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FOREwaRD

^^
This report: presents the results of the project to extend the DOMDNIC

system to multi-manufacturers` computers and to measure, improve and pre-

	

^^	 dict software reliability. This work was performed by the Data Processing

	

^-	 Center of the Texas Engineering Experiment Station of Texas A&M University,

College Station, Texas. This work was performed under Contract NAS5w2D715

	

^,,	 of the National Aeronautics and Space Administration, Goddard Space Flight

Center, Greenbelt, Maryland. The Project Monitor was Mr. E.P. Damon.
t-

	

;;	 l'he Principal Investigator of the Project was Dr. Dick B. Simmons.

	

f -	 The Manager over the development crud extension of the DOMDNIC system has been
,,

	

'^"	 Mr. Pete Marchbanks. Major contributors to the development and extension

of the DQMONTC system were: Louis Devito, Mike Quick, and Gien Flascall.

Students working on this phase of the project have been Chap Chi Wong,

k_

	#^	 Eliseo Pena, and 011ie Polk.

	

i.,	
^

	_-	 Major contributors to the extension of the system to measure, improve

	

^:	 -

	

^'^	 and predict software reliability, have been Dr. Roger Elliott, Dr. Larry
;-

Ringer, Dr. William Lively, Dr. Richard Fairley, and Mrs. Jean Zolr,owski,

who has acted as coordinator for this phase of the project. Dr. Dich B.

Simmons has directed both phases of the project.

	

^-	 Phase I of the project is described in Chapters I and TT of the final 	 '
1

o'
	^'	 report. The DOMQNIC Users Manual which was updated during this phase is	 -

i. ^	 included as Appendix A. The DDh10NTC Command Reference Manual is included
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as Appendix B.	 °;i
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^^
P ^ 	 Phase II of the project is described in Chapter I and Chapters III

f ^°	 through VII. Chapter III was written by Drs. Elliott and Ringer, Chapter IV

by Mrs. Jean Zolnowski, Chapters V and VII by Dr. Eairley, and Chapter VI by
1.

Dr. Lively.	 '
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ABSTRACT

This report describes the work done can the project to extend the 	 ;:

DOMgNIC system to Multi-Manufacturers` Computers and to Measure, Improve,

and Predict Software Reliability. The DOMONIC system has been modified
=:^

to run on the Univac 1108 and the CDC 6600 as well as the iBM 370 computer
-^

system. The DOMONiC monitor system has been implemented to gather data

which can be used to optimize the DOMONIC system and to predict the

reliability of software developed using DOMONIC. The areas of quality 	 ;`^

metrics, error characterization, program complexity, program testing,

validation and verification are analyzed. A software reliability model

for estimating program completion levels and one an which to base system

acceptance have been developed. The DAVE system which performs flow analysis	 ^

and error detection has been converted from the University of Colorado

CDC 6400/6600 computer to the IBM 360/370 computer system for use with the
,;

DOMONiC system.
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` "'	 1.0 INTRODUCTION^'	 ff^
_.	

t

F I"	 The t}ata Processing Center at Texas A&M University is pleased to submit

^^
this f7na1 report for Contract NAS5-20715 tv the National Aeronautics and

Space Adt^inistration, Goddard Space Flight Center, Greenbelt, Maryland. The

purpose of the project was to extend the capabilities of the automatic system

for computer program documentation which was developed by Texas A&M University

for NASA. The system has been designed to ^: •oduce timely up-to-date docu-

mentation at relatively low cost. The system has been designed to document

any computer language and to run an any hardw...re while taking advantage of

the existing documentation aids. The system is easy to use and places no

restrictions on the programmer.

During the initial phase of the development, the system was implemented

to run an the IBM 3fi0/370 series computers. Major emphasis during the first

phase has been to document programs written in FORTRAN. The extensions

covered by this final report were broken into two phases:

Phase 1 -Extend the system to operate on COC and Univac computers

!';
and integrate appropriate additional documentation aids into

.,` the System.

`:r

^^ Rhase 2 -Extend the system to measure, improve, and predict soft^rare	 ^^

reliability.

.1. ^^ The automatic documentation system developed during previous stages	
t

has been extended to monitor and control the development process. The

^ '- extended system is called the DOMONIC (Documentation, Monitor and Control)

^ ^
^_i

system. Accomplishments during Phase 1 and Phase 2 of the current contract

_ _s-.,

^ ^^

3^ ^ 1 e

k.^

E b

^ i

'.',:_	 ,.
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^_

^-
i^

7 ^.
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2.0 DOMONIC SYSTEM STATUS

R„

	

	 Phase 1 of the current contract was to extend the DOMONIC system to

multi-manufacturers' computers and to expand the system capabilities. In-

cluded in this Phase was training of NRSA personnel in the maintenance of

the DOMONIC system, assist NASA in using the DOMONIC system to document

the programs at NASA, use the DOMONIC system to document software developed

at Texas A&M i=ar NASA, implement the system on the Univac 1108 and the

CDC 6600 and add additional documentation aids to the system. During

Phase 2 the DOMONIC s^fstem was expanded to monitor the development process

,a
	 giving data which could be used an reliability models to predict software

reliability. The tasks of this phase were to define categories of errors,

design and implement a monitor within DOMONIC, evaluate existing software

reliability techniques, and develop a software reliability made7.

^-

';.

.	 ^
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x
:^
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'^'

^^,	 `^°
^:,
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p ^

1 ti.
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Phase 1 - Training sessions of NASA personnel were held at both Texas

A&M University and Goddard Space Flight Center. Mr. Jack Kohout of NASA/

Goddard Space Flight Center made an on-site visit to Texas A&M University

during early March, 1975. Training techniques and DOMONiC system operations

were discussed with him. He r^?ade numerous suggestions to the next up-date

of the DOMONIC Users Guide and Command Reference Manual. During this trip,

an updated version n-^ the DOMONIC system which incorporated some suggestions

from Mr. Kohout was planned for later installation at Goddard.

An updated version of the DOMONIC system was installed at Goddard

during the period of dune 6-li, 1975. During that time, additional training

3
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7

was conducted and suggestions were made by f^ASA on ways to improve the

DOMONTC system.

Once the DON^ONTC system became operational, modules from the system

were loaded into DOMONTC and the C^OMO^iIC system was used to maintain itself.

The security and monitor modules :rare completely developed using DON,ONIC.

The Texas A&M Data Processing Center Billing team has used DOMONTC to assist

them in developing and maintaining the billing applications at the Texas A&M

Data Processing Center. The Data Processing Center is in the process of

e,cpanding the use of DOMONTC.

A major effort has been expended in converting the DOMOf^TC system

from the TRiyi X60/370 cor^puter to the CDC 6600 and Uni vac 1108. The initial

conversion effort was to convert the system to the COC 66U0 at The University

of Texas (UT) at Austin. This presented the most convenient site location

due to the time-sharing agreement between UT and Texas A&M University. UT

uses the CDC Version 3 COBOL system which was the latest version when the

initial language study for DOMONTC was made. The first attempt to convert

six routines was very discouraging due to the differences in TBM`s standard

COBOL and the CDC Version 3 COBOL. 1lawever, after considerable thought was

given to system conversion, a program was developed which would convert
P

::bout 90^ of the statements that had to be converted. The Only remaining

effort before afoil--fledged conversion effort could be started was the use

of the copy facilitias to ini;rodu .ce common program segments into the programs

^^^
;..

uu

^^
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^.
^:^

operating system prevented use of the copy facilities without revision to

the UT software. The absence of a cagy facility was deemed unacceptable

	

^.;	 since DOMO^VIC has aver 60,000 COBOL source statements and this figure

	

"^	 would more than double Vrithaut the use of the common descriptions which

	

^'	 were to be copied. Maintenance of the system would be more complex if

copy facilities were not used because the single modification to a common

'entry would became a repeated task in all modules using the common item.

	

.^	 A decision was made to look far another CDC system which provided

	

u^	 better support to COBOL development. Region IV of the Texas Education

	

,^'	 Agency in F{ouston was selected as the more preferable conversion site. They
6=:

were equie^ped with Version 4 of the CDG COBOL compiler which was a much

'^:
	_.	 closer approximation to ANS COBOL. In addition, COBOL was the primary

language on their machine which was evidenced by their proficiency in its

	

4,	
use. This was demonstrated when the six programs, which did not run at UT,

_,

were successfully converted after a single morning's work. After the visits

to Region IV, the conversion program was modified to correct approximately

	

la	
95% of the items that needed to be corrected.^^

	„^	 Even though COBOL was designed to be a machine independent language,
^n̂.

there are a number of characteristics which are machine--oriented. One of
^..

	"^ ^''	 the ma,^or problems in the program conversion was that techniques and pra-

	

r^	 cedures used on the IBM machine at Texas A&M university for efficiency caused
;;^'

	

^^	 inefficiencies on the CDC and Univac machines. More specifically, a compu-

	

°^	 tationai item used on the IBM 360 to conserve space and reduce data conversions^.
AFB

^^
was very wasteful .of space on the other machines which have different word

lengths and use different size characters. Also, routine communications

5
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facilities provided by the IBM return code are not available on the Univac

ar the CDC machines. l'hese items were converted with about bO% efficiency

by the conversion program developed by Texas A &M University. The return code

was a simple matter compared to the computational items. Ta solve the

problems of computational items, variable lengths were redefined and move-

ment lengths were changed in going to character variables. The efficiency

problems were solved by recompiling everything an the IBM system to be exactly

compatible with the other manufacturers ` systems.

A number of subroutines an the IBM version of DOMOl^IC were written in

assembly language to improve the efficiency of the system. All of these

programs were rewritten in COBOL for transportability with the exception

:^	 ^'a of terminal	 I/O programs which are machine-dependent.

Initial conversion to the Univac computer was begun by using the
3	

"

•- University of Houston ' s Univac 1108.	 Fortunately, that system had upgraded

^" their standard COBOL considerably since the initial language study was made
^.
..

for DOMO^lIC.	 Many problems with the Univac version of COBOL were identified

^" during trips to the University of Houston. 	 After analyzing the problems, the

^;
-	 ,.

programs which had been converted to CDC were able to run an the University

^:
°• of Houston system.	 A small sample has also been compiled at the Johnson

;.	
,s..

Space Flight Center in Houston with complete success. 	 The COBOL converter

developed as part of this contract can be used to move other COBOL programs
k:^,

^^' from IBM to Univac and CDC computers.^,

.'^ddi ti anal documentation aids were added to the DOMOtdIC system during^>
h ,;

^r

^`^.
this contract period. 	 Programs to provide general cross--references were

s-	 y,;^^:
added for COBOL and assembly language programs.	 Aids that helped to clean

'_'	 ^`

f-

^.

-^[^

4	 ,.,.... ,,.:.:	 _.	 ,,	 ,	 :	 ,	 .

^;

^`

^:^

t^

^^

^b
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up and reformat programs were added for FORTRAN, COBOL and PL/1. The DAVE

system was installed at Texas A&M University to be used in conjunction with

^.:
the DDMDNIC system. DAVE is a large FORTRAN program designed to perform

h
g	 '.

`°	 data flaw analysis on FORTRAN programs.

Phase II

In this part of Phase 2, a monitor was developer) which can gather

^:	 d.
^nformatlon that ^s useful ^n system improvement, software rel^abllity stu yes

^̂ !	
and resource billing. The monitar sub-system was developed using DDMDNIC

^;,:

which was possible because the monitar sub-system could be developed after
z;

'`	 the initial version of DDMDNIC was finished.

The r^onitor collects data using two record types. Information cancern-

^^	 ing data is collected with the data record and includes user--supplied and

`'	 automatically-recorded information. User-supplied information consists of
f

_	 flags to turn "an" and "off" the monitoring of commands and the estimated, 	 ;'

',	 revised and actual completion dates of data modules. Automatically recorded
^^

^-	 information consists of command counts, user that entered the module, last	
','

..	 ? j

'-	 user to update, size of module, number of times a module has been edited as 	 -

` ti°:	 well as the date of entry and date last updated. User information collected
^;

automatically consists of logging the User ID, total log an time, CPU time	
^-

^' 	 ^
', 	^.

used, number of times the user has logged an and the date of the last log-on.
,^

=a

{t	
During Phase 2 an extensive effort was made to develop techniques to

-	 categorize errors, and establish appropriate quality metrics which would

^_^	 be useful in software reliability models. Chapter III of this report, ;:

^^	 which was written by Drs. Elliott and Ringer, describes quality metrics,

r]`S.
^^

^-1

7	 <_:

"	 ..	 .. ^: ::.:.
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	^' _	 reliability models, and error categorization. In that chapter, two relia-
t	 °i A.^

^;	^`^^	 bility models which were developed as part of this contract are described.

	

^^n	One is a model on which to base acceptance of a system.

', :.

Types of errors made in program development in many cases depend upon
.^

^.
	^:	 program complexity. dean ZolnowsEci, in Chapter IV, analyzes program complex-

Y._ ity and describes vectors which should be considered in measuring complexity.

She wrote a number of SNOBOL programs to automatically analyze existing pro-

	

---	 grams to determine their complexity as described in Chapter IV. This work

.`
q	 was done in conjunction with her dissertation.

R brief description of the installation of the CAVE system is included

in Chapter V which was written by Cr. Fairley.

Very closely related to the reliability of software are the techniques

used for testing, validation and verification of software as described in

Chapter VI which was written by pr. Lively. Chapter VI is concerned mainly

wii,h the testing aspect of reliability with emphasis on the elimination of

errors or bugs in software. The chapter deals primarily with discussions

	

,^	 about ^-=-sting batch programs. Some of these techniques are applicable to

time sharing and real time programs, but additional complexities of non-batch
^_

	^"	 programs create a number of other problems.

S1
<.. Chapter VII, written by dr. Fairley, is included as a summary of

modern software design techniques. Chapter VIII suggests future extensions.

(a
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Other chapters wi71 deal with a number of different software techniques

designed to improve the quality of a computer software product. This chapter

will provide a comprehensive overview of techniques for measuring that

quality.

The principal problem with evaluating software quality is that of eval-

eating any human activity -- namely, that it consists of many varied charac-

teristics that are difficult to quantify. Although it is difficult to

describe software quality in general terms, a software quality problem is

easily recognized even though it may come in a variety of forms.

Example: A program for computing bi-weekly paychecks is used every two

weeks for nearly three years and performs flawlessly. Perversely, on New

Year's Eve in 1972 the program generates paychecks nearly every one of which

is incorrect. Further investigation shows that the program had been written

in such a way as to handle years with no more than 3fi5 days. Since 1972 is

a leap year, the program malfunctions. This was a case of a software quality

problem due to a lack of functional capability.

Exam 1e: An accounting system has been developed and operates flawlessly

aver an extended period of time. Eventually, however, due to some organizaw

°^;	 tional and product changes it becomes necessary to modify the manner in which
Aa

S:

some entries are made and to change approximately 15"6 of the reports that are

^`

^F	generated. After spending several weeks in an attempt to understand the logic

^	 and structure of the existing programs, the programmer assigned to the task

3
^, ^.t

r:=^,

;,

l r-
!^
t.

^I

^: _
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of making the modifications gives up in disgust and re-writes the system From

scratch. This is an example of a Software quality problem due to a lack of

modifiability.

Exa_^: R set of programs is written to code and decode data prior

to and subsequent to transmission over a tape-to-tape transmission device.

A subsequent analysis shows that aver 70^ of the data being transmitted

consists of blanks and that if rudimentary data compression schemes were

employed the cost of operators and communication lines could be reduced by

nearly 60^, far overshadowing the cost of implementing and utilizing the

data compression scheme. This is an example of a software quality problem due

to a lack of efficiency.

Clearly, these are only a few of the more. obvious kinds of quality prob-

lems but there are a host of others. In this chapter an attempt will be made

to do two things. First, since software quality problems are related to

errors, schemes for classifying software errors will be reviewed and a com-

prehensi^re program for collecting error data will be described. In addition,

some of the existing error data will be summarized. [text, the characteristics

of good quality computer software will be described and a number of metrics

for measuring software quality will be proposed and evaluated. The quality

characteristic which has received the most attention in the literature is that

of software reliability, primarily because it is most amenable to mathematical

treatment. Reliability measures and models will be discussed extensively.

3.1 Errors

In the past 20 years, millions of computer programs have been written

¢Y

^i

^P

^^

^^

^^ `'

1a
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^_	 in this country. In view of this and the fact that each of these programs
I

went through a development phase in which errors were detected and elimi-

noted, it is remarkable to note haw little is known about errors as they

exist in software products. Far example, there are no definitive statistics
t. ,

on the types of errors which occur, there are na reliable statistics on the

	

}^	 distribution of errors over time, and there is little known about the basic^.:

	^,	 sources of errors.

This is due to two factors. First, there has not existed any uniform ?y
;,

	

^;	 accepted classification system for software errors. The little data that

has been collected is in many heterogeneous forms and does not yield to com^-

parison. Secondly, there has been little effort to collect error data. Soft-

r'	 ware development personnel have concentrated on the operational problems in-

volved in their work and have spent relatively little time analyzing what

	

^=	 they have been doing.

	

3 '	 This section consists of three parts. First, several of the attempts
t
^_^:

which have been made to develop error classification systems will be reviewed.

;.
Then a data collection program for error data will be outlined. Finally, same

	

_	 preliminary error data which has been collected will be presented.

3.1.1 A Survey of Error Classification Techniques

^^

	.__	 Rube;, Wick, and Keathley ^1968] have prepared a comparison of Pt./I with

several alternative languages. Preparatory to doing this they developed a

_{
.	 categorization scheme which included the following error categories.

1 ^^

s ,

y

_^: ^ `^:
`	 F.

11	 1,
t s

3_

f;=1

^:

E	 ,'

L?

f	 ^

F

t	 ^

4'..:

^.: :. ..

1. Computation and assignment statements

2. Character handling statements

11
^	 ,'
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^ ^`}	 4.

5.

^.
6.

	

iF	 7.

8.

9.

10.

f

f
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Sequence coni:rol and decision statements

System interaction statements

Data file and format description statements

Procedure, function and subroutine statements

Comments

Delimiters

Labels

Punctuation

This categorization scheme l5 useful for a broad variety of problem

	

'..	 oriented languages but it has two deficiencies. first, it assumes a pro-

.	 ,;	 gramming language of the general nature of PL/I and would not be useful

	

^^	 for other languages such as assembly language ar APL. More importantly,

however, the categorization is deficient in that it provides for a rela-

-	 Lively limited number of types of errors. It, for example, does not in-
J-

I

chide provisions for indicating data preparation errors, keypunch errors,

	

.;	 system failures, etc.

^,
A mare recent work in the area has been attempted by Ramamaorthy,

	

?'	 Cheung, and Kim ^1974^. They addressed the area of reliabi1it^ of large
c

	

.	 computer programs and in so doing developed a classification scheme by
:.,:

first attempting to develop a comprehensive list of sources of errors and

	

!^,	 then combined these into classes wherein maxi common errors can be described.

-	 !

	

`^	 Their sources of error include the following:

	

4'	 1. Program specification,^

	_	 2. Faulty algorithm design



t

^.
^x

3. Overlooking special cases for input data

4. Coding errors (including incorrect schematics, language

constructs, logic errors, a: •ray/overarrayed :end so forth)
^:

°"	 5. Structural errors (including incorrect flaw of control,

^Y unreachable program segments, no exit path from segment
d<

_ and so forth) w'

^ 6,	 Loop termination_

j-
i'.

7.	 Interface e;°rors

L

Liven these sources of errors, the authors then combined these into

^d five general	 classes consisting of the following:

^^ 1.	 Interface data	 'r
{
9 y

2.	 Sequencing

-	 ^
^^

3.	 Data Integrity

4.	 Semantics and language construct

_^ 5.	 Structure and -Formation 	 -

^'

''	 ^=,. E.A. Young C1970^ did a study on the error-proneness in programming as

Y^ it was manifested in the use of five programming languages, namely ALGOL, 	 ``
^:

-	 `° BASIC, COBOL, FO^TRAfi, and PL/I.

rt-
.- He defined errors in terms of the language employed by the user and in

- terms of his satisfaction with the results.	 Young supplied instructions,
^^

_	 ^'	 ^„ confidential questionnaires, debugging run log blanks and a firal questian-

^,^
^:

Haire for each problem.	 Errors were classified by making use of the informa-

r̂ ' tion available from the questionnaires at thr end of each programmer`s

^,
debugging process.	 The errors were coded in terms of the best description

zY:
13
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	^^	 the error coding card for the experiment specifically asked far items^_^
such as: general cause of the error, specific cause of the error, the

^^

	^-;	 number of possible errors which could be classified like this one, system

(	 diagnosis of the error, system action, and the number of diagnostics far
^^

	

.	 this error.

	

^"	 for the purposes of Young's study an "error" was defined as "each

	

:^^E	 omission or commission, usually on the Hart of a programmer, which results

in p^atential or actual computer actions not desirable and/or not accept-

able within the programmer`s interpretation of the program specifications."
a...:

Based on this definition and the results of the experiment, the following

are the error classes Young came up with (those categories with a higher

;^:
proportion of errors occurring are noted and an explanation is given}:

	

_`	 - aob i denti fi cati on
5

	^,°	 - Execution request

,^
- Bxterna1 I/O assignment

	

!.=	 - Other command language

	

;^	 - Procedure identification
;;



r̂
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^_
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^_a

^^
^:

^^

^^;

^^

^^
..:
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^-
4F
^^
,.^

^.;^

^,,

^^^^

^;

^- Conditional branch, executing (change course of execution - though
there were relatively few occurrences of errors in these, they
tended to occur not only out of proportion to the r;umber of
conditional statements but these errors also lasted extraordinarily
lung)

*- ^/0 formatting {more syntactic problems with this than anything else)

*- Other T/0 (what is to be written or read)

System subprogram invocation

- Other subprogram invocation

*- Parameter/subscript list (mainly miscorrespondence between real and
actual parameters)

- Subprogram termination

- Data

^- Vertical delimiter {serve anly to indicate statement groupings such
as iteration loop ar block termination)

- Hone

The most extensive error categorization scheme that has been developed

is that of Amory and Clapp [1973.

The goal of this project was to "provide as extensive a categorization

method as possible and then encourage experimenters to use it as a guideline,

subsetting and extending it as appr;;priate to the go?.is of the experiment."

For the purposes of this study, an error is defined as "a conflict between

two ar morP viewpoints which must be resolved" and a bug is in turn defined

"as an error which involves software as one of the conflicting viewpoints."

Tt is mast important that an error classification scheme handle errors

which cannot be neatly assigned to a single category. So this method uses

^'	 a set of concurrent dimensions and an hierarchical organization of classes sa
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^.a

^

}

_	 that aspects of an error which occur simultaneously can be organized tv
^r

-'^	 ^'	 reflect this fact. Accordingly, error data is organized in five dimensions:

WHERE - covers context in which error appeared

WHAT -describes manifestations of the error

^^	 HOW	 - identify specific code ar data which was incorrect

4^HEN -gives development stage at which error occurred
i

WHY	 - presents reasons} for maEcing the error.

-^

^^	 Each of these dimensions is presented as a set of categories, sub-

^`
categories, and subdivisions, as appropriate to the dimension's orientation

^^	 and prospective use.

b	 An analysis and investiga^
Y

was recently reported on by A.

collected data and analyzed it

of programs he analyzed is not
t

^^	 his classification schemes are

ti on of error distributions in system programs

Endres [1975. The fact that he actually

is important in itself, although the class

iifce most application programs and therefore

not useable on a general basis.

i
s.	Errors analyzed were those discovered during internal tests of components

^.^

of the operating system DOS/V5. Atypical project activity consisted of

changing ar adding about 5D instructions in an existing module of about 200

^^	 instructions. Errors are detected in code which is a mixtu re of "old"

and "new" programming styles. Also, a record of errors was kept only for the

formal test period of 5 months which is only a part of the complete test cycle.

So a nicely detailed error/change history is not available far the modules.

Also, irregularities or errors in the system were documented via their

external manifestation by the testing group. This, in turn, was passed on

16
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{
i!!{ì `^ to the original development group which analyzed the problem, classified it,

i	 i

and filled in additional background information.	 So the classification system

^`; was developed after the errors had been found and therPfare relied heavily

on interpretation of errors by those not "committing" them.

