755557 1125755557 1125755557 1125755557 1125755557 1125755557 112575557 1125755557 1125755557 1125755557 1125755557 112575557 112575557 112575557 112575557 112575557 112575557 112575557 112575557 112575557 112575557 11257557 112575557 11257557 11257557 1125757 1125757 1125757 1125757 1125757 1125757 1125757 1125757 1125757 1125757 1125757 1125757 112577 1125757 1125777 1125777 1125777 1125777 1125777 1125777 1125777 1125777 1125777 1125777 1125777 1125777 1125777 1125777 11257777 11257777 11257777 112577777777777777777777777777777777777	7426644554142257257257257257257257257257257257257257	33.362 1145.662 220.4071 1260.4071 1260.4071 1260.4071 128.6640 178.607 128.6640 178.607 128.6640 178.607 178.607 178.607 178.607 178.607 178.77 179.77 179.	35 + 258756791 1074 + 556757947 1198 - 577947466 1198 - 577947 2105 - 7794765 2105 - 7794775 2105 - 7795775 2105 - 779575 2105 - 7795755 2105 - 77957555 2105 - 7795755555555555555 2105 - 779555555555555555555555555555555555	3 C 2 2 6 7 2 2 7 2 6 4 7 2 7 2 6 4 7 2 7 2 6 4 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7

REPRODUCIDULITY OF THE ORIGINAL HOUSE IS POOR 111111111

OPEN CYCLE GAS TURBINE SUMMARY PLANT RESULTS

PA	RAMETRIC POINT	33	34	35	32	37	33	33	40
PLANT	TOTAL CAFITAL CCS1 .**3 GAS TURBINE COMPRESSOR SECT.**5 GAS TURBINE COMPRESSOR SECT.**5 GAS TURBINE TURBINE SECTICV.**5 MISC GAS TURBINE AUXILIARY .**5 GAS TURBINE GENERATOR .**5 RECUPEPATOR & PIPINE SYSTE***5	73.80 4.2227 8.782 7.492 7.492 7.498	76.25 7.430 1.273 8.615 7.322 6.226	78.66 3.9293 1.174 9.326 8.038 8.391	78 •93 4 •269 1 •284 9 •512 8 •542 7 •542	83 - 950 - 9300 - 9300 - 9300 - 9300 - 950 - 9500 - 950 - 9500 - 950 - 950 - 950 - 950 - 9	81 +8C 7•943 1•338 8•772 9•26C 7•373 6•277	9056 3.929 1.231 8.631 IC.332 9.623 11.851	92.74 4.107 1.311 9.177 10.657 9.336 11.426
RESULT BREAKDOWN	TOT MAJOR COMPONENT COST	36.0674 168.6853220 168.6865322 168.686532 168.6979177 168.9979177 167.79153 167.6979177 21.57764 24.5075661 22.45075661 13777 21.57764 2335777 233	5544707740077466 5544707746 5544707746 554477746 554477746 55447776 1799 1799 1799 179776 1797776 1	109880000000000000000000000000000000000	18.4.2.2.5.7.9.7.4.1.3.1.0.2.0.6.9.9.4.2.1.2.7.1.0.7.0.0.9.7.2.2.8.7.2.5.7.2.3.1.1.1.1.0.2.0.6.9.9.4.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	47754754C80545145458159941 1271849945707559509941 127184991147707559504941 1484991147707559504941 1485991147707559504941	112245202078052577977055575 5177655198552577977050505 5177655198552577977075579 112245192028758527797707 112245192028785257797705 112245192028785257797705 112245257978057707707 1122452579780577077077077 1224525797805555 1225579780555555555555555555555555555555555	44.997 1011-2453 21.2733 122.27645 11.227645 11.227645 11.2280256 11.2280056 11.2280256 11.2280256 11.2280256 11.2280256	46.1253 999.46.1254 177.88209858585956 177.8820985956 117.88209859595 117.88209859595 117.67.99.477767903557 1167.877767903557 291.44.40.400 291.44.400 291.44.400 291.44.400 291.44.4000 291.44.4000 291.44.4000 291.4000000000000000000000000000000000000
PA	RAMETRIC POINT	41	42	43	£4 £4	45	45	47	4 8
PLANT	TOTAL CAFITAL CGST . MS GAS TURGINE COMPRESSOR SECTIVS GAS TURGINE COMBEASKETS GAS TURGINE TURGINE SECTION.MS MISC GAS TURGINE AUXLIARY MS GAS TURGINE GENERATOR RECUPERATOR & PIPIME SYSTEM.MS	89.88 4.263 19.803 10.8481 10.8481 8.663 8.663	94.09 7.430 1.415 10.312 10.844 9.515 7.627	92.43 7.943 1.421 9.344 10.668 9.346 7.583	91 •95 8 • 395 1 • 3654 9 • 6395 1 • 3654 1 • 3795 7 • 512	75 169 3 19233 8 1179 9 1259 8	76 - 92 4 - 107 1 - 230 8 - 673 9 - 546 8 - 258 5 - 658	75.89 4.279 7.844 9.611 8.321 5.676	80 • 68 7 • 430 1 • 407 9 • 520 5 • 652
REACORS BREAKOORN	TOT MAJOR COMPONENT COST	9078646722288864677216661887 13658865280077987456771666188 49705488057798758477167 4971568057798758477167 4971568057798758477167 4971568057798758477167 4971568057798758477167 111877227978477167 1118772279787 1118772777847777777777777777777777777777		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9173205173467552060051 942.1737575676667552060051 1 1555167576760861 1 15551675746208061 1 155516757146206051 1 155516757146206051 1 1555167571462050861		10221728176853788521556844689 102217281768521555285824 1022172817555552857568284689 1022172817555552848584689 10575555284475756884689 10575555284475756884689 10575555284475756884689 10575555284475756884689 10575555284475756884689 10575555284475756884689 10575555284475755884689 10575555284475755884689 10575555284475755884689 10575555284475755884689 10575555284475555 10575555756844689 10575555756844788 10575555756844788 10575555756844788 10575555756844788 10575555756844788 10575555756844788 105755557558844788 105755555755844788 105755555756844788 10575555756844788 10575555756844788 10575555756844788 10575555756844788 10575555756844788 10575555756844788 10575555756844788 10575555756844788 10575555756844788 10575555756844788 1057555575844788 1057555575844788 105755557584478775555758 105755557584478775555758 10575555758 10575555758 10575555758 10575555758 10575555758 10575555758 10575555758 10575555758 10575555758 10575555758 10575555758 1057555578 10575555758 10575555758 10575555758 10575555758 10575555758 10575555758 10575555758 10575555758 10575555758 10575555758 10575555758 10575555758 10575555758 10575555758 10575555758 10575555758 10575555758 10575555758 1057555758 10575555758 1057555758 10575555758 10575555758 10575555755555 10575555555555555 105755555555555555555555555555555555555

. .

