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SUMMARY

Four fuel cell power systems, differentiated by electrolyte type,

have been investigated from cost and efficiency standpoints. For the

phosphoric acid system, operating at 190°_, a power plant efficiency, an

overall energy efficiency (based on the limiting value of the coal employed

in the production of the power plant fuel), a capital cost and a cost of

electricity were calculated for each of sixteen points in the parametric

assessment. Similar calculations were performed for aqueous alkaline fuel

cell power plants at 343°K [70°C (158°F)] (16 points), molten carbonate

plants at 923°K [650°C (1202°F)] (17 points), and stabilized zirconia

plants at 1273°K [IO00°C (1832°F)] (20 points).

In parametric assessments, the following parameters were varied:

useful llfe and rating of the fuel cell subsystem, fuel cell power density

and electrolyte thickness, fuel and oxidant types, performance degradation

over the useful llfe of the fuel cell subsystem, anode and cathode catalyst

loadlngs in the acid and alkaline systems, and temperature of operation

and use of waste-heat recovery systems in the molten carbonate and stabilized

zirconia power systems. Four of these -- fuel cell useful life and power

density, use of a waste-heat recovery system, and fuel type -- proved to be

of particular importance in efficiency improvement and/or electrlclty-cost

reduction.

Typical capital costs, overall energy efflciencies, and

electricity costs of fuel cell power plants were found to be as follows:

• Phosphoric acid $350-450/kWe, 24-29%, and 11.7 to 13.9 mills/

MJ (42 to 50 mills/kWh)

• Alkaline $450-700/kWe, 26-31%, and 12.8 to 16.9 ,,111s/MJ

(46 to 61 mills/kWh)

• Molten carbonate $480-650/kWe, 32-46%, and I0.6 to 19.4 mills/

MJ (38 to 70 mills/kwh)
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• Stabilized girconia $420-950/kNe, 26-53Z, and 9.7 to 16.9 mills/

MJ (35 to 61 mills/kNh).

Projections as to the lowest possible cost of electricity (in mills/kNh)

for the acid, alkaline, carbonate, and zirconia systems are mid to high

30's, low 40'sp low 3O's, and high 20's, respectively.

Three types of fuel cell power plants are recommended for further

study in the conceptual design (Task IT) and implementation assessment

(Task Ill) phases of the Energy Conversion Alternatives Study. These are:

(1) solid-electrolyte plant with steam bottoming; (ii) molten carbonate

plant with steam bottoming; and (iii) solid electrolyte plant with an

integrated coal-gaslflcation reactor for waste-heat recovery (the

Westinghouse Fuel Cell Power System).

vi



13. FUEL CELLS

13.1 State of the Art

Fuel cell power-generation systems may be grouped in four dis-

tinct classes differentiated by electrolyte type. These are:

• Aqueous acid, which encompasses systems based on phos-

phoric and sulfurlc acids, and the solid polymer elec-

trolyte

• Aqueous alkali, based on potassium hydroxide and buf-

fered carbonate-bicarbonate solutions

• Molten salt, specifically molten carbonates

• High-temperature solid electrolyte, specifically sta-

bilized zlrconia.

NASA has specified that the minimum power plant rating to be

considered in this study should be 25 MWe. No fuel cell power system of

even two orders of magnitude lower in rating has been constructed or

operated, so there is no utility experience to guide this investigation.

All that is available is the self-serving advocacy of their own systems

by the corporations engaged in fuel cell research. While there are, of

necessity, some constraints on the published estimates of system efflci-

encies, there appears to be no such restraint shown in the projections of

the expected cost and performance of the fuel cell subsystems.

A fuel cell power plant will consist, in general, of fuel-

processing and power-conditioning equipment in addition to the fuel cell

subsystem. Most of the effort of this study was directed toward the fuel

cell component because of the greater degree of uncertainty with respect

to its cost and performance. Further, as no fuel cell power plant con-

cept has been conclusively demonstrated as optimal from the standpoints
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of technical feasibility or economic desirability, four base cases are

considered, rather than the minimum of two mandated by the contract work

statement, with one base case selected from each of the four electrolyte-

type categories described above.

The scientific literature pertaining to fuel cells was reviewed

in order to facilitate this selection procedure and, particularly, to

assist in establishing a meaningful framework of parametric values.

Within each of the four general areas the fuel cell power systems were

considered from the standpoint of their suitability for use in central-

station power generation. Among the more important considerations were

the voltage efficiency, demonstrated cell and battery useful lifetimes,

life-limiting processes, quantities of noble-metal catalysts required,

problems posed by the use of coal-derlved fuels, and the state of the art

with respect to the engineering of the overall power systems. The re-

sults of the literature survey in each area are outlined in the following

subsections.

13.1.1 Aqueous Acid Fuel Cells

Systems based on three distinct electrolyte types have been

considered in this area:

• Phosphoric acid fuel cells, which operate in the tem-

perature range 423 to 463"K (302 to 374°F)

• Solid polymer electrolyte fuel cells_ operating at

348 or 423°K (167 or 302°F), depending on whether air

or oxygen is employed as the oxidant

• Sulfurlc acid fuel cells which operate at approxi-

mately 333°K (140°F).

The Power Systems Division of United Technologies Corporation

(formerly Pratt and Whitney Aircraft Division of United Aircraft) is the

undisputed leader in acid fuel cell systems. It has field-tested com-

plete power systems of up to 40 kW capacity and is currently building

26 MW systems (FCG-1) for a number of utilities. The preferred system
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employsimmobilizedphosphoricacid electrolyte at temperaturesbetween
423and463°K(302and374°F). Thehigher temperaturesin this rangeare
desirable mainly becauseof air electrode (cathode)activity, but they
also serve to accelerate llfe-llmiting processessuchas platinum elec-
trocatalyst recrystallization and degenerationof the phosphoricacld
matrix. Oneproblemwith this systemis typical of all acid systems---
fuel electrode deterioration due to carbonmonoxideblockageof active
sites on the anodeelectrocatalyst, thus denyingthemto the electro-
chemically moreactive hydrogen. This problemis a gooddeal less
severehere than in other acid systemsbecausethe fuel electrode func-
tions adequately,provided the carbonmonoxideconcentration in the fuel
gas is maintainedat 0.5%or below.

In a recent ERDA-directedassessmentstudy of devices for the
generation of electricity from stored hydrogen,conductedat Argonne
National Laboratory (ANL),an efficiency of 38%(basedon the higher
heating value of the fuel gas) wasquotedby United Technologiesperson-
nel for a fuel consisting of a typical reformer effluent gas, shifted

(and perhaps methanated) to meet the carbon monoxide concentration speci-

fications quoted above (Reference 13.1). The selling price (FOB factory)

of the fuel cell power system, including the inverter, was given as

$225/kW of installed capacity. If an allowance for the inverter system

of $40/kW (Reference 13.2) is subtracted from this total, the final cell

subsystem cost is $185/kW. The targeted (but as yet unachieved) useful

life of the power system is 144 Ms (40,000 hr) of operation w_th a 5%

loss in efficiency in that period.

Over the past 630 Ms (20 yr), the General Electric Company has

developed a fuel cell based on an electrolyte consisting of a porous fllm

of a fluorocarbon with chemically-bound sulfonlc acid groups

(Reference 13.3). The solid polymer electrolyte (SPE), developed and

marketed by DuPont under the tradename NAFION, Is reportedly extremely

stable in the fuel cell environment. With near ambient-pressure air as

oxidant, the optimum temperature of operation is approximately 348°K

(167°F). Because the alr (and fuel) streams must be presaturated to
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ensure membrane stability, higher temperatures cause excessive dilution

of the oxygen in the air stream by water vapor. When oxygen is employed,

operational temperatures up to 423"K (302"F) are possible.

State-of-the-art performances are 180 mW/cm 2 (167 W/it 2) of

active area at 0.66 V per cell (44% HHV) with air at 348°K (167"F) and

470 mW/cm 2 (437 W/ft 2) at 0.75 V per cell (51% HHV) with oxygen at 423°K

(302°F) (Reference 13.4). This work has also shown that at 348"K (167°F),

with a fuel gas containing 0.3% carbon monoxide, the current noble metal

catalyst will not tolerate this carbon monoxide level without a prohibi-

tive performance loss, even at noble metal Ioadlngs in the anode of ap-

proximately 4 mg/cm 2 (5.69 x 10 -5 Ib/in 2) (Reference 13.4). This

phenomenon, discussed above, is obviously an even severer limitation

on this power system. The state-of-the-art fuel cell manufacturing cost

(not selling price) is estlmated to be approximately $400/kW for the

system operating on hydrogen and air. Of this total, approximately

$260/kW is attributable to the noble-metal loadings and approximately

$120/kW to the membrane. The economic viability of this system is seen,

therefore, to depend on significant breakthroughs in the areas of noble-

metal loading reductions and membrane substitution or cost reduction, as

well as the development of methods for the lowering of the carbon monox-

ide content substantially below concentrations of 0.3%. A carbon monox-

ide concentration of 10 ppm is considered to be tolerable

(Reference 13.3).

Sulfuric acld-based systems, in which the anode electrocatalyst

is tungsten carbide, do not suffer from the carbon monoxide poisoning

problem described above for the phosphoric acid and SPE systems

(Reference 13.5). As is usual in sulfuric acid systems which operate

typically at approximately 333°K (140°F), however, the major problem is

the low activity of the cathode even when it is operated on oxygen. A

further problem arising with long-time operation is the need to reject

the water formed in the cathode reaction.

The phosphoric acld-based system was chosen as the best repre-

sentative of the acid systems because it is the fuel cell which best
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addressesthe problemsof tolerance towards carbon monoxide and minimi-

zation of noble-metal loadings while maintaining high levels of anodlc

and cathodic activities. The confidence of the electrical utilities, as

displayed by their support of the United Technologies fuel cell program,

tends to support this Judgement.

13.1.2 Alkaline Fuel Cells

The systems considered in this electrolyte-type group are those

based on 30 wt % aqueous potassium hydroxide solutions at approximately

343°K (158°F), 75 wt % aqueous potassium hydroxide solutions at approxi"

mately 473°K (392°F), and saturated carbonate-bicarbonate aqueous solu-

tions at temperatures of approximately 333°K (140°F). Although alkaline

hydrogen-oxygen (H2-O 2) fuel cells have been investigated by many com-

panies, principally Union Carbide, Shell (U.K.), Allis Chalmers, United

Technologies, Exxon, Alsthom (France), Varta (G.F.R.), and Siemens

(G.F.R.), only a small fraction of the overall effort has been devoted to

the use of carbonaceous fuel gases. This neglect is principalky due to

problems associated with carbonation of the electrolyte by carbon dioxide

in air or the fuel gas, or from the oxidation of carbon monoxide from the

dissolution of the carbon dioxide formed in the alkaline electrolyte.

Various techniques (References 13.6) have been employed to

overcome this problem in bench-scale systems. The electrolyte is circu-

lated in the Allis-Chalmers methanol-oxygen system and is regenerated ex-

ternally. The Shell (U.K.) methanol-air system employs a silver-palladium

tube to separate the hydrogen from the gas mixture after external refor-

mation, so that carbon-containing gases do not have access to the elec-

trolyte. A similar scheme has been employed by United Technologies to

provide hydrogen, formed by steam reformation of carbonaceous fuels, to

the fuel electrodes of Bacon cells. This technique is impractical from

technical and economic considerations in fuel cell power plants of the

type considered in this study.

Cons,ercial acid gas-scrubbing systems---for example, Lurgi

Rectisol and Benfield---are available, which will permit reduction of the
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carbon dioxide content of feed streams to less than 10 ppm. There is,

however, a serious question as to whether this level is sufficiently low

to prevent electrolyte carbonation and, worse still, solid potassium car-

bonate formation in the pores of the gas diffusion electrodes, thereby

leading to relatively rapid performance degradation. The problem of

electrolyte carbonation may be dealt with by electrolyte circulation,

followed ultimately by replacement with fresh caustic solution, or by

cyclic decarbonation of the electrolyte in an external electrolytic cell,

as proposed for the Exxon-Alsthom methanol-elf fuel cell power system

(Reference 13.7).

Scrubbing carbon dioxide from the air feed to the alkaline fuel

cells may also be accomplished by the Lurgi and Benfield processes. This

would probably be as expensive as the fuel gas scrubbing described above,

despite the much lower carbon dioxide content of air, as the capital

costs of the processes are a strong function of the total number of moles

of throughput gas. Another approach involves simple caustic scrubbing of

the incoming air. This could cost as little as $5/kN (Reference 13.8).

Rather than dispose of the approximately one ton of potassium carbonate

formed each day in a 25 MW fuel cell power plant, it is probably more

desirable to regenerate the caustic by the Exxon-Alsthom technique

alluded to above.

Despite the problems associated with scrubbing carbon dioxide

from the fuel gas and air feeds, alkaline fuel cell subsystems are very

attractive for large-scale power generation from the standpoints of cost

and useful life. For example, long-lived air cathodes in alkaline solu-

tion operate with sisniflcantly better polarization characteristics than

they do in acidic solutions. This is all the more remarkable since these

cathodes do not require noble metals. Silver may be employed as the

perhydroxlde ion elimination catalyst with a concomitant substantlal

lowering of catalyst cost. A further advantage of alkaline fuel cell

power systems is that nickel at approximately $4.41/kg ($2/lb) is stable

in the cell environment. In contrast, acid systems are restricted to
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graphite andother carbonproducts becauseof the prohibitive expenseof
tantalum at $117/kg($53/ib) andniobium at $33/kg ($15/Ib).

Estimatedoverall systemeff!ciencles for alkaline fuel cell
powersystems,using carbonaceousgas as a fuel, are similar to those
quotedfor acid systems,about 35 to 40%. The efficiency advantage of

the alkaline fuel cell, resulting from lower cathodic polarization, is

almost totally negated by the efficiency penalty associated with elimina-

tion of carbon dioxide from the air and fuel gas streams (Reference 13.9).

An alkaline fuel cell, operating in 30 wt % potassium hydroxide

solution at approximately 343°K (158°F) has been selected to represent

this class of fuel cells in the rest of this study. It is preferred over

the Bacon fuel cell, which operates typically in 75 wt % potassium hy-

droxide solutions at temperatures in excess of 473°K (392°F), because of

the well-known severe corrosion problems of this latter system. In con-

trast, the Exxon-Alsthom carbonate-blcarbonate fuel cell is disqualified

from further consideration because of problems relating to low cathodic

activity due mainly to excessive concentration polarization

(Reference 13.8).

13.I.B Molten Carbonate Fuel Cells

No large molten carbonate fuel cell batteries have been pro-

duced. Systems studies have been made for 15 to 22 kW units by Texas

Instruments (Reference 13.10) and IGT (References 13.11 and 13.12); and

United Technologies has a development program on which few details have

been published (References 13.13 and 13.22). Broers (References 13.14

and 13.15) did much of the earlier research on the devices upon which

current technology is based but did little work on multiple-cell devices.

Texas Instruments designed a 1 kW test unit which was delivered

to the U. S. Army Mobility Equipment R&D Center at Fort Belvolr, Virginia.
0

IGT has operated fuel cell batteries in excess of 2 kW, but the results

of their recent work are not published. These units use a separate re-

former to supply a suitable mixture of hydrogen and carbon monoxide to

the cells.
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An economic assessment of molten carbonate fuel cells for large-

scale power production with propane feed to an integrated reformer-molten

carbonate fuel cell system was published by Hart and Womack

(Reference 13.16) iu 1967. The calculations they presented were based in

part on the unpublished work at the Central Electricity Generating Board

Research Laboratories and Marchwoed Engineering Laboratories. They used

a fuel cell model representing their projection of the best fuel cell

performance to be expected in the near future plus an estimation of the

cost of individual parts of the model cell. The fuel cell operating at

maximum power was assumed to use its waste heat to generate steam. This

steam supplied a steam turbine generator for additional power generation.

For this system a plant efficiency of 46.5Z was calculated based on pro-

pane feed as the fuel and assuming that a propane reformer was integrated

with the fuel cell system. They concluded that initial capital costs for

the system would be at least 25Z higher than for a coal-fired steam tur-

bine generator system of similar life. Since the fuel cell life was ex-

pected to be short [optimistically 157.7 Ms (5 yr) compared to perhaps

315.4 to 630.? Ms (10 to 20 yr) for a gas turbine and 630.7 to 946.1 Ms

(20 to 30 yr) for a steam turbine], they concluded that such a fuel cell

plant was not economically attractive. The economics of a fuel cell for

domestic power are different, and yon Fredersdorff (IGT) published an

analysis of the molten carbonate fuel cell for this use in 1963

(Reference 13.17), concluding that the system could be economical if the

fuel cell investment cost was no more than $300 over a 315.4 Ms (10 yr)

operation.

All costs---fuel costs in particular----are much higher now than

they were at the time of the earlier studies. The molten carbonate fuel

cell power capability has been improved significantly; and there are

stricter regulations on emissions from power plants, substantially in-

creasing capital cost and reducing efficiency.

The practical efficiencies which may be attained for large fuel

cell batteries of this type, based on small battery performance, are still
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in dispute, but 45%efficiency based on the higher heating value (HHV) of

natural gas is probably feasible (Reference 13.18).

The cells with highest performance reported recently use a

paste electrolyte of alkali alumlnates suggested by Broers

(Reference 13.15), a nickel anode and lithlated nickel oxide cathode.

The cells give useful power densities at 9230K (1202°F) of up to about

161 mW/cm 2 (150 W/it 2) using air as oxidant, depending on the fuel

gas. Oxygen allows greater power densities. Cell temperatures of 873 to

I023°K (1112 to 1382°F) have been used, and corrosion problem increases

at the higher temperatures.

In large systems it is anticipated that increased efficiency

can be attained by recovering waste heat and using it to generate steam

for use in a steam turbine or as process steam, as suggested by Hart and

Womack (Reference 13.16). The highest efficiency plants would be large

ones to minimize the turbogenerator plant costs.

If methanated (hlgh-Btu) gas or methanol is used as a fuel, a

reforming step is necessary. A higher efficiency is attainable if this

can be accomplished on the fuel cell electrodes or nearby surfaces _Ithln

the cell, since the reforming process absorbs heat which would be supplied

in situ by the heat produced at the electrodes of the molten carbonate

cell. Although a commercial reformer operates at a higher temperature

than does the molten carbonate cell, the large electrode area within the

cell and the probable slower throughput per unit area makes internal re-

forming a reasonable possibility. Experiments on internal reforming or

reforming on a catalyst at the same temperature as the fuel ceil have

been successful (References 13.19 and 13.20), but the feasibility of in-

ternal reforming at high power densities in multicell systems is still to

be demonstrated. The fuel cell plant would have a clean exhaust, since

most of the sulfur is removed from the fuel gases initially, and oxides of

nitrogen are not formed in significant quantities at these low tempera-

tures. Unused fuel gases can be burned with excess oxygen in the cathode

exit gas stream.
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In addition to the fuel cell plant cost analysis reported by

Hart and Womack for large-scale power production by a molten carbonate

system, Bockris and Srinivasan (Reference 13.21) present a list, from

different sources, of recent (1969) and future fuel cell costs. A pro-

jected cost for the molten carbonate cell system attributed to Broers is

$600/kW for large-scale production using natural gas and a reformer.