`' Errors found were eventually classified into the following groups:

^
^:

program errors, machine errors, user or operator error, suggescions for

improvement, duplicate {of a previously identified program error), and docu-

mentation error.	 These classifications are the result of a specific group of

questions asked at a specific time based on a specific type of program.

^'" Unfortunately, this program type is a systems program composed of both old and

'^?
^'

new code and the time span does not encompass total program development.

Therefore, while the author's discussions are useful and perhaps some of his

4

techniques are worthwhile, his data is still not that which is needed.

^.
'

An experiment to collect data an types and frequencies of errors was
J^3
S

conducted at Be1I Laboratories by 5hooman and Bolsky [1975. 	 This also was

},, an initial attempt such as Endres` 	 C1975^ to examine the feasibility of collect-

ing error data and to set up an error collection system which would he tolerable

^. f
3

to programmers involved anu yet collect useable and worthwhile data. 	 The

^'. authors chose a program of about 4000 machine words on which to investigate

t" the number and types of errors occurring in its test and integration phase.

^^ 5o they, too, restricted data collection to a certain time period in program

development and do not attempt to get a full error/change history of the

program.

The objectives of this study were: to design a useable and useful data

^ ^^

l7

1



r
^>

a ''7

	

;_	 -:

	

.e	 ,+
%f

f'.
i.

collection form; to get information on how this form affected those who had

..	 to make use of it; to compare overall error count results with other work

-^
done; and to obtain whatever information possible on resource experEditure

during the testing and integration phase.

The article then was a discussion of these above topics and paints out

the deficiencies in data collection forms and how very flexible these indeed

must 6e. The study itself was a reasonable beginning in an area that has

had much discussion but has had minimal studies such as this to provide worth-

while information. Its two obvious deficiencies were a concentration on one

specific program type which had no major changes in functional specifications

and a resulting lack of a spectrum of error types, and its concentration on

a particular phase of the programming effort.

3.1.2 A Prototype Software Development Error Data Collection Sr^stem

This section describes a prototype system far the collection and use

of software error data. Its operation is symbolically described in Figure 1.

Essentially it consists of five components.

1. Error data collection forms.

2. Data bank containing error data accumulated from these forms..

3. A computer program for updating the data bank and performing

'^^^	 analyses of the error data.

'^	 4. A set of reports generated from the error analyses procedure.
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The data collection forms are shown in Figures 2 and 3. 1'he "background

sheet" identifies the programming task to be performed and the environment in 	 s

which it is performed. It contains information describing the type of pro

gram, language size, and hardware and very briefly describes the programmer's

experience both as a programmer and in the application area. This form is

to be used in conjunction with the form shown in Figure 3 entitled Error

Reports. This report contains a line an which the result of each run^from

;' the start of debugging until program delivery is recorded. The programmer

	

'^^	 specifies a good deal of information concerning the run i ncluding the mani-

festation of the error, when it occurred, why it occurred, the programming
^r^

cause of the error and so forth. In addition, some general information cones

	

^^	 sisting of the severity of the errors and how much of the program has been

changed since the previous run is also indicated on this farm.

	

ds	
The error data bank essentially consists of an indexed file containing

d
all of the run data that is on all of the background sheets and each run from

the error report. The data bank is indexed in such a way that it can be
,:

	

^^,	 conveniently accessed from a terminal to produce a variety of statistical

	

^^	 Information.
;{ -

	

ua	
When new data are added to the data bank, a number of rPr^;^^:s are	 -

^,

^^.
automatically produced. One is a program feedback report which is produced

fvr the programmer. This report is essentially a summary of all of the runs

	

a>	 ^,

	

^u	 made for a particular task and provides him with a convenient record of

	

^^	 activities.

	^r	
The other reports are intended for the programming manager. One of the

hri
	^,	 reports, "Overall Error Data° summarizes the error data recorded for the	 -

:^; }
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p Other

2. TYPE OF PROGRAM

p Sy5tPf11

^] Scientii'ic

p Financial/Recounting

p' Oata Mani pul ati o n

6. PROGRAMMER EXPERIENCE

... as programmer

p less than 6 months

p 8 - 18 months

jJ over 18 months

... in Application Area

C] less than 6 months

[j 6 to 18 months

p over 18 months

^	 rnrnM^N-r^
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i
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-	 ^^
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^^

3. PURPOSE OF PROGRA^1

^. TOTAL MODl1LE SIZE (lines of code)

p' less than 100	 fJ 500-1000

^'JIOO-500	 ^ 1000-2000

5. HARG^IARE NECESSARY

j] over 2000

p gape Files
	

p' Card Files
	 p Other

U nl S^f F11 e5
	 p Plotter
	

j

j

p Print Files
	 j] Terminal
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reporting period and compares it with the data that are currently in the

data bank. The format of this report is described in Figure 4, It shows

the number of tasks that are active, the number of runs that have been made

in each category from design through operation, and, for each error type,

it shows the frequency of occurrence of that error, the percentage of a total

number of runs made for that period which exhibited that error, and a com-

parison of the percentage of all runs which exhibited the error with those

recorded in the data base. This report is intended to give the manager a

Feel for the overall activity that is taking place in his shop and any indi-

cation of any changes which may be taking place in the types of errors which

are being recorded.

The next report is entitled "Problem Area Identi-^ication" and is shown

in Figure 5. This report is an exception report which ic+entifies any signi-

ficant deviat;ons 'From normal expected conditions. For example, errors due

to invalid JCL during system testing would normally have very few occurrences

in the data bank. Should a large number of JCS. errors be reported for a

progran which is in system testing, this deviation from the normal would be

detected and reported by this program. Similarly, excessive hardware failures,

data preparation, or design errors could be brought to the manager's atten-

tion in a similar fashion.

The final report is a " progress Report" which is depicted in Figure 6.

This report develops, far each task, a progress report which shows the num-

ber of runs and the status of the task as indicated by a summary of the

errors of different types. Liven an appropriate model for determining
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	`^ -°	 SAMPLE MANAGEMENT REPORT

	

':^
^	 OVER-ALL ERROR DATA

^^ E

i	 i

DATE I2/I1/75

	

^;	 TOTAL TASKS REPORTING	 I6

	

^^_.	 RUN STATUS REPORT

PHASE	 NUMBER	 PERCENTAGE

	

'^	 DESIGN	 7 0	 2

CODING	 32	 7
DEBUG
llNIT TEST
SYSTEM TEST

DOCUMENTATION
OPERATIONS

TOTAL

RUN:TRSK RATi0 27.4

ERROR SUMMARY

ERROR CLASS NUMBER % OBSERVED I EXPECTED

A 63 24 28
B 42 16 14

C 11 4 8

D 107 41 28_

E 21 8 I2
F I8 7 10

262

107 24

84 19

16 4

2 0

198 45

439

I

TASK SUMMARY

TASK STATUS RUMS^.

^^^ FDrRACCT UNiT TEST 34

'^ SYSTEM TEST 11
FDERBUDG DEBUG 11

3	 ^ P^iYSINVT CODING 7

_ etc.

^k

^	 ^-^'..	 f
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EXCEPTIONAL ERROR FREQUENCIES - ALL TASKS

1	 F

1,

ERROR CLASS	 MEANING	 OBSERVED	 EXPECTED

D	 JCL	 4i	 28

EXCEPTIONAL ERROR FREQUENCIES .. BY TASK

TASK	 ERROR CLASS	 MEANING	 OBSERVED	 EXPECTED

FDFRACCT	 D JCL i5 5
F DATA PREP 5 i

FDFRBDCT	 B SYNTAX 12 3
D JCL ^ 2

P^iYSIN1T	 D JCL i 3 3



SAMPLE MANAGEMENT REPORT
I:

TASK WEEK RUNS

FDFRACCT	 04/i6 D D

04/23 D D D D

04/30 ### ## # # # # # # # ####
###

05/07 ### ## # # # # # # # ####
### ## # ##

05/i4 ### #UUUUU

05/21 UUUUUUUUUUUU
i

05/28 UUUUUUSS5S5SSSSS '.

j

SS5 ?j

I

FDFRB[]GT	 05/07 D D D # # # #
I

,,

..
05/ i 4 # # # # # # # # # # # # # #

05/21 # U U U ^
`'

.. 05/28 U U U U
AAAAI

1

1

'^ KEY	 D = DESIGN, # = DEBUG, U =UNIT TEST, S = SYSTEM TEST, _
X W DOCUMENTATION, 0 -- OPERATION

^'

î _

.^

is
',..

F Fi g^are 6.

:;
-_

i

Y

A	
^, Progress Report

^:

S"

^^

^a

^''

l ^^l ,.	 ^.

r.	 ,:	 ,..
,_
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programming proficiency, this report could also contain a proficiency index

for each programmer who is associated with that particular task.

3.i.3 Errors in Software Development - An Empirical Study.

Figures 2 and 3 of Section 3.1.?.. present an error categorization farm

which was designed for future use with an automated system (DOMONIC} and

more immediate usage in the prototype error data collection system of the

previous section.	 An empirical study (a manual data collection scheme} was

therefore underta[cen to test the feasibility of using this form. Not only

were the programmers' reactions to filling out the form studied but also ex-

amined was the effectiveness of this form in providing reasonable categoriza-

tions far a programmers` errors ar changes in coding. Essentially, then,

this initial study way not so much oriented toward collecting a Large amount

of data as it was concerned with testing and reinforcing an error categari-^

zation scheme far the future collection of large amounts of data.

Accordingly, farms were given to a small test group of data processing

programmers for use from the start of their program design through the pro-

gram production phase.	 The form was found to be relatively easy to use.

However, this did not insure that it was well filled out.	 The programmer

was as[ted to use the form after each run of a program, regardless of whether

there were errors/changes or not. If the group studied is any indication, the

^`	 majority did not fallow this rule and exact data was collected only from

^^	 those who would be conscientious under any circumstances. 	 The major problem

xr	 is that mast people need pressure brought to bear on them and need an incen-^,
^e

''	 five to cooperate -- they have to realize results from this extra work of
'^ -:
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using a form or cooperation is minimal. 	 This emphasizes the fact that

results in the form of reports which would be realized from the scheme of

Section 3.1.2 and the DOMONIC system would provide sufficient feedback to

ensure programmers' cooperation.

The form itself was quite usea^7e for the programmers and relatively

easy for them to maintain. Examples of summaries of results from two COBOL

programs developed during the project each in the same size group (100-500

lines) Follow:

^,

^: dumber of Runs

Number of Errors/Changes

Rverage Number of Runs Per Day

Average Number of Errors Per Run

N^anifestation of the Error

1. Compiler

2. Link/Load

3. Problem Analysis

4. No Error/Change

When Error Occurred

1. Coding

2. Debugging

3. Urri t Testing

Example A

2^

38

1.9

1.6

4

1

32

7

2

4

31

Example B

11

16

1.1

1.5

16

13

R--

i

^"
a ^.
as

^p
^^



Exam^^l e A Example S

Severity of Error

l . High
	

8

2. Medium
	

14
	

5

3. Law
	

15
	

10

Why Did Error/Change Occur

1. Problem in Functional Analysis
	

1

Z. Omission
	

s
	

1

3. Mechanical within Program
	

32
	

14

Program Cause of Error

1. Label
	

2

2. Assignment/Ct^mputati on
	

11
	

3

3. Conditional Branching
	

7
	

5

4. I/O Formatting
	

7
	

3

5. Subprogram Invocation
	

1
	

2

6. Data Validity
	

2

;. Iteration Mechanism
	

3
	

1

8. Oti^er
	

3

Average Humber of Lines Affected

by an Error/Change
	

8.5
	

3.5

Several of the categories were seen to be insufficient for categorizing
^'

-	 ^	 a specific area. For instance, both examples above	 indicate that	 the mani^

i'	 festation of most errors was seen through problem analysis. The programmers'

^°	 involved felt tha-E this general category, problem analysis, was not at all
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specific enough to pinpoint where the error appeared, i.e. it did oat suf-

ficiently reflect the environment of the error. However, the format of the

form, since it is a checklist, has proved amenable to expansions and revisions

derived from information given by participating programmers .

Problems such as these - feedback from the actual use of the data

collection farm - have providzd the information necessary for an evaluation

of the run categorization scheme a^^d for confidence in its merits for future

full-scale usage.

3.2 Software Quality Attributes

There exists no widely accepted definition for software quality. 	 The

emphasis which an individual places on software quality varies a^ good deal

depending upon the situation.

A person using a statistical program for a particular problem may be

particularly interested in accuracy.

5ameone given the task of modifying an existing program may place

primary emphasis on the characteristics of the documentation.

Far a real-time control system, quality may be equated with speed.

A software salesman might equate quality with generality.

Rependins upon one's point of view, any number of qual'^^^r attributes

might be of primary importance.	 The list below includes soma 4hat have
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Accuracy
	

Reliability

Structuredness
	

Human eng i Weer i icy

Modularity
	

Testability

pevice Efficiency
	

Speed of execution

Legibility	 Documentation

•	 3.2.1 Overview of Software Quality Metrics

It is abundantly clear from the foregoing discussion that there exists

'.

	

	 no agreed-upon definition of so •rtware quality. This is, of course, nat sur-

prising bec-^use qualitative judgments are ne^^er straightforward. They are

inextrical;iy interwoven with the objective point of view and perspective of

the person making the judgment. In those cases vthere quality indicators are

selected and used, there is invariably a good deal of discussion regarding

the appropriateness of those indicators.

On the other hand, people do exhibit a remarkable uniformity in malting

quality assessments in a wide variety of areas.

In the arts, there is abroad base of agreement as to which books are

good, which movies are entertaining, which paintings are striking, even

though personal preferences vary widely.

A similar situation exists in the evaluation of personal performances.

Managers, teachers, housewives, or persons in any field of endeavor exhibit

different personal styles in the performance of their tasks. Even giving

allowance for personal preferences, there wi11 normally be a broad consensus

as to who is a good manager and who is not, who is a good teacher and who

is not, and so forth.

,'	 _

^

n ^r	 32

^	 ^-.
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Similar situations exist in almost any area. People evaluate shares 	 ^

of common stock, used cars, pieces of property, tools, and so forth in a 	 _

mast informal manner, but they exhibit a great deal of uniformity in making

their assessments.

Selection differences arise more From the fact that quality normally

has many dimensions, and there are personal preferences for one dimension

or another rather than from the lack of uniformity in the quality assessments.

Far example, an investment has dimensions which include risk, potential return

^^

	

	 and capital requirements. Knowledgeable investors make different investments

because of individual preferences for dit^^"erent combinations of risk, poten-

tial return, and capital expenditure rather than because of differences in

evaluation of these factors.

Tn spite of the fact that humans exhibit a remarkable uniformity in

!	 quality assessments, the development of a definition of software quality

(or of any other kind of quality) is a hopeless task, and the development

of the theoretically sound metric to measure software quality is a similarly

^^.	 hopeless task. Soth involve a level of model building which is beyond the

scope of today's technology.

-	 Qn the other hand, the real question is not whether one can build a

theoretical) sound model, but whether one can build a useful model for

measuring software quality. There is good reason to believe that a useful

model of software quality can indeed be constructed because useful quality
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Most quality models mace use of some sort of scoring approach. A

list of representative quality factors is assembled, and the object being

,-	 assessed is evaluated as to the presence or absence of these quality factors.

"	 Paints or weights may be attached to each factor or a simple summation may

^	 be used. This type of procedure is common its personnel assessments, real

estate appraisal, used car evaluation, and many other similar quality

evaluation problems.

#	 Two assumptions are implicit in the approach. The first is that the

factors sampled constitute a representative sample. 	 There are many, many

factors which maEce up quality. Only a few of these factors are selected,

i.
but if they are in fact quality factors and if they are selected in an un-

^.	 biased fashion, one can estimate with reasonable accuracy the proportion

of all of the quality factors which exist in the object under consideration.

There exists a substantial body of statistical literature on sampling

theory, e.g. Freund ^1971^.
f:

The second assumption implicit in the use of this approach is that it

is going to be a little wrong most of the time (and probably mostly wrong

part of the time}. Although the use of imperfect measuring devices seems

`	 ^	 abhorrent to most people, they are used ail of the tir^te. Carpenters do oat

use micrometers because folding rulers are easier to use and sufficiently

accurate. Employers of laborers seldom use psychometric testing because

they do not need that much information about potential employees.

Ai so, one has to consider the alternative to imperfect measuring
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In many situations, one can make a case far using only factors which

can be determined precisely in any evaluation. A promotion system in which

the only consideration is time and grade is popular among some people for

this reason.

Because software quality cannot be precisely measured, it has almost

invariably been ignored as an evaluation parameter. Ignoring software

quality is a luxury that we can no longer afford. A technique for measuring

software quality is badly needed for many reasons. It is needed in order

to properly assess programmer productivity. When given a choice between

alternate pieces of software one needs a technique to assist in choosing

among them. A measure of software quality is needed to provide a 1eve1 of

quality control in an industry in which quality is fast becoming a scandal.

Given that the development of quality measures is a useful undertaking,

even though any such measure must of necessity be somewhat imperfect, it

^s useful to consider the characte istics of a goad quality metric.

first, any metric should be consistent with what constitutes a consensus

judgment of persons knowledgeable in the field. That is, it should not be

counter-intuitive to informal measures.

Second, the measures should be user-independent. The application of

the metric should be essentially independent of the person who is applying it.

It would be preferable to have all software quality metrics machine-derivable

but that does not appear to be practical at this stage in their development.

Third, the measure should be easy to evaluate. It should not, far

example, take as long to evaluate a piece of code as it does to write it.
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One thousand lines per man-hour would appear to be a reasonable goal for

a level of eff;^rt.

,,	 Fourth, any quality metric should be dimensional, and the various

dimensions of the metric should be discernible. Depending upon one's

objective, one has a different perspective on quality. Someone purchasing

a car may be primarily interested in economy, or in comfort, or in maintain-

-	 ability. Similary, someone procuring a piece of software may be interested

in portability, or in modifiability, or in efficiency, or in some other

factor. The extent to which each of these factors is present should be

discernable.

Finally, the dimensions must be meaningful. One approach to devising

dimensional metrics migfat be to assemble a large number of factors, observe

the present or absence of these factors in a large number of programs, and

statistically cluster the factors into subsets. While the subsets so derived

will be statistically cohesive, they will not normally be meaningful in the

usual sense, and their useability is therefore impaired.

A metric should have a meaningful and useful range. Ranges form O - l

or from -1 to ^-1 or from O to 1QO are normally used.

The literature contains numerous references to characteristics which

will be found in quality software. These characteristics have been lumped

into the fallowing six software quality attributes as shown in Figure 7.



- CODE EFFICIENCY	 ERROR HISTORY
Timing

COMPLETENESS	 DEVICE	 SUPPORT SYSTEM
UTILI7ATION	 RELIABILITY

ACCURAGY	 DESIGN	 TE5TING PROCESS
(NUMERICAL	 EFFICIENCY

^— CONFORMATION

TO SPECS.

MRINTAIN-
ABILITY	 USEABILITY

MODULARITY	 HUMAN ENGR.
DEVICES

PORTABILITY	 HUMAN ENOR.
PROCESSES

EXTENSIBILITY	 DATA PREP.
COMPLEXITY

PRODUCTIVITY

DEVELOPMENT
COST

OPERATION
COST

MARKET
OPPORTUNITY

QUALITY



z Reliability -measures the iikelihaad of error-free performance aver

	

^:'	 a given time period.

Nlodifiab^7i ty -measures the level of difficul ty involved in keeping

a program operational over its expected life. It involves documentation

	

4	 portab'.,ity, extensibility, etc.

Useability_- measures the degree to which a user can easily and accurately

use the system. It 15 related to the human engineering of the devices and

processes with which a user interacts with the system.

" Functional Correctness -- r^,easures the degree to which a program's

capabilities coincide with the pt^ogram designer's concept of what those

capabilities should be.

	

^„	 Productivity -measures the benefits that the user of the software

	

^-	 product can reasonably expect to accrue in relation to the cost of the

product and other market opportunities.

	

^	 l^he following sections contain discussions of these quality attributes
^.

^_. a^td describe metrics which have been devised for evaluating some of them.

	^__	 1'hesa metrics may be used individually or can be combined into a single

fi guru, oi' meri 4. Tn developing these metri cs , we have drawn heavily on the
.,

	

{'	 ideas :^f Rubey, F^artwick and Uean [1968 and on Boehm et,al. [1973].

^^
It must: be emphasized that these metrics are based an weighted samples

of factors indicative of each attribute and, as such, are subject to error,

Same evidence has been developed, haweve'^^, t:^^,^. ^^'^Y a ye !:ct.^sistent with

knowledgeable judgments and are reasonably user independent.	 For these
.^

reasons, it is felt that they have some promise of being useful,	 if net ^^. _

absolute indicators, as indicators of possible strengths or weaknesses in ^^ '''
^.,

_	 ^
^;{
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program which bear further examination.

3.2.2 Modifiability

Based only on an examination of a program and its documentation, the

quality attribute to which a manager is most likely to give the heaviest

weight is modifiability. This term has been chosen rather than the morQ

usual term, maintainability, because maintainability as it is usually

defined, relates to the time required to return a system to an operational

state ( in an unchanged environment} once it has malfunctioned. In a soft-

ware system, however, the system does not malfunction, rather the environ-

ment changes - by changing the functional requirements of the system ar by

alter7ng the computer components - ar^d it is necessary to modify the system

to operate in the new environment, hence, modifiability instead of main-

tainability. modifiability has five sub- -attributes.

Tn^:ernal Documentation - is a measure of the readability of the code.

External Documentation -^ is a measure of the value of the program

documentation (external to the code).

Madulari^^r - is a measure of how well the program has been broken into

small functionally independent modules.

Portability_- is a measure of how easy the program would be to move to

another environment.

Extensibility - is a measure of how easy it would be to extend the

functional capability of the system.

Ii
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t.	 3.2.2.1 Internal Documentation - is synonymous with good programming

practice, but it is often missing. McCracken and ^ieinbe rg [1972] have written

an excellent guide to writing "readable" FORTRAN programs. Their suggestions

are applicable, with same modification, to all procedure-oriented languages.

Comments contribute greatly to the readability of any program. A number

of comments approximately ?qual to the number of operational statements is

not excessive. The comments should describe, in some detail, the functions

of each module and its relationship to other parts of the program. Comments

should also indicate the authorship of each module. 	 ;:^

^-

	

	 i
Descriptive variable names and identifiers contribute greatly to

the readability of a program. 	 '^:i

A number of editing practices can be used to enhance readability. In-•

^^	 dentation to define the ranges of loops helps. Sequence numbering the state-

j	 menu and the statement labels helps.

Finally, a programmer can do a great deal to enhance the readability

.,	 of his code by using simple coding structures. From the point of view of

^:	 internal documentation, an effort should be made to utilize straightforward
^;

`	 code even at the expense of efficier;cy. Experiments with structured pro-

?^

	

	 gramming indicate that restricting coding structures to a few relatively

simple structures and minimizing the use of go-to statements greatly enhances

the code readability.
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Program	 Subjectn

Attribute	 Modifiabilit	 Sub-Attribute	 Documentation (Internal)

O l 2 3 4

^^

i
^, ^

Are comments used extensively?

Virtually Wane-0; 25% of source-2; 50% of source--^

Are descriptive variable names used?

Ai most never-O; Almost always-4; Nat applicable-4

Is the function of each module described?

No-a; Sometimes-1; Always-2; Not applicable-2

Are inter-relationships among modules clearly specified?

No-0; Sometimes-i; Always-2; Not applicable-2

Are simple coding structures employed?

No-0; ^lith few exceptions-7: Generally-2

Is the source code sequence-numbered?

No-0; Yes-1

Are statement labels sequentially numbered?

No-0; Yes-^1 ; Not ap^.^ i cable-I

Have indentations been used to improve readability?

Usually not-0; Usually-l; Not applicable-1

Does the source code contain the author's name and date of last
revision?

No-O; Yes-2

How extensively are GO-7O`s used?

Over 10% of statements-0; Fewer than 1O% but more than 5% of
statements-2; Less than 5% of statements-^

,.
-^i ^ .._ ,...	 _.^	 _	 ^.^y.^.._...^,.,_^- _	 ,_-r_ ..^.	 ^.,...	 -	 -
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This documentation should contain both a system flowchart and a logic

flowchart ar some equivalent device {e.g. EiTPO's). Logic flowcharts, to be of

any utility, must be "higher level" flowcharts which describe the logic of

the flow without single statement detail.