OPEN SYCLE GAS TURBINE SUMMARY PLANT RESULTS

PA	RAMETRIC POINT	49	5C	51	52	53	54	55 .	56
F LANY	TOTAL CAFITAL CGST .MS GAS TURBINE COMPRESSOR SECTMS GAS TURBINE COMPRESSOR SECTMS GAS TURBINE TURBINE SECTION HS MISC GAS TURBINE AUXLIARY .MS GAS TURBINE GENERATOR .MS RECUPERATOR & PIPING SYSTEM.MS	79.33 7.943 1.339 9.261 7.972 7.974 4.782	85.09 5.02 1.02 95.00 1.02 95.00 95.00 95.00 95.00 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1	88.12 4.107 1.23C 9.524 8.234 12.798	87 *83 4 *264 1 *279 7 *838 9 *594 8 *303 12 *816	92 • 66 7 • 436 1 • 330 8 • 403 9 • 510 8 • 220 12 • 794	88 •79 7•943 1•338 8•771 9•260 7•972 IC •498	79.30 3.929 1.1953 8.195 8.373 8.085 8.600	80.02 9.107 1.230 8.580 9.580 8.290 7.705
RUNDLE DRUGEDOFN	TOT MAJOR COMPONENT COSI .45 TOT MAJOR COMPONENT COSI .5/K WE BALANCE OF PLANY COST .5/K WE SITL LABOR .5/K WE INDIRECT COST .5/K WE INDIRECT COSTS .5/K WE CONTINGENCY COST .5/K WE COST OF ELEC-OPENAIN.5/K WE COE 1.2/K OF COST .5/K WE COE 1.2/K OF COST .5/K WE COE 1.2/K OF COST .5/K WE COE 1.2/K UE COST .5/K WE COE CONTINGENCY COST .5/K WE	40.0477736 1007736 1007736 1007736 1145573537736 1145573537 1145573537736 114573537746 114573537746 114573537746 114573537746 11457746 11477746 11457746 11457746 114577746 114577746 114577746 114577746 114577746 114577746 1145777746 114577746 1145777746 114577777746 1147777777777777777777777777777	449254866166026687266473 88275558698768669674866987466673 582657866987686698774666673 11268987772 2159146669818 112772 2159146669818 2772 2159146669818 2772 2159146669818 2772 215914669818 2772 2159148 2772 215914669818 2772 2159148 2772 2172 2172 2172 2772 2172 2172 2172	49.5556 556 556 113.555 122.354 122.355 1255.228 1255.258 1255.257	44 ***********************************	47.226.37.67.50.27.47.87.97.57.67.67.67.67.67.67.67.67.67.67.67.67.67	45. 7.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177 17.177	392.2679 1022.579 143.322748512.2579 143.322748512.2579 147.48652554 147.48652554 147.48652554 27.45742992377229 27.45742992377229 27.45742992377222 27.45742992377222 27.45742992377222 27.45742992377222 27.45742992377222 27.45742992377222 27.45742923772292 27.45742922377222 27.457429223772292 27.45742922377222 27.45742922377222 27.45742922377222 27.457429223772222 27.457429223772222 27.457429223772222 27.457429223772222 27.45742923772222 27.45742923772222 27.457429223772222 27.457429223772222 27.457429223772222 27.457429223772222 27.457429223772222 27.45742923772222 27.45742923772222 27.45742923772222 27.45742923772222 27.45742923772222 27.45742923772222 27.45742923772222 27.45742923772222 27.45742923772222 27.45742923772222 27.45742923772222 27.45742923772222 27.45742923772222 27.45742923772222 27.45742922772222 27.45742922772222 27.45742922772222 27.45742922772222 27.45742222 27.45742922772222 27.45742922772222 27.45742922772222 27.45742922772222 27.457429227722222 27.4574292277222222222222222222222222222222	39.5569 99.5569 17.8834 19.6691 19.6691 19.6691 11.683769 9.1763755 20.6991 11.7637769 20.6991 11.7699 23.77555 23.77555 20.4458722583 30.44587 29.85755 20.445877 20.445877 20.445877 20.44577777777777777777777777777777777777
P/	RAMETRIC POINT	57	58	59	60	61	62	63	64
PLANT	TOTAL CAFITAL CCST *** GAS TURBINE COMPRESSOR SECTIVS GAS TURBINE COMB BASKETS ** GAS TURBINE TURBINE SECTION*** MISC GAS TURBINE ALXTLIARY ** GAS TURBINE GENERATOR *** RECUPERATOR & PIPINC SYSTE***	79.49 4.2769 125647 525647 57 87 87 277 27 27 27 27 27 2.	84490 744320 144320 94255 94255 845566 845566 84556 845566 845566 845566 845566 845566 845	82 •28 7 •943 1 •338 9 •299 8 •012 8 •422	78 +11 3 + 9532 8 + 1532 8 + 1532 9 - 1532 9 - 1532 8 + 2532 8 + 2531 8 + 2531	78+94 4 +107 1 •230 8 •646 9 •489 8 •200 7 •385	78 44 4 279 7 8279 7 8258 9 8559 7 803	83 •47 7 •430 1 •330 8 •338 9 •474 8 •185 7 •381	81 • 38 7 • 943 1 • 378 8 • 755 9 • 222 7 • 934 6 • 164
UKOGXAGAG TLUCIG	TOT MAJOR COMPONENT COST	3819445835574761365797614 9151464275765785747148925757 917277961767783 D1915147 917277961767783 D1915147 117783 1 117783 D1915147 117783 1 117783 D1915147 117783 1 117783 1 11775		1152746999904 1222100 122200 122200 122200 122200 122200 1220000 1220000 1220000 1220000 1220000 1220000 1220000 1220000 1220000 1220000 1220000 1220000 1220000 1220000 1220000 1220000 1220000 1220000 1220000 1220000 1220000000000	14977727247247247247267297877277777772724774757978979789797897978979789797897978		91393455584C565688878 973851098578355655688878 973755075657875565588878 8772779007665785595787557 87727790076657855555555555555555555555555555555		41.525234362(621) 32532812392 122151.52524 122151.52524 125152524 125152524 12515252 12515252 12515252 12515252 12515252 12515252 12515252 12515252 1251525 125155 125155 125155 125155 125155 125155 125155 125155 125155 125155 125155 12515 12555 12555 12555 12555 12555 12555 12555 125

REPRODUCTIONARY OF THE ORIGINAL FLOD IN PCOR

.

OPEN SYSLE DAS TURBINE SUMMARY PLANT RESULTS

Table 5.7 Continued

PA	RAMETRIC POINT	65	55	67	68	69	70	71	72
PLANT	TOTAL CAFITAL CCST	86.87 6.315 1.148 3.192 1.764 3.593 6.448	91.90 5.4229 7.4229 7.2223 9.0224 7.732	94.56 5.272 7.750 12.548 9.332 7.817	98.15 6.637 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.	99.7724 97724 1.7724 1.724 1.97.160 1.97.160 1.960 1.960	101.09 6.832 1.309 9.000 13.708 10.100 6.840	94.64 3.929 1.153 12.825 5.881 8.585 12.199	92+63 4+107 1+23C 13+772 10+133 8+831 3+122
それのの大学可とは、 またたいしょ	TOT MAJCR COMPONENT COST	52213,434,4184,6457,507,504,6 3,264,643,44,184,684,57,697,504,6 4,2184,454,664,184,484,684,57,697,504,6 4,2184,494,184,484,57,784,648,57,697,504,6 4,2184,494,184,484,57,697,504,6 4,2184,494,184,484,57,697,504,6 4,2184,494,484,57,697,504,6 4,2184,494,484,57,697,504,6 4,2184,494,494,494,648,57,697,504,6 4,2184,494,494,494,648,57,697,504,6 4,2184,494,494,494,648,57,697,504,6 4,2184,494,494,494,648,57,697,504,6 4,2184,494,494,494,648,57,697,504,6 4,2184,494,494,494,648,57,697,504,6 4,2184,494,494,494,494,494,494,494,494,494,4	40734657000821241730006552 115334657000821241730006552 403497149201754965765 403492017787627334065765 405197149201784765765 405197141111707676209182165765	42424339651284487772662659175 4284539651284467772662659175 428453965128547772662659175 4147592654774785577265 414759265477726567495 414759265477726567495 414759267 4175927 41	46.7715394789749749749749749749749749749749749749749		4 92 65 67 67 67 67 67 67 67 67 67 67 67 67 67	40.5592845555135984666 90.47791519555135984666 112197-904111115985135984 112197-9041111115984 112197-914111115984 1121715555135984 1121755489 11217555551 11217555551 11217555551 11217555551 11217555551 11217555551 11217555551 11217555551 11217555551 11217555551 11217555551 11217555551 11217555551 11217555551 11217555551 11217555551 112175555551 112175555555555	4 1985 4 1985
P/	RAMETRIC POINT	7.7	74	75	75	77	78	73	80
PLANT	TCYAL CAFITAL COST	\$2.95 4.264 1.279 14.279 14.237 15.237 8.932 8.113	97.22 7.430 1.330 14.366 10.207 8.902 8.110	97.84 7.943 1.338 15.988 8.690 8.654	100.40 3.929 1.231 13.011 10.742 9.415 12.688	103.55 4.107 1.311 13.994 11.101 9.758 12.354	105.06 4.269 1.363 14.761 11.284 9.930 11.833	ICC.62 7.430 1.415 15.986 11.752 ID.904 8.605	104-65 7-943 1-421 15-361 12-216 9-867 7-974
RUNDLE CREAKDOWN	TOT MAJOR COMPONENT COST			1095802U51139781541841865057 1225697781789781541684565 1000128902179971055665055 12110012888091179971055650685 1211001288801774 5517820685 122110012888011774 5517820685 12211001288801174 551782085 12211001288801174 551782085 122110012880115185 122110012880151 1221100128801085 1221100128801085 1221100128801085 122110012880000000000000000000000000000	593914677294401598162950 1755320125987602950 075532012598760298162950 1880879187898762727728300142 188087918789102 18808791878302 11111 201121121 20112111 20112111 20112111 20112111 20112111 20112111 20112111 201121111 201121111 2011211111111	2411241472452 241124147245 5272945524552 527045524646672955 52704599486472955 51704599486472955 5170459947055 5170459947055 5170459947055 51704597055 51704597055 51704597055 5170455 5170455 5170455 5170455 517055 51705555 5170555 5170555 5170555 5170555 5170555 517055	512(691492)591 452(8)7(492)591 56(7)7491492(5)997(2)50893(3) 516(7)74918076400778180 516(7)74918076400778180 516(7)14018078180 518018078180 5180000000000	48176597377470575696100 925588057147565969100 92558805714876057 9255805571487685677148768585 50014111800671148768585 5001411180067114878589 5001411180067114878589 5001411180067114878589 5001411180067114878589 5001411180067114878589 5001411180067114878589 500141180067114878589 500141180067114878589 500141180067114878589 500141180067114878589 500141180067114878589 500141180067114878589 500141180067114878589 500141180067114878589 500141180067114878589 500141180067114878589 500141180067114878589 500141180067114878589 500141180067114878589 500141180067114878589 500141180067114878589 50014004444858588588588588585885885885885885885	$\begin{array}{c} 53.701\\ 1020.10305\\ 1020.10305\\ 1140.2051\\ 1250.10305\\ 1140.1041\\ 110$

5-87

.