More recently, United Technologies reports (References 13.13 and 13.22)

an estimate of _ $225/kW capital cost (EPRI RPII4 Program) for the molten

carbonate system with a lower heating value (LHV) efficiency of 47%.

They also report multicell life tests, in conjunction with the Electric

Power Research Institute, of 36 Ms (i0,O00 hr) between overhaul, are good

performance stability during subscale tests, some of which lasted more

than 18 Ms (5000 hr).

Broers and IGT have also reported up to 36 Ms (i0,000 hr) fuel

cell llfe, but there is no consensus on the eventual maximum which may be

possible.

Variations of the Broers type of molten carbonate fuel cell

have been suggested, such as the use of a liquid lead electrode catalyst

for oxidation of solid forms of carbon or coal (Reference 13.23), but

none has received an extended study effort or been developed as yet.

In summary, on the basis of available information, the eventual

useful fuel cell llfe, cost, type of reforming necessary, and efficiency

are still very questionable.

13.1.4 Stabillzed Zirconia Fuel Cells

High-temperature solid electrolyte fuel cells have many advan-

tages over other types of fuel cell. As Markln describes

(Reference 13.24), these are:

• There are no liquids involved, so problems associated

with pore flooding and maintenance of a stable three-

phase interface are totally avoided
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• The electrolyte composition is invariant and does not

depend on the composition of the fuel and oxidant

streams

• Activation polarization losses are negligible.

Further, a power system, based on the use of stabilized zirconla at

operating temperatures of approximately 1273°K (1832°F), has a unique ad-

vantage when coal is employed as a fuel in that the waste heat, generated

because of the thermodynamic and electrochemical inefficiencies of the

fuel cells, may be used directly in the gasification of coal, thus pro-

viding fuel gas for the fuel cells. This thermal coupling leads to high

overall efficiencies for the power system, and practical efficiencies of

greater than 60% are considered possible (Reference 13.25). This effi-

ciency is all the more remarkable because this type of power system em-

ploys coal, rather than natural gas, methanol, or naphtha, as a fuel.

The disadvantages of this fuel cell are related to:

• The relatlvely high electrolyte resistivity

• The need for an effective, low-cost method of inter-

connection of cells to form a battery

• Problems involving battery component interactions and

adequate sealing techniques.

Many companies and other research organizations [e.g., Westinghouse,

General Electric, C. G. E. (France), Brown Boverl (G. F. R.), Battelle

(Geneva, Switzerland), and AERE (Harwell, England)] have explored possi-

ble solutions to these problems in their efforts at component development

and device fabrication. The largest device demonstrated to date was

based on a bell and spigot geometry. It was constructed and operated by

the Westinghouse Electric Corporation and delivered 100 W of electrical

power (References 13.25 and 13.26).

The Westinghouse thln-film concept (Reference 13.27) provides

an economical and effective method for the serles-connection of individ-

ual cells in a solld-electrolyte battery. The largest of these devices
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demonstrated to date delivered 8 W and lived for approximately 360 ks

(100 hr)--the first 108 ks (30 hr) saw a 5% voltage degradation at a given

current output (Reference 13.28). The llfe-llmltlng problem lay in the

intercormection-electrolyte Junction where inadequate sealing led to fuel

gas leakage, resulting in air electrode reduction and, ultimately, per-

formance degradation. This design has been selected for this study.

13.2 Description of Parametric Points

To facilitate a comprehensive comparison of the four fuel cell

power-generatlon systems, the parameter values listed in Table 13.1 below

were fixed for the base cases of all systems.

Table 13.1 - Base Case Values Common to All Systems

Parameter Value

Slze of Bower Plant

Type of Fuel

Type of Oxidizer

Fuel Cell Useful Life

25 FIN dc

lligh-Btu gas

Air

I0,000 hr

(5% efficiency

degradation)

The smallest system to be to be considered in this study, 25 MN,

was chosen for the base cases, as no economies of scale are expected for

the fuel cell subsystem. Further, no fuel cell power system of even

two orders of magnitude lower in rating has been constructed or operated,

so that even in this small a power plant the system problems can only

be addressed in the most general fashion, as will be evident from the

schematics provided in the following subsections.

A 25 _ fuel cell power plant is too small to Justify the

expense of a dedicated coal gasification reactor. Thus, it will be fueled

with hydrogen, high-Btu gas, or methanol, all of which may be derived from
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coal. Becauseof the flexibility afforded by the existing extensive

network of natural gas lines, high-Btu gas was selected as the fuel for

the base cases.

A value for the useful lives of all of the fuel cell subsystems

was arbitrarily fixed for the base cases at 36 Ms (i0,000 hr) at a

constant power output, with a 5% degradation in terminal voltage. The

degradation specification is important in the determination of the

power conditioning costs. The useful life value specified is considered

a reasonable estimate of the state of the art for molten carbonate fuel

cells, an overestimate by a factor of approximately one hundred for the

solid electrolyte fuel cell, and an underestimate by a factor of

approximately two for aqueous acid and alkaline fuel cells, as described

in the previous section.

In general, the parametric assessment involved the variation

of one parameter, with the others retaining the value used in the base

case. In certain cases, however, a change in one parameter caused the

variation of other parametric values. The change from air to oxygen as

the oxidant, for example, was thought to cause an increase in the

current density in the acid, alkaline_ and molten carbonate fuel cells;

and an increase in the cell voltage in the solid electrolyte fuel cells.

Point 1 of the parametric point list for each fuel cell type

is the base case. The abbreviations AC, AL, MC, and SE were chosen for

the acid_ alkaline, molten carbonate, and solid electrolyte fuel cell

power systems, respectively. Thus_ At1 represents the base case in the

phosphoric acid system. The first eight parametric value changes common

to all four systems are shown in Table 13.2. Points 2 through 4

explored the economics of scale realized by increasing the power plant

rating. Because of their modular nature, no economy of scale was

assumed for the fuel cell subsystems. Any economic benefits realized,

therefore, come from the other subsystems. The effect of the replacement

of air with oxygen from a dedicated oxygen plant was tested for all

systems in Point 5. Three more parametric points per system (6 to 8)
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Table 13.2 - Parametric Changes Common to all Four Systems

Point No. Parameter Value Base Case

2

3

4

Size of power plant

Size of power plant

Size of power plant

Fuel type

Oxidant type

Fuel cell useful life

Fuel cell useful life

Fuel cell useful life

Fuel cell useful life

IO0

250 MW

900 MW

Medium-Btu

gas

Oxygen

30,O00 hr

(5% Voltage

degradation)

50,000 hr (5%)

100,000 hr (5%)

i00,000 hr (15%)

25 MW

25 MW

25 MW

High-Btu

gas

Air

i0,000 hr

10,000 hr

10,000 hr

10,000 hr

were expended to investigate the impact of fuel cell subsystem useful

life on the electricity costs. The effect of a terminal voltage decrease

of 15% (at constant power output) after 360 Ms (I00,000 hr) of plant

operation was explored in Point 9.

A cross-comparison of the efficiencies and electricity

costs is possible for all systems in Points 4 through 9, and for the acid,

alkaline, and molten carbonate systems in Points 2 and 3. The solid

electrolyte power system is not available for comparison purposes in

Points 2 and 3 because medium-Bin gas was employed as a fuel instead of

the high-Btu gas used in,the other three systems. Further details of

Points 2 through 8_ and a description of the parametric points specific

to each system, are provided in the following subsections.

13.2.1 Phosphoric Acid Fuel Cell Power System

As indicated in the previous subsection, the base case in

this power system, ACI, involves a fuel cell subsystem that has a 25 MW

dc rating, a useful llfe of 36 Ms (I0,000 hr) of operation, and a 5%
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voltage degradationat constant poweroutput. Thefuel is a high-Btu gas;
air is the oxidant. In the fuel cell subsystem,the fuel cell is
consideredto havea bipolar designsimilar to that describedby Baker
et al. (Reference13.29). Theanodeand cathode, eachfabricated from
carbonas described by Kordeschand Scarr (Reference13.30), are
catalyzed by a platinum addition to eachelectrode of i mg/cm2 (0.002 ib/
it2). Theaddition of other electrocatalysts for the reduction of

performancesensitivity to carbonmonoxidein the fuel stream (Reference
13.31) are considereddesirable but werenot included in the economic
analysis. Theelectrolyte is 85wt %aqueousphosphoricacid immobilized
in a zirconiumpyrophosphatematrix with an effective resistivity of
2 _-cm. Theelectrolyte thickness is 0.5 ram (0.020 in). The fuel cell sub-

system operates at 463°K (375°F). Based on a conservative estimate of

anticipated advances in the state of the art, beyond that reported by

Schiller and Meyer (Reference 13.32) in 1971, values of 0.7 V and 200

mA/cm 2 (186 A/it 2) were selected for the cell voltage and current

density, respectively.

A schematic of the complete power system is shown in

Figure 13.1. High-Btu gas from a 0.689 MPa (100 psi) abs line is assumed

to be available, and is fed after preheating to a steam-methane reformer

operating at a pressure of 0.689MPa (i00 psi) abs and a temperature of

I144°K (1600°F). The reformer effluent, consisting mainly of carbon

monoxide, hydrogen, carbon dioxide and steam, is cooled and fed to a

shift converter operating at 0.483 MPa (70 psi) abs and 700°K (800°F).

The shift converter is operated at as low a temperature as possible in

order to minimize the carbon monoxide concentration in the exit gas. The

hydrogen-rich fuel gas is further cooled to approximately 422°K (375°F)

and is fed to the ten fuel cell modules. Air is supplied to the modules

by means of blowers, as shown in Figure 13.1.

Steam, required for the steam reformation of methane (the

principal constituent of hlgh-Btu gas) is raised in the cooling of the

fuel gas between the reformer and the shift co_verter, in the shift

converter, and between the shift converter and fuel cell subsystem. The

water required for the steam generators is reclaimed from the fuel-gas
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exhaust by the knock-out process shown in Figure 13.1. The water-vapor

depleted exhaust gases, containing approximately 10% of the hydrogen fed

to the fuel cell modules, and the unused c.lrbon monoxide, is mixed with a

portion of the incoming high-Btu gas, and the mixture is burned to supply

the heat required to cover the endothermlc processes in the reformer.

Further details of the fuel processing subsystem are provided in

Appendix A 13.1.

The fuel cell subsystem, rated at 25 MW dc, consists of

ten 2.5 MW modules. Each module is wired into a dedicated power

conditioning unit consisting of a force-commutated dc to ac inverter, a

transformer, and filters. A more detailed description of the power

conditioning subsystem is provided in Appendix A 13.2.

As indicated in the previous subsection, the changes from

the base case, characterized by Points 2 through 9 and shown in Table 13.2,

are common to all systems. AC2 and AC3 differ from ACI only in that the

fuel cell subsystems are rated at I00 MW and 250 MW dc, respectively.

In AC4, the fuel cell subsystem is rated at 900 MW dc. The fuel used in

the 900 MW plant is medium-Btu gas, instead of the high-Btu gas employed

in ACI, AC2, and AC3. Thus, the steam-methane reformer, shown in

Figure 13.1, is unnecessary in this power plant.

AC5 involves the use of oxygen as the fuel cell oxidant

instead of air. Because of the reduction of concentration polarization

at the fuel cell cathode, the apparent current density was considered to

have doubled, i.e., from 200 mA/cm 2 (186 A/ft 2) to 400 mA/cm 2 (372 A/ft2),

despite the concomitant increase in the fuel electrode polarization

and the cell ohmic polarization losses.

In parametric points AC6, AC7, and AC8, the fuel cell sub-

system useful life in a 25 MW dc plant is increased to 108 Ms (30,000 hr),

180 Ms (50,000 hr), and 360 Ms (I00,000 hr), respectively. In all three

points, as in the base case, ACI, a 5% efficiency or voltage degradation,

by comparison with the initial performance, is assumed at the end of

useful llfe. Thus, the initial cell voltage, 0.7 V, will have fallen to

0.665 V at end of llfe. In AC9, a voltage degradation of 15% (0.105 V)

Is assumed at the end of a 360 Ms (i00,000 hr) useful life.
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The changes from the base case, represented in Points ACI0

through ACI6, are specific to the phosphoric acid fuel cell power system.

These are shown in Table 13.3.

Table 13.3 - Parametric Points - Acid Fuel Cell

Point No. Parameter Value/Type Base Case Value

i0

ii

12

13

14

15

16

Current density

Current density

Catalyst loading

Catalyst loadlng

Type of fuel

Electrolyte

thickness

Oxidant type

Size of power

plant

300 mA/cm 2

400 mA/cm 2

0.3 mg Pt/cm 2

0.i mg Pt/cm 2

Methanol

0.25 mm

Oxygen

250 MN

200 mA/cm 2

200 mAlcm 2

1 mg Pt/cm 2

i mg Pt/cm 2

High-Btu gas

0.5 mm

Air

25 FIN

ACI0 and 11 were included to explore the effect of fuel cell

subsystems cost reductions, resulting from increases in the apparent

current density of the base case, 200 mA/cm 2 (186 A/ft2), to 300 mA/cm 2

(279 A/ft 2) and 400 mA/cm 2 (372 A/ft2). Similarly, AC12 and 13 represent

advances in the state of the art which result in the lowering of platinum

loadings in both cathode and anode from 1 mg/cm 2 (0.002 ib/ft 2) in the

base case to 0.3 mg/cm 2 (6 X 10 -4 ib/ft Z) and 0.I mg/cm z (2 x 10 -4 ib/ft z)

respectively.

High-Btu gas is replaced by methanol as the fuel in ACI4. This

will involve storage of meth_ol in tanks at the power plant. The

electrolyte thickness of 0.5 mm (0.020 in) in the base case is reduced to

0.25 mm (0.010 in) in AC15. Because of the resultant reduction in ohmic

losses in the electrolyte_ the cell voltage at 200 mA/cm 2 (180 A/ft 2) is

considered to have increased from 0.70 V to 0.71 V.
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The effects of replacement of air by oxygen in a 250 MW dc

power plant are explored in ACI6. Once again, as in ACb, the assumed

apparent current density of the cell was doubled to 400 mA/cm 2 (372 A/ft2).

This point was included to demonstrate, by comparison with AC5, the effect

of scale in lowering the oxygen cost.

13.2.2 Alkaline Fuel Cell Power System

A schematic of the alkaline fuel cell power system base case,

ALl, is shown in Figure 13.2. The temperatures and pressures at various

system locations are also presented in this figure. For the purposes

of this study, it has been assumed that the alkaline power system is

similar to its acid counterpart, described in the previous subsection,

but with the following differences:

• Carbon dioxide scrubbers - To prevent carbonation of the

electrolytes the Lurgi Rectisol process is employed to scrub both the air

and the fuel gas inlet streams, as shown in Figure 13.2. Further details

of this process, which employs refrigerated methanol to scrub acid gases,

are found in Appendix A 13.1.

• Fuel cell subsystem - A bipolar configuration, identical

with that described for the acid system, is assumed also for the alkaline

fuel cell battery. However, the apparent current density in the base case

for this system, I00 mA/cm 2 (93 A/ft2), is only half that in the acid fuel

cell. The cell voltage, 0.8 V, is higher because of the generally lower

cathodic polarizations in the alkaline fuel cell. These values represent

a conservative estimate of advances in the state of the art since 1969

(Reference 13.33) for this fuel cell. The anode and cathode are catalyzed

with 1 mg of platinum/cm 2 (0.002 Ib/ft 2) and 5 mg of silver/cm 2 (0.I Ib/

ft2), respectively. The electrolyte thickness is 0.5 mm (0.020 in) with

an assumed effective resistivity of 2 _-cm (5 ohm-in). The fuel cell

operates at a temperature of 343°K (158°F), not only for the base case

but also for all parametric points described below.
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Points AL2 through AL9 involve the same changes in parameter

values as those for ACI through AC9 discussed in the previous subsection.

Once again, replacement of air as oxidant by oxygen from a dedicated

oxygen plant (AL5) is considered to result in a doubling of the base case

apparent current density, i.e., from i00 mA/cm 2 (93 A/ft 2) to 200 mA/cm 2

(186 A/ft2).

The changes from the base case, represented by parametric

points ALIO through ALl6, are specific to the alkaline fuel cell system,

and are shown in Table 13.4 below.

Table 13.4 - Parametric Points - Alkaline Fuel Cell

Point No. Parameter Value/Type Base Case Value

ALIO

ALl1

ALl2

ALl3

ALl4

ALl5

ALl6

Current denslty

Current density

Anode catalyst

loading

Anode catalyst

loading

Anode and cathode

materials

Cathode catalyst
loading

Electrolyte
thickness

175 mA/cm 2

250 mA/cm 2

0.I mg Pt/cm 2

0.01 mg Pt/cm 2

Raney Nickel

1 mg Ag/cm 2

0.25 mm (0.010 in:

I00 mA/cm 2

i00 mA/cm 2

1 mg/cm 2

1 mg/cm 2

Pt/c

5 mg/cm 2

0.5 mm (0.020 in)

The effects of increases in the fuel cell apparent current

density from i00 mA/cm 2 (93 A/ft 2) to 175 mA/cm 2 (163 A/ft2), brought

about by improvements in the state of the art, are tested in parametric

points ALl0 and ALl1, respeetlvely. Points ALl2 and ALl3 explore the

effects of reductions of platinum loadings in the anode from 1 mg/cm 2

(2.10 -3 Ib/ft2). Replacement of the carbon gas-diffusion electrodes by

Raney nickel electrodes is examlued in parametric Point ALl4. Point ALl5
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tests the effect of the reduction of the silver loading in the cathode

from 5 mg/cm 2 (0.01 Ib/ft 2) to 1 mg/cm 2 (0.002 ib/ft2). In Point ALl6,

the electrolyte thickness, or electrode separation, is 0.025 cm (0.01 in),

i.e., half of that in the base case. This results in a cell voltage

increase of 5 mV, so that the cell voltage at I00 mA/cm 2 (93 A/ft 2) is

0.805 V in ALl6.

13.2.3 Molten Carbonate Fuel Cells

The effect of ten plant and operating variables on the cost of

electricity was investigated. These are the effect of power plant size,

fuel cell life, cell output degradation, current density at fuel cell

electrodes, electrolyte thickness, temperature of the fuel cell, replace-

ment of air by oxygen, oxygen plant size, fuel type, and recovery of

waste heat from the fuel cell by a steam turbine generator system.