Similarly, the documentation should contain a "glossary" of all variables

used in the program and a gaol statement describing the program's capabilities

and limitations.

Tnstructions far preparing input to the program and interpreting output

should also be included when appropriate. Sample input and output together

with run instructions are a necessary part of the documentation.

Finally, detailed descriptions of all the data sets and instructions

far their management should be included in the documentation.

3.2.2.3 N^odularity - contributes to modifiability by making it easy

to isolate specific functions for maintenance purposes. A program written

with a high degree of modularity will have some distinct characteristics.

Tt will, of course, be segmented into a number of small functianally-

defined "chunks." The proper size for these chunks has been the sub3ect of

^^	 some discussion, but most programmers agree that they should have an upper
I
:.

limit of about 60 statements including comments {one page of computer out-

put}

^^ n
The types of statements employed in a program are changed significantly

^:	 as the result of this modularity. Except at the bottom level, most modules

consist of a large percentage of module calls rather than other operational

The level of nesting of individual statements is significantly

42
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Subject

Does a logic flow-chart exist?	 No flow-chart-Q; Autoflow X1:1}-i;
Good quality hand-drawn-3; Autoflow chart or equivalent-4; deduct 1

for non-std symbols; deduct 2 for not current

Does a system flaw chart exist?

No-0; Yes-2; Not applicable-2

Do instructions for data preparation exist?

None-0; Minimal-2; Good-4; Not applicable-4

Does a "Glossary" exist?

No-0; Yes-1

Do run instructions exist?

No-0; Minimal-l; Goad-2; Not applicable-2

Does the documentation include a statement describing the program's
capabilities and limitations?

No-0; Minima7W1; Good-?.; Not applicable-2

Do descriptions qf all the program`s files exist?

No-0; Some-l; A11-2; Not applicable-2

Are sample inputs and outputs available?

No-©; Yes-l; Not applicable-2

Tf documentation standard exists, does this documentation confirm
to the standard?

No-0; In some respects-2; Yes-4; Not applicable-4

Do instructions for interpreting output exist?

None-0; Minimal-l; Good-2; Not applicable-2

^.

s	 ^€
h	 ^^.

}

^	 Attribute	 ^odifiab^lity	 Sub-Attribute	 Documentation (External}

0 1 2 3 4
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If modular programming is to be effective, the interfaces between

the module must be simple. If one merely breaks the code into pieces and

passes a71 the data from one piece to the next, nothing is really achieved.

In general, the fewer data elements passed from one module to another• , the

better.

3.2.2,4 Portability - is an important subattribute of modifiability

only if the program must be moved to a different machine or machine configuration.

The programming language selected is the mayor factor in portability.

Assembler code greatly restricts portability as does the use of any language

not generally available an a variety of machines. When higher level languages

are used, it is important to indicate non-standard i^^^guage features, machine

._	 dependent features, etc.

The utilization of local subroutines significantly impacts program port-

ability. Similarly, the use of devices such as R-D converters, special

terminals, etc. which are not general^v available may impact portability.

Although many languages are externally independent of the word size

!:	 of the machine on which they are implemented, computations that occur in the

program may be affected by word size and this aspect must be carefully con-

si dered.

Finally, portability often implies changing the core available in which

to execute the program. If the program is not overlayed already, or if it
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Subject#

Niodi fi obi 1 i ty	 {^odul ari tRttri bute	 Sub-Attribute	 y	 .-...^
0 ] 2 ^ 4

What is the average number of statements (excluding comments} per
madule7

0 to 40 - 4 pts; 4 to 80 - 2 pts; aver 80-0 pts

Randomly sample 10 statements. What is the average "level of nesting'

Otol -1 pt; 1 tat-2pts; 2to3-3pts; 3to4-opts

Randomly sample l0 modules. What is the average number of data
elements passed to and from the module? (An array is a single element}

0 to 5 - 4 pts; 5 to i0 - 2 pts; over 10 - 0 pts.

Randomly sample 10 modules. What is the average of the ratios of
module calls: total statements?

.d5 - 0 pts; between .05 and .20 - 2 pts; over .20 - 4 pts.

tl

,^.^
;:	 ^
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Does the program make use of dev^^es which are not available on a
number of machines (e.g. data cell}?

Yes-0; no-2; Not applicable-Z

Does the program include assembler code?

ail ar most - O; some - Z; none - 4; No 	 applicable - 4
1

Is the programming language generally available?

Most manufacturers - 4; More than one manufacturer - 2; One manufactu
er - 0; Not applicable - 4

Is the program designed in such a vray -that the core requirements
^^uld be reduced?
Yes, with great difficulty-O; With some difficulty-2; Yes-easily-4;
^Vot applicable-4

Are computations independent of word size?

Ufa-O; Most -2; Yes-^; foot applicable-4^

Does the program make use of subroutines which are "local"?

Extensively-0; Some-1; ^!0-2; blot applicable--2

Are special machine-dependent features and non-standard language
constructs indicated by comments?

Dever-0; Sometimes-l; Always-2; Not applicable-2

..	
...:'. 	 ^, ::^.	 i 	 ^^... ^'.	
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I•	 3.2.2.5 Extensibility - is an important aspect of modifiability.

The most common modification to a program is the addition of some new

capability. This may invUl^fe adding a capability for Handling additional

data (for example: processing additional inventory codes in an inventory

system) or it may involve adding functions (for example: adding a tax withholding

^•	 module to a payroll system).

Some extensions can be handled in an almost trivial fashion when room far

expansion has been provided in appropriate arrays, tables and data sets.

Limiting constants for these items should be in symbolic form, rather than in

absolute form.

=^	 The primary limitation to extensibility is the total utilization of

some resource by the existing program. ^Jhen any device is used to its absolute

capacity, for example a disk, it is impossible to expand the capability of

the program without a substantial effort.

Other dangerous situations involve programs which leave insufficient

^-	 unused memory to allow extension without reorganization ar which have response

times at or very near the maximum allowable, thereby leaving no room or time

for the addition of added functions.

3.2.3 Efficiency

As an attribute, efficiency is difficult to evaluate because it has

several subattributes which are to some extent conflicting. ^'or example,

..	 one might look for efficiency in core utilization ar efficiency in operation

;^	 speed. But, there is usually a trade-off in which one can increase operation

1.
	

speed by using additional storage.

4a

47
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Subject#

Attribute	 Madifiabilit.y	 Sub-Attribute	 Extensibility

O 1 2 3 ^

Does there exist sufficient unused memory so that a	 itlona	 unctions

could be added without reorganizing the entire program?

No-O; No-but reorganization would be simple-1; Yes^2

Would additional functional capability degrade processing times for
existing functions to an unacceptable level?

Yes-O; Perhaps-1; No-2; Not applicable-2

Are ar,^ system components currently operating at their absolute
Capacity?	 e.g.	 is a DASD file currently limited by the capacity of
the disk?
Yes-O; One-l; More than one-2; Not applicable-2

Have constants containing system parameters been indicated symbol-
ically rather than explicitly?

Seldom-O; Usually-l; Always-2; Not appl=icable-^

Has room for expansion been provided in arrays, tables, and
data sets?

Seldom-O; Usually- 1; Always-2; Not applicable-2

d
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Similarly, efficiency conflicts with several of the other quality

attributes. For exa^!^le, modularity contributes to modifiability but it

^; comes at some cost both in terms of space and time.

^:
'	 For purposes of this discussion, efficiency has four sub-attributes.

Execution Speed relates to the utilization of coding practices which

result in fast running codes.

Core Etilization relates to the utilization of coding practices which

result in very compact code.

File 1tilization relates to the organization and utilization of files

and their effect on processing time and trial space.

Overall Processing Organization relates to major design decisions

usually made early in the system design effort which impacts program

efficiency.

3.2.3.1 Execution speed enhancements which can be affected by coding

.:	 practices are, for the most part, language dependent. In this discussion,

emphasis will be on FORTRAN coding conventions which enhance execution speed,

although many of them are equally applicable to other languages,

The most critical statements relative to execution speed are input-output

statements. Execution can be greatly speeded up by minimizing the number

of READs or WRITES in a program, minimizing the number of items in I/O lists,

or using unformatted files for temporary files.

The next critical aspect is probably subroutine calls. Execution speed

can be facilitated by minimizing the number of calls and by minimizing the

number of common blocks that are used in the program.
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In addition, a number of very simple practices can be followed with

good results. A conscious efi•ort should be made to minimize the type con-

versions required in computation. For example, the execution time of the

loop:

DO 1 I=1,1000

l X(I}=?

can be greatly reduced by re -writing it as:

Y=1.0

DO 1=I,i000

X(I}=Y

7 Y-Y-^1.0

5imilar1y, a conscious effort should be made to utilize the data types with

the fastest execution speeds (e.g., INTEGER instead of REAL) and to utilize

the operatives which will execute faster when a choice is available (e.g.,

use X+X instead of 2^ 'X}, Some reductions in speed can be effected by judicious

nesting. For example, the loop (a) below:

DO l I =l ,100	 DO 1 K=1, 3

DO 2 J=1,30	 DO 2 d=1,30

DO 3 K=1 , 3	 DO 3 I =1,100

(a)	 (^)

3 CONTINUE	 3 CONTINUE

2 GONTINUE	 2 CONTINUE

1 CONTINUE	 1 CONTINUE

50
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will incur more than 5D^ more overhead in the looping mechanism than loop

	

#a	 (b) which is equivalent for most purposes.

	

^-	 In some compilers, significant reductions in execution speed can be

	

^"	 achieved by paying attention to the way expressions are written or the

number of times they require evaluation. Subscripts can be evaluated much

more quickly if written in one of the "preferred" forms. The loop (a} is
d-

	,A	 much less efficient in terms of execution time than (b}.

DOI I = 1,123	 YW(Z^-T}/F

(a}	 1 X=(Z+T}/F+1	 (b}	 DO 1 I=1,123

1 X=Y^-I

There are numerous similar things that can be done. As indicated

previously, there are some trade--offs between speed and space and between

speed and some of the other quality attributes. Although a programmer may

not desire to optimize all of a program, he should seriously consider

optimizing those portions of his program that are used repeatedly.

3.2.3.2 Core utilization may or may not be an important quality factor,

depending upon the facilities available and the charging algorithm. Unless

there is some cost differential based on core used or unless the amount of

main storage is a limiting factor, there is little incentive for minimizing its

utilization. Indicators of the attention which has been given to minimizing

care use include the following.

Dramatic decreases in storage requirements can be achieved by properly

segmenting the program so that all of it does not need to reside in core
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Program

Attribute	 Efifiiciency	 Sub-Attribute	 Execution Speed

0 1 ^ 3 4
Are the number of i/0 statements minimized? e.g. where possible,
have multiple REAO's been combined?

Always-2; Sometimes-1; No-0; Not applicable-2

Has an attempt been made to minimize the number of items on I/O
lists?

Always-2; Sometimes-l; iJo-0; Not applicable-2

Wave frequently executed routines been optimized?

Always-4; Sometimesw^; No-0; Not applicable-^

Are expressions written in such a way as to minimize the number of
data-type conversions?

Always-4; Sometimes-2; No-0; Not applicable-4

Are the data types with the "fastest" execution speeds used? (e.g.
integer instead of real}

Always-2; Sometimes-l; No-0; Not applicable-2

4lhen possible, are loops nested in such a way as to minimize the
execution Frequencies?

Always-4; Sometimes-2; No-0; Nnt applicable-4

Has the number of COMMON Blocks used been minimized?

Yes-^l; No -0; Not applicable-1

Have the number of execution-time evaluations of expressions been
minimized?

Al^^ays-4; Sometimes-2; No-0; Not applicable--4

Are "preferred" subscripts used?

Always-2; Sometimes-1; Rarely-0; Not applicable-2

Has an attempt been made to minimize the number of subroutine
CAE.L ` s?

Yes-^; Same-2; No-0; Not applicable-4

^3
''

i
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simultaneously. In addition, when possible, EQUIVALENCE statements should

be used to overlay arrays,
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Because format processing is expensive in both time and space, the

same format statement should be used for two or more I(0 operations when-

ever passible. Similarly, data type conversions should be consistent with

the accuracy of the variables being used.

Finally, external subroutine calls are expensive and should be

minimized. On the other hand, many compilers will expand intrinsic functions

{e.g. SORT} for execution speed efficiency. Rs a result, there may be many

copies of these subroutines in the abject code. The expansion can be inhibited

by declaring these functions as EXTERNAL.

3.2.3.3 File Utilization is an area in which one can do a great deal

to increase the efficiency of a program.

The organization of files is critical, and care ^^nust be used to make

the organization appropriate to the utilization. Sequential files that are

subsequently sorted should 6e ordered in such a way as to minimize the number

of sorts required. r^
,:

Oata elements on files should be formatted as to make their subsequent 	 ^''
;,

use and storage most efficient. Temporary FORTRAN filar should be unformatted.	 ''
^,.

Numeric data items should usually be in binary or punched decimal form. 	 '^
17

j

	

'	 The extent of buffering should be consistent with the utilization of
,,̂,

files and criticality of time or space.	 ^:;
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Program	 Subje,-t^	 ._...

Attribute	 efficiency	 Sub_Attribute	 Core Utilizat^,gg	 _
D l 2 3 ^

Have ^QllIVAL^NCE statements been used to overlay arrays when
possible?

Always-^; Sometimes-2; No-0; Not applicable-4

Has the program been segmented in such a way as to minimize core
requirements?

Yes-2; No-0; Not applicable-2

Are intrinsic functions ar^d subroutines declared as EXTERNAL?

Yes-1; No-0; Not applicable-1

Has the number of conversions required among data types been
minimized?
Always-4; Sometimes-2; Seldom-0; Not applicable-^

Has an effort been made to minimize the number of different formats
used? {Use the same format for two or mare I/O operations where
passible? }

Are the data types and lengths consistent with the accuracy of the
vari ab1 es being operated o•^?
Usually not-0; Usually-1; rlways-2; Not applicable-2
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Program	 Subject#

Attribute	 Efficiency	 Sub-Attribute	 Utiiizatinn o^ ^^1^^

0	 1	 2	 :i	 4
Are data sets physically located on separate devices so as to
minimize head pos i ti ors i ng?

Always-4; Sometimes-2; No-O; Not applicable-4

Are sequential files ordered ire such a way as to minimize the sorts
necessary for their utilization?

Always-^; Sometimes-2; No-0; Not applicable-4

P,^^e files created by FORTRAN programs as temporary files unformatted?

Always-^4; 5ometimes-2; No-O; Not applicable-4

Are data items stored in an appropriately compressed format?

Always-2; 5ometimes-1; No-Q; Not applicable-2

Are hea^,ily-used randomly-accessed files stared in direct or relative
files?

Always-2; Sometimes-1; No-0

Are large buffers provided for heavily used files?

Always^2; Sometimes-l; No-O; Not applicable-2

Are these files which are used sequentially organized sequentially
instead of randomly?

No-O; Usually-1; Always-2; h(ot applicable -2

,,
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,^	 { , 3.2.3.4 Over-Al7 Processing Organization includes the major design

	

^,	 decisions made early in the system development process. Some indicators

	

-	 of efficiency in the over-a71 processing include the following.

The language chosen should be appropriate to the application, and an

	

°- §.^	 optimizing compiler should be used if at all possible.

1'he program itself should be organized in such away as to minimize

processing, for example by preparing similar reports simultaneously where

	

--	 possible. There programs have multiple functions, the program should

	

t	
include adequate parameterization so that all aspects of a program not be

used if they are not needed.

1'he over-ail organization should include provision for unsuccessful

runs. Where appropriate, checkpoint/restart facilities should be used.

Long--running programs should be organized in such a way that if a run is

to be unsuccessful, this fact will be determined early.

3.2.4 Useability

Useability, as a quality attribute, is a measurr^ of the facility with

which the system can be used. 1'he importance of this attribute is highly

dependent upon the use to which the software system is to be put and the

composition of the user community.

p rograms that are used only a single time may be designed in such a

way that inputs and ou^pu^.s are convenient for programming purposes rather

than for the user. Input devices are not critical nor are data collection



Rttrib^te	 Efficienc	 Sub-Attribute _pv_r- all Arncpssi_ g^^n; ^a^^nn

0 1 2 3 ^

}has an optimizing compiler been used?

Yes-4; No-0; Not applicable-4

is the program organized in such a way that if a run is to be
unsuccessful, this fact viii be determined "early"?

No-Q; Usually-1; Always-2; Not applicable-2

oes the system provide for parameterization so that only processing
required far desired output is required, and all asper_ts of program
need not be used every time?
No-0; Fn some cases-l; Yes-2; Not applicable-2

llhere possible, have similar reports been produced simultaneously
rather than in separate steps?

No-0; Usuai'!y-1; Always-2; Nat applicable-2

Is the language appropriate to the application?

No-0; Appropriate but not optimal-2; Yes-4; Not applicable-4
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On the other hand, the design of a program that is to be used over an

extended pe riod of time by a large user community must devote a great deal of

care to making input procedures straightforward and the output easily inter--

pretable.

For	 ems that are heavily used by a relatively small user community,

(e.g. a bank teller system) the emphasis is more on convenience and ease of

use than on the formatting of the input ar output.

Useability has three sub-attributes. The first is device useability

which relates to the physical ease with which users can interface with the

system. The second is output utility which is essentially a measure of the

conveniencQ and usefulness of the system's output. The third sub-attribute

is process simplicity. Process simplicity is a measure of the complexity,

and thus the likelihood of error involved in utilizing the system.

3.2.4.1 Device Useabili^. Software systems may use a single device

(e. g., a terminal which serves as both an input and output device} or a

broad range of devices (e.g., card punches, readers, micrafiilm, copiers, etc.).

The useability of these devices is largely a function of the user's familiar-

ity with the device, the reliability r,fi thr^ device, and the appropriateness of

the device to the application.

Devices that are generally available and used far a broad variety of

applications are usually more familiar and less likely to ue incorrectly used,

'^	 In addition, common, generally--used devices are more likely to be available.

^	 reliability affects useability in many ways, including the restriction of

^^
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The complexity involved in using various system devices varies widely.

-	 ^-:	 In many cases, very general purpose devices are used which are extremely
^^

flexible but which involve, at the same time, a rather complicated user
i'

'

	

	 3',
x;

	

` ^=	 interface, On the other hand, less general devices are usually more appro-

	

^?	 priate for a specific application.

^,
One measure of the complexity of a device is the training time required

I

to effectively use it. It is important to separate the training time
i

associated with the program. Training time can be affected by two factors.
i
I^.

	t:	 Une is the documentation that is available for providing instructions. The

	

E;	 second is the other use to which a particular device is put. For example,

	

^^	 a keypunch might be a rather complicated device, but since it is so generally

used, it is well understood and poses no complexity problems.

In some cases, devices lack the physical capabilities necessary to

prope rly support the system. This usually occurs in two areas, both of which

result from faulty systems analysis. The first area is one in which the

device simply lacks the capability ^co support the system --- usually because

it cannot operate fast enough.

The second area is one in whici^ a device has the nominal characteristics

desired but lacks sufficient reliability to adequately supaart the system.

3.2.4.2 Out ut Utilit	 Output utility is primarily a result of the

systems analysis effort rather than the programming effort, but it greatly

a.ff^^—useabi 1 i ty of the program.

One-time programs and programs used by a small number of persons do

not have a heavy requirement for output formatting, but mast others do.
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Program

Attribute	 Useabi'ity

Subject#

S^Jb-Attri Bute	 Device Useabi 1 i ty

-^;.

^^,,

`,
^::1

,!

^' ^

^.r
^,̂,

^a

0 1	 2 ^	 4

Are the devices used by the system generally available or are they
used only for this system?

Only this system-0; Generally available- 2; Not applicable -2

Are the data rate capacities of the devices consistent with the data
r=a ^°^ going through them?

No-O; Usually-i; Yes-^; Not applicable-2

Do the users use th P.s e dev i ►.e	 1` or other applications, or i s thi s
the only one?

Only nne-0; Other applications -l; Not applicable-1

Are instructions for using system devices included in the dacumen--
tation?	 or otherwise available?

Na-0; Minimal-l; Yes-2; Not applicable-2

:^ '
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Indeed, under certain circumstances, output formatting may require as much

^,
	 programming as the remainder of processing. Output should be generated in

a form in which it can be used directly without further typing, graphing,

^-	 extracting, etc. It should be properly labeled (with units) in such a way

--	 that the output is interpretable without referring to the documentation.

-'	 Data elements on specific reports should be ordered in such a way as to

make the reports easily useable. In general, exception reporting should
9

be done. This is far better than using the machine to generate all possible

,.	 information and then manually extracting that which is of interest.

The physical conditions under which reports are produced are important.

Output must be timely to be useful. They must be produced in sufficient

numbers so as to make them available to all people who need them. Output
;.

should be produced on an appropriate medium. Teletype, CRT's, graphics

terminals, and CONE devices are ail appropriate devices under the proper

--	 conditions.

3.2.4.3 Process Simplicity.	 Process simplicity refers to the

•^	 simplicity of the process through which a user must go in order to utilize

a software product. Tt may be very simple (e.g., select from one of

three prepared data cards, run program, read output} or very complicated

(e. g., prepare input u •° Tng a number of complex coding rules, punch cards,

translate to paper tape, validate tape, set up 'a7 otter, etc.).

One measure of the complexity iJf the using process is the number of

persons involved in producing the output. In general, the more persons

involved, the Tess likely it is that the task can be done correctly.

1^
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Program

Attribute	 Useabi li ty

Subject#

Sub_Attribute	 Output Utility

0 ^ 2 3 4

^' l

;^

Has the output been produced in a manner so as to make it interpret-
able without a great deal of training?	 e.g. have columns been labeled
units indicated, headings provided, pages numbered, etc.
Se1dan-O; Sometimes-1; Always-2; Not applicableW2

Is	 the output in final farm, ar must it be subjecte^' to additional
processing before it can be used? e.g. graphed, re--^yped, etc.

Seldom-O; Same^imes-1; Always-2; Not Applicable-2

Is the output produced on a sufficiently timely basis to be useable?

No-O; Somewhat-1; Yes-2; Not applicable-2

Is the output medium appropriate for its utilization?

Na-O; Yes-1; Not Applicable-1

Are the outputs produced in sufficient numbers to be distributed to
all persons who need them?

No-O; Yes-l; Nat Applicable-1

Are the elements in the output reports ordered in the manner which
makes the reports most easily used?

No -O; Yes-l; Not applicable-1

Are "exceptional 	 conditions" indicated ar are only exceptional
conditions reported (is exception reporting used?)

Na-O; Sometimes-l; Always-2; Nat applicable-2

?L.,::	 .:
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Subject#	 ^ ,
Attribute	 Useability
	

Sub-Rttribute	 Process Simplicity

CI 1	 7 3 4

Hvw many different peapie are involved in preparing the input?

One-4; Twa tc^ Four-2; Over four-4; Not applicable-4

What percenwage of the input is prepared from "scratch" as apposed
to being machine generated?

lOOq-O; 50--89%-l; Less than 54%-2; Nat applicable-2

Characterize the data coding required.

Minimal-4; Slightly difficult-2; extremely difficult-O; N/A-4

goes the input process include checks tv insure the validity of the
input?

None-0; Some-i; Always-Z; Nat applicable-2

In the event of input errors, does the program print appropriate
diagnostic messages?

No-4; Some-l; Always-2; Not appli^able-2

^^
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^^^	 In many cases, the input process can be significantly simplified by

¢.	
computer--prepared input with manually generated input for exceptional

qe

cases.

Efforts should be made to simplify data coding requirements as mucha::

as possible and to include validation checks to insure the validity of input.

-0m	 Crossfooting, checkruns, and hash totals are some common checks.

"	 The useability of a software system can also be enhanced by including

^u
diag^ius^ic messages with suggested fixes when erroneous data are encountered.

4

°`	 3.2.5 :.software Reliability. While mathematical models for reliability

have been in use for same time the application of mathematical models to

software relia^,ility appears to be a recent development. The models presented

in the literature are generally adaptations of familiar reliability models

with the parameters functions of such things as debug time, number of

"	 instruct^,:ns, etc.