PARAMETRIC POINT 81 82 53 85 85 86 87 88 TO TAL CAPITAL COST GAS TURBINE COMPRESSOR SECT.MS GAS TURBINE COMPRESSOR SECT.MS GAS TURBINE COMB CASKIS MISC CAS TURBINE AUXILIARY .MS GAS TURBINE GENERATOR RECUPERATOR P PIPINE SYSTEM.MS 107.73 3.929 1.1173 16.538 10.288 3.992 13.177 103.94 9.264 1.279 18.825 10.705 9.392 9.209 108.91 7.430 1.370 20.060 10.718 1C4.73 8.398 1.393 1F.976 1C.958 9.522 7.91C 1C1.91 4.107 1.23C 17.817 1C.574 9.256 9.771 11C .27 7.943 1.338 21.186 1C .526 113.68 3.929 1.231 15.838 11.876 118.27 4.107 1.311 17.075 12.325 P Ā Ň 9.211 9.394 8.542 10 484 14 66C 10 90 9 $\begin{array}{c} 54.357 & 54.613 & 52.755 & 53.6660 \\ 112.501 & 172.257 & 114.884 & 114.873 \\ 22.512 & 23.126 & 26.776 & 27.634 \\ 11.480 & 12.574 & 10.202 & 17.9932 \\ 12.480 & 12.597 & 153.862 & 153.499 \\ 12.480 & 12.5997 & 123.867 & 153.867 \\ 12.2033 & 13.632 & 12.309 & 12.280 \\ 8.417 & 155 & 2.962 & 9.283 & 9.176 \\ 8.407 & 9.640 & 8.555 & 8.557 \\ 18.132 & 19.346 & 18.393 & 18.401 \\ 19.258 & 20.572 & 19.534 \\ 21.7155 & 2.59.797 & 221.933 & 221.466 \\ 18.402 & 7.4259 & 21.566 & 21.4665 \\ 18.402 & 7.4259 & 21.566 & 21.4665 \\ 24.925 & 21.4269 & 21.566 & 21.4665 \\ 24.925 & 21.4269 & 21.566 & 21.4665 \\ 24.6659 & 21.4269 & 21.3266 & 21.4665 \\ 24.6695 & 21.4269 & 21.3266 & 21.4665 \\ 24.6695 & 21.4269 & 21.3266 & 21.4665 \\ 24.6695 & 21.4269 & 21.4269 & 21.4673 \\ 31.6132 & 27.994 & 37.631 & 27.931 \\ 33.4678 & 22.994 & 37.6584 & 33.364 & 33.4673 \\ 33.498 & 28.765 & 28.462 & 28.749 \\ 31.984 & 28.765 & 28.462 & 28.749 \\ 31.984 & 28.765 & 28.462 & 28.749 \\ 31.984 & 28.765 & 28.462 & 28.749 \\ 31.8122 & 27.994 & 27.655 & 28.462 & 28.749 \\ 31.984 & 28.765 & 28.462 & 28.749 \\ 31.984 & 28.765 & 28.462 & 28.749 \\ 31.8122 & 27.946 & 28.765 & 28.462 & 28.749 \\ 31.984 & 28.765 & 28.462 & 28.749$ 54.257 57.475 54.013 52.755 2 53.660 58-698 58.017 50.974 E S U Ĩ BREAKDO PARAMETRIC POINT 89 90 91 93 94 95 97 92 26 120.46 4.264 1.363 18.053 12.602 11.153 14.126 127.23 7.430 1.415 19.617 12.811 11.344 13.305 77.79 4.107 1.230 8.758 9.730 8.438 7.575 43.50 .982 .275 1.700 2.160 1.837 122.45 8.398 1.393 21.272 12.556 11.110 8.991 44.03 982 275 1.700 2.160 1.837 99.13 2.097 .386 3.368 123.52 79.44 7.943 1.421 20.720 12.756 11.292 9.842 4 107 1.229 8.663 9.534 8.245 7.524 E Å 3 009 3 022

 14.126
 13.376
 5.842
 18.331
 7.124

 61.562
 65.923
 63.974
 63.67C
 33.377
 39.838

 16.562
 65.923
 109.681
 110.6691
 92.541
 97.837

 19.057
 11.8022
 109.081
 110.6691
 92.541
 97.837

 19.057
 11.8022
 109.081
 11.790
 12.786

 19.057
 11.8021
 104.821
 16.957
 17.919
 12.786

 14.653
 17.488
 16.797
 16.901
 17.919
 12.786

 14.645
 11.857
 11.556
 11.776
 11.174
 10.642

 8.115
 18.827
 18.526
 11.776
 11.7462
 7.556

 11.4857
 11.596
 11.776
 11.7255
 16.477

 19.052
 19.726
 19.4942
 17.7255
 16.477

 19.052
 19.726
 19.4942
 18.234
 15.546

 19.052
 19.726
 19.4942
 17.7556
 16.477

 20.652
 25.769
 20.6558
 6.717
 7.556
 11.033

 20.7553
 1 417 2 400 1.537 10.750 おうらいして BREAK

OPEN SYCLE GAS TURBINE SUMMARY PLANT RESULTS

5.6 Analysis of Overall Cost of Electricity

Using the tabulated capital costs for the recuperated opencycle gas turbine systems in conjunction with calculated power plant efficiencies, and designated values of fuel price, capacity factor, time of construction, fixed charge rates, contingency provisions, and escalation rates, the cost of electricity was computed for each parametric point variation. The results of these calculations, summarized for each parametric point, are given in Table 5.8.

In addition, a more detailed examination of the effects of selected parameters included:

- Labor rate
- Contingency
- Escalation rate
- Interest during construction
- Fixed charge rate
- Fuel cost
- · Capacity factor.

Table 5.9 gives the results of the variation of these parameters on the overall cost of electricity for the base case.

The effect of the basic gas turbine parameters of compressor pressure ratio and turbine inlet temperature on the cost of electricity was investigated for both simple and recuperated gas turbine plant arrangements. By comparison with other ECAS energy conversion systems, these recuperated gas turbine plants are generally well suited for lowcapacity factor operation. It is important, therefore, to consider in addition to compressor pressure ratio and turbine inlet temperature the effects of capacity factor on the overall cost of electricity.

In Figure 5.47 the simple cycle cost of electricity variations are plotted against compressor pressure ratio and turbine inlet temperature Table 5.8

OPEN CYCLE GAS TURBINE SUMMARY PLANT RESULTS

 PARAMETRIC POINT
 1
 2
 3
 4

 THERMOYNAMIC EFF
 378
 248
 276
 294

 POWER PLANT EFF
 378
 248
 276
 294

 OVERALL ENERGY EFF
 191
 125
 139
 148

 CAP COST MILLION \$ 79.439
 51.878
 54.153
 55.234

 CAP COST MILLION \$ 79.439
 51.878
 54.153
 55.234

 COE CAPITAL
 5.36C
 5.707
 5.676
 5.739

 COE FUEL
 23.486
 35.779
 32.137
 70.191

 COE FUEL
 715
 .715
 .715
 .715

 COST OF ELECTRIC
 30.561
 42.201
 38.529
 .76.666

 EST TIME OF CONST
 2.500
 2.365
 2.385
 2.388

5 -305 -305 -154 •313 •313 •158 :310 300 .31C .157 -300 -151 57-258 253-715 8-020 29-597 55.594 185.314 5.858 29.121 35.694 715 2.267 2-383