MCI, the reference or base case, has a 25 MW dc rating wlth a

filter press design similar to that described by IGT (Reference 13.22),

with a porous nickel anode and lithlated nickel oxide cathode. The

electrolyte is the Broers type (Reference 13.15), consisting of a semisolid

paste of alkali aluminate powder and molten alkali carbonates with the

ternary eutectic composition (Li2C03-43.5 mole %, Na2CO3-31.5 mole %,

K2C03-25.0 mole %, m.p. 670°K (747°F)). Electrolyte resistance

(Reference 13.23) is assumed to be 1.5 times that of the free electrolyte

of the same thickness. This value would actually vary with the paste

structure and chemical composition. High-Btu gas is used as fuel, and it

is assumed that it can be reformed on internal cell surfaces. A schematic

of the plant configuration for MCI is shown in Figure 13.3. It consists

of a split series of fuel cell modules consisting of ten separate banks,

each with its own de-to-at inverter, transformer, and filters. It

operates at 923°K (1202°F), as do all other plants except MCI2 and MCI3,

which operate at 973 and I023°K (1292 and 1382°F), respectively.

Fuel and oxidant streams enter the fuel cell at (3) and (4),

(Figure 13.3) and react electrochemically at the anode and cathode,

respectively, at the fuel cell temperature of 923°K (1202°F). After
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leavin8 the fuel cell, part of the anode (fuel) gas stream is added to the

cathode gas stream at (6) to replace carbon dioxide lost in the cathode

electrochemlcal reactions. The two gas streams, thus modified, enter a

heat recovery steam generator and exlt at a temperature between 673 and

823°K (752 and 1022°F), depending on the recycle flow rate necessary to

minimize concentration polarization at the fuel cell electrodes and to

remove excess heat from the fuel cell.

Part of the cathode gas stream is then diverted at (9) through

a counterflow heat exchanger, leaving as stack exhaust at (51 at 423°K

(302°F), and in the process preheating incoming air and desulfurized fuel

from ambient temperature to 573 to 723°K. The exhaust gas scream contains

carbon dioxide, water vapor, nitrogen, a small amount of oxygen, but no

combustible gases.

Preheated air and desulfurized fuel, entering at (2) and (I)

are then combined with the cathode and anode gas streams at (11) and (10)

and enter the fuel cell again at (4) and (31. This completes the cycle.

The steam produced can be sold as process steam, used to operate

a steam turbine to produce more electricity as in MC4, or operate a

turbine drive for an oxygen plant as in Points MC5 and MCI7.

MC1, MC2, and MC3 differ only in plant size, being 25 MW dc,

I00 MW dc, and 250 MW dc, respectlvely.

MC4 differs in size (900 MW dc) and also in utillzlng a steam

turbine generator to produce additlonal electricity from waste heat, as

shown in Figure 13.4. The plant configuration differs from MCI not only

in size but also in allowing space for the steam turbine generator system

with its ac transformer.

MC5 is similar to MCI except for inclusion of an oxygen plant

capable of supplying about 3.461 to 3.623 kg/s (330 to 345 tons/day) of

oxygen to be used in place of air. The schematic is shown in Figure 13.5.

MCS, 7, and 8 differ from MCI only in fuel cell lifetimes of

108, 180, and 360 Ms (30,O00j 50,000, and 100,000 hr), respectively; and
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MC9 is similar to MC8 except for the assumption of 15 rather than 5%

voltage degradation.

MCI0 and ii assume a current density of 150 and 250 mA/cm 2

(139 A/ft 2 and 232 A/ft 2) as compared to 200 mA/cm 2 (186 A/ft 2) for MC1.

MCI2 and 13 assume an operating temperature of 973 and IO23°K

(1292 and 1382°F), respectively, as compared to 923°K (1202°F) for MCI.

Electrolyte resistance (Reference 13.23) is a little lower at the higher

temperatures, but corrosion is worse.

MCI4 uses medium-Btu gas as fuel rather than the high-Btu gas

used by MCI.

MCI5 uses methanol as fuel, which requires a storage tank as

shown in Figure 13.6. Otherwise, it is similar to MCI.

MCI6 differs from MCI in using an electrolyte t_tickness of

0.5 mm (0.020 in) rather than i mm (0.040 in) used for MCI.

MCI7 is similar to MC3 (250 MW de) but uses oxygen rather than

air as oxidant. This is included as a comparison to MC5 (25 MW dc) to

show the effect of the lower oxygen cost with larger plant size.

13.2.4 Solid Electrolzte Fuel Cell Power System

A schematic of the power plant corresponding to the base case,

SEI, is shown in Figure 13.7. The basic plant layout is relatively simple

in that it c6nslsts of the fuel cell generator, the power conditioning

subsystem, recuperative heat exchangers (to allow the fuel cell exit gases

to heat up the incoming fuel and air streams), and an air blower. The

temperatures and pressures at various locations in the power system are

also tabulated in Figure 13.7.

All parametric points, including SEI, employ the Westinghouse

thin-film solld-electrolyte fuel cell battery in the fuel cell subsystem.

This device, built on porous tubes of stabilized zlrconla, is described

in greater detail in Reference 13.25. The electrolyte film of yttrLa-

stabilized zirconla (Zr02-10% Y203) is gas-lmpervious and 40 _m (1.6 mils)
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in thickness. The air electrode is a porous layer of tin oxide-doped

indium sesquioxide activated with praesodynium cobaltite. A porous layer

of a nickel-stabilized zirconia cermet serves as the fuel electrode. The

interconnection layer, which serves to series-connect adjacent cells,

consists of a gas-impervious layer of chromium sesquloxide, 20 _m (0.8

mils) in thickness. The device is assumed to operate at 1273°K (1852°F)

and with high-Btu gas as fuel. The current density in the electrolyte

region of the unit cell is taken as 400 mA/cm 2 (372 A/ft2).

Parametric Points SE2, SE3, and SE4, explore the economies of

scale achievable in power plants. The fuel cell subsystems are rated at

I00 MW dc, 250 MW dc and 900 MW dc, respectively. These three power

plants are fueled with medium-Btu gas, as are all plants, except in the

base case (high-Btu) and in parametric Point SEI9, in which low-Btu gas

from an integrated gasifier system is employed. A steam bottoming plant,

is included in the 900 MW power plant,'SE4, similar to that described for

MC4 in the pKevious subsection. With medium-Btu gas, the average cell

voltage at 400 mAicm 2 (372 A/ft 2) is 0.66 V, corresponding to a voltage

efficiency of 80%. The plant layout corresponding to SE4 is shown

schem_tically in Figure 13.8.

Point SE5 explores the effect of the replacement of air as the

oxidant by oxygen from a dedicated oxygen plant (see Figure 13.9). The

average cell voltage increases to 0.76 V, as most of the concentration

polarization in the fuel cell battery is associated with the cathode.

Points SE6 through SE8 explore the effects of increases in the useful

llfe of the fuel cell batteries. The effect of increased power

conditioning costs associated with an increase in the permissible voltage

degradation and described in the previous subsections is investigated in

Point sEg.

The changes represented by Points SEIO through SE20 are

specific to the solid electrolyte power system and are presented in

Table 13.5.
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Table 13.5 - Parametric Points - Solid-Electrolyte Fuel Cell

Point No. Parameter Value/Type

i0

ii

12

13

14

15

16

17

18

19

20

Current density

Current density

Electrolyte thickness
%

Interconnection material

600 mA/cm 2 (557 A/ft 2)

800 mA/cm 2 (743 A/ft 2)

20 _m (0.8 mils)

Mn-doped CoCr204

Electrolyte material

Air electrode material

Temperature

Temperature

Type of fuel

Current density

Power plant size

Electrolyte thickness

Type of fuel

Power plant size

Current density

Electrolyte thickness

Type of fuel

Calcia-stabilized

zirconia

Sb-doped SnO 2

I173°K (1652°F)

1373°K (2012°F)

Coal

800 mA/cm 2 (743 A/ft 2)

250 MW dc

20 _m (0.8 mils)

Low-Btu gas

900 MW dc

800 mAlcm 2 (743 A/ft 2)

20 pm (0.8 mils)

High-Btu gas

Points SEI0 and SEll investigate the effect of battery

operation at higher power densities. At current densities of 600 and

800 mA/cm 2 (557 and 743 A/ft2), the cell voltages were 0.59 and 0.51 V,

respectively, because of increased ohmic and concentration polarization

losses. A reduction of electrolyte thickness in SEI2 from 40 to 20 pm

(1.6 to 0.8 mils) leads to a cell voltage increase from 0.66 to 0.67 V.

The effect of the replacements of chromium sesquioxide by manganese-doped

cobalt chromite, and of tin-doped indium oxide by antimony-doped tin oxide,

are explored in SEI2 and SEI4. Substitution of yttria-stabilized
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zirconia by calcia-stabilized zirconia in SEI3 leads to a reduction of the

cell voltage from 0.66 to 0.64 V because of.the higher resistivity of

the better electrolyte. If the fuel cell subsystem operates at I173°K

(1652°F), resistive losses in the electrolyte and interconnection regions

lead to a reduction in cell voltage from 0.66 to 0.55 V. Conversely,

an increase in the temperature of operation to 1373°K (2012°F), as in SEI7,

results in an increase in cell voltage to 0.77 V.

The Westinghouse-OCR fuel cell power generation system is

represented by Point SEI8. In a 250 MW dc plant, shown schematically

in Figure 13.10, a coal gasification reactor and the fuel cell subsystem

are thermally coupled. The heat released because of thermodynamic and

electrochemical inefficiencies in the fuel cell batteries is employed

to gasify coal. The fuel gas thus generated is then fed to the fuel

electrodes of the fuel cell subsystem. All the oxygen reaching the

gasifier as carbon dioxide and water vapor enters through the fuel cell

electrolyte. An electrolyte thickness of 20 _m (0.8 mils), an

electrolyte current density of 800 mA/cm 2 (743 A/ft2), and an average

cell voltage of 0.68 V are assumed. Point SEI9 explores the advantages

and disadvantages of coupling a 900 MW dc fuel cell subsystem with a low-

Btu coal gasifier, as shown schematically in Figure 13.11. Because of

the nitrogen diluent in the fuel gas, the fuel electrode concentration

polarization is relatively higher. Consequently, the cell voltage is

lowered to 0.56 V. Point SE20 investigates the effect of a higher

current density, 800 mA/cm 2 (743 A/ft2), and a reduced electrolyte

thickness, 20 _m (0.8 mils). Even with high-Btu gas as fuel, the average

cell voltage is 0.69 V compared with 0.84 V in the base case.

13.3 Approach to Efficiency Calculations

Efficiency calculations without the detailed mass and energy

balances provided by a comprehensive conceptual design study are, of

necessity, approximate. Thus, for Task I, these calculations have been

performed with a number of assumptions, some with less Justification than
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desirable. These assumptions, presumably, will undergo further exploration

and clarification as part of Task II.

The approaches for the aqueous acid and alkaline power systems

were similar; those for the high-temperature systems were specific to the

system. Where possible, the approach was consistent, e.g., in the

efficiency assumptions for the power conditioning and fuel processing

subsystem.

13.3.1 Phosphoric Acid Fuel Cell Power System

The power plant efficiency is defined as the quotient of the

power output at grid voltages and the higher heating value (HHV) of the

fuel (e.g., high-Btu gas etc.) fed to the uower system. Similarly, the

overall energy efficiency is the quotient of the power output and the

HHV of the coal required to produce the fuel.

High-Btu gas, medium-Btu gas and methanol were fuels employed

in the acid fuel cell power plants. These are discussed in the first

subsection. In the subsequent subsection, the electrical losses

associated with the various parasitic plant subsystems are detail_d. _e

methods of calculating the power plant and overall energy efficiencles

are discussed in the final subsection.

13.3.1.1 quantities of Fuel Required

All parametric points involve the use of high-Btu gas, wltH the

exceptions of AC4 (medium-Btu gas) and ACI4 (methanol). High-Btu gas

must be reformed with steam to accomplish the following reaction:

CH4 + H20 ÷ CO + 3H 2

This reaction is endothermic, having an enthalpy of 226 kJ/g-mole

(97,380 Btu/Ib-mole) at I144°K (1600°F). The exit stream from the reformer

cannot be fed directly to the fuel cell subsystem because the fuel

electrode may be deactivated by the presence of carbon monoxide, as

discussed in Section 13.1. Consequently, it is passed through a shift
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converter in which the mildly exothermlc reaction

CO + H20 ÷ CO 2 + H 2

is caused to occur at approximately 700QK (800"F). The carbon dioxide/

carbon monoxide ratio in the shift converter exit stream is considered

to be approximately 50 to I. The fuel processing subsystem is discussed

further in Appendix A 13.1.

The molar compositions of the high-Btu gas fed to the reformer

(Reference 13.34) and to the fuel cell subsystem (after reformation and

shift conversion) are given in Table 13.6.

Table 13.6 - Fuel Gas Molar Compositions

Component

H2

CH 4

CO 2

CO

N 2

S

HHV

LHV

Molecular

Weight

Initial

Composition

2.49

94.23

0.39

0.08

2.81

959.2 Btu/scf

864 Btu/scf

16,15

After Shift

Conversion

377.55

92.84

1.86

2.81

Thus, 1 std m3 of high-Btu gas y£elds 3.776 std m3 of hydrogen. Hydrogen

comprises 79.5% of the exit stream from the shift converter, and the

concentration of carbon monoxide is 0.39Z.
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Thehydrogenrequirementsof the fuel cell subsystemsare a

function of the de ratings of the subsystems, the average cell voltage,

and the hydrogen utilizations. The four ratings are 25 MW dc (all para-

metric points with the exception of AC2, AC3, AC4, and ACI6), i00 MW dc

(AC2), 250 MW dc (AC3 and ACI6), and 900 MW dc (AC4). To deliver one

kilowatt dc from a fuel cell operating at a terminal voltage of 0.7 V

requires a cell current of 1429 A. Thus, 1429/96,489 equivalents or

14.9 mg/s (3.29 x 10 -5 Ib/s) of hydrogen are required if the utilization

of hydrogen in the fuel gas is 100%. Published data (Reference 13.35)

for phosphoric acid fuel cells, however, indicated that hydrogen

utilization of 75% represented the state of the art in 1966-67. For

simplicity, this treatment assumes a hydrogen utilization of 90% based

on the assumptions of a better shift-conversion capability so that the

minimum hydrogen-carbon monoxide ratio constraint (i.e., at near-exhaust

compositions) can be met at this utilization, and an advance in fuel

electrodes technology leading to more porous, thinner electrodes with

lower concentration polarizations. Thus, the actual hydrogen requirement

is 59.60 g/kWh (0.1314 ib/kWh), corresponding to a high-Btu gas

requirement of 51.64 std cm3/kj (6.56 scf/kWh).

As shown in Figure 13.1, the high-Btu gas stream, fed to the

steam-methane reformer, is split in two parts. One part is converted to

hydrogen, as described above, while the other is mixed with air and used

to provide the heat required for the endothermic reformation process.

It can be shown that, under ideal conditions, the minimum volume of the

high-Btu gas necessary for firing comprises 22% of the total feedstock.

Practical systems in 1963 (Reference 13.36) used 41% of the feedstock

in this manner. In this study, a value of 30% has been assumed on the

basis of

• Firing the hydrogen not utilized in the fuel cell

subsystem to provide some of the reformer heat

requirement

• Advances in reformer technology.

13-39



Thus, high-Btu gas is fed to the fuel processing subsystem at the rate

of 73.49 std cm3/kj (9.34 scf/kWh) of dc output from the fuel cell

subsystem.

The medium-Btu gas, used as a feedstock in the 900 _ dc

power plant, does not require reformation, but it must be shift-converted

to yield a fuel gas suitable for use in the fuel cell subsystem. The

compositions before (Reference 13.37) and after shift conversion are

shown in Table 13.7.

Table 13.7 - Medium-Btu Fuel Gas Molar Compositions

Component

H2

CO 2

CO

N 2

H20

HHV

LHV

Molecular

Weight

Initial

Composition

0.3276

0.0573

0.5460

0.0043

0.0647

281.5 Btu/scf

265.0 Btu/scf

19.76

After Shift

Conversion

0.8618

0.5915

0.0118

0.0043

w--

Because of the higher concentration of carbon monoxide in the exit stream

of the shift converter D a hydrogen utilization of 80% has been assumed in

this case. Thus, the overall medlum-Btu gas requirement is 253.6 std

cm3/kj (32.24 scf/kWh) of dc output from the fuel cell subsystem.

The methanol required in parametric point ACI4 may be shown to

be 0.1183 g/kJ [426 g/kWh (0.939 ib/kWh)] with the assumptions employed

in the above discussion of high-Btu gas reformation and shift conversion.
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13.3.1.2 AC Power Outputs

An efficiency of 95.5_ was assumed for the force-commutated

inverter power-condltionlng subsystem of all 25 MW dc power systems.

The rationale for the selection of this type of power-conditlonlng

equipment is outlined i_ Appendix A 13.2. In addition, in the acid power

system a further 2% of the ac output of the power-conditioning equipment

was allocated for air blowers and sundry control systems. Thus, the net

ac power output from the acid power system, with a dc rating of 25 MW,

is (25 MW)(0.955)(0.98), or 23.4 MWe.

In the cases of the lO0_ (AC2), 25D_ (AC3 and ACI6), and

900 MW dc (AC4) power plants, a line-commutated inverter was employed

in the power-conditionlng subsystem (see Appendix A 13.2). An efficiency

of 95% was assumed. Double transformation was considered necessary in

the i00 MW and 250 MW dc systems, since the contract statement of work

specified that all power plants of greater than 50 MWe should deliver

ac power to the grid at 500 kV. It was assumed that the added transformer

would operate at an efficiency of 99.5%. The 900 MW dc system was

considered not to need this double transformation. As in the case of the

25 MW system, 2% of the ac output was assigned to the air blowers, etc.

Thus, the net ac outputs were 92.6 MWe, 231.5 MWe and 838 MWe, respectively.