The study of software reliability models may serve two purposes. One

purpose is to determine which characteristics of the software package,

.	 programming practices, etc. have an effect on software reliability. The

results of this study would be useful to the project manager in planning

`	 software development. A second purpose of software reliability models
,^

would be for the prediction of the reliability of a software package. This .^I

prediction could serve as a criteria for acceptance of a software package. 	 ``-3
,., 3

3.2.5.1 definitions of Software Reliability. A generally accepted	
^-""^

definition of reliability is the "probability of performing without failure

^-
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a specified function under given conditions far a specified period of time"

.^ F ^

	

	 (Gryna, et al. [19b0]). Note that this definition is in terms of a probability

and requires a definition of successful performance, operating environment

aF

	

	 and required operating time. In order to extend this definition to software

reliability, we must define what we mean by the successful performance of

mfi
a software pac^Cage and the conditions under which it is to operate. The

concept of a time period for which it is to operate can be thought of in

terms of such things as operating time or number of unique input sets.

..	 Dickson, et al. [i972] define software reliability as "the probability

that a given software program operates for some time period, without a soft-
.	 ^

`^	 ware error, an the machine far which it was designed given that it is used

within design limits." They consider a model which expresses software

reliability as a function of debugging time and the error detection rate.

Muiock [1971] defines software reliability as "the probability that

we have na system failures attr^5utable to software." 5chneidewind [19721

defines software errors ar troubles as "any logical or clerical error made

by the programmer in creating or coding an algorithm which causes the

t-	 algorithm to produce an incorrect result when the algorithm is presented

with a correct input." With this definition, compilation errors and errors

w^
	 caused by the operating system are excluded. He then defines software

reliability to be "the probability that a program will operate without a

single occurrence of a specified severity of trouble, or worse, for a

specified length of time t, and with a specified input load." Nate that

^:^^	
this definition is in terms of the severity of the trouble and there may be
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W.H. MacWilliams [I973] talks about three levels of definitions for

software reliability. Fiis top level definition is very similar to the

Y`
classic definition of reliability and is not specific to software reliability.

Ile states that, unlike hardware, "the continuing fidelity to an accepted

design does not exist as a significant software problem" This is because,

.^	 in general, software does change with time. We says that software failures

are usually a result of changing input sets so that his intermediate-level

:^	 ^,de •Finitian 7s the probability that the requirements capability continues

..
to be met during a stated interval and under stated conditions representative

of operational use."

One theme runs throughout these definitions. The reliability is restricted

to use of the software under specified conditions. This would seem to imply

"'	 that any statement about the reliability of a particular software package

P^	
must contain a statement as to the conditions under which it is to operate

s

and the use for which i^ is intended.

^^

3.2.5.2 Overview of ReIiabilit Models.

^^
'	 3.2.5.2.1 General Reliability Model s - Before discussing the models

far software reliability presented in the literature a brief discussion of
4^^

general reliability theory will be helpful. Further discussion may be

^^, found in several texts (e.g. Bazovsky [1963], Lloyd and Lipow [1964],

Shooman [1968]).

The most common definition of reliability of a device is that it is

the probability that the device wi11 operate without failure for time t,

66	 '
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denoted by R(t). If we let F (t} denote the probability that the failure

occurs at a time less than or equal to t then

The function F(t} is known as the cumulative density function and in most

cases is a continuous function of t. Thus the reliability can be found

by specifying the probability density function, f{t) = F'(t), or the

cumulative density function for the time to failure.

Rather than specifying either f{t) or F(T) one can specify the

hazard function, or instantaneous failure rate, h{t), which is defined as

the limit as Qt -^ a of the probability that the device will fail in the

interval (t, t + ot) given that it has survived to t, divided by at.

Thus, if the random failure time is denoted by T

h(t) = iim Pr{t<Ts.t-^ot?
ot^-0	 of Pr{T>t}

= 1im R tfat R t

Ot}0	 ^t R t

R ^ -dart	 - ^ ^

	
(2)
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`^	 Suppose that a failure cannot occur before time Y (usua1ly Y^ 0).
a

Then, integrating both sides of equation (2) from Y to t we have

rY h(x)dx = rY fRxXdx
	

In R( Y ) - In R(t)

or

R(t) = R(Y} exp{- fY h(x)dx}	 (3)

Since R( Y ) = 1, we obtain the general reliability equation

R(t) = exp{- f ^ h(x)dx}	 (4)

which relates the reliability and the hazard function. Hence, one may

either use a model for F(t) and consequently ^(t) or a model -for h(t).

There are three broad classes of hazard functions commonly used in

reliability work. For a decreasing failure rate, h(t) is a decreasing

function of t. This is the model for what is frequently referred to as

the "infant mortality" stage. guying this period the prr^bability of a

device failing in the next ^t time units decreases as the item survives

longer. For hardware reliability this is the period where pcor worKmanship

and slopp,} assembly are causing failures. As time increases without

failure there is less chance of one of these causes still being present.

For software this type of hazard function might be appropriate at the

initial stages of development where, as errors are found and corrected,

fewer errors remain and so the chance of failure is reduced.

s^e

°:;";
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"`	 A constant failure rate results when the hazard function is a constant

	

=^	 and doesn't depend Un the age t. The model leads to the negative exponential
#;
;:

`	 distribution for failure time. The constant failure rate model is commonly

used with electronic hardware.

^r
When h{t) is an increasing functian of t, that is, we have an increasing

	

°^	 failure rate, we are concerned with what is frequently called the "wear out"

stage. For this hazard functian, the longer the device survives the higher

the conditional probability that it will fail in the next of time units.

The increasing failure rate is used for hardware reliability for failures

caused by wear of equipment, etc. For software models it might be appropriate

	

•-	 if so few errors remain that the correction of one adds several new ones. It

might also be appropriate if the reliability is a function of number of unique

data sets (t = number of data sets) and as mare data sets are successfully

processed the probability of encountering one which will cause failure is

increased. Also, reliability may not be a function of time but merely the

	

--	 probability of successful performance fora go, no-go system.

From the above it can be seen that we may build a model far software

	

^^	 reliability by considering the probability of failure prior 'to t or by

considering the hazard function. While t is usually a continuous variable

called time, it may also be the number of times an algorithm is called, the

	

>^	 number of data sets processed, ar any of a number of measures.

In addition to a model for reliability one is usually interested in such

	

,.	
things as the mean time to failure and variance of the failure time. For

discussion of these and haw they may be found from F(t^ reference is made

to any beginning or intermediate mathematical statistics text {e.g. Freund

	

3-.	 X7971], Noel [i965^, Larsen ^1969^^.
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^"	 3.2.5.2.2 Software Reliability Models. One approach to determining

^,	 a ;nodel for software reliability would be to adapt a we11-known probability
density function to software failures. The assumption that times between

#-

r,	 recurrence of one particular uncorrected software failure is a random

variable vrith constant mean leads to the exponential distribution for the
i

i -	 time to failure and the Poisson distribution for number of failures in a

given time period. Mulock X1971] suggests the Oamma di^t^-^ibutian to

describe the means which characterize the different failures. He also

states that if the failures are independent the negative binomial distribu-

tian may be used to describe the effect of the failures on the software

• ^	 system.

Mac Williams [19731 presents t^ao models far software reliability,

one a function of the input space and the other a function of test results.

The input model assumes that an error occurrence depends on the input. Let

N be the number of unique points in the input space and p i be the probability

that the i-th input point occurs. If e i ^ i when the i-th input paint

results in error-free performance and e i = O when the i-th input paint results

in an error, the software system reliability is given by

1

	

R1 - ^ ^ p i e i	 (5)
i

Since mast sample spaces are extremely large it is impossible to

describe the performance for each. However, estimates of software reliability

could be found by sampling the input. space. It would seem that the divisor

N is incorrect since E p. = 1 by definition and if all points result in error 	 ^^
i	 i

free performance equation t5) gives R l = N while the correct value should be

R 1 = 1.
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The second model given by MacWilliams ^1973^ uses the results of M

unique test cases to estimate software reliability. For test i let n i be

the number of errors found, w i (n i } be a weighting factor for the seriousness

of the errors observed, and E i (n i ) be a decreasing non-negative function such

that E i (^) = 1. Then, software reliability is given by

RZ = M E Ei(ni}wi(ni)
i

If we consider a test involving every point of the input space (M = 1^) and

let

1^ni=^^
E i {n i ) _

Dni>0,

then, when all points giving error free performance,

R2 = ^ ^wi(g)

and, using the corrected form of Rl,

R l = i

Since the two should agree it ^aould seem that Rz should be divided by

^ wi (n i ) rather than M. This would be in keeping with the usual practice

with v^!eighted averages. Here E i { n i ) is an estimate of the reliability for

a given test case and errors and w i (n i ) is a weight given this reliability.

Hence, the modified re 1 ^ °'^^ , ; ^-,^ mnao, r 1,.,.•.,^„e

{b)



^	 ^	 ^	 ^

d	 ^

R 1 = ^ p i e i ,
	

{5'}

R = ^E i (n i }w i (n i )	 (^^)2	 Lwl(nl}

Expressions for software reliability obtained by modeling the hazard

function have been given by Dickson, et al. [i972^, Shooman X1972], X1973],

and Jelinski and Moranda [19 72^. The first three papers essentially

describe the same model. The model presented by Dickson, et ai. ^1972^,

[19731 and Shooman [1972], [1973] assumes that the number of errors in the

program at the start, E, is a constant and decreases directly as the errors

are corrected. Also, the number of machine language instructions, i, is

assumed constant. Let T denote the debugging time since the start of system

integration and ^(T) be the error detection rate per instruction as a function

of time. The cumulative error function, as a ratio of the number of instruc-

tions is given by

E{Y) = t^ p{X) dx	 (7)

and the residual errors, as a proportion of number of instructions is

Erom this model for the number of errors in the system the hazard

function is developed. It is hypothesized that the failure rate for system

operating time, t, is proportional to the number of residual errors, i.e.

h{t} = C ^r{^}
	

(9)
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which is a const?nl ..icn res ect to t.	 This leads top the familiar ex anenti	 `Fp	 al

^^
reliability function

,t;:.
^`
^.
a.'

R{t)	 = expo-C ^	 (T)t}
^'.q^

r ^.
bn
"t.i:

1

{f',

}.

with the hazard function a function of T but not -^.
j Y.

In order to use the

model we need to specify E(^r)	 {or	 a(T)) and C.

rr:

^^ dicksan, et al.	 X1972] give two passible models for ^(T).	 One uses a

constant error correction rate up to time T O and zero error correction rate

thereafter,

,<	l'^

a(T)	 = (i0}

r'k:

^ ^ { ^

4'

+!

b.^ s-

^.i

..A

This gives the reliability function ';
^i

^^ R(t) ^ exp{ - ^	 - ^O TO Ct}	 t >	 0	

,^.

(li)

^ ^ince the exponent must be negative and not equal 	 to
-

zero we have the

^^^ restraint _

C	 aQT^=	
I

(12)	
^:

Y^

'^
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Another model is a triangular model with a{ T } an increasing function

•	 in the interval CO, Tla and decreasing in the interval CT 1 , T 2]. l•he error

^^	 correction ^^ate is expressed by

--	
pT

_

	

	 T 1	 ^	 a ^ T ^ ^ 1	 ^	 (13 }A(T)

p(Tz-T)
' T 1 < T ^ T^

T2-tl

Shooman [1972] suggests that the constant C in the model given above

can be broken into the produ^t of K and r where
P

number of catastrophic errors detected

K	 total number of errors detected

and

r = number of unique instructions processe d per unit
p	 time period processing rate}

-	 Other models given by Shooman C1972^ include one which postulates that the

number of errors corrected per time period is proportional to the number

of errors present, leading to an exponent •^a.l model for the error detection

rate

where A is a constant. He also presents a model in which thy: error 	 '=;>;

detection rate is modified far varying manpower. 	 _

A model with anon-constant hazard function is given by Jelinsxi 	 '.

Ci

amd l^oranda 01972]. l-hey argue that the hazar^.1 rate is proportional to 	 ^^',

the number of remaining errors so that 	 ^j
^f
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h{t) _ ^[N - (i - l}^ ^ ti-i < t < t i 	{i5}

^^

	^^	 where N is the total number of errors originally, ^ is a properly chosen

constant and ti is tree time of the iwth error detection.
FF t}

Schick and ^iolverton ^l9 T2] modify the model given by ^]eiinski and

^_:
Hloranda so that the hazard rate increases as a function of time

h{t) _ ^^N - { i - l)^t, ti-1 < t < t i	 {16)

	°"	 They argue that operation is a succession of different trials which

gradually closes in on the remaining errors ana corresponds to sampling

without replacement.

3.2.5.2.3	 Summar .

A number of different models for software reliability have been

presented. Some models have the simplicity of a constant hazard function

	

•-	 which lends them to many statistic:: procedures. The parameters of the

models need to be evaluated in terms of their sensitivity to such things

as software size, type, and other variables of software development.

3.2.5.3 R ^9ode1 for Estimatin g Program Completion Level

Shooman`s ^!odel and its subsequent variants are based upon historical ', s

data, principally the rate at which errors are discovered, and basically 	 ^'

	

_	 models of haw "checked out" a program is. These models make na attempt to 	 ^' j

'^ ^
differentiate among various types of errors which occur, and they are 	 '^

designed to function at the end of the program development cycle. 	 `?

,,,u
On the other hand, the types of errors .^r^ich occur as a saftHare

	

-	 ^	 ^;^^
development project proceeds vary over time. For example, in early checkout

'^'
-;
-,
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^-

;, runs, syntax errors abound. When the program is 90^ complete, however,

_.	 they should be rare. In early checkout runs the programmer discovers very

°^	 few errors resulting from incorrect understanding of the problem, because

he is still working on syntax errors. Late in the development cycle there

should also be few errors found which result from misunderstanding of the

,.
problem, but these errors will and should be found during the midpoint of

..	 the program development cycle.

^•	 The model discussed in this section is designed to predict completion

level during the whale project development cycle, and it does this by making

use of the different types of errors which occur.

Basically, the model proposed consists c# activi^ies in two phases as shown

-	 in Figure 8. In phase i, empirical data are collected in which the distribution

^-	 of errors in various categories is documented. The output of this phase is

an error characteristic matrix which shows, for some pre-selected set of

'^	 completion levels, the distribution of errors in va rious categories.

Completion level is based an runs completed and is not necessarily related

to time. If it requires 300 runs to produce an operational program, the com-

._	 pletion level is 50% when 150 runs have been made; fi7% after 200 runs, and

so forth.

-

	

	 In phase 2 empirical data collected in phase 1 are used to make com-

pletion level estimates of software development projects which are under

development. Basically, this is done by observing the characteristics of

errors which have occurred, selecting the completion level which exhibited

_.	 error characteristics which followed a pattern most similar to that which was

^-	 observed, and using that completion 1eve1 as an estimator of the completion

f	

,^
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7eve1 of the program. In practice, this algorithm results in a curve

which has the proper general characteristics but which is unduly erratic.

The performance of the model can be improved substantially by smoothing

^^	 these estimates. This has been done in two ways: first, instead of basing

the estimate on a single observation (run) a composite error vector based

on several five in our tests) runs is developed. This error vector

presents a better representation of the error characteristics of a particular

paint in the development cycle. Second, instead of making each estimate

of completion level independent, successive estimates are used to modify

a running estimate of the completion level. Amore formal description

^-	 of the algorithm and an example are presented below.

Phase 1 - 6ata Collection

The first step in the data coilecti,n phase is to decide upon a set

of error categories which are to be used. These categories are somewhat

dependent upon the environment in which the model is to be used. For

example, some types of errors which might be good indicators in a data

management context might never appear in a scientific computing environment.

The error categories need not be independent, although the mare

independence exhibited by the error categories the better. The error

categories should be easily identifiable that is, an error should be

easily classified into one or more categories) and, to the maximum extent

passible, they should exhibit approximately equal frequencies of occurrence

over all completion levels.
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°^	 The next step is the collection of the set of error matrices F 3 . Fach	 -

row of this matrix corresponds to the record of a single test run -- the

first row being the record of the first test run, the second row being the

,,	 record of the second test run, etc. The k-th element of each row is 1 or g

depending upon whether or not an error of category k was observed in that

run. The E^ th matrix has mi rows (test runs) and n columns (error cote-

gories). Atypical error matrix is shown in Figure 9.

f^ext, define a completion level vector, comp, consisting of p*l com-

pleti on levels such that

o = compg < comp l < comp 2 <...< compp = l.a

--	 The output of the data collection phase is an error characteristic

matrix, FC. It has dimensions p rows (completion levels) by n columns

i	 th	 th
(error categories) . If e j i s the j	 row of the i	 error matri x and ec j

is the j th row of the error characteristic matrix, then each row of the

error characteristic matrix, EC, is computed as follows:

ei

erk =	 .i

m^

i

where the sum in the numerator is over all values of i, j such that 	 Ai

j	 `<

compk-1 ` mi	
<- compk

Figure 9 is an example of a typical error matrix, and f=igure l0 is an

example of an error characteristic matrix. 	
';j

;^

,•	 ^
'11
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ERROR

5

CAI^EGORY

6	 7 8 9 10 ll l2

0 0	 l o 0 o a o

l o	 o l o a o 0

0 0	 l 0 0 0 0 0

0 0	 0 0 0 0 o a

o i	 a o a o 0 0

0 0	 1 o a a o l

0 1	 o a o o l o

0 0	 l 0 0 0 l 0

0 l	 0 0 0 0 0 1

0 l	 1 0 0 0 0 i

0 1	 0 0 0 o i a

o a	 1 0 0 0 0 l

0 0	 l 0 0 0 0 1

0 1	 0 0 0 0 0 l

0 l	 0 0 0 0 1 0

l	 2	 3	 4

i	 1	 D	 0	 i

2	 7	 0	 0	 0

3	 0	 0	 0	 i

^.	 1	 0	 0	 l

5	 a	 1	 o	 a

^	 o	 i	 o	 a

7	 0	 0	 0	 0

8	 0	 i	 0	 0

9	 0	 0	 0	 0

10	 0	 1	 0	 0

it	 a	 o	 a	 o

i2	 0	 0	 l	 0

i3	 0	 0	 1	 0

l4	 0	 0	 1	 0

l5	 0	 o	 a	 a

I ,3
!^

Figure 9

Ty^► i cal Error Matri x
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ERROR CATEGORY

`3
4	 d

a

^^

j

1 2 3 4 5 6 '^^^

. l .83 .84 .l 4 .02 .02 .02
:;

,. .2 .72 .84 .l6 .04 .02 .02

.3 .6^ .7T .l3 .04 .02 .]7

^ .4 .40 .fig .22 .39 .02 .3fi
7

3
°;

^ .5 .l3 .63 .l9 .57 .02 .l7 :.
.fi .06 .42 .l8 .fi3 .02 .050
.7 .02 .4+ .l0 .4l .02 .04

o .8 .02 .l3 .02 .22 .02 .03
U

.9 .oz .02 .al .05 .3l .02

l.a .02 .a2 .Ol .Ol .4s .02

Figure 10

Typical Errar Characteristic Matrix
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••	 phase 2 Completion Status estimates

'	 The inputs to phase 2 are the result of error categorizations from a

sequence of test runs and the error characteristic matrix developed in

phase 7. The output is a sequence of status estimates, M j , where M j is

the status estimate after the j-th test run. The algorithm consists of

.	 the following seven steps:

1} Set j to 1 and Ma to 0.

2) Collect data Pram the j -th test run. Classify the errors,
generating an error vector v a . If j is less than 5, add 1
to j and go to step 2; otherwise go to stew 3.

3) Calculate a vector

Vq
S=

'	 q=j-4,j

^) Calculate a response vector, r with elements r l , r^...rn by

calculating

r = S*EC

where "^" indicates that the elements of rare to be calculated

by correlating the vector s with the corresponding columns of

EC.

5} Determine the i far which r i is a maximum.



r	 ^	 i	 ^	 ^	 <

i	 a	 ^	 !	 t
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Experiments with the N1ade1 - In an effort to validate the model, a

^,	 simulation experiment was conducted. This experiment was not sufficiently

extensive to do much more than indicate that the model may have some

^-	 validity and merits further investigation. The model requires a good deal

of error data that simply is not available. however, there is no theoretical

reason why it could not be collected and made available.

The first experiment that was conducted was simply an effort tv

validate the mathematics of the model. The question to be tested was,

given an error characteristic matrix of sufficient diversity and an error

history in which errors occur as indicated in that error characteristic

matrix, would the model predict completion levels consistent with the

actual completion levels?

An error characteristic matrix was postulated. This error characteris-

tic matrix is shown in Figure li. Then, random error occurrences were

generated from that error characteristic matrix for development projects

of different lengths. Far example, a development project of length 300

runs was used.

For runs 1 through 30 the first raw of ^he error characteristic

matrix was used to generate the error recorc'^; for runs 31 through 60 the

second row was used, etc. For runs 1 through 31 ;:^ ^,ategory 1 error

{language error) was generated with probability .78; a category 2 error

(problem analysis) with probability .05; etc.

These runs were then fed back into phase II of the model and used

to estimate completion levels. A perfect model would exhibit a straight

Tine passing through the origin with slope=l when completion level is

1
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plotted against run number/total runs in pro,^ect. As indicated in Figure 72,

the model performed very much as expected.

As indicated previously, this exercise merely checks the mathematics

of the model and does little to answer the primary question on which the

model is based, namely, "do programs from a given environment exhihit a

uniformity in the distribution of errors and is this uniformity sufficient

to enabie one to predict completion levels based on these errors?"

3.2.5.E A Reliabiiit ^Eode1 an Which to Base Acce tance Testin

NASA, like other State and Federal Government Agencies and many large

corporations, acquires mast of its computer software from contractors

outside their sphere of direct control. Although the contracting agency

develops the specifications for a software product, it cannot, because of

legal and practical considerations, monitor the development process, so

it is faced with the task of making an assessment of the product after its

completion.

A statistical toot is needed which will enabie a manager to make, on

the basis of a relatively small number of tests, a judgment as to the ove r-

ail reliability of the system and provide some confidence limits along

with that assessment. It is clear that in all but the most trivial cases,

exhaustive testing is not possible. In addition, because of the cost in

time and other resources involved in testing, it is absolutely imperative

that statistical models be developed so that management can determine the

reliability they can guarar±ee with a given amount of testing.

Consider the fallowing characterization of the problem. A computer

program can be thought of as a proc^:ssor with a single multi-dimensional

85
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input and a single multi-dimensional output.

Inputs ^	 Computer	 _	 Outputs ^
Prngram

As an example, an inventory program might have the following inputs:

Parameter	 Allowable Values

Transaction Type:	 RECeipt, D3Sbursement, MOGification

Part Number:	 A 5-dic,^it number

Source:	 One of 200 different suppliers

Number:	 A 3-digit number

Each input then consists of a four-dimensional vector, e.g. (REG, 63921,

JO1dES SUPPLY, 003},

Ai though there may be a very large number of these different inputs,

the number of paths through the program is usually relatively small. This

is due to two reasons. First, soma parameter -value combinations may not

acc.ar so i t is not necessary to have as many di fferent paths as there are

possible inputs. Secondly, many of the possible inputs normally utilize

the same program path. In the above example, all inputs of type REC may

utilize one path through the program, while all :.hose of type DIS may use

another, etc.

The classical definition of system reliability is the prabab^'ity that

a system will operate successfully under stated conditions over a specified

tirr^ interval. Let us consider an analogous definition for software

reliability. We will define the reliability of a program ^^s the probability
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that the program will process K consecutive representative inputs correctly.

Using this definition, we will proceed to define a reliability assessment

procedure.

This procedure is based on the following assumptions:

{1) It is assumed that an analyst can determine if a program has

correctly processed a given input. Phis may not always be the

ease. For example, in situations involving Tong, complex

mathematical calculations, parallel manual calculations may not

be practically possible. Similarly, in situations involving

real-time processing, it may not be possible to "stop" the action

sufficiently to determine what the inputs were to a given program.

(2) It is assumed that an analyst can partition the program

inputs in such a way that each partition defines a path or group

of paths through the program. In the preceding example, the

inputs might be effectively partitioned on the basis of

"Transaction Type."

(3} It is assumed that an analyst can determine the probability

^- is	 of a random input being selected from any given partition. In

the preceding example, it would be necessary to determine the
^.a

relative numbers of receipts, di sbursements, and modi fi cati ons .