 PARAMETRIC POINT
 9
 1C
 11
 12
 13

 THERMODYNAMIC EFF
 279
 239
 311
 323
 325

 POWER PLANT EFF
 279
 239
 311
 323
 325

 OVERALL ENERGY EFF
 141
 151
 157
 163
 164

 CAP COST MILLION \$
 58.527
 60.050
 60.073
 65.099
 64.516

 CAPITAL
 052.54/KHE
 167.030
 167.031
 170.020
 189.339
 200.634

 COE CAPITAL
 5.280
 5.305
 5.375
 5.985
 6.342

 COE FUEL
 31.758
 29.706
 28.537
 17.546
 27.268

 COE FUEL
 31.758
 29.715
 715
 715
 715

 COST OF ELECTRIC
 37.753
 35.726
 34.621
 34.146
 34.326

 EST TIME OF CONST
 2.448
 2.457
 2.440
 2.412

14 15 16

 PARAMETRIC POINT
 17
 18
 19
 20
 21

 THERNOCYNAMIC EFF
 .315
 .330
 .335
 .334
 .282

 POWER PLANT EFF
 .315
 .330
 .335
 .334
 .282

 OVERALL ENERGY EFF
 .159
 .166
 .169
 .166
 .142

 CAP COST MILLION \$
 55.727
 70.550
 70.292
 59.436
 70.582

 CAP COST MILLION \$
 55.727
 174.801
 182.614
 191.982
 152.386

 CCE CAPITAL
 28.178
 26.888
 26.514
 191.982
 152.386

 CCE FUEL
 28.178
 26.888
 26.511
 26.590
 31.459

 COE FUEL
 28.178
 26.888
 26.511
 26.590
 31.459

 COE FUEL
 33.936
 33.130
 32.999
 73.375
 36.987

 COST OF ELECIRIC
 33.936
 33.130
 32.999
 73.375
 36.987

 EST TIME OF CONST
 2.519
 2.510
 2.489
 2.462
 2.571

22 24 23 4.817 31.454 •715 36.987 2.571

 PARAMETRIC POINT
 25
 26
 27
 28

 THERMCOVNAMIC EFF
 .343
 .345
 .352
 .352

 POWER PLANT EFF
 .343
 .345
 .352
 .352

 OVERALL ENERGY EFF
 .174
 .178
 .178
 .178

 CAP COST MILLION \$
 78.697
 79.135
 64.273
 67.135

 CAP COST MILLION \$
 78.697
 79.135
 64.273
 67.135

 CAP COST MILLION \$
 78.697
 79.135
 64.273
 67.135

 COE CAPITAL
 205.887
 171.499
 233.854
 222.982
 22

 COE CAPITAL
 25.884
 25.742
 7.393
 7.649

 COE FUEL
 25.884
 25.742
 25.208
 25.179

 COE OP & MAIN
 .715
 .715
 .715
 .715

 COST OF ELECTRIC
 31.834
 31.879
 33.316
 .2.944

 EST TIME OF CONST
 2.582
 2.563
 2.346
 2.384

29 38 31 32 29 •345 •174 55•C34 224•C95 25•75 33•567 2•374 31 •367 •367 •1885 21•6446 24•716 24•3715 31•582 2•432 332 -364 -364 184 72.998 72.958 211.120 6.574 24.357 .715 31.746 2.443 PARAMETRIC POINT 33 THERMCDYNAMIC EFF 356 POWER PLANT EFF 356 CVERALL ENERGY EFF 179 CAP COST MILLION \$ 73.802 CAPITAL COST.\$/KWE 213.E32 CCE CAPITAL 5.734 COE FUEL 24.95C COE OP S MAIN .715 COST OF ELECTRIC 32.443 39 40 38 34 35 36 37 38 354 331 354 131 178 167 83.946 81.802 213.255 216.728 6.851 25.094 26.851 25.094 26.851 32.551 34.390 2.499 2.480 37 34 -331 -167 76-251 227-1186 26-799 34-7150 2-430 36 372 1372 1888 197-343 197-351 23-8415 23-8415 30-8415 24-505 39 •385 •385 •194 90 •562 203 •765 377 377 190 -390 -390 -197 78.660 206.132 6.516 23.524 92.743 193.790 6.441 23.C35 .715 3C.192 2.552 6+316 22+728 •715 29•760 2•572 715 3C 755 2 485

> REPRODUCENTOY OF THE ORIGINAL PAGE IS POOR

OPEN CYCLE GAS TURBINE SUMMARY PLANT RESULTS

7

e,

Table 5.8 Continued

.

PAR THE POVEN CAPE COE COE COE ST	AMETI RMOD ER PI RALL COS ITAL CAP TAL FUE TOF TIM	RIANNAN MOA	PO MICE ERLL ST AECO C	FF FF ION \$ \$/KWE IRIC	41 399 3890 91.879 185.99977 22.08778 25.08215 25.08215 25.531	4	42 •359 •181 92.•427 198.•820 6.•2856 24.•696 31.•696 2.•572	44 +43 +434 +1953 10 -268 -275 -25 -25 -25 -25 -25 -25 -25 -2	45 3660 *186823 196.5363 24.67155 31.5765 24.7765	463554 6365464 63654646 7990 1902 1902 312 7923 32	47 363 31886 1886 24.4557 31.174 2.555	4 8 •35C •179 8C •82980 2C 65•3215 322•499
PAR THE POVE CAP CCOE CCOE CCOE CCOE CCOE CCOE CCOE CCO	AMET RNGC ER PI RALLS I TAP FUEI OP T OF T IN	RICANNAN YNANN T COA II MLO	PICEOUS MIECLISI ALCIN	DINT EFF FF ION \$ \$/KHE RIC ONST	43 • 331 • 331 • 1357 215 = 644 26 • 8485 34 • 207 2 • 480	50 3966 3966 23296 88.96680 232.93590 232.93590 22.7158 30.484 2.484	51 92 392 •198 22:	52 338236 331923496 393-8927485 21963-7885 21963-7885 300-850 319645 319645 319645 319665 319665656565656565656565656	53 331868879 925***7955 24**995 322 322 322 322 322 322 322 322 322 32	54331 3317958 83169588 855007958 23760479151 24094 3404 3404 3404 3404 3404 3404 3404	5537954 337954 966.00 796.00 796.00 796.00 796.00 796.00 796.00 796.00 796.00 796.00 796.00 796.00 796.00 796.00 796.00 796.00 797.10 796.00 797.10 796.00 797.10 796.00 797.10 796.00 797.10 796.00 797.10 796.00 797.10 796.00 797.10 796.00 797.10 796.00 797.10 796.00 797.10 796.00 797.10 796.00 797.10 797.10 796.00 797.10 796.00 797.10 797.10 796.00 797.10 797.00 797.10 797.00 70 70 70 70 70 70 70 70 70 70 70 70 7	56 •3800 •39917 •016595 801 •37150 2 2 3 0 •4503 -4503
PAR THE POVE CCCE CCCE CCCE CCCE CCCE	AMED RRUD RR LLS R COLLS I CALPE FUE T T T T	RICANNAN T CAN MULANNAN T CAN MULANNAT T CAN MULANT T CAN	PC MICERCIST IST IAIC	DINT EFF SY EFF ION S SXKWE IRIC CONST	57 • 3779 • 1892 197• - 275 23• 775 23• 7715 23• 7715 25• 508 2• 508	5 8 3557908 3557908 313998 31364	59 3332862 82.+12762 82.+58494 24.65+64945 26.+671563 342+483	60 •375 •189 79•107 206•5555 23•6555 30•78482	61 •376 •376 78•935 2016•36665 23•6655 30•6855 30•6897	62 •370 •1877 196480 23•480 23•5255 30 •196 •1965 •196	5 3 3578 35578 357718 33 47215 31 65 47215 21 65 47215 22 22 7 22	6 4 2296 23268222 81 * 528622 21 66 * 554 26 4 * 5477 3 2 * 4
PARE POUL COLE COLE COLE COLE COLE COLE COLE COL	AMEDPLS RHODPLS RALOSL I CALPE I CALPE FOR T T T T	RICANAN YNAN I COA I COA I COA E COA E COA	PI ERLI ST L	OINT C EFF FF EFF S /KWE N TRIC CONST	65 99996748 99996748 8586748 85845748 85845748 8584574 8584574 85852 9752 22 22 22 22 22 22	65 4033 200712 2075249 20752447 209322 20932 20942 20932 20032 20032 20032 2002 2002 2002	67 -407 -2057 94-558 204-5587 204-5587 21-772 26-572 26-572	68 •4107 •2077 98•9927 202•9927 21•64326 •74326 28•793 28•592	69 •408 •208 99•524 198524 6•279 21•745 21•745 28•775 28•775 28•775	70 405 204 101 204 198 204 198 205 21 21 21 21 28 97 27 28 97 27 28 17 28 17 28 17 28 17 28 17 28 17 17 17 17 17 17 17 17 17 17	71 -400 -2027 94.1855 7.183 22.7.183 3C.079 2.524	72 4200 42008 924 52 72 52 52 5 5 5 5 5 5 5 5 5 5 5 5 5
PTPOVEFPEDEDST	AMET RMOD RALL RALL COS I CAP FUE T OF T I T	RICANAN YNAN I CIA I CI	MI IER III III IIII IIII IIIIIIIIIIIIIII	CINT C EFF Sy EFF Lion 4 • */Kwe N TRIC CONST	73 999999 189999 215-79951 22-99515 22-	74 •377 •377 •190 97.225 222.6037 23.561 •561 •561 •561 •564 •564	75 • 3555 • 3555 • 3555 • 3555 • 971 • 997 • 1679 • 9915 • 99	75 9991 •2097 •2397 2125 2237 •225 22 •755 22 •7727 22	77 -404 -204 103 -545 210 -975 21 -975 21 -975 21 -975 21 -975 25	78 4402336 4420336 1059463219 20946607120 29460 229460 229460 29460 29460 294000 294000 294000 294000 294000 294000 294000 294000 294000 294000 294000 294000 294000 2940000 2940000 2940000 2940000 2940000 2940000000000	79 •3997 •1997 106•6924 210:•597 22•745 22•745 22•745 22•745 22•511	80 • 374 • 374 • 1845 5445 5448 23 • 715 31 • 60 24 • 603

5--91

Table 5.8 Continued	n te Transformation Transformation	OPEN CYC	LE GAS T	URBINE S	UMMARY P	LANT RES	ULTS		
PARAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF CYERALL ENERGY EFF CAP COST MILLION \$ CAPITAL COST \$%/KWE COE CAPITAL COE FUEL COE OP & MAIN COET OF ELECTRIC EST TIME OF CONST	81 3566 335800 44.1489255 24.188255 24.155555 24.155555 24.155555 24.155555 24.155555 24.155555 24.1555555 24.1555555 24.15555555 24.155555555 24.1555555555555 24.1555555555555555555555555555555555555	92 •417 •417 •210 103•797 23•797 21•792 21•7125 29•455 29•4550	*83 *415 *210 101*9122 227*0366 21*3666 21*3666 25*092 2*567	84 •41C •2C7 23.4446 7.000 21.6655 29.379 2.575	95 33980 33980 237 227 30 30 30 30 30 4575 30 4575 30 4575	86 372 37882 1275395 141 24 75 87188 2 32 32 32 32 32 32 32 32 32 32 32 32 3	37 428 4439 123-579 211-5-7081 20-7285 27-6988 2-638	88 44C 42271 210 33555 20 81711 20 81711 20 81711 20 81711 27 115 27 115 27 115 2 7 115 2 7 115 2 7 115 2 6 6 0	-
PARAMETRIC POINT THERNCDYNAMIC EFF POWER PLANT EFF CVERALL ENERGY EFF CAP COST MILLION S CAPITAL COST \$/\$/KWE COE FUEL COE OP & MAIN COST OF ELECTRIC EST TIME OF CONST	89 438 438 221 122.458 208.462 20.550 20.263 715 27.568 2.572	9C 442269 442269 1215-875151 2C 8-65 28-6 28-6 28-6	91 4413 4413 22086 21 • 5165 21 • 5165 21 • 5165 21 • 5155 28 • 6555 28 • 65555 28 • 65555 28 • 65555 28 • 65555 28 • 65555 28 • 65555 28 • 655555 28 • 655555555555555555555555555555555555	92 • 396 • 396 • 2489 • 4499 • 7304 • 7304 • 7304 • 7304 • 7305 • 8290 • 8270 • • • • • • • • • • • • • • • • • • •	93 • 378 • 378 • 193 201•193 201•193 201•193 201•2500 23•486 • 7455 30•500	94 • 361 • 364 • 249 1910-033 1910-0359 24 • 7155 310-515 310-513	95 • 922 • 213 * 33 • 502 * 53 • 9952 21 • 515 35 • 957 3 • 500	96 • 42206 • 42205 • 0 22455 • 0 22456 • 0 224566 •	97 • 000 • 476 • 240 99.129 431.7850 13.6559 18.6559 32.855 32.855 4.078

ž

Table 5.9

OPEN CYCLE GAS TURBINE COST OF ELECTRICITY.MILLS/KW.HR PARAMETRIC POINT NO. 1

.