When a dedicated oxygen plant is employed, as in parametric

points AC5 (25 MW dc) and ACI6 (250 MW dc), the ac output to the grid must

be reduced further. The power required for Oxygen plant operation may be

calculated from information given in Appendix A 13.3. The power plant in

AC5 requires approximately 3.15 kg/s (300 tons/d) of oxygen. The energy

required is 0.0975 kJ/Mg (318.4 kWh/ton) or 95.52 MWh correspo,lding to a

power usage of 3.98 MW. With a 4% allowance for oxygen vente_ to the

atmosphere, the power required is 4.14 MW. The net ac power output of a

25 W dc power plant employing oxygen as the oxidant (ACS) is 19.3 MW.

Similarly, the net ac power output from the power plant of parametric

point ACI6 is 190.3 MW.
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13.3.1.3 Calculation of Efflciencles

The heat rates of the power plants may be calculated as follows:

Heat Rate m
(Fuel Rate)(HHV of Fuel)

(Net ac power output)/(Nomlnal dc rating)

where the required fuel rate and the fuel _h_V are given in units of

scf/kWh and Btu/scf, or ib/kWh and Btu/ib, respectively. For example,

for ACI:

Heat Rate = (9.34 scf/kWh)(959.2 Btu/scf)
(23.4 MW)/(25 MW) ffi 9570 Btu/kWh

13.3.2 Alkaline Fuel Cell Power System

The approach to the calculation of heat rates in the alkaline

power system is very similar to that employed for the acid system. The

higher cell voltages in alkaline cells (0.8 V vs 0.7 V for acid fuel cells)

result in a lower hydrogen requirement, 0.0145 g/kJ [52.2 g/kWh

(0.1151 ib/kWh)], and a lower rate at which fuel is fed to the power

system. The assumptions of the efficiencles of the power-conditlonlng

subsystems are identical to those given in the previous section and in

Appendix A 13.2.

The Lurgl Rectisol process for the removal of carbon dioxide

from both fuel and air streams before they are fed to the fuel cell sub-

systems has been arbitrarily assumed to consume an additional 6% of the

ac power output from the power-condltionlng subsystem when hlgh-Btu is

used as feedstock. When added to the 2% consumed by the air blowers and

control systems, the inefficiencies amount to 8% of the total ac output.

In parametric point AL4, the use of the medlum-Btu feedstock results in a

doubling of the carbon dioxide partial pressure in the shift converter

exit stream. The inefficiencies are now assumed to total 10% of the ac

output of the power-condltlonlng subsystem.
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Theoxygenrequirementsin the powerplants correspondingto
parametricpoint ALS,in whichoxygenfrom a dedicated oxygenplant is
employedas the fuel cell oxidant, are lower than in the similar acid
plant (AC5)becauseof the higher cell voltages. The power requirement

is 3.6 MW, calculable from the value given for AC5 by multiplication by

the reciprocal of the ratio of the cell voltages, 0.875.

Thus, all the heat rates for the parametric points of the

alkaline fuel cell power system are calculable from the corresponding

values of the acid system. For example, in the base case, ALl,

Heat Rate -- (9570 BtulkWh)(0.7 V/0.8 V)
(92Z/98Z)

= 8920 Btu/kWh

13.3.3 Molten Carbonate

The plant efficiency is calculated on the basis of the higher

heating value of the fuel and of steady-state operation at the voltages

and current densities described in Section 13.2.3.

All cells produce an excess of heat during operation at rated

power over that necessary to heat the fuel and oxidant streams to the

fuel cell temperature. This excess heat is partially converted to

steam but does not contribute to the power plant efficiency for MCI-3,

and 6-16. For MC4, this excess heat is used to operate a steam turbine

generator to produce additional ac electricity and thereby increase the

overall plant electrical efficiency. MC5 and 17 also use the excess heat,

but to operate a steam turbine drive for the compressor in the oxygen

plant. The steam turbine drive was assumed to convert the available

energy to shaft work with an efficiency of 40%. The efficiency of plants

using pure oxygen was not reduced by 2% since the electrical output is

not derated to provide power for the electrical motor drive compressor

that is commonly use4 for an oxygen plant. The nominal dc output of the

fuel cell is further derated by the dc-to-ac power conversion subsystem

as described in Appendix A 13.2. It is assumed that 90% of the fuel is
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consumed by the fuel cell. The remaining 10% is burned in the exit

gases by excess oxygen from the cathode exit gas and appears as waste

heat.

It is further assumed that various electrical auxiliaries

(such as recirculatlng fans) consume electrlcal energy equivalent to 3%

of the HHV of the fuel. This may be high.

For simplicity, reformed high-Btu gas or methanol are assumed

to have only carbon monoxide and hydrogen as fuel species after reforming.

Some CH 4 and other fuel speciesp however, will, in practice, be present.

Equation 13.1 is used to calculate all molten carbonate fuel

cell efficlencies except for MC4.

Efficiency = 0.9 ((ZN)(n)(F)(¢)]HHV PCE - 0.03 HIIV . _A)(PCE)IIHV- B (13. I)

where 0.9 is the fraction of the fuel utilized by the fuel cell,

rN is the sum mole fraction of carbon monoxide and hydrogen

present after reforming 1 mole of the original fuel gas,

n is 2 (the nun_er of electrons involved in electrochemical

oxidation of I molecule of carbon monoxide or hydrogen

with 1/2 molecule oxygen),

PCE is the power-condltioning efficiency (see Appendix A 13.2),

HHV is the higher heating value per mole of original fuel gas,

F is the Faraday 23.062 kcal/eV,

is the cell voltage.

For MC4 we utilize the waste heat to increase the plant

efficiency. It is assumed that we exchange heat between exhaust gas and

incoming fuel and air, with the exhaust leaving the stack at 423°K (302°F);

and that other heat loss to the surroundings is 2Z of the HHV per mole of

fuel gas. It is further assunmd that a steam turbine generator with 40%

efficiency is used to convert the waste heat to ac electricity. We

calculate the overall efficiency of MC4 by Equation 13.2.
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Overall Efficiency MC4=

(A)(PCE)-B+O.4(AH_50o-A-O.02 HHV-[AH650-AH25]i.g" + [AH650o-AH150O]e.g"

HHV

(13.2)

where 0.4 is the turbine-generator efficiency,
c

AH650o is the heat of combustion of the fuel gases at 650°C,

[AH650o-AH25o]i.g" is the sensible heat difference in the given

°C temperature interval for the input gases to the fuel cell,

[AH650o-AHIb0Je.g" iS the sensible heat difference in the given

°C temperature interval for the exhaust gases from the plant.

Other symbols are as in Equation 13.1. AH values were taken from the

JANAF Thermochemical Tables (Reference 13.38).

13.3.4 High-Temperature Solid Electrolyte Fuel Cell

13.3.4.1 Thermodynamic Efficiency

The quotient of average cell voltage and the voltage corresponding

to the higher heating value of the fuel is defined as the thermodynamic

efficiency qth"

Ecell

qth = EHIiV

E was calculated in the cases SE2-SEI8 on the basis of actual measure-
cell

ments on cells and batteries.

where

Ecell = E O - ER - Ep

E0 is the open-cell voltage, average over the total range of fuel/

combustion product ratios,

ER is the voltage losses due to ohmic resistance in battery

components,

Ep is the polarization loss due to diffusion problems of fuel

and combustion products.
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whe re

The voltage which corresponds to the higher heating value of the

fuel, EHH v is calculated from the following relation:

HHV

"

HHV is the higher heating value of fuel in kcal/mole,

n is the number of electrons transferred per mole of fuel gas

reacted,

F is the Faraday constant 23.06 kcal/eV.

For SEI and SE20 an average open-cell voltage was calculated from the free

energy change of the oxidation of methane at 1300°K (1880°F). In this

instance, a high average open-cell voltage of 1.04 V is achieved. The reason

for this is the thermodynamic instability of methane at 1300°K (1880aF).

Kinetically, however_ it is possible to burn methane electrochemically at

this temperature without carbon deposition if, except for the fuel

electrod% the cell contains no metal surfaces. AS in-situ reformation

and oxidation of the methane takes place at the anode. The question,

however, remains whether this concept is practical, as experimental data

are limited.

13.3.4.2 Power Output of the Plant

Since the ac power output is included in the heat rate

calculations, we must explain how we derived these figures. The power

output of the fuel cell subsystem is reduced by the inefficiencies of

the power-condltloning subsystem, as described in Appendix A 13.2. As

in the case of molten carbonate fuel cells, it is assumed that an amount

of energy equivalent to 3% of the HHV of the fuel is consumed to provide

plant auxiliary power. The power output Pnet was calculated according to

the following equation

Pnet" (MW)(PCE) -'(0.03) (l_/nth) + Pturb
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where MW is the nominal power output,

PCE is the power conditioning efficiency,

Pturb is the ac power output from steam turbine generator

Dt h is the thermodynamic efficiency.

13.3.4.3 Heat Rate

Heat rate (HR) calculations for all parametric points except

SEI8 were performed in the following sequence:

i. Establish dc power rating in kilowatts

2. Calculate thermal equivalent from (i) in Btu/hr

3. Calculate fuel rate from (2) by considering thermodynamic

inefficiencies in Btu/hr

4. Calculate heat rate in Stu/kWh in dividing (3) by the

actual ac power output of the power plant.

For example, for a Point SEI

HR ffi MW = ,_25 x 106)(3413) = 4900 Btu/kWh

Dth Pnet (0.76)(22.9 x 106 )

The heat rate for SEI8 was established earlier by Westinghouse under the

sponsorship of the Office of Coal Research. Based on a detailed mass

and energy balance for a I00 kW power plant (Reference 13.25) a heat

balance of 6370 Btu/kWh was calculated. This heat rate was used fn the

present calculations taking no credit for possible improvements as the

plant size was increased from I00 kW to 250 MW.

13.3.4.4 Power Plant Efficiency

The power plant efficiency, _pp, is the quotient of Jhe

theoretical and calculated heat rates for all parametric point:;

3413

npp = HR

In the cases of SE4 and SEI9, additional power is produced by utilizing

the waste heat of the fuel cell generator. This, of course, is only
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possible in large installationsand was not considered for smaller plants.

The waste heat was used vla a steam turbine generator with an assumed

40% efficiency. This is why the power plant efficiency is higher than

the thermodynamic efficiency of the electrochemical generator. This is

not a contradiction, because the fuel cell for which the thermodynamic

efficiency is calculated delivers only a part of the electrical energy

of these plants which could be considered combined-cycle plants. The

heat rates of SE4 and SE19 must be viewed this way also.

13.4 Capital_ Site-Labor_ and Operation and Maintenance Costs

This section is devoted mainly to a description of the approaches

taken in calculating the capital costs of the fuel cell subsystems. The

power-conditioning costs for the power plants corresponding to all 69

parametric points are given in Appendix A 13.2. Similarly, oxygen plant

costs for Point 5 in all fuel cell power systems and for ACI6 and MCI7

are discussed in Appendix A 13.3. The approach to balance of plant

costing has already been described in Section 2. The fuel-processing

subsystem, required for the low-temperature aqueous acid and alkaline

power systems, is costed as described in Appendix A 13.1. This appendix

also includes a brief description of costing the air blowers for the low-

temperature fuel cell power systems.

It must be emphasized here, as in Subsection 13.3, that without

a conceptual design of the fuel cell modules the costing techniques are

at best approximate. The assumptions employed as to design and'materials

of construction are stated, even if extensive Justification Is not

provided. Refinement of these assumptions was anticipated as part of

Task II of this study.

The site labor costs for installing the four types of fuel

cell module were assumed arbitrarily to be $5/kW for the acid and alkaline

systems, $8/kW for the molten carbonate system, and $10/kW for the solid

electrolyte system. These relatively low site labor charges reflect the

modularity of the assumed fuel cell subsystem, which leads tO relatively
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straightforward and simple installation procedures at the power plant

location. The higher charges for the hlgh-temperature system reflect

the slightly more complex procedures of subsystems interconnection,

because of increased insulation requirements.

The operation and maintenance (O&M) costs for the full ce_l

power plants have, in general, three component charges related to: (a)

plant labor; (b) material and component replacement in subsystems other

than the fuel cell subsystem, and (c) full replacement of the fuel cell

subsystem. These costs are described in greater detail below.

(a) An hourly labor cost is calculable, as described already

in Section 2.6.3.4, by the formula:

I ac output t)II $151000 ]O&M (labor) = Z 0.6 + 0.004 (ac outpu 8740 hr (capacity facto_

where Z, a factor related to the complexity of O&M procedures, is taken

as 1.0 for steam plants. For all plants with adc ratlng of 25 MW, it

has been assumed that, because of their probable substation locations,

remote operation will be possible with control exercised from a central

station. Also, because of this probable remote control, the value of Z

has been arbitrarily assumed to be 0.2 for these plants. For all power

plants of 250 MW or larger, however, a factor of 0.4 has been chosen,

reflecting the need for full-time personnel at the plant location. This

Z value is substantially less than that for steam plants and may be

justified on the basis of the relative cleanliness of the fuels employed

in the fuel cell plants, and the ease of maintenance of the power-

conditioning subsystem.

(b) To allow for material and component replacement in the

fuel-processing and power-condltloning subsystems, and other major

components, an O&M charge, amounting to 5% of the total capital and site-

costs of the major components {with the exception of the fuel cell sub-

system), is allotted for each power plant.
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(c) The fuel cell subsystem useful life is only 36 Ms (10,000

hours) (exceptions: Points 6 through 9). This is much less than the 946

Ms (30 yr) llfe assumed for the other plant components. Accordlngly, a

speclal charge, calculated by dividing the replacement cost of the fuel

cell subsystem by the product of the ac output and the llfe, is included

in the O&M costs for every parametric point. Because of uncertainties,

this calculation omits price escalation, learning, and sinking fund factors.

13.4.1 Phosphoric Acid Fuel Cell Power System

A blpolar design has been assumed for the acid fuel cell battery

stack. The basic element is a corrugated or embossed graphite plate which

serves as the anode current collector of one cell and the cathode current

collector of an adjacent cell. The anode and cathode are assumed to be

thin carbon electrodes_ similar to those described by Kordesch and Scarr

(Reference 13.30). These contain active carbon catalyzed by platinum.

The electrolyte consists of a matrix-lmmobilized 85 wt % phosphoric acid.

The fuel gas stream flows in the corrugations between the thin carbon

anode and the graphite piece. Air flows similarly between the cathode

and the corrugated graphite plate.

The cost of the corrugated graphite plate, which may be

fabricated by extrusion, is estimated (Reference 13.39) to be approxl-

merely $i0.76/m 2 ($1/ft2). If battery stack end requirements are

ignored only one of these plates is required per cell. The actlve

carbon electrodes, without catalyst, are similarly estimated (Reference

13.39) to cost approximately $i0.76/m 2 ($1/ft 2) each. For an inter-

electrode separation (i.e., electrolyte thickness) of 0.5 mm (19.7 mils),

the quantity of electrolyte required, assuming that it forms 80Z by

volume of the matrix, is approxlmate1_ i00 g (0.22 lb). At $0.349/kg

($15.85/100 Ib) (Reference 13.40), the electrolyte cost is only $0.377/m 2

($0.035/ft2). The electrolyte matrix component has been assumed to be

cost-determlnlng, so that the cost of the immobilized phosphoric acid is

taken as $5.38/m 2 ($0.50/ft2). Thus, the cost of the bipolar battery

stack materials, unassembled and without catalyst p is approximately
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$37.67/m2 ($3.50/ft2). Doublingof this materials cost results in a
manufacturedcost for the battery stack of $75.35/m2 ($7/ft2). A further
allowanceof $5.38/m2 ($0.50/ft 2) for gasketingand insulating the battery
stack yields a manufacturedcost of $80.73/m2 ($7.50/ft 2) for the fuel
cell module. Addinga profit of 20%results in a selling price of $96.88/m2
($9/ft 2) for a modulewith uncatalyzedelectrodes.

Mostparametricpoints (except for At12 andAt13) involve
platinum loadings in the anodeand cathodeof 1 mg/cm2 (0.00205Ib/ft2).

If chloroplatinic acid (H2PtCI6)is employedin the catalyst-addltion
process, the cost of platinum per unit cell area is $i17.33/m2 ($i0.90/ft2),
for a chloroplatinic acid cost of $5.8675/g of contained platinum

($182.48/oz t platinum)(Reference 13.40). Thus, for most parametric points,

the fuel cell module cost is $214.20/m 2 ($19.90/ft2). In Point At12,

where the platinum loadings in the anode and cathode are decreased to

0.3 mg/cm 2 (6.144 x 10 -4 Ib/ft2), the catalyst cost is'reduced to

$35.20/m 2 ($3.27/ft2), resulting in a fabricated module cost of $132.07/m 2

($12.27/ft2). The catalyst and module costs for ACI3 [0.i mg Pt/cm 2

(2.05 x 10 -4 Ib/ft2)] are calculated in the same manner.

The cost per kW of the fuel cell module is assumed to be

inversely proportional to the power density. For ACI, the power density

is 140 mW/cm 2 (130.1 W/ft2). This corresponds to a cell area requirement

of 0.7143 m2/kW (7.689 ft2/kW), and a module cost of $153/kW, based on the

costs given above. This leads to a vendor selling price of $3.8 million

for the 25 MW dc fuel cell subsystem. The costs of all fuel cell sub-

systems are calculated in the same manner, based on the cell power

densities, the dc ratings, and the catalyst loadlngs.

The replacement cost of the acid fuel cell subsystem is

calculated under the following assumptionsz

The cost of recovering the platinum at the end of battery

llfe and reprocessing it into chloroplatlnlc acid is $1.00/g

($31.I0/oz t).
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• The rest of the fuel cell module has zero salvage value.

• The installation cost remains at $5/kN.

Thus, the catalyst cost in the replacement modules is only $20/m 2

($1.86/ft2),resulting in a fabricated module cost of $i16.88/m 2 ($10.86/

ft2). In parametric point AClj the replacement cost of the 25 HW dc fuel

cell subsystem is $2,087,000 plus $125,000 for Installation. The

corresponding O&M charge is :

$2_0871000 + $125z000
(23,400 kW)(lO,O00 hr) = 9.45 _lls/kWh

or a charge of $221/operational hour.

13.4.2 Alkaline Fuel Cell Power System

A bipolar deslgn_ identical to that selected for the acid

system, has been assumed also for the alkaline fuel cell modules. Thus,

the selling price of $96.88/m 2 ($9/ft 2) for a module with uncatalyzed

electrodes given for the acid fuel cell system is applicable here also.

The major differences between the acid and a_kallne modules lle in the

areas of cathodic catalyst type and power density.

The carbon anode is catalyzed by platinum wlth a loading of

i mg/cm 2 40.00205 lb/ft2), and the cathode is catalyzed by silver with a

loading of 5 mg/cm 2 40.0103 1b/f,2). Thus, the platinum loading is half

of that in the acid system and adds $58.68/m 2 455.45/ft 2) to the

uncatalyzed cost quoted above: It is assumed that the cathodes are

silver catalyzed_rlth silver nitrate, which costs $0.094/8 of contained

silver 452.69/oz av A84Eaference 13.40)). This adds a further

$4.745/m 2 450.4408/ft 2) to the uncatalyzed module cost. The catalyzed

cell cost is, therefore, $160.30/m 2 ($14.89/ft2).