^^'	 4) It is assumed that it is ossible to randoml select re resen-
^: t	 p	 y	 p

^	 tative inputs from each partition.

f'.
^.

,.
t

^:
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^; Suppose that the input space is partitioned into Q disjoint partitions.

Denote by p i , i = 1, 2, ..,, Q, the probability that an input selected at

	

_	 ,;

random will come from partition i, where the p i are known. Let R i be the
(;

^_.	 probability that an input randomly selected from input partition i will be
;:

successfully processed, that is, R i is the reliability for partition i.	 ,s
^..

The probability that an input selected at random from the entire input

space will be processed successfully is 	 `'.^

rl

^,'	 R(1) _	 ^	 Pr{input from partition i}Pr{success given i},
^:	 i=l,Q

s

^ ^	 -	 E	 p R.	 (l)
i=1 ,Q ^ ^

which may be estimated by using estimates of the Ri .

^,	 In order to estimate the R i , select ri random inputs from partition i,

i = 1, 2, ..., Q. The number of inputs from each partition should be as

large as possible consistent with the time and resource constraints on the

testing process. Although it will not usually provide an optimum allocation,

	

--	 i
selecting test inputs from various partitions in proportions to the pi

'	 will provide an acceptable test pattern. each input is procPSSed and the

number of correctly processed inputs, fi, for partition i recorded. The
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,^

,^

a^

Because the test inpu±s are selected at randam, if the tests were

repeated the estimates of R i would vary. As a consequence, the estimate

R(1} is no mare than a ►7 estimate and the probability that it is exactly

equal to the true value of R(7} is zero. Wowever, to give abetter answer

we may appeal to the estimation procedure known as confidence intervals.

Basically, the confidence interval, at say the 90% confidence level,

is based on an interval determined using specific procedures such that the

probability of obtaining an interval which contains the true value of the

quantity of interest is 90%. Procedures for confidence intervals, and

specifically for the parameter of a binomial distribution (which the Ri

discussed above is) are contained in most books on statistical methods.

One which will be illustrated 'ater uses the nor;.,al approximation to the

binomial distribution. The lower confidence limit for R i , with level of

confidence C i , is found by use of the binomial distribution and a probability

statement of the form

Pr{Ri ' Rl.i } r Ci
	

(^}

where Rbi is a function of ri , fi , and C i , and is a randam variable. If

repeated sar:;^les of 57 zE ri were taken and Rai calculated, us'^ng (^),

for each sample, a porportian C i of the Rai ^vould be less than t^,e unknown

reliability, R i .

A conservative lower limit for k(1} with confidence level y

(conservative in that the probability of a correct interval is mast likely

greater than y) can be found by asing confidence limits -For the individual

R i . The ar,ument is as follows:

l	 g0
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7. Pr{Ri > Rhi } = Ci implies 
Pr{p i R i ^ p i RLi } = C i	 .

2. p i R^ > p i Rbi , all i, implies Ep i R i
 > ^PiRLi

(but converse not necessarily so).

3. From 2, the evens: A, p i Ri > p i Rbl al i i , i s a subset of the

event B, p i Ri > ^piRLi

4. From 3, the probability of B is greater than or equal to the

probability of R, or

Pr{Ep i Ri > 
Bp i R 1. i } > Pr{Pi Ri > p i Rai' al l i }

or
Pr{R(1) > Ep i RLi } ? ^ C• = Y

7
i = 7 ,Q

since the results far the different partitions are independent.

Hence, a conservative lower confidence limit for R(7) is

^-	 i=1,Q ^ Li

	 (5}

found by using the lower confidence limits for the individual Ri

ane choice for the C i = C = ^1^Q

This procedure gives the following algorithm for estimating the

software reliability.

Si.'eP 7: Partition the input space into Q disjoint partitions.

Betermine the probability of occurrence of an input from each

partition.

Step -2: Select ri representative random inputs from the first

partition, r^ from the second and so forth down through r Q from

^	 91
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Aa

..^
the Q-th partition.

	

ap 	 5^ep 3: Process each input, noticing tha number of inputs which
h

	

,,	 are processed correctly and which are processed incorrectly ir. each
^'

	°^	 partition. Compute f,, the number of successful tests observed when
7

	

` '^	 testing inputs selected from the i-th partition, for each partition.,.
^:w^

i = 1,2, ...,Q.
,l.

	a	 Step 4:_ Select a confidence level, C. Then, for each partition,

,1- compute a lower bound on the probability of successfully completing

	

'' 	̂ a test of a random representative input selected from the populationGu

	^"	 defined by that partition. The lower bound for the i-th partitiona

-	 can be computed by the following formula.

	

^°	
2	

R. 
C 

1-Ri ^ +
Ri ^ Zc	 ^2ri ^ - Zc	 ^ r

	

Z 2 r^ r, 2

	

^^'	 c	 ^

	

^^	 RLi	
2	

i

1 ^- Zc	 r,

;.
^m

7;

	

i'	
= ri	 2fi ^- Zc2 - Zr	 ri	 4fi ( ri _ 

f 
i! + ri Zc2

	

^-

	
2ri	

ri ^ Zc2u i.

where r, is the number of tests performed on inputs from the i-th partition

	

^4	 i

	^p	 and Zc is a standard normal deviate determined from the confidence level

selected.

Step 5: compute the lower bound, R^(1), on the probability that a single

random input from the whole input space will be processed correctly.

This quantity can be calculated by

92
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Step 1: Partition the input space into three subsets by transaction

type. All REC transactions will be in one subset, all DI5 transactions

in a second, etc. ^t is determined that random transactions

,a

^:

a:^^

3°:

^;

^^

R {1} _ ^	 p. R
L	 i^1,Q z	 !.i

S^^'ep 6: Compute the expected probabi 1 i ty that a randem input frc^c;; the

whole input space will be processed correctly. This quantity can be

calculated by

R{1 } =^p R.
i	 i

i =7,R

Step 7: Compute the lower bound on the probability that K consecutive

random inputs from the whole input space will be processed correctly.

This quantity, R^{k}, is simply

'!-:

u F,

_	 ^^,

Rb (K) =	 RL{1) k

Step 8: Compute the expected reliability, R(K) by

R{K} _	
^ {l } k

lP

ua	 1^Iith these calculations completed, we are now in a position to make two
a+^

-	 -^`	 statements concerning the reliability of the program. First, the expected
4'U

^"
reliability of the program is R{K}. Second, we can, at a confidence level

,< .
-^	 C Q Guarantee that the reliability of the program is greater than Rb{K}.

^A

n^ Example:

^^.	 The following example demonstrates the method.

^^	 example presented previously in this section.

it is based an the

w^.

^°

r;

.3 ^

^:	 -`	 S
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wi11 occur with the following relative frequencies

	

TYPE	 PR03ABILITY, Pi

	

REC	 .25

	DIS	 .44

	

MOD	 .31

St_ ep 2: It is determined that fewer than 300 test cases will be run.

Random inputs are selected in the following numbers.

	

TYPE	 NUMBER OF PARTS

	

REC	 72

	

DIS	 120
	MOD	 $O

Tata l	 2 72

Step 3: These inputs are then tested with the fal7a^^^ing results:

TRANSACTION TYPE	 i	 SUCCESSES,f,	 FAILl1Rf=S	 Ri
—	 ^	 —

REC	 1	 70	 2	 .9722
DTS	 2	 120	 0	 1.0
MOD	 3	 i'9	 i	 .9875

T

^	 ^

''

t

j

:^

5t_ ep 4: Ti;w confidence level attached to the reliability estimate

is determined to be ^ _ .90. The lower bounds for the probability

for successfully processing an input from each partition is then

^ 3

determined. For C = .90 ^ W .9655, zc = 7.82.

	

Then RLl =	 _72(140+7.82 2 ) - 1.82	 72^(70)(2)^-1,822(72)]

2(72) (72}1.822)

	

_	 , 971

RL2 = .973

RL3 = .929
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^^

Stems 5: Compute the lower bound on the probabiiity that a singie

input from the whoie input space will be processed correctly

R^(1) = ,25(.9ii) ^- .44(.973) ^- .31(.929)

_ . 9 44
9

r"a

Step 6: Compute the expected probabiiity that a random input from the

whole input space wiii be processed correctly.

R(1) .-	 .25{.9122) -^ .44{1.0) -^ .37(.9$75)

`^>	 - .243 + .440 + .30b1

_ .989
1`:^ -:

^,
SCe^7: Assume that we are interested in a reliability period of

^^	 i0 iransactians. Compute the 'lower bound on the probabiiity of success-

''	 fu11y processing i0 consecutive transactions.

r-	 RC(i0) _ (.944) 10	.561

Step 8: Compute the expected probabiiity of successfuiiy processing

^-
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An alternative approach to finding the lower confidence bound for

R(1} would be to consider the distribution of

R{1} _ ^PiRi

1 = l sQ

Since the R i are in fact independent bionomial random variables the

random variable R(1) has mean	 PiRi	 and variance
i =1 ,Q

U(R{l)) =	 pi
2 R i { 1-R i )

r.
i

i = 1 ,Q

If, at the same time the individual r i are large enough so that the Ri's

are approximately normally distributed the R{1) is a linear function of

normal variables and is also approximately narmaliy distributed. As a

consequence, the lower bound with confidence y is given by

^^^

^t	 ^ Pi^R ( 1 -'^ )
,;	 i	 i

;^
V>	 One difficulty with (8) is the Ri 's under the radical since they are

^'	 unknow,l. l'here are two remedies available. One is to replace them by

^w
the corresponding estimates R ,

l

^_ ^^
^3

s	 . _=
,.	 ;	 -.

^.
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`^'^'	 1

.+.. But this may give difficulty if the R i 's are very near or equal to i.

	

'. ,^^	 The other remedy is to note that since 0 ` R i ` 1, the product Ri{l-Ri)

	

•^.^	 has a maximum value .25 and the largest value of V{R{1}) would occur if

	

^..	 R. ^ .05, all i .	 Efence

	

=' ;	 ^



f	
E

_	 r	 ^	 _	 I f

^''^

j

.ti-
^^:
Li

Y:

L':^

V(R(l)) - 
.252 {.9722) (.0272)

2
.44 {i.0){0.0)

-^	 i 20

where

^.^

i. an d

,_	 ^.
Con s9 der the use of this procedure far finding cower confidence

bounds for the exar^pie presented previously, with Y = .90 .

Using (9}, we obtain

R^{1) _ .989 - l .28	 V(R(i }}

} .312{.9875)(.Ol?5)

80

R^(i) _ .978

:E,_

^b

,.

^^

10

RL (i0) _ (.978)	 _ .798

Using (li}, the corresponding iimits are given by

R^(l} T .989 - .64 ^ '^22 
^^20 ^ ^ •8^2

;^-

^<
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^- Of the procedures far determining a lower confidence bound the first,

	

`.: ^e	 involving the sum of individual confidence bounds is ultra-conservative

^^. and is the least preferred of the three. Since, in general, all the
^:

	^`	 individual Ri 's will be near 1.0 the use of {il) may be too conservative,

however it does have simplicity of calculation and recognizes that even

if Ri = 1.0, the true value of Ri {1-Ri ) may not be zero. A compromise

between using (9) and (ll) may be to assume that R i > R* , say, far all i,

	

^	 and replace the .5 in {11) by 	 R*(1-R*)
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^-

^.^

iR
. ^^

A

q t?

R^

^^,

^,

f>^,

va

N	 # of input parameters

n i	# of possible values for the i-th input parameter

Q	 # of disjoint partitions of input space

r.	 # of random inputs selected from the i-th partition
7

p i	probability that an input to the system will cone from
the i-th partition of the input space

C.	 confidence level attached to reliability estimates,
^	 individual partition

Y	 confidence level attached to reliability estimate,
entire input

R`i	 lower bound on probability of successfully processing a
single input from the i-th partition

Rb (l)	 lower bound on the probability of successfully processing
a single input from the input space

R{1}	 expected probability of successfully processing a single
input fron the input space

Rb {K)	 lower bound and expected probability, respectively, of

R{K)	 processing K consecutive random inputs from the input
space.
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3.2.6 Functional Correctness

	

. ^.^	 Functional correctness is the degree to which a program's capabilities 	 a

coincide with the designer's expectation of what those capabilities should

	

^:.	 be .

	`^	 The degree to which a program is functionally correct depends, in

	

^_,	 -
large measure, on the diligence and skii1 of the program dESigners. In

	

-'	 theory, the program designee^ specifies the algori^hm to be employed, the^:

data checks to be made, and specifies the capability of a proposed soft-

ware product in ::cm? detail. The programming task is then one of trans-

lacing these specifications into code.

^,
In practice, a separation between designer and programmer may not

	

^!	 exist. And, when it does exist, designers typic.aily give programmers a^:^

	pa	 great deal of latitude in the actual implementation of a program. As a

s.

	

-- ^w	 result, many programs suffer from lack of completeness. Some program

features typically expected to be included by designers but not specified
a`^•^

include the fallowing:

	

''	 {l) Frror messages
^^

{2) Checkpoint/Restart capabilities

',	 ^:

	

an	 {3) Positioning of ^:/Q devices

{4} tilalidzty checks on input variables

{5) Range-testing subscripts before they are used.

	

"_	 Clearly, these are but a few in a long list of features which a designer

may expect but may not specify, thereby contributing to a lack of functional

^'	 correctness. Qther similar problems arise due to lack of completeness in

describing possible inputs, procedures for handling erroneous data, etc,

'-
'̂;i

`^^

=:^

4 i	 ^:
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The functional correctness problem of accuracy in computation may

be due to improper algorithm selection or to programming errors in imp7e^

mentation. Algorithm selection, in most cases, is less likely to be the

culprit than are programming errors. Some insidious programming errors which

are likely to cause erroneous results and which are difficult to trace

might include the following,

{7) Overf^ows that occur in special situations

(Z) Ross of precision due to type conversions

{3} Truncation in Intermediate results

{4) Lack of precision in number representat°:on.

Ay^ain, these are but a few in a long list of problems which can contribute

to a lack of accuracy and a subsequent lack, of functional correctness in

a software product. Lack of accuracy is a major problem because many

^^
algorithms used on modern computers cannot be effectively tested by hand

computation.

Functional correctness is measured indirectly in other ways, Proof

of correctness techniques basically test functional correctness although

they normally do not adequately test for accuracy nor do they test for

completeness.

3.2.7 Productivity

A piece of software may be functionally correct, efficiently written,

etc. but still not represent a worthwhile effort if it is not productive.

A program is nonproductive if it is not necessary, is less efficient

than some alternate approach to the problem, or represents an investment

with less return than some alternate investment. 	 ^
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than a manual operation that performs the same function. Or, a digital

control system which would speed assembly line operations might be con-

sidered non-productive if an equivalent expenditure in marketing would

produce a greater profit for the company.

There are three factors which determine whether ar not a piece of

software is considered productive, They are the cost of the piece of

software, its value to the firm, and the availability of alternate market

opportunities.

No attempts have been made to develop a productivity metric because

the productivity determination should be an accounting decision which can

be measured in dollars. In firms with reasonably enlightened managements

this is always the case. In other cases, however,, justification is an an

emotional basis and discussion of metrics is not relevant.

Costs may be broken down into production costs and operation costs.

When software is purchased, production casts are easily identified, although

costs incurred in conversion and interruption of services must still be

calculated. When software is developed in-hawse, costs are much more

difficult to assess. most programmer teams work an multiple projects and

it is difficult to properly allocate time spent. Support facilities that

are used are difficult to allocate. In general, a whole range of indirect

costs must be attributed to the cost of a software development project.

Operation costs are even more difficult to assess because they

typically involve users outside the computer operation. While it may be
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relatively easy to cost out machine time, operators, and so forth, the costs
E.

'^ of people preparing data and using information are virtually impossible

to quantify.	 In addition, the cost of maintenance may easily exceed

^' development casts and these costs are very difficult to predict.

Value determinations are equally difficult to make. 	 In some cases,

depreciated development cost is used as the value of a software system.

^, This is a useful accounting device and may accurately reflect the value

,^ air a system.	 In other cases, however, the cost may grossly underestimate
,{

^^ the value of a software system to the firm. 	 Nfany modern industries are

^` heavily dependent upon information, and to these industries a software
U1

system=s value is only indirectly related to its costs. 	 Examples of

`^^^tl industries of this type include the airlines and the banks, neither of

^. which could exist as we know them today without computer support.
,^:

^=^ A growing trend toward the marketing of application packages has

"^
;^

an impact on value determination.	 If a piece of software is to be
^^

marketed, Its potential sales less marketing casts must be considered in

^°
^^ - the vai ue determination .
^5

} Finally, in most firms, the development of a piece of software is

1"	 ^
^=

a business decision, not unlike the development of a new product or the

^^,	 ^3:
decision to purchase a pi ece of property.	 The decision to embark on a

venture of this type must be based on return on investment, and in that

^. sense, software must compete with other market opportunities for priority.
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related to errors in the development process, this area has also been 	
9

discussed.	 ^	 : a

;' Remarkably little is known about the types of errors and distribution

of these errors in the software development process. This is especiaity
s

unfortunate because this error data are needed to support research in the

area of software rei i obi 7 ity and other qua'I i ty attributes, and error data

are potentially useful as a measurement tool.

A prototype error data collection/management system has been proposed.

-	 -	 This system adds error data to a data base and generates a numuer of reports

of interest to programming personnel and management.

In general, there have been very few attempts to measure safttvare

quality, simply because no adequate models of software quality exist. This

is also unfortunate because software quality metrics are needed to evaluate

productivity, to evaluate alternate software products, and fora variety

of other reasons.

Software quality is a multi-dimensional entity. Any one of these

dimensions can be critical, depending upon the situation. F'or purposes of

this discussion, software quality has six attributes:

Efficiency,	 Useability,	 Reliability,

Modifiability,	 Functional Correctness,	 Productivity.
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t
types of errors which occur. 1'wo new models, one designed to operate at

"`	 an earlier part of the program development cycle and one model which is!^:

,^	 applicable -For acceptance testing purposes were described.
-^

^';
Finally, metrics 'Far e-F-Fi ci ency, modi ^fii obi 1 i ty, and useabi 1 i ty

^^'	 based an subjective judgments were presented.
^^.- -:.
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	 4. PROBLEM OF PROGRAM COMPLEXITY

^:
as

The goal of this research is the deve^fopment of a measure, i.e. a
_.

^^
	 yardstick _ with which to evaluate a program's complexity. At this stage

in software research, there exist few validated tools for program evaluation

or for comparisons between software products, except an a gross scale.

As Weinwurm (3) points out, there are no generally applicable or empirically

validated categorizations for computer programming and further there are

no generally accepted, comprehensive, and validated measures of computer

program complexity or difficulty. The motivation then for an exploration

of complexity lies in the above ^ to builr' a valid measuring tool or at the

very least, to discover what program characteristics are relevant to the

problem of complexity.

The task at hand then becomes essentially a question of where to start.

Section 4.1 presents an overview and justification. Here the fact is

emphasized that any measurement of an abstract quality, whether it be pro-

gram complexity or program maintainability, etc. is totally dependent on

what is known about the program and its characteristics. Unfortunately,

there is a great void of data relevant to software, whether it be with

regard to programs` error/change histories, their useability, complexity,

or any other program quality. Further, in order to measure an abstract

quality, that quality must have a definition in terms of software. This

implies that program characteristics on which the abstract quality depends
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..
^:

complexity, can be put to a program, some technique must be developed to

^^
	uv	 ascertain which program characteristics affect complexity, i.e. what program

variables are relevant in a measure for complexity.

	

°#	 As Section 4.2 outlines in detail, there are a great number of

	

'^	 opinions which have been put forth on the topic of program complexity.
+:
^.^

None of these have any objective validation to reinforce them but they

are the opinions of experts. This is the only information at hand withq ..

	,_	 which to work and any characteristics to be tested as complexity factors

	

•^	 must necessarily come from these opinions. When these subjective judgments

are used in objective data collection and analyses, they provide a reasonable

	

..	
starting point from which to investigate ct^mplexity.

1•

	y^	 Development of a complexity measure then has been organized into two

t
phases. The impleme^^tation phase involved setting up a data collection

scheme for analyzing program characteristics deemed relevant to program

complexity. The second phase utilizes data collected via this static

analysis system from sample COBOL and FORTRAN programs. The data serves

	

•^	 as input to statistical analysis techniques such as multivariate analysis,

cluster analysis, and factor analysis in order to reduce the data to a set

of independent characteristics which effectively measure complexity.
,^

	= a 	Tv date, a set of SPITBOL programs have been developed to serve as 	 -'^^
-,
r^r

a vehicle for data collection. Data collection and analysis an FORTRAN 	 ^^^

^;
'i

	

'- y b	 and COBOL sample programs is on-going. Section 4.3 outlines this data 	 -

	

'°	 collection process. Section 4.4 provides detailed descriptions of the

v^
types of data being collected. In addition, some preliminary data analyses

-;

	

KR	 `, 9

have begun. The initial analyses on data have baen concentrated an statistics

	

b„	 1

^-^
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such as means, minimums, maximums, medians, percentages, etc. - attempts to

}w	 refine the data collected into a set of relevant data po-^nts. These pre-.	 ;_

^`
liminary analyses point out various directions in which data analysis could

.^ !.

w >	 proceed. Section 4.5 contains tables an data that have been analyzed for

a set of FORTRAN samples and provides a detailed descrip^ion of the data
zu

categories chosen fora preliminary analysis as we11 as a detailed dis-

cussion of trends seen in this data.

,_	 Results so far indicate that the data reflect two ways of viewing a
^.

•^	 measure - as a set of standard norms against which a program can be evaluated

` or as a set of factors which can cont^^ibute to a complexity score. 	 Prelimi-

" nary results serve to emphasize that there are a large number of passible

complexity factors.	 Techniques must therefore be developed for investigating

the varied combinations of these variables and Far structuring these

,; variables into relevant frames of reference so that complexity can be measured

via a multi -faceted measure.	 Section	 9- . 5.2 provides a detailed description

t

of experimental procedures which use statistical 	 techniques and varied frames

^; of reference to develop a measure.	 in approaching future analyses in this

open -ended way, our selection of a measure wi11 not be pre-determined and^..

will be an attempt at objectivity just as our selection of program characteris-

e

^'

tics for analysis was.

.q_ 4.1	 Overview

is The determination of a program ' s reliability has been approached in a

`'	 t varied number of ways.	 A number of statistical models, testing methods,
#.

programming techniques, and management tools have been developed for the

u-	 ^^^^. purposes of predicting and improving reliability.	 Each attempts to	 attach

{
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a figure of merit to a particular programming effort.	 Yet, these above

^ techniques are themselves based an sub,^ective hypotheses about software
x

and need a framework of objective data about a particular program in-	 ^^

^} order to function correctly.	 Therefore, the most important factor in

';	 ^^ predicting the reliability of a particular programming effort is an

understanding of the ^^ource of the problem, the program itself. 	 There are

^'. a number of program aspects about which various types of data collection can

provide information.
^` An error/change history is a technique for gathering objective data

- about a program's development. 	 This data can be recorded and utilized by

^: various reliability models to predict the reliability of a program.

^^ However, a complete error/change history fora software effort is difficult

tv obtain with a reasonable amount of accuracy.	 Few automated tools exist

^,;
far the recording of such data and manual data collection schemes are on

i^
the whole unsatisfactory.

^- Evan with an error/change history, questions such as what program

^__
characteristics provide essential information for describing the program -

which characteristics affect reliability - what differentiates a particular

^! programming effort from another, etc. are unsolved. 	 These questions are

^
°,;

answered by objective data collected on a finished program. 	 While an

^,

'^ error/change history gives a picture of a program's stability as it was

^ developed, the data collected on a completed program provides information

on the program "as it ::rands" - i.e. what its relevant measurable characteris-

tics are. In attempting to gat^^er this type of data, there remain the



s.
^_

	"^	 and what analysis techniques should be used to solve tr.'s dilemma.

a One method for collecting objective program data for analysis is to
u r^

measure the finished program in terms of certain of its abstract qualities -

	

'`^^	 e.g. structuredness, useability, maintainability, complexity, etc. In so^Y

	^-	 measuring a program it is possible to get a broad picture of the program

	

^'	 via these different as ects and thereb	 rocure information qn a wideP	 Y P

	

^^	 range of relevant program characteristics. In addition, these program

quality measurements can in turn be themselves utilized in a valid figure

	

.'.	 of merit for reliability - a measurement of software reliability as a

function of abstract program qualities.