ACCOUNT	RATE		LABOR RAT	TE: \$/HR		
TOTAL DIRECT COSTS. INDIRECT COST. PROF & OWNER COSTS. CONTINGENCY COST. SUB TOTAL. ESCALATION COST. INTREST DURING CONST. TOTAL CAPITALIZATION. COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	PERCENT 51.0 8.0 5.5 10.0 18.0 18.0 18.0 0 0 0 0 0	5.00 521033.0 20312133.0 4168243.0 286581555.0 529462551.0 592965155.0 7341105599.1 23.046659.1 23.046659.1 23.046659.1 23.046659.1 23.047869.1 30.07869	8.50 5.376275522 4.3010079 2.2957622 2.2950072 6.3898013 6.217663 6.217663 6.13922 2.3.48637 2.3.48637 2.3.48637 30.3.4097	$\begin{array}{c} 10.60\\ 55156491\\$	15.00 58077190. 5078033. 4646175. 3194245. 70995642. 6901598. 7308293. 35205533. 6.821137 23.48637 23.48637 23.48637 31.02290	21.50 62391858. 4991349. 3431552. 78093272. 7591570. 8038923. 93723764. 7.50258 23.48637 .71538 31.70483
ACCOUNT TOTAL DIRECT COSTS.\$ INDIRECT COST.\$ PROF & DWNER COSTS.\$ CONTINGENCY COST.\$ SUB TOTAL!\$ ESCALATION COST.\$ INTREST DURING CONST.\$ TOTAL CAPITALIZATION.\$ COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-DP & MAIN TOTAL COST OF ELEC	RATE, PERCENT 5100 7000 600 1000 1800 1800 000 1800 000 000 000 0	-5.00 55156491. 358476. 4412519. -27579661. 5871543. 6217543. 72488750. 5.8871543. 72488750. 5.880317 23488750. 5.880317 .71533 30.00485	ONTINGENCY. 55156491. 3586476. 4412519. 63157486. 6139635. 6501433. 75798557. 6.06907. .71538. 30.26982	PERCENT 55156491. 3586491. 3586491. 4513519. 56191092. 64313713. 79439344. 63396371. 56191092. 64313713. 794395345. 63396371. 30.56129	5.00 5.5156491. 3588476. 445519. 25915310. 64077324. 79108364. 6.33324. 23.486337 .71538 30.53479	20.00 55156491. 3588476. 4412519. 11031298. 74188784. 7636995. 89037787. 23.48637 23.48637 31.32969
ACCOUNT TOTAL DIRECT COSTS, INDIRECT COST, PROF & GUNER COSTS, SUB TOTAL, SUB TOTAL, SUB TOTAL, SUB TOTAL, SUB TOTAL CAPITALIZATION; COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-CP & MAIN TOTAL COST OF ELEC	RATE + PERCENT 51.0 5.5 0 10.0 10.0 18.0 .0 .0	5.00 55156491. 3588476. 4512519. 3507. 66191092. 66191092. 6619267. 65293681. 778114892. 234892. 778124892. 30.43097	SCALATION R 6.50 55156491. 35588476. 4412510. 3033607. 66191562. 6434540. 6813713. 79439344. 6.4345637 23.455547 71538 30.55129	ATE PERCEN 8.00 55156491. 35884476. 3533607. 66191092. 7956070. 6934457. 81031619. 23.48637 71538 30.69276	T 10.00 55156491. 3588476. 4412519. 3033607. 66191092. 10005658. \$3293754. \$32937558. \$3293558. \$329558. \$329558. \$329558. \$329558. \$329558. \$32958.	.00 5588476. 3588476. 4412519. 3033607. 66191092. 6298765. 72489857. 52489857. 53. 496379 23.49637 .71538 30.00494
A CCOUNT TOTAL DIRECT COSTS, INDIRECT COST, PROF & DWNER COSTS, CONTINGENCY COST, SUB TOTAL, SUB TOTAL, COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-FUEL	RATE+ PERCENT 51.0 5.5 5.5 5.5 15.0 1.5.0 1.5.0 1.5.0	$\begin{array}{c} \bullet & 0 \\ \bullet & 0 \\$	INT DURING C 8.00 55156491. 3588476. 4412519. 3033607. 56191092. 54345490. 78067071. 5.24958. 23.466.37 5.24958. 30.45143	ONST • PERCEN 10.000 55155491. 3588476. 4412519. 3033697. 66131092. 6613713. 79439344. 6.35954 23.48637 30.55129	12 • 50 55156491 • 35884476 • 44125199 • 36131092 • 643345839 • 8535844740 8535849 • 811647140 23 • 49740 23 • 718538 30 • € 9915	15.00 55156491. 3588476. 4412519. 3033607. 6434540. 10265537. 8289165. 6.63587 23.4867 23.4867 23.4867 30.883762

,. • . .

:.

•

.

,

Table 5.9 U Continued	PAR	METRIC POI	NT NO. 1	LEGINIGI		
ACCOUNT TOTAL DIRECT COSTS, INDIRECT COST, PROF & OWNER COSTS, CONTINGENCY COST, SUB TOTAL, ESCALATION COST, INTREST DURING CONST, TOTAL CAPITALIZATION, COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	RATE + PERCENT 51-7 8.0 5.0 5.0 5.0 5.0 5.0 5.0 25.0 25.0 0 0 0	10.00 55156491. 3588476. 4412519. 3033607. 66191092. 6434540. 6434540. 6434540. 6434540. 6434540. 6434540. 6434540. 6433713. 79439344. 3.533087 23.486337 23.486337 23.486387 24.486387 24.486387 24.486387 24.486387 24.486387 24.486387 24.486387 24.486387 24.486387 24.537388 27.4373882 27.734882	IXED CHARGE 14.40 55156491. 3588476. 4412519. 303567. 66191092. 6434540. 6434540. 6434540. 5.08763. 23.48637. 23.48637. 23.28933.	RATE • PCT 18.00 55156491 • 3588476• 4412519• 3035607• 66191092• 64345713• 79439344• 6*359344• 6*358637 23.*8637 30.*56129	21.60 55156491. 3588476. 4412519 3033607. 66191092. 6813713. 79439344. 79439344. 7.631733. 23.48637 31.83319	25.00 55156491. 3588476. 4412509. 66191092. 6434540. 6813744. 8.88637 23.48637 23.48637 23.48637 33.03444
ACCOUNT TOTAL DIRECT COSTS, INDIRECT COST, PROF & OWNER COSTS, CONTINGENCY COST, SUB TOTAL, ESCALATION COST, INTREST DURING CONST, COST OF ELEC-CAPITAL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	RATE • PER CENT 51 • 0 5 • 5 6 • 5 10 • 0 18 • 0 18 • 0 • 0	F 5509 5515684769 4413609 66433609 66433713 7943359540 7943359543 13.574538 20.62475	UEL COST. 5/ 2.60 551564916. 3588476. 4412519. 3033607. 6634540. 6434540. 6434540. 6434540. 6335954 23.485554 23.495554 23.59554 23.495554 23.5955452 23.59554545545555555555555555555555555555	10 **6 BTU 4.00 55156491. 358476. 4412519. 30336092. 66434540. 6813713. 79439344. 5635954 36.35954 37.35954 37.57954 37.5795454 37.5795454 37.5795454 37.5795454 37.5795454 37.5795454 37.57954545545545545545545545554555455555555	$\begin{array}{c} 2 & 0 \\ 5 & 5 \\ 5 & 5 \\ 5 & 5 \\ 5 & 5 \\ 6 & 4 \\ 3 & 0 \\ 5 & 5 \\ 6 & 5 \\ 6 & 5 \\ 6 & 5 \\ 7 & 5 \\ 6 & 5 \\ 7 & 5 \\ 6 & 5 \\ 7 & 5 \\ 6 & 5 \\ 7 & 5 \\ 6 & 5 \\ 7 & 5 \\ 6 & 5 \\ 7 & 5 \\ 6 & 5 \\ 7 & 5 \\ 6 & 5 \\ 7 & 5 \\ 6 & 5 \\ 7 & 5 \\ 6 & 5 \\ 7 & 5 \\ 6 & 5 \\ 7 & 5 \\ 6 & 5 \\ 7 & 5 \\ 6 & 5 \\ 7 & 5 \\ 6 & 5 \\ 7 & 5 \\ 6 & 5 \\ 7 & 5 \\ 7 & 5 \\ 6 & 5 \\ 7 & 5 \\$	3.12 5.51568476 35588476 441336092 5.64313607 5.6431370 5.643137445 7945743 28.715513 28.725858 358368 35.525868 35.525868 35.525868 35.525868 35.5258688 35.5258858588 35.52588585888 35.5258858588 35.52588585888 35.525885888 35.52588588888 35.5258858888888 35.5258858888888888888888888888888888888
ACCOUNT TOTAL DIRECT COSTS+S INDIRECT COST+S PROF & OWNER COSTS+S CONTINGENCY COST+S SUB TOTAL+S ESCALATION COST+S INTREST DURING CONST+S TOTAL CAPITALIZATION+S COST OF ELEC-CAPITAL COST OF ELEC-CPE MAIN TOTAL COST OF ELEC	RATE - PERCENT 51*0 5.5 5.5 10.0 18.0 18.0 18.0 .0	$\begin{array}{c} 12.00\\ 5.5156491.\\ 35588476.\\ 4412519.\\ 3033607.\\ 664335713.\\ 664335713.\\ 79439344.\\ 79439344.\\ 79439344.\\ 79439344.\\ 23.46000.\\ 23.46000.\\ 61.53386\end{array}$	CAPACITY FAC 45.00 55156491. 3588476. 4412519. 3033607. 66131092. 6634540. 6813713. 79439344. 9.18600 23.48600 23.486072 34.37108	TOR PERCEN 50.00 55156491. 3598476. 4412519. 66191092. 66191092. 6813713. 8826740. 8826740. 23.486740. 23.486740. 23.48670. 32.59377	17 65 • 00 53598476 • 4412519 • 303367 • 66191092 • 6813713 • 79439344 • 6•35954 23 • 485954 23 • 485954 30 • 56129	80.564 91. 551588476. 4412519. 3033607. 66191097. 64345713. 794393447. 23.46712 23.463000 29.23349