The power density for most parametric points is 80 )_/cm 2

474.32 W/f, 2) leading to a cell area requirement of 1.25 m2/kW

(13.46 ft2/kW). The module cost is, therefore, $200/kW, or $5 m1111on

for a 25 MW fuel cell subsystem. Subsystem costs for other power
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density values are calculated on the basis of the inverse relationship

assumed between the cost and the power deLlsity. The replacement cost

is calculated, as in the acid system, with recovery and reprocessing

costs for platinum and silver of $1/g ($31.I0/oz t) and $0.03/g

($0.93/oz av), respectively.

13.4.3 Molten Carbonate Fuel Cell Power System

This section describes cost estimates for the fuel cell, gas

recirculatlon, and heat recovery systems. Plant costs for siting,

construction, and electrical controls are described in Appendix A 13.4.

Oxygen plant costs are described in Appendix A 13.3, and power-

conditioning costs are given in Appendix A 13.2.

The same cost for materials, fabrication, and assembly per

unit area of electrode has been assumed for all molten carbonate fuel

cells. Since there have been no cell assemblies of more than a few

kilowatts, and constructional details of current test units (Reference

13.22) are not available, only very rough estimates can be made. As a

first approach to costing the full cell, we assume a filter press design;

estimate a cost based on the somewhat analogous filter press technology;

and approximate cell material costs suggested by IGT (Reference 13.11),

with 0.715 m 2 (7.7 ft 2) of electrode area per kilowatt. From Perry's

Handbook (Reference 13.41), the lowest cost (1970) of a filter press with

filters uninstalled was about $161.50/m 2 ($15/ft 2) for iron or wood

materials. If we update to July 1974 prices by the factor 1.4, subtract

a material cost of about $21.50/m 2 ($2/ft 2) for the wood or iron materials,

add a cell material cost suggested by IGT in 1966 (Reference 13.11)($20

to $40/kW escalated to July 1974 prices of about $31 to $62/kW or an

average of $46/kW), and add a further 20% for assembly and leakproofing,

a cost of ($15 ft 2) (7.7 ft2)(l.4) - ($2/ft 2) 7.7 ft 2 - $15.4 + [31 or

62], i.e., $177 or $208 /kW, may be calculated. If we add 20% to allow

for vendor profit, the cost would be $213 to 250/kW, uninstalJed.

A second approach to costing the cell is to take the values

estimated by Hart and Womack (Reference 13.16). The list price was

27.5/kW de. Adjusting this for an exchange rate of $2.4/_ (in 1966),
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for the ratio of power densities assumed in that and the present study

of 0.2 to 0.13 (in terms of kW/ft2), a commodity escalation price of

$1.58 and a profit factor of 1.2 for fabrication gives (27.5)(2.4)

(0.2/0.13)(1.58)(1.2) ffi$192.51/kW uninstalled.

For this study we have arbitrarily selected an uninstalled

capital cost of $190/kW as being about the lower limit of what we might

reasonably expect. An installation cost of $8/kW is assumed.

Without a conceptual design of the fuel cell system, costing

of the waste heat recovery system is also arbitrary. Refinement of the

estimates on the basis of a detailed design was anticipated as a part of

Task II. For example, normal waste heat boilers have a once-through

passage of the hot gases, but in the present system we recycle the fuel

cell exit gases between the fuel cell and boiler temperatures. Such a

system would have to be specifically designed for this application. The

installed cost of the heat recovery steam generator is assumed to be

$60/kW. Installation cost is estimated as 33% of the total, which is

about the same as for the simple steam turbine power plant boiler but

much more than the _ 5 to i0% for a simple once-through waste heat

boiler. The aost of the associated turbine-generator combination in

MC4 is taken from a Westinghouse price list (Reference 13.42) adjusted

to July 1974 prices.

Heat exchangers are arbitrarily assumed to cost $12.50/kW dc

installed. Of this cost about 45% is for the heaC exchangers, and 55%

involves the installation labor, piping, etc.

Blower costs will depend on the rate of recirculatlon

necessary both to remove heat and to prevent cell concentration polarization.

We assume about $1.15/kW plus 10% installatlon for this item for a11

plants except MC4; and $2.55 kW for MC4, the 900 MN plant which may

require higher temperature blowers.

The sum totals of the blower, heat exchanger, and heat

recovery steam generator costs for MCI, the base case, represent only

about 3.85Z of the total plant capital costs. Substantlal errors in
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these estimates, therefore, will not be significant in view of the large
uncertainty in estimating the ultimate lifetimes andcost of the fuel cell
itself, which representsabout 38.5%of the total capital costs.

Capital costs are muchgreater wherean oxygenplant (see
AppendixA 13.3) is included, eventhough the fuel cell is significantly

reduced in size due to the higher power output per cell that has been

assumed. Due to economics of size the oxygen plant represents about

33% of the total capital cost for MC5, a 25 MW plant, but only 20.5% for

MCI7, a 250 MW plant. This is more than the corresponding fuel cell

capital costs of roughly 15 and 19.6% of the total, respectively. The

high capital cost in addition to large power requirement appears to

preclude the use of oxygen rather than air in the molten carbonate

plants.

13.4.4 Solid Electrolyte Fuel Cell Power System

The costing of the fuel cell subsystem is based on a cost

analysis for the Westinghouse thin-film battery, discussed in detail in

Reference 13.43. For a power output of 0.5 W/cm (1.27 W/in) of a tubular

battery having an outside diameter of 1.27 cm (0.5 in), the cost of the

battery raw material was $21/kW in mid-1970. _le following set of

assumptions have been employed in cal_ulat[ng the cost per kilowatt dc

output of a fuel cell module in mid-1974:

• Active electrolyte and active interconnection region

lengths are equal to each other and to 2 mm (0.079 in).

• Fuel electrode and air electrode gap lengths are equal

0.5 mm (20 mils).

• A fabrication-cost/materi_Is-cost ratio of 7 to 3 %s based

on Westinghouse manufacturing experience in thlck-film device

technology, which is comparable to that required for thin-

film battery fabrication.
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• A factor of 1.34, corresponding to the increase in the

_arshall and Stevens index from told-1970 to ._d-1974, is

used to estimate the mid-1974 costs of the fabricated

batteries.

• An additional _18/kW i• allowed for materials and

assembly labor necessary to manifold and •heath the fuel

cell batteries in the fabrication of the fuel cell module.

• Three percent (3%) of the cost of the fabricated fuel cell

module is taken as the cost of insulation (Reference 13.44).

• A profit of 20% is assumed in the estimation of a vendor

price.

Thus, for SE2-4j SE6-9, SE13, and SEI5, the selling price in $

per kilowatt of a fuel cell module is calculated as follows :

<6.4224°"5W/cm,.I00.  IS]
P = [(kN ) W/cm'_30 -)(1"34) + -_J (1.03)(1.2)

= $160/kW

For all other points the selling price of the fuel cell module were

calculated using the above value and an assumed inverse relationship

between cost and power density,

No known heat exchanger technology is available for application

in high-temperature fuel cells operating up to 1373"K (2012°F). It was

assumed, therefore, that heat exchange above 873°K (III2°F) must be

accomplished in the fuel cell generator itself. At this temperature,

heat shock problems are largely reduced. Based on this assumption, heat

exchanger calculations were performed where nearly a 50% reduction of heat

exchange surface is achieved and where the maximum metal temperature in

the heat exchanger is reduced to 873°K (III2°F). The calculatlons took

into account a IO0°K (180°F) mean temperature difference and a base cost

of $215/m 2 ($20/ft 2) of heat exchange surface. The installed cost was

assumed to be 230% of this base cost, or $495/m 2 ($46/ft2). These costs
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werebrokendown into material and site labor costs, following Guthrie

(Reference 13.44), who reco,_mands values of 73% (materials) and 27%

(site labor) of the total installed cost.

The cost of the integrated coal gasification reactor in SEI8,

the Westinghouse Fuel Cell Power System, was estimated on the basis of

an economic evaluation of a 200 MW coal-burnlng fuel cell power plant,

performed by IGT in early 1969 (Reference 13.45). The updated installed

cost is broken down according to the above Guthrie recommendations for

shell-and-tube heat exchangers -- 73% for materials and 27% for site

labor -- because fully 75% of the installed cost of the reactor is

attributable to the Incoloy 800 pipe required for encapsulation of the

fuel cell modules and for adequate heat exchange between.the fuel cell

batteries and the coal undergoing gasification. The low-Btu gasifier

cost for SEI9 was taken from estimates provided in Section 4 of this

report.

Estimates of the cost of gas compressors, venturi scrubbers,

and waste heat boilers were based on information provided in

Reference 13.44. The waste-heat recovery system (i.e., the steam

bottoming plant) of SE4 was costed as described in Section 13.4.3.

13.5 Results of Parametric Assessment

The power plant efficiency is. defined as the quotient of the

power output at grid voltages and the higher heating value (HHV) of the

fuel fed to the power system. As described in Section 13.3, a heat rate

was calculated for the power plant corresponding to each of the 69 points

in the parametric assessment. These values were input to a computer

program (described in Section 2) in which they were converted to

fractional efficiencies, after a minor allowance was made for power

plant electrical requirements.

The program was also employed to calculate an overall energy

efficiency, defined as the quotient of the power plant ac output and tile

higher heating value of the coal required in the production of the fuel.
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Thefactors employedto convert the power plant efficlencies to overall

energy efficiencies are described in Sections 2.3.1.2, 2.3.1.3, and

2.5.1.6 for hlgh-Btu gas, medium-Btu gas, and methanol, respectively.

All of these fuels were considered to have been derived from Illinois

No. 6 coal. Point SEI8, the Westinghouse Fuel Cell Power System,

involves the use of a coal (Illinois No. 6) as fuel so the power plant

and overall energy efficiencies for this system are identical. North

Dakota Lignite was selected for the low-Btu gasification reactor of SEI9

because of its higher gasification efficiency (Section 4).

The cost of electricity (COE) and its three component parts,

ascribable to capital, fuel, and O&M charges, were also calculated by

means of the computer program from the cost input described in Section

13.4. These costs were baaed on NASA-mandated values for labor rate,

contingency charge, escalation rate, interest during construction,

fixed charge rate, fuel cost and capacity factor. The values specified

are listed in Table 13.8.

Table 13.8 - Values Selected for Variables in Plant Construction and

Operation

Labor Rate

Contingency Charge

Escalation Rate

Interest during
Construction

Fixed Charge Rate

Capacity Factor

Fuel Costs --

High-Btu gas

Hedium-Btu gas

Methanol

Coal

$10.60/hr

4.5%

6.5%

10%

18%

65%

$2.60/106 Btu

$2.00/106 Btu

$2.70/106 Btu

$0.85/106 Etu
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Theeffect of changesin all of thesebasecasevalues on the COEwere
explored for every point in the parametric assessment.

In Sections 13.5.1 through 13.5.4, the efficiency and COE

results are shown and discussed for each fuel cell power system. A

comprehensive comparison of the four ypes of fuel cell power systems is

given in Section 13.6 in justificatio1_ of the conclusions and

recommendations of this study.

13.5.1 Phosphoric Acid Fuel Cell Power Systems

The power plant and overall energy efficiencies; the capital

cost and COE; and the estimated time of construction for each of the

plants corresponding to the sixteen parametric points of the acid fuel

cell system are shown in Table 13.9. All relevant information pertaining

to the operation of each of the fuel cell subsystems in these plants iS

provided also in this table.

When air is employed as the oxidant, the plant efficiency lles

in the range of 35 to 36%, for all points. The overall energy efficiency

with high-Btu gas is approxlmately 24%. For AC4 the overall efficiency

is better than 29%, reflecting the use of medium-Btu gas in this power

plant. There is no comparable advantage to the use of methanol as a fuel,

as shown by the value of 25% for the overall energy efficiency of the

power plant corresponding to Point ACI4.

Points AC5 and 16, corresponding to 25 MW dc and 250 MW dc

power plants which use oxygen instead of air as the oxidant, display

power plant and overall energy efficiencies of 30% and 20%, respectively.

The efficiency reduction, amounting to a sixth of the total, is attributable

to the power required by the dedicated oxygen plants.

The computer output for Base Case ACI is shown in Tables

A 13.5.1 through A 13.5.3. Listed are all of the cost input, as well

as the capital cost and COE for five levels of labor cost, contingency

charge, escalation rate, interest rate during construction, fixed charge

rate, fuel cost, and capacity factor. The capital cost and the COE broken
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TABLE 13.9 -VALUES OF ALL RELEVANTPARAMETERS FORTHE PARAMETRIC POINTS OF THE AOUEOUS-ACID FUEL CELL POWER SYSTEM

t , ItLtlL
X x x X X _ X X X

X

10 10 10 10 10 30 50 .I00 [Q0 I0 10

5 5 5 5 5 5 5 5 15 5 5
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x Ix IX rx I x xo.__ i o.__l_A___L_O_05I x______ 0.05 j
005;05;05 I x0,06 o.05

--_-l x l x I x [ x I x x x x x [ x
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Hlqh-BtuGas X X X X ,X J x ] X ] X ] X ] X ] X [
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into its three components -- capital, fuel, and OhM -- are shown in Table

13.9 for the values of the construction and operation variables of

Table 13.8.

The COE for ACI, 13.9 mills/MJ (50.1 mills/kWh) has as its

major component the fuel charge, which comprises 50% of the total

cost. This is understandable in terms of the low efficiency of this

power plant and the costliness of the fuel gas at $2.60/106 Btu. The

importance of the cost of high-Btu gas and its effect on the cost of

electricity are shown in Figure 13.12. At $1.50/106 Btu, the electricity

cost is Ii.0 mills/MJ (39.5 mills/kWh); and at $4.00/106 Btu, the cost is

17.7 mills/MJ (63.5 mills/kWh).

A breakdown of the total capitalization required for this plant

is provided in Tables A 13.4.1 through A 13.4.3. A graphic display of

this breakdown is shown as Figure 13.16 in Section 13.6. The costs of the

installed fuel cell, power-conditioning, and fuel-processlng subsystems are

$169, $62, and $38/kWe of ac output, respectively. The balance of plant

cost is $67/kWe, and the indirect costs amount to $112/kWe. The total

capitalization is $448/kWe.

In the standard case, defined by the values of Table 13.8, that

portion of the COE ascribable to capital is 3.94 mills/MJ (14.2 mills/kWh).

Because of the short time (one and a half years) required for plant

construction, changes in the escalation rate and the interest rate during

construction have very little effect on the cost of electricity.

Similarly, because of the modular nature of the fuel cell and power-

conditioning subsystems, which ntinimizes the site labor required, even a

doubling of the labor rate results in a relatively small increase (5%)

in the electricity cost (Table A 13.4.2). Changes in the fixed charge

rate from the base value of 18%, however, have a more pronounced

effect -- e.g., a lowering of the rate to 10% results in a reduction in

the COE of 1.75 mills/M.] (6.30 mills/kWh).

Of the 3.03 mllls/MJ (10.9 mills/kWh) O&M charge calculated for

tile power plant corresponding to Point ACI, only 0.388 mills/MJ
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(1.4 mills/kWh) is attributable to l_bor and to material and component

replacement in all parts of the plant,excluding the fuel cell subsystem.

The balance, amounting to 87% of the total, is due to the need for fuel

cell replacement after 36 Ms (i0,000 hr) of operation. The hyperbolic

relationship between the fuel cell useful life and the COE (and its O&M

component) is evident from Figure 13.12, which is plotted from data

generated for Points AC6, AC7,and AC8, as well as ACI. Lifetimes of

144 Ms (40,000 hr) and 360 Ms (I00,000 hr) lead to reductions in the

base case COE of 1.97 mills/MJ (7.1 mills/kWh) and 2.36 mills/MJ

(8.5 mills/kWh), respectively.

The effect of reducing the platinum loadings in both cell

electrodes from 1.0 mg/cm 2 (0.002 Ib/ft 2) in the base case to 0.3 mg/cm 2

(6.1 x 10 -4 ib/ft 2) and 0.I mg/cm 2 (2 x 10 -4 ib/ft 2) is explored in

Points ACI2 and ACI3. These results are also included in Table 13.9,

and are shown graphically in Figure 13.13. _le order of magnitude

reduction in electrode platinum loadings L'aused a reduction of only 1.28

mills/MJ (4.6 mills/kWh) in the cost of electricity. This result is

surprising in view of the widely accepted tenet that it is desirable,

from an economic standpoint, to avoid platinum as an electrocatalyst.

Figure 13.13indicates that, provided a 0.56 mills/MJ (2 mill/kWh) penalty

can be absorbed and an adequate supply of platinum is available_ there is

little point to efforts to reduce the electrode platinum loadings much

below 0.4 mg/cm 2 (8.2 x 10 -4 ib/ft2), corresponding to a platinum usage

of approximately 6 g/kW (13.2 Ib/MW). This conclusion is supported by

Abens, Baker, DiPasquale, and Miehalko (Reference 13.29), who stated in a

recent paper that "much obfuscation of cell costs has been caused by

belaboring the advances made in catalyst cost reductions."

The power density, the product of the electrode current

density and the cell voltage, has a marked effect on the COE, as shown

by the data for ACIO and ACll in Table 13.9. These results are also

presented in Figure 13.1_ A doubling of the base-case power density

results in a 2.2 mills/MJ (7.9 mills/kWh) reduction in the COE. This
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Fig. 13. 13-Dependence of the cost of electricity for phosphoric
acid fuel cell power systems on the platinum Ioadings ir the anode

and cathode, and on the power density per unit cell area
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graph may be used also to compute the effe t of reductions in the selling

price of the fuel cell subsystem beca_Jse ol the inverse relationship

between the selling price and the power density.

Because of the modular nature of the fuel cell and power-

conditioning subsystems, there is little, if any, economy of scale in

fuel cell power plants. This is illustrated by the data presented in

Table 13.9 for i00 MW (AC2) and 250 MW dc (AC3) power plants. Medium-Btu

gas is used in the 900 MW dc power plant (corresponding to Point AC4),

and because of its relatively lower cost (see Table 13.8), tile fuel

component of the COE is reduced to 5.44 mi[Is/MJ (19.6 mills/kWh). In

contrast, substitution of methanol for higl_-Btu gas, as in Point ACI4,

results in an increase in the COE despite a minimal increase in the power

plant efficiency. This was caused by the cost of facilities for storing

methanol at the power plant, and by the slightly higher charge for this

fuel (Table 13.8). The COE is only minimally affected by an electrolyte-

thickness reduction (Point ACI5). An increase in the versatility of the

power-conditloning subsystem to permit handling the lower current or

voltage input expected as a result of fuel cell performance deterioration

with time (Point AC9) has only a minor effect on the COE.