^'
however, before such program qualities can themselves be utilized in

an effective measure or can even themselves be measured, a reasonable

definition of each as applicable to software must be decided upon. More

importantly, program characteristics which act as independent variables in

determining each abstract quality must be found - i.e. what is a valid sFt

of characteristics to use in measuring complexity or maintainability or

	

is	 useability. Indeed, gaining knowledge concerning these characteristics

k.	 ^	
^ .

is essentially developing a metric for the abstract quality.

This paper describes a technique for the investigation of one such

abstract quality - program complexity. Our• method 's to a pproach the

problem utilizing program characteristics that various experienced authors

have deemed important. The technique then is to use these varying

interpretations that have been given to complexity and the various factors

I^	 ascribed to it in a static analysis of sample programs. The output of

r^-.	this collection scheme can be termed a feature vector of complexity factors

'; ,

;;
:,
V^
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far a program.	 This vector can in turn be analyzed and refined into a set

of independent characteristics which effectively measure complexity. ^`^
._ ^

^:.	 ; The following sections provide details on the justification far and

background of the problem, the data collection system built, results to -	 3

^;

^.

date, and plans for future data analysis.

4.2	 Survey of Background. Infari^atian

" ^'^ultipie definitions for complexity exist. 	 In relevant papers reviewed
1

j
.	 ._

below, the term "complexity" has been tossed around frequently with a general

lack of specific definitions put Earth.	 Complexity has been allied with

?
3..i

maintainability, comprehensibility, degree of difficulty, etc. 	 The most

;, flexible policy for this section is to equate complexity with how an author

^^ chooses to measure it.	 This section will put forth the varying interpreta-

^
i

tions that have been given to complexity, the various factors ascribed to it,

r:
and the techniques that have been developed to measure it. 	 Include! are any

characteristics authors say are relevant to program complexity. 	 Essentially,

-; it is a summary of opinions (mast of which have not been validated}.
^^

There are three areas where the topic of complexity has been discussed and

3^ these will	 be outlined in this section. -
^^ 	 f a

The first area is cast estimation techniques developed for programming -
f

projects with emphasis on how a complexity factor is treated in these techniques. '"

The second area presents the various program factors and characteristics used

by different authors to define or qualify complexity. 	 The cast area for dis-

cussian will be a consideration of complexity measures. .''^

No matter which author is read, the sentiments are the same -for mast -



i._
t

large, complex software systems there is extremely incomplete knowledge of

haw to estimate cost, the proper relation of cost to quality, or even what

quality is C1].	 Flowever, there have been attempts to examine the problem^,

'	 ^ and actual techniques have been developed far cost estimation. 	 Yet, according

^` to pietrasanta [2], "... the problem of resource estimating or computer pro-
^^	 .

E	 `^`
gram system development is fundamentally qualitative rather than quantitative

e-

' ..." - "... we don't understand what has to be estimated well enough to makei:i

^- accurate estimates."	 Presented below are opinions of several authors as to the

^`̂G influence of complexity on cost estimation and examples of costing systems

`	 :f
a

that have attempted to include a factor for complexity.

y,r

There exist varying opinions as to what is involved in a complexity

ti
factor but mast fa1? into Pietrasanta's description above - there is in-

sufficient understanding of the total problem. 	 Weinwurm C3] maintains that--r
^:
.: there are no generally applicable or empirically validated categorizations

for computer programming and further that there are no generally accepted,

comprehensive, and validated measures of computer program complexity or

difficulty, Factors such as the number of instructions or subprograms or

,- ; type of application are components of a measure but they do not by themselves

-	 yield consistent and reliable results. We feels that unless experience-data

from different computer programming jobs can be normalized to take complexity

.	 and difficulty into account, economic comparisons will be misleading.



^^	 ..^	 i. _^
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} ^_:^^
	-^^	 measure it. In another paper [2^, he does discuss various aspects of the
':, ^,
`. {^

problem. Below are some of his thoughts:
,.

` ^ T	 .identify common program sizes of separate components of system,̂;	 ..
td^	 since different components vary in complexity and there seems to be a

	

^	 high correlation between complexity and productivity."
-	

G	

^..

	`^ ^	 "Are large systems nothing more than bigger small systems or are
there characteristics of large systems other than size that dis-

	

''	 tinguish them from small systems?"

".	 the dominant characteristic of the system spectrum may be
system complexity rather than system size."

"... some systems of equal size differ greatly in complexity with
a corresponding impact on resource expenditures."

;._

^'	 .returning to the definition of a system as consisting of both
^^	 elements and interfaces, size relates to elements and complexity

relates to interfaces."

Pietrasanta feels that much work still needs to be done in order to quantify

^	 system complexity before it can be subjected to an estimating analysis - an

examination of the influencing variables and their causal relationships is

`^	 essential if estimates are to be improved.

r	 IBNf [5^ has developed some guidelines and a specific technique for

,,	 cast estimation and they have attempted to include complexity as a factor,,
i',

`'	 in cast estimation. They do caution that any method of estimating is na

^^	 better than the knowledge, experience, and judgment of the estimator and

also they state that their proposed technique appears to be more exact

than it is. There are eight steps to their estimating procedure, the

first of which is the primary concern of this paper - to determine rp agram

complexity. The view here is that the complexity of the program depends

?:	 upon input and output characteristics and the processing functions which
E^

take place. `Chun, their complexity factor estimation is a 2-step process:
^^

I
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1) weight program I/O characteristics; 2) weight major processing functions.

Their weighting points are assigned to such Input/Output characteristics

r^	 as the card input (single and multiple formats), each tape per input file,
^°

^^:
`^	 each disk per input file, each print per output record format, each tape

.,.f per output file, card output (single and multiple format) and each disk
4.^

per output file. This technique also assumes that by a consideration of
."

`	 functions rather than number of program steps, the program's complexity^^

-	 can be more accurately gauged. The functions which are to be applied to

^•	 the estimation process are: restructure data, condition checking, data

retrieval and presentation, calculate, and linkage. If these functions
f

4+^

.^
are applicable to a program being estimated, then the estimator, himself,

^v	 makes a value judgment an whether the function is simple, complex, or

very complex and then applies the appropriate t^Pighting. These weightings

-°	 giver, to p imple, complex, and very complex are not precise and are not

intended to preclude the use of judgment. So essentially what ISM has

done is to present a guideline for the estimator - these estimates might

-	 ^^ far more useful and accurate if there was greater objectivity in the

'	 factors chosen to measure complexity and the measure which is applied.

^•	 Further in IBM's collection of existing material for estimating systems`

y-	
costs is a list of factors they feel affect programming estimates. dob

Difficulty is one of the factors mentioned -its subcategories are the

$`.	 following: complexity of system, number of subprograms, number of data

formats, percent clerical instructions, percent transformation/reformatting-	
f	

'T

instructions, percent generation function.

F"	 Aron of IBM [5^ proffers some ideas an estimation and how to get at
f	 3.

,^
^'	 , :,
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complexity. He ranks sound experience as the most reliable method of

^>^	 estima^ion - the quantitative methods such as the method described above)

are substantia11y less reliable and the answers supplied by this type of

technique are only approximate representations of system requirements. Me

^"	 mentions the SDS Programming Management Project which attempted to analyze

a large amount of historical data to identify factors that affect program-
'A	

ming cost the most [6]. The lcey variables found fall into three groups:
u„

uniqueness, development environment, and job type and difficulty. Difficulty
°^ .

^^	 is categorized herein as dealing with system interactions due to program

and data base elements and the relative variation between different types

`°	 of programs. Their estimation of difficulty consists of choosing from

^^
3 categories: easy, medium, and hard ^ this "estimate" should be essentially

an

based on the number of interactions found in the various program classes.

^^	 However, in a paper which is a planning guide for computer program development,

[7^ several authors at System Development Corporation do try to be more

a
objective concerning complexity - "... the entry for complexity must be a

local standard, such as a scale of one to five, that reflects not only the
ua

number of interactions among subfunctians and the number of interfaces

na	 with other programs, but also the number and variety of data types input,

^^	 manipulated, and output; or, the standard could actually be a rough count of

^^	 these i tems."

to	
Wolverton of the TRW Systems group has expressed some ideas on the cost	 ^^

^^	 ^: ^

of developing large-scale software [8 and 9]. His basic assumption is that	 E
a

„^	 costs var;^ proportionally with the number of instructions. for each identi-

a

fled routine, his estimating procedure combines an estimate of the number

^..

i 22

j
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t of object instructions, category, relative degree of difficulty and

`	 ^`y,:	 ^ ,
^'.

historic data in doT7ars per instruction from a cast data base to give a 	 -

trial estimate of total cost. 	 To account for degree of difficulty of

a given kind of routine, the designer is supposed to estimate a risk or

^^ complexity factor - the most crucial step in the estimating process. 	 The

^o
software parameter estimation for a complexity factor is the key problem

^^
and ^dolverton presents two views of haw it should be done. 	 Brendan [9]

T^

feels that a single individual should establish a complexity rating

^L scale ^A,B,C,D,^,^'^ and make a "standard" estimate for each job based on:	 _

z- compiexity rating of each jab, machine used, language used, and estimated 	 .,

^` number of instructions.	 L.echt ^9], on the other hand, believes that the
"^:

^^ estimator should interview the member of the technical staff who will da 	 '-'<a

the job and negotiate personal agreement an effort. 	 Nis estimate would
;s

^

^:

then be based on: similarity with previous modules, person doing the jab,

-- the machine used, the language used, and the estimated number of instructions ^- 	 ^°^

is
he does not believe that meaningful performance standards can be set for

-	 '^-	

^.
software.	 Wolverton's answer then to this compiexity factor is simply to ask 	 -

if the routine is new or old, and if it is easy, medium, or hard -- and based
^-

^'A w an this, to apply sort of complexity rating coefficient. 	 Ne does however

,^
^, attempt to help the estimator with the above nebulous process for compiexity

a ^ rating - a simpified version of how complexity might be handled would be to	 >;j
r-
^^ estimate the number of executable instructions, categorize as to type and com-

,,-

pare it to others seen to rate the degree of difficulty. 	 Nis final	 thoughts	 ^+

';
in the paper imply, however, that the problem is far from being solved "...

-- what are the crucial parameters that define problem complexity?"
s.
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^^

^'	 And this appears to be the problem with the above techniques - parameters

affecting complexity seem to have been arbitrarily chosen with a minima]
^.

amount of objectivity to back up the choice. i ^ven in describing their esti-

^^	 motion techniques, the authors warn repeatedly that they are only presenting

guidelines. Aside from these estimation processes, complexity has also been

^^	 men^Eioned in various articles as the software reliability research has grown.

Below are some opinions on what parameters are relevant to the problem of

complexity and various techniques espoused by authors to put these in same

sort of measure.

Weissman [ 10^ believes that experimental studies should be performed

to measure those factors which make programs difficult to understand and

maintain. 5a, his definition of camplex^ity then relates to camprehens;bility

and maintainability. The author feels that many ideas have been expounded

on how to reduce complexity: e.g. documentation standards for programmers,

s.
use of high level languages far system implementation, and the idea of

-	 -	 structured programming. Yet he feels that articles which extol the benefits 	 =

^;
of the above fail to give any quantitative evidence that these techniques

t

-	 have in fact improved the quality of programs produced - we "... have passed

^r	
the Dint of latitudes and must establish concrete, quantitative evidence^	 P	 P

of those factors which contribute to program complexity before we can hope 	 -

to reduce it." A list of factors he feels contribute to the complexity

of programs follows below:

^. PROGRAM FLOW ,y.

	

' ?:	 1. Presence or absence of well-placed comments
-	 2. Placement of declarations

3. Paragraphing of program listing

^`	 4. Choice of variable names

	

^ ^	 ^	 -
5. Redeclaration of variable name in inner scope 	 -

C=;-	 ,w	-

`°	
^sr	
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1.
2.
3.
^.

:.:^	
5 .

6.

Complexity of control flow graph of program
Choice of control constructs
Length of program segments
Passing procedures
Recursion

Levels of nesting

III. DATA FLOW

Scope of variables
Clustering of data references
Declaration and use of data structures
Locality of operations performed on data structures
Use of pointers
Arithmetic on pointers

TERACTION BETWEEN CONTROL AND DATA FLOW
a

1. Flag testing
^^	 2. Side effects affecting control flow
3'

-	 _'	 3. Changing iteration variable^.	 ^ r:

4. i^ethad of parameter passing

;^

Anderson and Crandon [17^ state that complexity depends on much mare

^^.
than size - .also, they feel that the undisciplined use of 00 TO statements

does increase the complexity of a computer program and canseguently decreases
4

a;	 the reliability. So we have here the degree of program complexity related
re

,,-	 to a program's reliability. Dicfcsen et. al. [12] discuss complexity and

'°	 its relation to program size - a large program is defined as one which is

^^	 very complex and/or interactive with many instructions whereas a small
^..^	

program is defined as limited in complexity, particularly in the number of

'^'	 branch statements. Rubey et.a1. [13] suggest that a language plays a part^^

^-	 in the complexity of a programming effort - he feels that programmers tend

^^	 to write either more complex ar more wordy statements in PL/1. The mare

"''	 programmers avail themselves of what PL/1 has to offer, the mare complex
m

the whole problem becomes.

::'
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^^

^-

^^	 At a symposium conducted on the high cost of software [14], several

^^
-	 aspects of complexity were mentioned. One of the technical factors

^-E	 M.

-	 responsible for difficulties in obtaining correct software that meets

user objectives was seen to be the complexity arising from the mismatch of

s^	 programming languages to the representational needs of the application
^'

domain. Further, the symposium participants felt that the tools far

dealing with complexity are the means for abstraction provided by program-

ming languages - in particular, the means for giving structure to programs.

Examples would be arrays, list structures, finite set types, and functional

data structures. The lack of objective analyses of programs and/or of the

programming process was seen to be a major gap in any further progress.

Structured programming has been proffered as a major contributor in

reducing program complexity. Mills [15^ writes that the purpose of

structured programming is to control ^:omplexity through theory and discipline -

it is seen to be a systematic way of coping witl; complexity in program design

and de^eiopment. The assumption behind Mills ` espousal of structured pro-

gramming 'i5 that he feels the size and complexity of any programming system

can be handled 6y a tree structure of segments where each segment - whether

high level or low level in the system hierarchy - is of precisely limited

size and complexity.

This concept of structured programming as an aid in reducing program

complexity is found in the writings of many authors. Dijkstra [16] wants

programs so well structured that the intellectual effort (measured in same

loose sense) needed to understand them is proportional to program length -

he implies that the "d,.;u^ and rule" principle will reduce complexity.

1
F

v

1
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^^

y	 ^° IBM's Management Overview [l 7] has structured programmi^^c^ segmenting code

.;, into reasonable amounts of logic that are easily understandable. 	 Donaldson

X18] states that structured programming is a technique which has been

^'

^e developed to improve bath program complexity and program clarity. 	 He claims

that much of a program's complexity arises from the fact that the program
^;

^^ contains many jumps to other parts of the program - jumps both forward and

backward in the code.	 Therefore his definition of complexity is eventually
;.

equated to flow of control - simplify control	 paths and reduce complexity.

-	 k
{
.^

Ramamoorthy et.a7. E19] also state that structured programming is a

technique that reduces a program's complexity, and therefore increases

`• its clarity - a1 though they do not substantiate this claim with any proof.

Yet, an arbitrary moduiarization may obscure many interactions 	 interaction

complexity} so that subtle software bugs may be created. 	 niso, unnecessary

functional complexity can be introduced by putting too many functions in a

module or by failing to abstract a common function shared by different modules.

-- Their opinion is that the complexity of the system will depend on the number

of interactions of system components; while at the component level, complexity

{
depend; on the number of branches and external references. 	 Reducing a pro-

.	 `_

^.
gram's complexity can be considered a process of removing obstacles from the

program - complicated control paths, obscure structures, uninformative com-

^- meats, unnecessary jumps, redundant and obsolete code, ambiguous constructs,

^^^^
etc.	 On the other side of the problem, improving program clarity can be

thought of as a process of adding things to the program - meaningful names,

informative comments, clear code layout and indentation, more levels of

modularization, good documentation, clean interfaces, etc.

^.^

:^
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The modular programming aspect was investigated by Rhodes [2O]. He
_	

T_

lists the following as attempts to limit the complexity of a module:

{7) setting a maximum for the number of decision statements

{2) setting a maximum far the possible number of paths through a

	

^ T 	module

	

^u	 -
(3) setting a maximum fn; the number of test data cases required

	

'	 to test modules exhaustively
^.

{A) setting a fixed size of paper to be used to contain the block
3 -

	

^.	 diagram

{5) setting a maximum development time for the module.

^:

	_	 These are attempts to limit complexity rather than explicitly restricting
^:

module size. Nere it is inpartant to mote that Rhodes, too, differentiates

between size and complexity - he feels that limiting size does not differen-

tiate between long and simple portions of straight 1ir^° ending and chart

and difficult portions of code.

	

'	 In their discussion of a new concept termed structured design [211,

i -

Constantine et. al. stress simplicity of module connections. For FORTRAf^

	

^:	 or COBOL applications a module can be thought of as a subprogram. They

	

F .	 state ^^^iat the fewer and simpler the connections bei-^c^^sn modules the hefts,°.{:
^.

	••	 For the complexity of a system is affected not only by t^^e number of connec-

	

!^	 tions but by the degree to which each connection associates two modules,
is

making them interdependent rather than independent. When two or more

	

^^	 modules interface with the same area of storage, data region, or device

they share a common environment - and each element in this common environ-
a
^:

	°°	 ment adds to the complexity of the total system. Tn turn, the complexity

u

r,

..-.:._.. ^ __..
	 ,t	 -	

--	 -

^^
:,
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1

of an interface is a matter of how much information is needed to state or 	 -

n:
a	 to understand the connection.

An attempt toward a measure of complexity is Goodman's paper on compu-

ax	
tationa7 complexity [22]. for our present purposes, computational complexity

'	 is not applicable but Goodman does discuss a definition fora complexity
^c

measure as a scheme for measuring a specific type of complexity. A complexity

i
nn	 measure is same function of the amount of a particular resource used by

a program as it processes a specific input value -" this resource might be

^"	 time, space, CPU usage, channel activity, etc.

Clapp and Sullivan [11 also have views on the complexity issue. Two

of their hypotheses relevant to the topic are the following:

.,	 1. Structured programming leads to greater comprehensibility and

reliability.

M ^	 2. Complexity (the inverse of :omprehensibility) and the cast of

debugging are strongly covariant.

Their view of complexity is in terms of the number of independent paths
s^

-	 ^^	 and Sullivan [23] has written a report on an application of this towards

an actual measure of complexity. He presents several measures of computer

. "`	 program complexity, in the sense of comprehensibility or intellectual 	 ;^

manageability. Ne defines the "C2 complexity" at any node of an elementary 	 ,^,. ^

scheme to be one less than the number of paths from the start node to that
_^	

^
,^,	 node, not counting paths where any node occurs mare than x times, where x = 2

^	 unless otherwise stipulated. The complexity of the composite scheme is then

'^`	 defined as the sum of complexities of its elementary subschemes. So,

e

f



I
scheme.	 Uowever, he does feEl that a measure should be sensitive to the

^^ distribution of references to a data object over segments of the control

graph, and so he attempts tv define a process complexity measure at a node

^^ in terms of just those process operations {data references} relevant to it

and the paths among those operations.	 This second measure is at the present

U^
time untenable and does not really sufficiently handle data node complexity.

'` Another measure of complexity has been proposed 6y Peterson et.al. ^2A^].
^^:

They propose to measure the complexity o^r a •Flowchart via a pair of integers

:^^ {N, M) where Nis the number of Hades in a largest multi -entry component

;i ^a multi-entry component is equiva l ent to a loop {any sequence of statements

^^:
capable of being executed repeatedly) where there exist paths, whose nodes

^r
are not elements of the loop, from the start node to more than one ;rode in

the loop] and M is •che number of multi-entry components with N nodes.	 in

^^ this article, a flowchart is equivalent to the Flow graph of Aha and Ullman

_W [25], - a 2-dimensional	 representation of a program that displays the •Flaw

^' of control between basic blocks of a program. 	 A basic black is defined as

d^
a group of statements such that no transfer occurs into a group except tv

the first statement in that group and once the first statement is executed,
^ ^,

^_ all statements in the group are executed sequentially. 	 There is at least

some justification for an investigation of a program's flow graph as

^;
de Balbine ^2G] and others have stated that the structure of the -Flow graph
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^"	 28 tends to ne ate these rather sim iistic a roaches to aMi11s [ ^	 g	 p	 pp

j	 complexity measure -

... measuring the complexity of programs is no simple task. It is
easy to form simple hypotheses about such measures, but it is just
as easy to demolish them with counter-examples of common experience.
The idea of equating complexity with the difficulty of understanding
a program has been generated out of the frustrations of concocting
and demolishing more simple-minded, direct ideas, such as counts of
branches, data references, etc.

He feels that structured programming is a first broad attempt to deal with

the complexity of control logic in programs w yet the control of data

reference complexity is as important but as yet there has been minimal

^	 work done. The current trends i n programming theory -- subroutines , mui ti pro--

gramming, etc. are attempts to factor problems of complexity into smaller

units comprehensible by human intelligence. Miiis then postulates that the

complexity of a program is equivalent to the difficulty of proving the

program correct. Since proofs of program correctness are barely in the

preliminary stages, this is not a feasible approach.

Within these three areas discussed above, there has been little quanti-

tative or qualitative evidence to validate one opinion or another. The

major problem is that there have beer far too many subjective opinions offered

and gust as many simple hypotheses farmed on what is a valid complexity

measure. Many of the individual factors which have been put forth such as

the number of executable instructions or the number of inter-program and

intro-program interactions or the number of independent paths are perhaps

_	 ''	 components of an effective measure but each by itself is oat a consistent
E

or reliable variable. We must know what to measure in order to know.





t	 ,:

r

^.,

4.3 Data Collection 5ystFm

4 ,	The goal is to build a complexity metric - "a measure of the extent or
C^

degree ^:o which a program possesses and exhibits complexity" [29^. The
Sw

^a	 preceding section provided insights from various authors as to what program

-;.
variables constitute a complexity factor. Several complexity measures

were also described based an program characteristics which may be relevant	 ^ `^

in same circumstances but which lack any sort of objective proof or data to
^,

reinforce then. The major fault with the hypotheses offered to date is	 '

vb
that they assume the measure - e.g. number of independent paths - and pro-

teed to build their analysis technique around it. As Knuth ' s study X27] painted
^-	 -

_°	 out, too often what we hypothesize to be important is quite the opposite from

what actual program data shows to be reality.

s	
With the opinions so diverse and varied as to what is important and

what is not with regard to complexity, it seems far more logical to base

a measure on the assumption that program complexity is a function of several

»^	 variables and not just one or two. Yet, which program variables are the

^'	 correct ones to use in a measure poses a major problem. Since a metric

^:
should "correlate well with established notions of software quality" [29^,

r-
l	 it seems feasible to develop a technique for investigating which program

variables are factors in a measure of complexity by utilizing as many
^'

^-	 established notions as possible. A data caliection scheme whereby data

based on these pre -established characteristics can be collected from
i

'	 sample programs and analyzed would serve such a purpose. This data -
^-

essentially a feature vector of possible factors fora complexity measure

of the sample program - can in turn be analyzed via multivariate analysis

=::	 133
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^.

or factor analysis methods. These techniques will determine the "fundamental

	

;^' k;. ^V	 and meaningful dimensions" [30] of the vector`s domain (equivalently, a
3.

;1	 ^.
measure) - i.e. which of the variables serve as the minimum number of

	

e	 dimensions required for the description of differences between samples

^^	 analyzed.

E	 n

r_ The following paragraphs will outline the implementation of tine above
^.

	^w	 ideas for data collection, will discuss the sampling procedure and sample

	

^-	 programs collected, and the data analysis techniques to be used.
-	 ,.-

	

	 F;v . c

4.3.1 Data Collection

	^°	 In order to analyze programs with respect to specific variables, a

data collection System had to be set up. As can be seen from Section 4.2,

±here are a wide variety of program characteristics said to affect complexity

and therefore the data collection must be extremely flexible. Information

an items such as the type and purpose of the program, the language written

in, the environment of the program, its subprogram interactions, the con-

trot and data flow of the program, the program size, instruction mix

characteristics, etc. must be collected.