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Curve 580367-A

Fig. 5. 47 —Effect of turbine inlet temperature and compressor pressure ratio on cost of electricity for a simple gas turbine cycle

for capacity factors of 12, 45, and 65%. The results show that for all capacity factors, the cost of electricity steadily decreases as turbine inlet temperature increases. Further, it indicates that higher compressor pressure ratios (above 16) generally give the lowest cost of electricity only at the highest turbine inlet temperatures investigated.

Results for similar calculations using the recuperated gas turbine cycles are shown in Figure 5.48. These results, all calculated for recuperator effectiveness of 0.8 and recuperator pressure drop of 0.03, similarly show that the cost of electricity steadily decreases as turbine inlet temperature is increased. It should be noted that the optimum pressure ratios for this recuperated cycle are generally lower than those for the simple cycle.

Figure 5.49 compares representative results of both the simple and recuperated cycle at the various capacity factor levels. At each capacity factor identical values of O&M expense were used; and for each system, compressor pressure ratios near the optimum for each system were selected. The results indicate that for these conditions the simple cycle enjoys a cost of electricity advantage at the 12% capacity factor, and the recuperated cycle enjoys the advantage at both 45 and 65% capacity factor.

All of the above studies were performed in conjunction with the use of conventionally air-cooled turbine blading. Additional actention was focused on the application of ceramic turbine blading. The results of this work are shown in Figure 5.50. Two levels of ceramic blading implementation have been introduced. First, ceramic stationary vanes in conjunction with air-cooled rotating blading have been considered; and second, both ceramic stationary vanes and rotating blading have been utilized. Each case has been considered at turbine inlet temperatures of 1478 and 1644°K (2200 and 2500°F). Cost of electricity results plotted against compressor pressure ratio indicate an optimum value of pressure ratio at 1478°K (2200°F) turbine inlet temperature of near 10 to 1. At 1644°K (2500°F) turbine inlet temperature, the optimum value is 12 to 1.

Fig. 5. 49 —Effect of turbine inlet temperature on the cost of electricity for simple and recuperated gas turbine cycles using equal operating and maintenance costs

5-98

REPR

ORIGINAL

OF THE

Fig. 5. 50 —Effect of ceramic blading turbine inlet temperature and compressor pressure ratio on cost of electricity for a recuperated gas turbine cycle

Fig. 5. 51-Influence of recuperator effectiveness and compressor pressure ratio on cost of electricity for a recuperated gas turbine cycle

In nearly all cases the use of both ceramic vanes and blades yields a lower calculated cost of electricity than does the use of ceramic vanes alone.

• • • • • • • • • • • • • • •

The influence of recuperator effectiveness on the cost of electricity has been investigated for a turbine inlet temperature of 1478°K (2200°F) used in conjunction with air-cooled vanes and blades. The results plotted in Figure 5.51 show the cost of electricity versus compressor pressure ratio for three values of capacity factor. It is evident that capacity factor plays a significant role in determining optimum recuperator effectiveness. A closer look at the influence of recuperator effectiveness is shown in Figure 5.52. This curve for 1478°K (2200°F) turbine inlet temperature and 10 to 1 compressor pressure ratio shows that for a 45% capacity factor operation, the optimum recuperator effectiveness is 0.83; and for a 12% capacity factor, the optimum value is 0.73.

The use of compressor intercooling in conjunction with recuperation has been studied at a turbine inlet temperature of 1478°K (2200°F). In this analysis, compressor pressure ratio was varied, and recuperator effectiveness was held constant at 0.8. The results of this calculation, as compared with the corresponding nonintercooled cycle variation, are shown on Figure 5.53. The first significant result of this comparison is that compressor pressure ratio optimizes at much higher values for the intercooled cycle, the optimum being 20 to 1 as compared with 10 to 1 for the nonintercooled case. The second important result is that optimum cost of electricity is generally lower for the intercooled case than for the nonintercooled variation.

Natural resource requirements consisting of coal requirements and land usage have been calculated for each parametric point. These results are given in Table 5.10. The coal usage rates for this tabulation are based on initial amounts required prior to coal processing.

Fig. 5. 52 - Influence of recuperator effectiveness on cost of electricity

Fig. 5. 53 — Recuperated cycle cost of electricity comparison intercooled and non-intercooled cycles

Table 5.10	OPEN	CYCLE SAS	TURBINE	NATURA	T SEZON	CE REQUI	LRENENTS	
PARAMETRIC POINT COAL + LB/KW-HR SORBANT OR SEED.LB/KW-HR TGTAL WATER • GAL/KW-HR COOLING WATER GASIFIER PROCESS HZC CONDENSATE MAKE UP WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION. TOTAL LAND ACRES/ICCHWE MAIN PLANT DISPOSAL LAND LANT TOR ACCESS RR	1.66000 .600000 .600000 .600000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .0000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .00000000	2 5 5 5 5 5 5 5 5 5 5 5 5 5	2 .27145 .000000 .000000 .0000000 .0000000 .000000	4 2.13398 .000000 .00000 .00000 .000000 .000000 11.855 .000 .000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .000000	5 2 .C5 & 2 : 5 .CC CCCC .CC CCCC .CC CCCC .CC CCCCC .CC CCCCC .CC CCCCC .CC CCCCC .CC CCCCC .CC CCCCC .CC CCCCC .CC CCCCC .CC CCCCCC .CC CCCCCC .CC CCCCCC .CC CCCCCC .CC CCCCCCC .CC CCCCCCC .CC CCCCCCC .CC CCCCCCCC	5 2 • £C 111 • C D D C C • C C C C C • C C C C C • C C C C C	7 2 .C2C45 .C0000 .C0000 .C0000 .C00000 .C00000 .C00000 .C00000 .000000 13.17 13.17 .000 .000	8 2 . (9189 . 000000
PARAMETRIC POINT COAL + L9/KW-HR SORSANT OR SEED +LE/KW-HR COOLING WATER • GAL/KW-HR COOLING WATER CASIFIER PROCESS H2: CONDENSATE MAKE UP • WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/ITCMWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	2.24 2.24	10 2.099500 .00000 .00000 .00000 .00000 .00000 .0000 .0000 .0000 .0000 .000 .00000 .00000 .0000 .00000 .0000 .0000 .0000 .00000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .00000 .00000 .0000 .0000 .0000 .00000 .0000 .00000 .00000 .0000 .0000 .000	11 2.01650 00000 000000 000000 000000 000000	12 12 12 12 12 12 12 12 12 12	13 .02731 .02000 .0000 .0000 .0000 .0000 .0000 .0000 .000 .000 .000	14 1.95578 .CCCCC .COCC .COCCC .COCCC .COCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCCCC .CCCCCCC .CCCCCCCC	1E 2.23026 .0000 .0000 .0000 .0000 .0000 .0000 .00000 .00000 10.10 .0000 .0000 .0000 .00000 .00000 .0000 .00000 .0000 .0000 .00000 .0000 .0000 .0000 .00000 .0000 .0000 .00000 .00000 .0000 .0000 .0000 .00000 .0000 .0000 .00000 .0000 .0000 .00000 .00000 .00000 .00000 .000000	16 2.03009 .0000 .0000 .0000 .00000 .00000 .000000
PARAMEIRIC POINT COAL, LB/KW-HR SCRBANT OR SEED,LB/KW-HR TOTAL WATER, GAL/KW-HR GOOLING WATER GASIFIER PROCESS H2C CONDENSATE MAKE UP, WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/ICEMWE MAN PLANT DISPOSAL LAND LAND FCR ACCESS RR	17 1.99158 .cccccc .ccccccc .ccccccc .ccccccc .ccccccc .ccccccc .ccccccc .ccccccc .ccccccc .cccccccc	18 1.920 45 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000 0.000000 10.000 10.000 10.000 0.0000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000 0.00000 0.0000	13 1.67376 .00000 .00000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .0000 .00000 .00000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .000000 .000000 .00000 .000000 .00000000	20 1.87938 00000 00000 000000 000000 0000000 000000	21 2.22714 *CCCCC *CCCCC *CCCCCC *CCCCCC *CCCCCC *CCCCCC *CCCCCC *CCCCCC *CCCCCC *CCCCCC *CCCCCC *CCCCCC *CCCCCCC *CCCCCCC *CCCCCCC *CCCCCCC *CCCCCCC *CCCCCCCC	22 	23 1.97278 00000 00000 00000 000000 000000 000000	29 1.87C97 • 00000 • 500 • 500 • 50000 • 500000 • 50000 • 500000 • 50000 • 500000 • 500000 • 50000 • 500000 • 50000000 • 50000000 • 5000000000000000000000000000000000000
PARAMETRIC POINT COAL, LB/KW-HR SORBANT OR SEED,LB/KW-HR TOTAL WATER, SAL/KW-HR GASIFIER PROCESS H2D CONDINSATE MAKE UP WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/ICCMWE MAIN PLANT DISPOSAL LAND	2529400000000 2529400000000000 4000000000000000 400000000	1.91940 1.91940 0.00000 0.000000 0.0000000 0.00000000	27 1.73157 . CCCCCC . CCCCCCC . CCCCCCCC . CCCCCCCC . CCCCCCCCC . CCCCCCCCCC	28 1.77955 .00000 .00000 .0000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .0000000 .00000000	29 1.82245 .000 .0000 .000000 .00000 .00000000	20 1.850100 .00000000 .00000000 .0000000 .0000000	71 1.70699 .60000 .0000 .000000 .0000000 .0000000 .0000000 .0000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .00000000	32 1.72151 .CCCCCC .CCCC .CCCC .CCCCC .CCCCCC .CCCCCC