Oxygen is substituted for air as the oxidant in the fuel cell

subsystems of the 25 MW and 250 MW dc power plants corresponding to

Points AC5 and ACI6, respectively. A comparison of the COE for ACI and

AC5 reveals a 4.5 mill/MJ (16 mill/kWh) penalty for tile plant employing

oxygen. A further comparison of the data for 250 MW dc power plants

(Points AC3 and ACI6) indicates that econoHy of scale in oxygen plants

reduces this differential to 2.3 mills/MJ 8.3 mills/kWh). These cost

penalties and the efficiency reduction noted above combine to make very

unattractive the replacement of air by oxygen from a dedicated oxygen

plant.
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TABLE 13.10-VALOES OF ALL RELEVANTPARAMETERS FORTHE PARAMETRIC POINTS OF THE AQUEOUS-ALKAUNE FUEL CELLPOWER SYSTEM

" Parame[ric Point_ AL# ! I Z l 3 ] 4

PowerOutgut, MWe 22 _ 87 I _ ) 77OFuel CelJ ealing, .taw 25 J 100
Fuel

X t_×Hi,h-BtuC.,as X I X I X t X IMedium-Btu Gas
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Air X X X X X
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cathie
.___..._:_ .. _/._c _ _ ..... x_. x x x

Type: Raney Ni
.... L
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13.5.2 Alkaline Fuel Cell Power System

The results of the parametric assessment for the alkaline fuel

cell power system are shown in Table 13.10. In general, the power plant

and overall energy effleiencies are higher than those for tile acid

power system. The margin is not as great as expected with the higher

cell voltages -- 0.8 V vs 0.7 V -- in this system. The lower margin is

due to the parasitic losses associated with operation of the Rectisol

units for scrubbing the carbon dioxide from the fuel gas and air streams

fed to the power system. The capitalization required for alkaline power

plants is greater because of the lower power density and, hence, higher

costs of the fuel cell subsystem, and because of the costs of the

Rectisol units, which are not required in the acid system. Similarly,

the O&M charges are higher because of the greater replacement costs of

the fuel cell subsystem. The net effect is that the COE for the

alkaline fuel cell power systenm are approxinmtely 20% higher than those

for the phosphoric acid system.

With high-Btu gas as fuel and air as oxidant, the power plant

and overall energy efficiencies lie in general at 38% and 25 to 26%,

respectively. When medium-Btu gas is employed as the fuel (AL4), the

overall energy efficiency increases to 31%, while the power plant

efficiency, 37%, is slightly lower. As discussed earlier for the acid

system, the substitution of oxygen for air as the oxidant (ALS) results

in a substantial lowering of both efficiency values. The power plant

and overall energy efficiencles move sharply downward to 32% and 21%,

respectively.

A detailed breakdown of all of the direct costs for the base

case, ALl, is provided by Tables A 13.4.4 through A 13.4.6. A simplified

breakdown is shown later in Figure 13.16 of Section 13.6. It should be

noted that the Rectisol unit for air scrubbing is included in the fuel

processing cost in this diagram. Table A 13.4.2 shows the effects of

variation of the labor rate, contingency charge, escalation rate, fixed

charge rate, interest rate during construction, fuel cost, and capacity
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factor on the capital costs and COE for the base case power plant. The

cost of electricity breakdown for the values of the construction and

operation variables listed in Table 13.8 is as follows: 5.44 mills/MJ

(19.6 mills/kWh) for capital, 6.48 mills/MJ (25.3 mills/kWh) for fuel,

and 4.95 mills/MJ (17.8 m/11s/kWh) for O&M. The total COg is 16.9 mills/

HJ (60.8 mills/kWh).

As for the acid power system, the high O&M charge is mostly

due to the high replacement cost of the fuel cell subsystem. Of the

total, 4.4 mills/MJ (16 mills/kWh) is ascribable to the need for total

replacement after 36 Ms (I0,000 hr) of operation. The data for AL6, AL7,

and AL8, Shown in Table 13.10, indicate the substantial effect of fuel

cell useful life on the COg. Increasing the useful life to 180 Ms

(50,000 hr) reduces the COE by 4.0 mills/MJ (14.4 mills/kWh).

An equally profound effect is shown by comparing the data for

ALIO and ALII with those for the base case ALl. A power density

increase of 150% results in lowering the COE by 4.05 mills/MJ (14.6 mills/

kWh). A lowering of catalyst loadings, however, as in AC12, ACI3, and

ACI5, leads to less significant reductions of the COg, Just as in the case

of the acid system.

No economy of scale is observed. The COE for the i00 MN dc

(AL2) and 250 MW dc (AL3) power systems differs very little from those

for the 25 MW dc base case. The full benefit of the use of the cheaper

medium-Btu gas is not realized in the 900 _ dc plant (AL4) because of

the additional Rectisol process costs associated with the need to

eliminate additlonal carbon dioxide, which now forms 40% of the shift

converter effluent instead of the 20Z when high-Btu gas is employed as

the fuel.

As for the corresponding case in the acid fuel cell parametric

assessment, there is COE penalty associated with the replacement of air

by oxygen (AL5) from a dedicated liquid-air distillation plant. The

penalty of the alkaline system is less than half that for the acid system,

however, because acid gas scrubbing of the oxidant stream is no longer
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necessary. The effects of electrolyte-thickness reduction (ALl6) and

increasing the flexibility of the power conditioning subsystem (AL9) are

small.

13.5.3 Molten Carbonate Fuel Cell Power System

Table 13.11 is a summary of initial plant and overall

efficiencies for the various parametric points. The efficiencies do not

represent optimized systems, but allow a comparison of the relative

effect of different parameters. The efficiency of the fuel cell for any

one fuel is assumed to be the same, with current density being changed by

changes in operating variables such as the use of oxygen instead of air or

alteration of the electrolyte thickness. Consequently, all systems using

high-Btu gas have nearly the same plant and overall efficiencies of 48 to

49% and 32 to 33%, respectively. The small differences are du_ to

different efficiencies of the po_er-c_,nditioning system for diJfer_i_t

plant size, as described in Appendix A 13.2.

There will be an efficiency decrease with time from these initial

values, depending on the amount of voltage degradation of the cell at

constant power.

The fuel type has an important effect on the efficiency. Thus,

plant efflciencies of about 36.5% and 45% are obtained for medium-Btu

and methanol fuels, respectively, compared to about 49% for high-Btu gas.

On the other hand, the overall efficiency of about 30.5% for mediumiBtu

gas is not much less than the 33 and 31% efficiencies for hlgh-Btu and

methanol fuels. This is due to the higher gasification efficiency of the

medium-Btu gas.

The use of medium-Btu gas involves much larger heat losses in

the cell due to entropy factors in the electrochemical reactions. If we

recover this heat and use it to produce additional ac power via a steam

turbine generator as in MC4, we increase the power plant efficiency beyond

that of the other systems which do not use the waste heat in this way.

If we used the analogous combined fuel cell/turbine generator system with

high-Btu or methanol fuels we would obtain a plant efficiency of about
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TABLE [3. ]! -VALUES OF ALL RELEVANTPARAM.ETER$ FOR THE PARAMETRIC POINTS OF THE MOLTEN-CARBONATEFU,rJ. CELLPOWER SYSTEM

Parametric Point, MC#
Power Outout. MWe

Fuel Cell Ratimz. MWd¢

Fuel
Hiqh-Bt u Gas ......
Medium-Btu Gas

Methanol
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Ox,,_on
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__.!hick n_e$_i,r.m
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--_thed_eb_

LithiaJed Ni 0
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Powerplant Eft, %
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Total Capital Cost x ]0-6, t
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Cost of Elect, Mills/kWh

Cap/tat
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Total

Est. Time o! Construction. yr
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59% but a lower overall efficiency (40 to 1%) than the 45.5% for MC4

(medium-Btu fuel). This is due to the lower gasification efficiency

for the higher-grade fuels.

MCI5 uses methanol as fuel. The _45% power plant efficiency

calculated for this system is only 4% less than the value for the

corresponding system using high-Btu gas (MCI). Internal reforming of

methanol, however, will probably be easier than for high-Btu gas. This

might reduce or eliminate efficiency differences between the high-Btu

(MCI) and methanol (MCI5) systems.

The systems using oxygen, MC5 and MCI7, are arbitrarily

operated at the same efficiency as MCI but at higher current densities

to reduce fuel cell capital and O&M costs, as explained below. Note that

for tklese systems, power for the air compressor of the oxygen plant is

derived from a steam turbine operating with free excess heat from the

fuel cell. If an electric drive compressor were used, it would

severely reduce the plant efficiency.

In summary, the best overall efficiency of about 45% for the

molten carbonate system investigated is attained for a combined system with

the fuel cell using medium-Btu fuel and a steam turbine generator to

convert excess heat from the fuel cell to electrical energy.

The highest plant efficiencies of about 59% can be obtained for

the analogous combined systems using high-Btu or methanol with internal

reforming, but their overall efflciencies are only 40 to 41%, due to the

inefficiency of the gasiflcat_on process.

For the fuel cell system only, plant efficiencies of _49, %45,

and %36%; and overall efficiencies of %33, _31, and %30.5% are obtained

with the high-Btu, methanol and medium-Btu fuels, with little to choose

between high-Btu and methanol since internal reforming may be easier with

the latter fuel.

The cost input to the computer program and the output data for

the power plant corresponding to MCI, the base case, are listed in
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Tables A 13.4.7 through A 13.4.9. The cost estimates for COE from the

various unoptimized molten carbonate fuel cell plants selected for analysis

vary from abdut 10.8 to 19.4 mills/MJ (39 to 70 mills/k_nl), as shown in

Table 13.11. If a ten-year fuel cell lifetime with excess heat recovery

were possible, a COE value close to 8.3 mills/MJ (30 mills/k_nl) could

perhaps be realized.

Of the parameters investigated, power plant size has only a

small effect of about 0.8% reduction of COE for a factor of ten increase

in plant size, going from MCI (25 _4) to MC3 (250 MW). If oxygen rather

than air is used as oxidant, however, plant size is important, since the

cost of oxygen varies substantially with the amount of oxygen required.

Thus, MCS, the 25 MW plant, has a COE of about 18.6 mills/MJ (67 mills/

kWh) compared to 16.3 mills/MJ (58.Tin ills/kWh) for the corresponding

250 MW plant (MClT) using oxygen. The latter figure, however, is no

improvement over the 25 _W pl_t using air and assumes the availability

of free waste heat from the fuel cell to operate the turblne-drive

compressor of the oxygen plant.

The effect of fuel type is surprisingly small, with medium-Btu

gas and methanol for the 25 MW plants (MCI4 and MCIS) having a COE only

about 3 to 5% greater, respectively, than for the corresponding plant

using hlgh-Btu gas (MCI) and no conversion of waste heat. If the waste

heat from the fuel cell, however, is converted to ac electrical energy

via a steam turbine generator, as in MC4, the COE is better for medium-Btu

than for either hlgh-Btu or methanol fuels,slnce the overall efficiency is

better and capital and O&M costs are about the same.

If the power density can be increased without decreasing the

efficiency by any means, this has a strong effect on the COE. This is

illustrated by MCIO and Ii, in which the power density is reduced by 25%

and increased by 25%, respectively, from that of the Base Case, MCI.

This results in about a 20% increase and about a 9% decrease, respectively,

in the COE.
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HC16 shows that the effect of reducing the electrolyte thickness

a factor of 2 from an already thin 1 mm (39 mils) is small, only about

0.7g less than the COE for MC1.

HC6, 7, and 8 show that the effect of ceil lifetime is the most

important factor in reducing the COE. A change from a 36 Ms (10,000 hr)

cell lifetime 108, 180, and 360 Ms (30,000, 50,000, and 100,000 hr) gave

corresponding reductions of the COE of about 25, 30, and 34%, respectively.

In summary, fuel cell life longer than the presently possible

36 Ms (10,000 hr) production of additional ac energy from excess fuel cell

heat, or a substantial increase in power output over that assumed, are

the principal factors capable of appreciably reducing the COE below about

16.7 mills/_J (60mills/k_estimated from available state-of-the-art

developments to date for the molten carbvnate fuel cell.

Fuel cell size and fuel type (except for combined fuel cell and

steam turbine generator systems), electrolyte thickness, and moderate

voltage degradation have relatively small effects on the COE.

Oxygen is not competitive with air as the oxidant except

possibly in the extreme case of a large (e.g., 250 _J) fuel cell plant,

with waste heat being used to run a turbine which operates the air

compressor of the oxygen plant.

13.5.4 Solid Electrolyte Fuel Cell Power System

The power plant and overall energy efficiencies for all

twenty points of the parametric assessment of the solid electrolyte

power system are listed in Table 13.12. This table also provides infor-

mation pertinent to the operation of the fuel cell subsystem in the

power plant corresponding to each of the twenty points.

In "the Base Case SE1 high-Btu gas is employed as the fuel.

Because of the high average cell voltages, predicted on the direct

electrochemical oxidation of methane at the fuel electrode, the power

plant and overall energy efficiencies are high, lying at 69.7 and 46.9%,

respectively. These values are unlikely to be realized in practice
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because of the metastability of methane at this temperature, resulting

in either reformation on any available metallic surface, including that

of the metallic component of the fuel electrode, in the presence of an

adequate supply of water vapor, or carbon deposition (Reference 13.46).

For most points in the paraL_tric assessment, medium-Btu gas

is the fuel, so that for comparison purposes, Point SE2, corresponding to

the i00 MW dc power plant, is much more useful than Point SEI. With

medium-Btu gas as fuel, the power plant efficiency lies in the range 40

to _2% (SE2, 3, 5 through 9, 12 through 15), while the overall energy

efficiency moves between 33 and 36%. Because of the lowered cell voltages

in the fuel cell subsystems, corresponding to Points SEI0 and SEll,

increases in the power density cause a reduction in the plant and overall

efficiencies.

The heat which must be rejected by the fuel cell subsystem

results from thermodynamic and electrochemical inefficiencies. This waste

t_eat may be employed in a steam-bottoming plant (S_4) or to supply the

heat required by the endothermlc processes occurring in a coal gasification

reactor, which then meets the fuel requirements of the fuel cell subsystem

(SEI8 and SEIg). The net effect of waste heat recovery is to substantially

raise the efficiency of the power system. For Point SE4, the power plant

and overall energy efficiencies are 60.2 and 50.6%, respectively. As the

fuel in the power plant corresponding to Point SEIS, the Westinghouse Fuel

Cell Power System, is coal, the power plant and overall energy efficiencies

are identical at 53%. Point SEI9, which involves the use of a low-Btu

gasification reactor, employing coal, air, and steam as input, the power

plant efficiency is 47.8% because of the use of a steam-bottomlng plant.

This is lower than for Point SEI8, in which medium-Btu is generated by

recycling fuel gas which has been partially oxidized in the fuel cell

subsystem. The overall efficiency for Point SEI9 is identical with the

power plant efficiency because the low-Btu gasifier is considered to be

fully i_tegrated with the power system. _us, coal and air are the

inputs.
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The computer outputs for Points SEI and SE2 is shown in Tables

A 13.4.10 through A 13.4.15. The COE and their breakdowns into capital,

fuel, and O&M charges, for the values of plant construction and operation

shown in Table 13.8, are given in Table 13.12.

As discussed above, the results for Point SE2 provides a better

basis for discussion of the parametric assessment of the solid electrolyte

power system because of the general use of medium-Btu gas for most

points, and also because of the technical uncertainty surrounding the

direct use of high-Btu gas as a fuel. The COE for the power plant

corresponding to SE2 is 14.6 mills/MJ (52.7 mills/kWh). The portion

ascribable to capital is 4.23 mills/MJ (15.2 mills/kWh), to fuel 4.64

mills/MJ (16.7 mills/kWh), and to O&M 5.77 mills/MJ (20.8 mills/kWh). The

O&H charge is high because of the high replacement cost -- unlike the

platlnum-laden acid fuel cell modules, the solid electrolyte modules

are assumed to have a scrap value of zero. Of the total charge, 5.35

mills/MJ (19.3 mills/kWh) is ascribable to the need to replace the modules

after 36 Ms (iO,000 hr) of useful llfe. Points SE6 through 8 explore the

effect of increasing the useful life. The electriclty costs are 11.0

mills/MJ (39.5 mills/kWh) for 108 Ms (30,000 hr) and 9.73 mills/MJ

(35.0 mills/kWh) for 300 Ms (i00,000 hr).

Comparison of the COE and efficiency data for SE2, SEIO, and

SEll, reveal the effect of variations in the power density. An increase

of the active cell power density from 264 to 354 mW/cm 2 (245 to 329 W/ft 2)

results in a COE reduction from 14.6 to 13.4 mills/MJ (53.7 to 48.3

mills/kWh). A further increase in the power density to 408 mW/cm 2

(379 W/ft2), however, caused a small increase in the COE, as the increase

in the cost component ascribable to fuel (because of the lower cell

voltage and thus plant efficiency) more than outweighs the sum of the

reductions in the costs ascribable to capital and O&M.

The power density changes, also, when the temperature of

operation is changed from 1273°K (1832°F) as in SE2 to 1373°K (2012°F)

and 1173°K (1652°F) in SE17 and SE16, respectively. The decllne in
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electrolyte and interconnectlon resistivities with increasing temperature

is assumed to result in a parallel increase in cell voltages. Thus, an

increase in the temperature of IO0°K (I80°F) causes a 20% increase in cell

voltage and power plant efficiency resulting in a COE decrease of approxl-

mately 1.9 mills/M.] (6.8 mills/kWh). A lowering of the fuel cell temp-

erature by IO0°K (180°F) results in COE penalty of 2.27 mills/MJ (8.2

mills/kWh).

Substitution of oxygen for air as the oxidant, as in Point SES,

results in a substantial COE penalty. The penalty is greater here than

for Point MC5 because the power required for the oxygen plant is taken

from the ac output of the power-condltlonlng subsystem instead of being

generated by a turbine powered by waste heat from the fuel cell subsystem.

Replacement of tin-doped indium oxide by antlmony-doped tin

oxide, as in SEI5, causes a small decrease in the electricity cost.

Even smaller decreases are registered by reducing the electrolyte thick-

ness (SEI2) and by substituting manganese-doped cobalt chromite for chromium

sesquioxlde as the interconnection material (SEI3). Despite the lower cost

of calcia as a stabilizing agent for zirconia (relative to .yttria), the use

of calcia-stabilized zirconla as an electrolyte (SEI4) results in a small

electricity cost penalty. This is caused by the higher resistivity of

this electrolyte, which, in turn, causes a cell voltage reduction and,

consequently, a loss in plant efficiency.