In addition to its flexibility, the system had to be fairly inexpensive

to use, automated, and based on an analysis for program samples which would

be easy to obtain. Manual systems, by their very nature, rely'too heavily

on cooperation by people not involved in the analysis project ^,nd, most

importantly, not interested in the project. Evidence to this effect can

be seen in some of the error/h;story data collection schemes to date

[3i, 32]. Ideally, analysis of a program by the data collection system
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should be independent of uhe author/maintainer of the program.

^^
The ability to sample a wide variety of programming styles within a

	

r-	 language as well as the desire to obtain Ecnowledge about frequently used

	

^ti	 and easily useable languages prompted the data collection system to be set

u ► far the analysis of COBOL and FORTRAN source programs. These two
uo

languages are the most heavily used by people at the Data Processing

	

^~	 Center and there exists a broad sample of users' programming styles
ua

f, available as will be discussed below.

The SPITBOL langu+ge was chosen as the vehicle for system implementa-

	

^.	 tion. The data collection involves the manipulation of a lot of data in

	

"^	 the farms of lists, counts, tables, and strings. These have to be handled

^.
quic[c1y and efficiently. SPITBOL was designed to facilitate these diffi-

culties, i.e. it is specifically a pattern-recognizing and string-mar.ipulat-

	

^.	 ing language.

4.3.1.1 ijanua1 Data Collection -Questionnaire

t'
Isnfortunate1y, not all of the necessary information is collectible

thr^^ucih- an automated program analysis. The author's maintainer's input

is needed for a minimal description of the program as outlined below and
F'
{ ,:

far an inifial complexity rating of the program. This complexity rating is
..

useful in differentiating between the sample programs collected and pro-

'	 vi des some input from the author/maintainer as to his/her opinion of the
;'
}',

program' s complicatedness . There^^ore, be ^ u :^:.^ dc^^ cY ; i:. 'rig the SPITBOL

	

x "	 programs that constitute the formal data collection system, the additional
^`	Y^	

information collected on the programs is discussed below. The ques^ ,,^naire

s3 _-

^'..

ĵ
:9

Y

A,'.,

W+'
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i,'

,c.

urs

was kept as "ob,^ective" as possible and only entails a few minutes of a

^-
^'.	 programmer's time to fill out.
^;

4

{.

r-

r-
^i..

QUESTI01^5:

1. Language

2. Type of Program

3. Purpose of Program

4. Batch or Inter-active

5. Frequency of Use

6. Un a program complexity rating
scale of Q through 10:

A. How would the general
category of programs
named in question 2
above rate on this scale?

B. How would the parti cul ar
prUgr•am named in question
2 above rate on this scale?

C. Why? i.e. what particular
program characteristics
affected your rating?

7. Are you the program`s author
or maintainer?

(How would the programmer classify
this code.) e.g. Data Manipulation,
File processing, statistical,
computational, etc.

(Brief description of the function
of the program.)

(The running schedule fora program
affects the style in which it was
written . }

{A means of differentiating between
programs.}

(Attempt to categorize the
programmer`s evaluation of his
type.)

(How does this program rate with
respect to the programmer`s other
"works"?)

(How does the programmer regard
complexity?)

{Perspective on the person's
attitude toward the program.)



1 ^	 k
-

s	^ 	 !	 ^	 ^

..

D. Is t^`^e program part of a
larger system? If so, approxi-
mately how big is this system?
and how much of it are you
responsible for/have control
over?

E. Are all modules written in the

	

°^`	 same language?

9. Does this program utilize special {These factors should be evidenced

	

^-	 techniques? e.g. use structured 	 in the analysis -- knowing the
programming? is it modular? top- 	 programmer used special techniques

	

`^-	 down design, etc.	 facilitates an analysis of whether
these techniques indeed differentiate
between this program and others not

	

^^	 utilizing them.)

10. Are there hardware devices necess- (Device-dependedness)

	

;.	 ary for the program's execution
and how many? e.g. tapes, disks,
terminals, plotter, etc.

11. How would you characterize the	 (How much "outside" interaction

	

_.	 files used in the program? e.g.	 is there?)
sand-alone, shared {under your

	

^-	 control?} etc.

	

,„	 4.3.1.2 Automated Data Collection - Source Program Scanner

	

-	 As was mentioned earlier, the automated data collection system consists

	

^^	 of a set of analysis programs written in SPITBOL. The programs far the actual

data collection are a set of eight SPITBQL programs {SNOINST, SNODATA,

SNOCONTR, SNOCONTR2, SNOCINST, SNOCDATA, SNOCCONTR, SNOCCONTR2}, These

	

'^	 programs analyze source Cade and result in a set of data points for the

program which are in turn output to a tape. The raw data on tape is

	

^'	 then available for further analysis by a series of programs which will

be discussed in Section 4.3.3. Due to the expense of running large-sized

programs in any language, not dust SPITBOL, it was decided that the data

collection system should be broken up in the following way:

137
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instruction mix characteristics, same control flow

^.
^	

l	 ^	 ^

^;

L•u

Source	 raw data	 Analysis of	 refined data	 Multivariate

^'rogram	 ^^^ Tape data for summar-- 	 ^ analysis pro-
Analysis	 ization and	 grams, etc - pro-

	

^^	 simplification	 grams for building
a measure from

	

•^-	 data collected

The specific characteristics analyzed by these eight static analysis

	

"''	 programs named above are important in themselves and these SPITBOL data

collection programs are only a toil for obtaining this information. Accord-
f

	_ a^

	

ingly, specific complexity characteristics analyzed via the eight programs
#_

	xp	 wi17 be discussed in their totality in Section 4.4. ^^hat will be painted

out below are some of the problems which occurred in building the tools

	

^"	 for data collection - i.e. the problems involved in writing the programs and

the specific routines that had to be written to obtain some of the more

hidden information - e.g. a flow graph. It must also be further emphasized

that at a certain point program length starts to retard program efficiency

with SPITBOL. In particular, the frequent use of tables, arrays and fairly

	

w•	 long pattern strings made it much more efficient and maintainable to build

the system out of eight small and fairly simple "pieces," each piece having
:^^

a specific ^`:unction.

	^;	 The eight programs used far data collection each perform a different

task as follows:

	

"`	 SNOINST -

	'^	 Len the ti 70O source statements (excluding COMMENTS)

In ut:	 FORTRAN program plus its subprograms

	

^#	 Purpose: Analyze a FORTRAN program in order to collect data on



:^	 ^	 ^	 ^	 ^
^	 ^_.	 p	 ^

_k,M:
SNOOATA ^-

rr

	

`^ ' 1	Lan the	 ti 410 source statements (excluding COMMENTS)
,'	 ^T:

	^,_. _	 Input:	 FORTRAN program plus its subprograms

	

t ^^	 Purpose:	 Analyze a FORTRAN program in order to collect data,.

on program variables' locality and reference,
^„

some control flaw information, levels of DO loop

nesting, and other pertinent DO loop information.
F	 ^ ^'

sNOeoNTR -

	

^6	 Len the	 ti 505 source statements (excluding COMMENTS}

•;
Input.:	 FORTRAN program plus its subprograms

	

^^	 Pur ose:	 Analyze a FORTRAN program and collect structure

-	 and control flow data, parameter nesting levels and

function reference data. The program's primary

	

:.	 purpose is to build a flow graph far a FORTRAN program.

SNOCONTR2 -

Len the	 ti 325 source statements (excluding COMMENTS)
4

	^^	 Input:	 Structure and control flow data firom SNOCONTR

Pur ose:	 Analyze program loop structures, spans of branches,

	

.^	 and implement the complexity measure of Petersen et.al.

X24] described in Sections 4.2 and 4.4

SNOCINST -

Len the	 ti 850 source statements {excluding COMMENTS}

In ut:	 COBOL source program

	

'	 Pur ose:	 Analyze COBOL program in order to collect instruction

	

-	 mix characteristics and some control flow information.
i
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o	 Length: ti 400 source statements (excluding ':;.;^riENTS}

^^	
Input: COBOL source program

1;

ss °	 Purpose: Analyze a COBOL program in order to collect data

reference and locality information.

-	
a	

SNOCCONTR -
_ 	

Length:
4 l

ti 505 source statements (excluding COMMENTS)

In ut: COBOL source program

wa	 Purpose: Analyze a COBOL program in order to collect structure

and control flaw data. The primary purpose of the

c

i
t

program is to build a flaw graph for a COBOL program.

sNOecoNTR2 -}.

Length:	 ti 400 source statements (excluding COMMENTS}
,,

^- Input:	 Structure and control flow data from SNOCCONTR 	 -,

Purpose;	 Analyze program loop structure (exluding branches	 ''

`	 tx ^
caused by PERFORMS), spans of branches, and imple- `. ;

Y^
ment the complexity measure of Petersen et.al . [24j	 ^'

described in Sections 4.2 and 4.4. 	 =^
i.

^. 4.3.2	 Program Samples
`^

^^ To ascertain what variables affect program complexity, sample 	 "'^

programs must be analyzed to see which of these complexity characteristics

°^ appear often enough to be relevant. 	 Outlined above was a system which	 ,?
'^
-i

does a static analysis of both FORTRAN and COBOL source programs. 	 But a

'^	 ^^ ^`^data collection system is useless without a good set of samples to analyze.

^`

j„

Therefore, it was necessary to collect FORTRAN and COBOL programs.^'

_.:

^^;

'	 ' 140

^;
^^

i	 ,,.



a^

i^

4 a

;'

^-

4
v

i

1. _

Debugged production programs, written by fu17-time programmers and non-student

personnel were desired.

A university environment is ideal for this sort of problem as its

computer users run full spectrum from the professional programmer to the

scientist who is strictly FORTRAN-oriented and not schooled in new theories

such as structured programming. in addition, the DOMONiC system was written

utilizing the concepts of structured programr^ing. Therefore, its modules

offer a contrast to the orientation of other • COF30L application programs

available via the Data Processing Center. So there exists a sufficient

range of samples to select fram and the problem becomes how to collect

these sample program.

With any kind of da*a collection scheme there has to be same dependence

on people. They in turn tend to be far more cooperative when their inpat

activity is minimal but the return on their time investment is maximized.

Therefore, the sampling proced^,re consisted only of two steps:

{1) a questionnaire to be filled out

{2) collecting three programs which the person sampled had rated

as simple, medium, and complex.

The sample group was requested not to make size a differentiating factor

in the programs they chase as samples. Emphasis was placed for their

decision to be based on specific program characteristics they felt

affected the complexity of their programs and not an the fact that one

program was 7800 statements long, another 900 statements, and another 150

statements. Program size is obviously a factor affecting complexity but

j	 often it can be an overwhelming one and obscure other just-as-relevant
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When asked to help in this project, most people were very enthusiastic

about wanting to see results of the analysis - i.e. they were quite c+.^rious

as to how their programs related to others, what were its important character-

sstics, etc. This enthusiasm carried over into their se7ectian of sample

programs for analysis. There is a broad spectrum of varying degrees of

complexity a@^?t';^ 4iiG Nf `̂ ^i c^iii:^ rCc^ f .YC4 ^^ fa.r.

Approximately fifty sample FORTRAN programs are available for analysts

at the present moment and they have been collected from people in academic

departments, research groups, and the Data Processing Center. These FORTRAN

programs range in size from a co!^ple of hundred statements to combined

program/subprogram size of over 2500 statements. The FORTRAN programs also

vary in type. We have access to text editing programs, a flaw charter,

data editing programs, insect population models, a light penetration model,

statistical_oriented applications, financial and budget analysis programs,

an analog-to-digital processor program, anc^ mathematical and scientific-

oriented pragrains.

Approximately twenty-five CuBQL programs have been collected and an

attempt was made to cover a range of programming styles. The DOMONIC 	 .^{

system provides data on programs written in a structured programming style.
'i
__ {

This system was coded in a top-down design and therefore sample modules

range from drivers of !^^ajor system commands through single-purpose modules.

Also, it was possible to collect sample COBOI. programs from people who were

not the author of a set of programs but who now must maintain these pro-

grams. This provides a different viewpoint than that of the author who 	 ^^
^.;

i
is also the maintainer of a program.

^^
.j
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Hence, the sample collection process is well underway and there are

a sufficient number o. s,.mpl p ^ at hand to perform worthwhile analyses.

4.3.3 Data Ana^iysis

The previous two sections outlined the major portion of the data

..	 collection system. The purpos¢ of this section is to briefly outline the

kinds of data retrieval and ^^nalysis programs t.".at are needed to perform

^^	 basic analyses on the data collected.

There are many varied statistics collected on each program and ttrere-

fore the possibilities for worthwhile results from even simple analysis

routines are quite promising. More elaborate schemes for data analysis

will be discussed in Section 4.5.2.

The static analysis routines of the data collection system produces

a feature vector - f(X l , X 2 , ,.., Xn ) - of complexity characteristics,

X i , fora program. These feature vectors in turn will be utilized in

various statistical analyses to gain insights into the hierarchial classifi-

^^	 cations among the variables within the vector and between the vectors them-

selves. That is, the final output from analysis will be a complexity

measure = Fc {X l ,X 2 ,X 3 ,X4 ,X 5 ) such that

X1 = gl (DATA LOCALITY)

XZ = g2 (INTERACTIONS)

X3 = g 3 (CONTROL SLOW)

X¢ = g4 {5TRllCTIiRE)

X5 ^ g5 {INSTRi1CTION MIX)
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Refinement of the raw data collected and previously put on tape far

each sample program consists of programs which will compute total counts,

_	 percentages, maximums, minimums, means, etc. For example, each sample

s_	 has a count taken of its instructions. These counts in turn can generate

a large number of varied statistics depending on the emphasis of the

.m	
analysis, e.g. percent sequential versus percent non-sequential; percent

I/O versus percent computation, percent conditional statements; etc, Also,

for each n0 statement in a FORTRAN program, the nesting levels within the

r	 range of the DO have been collected. Sa all these nesting level taunts

fora program must be summarized via a maximum or mean statistic.

The refined data for each program must be utilized 'in at least a

minimal analysis to get data points such as means, maximums, and minimums

between each of the vectors, i.e. inter-vector measurements. Examples

would consist of entities such as mean number of loops within all FORTRAN

sample programs analyzed or mean number of breaks in sequential flow far

programs with complexity rating of 0 -- 4, and in the 5 - 7 rating group,

and the 8 -- l0 group. There is a great deal of information that can be

processed via analyses such as these.

There are also inter-language analyses that can be run. For example,

FORTRAN and COBOl. both allow interactions in the form of subroutines and

also instruction type comparisons in such forms as numbers of conditional

type statements vs. unconditional type statements vs. sequential state-

ments. FORTRAN and COBOI. programs are reducible to a flow graph which

itself eliminates the language barrier and shows only control flow. There-

fore, comparisons of various data points between the two languages are passible.
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Beyond the above types of analyses there are various factor analysis

and multivariate analysis techniques available to aid in differentiating

between variables within a set of vectors. packaged routines will be used

for applying these statistical methods to analyze the refined data further.
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4.4 Com 1 exi t Characteristi cs

^^	 This section will enumerate in detail the complexity characteristics
^.

collected by the static analysis routines described previously. It is

-•	 important to note that this is a description of the raw data which must in

turn be refined and used as input into other data manipulation schemes which

allow more generalized categories. For example, the counts of various in-

^,
struction types can be categorized into percent executable, percent non-

executable or percent specification, percent subprogram, percent iterative,

percent computation, percent conditional, percent unconditional transfer.

_	
These types of categories in turn are independent of language which allows

..	
flexibility for analyzing the data across languages.

There are obvious differences between languages as to the kinds of detail-

__	 ed program characteristics that can be analyzed via a static analysis system.

-.	 For example, PL/1 has more language features and therefore has more measure-

able characteristics than FORTRAN and COBOL. On the whole, the collection

scheme centers on characteristics of the program itself, and not on character-

istics of the language in which the program is written. Data points measured

far FORTRAN or COBOL. programs can be categorized under general headings,

,.,	 although the measured characteristics under these headings may be language

,_
dependent. It is interesting to Hate here that the differences in the lists

^.	
of characteristics under each heading for FORTRAN and COBOL serve to under-

r .a

score the strengths and weaknesses of each of these languages.
A.

There are a g reat number of com plexity data points collected_ A17
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discussion in Section 2 concerning measures which have been proposed to date

^-	 emphasizes this fact. However, analyses of these characteristics in various

^.
groupings should provide a combinations} of program variables that indeed

da define program complexity.

When analyzing a program it is most important to examine its total

environment. Both the common environment a program "shares" with other

•^	 programs/subprograms and the environment of the program as an entity unto

itself must be examined. Therefore, program characteristics affecting

^^	 complexity have been categorized into two areas: those that are concerned

with a program's interaction with other independent programs/subprograms and
tT

those that concern the program itself, The discussion below outlines cap-

abilities of the data collection scheme in terms of the complexity data

points analyzed.

A^.4.1 Program Interactions

In this category, emphasis has been placed on what program characteristics

affact interactions between the program and other programs/subprograms - i.e.

the environment of the program within a total system. This can include shared

files, file manipulation, subprogram connections and interfaces, shared data,

.	 etc. Bven though program simplicity can be enhanced by dividing a program

into a system of separate pieces each of which is an independent entity,

complications can and do arise with the coupling effects of such a division.

Sheer numbers of connections between pieces and the various types of inter--

faces necessary for communication provide an enormous impact on the complexity

of a single piece of a system.

l^7
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.	'^	 Accordingly, the data collected under this heading leans toward sub-
i A

program interaction and the varied types of parameter passage. Emphasis

	

''	 has been placed not only on the number of connect^ ; ons a program has with

^^
other programs but also on the data involved in this connectioa^ -- how many

	

s ^
q	

parameters are passed, how complicated is the parameter list expression,

	

^;	 how "far--reaching" is the value of the variable passed, etc. We are trying

^_
to measure the potential impact of its common environment on a program.

	

!µ	 .he data points collected are as follows:
;.

COBOL
',

	

i	 I. Connection Information:

	_'	 -- number of entry points
^'

- number of subroutines called

	

^ `	 - n!Ember of times each subroutine called

- nesting level of each subroutine call

	

^'	 II. Interface Information:

	

^.	 - number of linkage parameters per entry point

I ..

- number of linkage parameters for main program
r

- number of parameters passed for each subroutine call

- total number of variables in the LINKAGE SECTION

	

'.	 - Total number of COPY variables in the LINKAGE 5ECTION

	

t ^^	 FORTRFIN

',;
I. Connection Information:

	

^^	 - number of subprograms with multiple returns plus the number of

	

^^	 returns for each
^:



^^	 ^	 ^ {	

rl

cisr

q-
- number of subroutines called plus the number of times each called

	

d^.	 - number of function statements plus the number of times each

referred to

	

- `°	 - number of function subpragra^is plus the number of times each

referenced
^;,

- number of calls to FORTRAN supplied functions plus the number

	

^^	 of times each called

^^
- r^^mber of substitutes for external variables called {taunted

	

"'	 only in subprograms where external variables have been

	

^*	 passed)
^.
^^

number of external variables referenced in a set of arguments

7
passed to a subprogram (caun^ed only in main program}

-- number of entry points in each subprogram

	

•	 -- nesting level of each function reference in the main program

- number of I.ABEI.ED COMMON areas plus the name of each area and

the number of variables in each area

;:

	

._	
II. Interface Information:

- number of variables in blank COMMON

-- number of parameters passed to each function reference (plus

the number of computations and function references in the

	

^^	 argument list}

	

'^	 - nesting levels of parameters

A. Far each parameter in the argument list of a subroutine

or subprogram definition the following data is kept:

,,..

.^^

^,

,'^
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1. the nesting 1FVel{s) of the parameter

2. the fatal number of function references the parameter

is passed through

3. a string of (non-duplicated} function names through

which the parameter's value is passed {See Figure 1}

B. For each parameter passed in a function reference's

argument list both in the main program and each subprogram

the following data is kept:

1. the nesting level{s) of each parameter

2. the total number of function references the parameter's

value passes through

3. the string of non-duplicated function names the variable

passed through

(dote that in both A and B above, part '3` give:, the number of unique

function references fora parameter while '2` yields the total number

,;	 of such references.)

4.A^.2 Characteristics of the Pro gram as an Inde pendent Entit

Within the program itself - neglecting its sharp environment -- there are
j

a number of program characteristics that have been proffered as variables

affecting complexity. These can be categorized under three general headings --

data reference, structure and control flow, and instruction mix characteristics.

Uata falling into these headings have been analyzed with regard to the pro-

;	 gram as it stands. Justification for the enumeration of many of these

'3

3
'^

;,

:^



FIGURE 1

^	 I	 !^

f

^_	 ^^'	 SUBROUTINE	 SUBI(X,Y,Z)
'^	 ^e

^^

^^

.

CALL SUB2(X,A,B}

--

^° AC = SIN(X}

- AK = TAN(Y}
-	 ^^

:..
CALL SU62(X,AC,B}

^'
?	 ^	 `-	 an RETURN

END

^;

^^
SUBROUTINE	 SUBZ(Q,AC,f3)

^^	 .

f'

;r

STOP

t.
END

PARAMETER INFORMATION:

^:

^.
Argument	 Nesting Levels

ae	 X--SUBi	 /2/1 /2/

Y-SUB1	 /1/
Z^SUBI	 -

^'	

s..	

Q-SUB2	 /1 /^.
'^	 ^°	 R^5UB2	 --

S-SUB2	 -

^.

	

Number of	 Functions Passed
Function References	 Through

	

5	 SUB2/SIN

	

1	 TAN

	1 	 5IN

^^-	 SAMPLE FORTRAN PROGRAM 4^ITFE

_	 °^'	 PARAMETER DATA COLLECTED ON ARGUMENTS

.;^s

r'

^..,_
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variables as complexity characteristics has been outlined previously. Further

	

iJ	 explanation for some of the variables collected - especially in the area of

structure and control flow -will be rendered as is necessary. Section 4.4.2.1

discusses instruction mix characteristics while Section 4.4.2.2 is concerned

	

°.	 with data reference variables and Section 4.4.2.3 deals with the measurement

	

^-	 of structure and control flow.

^:

4.4.2.1 Instruction Niix Characteristics. The numbers and types of

	

', ^'	 instructions used in a program is an indicator of how the programmer used

a language and is an obvious reference point in describing a program. An

	

^^	 instruction mix indicates the kinds of control constructs governing the

program; how much of the code is actually executable; how understandable

the program is via the number of comments, etc. There are also other types

of variables related to instruction counts which are analyzed.

	

;^	 Information can be collected on simple assignment -type statements versus

computation-oriented assignments. For a language such as FORTRA^1 which is

compute oriented it is important to consider factors such as function references

antic computations which complicate subscripting as well as various instruction

types. There are verbs in COBOL such as the SORT that can be as complicated

as a programmer chooses. With these particular verbs, data should be collected

	

^^^	 on all relevant aspects of the verb's use. COBOL also has the capability

for nesting IF statements. This can greatly complicate a program's structure

as well as its readability et al.

The size of a program is an important characteristic for measurement,

as is repeated by many different authors. Size fora COBOL program can be

152 '^
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measured by the actual number of verbs and also by the number of statements

(8O character lines). The number of labels, for both FOBTRAfi! and COBOL, and

particularly the number of statements between labels yields a rough picture

of haw many segments there a ye to the program - i.e. haw many program

pieces must be kept track of.

The fallowing is a list of data obtained under the heading of instruc-

tion mix:

COBOL

- size of program - number of statements and number of verbs in

procedure division

- number qf paragraphs

- number of sections

- segment sizes - number of statements in each paragraph -number

of verbs in each paragraph

- number of outer nested IFs - the number of IFs that either stand

alone or begin a nested sequence

•• nesting level of IF - gives depth of nesting (plus breadths for

every nested branch

- SORT verb data - indicates how the SOFT is done -- via input

prar^edures, output procedures, files, etc.