REPRODUCIBILITY OF THE ORIGINAL FACE IS POOR

Table 5.10 Continued	OPEN C	YCLE GAS	TURBINE	NATUR	L RESOU	RCE REQUI	RENENTS	
PARAMETRIC POINT CCAL, LB/KW-HR SORBANT OR SEED,LB/KW-HR TGTAL KATER, GAL/KW-HR COOLING WATER GASIFIER PROCESS HZC CONDENSATE MAKE UP,	33 1.76413 .00000 .000 .000 .0000 .0000	34 1.89413 .CCCC .CCC .CCC .CCCC .CCCCC	35 1.66254 .00000 .000 .000 .000 .000 .000	35 1.68498 .COCCC .CCC .CCC .CCC .CCCCC .CCCCCC	37 1.77361 .00000 .000 .000 .000 .0000	38 1.89585 •00000 •0000 •000 •0000 •00000	39 1.62811 .0000 .000 .000 .0000	40 1.60642 .00000 .000 .000 .0000 .00000
WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/ICDHWI MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	.00000 .00000 .00000 .00000 .000 .000	•CCCCC •CCCCCC •CCCCCC •CCCCCC •CCCCCC •CCCCCC	•CCCC •OCODO •OCCCC •OCCCC •OCCCC	-CCCCC -CCCCCC -CCCCCC 1C-05 1C-05 -CC -CC	-CCCC -CCCCC -CCCCCC 10-15 -CC -CC	.000CC .000CC .CCCCC 10.41 10.41 .00 .CC	00000 00000 00000 00000 0044 00 00	•CCCC •CCCCC •CCCCC •CCCCC •CCCCCC •CCCCCC
PARAMETRIC POINT COAL. LB/KW-HR SORBANT OR SEED.LE/KW-HR TOTAL WATER. GAL/KH-HR COOLING WATER GASIFIER PROCESS H2C CONDENSATE MAKE UP . WASTE HANDLING SLURRY SCRUBBER WASTE WAATEP NOX SUPPRESSION	41 1.61303 .000 .000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	42 1.66786 .000 .000 .0000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	42 1.74547 .CCC .CCC .CCC .CCC .CCCCC .CCCC .CCCC .CCCC .CCCC .CCCC .CCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCCCC .CCCCCCC .CCCCCCCC	44 1.84293 *CCCC *CCC *CCC *CCCC *CCCCC *CCCCC *CCCCCC *CCCCCC *CCCCCCC	45 1.74208 .CCCC .CCC .CCC .CCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCC	46 1.71916 .CCCCC .COCO .CCCCCC .CCCCCCC .CCCCCCC .CCCCCCC .CCCCCCC .CCCCCCC .CCCCCCCC	47 1.72863 .CCCCC .CCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCCCCC	48 1.79390 .000 .000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000
TOTAL LAND ACRESICONNE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR PARAMETRIC POINT	49 1-89757	50 50 50 50	9-18 9-18 -CC -CC -CC	52 1.660089	10.33 10.33 •00 •00	10-12 10-12 -00 -00	10-06 10-06 -00 -00	10.14 10.14 .00 .00
SDRBANT OR SELD.LB/KW-4R TOTAL WATER.GAL/KW-HR COOLING WATER GASIFIER PROCESS H2C CONDENSATE MAKE UP WASTE HANDLING SLURFY SCRUBBER HASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/ICCMWE MAIN PLANT	- 00000 - 0000 - 0000 - 00000 - 0000 - 00	- CCCCC - CCCC - CCCC - CCCCC - CCCCCC - CCCCC - CCCCCC - CCCCCCC - CCCCCCC - CCCCCCC - CCCCCCC - CCCCCCC - CCCCCCC - CCCCCCC - CCCCCCC - CCCCCCCC	- CCCCC - CCCC - CCCCC - CCCCCC - CCCCC - CCCC - CCCCC - CCCCCC - CCCCCCC - CCCCCCCC	-00000 -0000 -0000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -000000	- CCCC - CCCC - CCCC - CCCCC - CCCC - CCCCC - CCCCCC - CCCCCCC - CCCCCC - CCCCCCC - CCCCCCC - CCCCCCC - CCCCCCC - CCCCCCCC	.00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000	-00000 -0000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -0000 -000 -0	-000000 -0000 -00000 -00000 -000000 -000000
DISPOSAL LANG LAND FOR ACCESS RR PARAMETRIC POINT COAL LB/KW-HR SODDANT OR SEED &LB/KW-HR YOTAL WATER, GAL/KW-HR	57 1.67542 .CCC .CCCC .000	58 1.76512 .000 .000	-00 -00 1.83673 -0000 -000	60 •00 •00 •00 •00 •00 •00 •00 •00 •00	61 1.66839 .0000	62 • 62 • 69316 • 69506 • 600	-09 -00 -00 1.78218 -0000 -000	- 64 - 64 1 - 9050 7 - 00000 - 00000
GASLING RALEN GASLFIE PROCESS H2C CONDENSATE MAKE UP WASTE HANDLING SLURRY SCRUBSER WASTE WATER NOX SUPPRESSION TCTAL LANC ACRES/ICCHWE MAIN PLANT DISPOSAL LANC LAND FOR ACCESS RR	•000000 •000000 •000000 •000000 •000000 •000000	*00000 *00000 *00000 *00000 *00000 *00000 *00000 *00000 *00000	+000 +00000 +00000 +00000 +000000 10+37 10+37 +00	•CCC •CCCCC •CCCCCC •CCCCCC •CCCCCC •CCCCCC	.00000 .00000 .00000 .00000 .00000 10.17 10.17 .00	200 00000 00000 00000 00000 00000 10 10 1	0000 00000 00000 00000 00000 00000 00000	0000 00000 00000 00000 0000 000 000 00