The use of a steam bottoming plant for waste-heat recovery in

the power plant corresponding to Point SE4 results in a dramatic reduction

in the electricity cost from 14.6 mills/MJ (52.7 mills/kWh) to 11.2

mills/MJ (40.2 mills/MJ). Similarly, a reduction of 1.4 mills/MJ

(5 mills/kWh)'is observed for the Westinghouse Fuel Cell Power System

(SEI8). The results for SEI9 indicate that partial thermal coupling of

the fuel cell subsystem with a low-Btu gasifier offers little

advantage from a COE standpoint, despite the use of a steam-bottomlng

plant for waste heat recovery.
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13.6 Conclusions and Recommendations

Considerable caution must be exercised when a comparison between

fuel cell power systems is attempted on the basis of data provided for

individual systems in Subsection 13.5. The calculated power plant

efficiencies may be relied upon to within a few percent either way, as

they compare favorably with estimates available from other fuel cell

work. They are, of course, dependent on the correctness of the

assumptions of fuel cell subsystem performance, cited in Subsections

13.2 and 13.3.

As will be evident from the approaches taken in the costing

of the fuel cell subsystems in Section 13.4, there is a much greater

possibility of error in the estimation of cog. The costing procedures

employed represent an unbiased effort to estimate the possible costs of

the fuel cell subsystems on the basis of a realization of the performance

targets, as discussed in subsection 13.2. Because they are founded on so

many arbitrary assumptlons_ the comparison of the different fuel cell

power systems based on the cog derived in this study must be approached

with care.

The parametric assessment of the four cell power systems was

based on a matrix of 69 points -- 16 points each for the phosphoric acid

and alkallne systems, 17 for molten carbonate, and 20 for solid

electrolyte. The parameters of the power systems, which were varied,

are listed in Table 13.13.

Table 13.13 - Parameters Varied in Fuel Cell Assessment

Fuel Cell Useful Life

Power Density

Fuel Type

Oxidant Type

Catalyst Loading*

Fuel Cell Plant ,Rating

Electrolyte Thickness

Voltage Degradation

Waste Heat Recovery System**

Temperature of Operation**

* Applicable for acid and alkaline systems.

** Applicable for molten carbonate and solid electrolyte systems.
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For eachof the 69points, powerplant andoverall energyefficiencies,
andCOE(brokendowninto capital, fuel, andO&Mcomponents)were
calculated. Analysis of these results indicated that four of the
parameterslisted in Table 13.13wereof particular importancein
improvingefficiency and reducing COE. Thefour parametersandtheir
areasof impactare shownin Table 13.14.

Table 13.14 - Important Parametersof Fuel Cell PowerSystems

Parameter Areaof Impact

Fuel Cell Useful Life
Fuel Cell PowerDensity
WasteHeatRecoverySystem
Fuel Type

O&Mcosts
Capital andO&Moosts
Plant andoverall efficiencles

Overall efficiency

The importance of fuel cell subsystems useful life is seen in

Figure 13.14. The decrease in COE with increasing life is most pronounced

for the molten carbonate and solid electrolyte systems. The effect is

least for the phosphoric acid power system because, at $152/kW dc, the acid

fuel cell subsystem not only is the cheapest, but also has a sizeable

salvage value due to its platinum content. Although the alkaline system

has a similar salvage value, the low power density of the cell results

in a higher replacement cost for the final cell subsystem, and,

consequently, a greater dependency of the COE on the useful fuel cell

life.

Figure 13.15 shows the marked effect of power density, i.e.,

power output per unit electrode area, on the COE for the acid, alkaline,

and molten carbonate systems. Increasing power density at constant

efficiency implies advances in the state of the art of cathode and anode

fabrication technology. The more conventional technique of power density

variation is to increase the current density, accepting a cell voltage

reduction and, therefore, an efficiency penalty. This results in an
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increased fuel charge which serves to offset the reductions in the capital

and O&M components of the COE (as discussed for Points SEIO and SEll in

Section 13.5.4). A further complication of operation at a higher power

density was discussed by Kordesch (Reference 13.47) for alkaline fuel

cells. The useful life is inversely proportional to the current density,

so that operation at a higher power density would result in more frequent

replacement of the fuel cell subsystem, and thus, in a higher O&M charge.

The coupling of a steam bottoming plant to the 900 MW solid

electrolyte and molten carbonate fuel cell subsystems of the power plants,

corresponding to Points SE4 and MC4, raises the ac outputs to 1164 and

1170 MWe, respectively, and the overall energy efficiencles to 50.6 and

45.7%, respectively. Thermal coupling of the fuel cell subsystem with a

coal gasifier (another form of waste heat recovery) results in an overall

energy efficiency of 53.0%, the highest derived in this study (Point SEI8).

Because of the greater efficiency of the production of medium-

Btu gas, relative to high-Btu gas, a 25% gain in overall energy efficiency

may be registered by the use of this fuel. The lower cost of medium-Btu

gas (Table 13.8) results also in a lowering of the fuel component of the

COE by greater than 20%, as shown by comparing the data for Points ACI

and AC4.

A comparison of the capital cost breakdowns for all four base

cases is provided in Figure 13.16. The balance of plant was calculated

by subtracting the sum of the material and site labor costs for the major

components -- e.g., for the phosphoric acid system, the fuel cell, power-

conditioning, and fuel processing subsystems -- from the total direct costs

of the power plant. The indirect costs, which include the interest

during construction, escalation and contingency charges; and the profit

and owner costs, were calculated similarly and represent the difference

between the total capitalization and total direct costs.

The dominance of the fuel cell subsystem cost, lying in the

range of 35 to 42% of the total capitalization, is apparent for every

power system. The indirect costs, averaging 25% of the total, are also
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of considerable importance. Although the fuel processing cost for the

phosphoric acid system is small, approximately $38/kWe (8.6%), this is

not the case for the alkaline system, in which scrubbing of the carbon

dioxide from the fuel gas and air before they enter the fuel cell sub-

system is necessary. The cost of both scrubbers is included in the total

of $87/kWe shown for the alkaline fuel processing. The power-conditioning

costs are similar, and lie in the range of $62 to 66/kWe. The differences

arise from the assumptions of dissimilar parasitic losses for each

system. The balance of plant costs are slightly higher for the two high-

temperature power systems because they include charges for recuperative

heat exchangers necessary for £he heating of the input air and fuel gas

streams.

From a total capitalization standpoint, the alkaline power

system, at $620/kWe, is the most expensive, due to the low power density

assumed for the fuel cell subsystem and the need for carbon dioxide

scrubbing. The phosphoric acid and solid electrolyte systems, at $448

and $424/kWe, respectively, require the least investment, and the molten

carbonate system requires an intermediate capitalization of $514/kWe.

The relative importance of the capitalization, at a fixed charge rate of

18%, is shown in Figure 13.17, which presents a breakdown of the COE for

the base cases of all four power systems. The power plant and overall

energy efficiencies for each case are also shown. The fuel gas is high-

Btu gas costing $2.46/GJ ($2.60/106 Btu); the useful life of all fuel

cell subsystems was assumed to be 36 Ms (10,000 hr). The fuel charges

are less for the hlgh-temperature systems because of their greater

efficiencies. Their O&M charges are greater, however, because of their

higher fuel cell subsystem replacement costs.

A better basis for comparison is afforded by the data for

Point 4 of every system. In every case, the 900 MW dc fuel cell sub-

system uses msdium-Btu gas as a fuel and is assumed to have a useful

life of 36 Ms (i0,000 hr). In addition, each of the high-temperature

systems includes a steam bottoming plant consisting of steam generators,
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a steam turbine, and a heat rejection facility. This raises the ac

output of the molten carbonate and solid electrolyte plants to 1170 and

i164 MW, respectively.

A breakdown of the capital costs for each system is shown in

Figure 13.16. The total capitalizations required for the phosphoric

acid, molten carbonate, and solid electrolyte systems are seen to be

virtually identical, lying in the range of $440 to 480/kWe. These costs

would be even closer but for the assumption of a 157.7 Ms (5 yr)

construction period for the high-temperature systems, as against a

126.1 Ms (4 yr) period for the acid system. Accordingly, the indirect

costs amount to approximately 37.5% of the total for the acid system

versus approximately 44% for the hlgh-temperature systems. The alkaline

system, with additional problems posed by the use of medium-Btu gas,

necessitating the removal of carbon dioxide at twice the rate of that

when high-Btu gas is employed as the fuel, is now noncompetitive, lying

at $700/kWe. For convenience of presentation, the fuel processing

costs for the acid system have been included in the balance of plant

costs in Figure 13.16.

The COE breakdowns and both efficiencies for each of the 900 _fN

dc systems are shown in Figure 13.18. The overall energy efficiencies

for the hlgh-temperature systems are, as expected, much higher than for

either of the low-temperature systems. The higher fuel cost for the acid

system, however, is offset by the lower O&M charge due to the lower fuel

cell subsystems replacement cost, so that the total COE is essentially

the same for the molten carbonate and acid systems at 12.2 mills/MJ

(44 mills/kWh). The COE for the solid electrolyte system is lower still

at 11.2 mills/MJ (40.2 mills/kWh). The alkaline system displays a COE

of 16.4 mills/M3 (58.9 mills/kWh),which is substantially higher than for

any of the other systems.

Projections as to the lowest COE possible for each system may

be made on the basis of the data shown in Figure 13.18. These projections

are highly tentative and are based on the multitude of assumptions
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presented and discussed in Subsections 13.4 and 13.5. If medium-Btu gas,

costing $2.46/GJ ($2.60/106 Btu), is employed as the fuel; air is the

oxidant; and the fuel cell subsystem llfe is at least 144 Ms (40,000 hr);

then the COE will be as shown in Table 13.15.

Table 13.15 - Projections of Possible Efficiencies and Electricity
Costs of Fuel Cell Power Systems

System Type

Phosphoric Acid

Alkaline

Molten Carbonate

Solid Electrolyte

Overall Energy

Efficiency,Z

_30

_30

_45

_50

Possible COE,
mills/kWh

High 30s

Low 40s

Low 30s

High 20s

The costs and efficiencies for the high-temperature systems are predicated

on the use of a waste-heat recovery system. This probably limits the

minimum size of fuel cell subsystem to approximately 200 MW dc in order

to allow economical and efficient recovery of the rejected heat.

The selection of fuel cell power systems for inclusion in Task

II, Conceptual Design Preparation, and in Task III, Implementation

Assessment, of this study, was based on the criterion of an overall

energy efficiency significantly in excess of 35%. This eliminates all

of the low-temperature fuel cell plants, and most of the high-temperature

plants, which do not incorporate a waste-heat recovery system. Because

of their high overall efficlencies, a solid electrolyte and molten

carbonate power plant, as typified by Points SE4 and MC4, is recommended

for the further refinement of efficiency and electriclty cost estimates

specified for Task II.

The Westinghouse Solid Electrolyte Fuel Cell Power System is

recommended also for inclusion in Tasks II and III. Inspection of Figure

13.19, which presents all of the data pertinent to the recomnended casesp
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reveals why. The overall efficiency has been estimated very conservatively

in this study. The estimated value of 53Z, lower than previously

published values of 60% and 57.5% (Reference 13.25) is, nevertheless, the

highest determined in this study. The COE of 13.3 mills/MJ (47.7 mills/

kWh) is inflated by the capitalization associated with coal gasification.

This estimate of $335/kWe is based on an evaluation performed in late

1968 (Reference 13.45), in which approximately 75% of the installed cost

of the special fluidized bed coal gasification reactor was attributable

to the cost of Incoloy 800 sheathing, considered necessary for efficient

heat transfer from the fuel cell modules. In Task II, alternative

materials and methods for efficient and economical thermal coupling of

the gasifier and fuel cell subsystem should be explored. The potential

for a reduction in the COE, and speclficall¢ its capital component, is

obvious from Figure 13.19.
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PlantEfficiency:53.O_
OverallEfficiency,53.O_

IndirectCOsts

Balanceof Plant

Coal
Processing

and
Gasification

PowerConditioning

FuelCell

Fig.13.]9-Breakdownof electricityandcapitalcostsforthe threepowerplantsIcorresponding
to parametricpointsSE4,MC4,andSE]8)recommendedforfurther InvestigationIn TasksIZ
andIII. Nofethat theassumedusefullifeof all fuel cellsubsystemsis lO,O00hours
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AppendixA 13.1

FUEL PROCESSING FOR LOg-TEMPERATURE FUEL CELL POKER PLANTS

The fuels employed in the parametric assessment of the low-

temperature fuel cell power systems are medlum-Btu gas (AC4 and AL4),

methanol (ACI4), and high-Btu gas (all other points). In order for

these fuels to be usable at the anodes of the acid or alkaline fuel

cell modules, they must be converted to a fuel gas consisting

principally of hydrogen.

For hlgh-Btu gas, consisting principally of methane_ steam

reformation coupled with shift conversion is the most economical method

of producing this fuel gas. Carbon dioxide removal from the fuel gas

stream is necessary in the alkaline case to prevent conversion of the

potassium hydroxide electrolyte to potassium carbonate. This step is not

required in the acid fuel cell system, as phosphoric acid does not react

with carbon dioxide. Auxiliary equipment necessary in both power systems

includes steam generators to supply the steam requirements of the

reformer. Thus, an acid fuel cell power plant, fueled with high-Btu gas,

requires a steam reformer_ a shift converterD and a steam generator. In

addition to these components, the alkaline fuel cell system must include

a carbon dioxide removal subsystem.

When medium-Btu gas, which is prlncipally comprised of

carbon monoxide (approximately 55Z by volume) and hydrogen (approximately

33% by volume), is the fuel, there is obviously no need for steam

reformation. Shift conversion and steam generation, to meet the steam

requirements of the shift converter_ are still required. As stated in

Subsection 13.3, the carbon dioxide content of the medlum-Btu gas stream

after shift conversion is approximately double that in the shift-

converter effluent for hlgh-Btu gas. Thus,for alkaline power plants
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using medium-Btu gas as the fuel carbon dioxide must be scrubbed at twice

the rate necessary in plants operating on high-Btu gas. Although methanol

may be cracked directly to form hydrogen and carbon monoxide (Reference

13.5), this study assumed that methanol, used in the power plant

corresponding to Point ACI4, is fed to a steam reformer, just as in the

case of high-Btu gas.

To deliver one kilowatt of electrical power from a phosphoric

acid fuel cell operating at a terminal voltage of 0.7 V, a cell current

of 1429 A is required. Thus, a minimum of 1429/96489 equivalents or

14.9 mg/s (3.28 x 10 -5 ib/s) of hydrogen must be delivered to the anode.

The hydrogen requirement for an alkaline fuel cell is lower because of

the higher cell voltage and may be calculated by the use of a multiplier,

0.7 V/0.8 V.

The optimum level of hydrogen utilization in a fuel cell

is a complex function of the fuel cell performance and the relative

costs of the fuel cell subsystem, the fuel processing subsystem, and the

fuel, as the unused hydrogen may be employed to provide the thermal

requirement of the steam reformer, as described below. _le preparation

of a detailed conceptual design of the complete power system, coupled

with the knowledge of fuel cell performance as a function of hydrogen

utilization, would permit accurate estimation of this optimum level.

For the purposes of this preliminary study, however, utilization rates

of 90 and 80% were assumed for feedstocks of high- and medium-Btu gas,

respectively, for the reasons outlined in Subsection 13.3.1. These

assumptions lead to the hydrogen requirements for the four ratings of

fuel cell subsystems shown in Table A 13.1.1. The 900 MW power plants

operate with medlum-Btu gas as fuel; all others employ hlgh-Btu gas as

a feedstock.

In the following subsections, the procedures employed in the

costing of the reformer, the shift converter, the steam generators and

the carbon dioxide removal subsystem, necessary for tile production of

the required hydroge_ are described. In addition, a brief description
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Table A 13.1.1 - HydrogenReqLirementsof Low-Temperature
Fuel Cell PowerPlants

Fuel Cell

Rating, MW

25

100

250

900

Hydrosen Raquirements_ tons/d

Acid

39.5

158

395

1600

Alkaline

34.5

138

345

1400

is given of the cost assumptions for the blowers used for the

circulation of air through the cathode components of the Fuel cell

modules.

A 13.1.1 Steam-Methane Reformer

A schematic of a typical steam-reforming unit, is shown in

Figure A 13.1.1. The reforming furnace is gas fired, and the convection

tube banks are fabricated from carbon steel. The radiant tubes, made

from stainless steel, operate at a pressure of 0.689 MPa (i00 psi) abs.

High-Btu gas is preheated, desulfurized by passage through activated

carbon beds, mixed with preheated steam, and fed to the catalyst-filled

furnace, which operates at 1033 to I144°K (1400 to 1600°F). This

reaction

CH 4 + H20 ÷ CO + 3H 2,

AHI600o F - 97,400 Btu/ib-mole CH 4

is highly endothermic. As one Ib-mole of methane produces four moles

of hydrogen (after shift conversion) or 42.87 std m 3 (1514 scf), the

reformer heat duty, Q/P, may be calculated as shown:
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97_.400 Btu
QIP =

1514 scf = 64.3 Btu/scf of H 2 required.

The reformer heat duty for all six hydrogen production levels is

presented in Table A 13.1.2. Shown also are the total quantities of

high-Btu gas required, based on arguments presented in Section 13.3.1.

Using these heat-duty values, the base cost of the steam-

methane reformer may be calculated. The method of cost estimation for

all fuel conditioning costs follows an approach outlined by Guthrie

(Reference 13.44) which uses mid-1970 prices. The costs have been

factored upward by the ratio of the average Marshall and Stevens

indices (Reference 13.48) for the second and third quarters of 1974

and 1970 (1.34). The base costs in mid-1974 terms are shown in the

last column of Table A 13.1.2.

These base costs must be adjusted upward by a multiplier

which is the sum of factors to allow for furnace type, radiant tube

material and pressure. This yields purchased equipment base costs,

which are shown in the last column of Table A 13.1.3.

The total direct cost of the reformer includes the purchased

equipment base cost computed earlier, plus the materials and labor

required for installation. Following Guthrle (_ference 13.44),

installation materials (less concrete) typically average 25.4%. These

are summarized in Table A 13.1.4. The total cost shown does not

include indirect costs associated with construction overhead, engineering,

interest during construction, etc.

A 13.1.2 Shift Converter

After leaving the steam reforming unit, the gases are cooled

to between 644 and 700°K (700 and 800°F) and passed over a water-gas

shift catalyst to convert the carbon monoxide component to carbon

dioxide and hydrogen by the reaction

CO + H20 + CO 2 + H 2
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A schematic of the shift conversion unit is shown in Figure A 13.1.2.

The shift converter is a pressure vessel loaded with an appropriate

catalyst. In the four smallest sizes a length-to-diameter ratio of

four is assumed. If a space velocity of 0.556 s -I (2,000 hr-l) is

assumed, the volume of catalyst required may be calculated. The overall

volume of the vessel is considered to be twice that of the catalyst.

The costing technique again follows that of Guthrie (Reference

13.44), with an escalation factor of 1.34 to convert mid-1970 costs to

those of mid-1974. In the penultimate column of Table A 13.1.6, the base

costs (mid-1974) shown are for a carbon steel vessel operating at 0.345

MPa (50 psi) abs. The costs include shell and two heads, nozzles and

runways, skirt, base ring, and lugs. The shift converter, however,

should operate from 2.76 to 3.45 MPa (400 to 500 psi) abs for compatibility

with the steam-methane reformer. All costs at 0.345 MPa (50 psi) abs

were multiplied by 2.8 to allow for high-pressure design costs. These

costs are shown in the last column of Table A 13.1.7.

Installation costs of vertical pressure vessels are typically

3.05 times the base costs (Reference 13.44). The total material and site

labor costs of the shift converter units for the different ratings of acid

and alkaline fuel-cell power plants are shown in Table A 13.1.5.

A 13.1.3 Steam Generators

An excess of steam, generally three to five times the sto_

chiometric requirement, is employed in the steam-methane reformer.

Steam is raised in three main locations: i) between the reformer and

shift converter, in the cooling of the fuel gases from 1144 to 700°K

(1600 to 800°F), as shown in Figure A 13.1.1; 2) by the use of the

heat rejected by the shift converter; and 3) in cooling the hydrogen-

rich fuel gas from 700 to 464°K (800 to 375°F), the temperature of

operation of the acid fuel-cell modules. The steam-generators of 2 and

3 are shown schematically in Figure A 13.1.2.

For the purposes of calculation, it will be assumed that 3

moles of steam are required in the reformer for every 4 moles of hydrogen
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reaching the fuel cell modules. The steam requirements are, therefore,

0.570 kg of steam/std m 3 of hydrogen (0.0356 ib of steam/scf of

hydrogen). Table A i3.1.7 presents the steam rates and steam generator

base costs (mid-1974) as a function of hydrogen production. The costing

method again follows that of Guthrle (Reference 13.44). The total

material and site labor costs are shown in Table A 13.1.8 for all four

ratings of acid and alkaline fuel cell power plants.

A 13.1.4 Carbon Dioxide Removal System

Leaving the shift converter, the fuel gas steam is at a

temperature of 700°K (800°F) and a pressure of 0.483 MPa (70 psi) abs.

The carbon dioxlde-carbon monoxide ratio is approximately 50. The gas

composition is % 70% hydrogen, _ 10% steam, and the balance carbon

oxides and inerts. The steam may be cooled and the steam condensed to

yield a gas mixture of 80% H2, 17% carbon oxides, and 3% inerts. This

fuel gas may be fed directly to the acid fuel-cell modules.

In the alkaline system, however, carbon dioxide removal must

still be accomplished in order to protect the potassium hydroxide

electrolyte. The process considered for this application is shown

schematically in Figure A 13.1.3. It consists of the Lurgi Rectisol

Process, which uses refrigerated methanol. The total capital investment

for a Rectisol System capable of stripping carbon dioxide and hydrogen

sulfide from 4.16 kg-moles/s (33,000 Ib moles/hr) of fuel gas in the

Bituminous Coal Research Bi-Gas Process (Reference 13.49) was

$23.5 million (mid-1970) (Reference 13.50). When factored upward by

1.34 to convert to mid-1974 costs, the total capital investment

required is approximately $0.582 per kg-mole/s ($950 per ib-mole/hr) of

fuel gas.

If it is assumed that the direct installed cost of tile

scrubbing system represents 28.5% of the total capital investment

(Reference 13.52) and that the material-to-site labor ratio is equal to

three,approximate estimates of the equipment and site labor costs for
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the Rectisol Processmaybe derived. Theseare shownfor the four
ratings of alkaline fuel cell powerplants in Table A 13.1.9. A linear
relationship is assumedbetweenscrubbercost andvolumeof gas

scrubbed. Because of the additional load on the scrubbing system of the

900 MW plant due to the use of medlum-Btu gas as the fuel tile costs

are multiplied by 1.35.

Two of these scrubbing units are required per power plant,

as carbon dioxide must also be removed from air. Although air contains

approximately four orders of magnitude less carbon dioxide than does

the fuel gas, the costs associated with scrubbing air were assumed to be

the same as those given in Table A 13.1.9. In general, the equipment

cost was assumed to be a linear function of the quantity of gas passed

through the process. For a 50% utilization of oxygen in air, the

quantity of throughput air would be approximately a factor of eight

greater than that of fuel gas. The advantages associated with the lower

concentration of carbon dioxide in air, however, were assumed to

approximately negate the eight-to-one flow penalty. The treatment

above, though very crude and allowing for no economy of scale, yields

reasonable costs for scrubbing equipment to remove carbon dioxide from

fuels and air. The value of $22/kW for air scrubbing in this closed-

cycle process is acceptable when compared with $5/kW for the much

simpler process involving the use of potassium hydroxide on a once-

through basis (Reference 13.8).

A 13.1.5 Air Blowers

The costing of air blowers for the fuel cell subsystem was

performed following the method of Guthrie (Reference 13.44). The air

blower cost, C, in mid-1974 dollars is given by

C = $ (9) (1.34) (Required airflow rate in scfm) 0"68

With the assumption of 50% utilization of the oxygen in the throughput

air, a value of $19,000 is calculated for the air blowers in the 25 MW
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phosphoricacid fuel cell powerplant. A site labor cost equivalent to

33% of the equipment cost was arbitrarily assumed. The meterial and

site labor costs for all power plants were derived similarly.

Possible errors in these estimates arising from the under-

estimation of the pressure drop through the fuel cell modules are likely

to have a negligible impact on the total capitalization of the fuel cell

power plant, A total material and site labor cost of $25,000 for the

25 MW acid system air blowers is trivial when compared with, for

example, a cost of $3.8 million for the fuel cell subsystem.



AppendixA 13.2
POWER-CONDITIONINGSUBSYSTEM

Power-conditioningsubsystemsare necessaryin fuel cell power
plants for the conversionof the dc output of the fuel cell modulesto
60Hzac power. NASAhas specified that the 25 MWplant* should
deliver powerat 69kV to the distribution net, but the output from the
other three sizes -- i00", 250*, and900MW*-- shouldbe at 500kV. The
following is a discussion of inverter subsystemsand transformerswhich
are necessaryto accomplishthe required powerconversion, and the
resultant implications for the selection of fuel cell modulesizes.

In general, there are at least seven power conversion schemes

that can be considered for this application. These are: (I) chopper-

inverter; (2) inverter; (3) buck-boost inverters; (4) complementary

inverters; (5) MF link; (6) hybrid (HF llnk + simple line-commutated

inverter), and (7) force-commutated inverter. In a recent study at

Westinghouse Research Laboratories (Reference 13.51), scheme 7 was

found to be optimum from an economic and technical standpoint. Force-

commutated systems not only operate with lower losses (4-1/2 to 5%

versus 5 to 6% for the more conventional llne-cormmutated systems) but

also offer considerable operational advantages:

• They will ride through a system fault.

s It is possible to control their behavior with respect

to reactive power demand and deliver independently of

*25, I00, 250 and 900 MW ratings apply to fuel cell subsystems. The

overall plant ratings are less,due to inverter subsystem losses and

other parasitic losses in the fuel cell power system.

13-iii



e,4
0%

N

3

f: o

?

0"% _"

=o

r

o
E !
K,.
o e4
"_ 04

LK.

13-112



real power, thus conferring great stability on the

power conversion system.

• They will start and run into a passive load.

Force-commutated inverter systems, however, suffer from a major limitation

in that the state of the art indicates an upper limit of approximately

2 kV output voltage. Because of transformer primary-current

considerations, this constraint limits use of this type of inverter

system to the 25 MW case.

For the larger power plants (I00, 250, and 900 MW) a line-

commutated inverter system must be used. Systems 1 through 3 are

typical line-commutated schemes and represent relatively simple extensions

of high voltage dc (HVDC) technology. Of these three, the buck-boost

inverter is optimum from a cost standpoint. Further, it is close to

being the most efficient and has no operational disadvantages compared

to the other line-commutated schemes. Most significantly, power factor

improvement is achievable with this scheme. This results in a

considerable savings in cost because auxiliary power-factor correction

equipment is not needed. Although this inverter system can run, in

theory, into a passive load, the stability of this operational mode is

questionable in practice unless a synchronous capacitor is used to supply

reactive VA. Another disadvantage of line-commutated inverter systems,

which applied also to this scheme, is that the dc side must be quickly

interrupted after a system fault in order to protect the overall

system. From this standpoint, line-commutated schemes compare unfavorably

with force-commutated systems, which, as noted above, are able to ride

through system faults.

The basic inverter unit, in the force- and line-commutated

systems above, is the 3-phase bridge or Graetz connection. This is

illustrated in Figure A 13.2.1. It should be noted that the ac outputs

of the two inverters are out of phase by _/6. The transformer requlred

for step-up of the inverters' output to distribution voltages levels

should have a twin core structure. For the llne-commutated inverter
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scheme,wye-delta anddelta-delta windings are specified, while in the

force-commutated inverter case, one core should involve a wye-open wye

winding plus a delta tertiary, and the other a delta-wye winding. These

specifications, plus the poor power factor at which the transformers

operate, result in transformer costs which are approximately double

those of conventional transformers of the same kVA rating (Reference

13.52).

Table A 13.2.1 outlines the relationship between the dc and

three-phase ac currents and voltages for the force- and line-commutated

systems, where _ is the firing angle delay of the llne-commutated

inverter, and _ is the phase-shift angle of the force-co,-,utated

inverter.

Table A 13.2.1 - The Relationships Between Electrical Input and

Output of Inverter Systems

System Parameters

Voltage

Inverter System Type

Yorce-Co---utated Line-Commutated

Vac - I_ 1 Vdc Vac cosa Vdc

Current

Power

•= I_] (co8_)(Idc) I I [_ I
lac ac Idc"

(Vac)(lac)(Cos@) _F_ (Vac) (lac) (Cosa)

The sizes, weights, and selling prices of inverter systems for

the four power plant ratings are shown in Table A 13.2.2. All the data

shown are based on the results of a previous study of inverter systems

for 25 MW fuel cell power plants. The plan area/MW (Reference 13.51)

for the buck-boost systems at the various rating levels were calculated
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by multiplication of the plan area requirement at the 25 MW level by the

cube root of the ratio of the ratings of the larger system to the 25 MW

unit. This factoring upwards ensures adequate Clearance at the higher

ratings, thus minimizing problems associated with creepage paths. The

weights are taken from the above mentioned study (Reference 13.51) The

selling price data are derived from estimates of $60/kW and $55/kW for

25 MW line-commutated and force-commutated systems respectively_ and

from an estimate of _ $65/kW for the buck-boost system at the 900 MW

level. The values for the i00 and 250 MW systems were derived by

linear interpolation. The increases in" capital costs on going to the

larger plant sizes is due to higher costs of filters and the greater

need for grading networks for the valves.

Because of the lack of demonstrated reliability of fuel cell

modules in extended service, it is not unreasonable to specify for all

fuel cell power plants that a fault on the dc side should result in

outages of not more than 10% of the rated capacity. Thus, in all cases,

ten banks of fuel-cell modules are envisioned, each with its own inverter

pair and transformer. In general, only one set of filters and switch-

gear will be used on the high sides of the transformers.

In the 25 MW plants, each of the banks of fuel cell module may

be run at _ 2200 Adc (1.15 kV dc). Single transformation from _ 900 V

ac to the required 69 kV ac level is achievable. In the 900 MW plants,

ten banks of fuel cell modules are envisioned, each operating at 2900 A

dc and _ 31 kV dc. The _ 23 kV ac output of the inverter pair permits

single transformation to the required level of 500 kV ac.

Single transformation, however, is not possible without a

significant inverter cost penalty in the I00 MW plants. Under the 10%

outage constraint, each bank would contain i0 MW of fuel cell _dules.

As the ac output from the inverters must be at least 16 kV to facilitate

single transformation to 500 kV ac, the fuel cell dc voltage requiret_nts

could be as high as _ 27 kV, assuming a worst-case inverter power factor

of 0.8. This would result in a dc current input to the inverters of
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370 A which is too low for the inverters to be economical (Reference

13.51). Rather than pay inverter costs more than twice those for systems

operating at _ 2200 A dc, it is more reasonable to pay the additional

price for double transformation. This is estimated (Reference 13.52_ to

be _ $10,O00/MW. An intermediate ac voltage of 34.5 kV will optimize the

system with a dc voltage in each I0 MW bank of 4.6 kV (2200 Adc).

Similar considerations apply to the 250 MW plant. The 25 MW

banks would supply less than i kA dc under the worst-case condition

mentioned above. Once again, double transformation is economically more

attractive than paying for increased inverter capability. Here, an

intermediate ac voltage of 69 kV is envisioned with adc voltage of

11.5 kV (2200 Adc) in each 25 MW bank.

For the purposes of this study, an efficiency of 95.5% is

assumed for the power-conditioning subsystems of all 25 MW power plants,

based on the use of a force-commutated inverter system. Line-commutated

inverter systems must be employed in the i00, 250,and 900 MW power plants.

Here, an efficiency of 95% is assumed. Double transformation, however,

is required in all I00 and 250 MW power plants for the reasons outlined

above. The second transformer is assumed to have an efficiency of 99.5%,

so the net efficiency of the power-conditloning subsystem of the i00 and

250 MW plants is (95%)(0.995) or 94.5%.

The site labor costs are based on recent experience (mid-1974)

of the Westinghouse Electric Corporation with the installation of a VAR

generator (a device to inhibit voltage flickering in an arc furnace) in

a steel-making facility of Akron Steel (Reference 13.53). The installation

of this equipment, which is very similar in character to the power-

conditioning subsystems described above, involved a site labor of

approximately $3/kW. This value has been employed in this study.

The equipment, site labor, and total costs of the power-

_:onditioning subsystems for the four fuel cell power plant ratings are

presented in Table A 13.2.3. The costs for the i00 and 250 MW power

plants reflect the cost of double transformation. All these designs and
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costs are based on a maximum input variation of the dc current and voltage

to the power-condltioning subsystem of 5%. Point 9 in all four fuel cell

power systems explores the effect of the variation of the voltage

degradation at constant power for 5 to 15% in 25 NW plants. The power-

conditioning subsystem must_ therefore_ have the capability of handling

this greater variation of current and voltage characteristic of fuel cell

subsystems. The cost of the power-conditioning equipment Nay be

assumed to be proportional to the dc current (Reference 13.51). At

constant power the system wltb 15% voltage degradation would have to

carry 20% more current than the system with a 5% voltage degradation.

The costs of the power-conditioning subsystem for Acg, AL9j MC9, and

SE9 were estimated by adding 20% to the value for the base case.
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AppendixA 13.3
OXYGENPLANTSFORFUELCELLPOWERSYSTEMS

A fuel cell plant maybe integrated with anoxygenplant as

well as with a coal gasification plant. If oxygen is supplied to both

the coal gasification unit (for production of medium-or hlgh-Btu gas)

and to the fuel cell plant, the total oxygen cost will be of similar

magnitude to the coal cost.

Oxygen requirements depend on the type and size of the fuel

cell and source of the coal, and are roughly 0.8 and 1.4 Mg of oxygen

per Mg of coal, respectively, for the gasification and fuel cell plants.

Thus, substitution of oxygen for air at the fuel cell cathode would

have to give a considerable improvement in the power density at a given

efficiency to justify the high oxygen costs involved.

The cost of oxygen from an on-site plant as operated by the

utility is a strong function of plant size and the cost of energy for

the compressor. Requirement for a 25 MW fuel cell would be about

3.15 kg/s (300 ton/d) of oxygen. The maximum size plant design

commercially available is 21 kg/s (% 2000 ton/d) of oxygen, so that

large fuel cell plants (e.g., 900 MW) would require multiple plants of

this size. Only minor cost reductions would be realized for multiple

plants on the same site, beyond the single 21 kg/s (2000 ton/d) plant

size.

The cost of oxygen produced by different size commercial plants

(utility operated) was estimated (Reference 13.54) on the basis of the

approximate commercial plant cost and operational data supplied by Air

Products Corporation (Reference 13.55). The costs are adjusted to July

3974 dollars. Table A 13.3.1 shows oxygen costs for two plant sizes,
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Table A 13.3.1

1

Size, tou/d 300 2000

A. Motor-Driven Plants

Capital charges at 18%

Maintenance at 2% of investment

Power at 3.0C/kWh

Water at 10¢/1000 gel

Labor at $30,000/man year

- Oxygen Production Costs (330 use days per year)

Total

S/ton

1,008,000 3,412,800

112,000 379,200

946,600 5,132,00o

63,100 342,100

180,000 240_000

2,309_700 9,506,100

23.33 14.41

Bo Turbine-Drlven Plants

Capital dharges at 18%

Maintenance at 2% of investment

Power at 3.0c/kWh

Water at 10¢/1000 8al

Labor at $30,000/man year

Steam - free

1,064,200 3,603,200

118,200 400,400

17,900 121,200

248,800 1,344,400

180,000 240,000

0 0

Total 1,629,000 5,709,200

S/ton 16.45 8.65
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3.15 and21 kg/s (300 and 2000 ton/d) and for an electric motor driven

compressor or a turbine driven compressor. The calculations assume that

the turbine driven compressor is operated on steam generated from the free

waste heat from the fuel cell and that the electric motor drive compressor

uses electricity from the fuel cell costing 8.3 mills/MJ (30 mills/kWh),

which would appear to be about the minimum cost that could be expected

from a 315 Ms (i0 yr) llfe optimized fuel cell from the present study.

A reclrculating water cost of $ 0.026/m 3 ($ 0.10/1000 gal) is assumed.

Also included are 18% per year capital based charges for depreciation,

interest, local taxes, etc., plus 2% per year for maintenance.

We should note that the costs do not include the cost of the

steam generating equipment which is used to remove waste heat from the

fuel cell for the turbine-drive compressor plants, and that oxygen costs

for electric motor-driven compressor plants will vary with the cost of

electricity produced by the fuel cell.

Electric-driven compressors are assumed for Point 5 for the

25 MW acid, alkaline, and high-temperature solid electrolyte fuel cells,

and the fuel cell electrical output is debated by the energy required.

A turbine-driven compressor using steam generated by the waste heat is

assumed for the molten carbonate Point 5 (25 MW dc fuel cell) and

Point 17 (250 MW dc fuel cell), so the electrical output is not derated

for those system points.

_-121



AppendixA 13.4

COMPUTER OUTPUT SHEETS
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