Table 5.10 Continued	OPEN CYCLE GA	S TURBINE NATUR	AL RESOURCE REQUI	REHENTS	
PARAMETRIC POINT CCAL, LB/KK-HR SORBANT OR SEED.LB/KK-HR CDOLING WATER GAJ/KK-HR CDOLING WATER GAJ/FIER PROCESS H2C C7NDENSATE MAKE UP VASTE HANDLING SLURFY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/IDCHWE HAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	55 56 500000000	67 67 68 1.57917 1.5288C .CCCC .CCCC .CCCC .CCCC .CCCC .CCCC .CCCC .CCCC .CCCC .CCCC .CCCC .CCCC .CCCC .CCCCCC .CCCCC .CCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCC .CCCCCCCC	69 70 1.53698 1.54877 .00000 .00000 17.287 18.492 .000 .0000 .00000 .00000 .00000 .00000 .00000 .00000 17.2872218.49369 30.56 30.10 6.80 8.71 .00 .00 21.77 21.40	71 72 • 56787 1 • 56944 • 00000 • 00000 • 0000 • 0000 • 0000 • 00000 • 0000 • 00000 • 00000 • 000000 • 00000 • 00000 • 00000 • 000000 • 000000 • 000000 • 00000 • 00000 • 000000 • 000000 • 0000000000	
PAPAMETRIC POINT COAL, L3/KW-HR SORBANT OR SEED.LB/KW-HR TOTAL WATER, GAL/KW-HR GASIFIER PAPER COOLING NATER GASIFIER HASTE WASTE HANDLING SLURRY SCRUBBER HASTE WATER NOX SUPPRESSION TOTAL LAND ACHES/ICCHWE MAIN PLAM(DISPOSAL LAND LAND FOR ACCESS RR	73 74 1.59175 1.66529 .CCCC .CCCCC .CCC .CCC .CCC .CCCC .CCCC .CCCC .CCCC .CCCC .CCCC .CCCCC .DDDDC .CCCCC .DDDDC .CCCCC .CCCCC .CCCCC .DDDDC .CCCCC 	70 76 1.76552 1.57259 .02000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .000 .0000 .000 .0000 .000 .0000 .000 .000	77 78 1.55398 1.56123 .00000 .0000 .0000 .0000 .00000 .0000 .00000 .0000 .00000 .0000 .00000 .00000 8.89 8.77 8.89 8.77 .00 .00	79 80 1.60725 1.67731 .0000 .000 .000 .000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .00000 8.73 8.92 .00 .00	٠
PARAMETRIC POINT COAL + LB/KW-HR SORBANT OR SEED + LB/KW-4R TOTAL KATER + GAL/KW-HR GOJING WATER GASIFIER PROCESS H2C CONDENSATE MAKE UP WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/1COMWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	81 82 1.76155 1.55467 .00500 .0050 .000 .000 .000 .0000 .0000 .00500 .0000 .00500 .0000 .00500 .0000 .00500 .0000 .00500 .0000 .00500 .0000 .0000 .000 .0000 .000 .000 .	83 84 1.50974 1.53112 .00000 .00000 .0000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .0000 .00000 .0000 .00000 .0000 .00000 .0000 .00000 .0000 .00000 .0000 .00000 .0000 .00000 .0000 .00000 .0000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .000000 .00000 .00000 .00000 .000000 .00000 .00000 .00000 .0000000000	85 86 1.59742 1.68452 .00000 .0000 .000 .0000 .0000 .0000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .000 .000	87 88 1.43348 1.42566 .0000 .0000 .000 .0000 .0000 .00000 .0000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .000 .000 .000 .000	
PARAMETRIC POINT CDAL, LB/KW-HR SORBANT OR SEEC.LE/KW-HR TOTAL WATER, GAL/KW-HR GASIFIER, PROCESS H2C CONDENSATE MAKE UP WASTE HANDLING SLURRY SCRUBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/IECMWE HAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	89 SC 1.43217 1.45736 .CCCCC .CCCCC .DDD .CCC .DDDC .CCCCC .DDDCC .CCCCC .DCCC .CCCCC .DCCC .CCCCC .CCCCC .CCCCC .CCCCCC .CCCCCC .CCCCCC .CCCCCCCCCC	91 1.51925 1.52000 .60000 .60000 .60000 .60000 .60000 .600000000 .6000	93 54 1.666500 1.30089 .0000 .0000 .000 .000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .000 .000 .000 .000	95 56 1.48535 1.43524 .00000 .00000 .496 .456 .00164 .00000 .00164 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .000 .00000 .000 .00000 .000 .00000 .000 .00000 .000 .000000 .000 .000000 .000 .000000 .000 .000000 .000 .000000 .000 .000000 .000 .000000 .000 .000000 .000 .000000 .000 .000000 .000 .000000 .000 .000000 .000 .000000 .000000000000000000000000000000000000	97 1.31884 .00000 .414 .00000 .00000 .0000000 .0000000 .0000000 .0000000 .0000000 .0000000 .00000000

ABRKPT PRINTS

.'

U

5-106

Ģ

5.7 Conclusions and Recommendations

5.7.1 Conclusions

An analysis of the recuperated open-cycle gas turbine system in comparison with the other ECAS Task I power generation concepts indicates that the simple cycle, recuperated cycle, and recuperated cycle with intercooling are lowest in cost of electricity over a wide range o intermediate- and low-capacity factors.

h

Conclusions regarding identification of optimum configurations within the scope of the recuperated gas turbine cycle can be drawn with respect to several criteria.

It was determined that cost of electricity is a steadily decreasing function with progressively higher turbine inlet temperatures. This result was found to apply to both simple and recuperated cycles (turbine inlet temperature variations were not studied with the intercooled recuperated cycle). Further, up to the maximum turbine inlet temperatures studied, 1644°K (2500°F), no minima in the cost of electricity versus turbine inlet temperature curves were found.

Selection of compressor pressure ratio for a minimum cost of electricity is a function of several variables, the principal ones of which are turbine inlet temperature, cycle configuration and capacity factor. For the simple cycle at 12% capacity factor, optimum pressure ratios for turbine inlet temperatures 1478 to 1644°K (2200 to 2500°F) lie in the range of 12 to 16 to 1. For the nonintercooled recuperated-cycle configuration at a 1478°K (2200°F) turbine inlet temperature and 45% capacity factor the optimum compressor pressure ratio is approximately 10 to 1, while at 1644°K (2500°F) and the same capacity factor the optimum is 12 to 1. The recuperated cycle with compressor intercooling has markedly higher optimum compressor pressure ratios. At a turbine inlet temperature of 1478°K (2200°F), it was determined that the optimum compressor pressure ratio is 20 to 1.

Of the recuperator parameters studied, recuperator effectiveness has the most significant impact on the cost of electricity. In turn, selection of recuperator effectiveness for minimum cost of electricity is strongly influenced by power generation capacity factor, as discussed in Section 5.6. It is concluded that since the recuperated cycle is ideally suited for intermediate duty, the optimum recuperator effectiveness identified for 45% capacity factor (recuperator effectiveness 0.83) should be used for further conceptual design and development assessment work.

Related studies have shown the last-row turbine blade to be a key limiting item in higher-temperature design considerations. Due to the relatively low optimum compressor pressure ratio of the nonintercooled recuperated cycle and the corresponding higher exhaust temperatures, the potential problem is especially important. Although not explicitly determined in this study, it has been tentatively concluded that uncooled last-row turbine blades of conventional materials would not have sufficient strength and life for operation at higher temperature conditions than 1478°K (2200°F) at a 10-to-1 compressor pressure ratio. Higher temperature recuperated-cycle operation with the size of units under consideration will in all likelihood require a breakthrough in materials development, such as fiber-reinforced composite blading materials.

The performance and cost results for the intercooled option are most encouraging. Relatively little optimization of parameters was performed, however (turbine inlet temperature variations were not considered; the effect of water condensation in the compressor was not considered; and a complete turbomachine cross-sectional arrangement drawing was not prepared). Further work in defining more completely the conceptual plant layout would be most useful.

5.7.2 Recommendations

In order to realize the potential benefits of the recuperated open gas turbine cycle and its associated variations, development work must proceed in the following areas:

> • A tension-braze plate-fin recuperator capable of lowcapacity factor cyclic operation with low maintenance

requirements at turbine exhaust temperatures to 922°K (1200°F) is not currently commercially available. Development of such a unit will be required.

- Turbine blade air-cooling techniques, capable of continuous operation to at least 1644°K (2500°F) or higher must be developed to achieve maximum benefit with the recuperated cycle.
- Material developments in the areas of turbine blading and combustion section components will be required to realize the benefits that accrue from minimizing the expenditure of cooling air. Recommended areas for development include the application of ceramics to turbine blading and combustion section components.
- It is recommended that composite fiber reinforced turbine blade development be initiated for eventual application in last-row turbine blade designs.
- Preparation of a more complete conceptual design study of a recuperated, intercooled gas turbine power plant is recommended. To be included in such a study would be a detailed engine cross-sectional design, selected thermodynamic parameter variation, and consideration of specific operational details such as compressor condensation.

5.8 References

- 5.1 B. F. Dodge. Chemical Engineering Thermodynamics. New York: McGraw-Hill Book Company, 1944.
- 5.2 T. L. Kang, L. J. Hirth, K. A. Kobe, and J. J. McKelta. "Pressure-Volume-Temperature Properties of Sulfur Dioxide," Journal of Chemical and Engineering Data, Vol. 6: <u>2</u> (April 1961), pp. 220-226.

- 5.3 E. I. DuPont de Nemours and Company. "Thermodynamic Properties of FREON^R 12 Refrigerant (Dichlorodifluoromethane)," Pamphlet T-12, 1956.
- 5.4 B. J. McBride, S. Heimal, J. G. Ehlers, and S. Gordon, "Thermodynamic Properties of 6000°F for 210 Substances Involving the First Eighteen Elements," NASA Report SP-3001, 1963.
- 5.5 J. R. West and G. P. Glusti, "The Thermodynamic Properties of SO₂," Journal of Physical Chemistry, Vol. 54, (1950), pp. 601-605. (wichout tables); Document 2708, American Documentation Institute (with tables).
- 5.6 T. L. Kang and J. J. McKetta, "Application of Benedict-Webb-Rubin Equation of State to SO₂," Journal of Chemistry and Engineering Data Vol. 6, <u>2</u> (April, 1961), pp. 227-228.
- 5.7 T. L. Kang and J. J. McKetta, "Thermodynamic Properties of SO₂," Journal A.I.Ch.E., Vol. 7:3 (1961), pp. 418-422. Reprint No. 59, University of Texas, Bureau of Engrg. Research (has more complete tables).
- 5.8 O. A. Hougen and K. M. Watson, Chemical Process Principles, New York, John Wiley and Sons, Inc., 1947.
- 5.9 Private Communication, Airesearch Manufacturing Company Division of the Garrett Corporation, Recuperator Pricing Variation.