- ENTEh verb data -- number of routines to be executed in another

language

- SET verb data - number of assignments in the statement

•• COMPUTE verb data •- number of operations in the statement
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- ADD and SUBTRACT verbs data - number of assignments in the state-

ment

- number of instruction types - total number of instructions plus

the number of each different instruction type

FORTRAPI

-- size of program

-number of labels

-- segment sizes - number of statements between each label

- number of computations per statement - this count is Kept far

any statement in which an arithmetic operation can be per-

^^ o rme d

- number of function references per statement - this count is kept

for any statement in which a function reference is possible

- number of instruction types - total number of instructions plus

the number of each different instruction type (IF statements are

counted individually under the statement following the condi--

tions)

4.4.2.2 Data Reference. Ideas describing what is and is not important

to measure for data variables have been tossed around as frequently and as

madly as FORTRAN programmers use 6-letter non-mneumonic names in their pro-

grams. Llata locality, scope of variable reference, structure of the data,

etc. are entities that authors say should be investigated and yet it is

difficult to find consen:^us definitions of these terms and worse to locate

algorithms with which to measure them. Therefore, data has been collected

154



^.	 ^	 ^	 ^

on what is reasonably attainable via static analysis, without resorting to

complicated traces through various paths to trace data definition points.

Information on counts of different variable types, sheer numbers of

variar:" ^^, numbers of input variables, as well as specific information per-

tin^^.,_ c.,, the locality of reference far a variable is available far analysis.

One of the most important characteristics of a program variable is that ifs

value must be retained by the programmer far as much of the program as

it is referenced. each variable serves then as something that must be re-

membered by the programmer/maintainer as the program is being used. The

span of a variable is an attempt to measure this characteristic in a super-

ficial sense - i.e., for what percentage of the program is a variable a

retention problem. The frequency of reference for a variable within this

span is measured by the average distance between references to the variable.

The DATA DIVISION of COBOL specifically defines every program variable.

What is of interest, though, is how these different data types are used

within a program - i.e. are the group hierarchical variables used more

frequently than the elementary level, haw often are copy variable names

referenced, etc. FORTRAN does no} offer this wide variety of data use but

relevant counts can be made of numbers of input variables, dimensioned

variables, etc.

The following are data reference variables collected for analysis.

Data reference information:

coso^.

- total number of variables used in the Procedure Division
r
^'	 - the number of COPY variables defined in the Data Division

a 155
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- the number of variables defined in the LINKAGE section

^-
-	 - the number of files READ plus the variables affected by the INTO

;p	 option of the READ
^s

	_^	 - for each variable:

	

^_- ^ ^	 1. the number of references to the variable within the program

2. the span of the variable - the percentage of the program

^^
spanned by the variable from its first to last reference

	

-	 3. average distance between references within the span
>.

4. type of variable - an indicator of whether the variable

	

_,	 falls within any of the folloVting classes: COPY, GROUP,

	

-	 ELEhiENTARY, LINKAGE, RENAMES, CONDITION, OCCURS, REDEFINES,

7fi:
=	 paragraph name, function name
_	 +6.

^s
FORTRAN

- total number of variables

-	 ,.	 - number of function variables

	

-	 -- number of dimensioned variables

	

'^	 - number of input variables

^^-:
- far each variable;

1. the number of references to the variable

	

`.,	 2. span of the variable

3. average distance between references to the variable within

-	 ^,,
its span

^, type of variable - an indicator of whether the variable is
i^:h

DIMENSIONED, EXTERNAL, FUNCTION, or INPUT

:^,

i
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NOTE: if the variable has been passed as a parameter in an argument;

	

` :,	 list for some function reference, depth of nesting information is col-

;
lected as described in Section 4.A^.2.

4.4.2.3 Structure and Control Flow. Ina discussion of structure and

	

^^	 con•trol flow, there are the obvious program variables which should be enu-

merated - e.g. numbers and kinds of canttal constructs, number of times

sequential flaw altered by a jump upward ar downward, numbers of conditionals

and unconditionals and language-defined loops, levels of DD loop nesting

and sizes of DD loops, ad infinitum.

these types of variables are collected for analysis as follows.

Basic Structure Data:

COBDL

- number of each conditional type -- conditional types are:

IF, DN, SEARCH, EOP, INVALID, END, SIZE

-- number and type of instructions executed on each candit •ion -

conditional types are: IF, DN, SEARCH, EDP, INVALID, END, SIZE

- number of branches in GO DEPENDIWG

- number of ON conditions in a SORT

- number of when condi ti ans i n a SrAR:H

- number and type of ;,est far each condition - (SIGN, CLASS, CDNDI-

TIDN, RELATIONAL)

- number of logical conditions evaluated -- count the number of

connectives plus the number of conditional operators

- number of times the sequential flow altered - number of jumps in

^F
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., _	 program (indicates whether an upward or downward flow)	 ^^

^:	 -number of alters in an ALTER statemen•^

i
-	 FORTRAN	 ,^

"^	 -number of unconditional statement types - unconditiona1s:

RETURN, STOP, GO TO
ti^

_	 -number of conditional s-^atement types -conditional statement 	 ^
ĵ

:.	 types: COMPUTED GO T0, ASSIGNED GO TO, ARITHMETIC IF, IF...,	 ^.,,
`: 1

•,	 READ W/ERR=, READ W/END=, CALL WITH MULTIPLE RETURNS 	 `'
3

-number of DO loops

-length of each DO loop -- number of statements in the loop 	 `'

-nesting levels of DO loops -counts every nesting sequence

<v	 within an outer DO	 -

- number of nested DOs within an outer DO

-number of conditions evaluated in an IF condition -counts all

connectives and relational operators

- number of function references and computations involved in a

conditional expression - tU indicate complications involved

in the logical expression

"^	 -number of Mmes sequential flow altered -number of jumps in the 	 -

program -indicates whether an upward or downward jump
^^.

The above mentioned variables are relevant to program structure
^,

and do provide necessary data points for a description of a program. However,
^.

no one of these characteristics in itself sufficiently handles the problem
5^.•

of measuring struct^►se. Each adds a dimension to a measure but does not

,,^,
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1	 yield an a11-encompassing figure of merit for the structure of a particular
4. P_

program. It is undecided among authors just what kind of a measure is a rea-

w ^-	 sonab1e one for handling the structure of a program. Below are some opinions

on the topic.

Gileadi and Ledgard [33] have written a paper concerning a measure of

program structure. They attempt to measure how well-structured a particular

F	 flowchart is with respect to the precepts of structured programming. An

-^	 abstracted flowchart of a program is mapped into a deterministic finite-state

`	 sequential machine of the Mealy type and then a measure of software work is

applied to the automaton. Implicit in their work is an assumption that the

flowchart doing the least amount of work to compute a given function is in

,_	 fact the best structured. The authors present a minimal example of their

technique a.nd offer na proof for their assumptions. Further, their ideas are

^-	 impractical far large programs.

Qe Balbine [26] has written an automated t:^^l far the purpose of rewriting

existing programs to make their logic mare understandable. !ie claims that the

structure of a program's flow graph alone is sufficient knowledge in order to

perform a goad restructuring of the program. N[eissner [3^a also emphasizes

^^	 the flaw graph as a means of providing independent structural information.

Peterson et. a1. ^2^] have devised an algorithm to restructure a program direct-

ly via its flow graph.

The much-heralded structured programming has been promoted as a cure-a11

for structuring difficulties. If a program is written according to the pre-

cepts of this discipline then the program is supposedly far less complex and

eminently understandable (Donaldson et. a1. [18]). in examining various
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opinions on structured programming, authors point up program characteristics
^^

such as: no jumping around, simple control paths, single entry, single exit,

	

y_	 minimal use of go to, read strictly from top to bottom, no back-tracking, direct

	

-^-	 correspondence between the static form of the program and its dynamic flow

	

ay.	 during execution, program divided into easily understandable units, etc.

Also, -there exist restructuring algorithms (e.g. reference ^24])which make

use of a flow graph in transforming a program to a structured form.

	

,!	 But does this mean that programs cannot be written without using the

	

_	 specific key constructs of structured programming and still exhibit the above-

	

W.	 mentioned characteristics of good structure? Is the problem that FORTRAN or

COBOL programs lack structure or rather that their structure may be difficult

	

_	
to discern? Meissner [34^ contends that the key control statements of FORTRAN

really do little to enhance the recognition of good program structure. There-

	

._	 fore, what is needed is an objective way of examining a program, structured

or otherwise, to discern what is bad structure from what is goad structure.

In so doing, the ideas stated above as to what program characteristics affect

structure can be utilized.

'	 These characteristics of good structure will be analyzed as they appear

in arbitrary FORTRAN and COBOL programs. Included in this analysis is an

	

^^	 application of an algorithm used in a mechanical restructuring method ^24^

which determines haw much effort is involved in restructuring a program. This

algorithm will be defined further on. This approach will utilize the flaw

	

.Y	 graph of a program both far its measureable characteristics and for its

facility in finding other structural data points. This flaw graph analysis

.!
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—	 is independent of whether the program is written in CDBOL or FORTRAN with one
..

p..

exception. This has to da with counting the number of loops tin a CDBOL pro-

	

_	 gram and will be discussed further in the narrative.

As the specific structural data paints are enumerated, definitions and

	

y =^	 explanations will be inserted where applicable.

	

,.	 CONTROL FLOW INFDRi^EATION - FLOW GRAPH DATA

A. Flow Graph

	

'°	 1. Definitions:	 (The following is from Aho and Ullman X25] - cf.

Figure 2 for an application of these definitions)

- Defn: A statement S in a program P is a basic block entry if

a. S is the first statement in P or

	

--	 b. S 3s labeled by an identifier which appears after GD TO in

	

^-	 a GO TD or conditional statement, or

c. S is a statement irnrtediate1y following a conditional state-

ment.

- Defn: The basic black belonging to a block entry S consists of

S and all statements following S

	

•-	 a. Up to and including a halt statement or

b. Up to but not including the next block entry.

- Defn: A flow graph is a labeled directed graph G containing

^, a disting^^ished node N such that every Wade in G is accessible

from N. Node N is called the begin node.

- Defn: A flow graph of a program is a flow graph in which each

Wade of the graph corresponds to a block of the program. Suppose ^,,
a

-:

,^
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read p
read q

soap	 r ^-remainder (p,q)
t ^ r*r
if t W o go to done

p { q
q ^- r

go 1:o i oop

done	 wri te q
hal t

Figure 2A -Sample Program

read p	

f	
gi ocEc 1

read q	 }

loop: rA,^. remainder ^p,q)

^ ^ r^r	 Bi ocfc 2
^ f t = a go -^o done

^ne: write q	 Siock 4
ha7 t

Figure 2. Application of F'iow Graph Defin9tions

l
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that nodes i and j of the flow graph correspond to blocks
^.

i and j of the program. Then an edge is drawn from node i

t0 j if
a. the last statement in block i is not a ga to or halt

statement and block j follows block i in the program, ar

b. the last statement in black i is GO TO L. ar IF...GO TO L

and L is the label of the first statement of block j.

2. Data Collected from Flow Graph

- total number of basic blocks in the program

^.	 -- size of each black - number of verbs in each block

- blocks flowed to from each block

- number of branches to each block

mote: Figures 3A and 3 present an example of this flow graph aata.

6. Interval Analysis on Flow Graph

What is useful about interval analysis is that it places a hierarchial

structure on the program; divides the program into pieces which can be

examined independently, and it eliminates some of the bawl^of-spaghetti

effect by eliminating sec^uentia! and unimportant branches.

1. Definitions:

- Defn: A technique used in data flaw analysis for compiler

optimization. It is ar algorithm for partitioning a flow

graph uniquely into disjoint intervals as follows: If his

a node of a flew graph F, define I(h}, the interval with

header h, as the set of nodes of F constructed as follows:
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Block i	 DO 214 J3 = 1,N

J = TSTOR {J3)
N5 = FMORT (CJ3,2)

Block i + l	 DO 273 J5 = 2,N1

IPOINT = FN{J5)

IF (IPOINT	 GT. I) GO TO 212

B1 ock i + 2	 213

Block i + 3

Block i + 4	 212

Block i + 5	 2l4

61ock i + 6

CONTINUE

SAU(J3) = IPOINT
GO TO 2l 4

SAU(J3) = ENDIT(M,2)
XFACT = IPOINT

CONTINUE

STOP
ENII

Figure 3A. Excerpt i'rom Sample FORTRAN Program with Basic 61ocks Denoted.
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TOTAL NOMBER OF BLOCKS = 7

SIZE OF BLOCK5:	 Size (i) = 3
Size {i+1) = 3
Size i+2 = l
Size ^i+3) = 2
Size (i+4) = 2
Size (i+5) = 1
Size (i+5) = 2

Nurr^ber Branches to i = 2
Number Branches to i+l W 2
Number Branches to i+2 = 1
Number Branches to i+3 = 7
Number Branches to i+4 = 1
dumber Branches to i+5 = 2
Number Branches to i+5 = 1

Block i fiows to i+i_
Block ^+l flows to i^2, i+4

.^	 B'tock i+2 flows to i+l,	 i+3

Block i+3 fiows to i+5

Black i+^ fiows to ia-5

^H	 Black i+5 flows to i ,	 i^-6
Black i+6 flows to

^.

^^

^;.

Figure 3.	 Sar^ple Flaw Graph Data
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a. h t I{h}

b. If n is a node not yet in I(h}, n is not the begin node,

and all edges entering n leave nodes in I(h), then add n

to I(h},

c. Repeat 2 until no mare nodes can be added to I(h)

Note: Figure 4 presents an example of interval analysis

applied to a flow graph.

2. Qata Collected from Interval Analysis Applied to a Flaw Graph

- total number of intervals formed from the flow graph initially

- number of blocks contained in each interval

- span of each interval

of Instructions in the program contained in the interval

-- number of branches inside each interval

non--sequential branches from 1 block to another within

interval

- interval number to which each branch from an interval flows

^^ives same feeling for the "sequentialness" of the inter-

^:onnections between intervals

gives the hierarchy of the structural flow

- sequentialness of the flow

an interval is formed by adding node branches from ane block

to another - therefore, if there is a large jump in the pro-

gram -Flaw it will be indicated by the block numbers making

up the intervals. cf . Figure 5
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Flow Graph, F;

intervals of Fare as follows:

Interval 1	 = {node 1, node 2}
Interval 2	 = {node 3}
Interval 3	 = {node 4, node 5, node 6}
Interval 4	 ^ {node 7, node 8, node 9}

Figure 4. Interval Analysis Applied to a Flow Graph.
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Intervals of F:	 I =node 1
1

*I Z = node 2, node 3, node 8, Wade 9

I3=node?

--	 I4 =Wade 10

'	 Ig =node ^, node 5, node ^

* Na`^E the nodes comparing I Z -indicates non-sequentialness of the

^'1 ow.
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C. Variables Measureable via a Flaw Graph

Aside from yielding information about itself, the flow graph can be

used in measuring other variables as follows:

- span of each branch -- number of statements jumped over by a back-

ward or forward branch

- number of backward branches

vs:

-- number of loops - a loop defined as any sequence of blocks that

can be executed repeatedly

	

_ r	Note: It must be mentioned here that COBOL verbs - PERFORM...UNTIL,

PERFORM...VARY, PERFORM...TIMES - do set up a looping sequence

	

^"	 which will be evident in the flow graph. However, these loops

are essentially independent - i.e. at the end of a PERFORMed
.^ .

paragraph, bar any go to's from the paragraph, control returns

only to the statement after the PERFORM verb and cannot flow

elsewhere as a flaw graph might indicate. Figure 6 provides an

example of this problem.

	

+^	 Two sets of data therefore are available for COBOL programs:

1. Block and interval a^^alysis information with PERFORM

branches included

2. Block and interval analysis plus looping information with

PERFORM back branches and inner looping eliminated

i.e. elimination of PERFORM branches except n =or actual

branches to do the PERFORM

i69

x;^
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Suppose a COBOL r, ^;,gra ►^ was set up as follows:

Procedure Division Using A l , A2

PAR-1 .
Block 7	 PERFORM P7 T}^RU P1-EXIT UNTIL A EQUAL TO B.

Block 2	 MO1lE I to J.
GO TO PAR-2, P2 DEP£NDINC ON COUNT.

PAR-2.
Block 3	 PERFORM Pi THRU Pi-£XIT UNTIL J EQUAL "f0 K.

Block 4 ADD K TO 1

GO BACK.

B1 ock 5	 P1 .
MOVE B TO C, D.

P1-£XIT.
EXIT.

Block 6	 P2.
GO BACK.

then a flow diagram for the above program would be:

NOTE: The flow graph shows interconnection
between Perform loops that really are
not there, e.g. the graph shows that
2-3^5 is a loop.

This is impossible since the perform of
Black 1, is completed before any perform
at Block 3 and therefore the branch to 2
out of 5 does not really exist upon enter-
ing Block 3.

Figure 5. Example of Looping Problem
with COBOL PERFORM verbs.



2-3-4 is a loop with Z entry

paints, nodes Z and 3.
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- number of closed path loops

- intersections and nestings of loops

- size of each loop

- number of exits out of a loop

- measurement of how well-structured a program is (i.e. how

difficult it would be to restructure the program). As +gas

described in Section 4.2, Peterson, et al [24] have developed

an algorithm which determines the degree of difficulty involved

in restructuring a program via its flow graph into a well-

structured program consisting of on;y sea,uences, alternative

clauses, iterative clauses and multi-le^f^7 exits. The method

essentially consists of taunting the number of loops which have

multiple-independent entry points - i.e., there exist paths, whose

nodes are not elements of the loop, from the start node to more

than one Wade in the loop.

e.g..

Specifically, they define the complexity of a flowchart by a pair

of integers (^[,M) where N is the number of nodes in a largest

multi-entry loop and M is the number of multi-entry loops with

N nodes.
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This measure is easily attainable via a continued application o^

the interval reduction algorithm described previously in this

section. 1i' a program has no multiple entry loops then continued

applications of the interval reduction algorithm will reduce the

graph to a single node, if the program does have loops with

multiple entries then the interval reduction a1 gorithm reduces

its i•1ow graph so that all the t1ow graph shows are the multip1e-

entried loops. Figure 7 provides examples of interval analysis

applied in this manner.
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TI Flow Graph F^

The intervals cannot be co^bined any further. The flow graph is

reduced to a loop between nodes 2' and 3' with 2 entry points, nodes 2'

and 3'.
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4.5 Preliminary Results/Future .Analyses/Summer

At this point, the data collection system has been written and both

-_	 FORTRAN and COBOL. samples have been collected. The emphasis to date has

^-	 been concerned with the actual collection of data _ what program variables

-	 should be collected - how the data should be taken - and in general making

certain that as much information as possible is procured from this static

data cai1ection. It is far better to have the capability of obtaining too

much data than too little and it is most important to ensure that this

data is in a farm whereby it can be utilized easily.

This section discusses some preliminary results from data collected
k

an several FORTRAN[ sample programs via the SPITBOL programs SNOINST and

SNODATA, The data is incomplete as information is not available for all

of the FDRTRA1i samples from the structure program SNOCONTR at this time.

Yet, an examination and discussion of these initial results provides

same interesting insights and yields results which lead into several im-

portant directions for future analysis of the data. These directions

are in essence various aspects of what constitutes a measure and provide

a frame of reference for a discussion of the term " measure."

4.5.1 Preliminary Results_

The analysis was based on data points collected from 14 FORTRAN

programs each with a complexity rating as given by their author/maintainer,

This is a summary of some results and it is not intended to be all--encompass^-

ing of the data so far collected. The data paints were selected somewhat

at random as an initial starting point for determining what types of statistics

and counts are relevant and which do not provide useful informatian and
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^`	 therefore need another perspective. Each category will be defined below,

^'°	 the results indicated, and then a discussion of the program data collected
^.

under each heading follows. The circles around numbers indicate those

^.	 taunts or averages or percentages which are grossly different from other

numbers under a particular heading - note that these circled numbers do

'^	 not always agree vrith tine rating of the program given it by its author/

^`^	 maintainer.
^,

These circles under particular headings serve to emphasize categories

;^,	 from which mare data types should he analyzed - e.g. number of function

.j:.	 references discriminates between programs. This implies data on inter-

^"	 face connections, types of subprograms, parameter nesting, etc. should be

^'	 investigated. After a discussion of the data paints individually, a
^-

summary of all the data will be shown via Figure 8, and trends seen in the

data wi71 be discussed more fully.

-.	 In a discussion of each of the individual headings the weaknesses

in each category will be emphasized - i.e. where statistics appear to be

faulty, where more data obviously needs to be analyzed, etc. Also,

strengths in these categories and where these seem to be leading will be

pointed out. Note that we are trying to get statistics that indicate

the "complicatedness" of the progf^am. This can be done mainly in two

ways: via a norm to compare programs against ar by getting data paints

which differentiate between programs.

1. Complexity ^2ating -- the score given to the program by its

author/maintainer in the guestiannaire previously described.

l 7fi

f
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Program
^{umber 1 2 3 4 5 b 7 $	 9 10 11 12 13 14

Complexity
Ratio 1 2 3 5 5 5 6 6.5	 7 7.5 ^	 8 9 9	 9

_

	

	 The rirst category indicates the "complexity rating" given to the

program by its author. No attempt has been made to normalize these. They

•	 are as they have been given - to serve as an initial separator betwEen pro-

:	 grams. It will be obvious, however, with close scrutiny of the data to

follow that same of the program writers thought their programs to be far

more complicated than the data indicates. Some tended to confuse the diffi-

.	 culty in solving the actual problem with the difficulty of writing the

code for it. Or perhaps there are features to these programs, e.g. structure

and control flow, which are not illuminated by the present collected data

but which do merit the complexity rating given by the program's author.

2. Number of Subprograms attached to the Nfain Program

Program
1	 2	 3^	 4Number 5	 6 7 8 9 1 D	 ^	 11 ^	 i 2 13 l4

n Subprograms
Attached D	 0	 D	 D	 E 4'	 0^	 7^ 13 4 3	 l 3 5	 9 1 1 D

3. Percentage of the Program Spanned by Subprograms - haw much of the

total code is contained in subroutines.

Numbe rm 1 2 3	 4 5 6 7	 ^	 8^ 9 1 D	 1 l	 ^	 12	 13	 14^F
Program

Spanned by 0 ^	 D 0	 0 42% 0 ^5D%	 90% ^39%
!
! 73%	 56%	 81%'	 62%	 93

^^	 i5ubpr^^rams ^ i ^ +	 i

177
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The number of subroutines attached to the main program appears to

differ greatly between the programs - and yet the amount of code performed

within these subroutines is an the whole always greater than 50^ of the total

code, implying that the programmers attempted moduTarizatian of a fashion.

Obviously, more samples are needed here to see if this phenomenon holds true

in general. Abetter data point might be to look at how modular the code

indeed is - are the total instructions mainly in one ar two subprograms or are

the subprograms relatively small or at 'least all of approximately the same

size? The way in which the FORTRAN program data has been collected greatly

facilitates this as data counts have been taken for each subprogram independently

of its main program.

4. Number of Logical Operations -	 k^hat is the average complexity
Number of IF Statements 	 of the logical expressions.

Program

Number l 2 3 4 5 6 7 S 9 TO ii 12 l3 14

# Log Operns.
# IFs i 1 1 1 1.1 1.2 7.6 T.4 1.2 1 1.l 1 1.1 1.1

This category, dealing with the complexity of logical expressions,

appears to differentiate minimally between programs.

5. Number of Function References - the number of subroutines, subprograms,

-function stai:ements, and FORTRAN functions referenced in tk^e program.

Program
Number 1 2 3 4 5 6 7 $ 4 TO i 1 12 13 T4

FN
Refs. 7 20 i4 5 66 17 40 108 28 74 ^9 29 61 48

178
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Under this heading, there is a variation in the counts betwee,^ proT

grams but it should be noted that the largest numbers of function references

are not necessarily found in what have been classed as the mast complex pra-

u,	 grams. Since this does appear to be a discriminating characteristic, mare

data in this interface/function reference environment should be included in
i

future analyses.

6. Total Number of instructions ^ the upper part o^^ the block indicates

number of instructions including COMMENT statements; the lower part

of the block is the total instructions without COMMENTS.

Program
Number 1 2 3 4 5 6 7 8 9 10 ll 12 13 l4

instrucs. 93 200 229 387 378 233 797 758 686 398 989 538 950 958
-	 -^----

^--Ins^rucs.
--- -^-_- ---- ----- ---- ..--- ---^ w^-- ---- ----- ---- ----_-- --- -__

No comments
82

l66 lfi7 366 324 185 59l 588 321 320 758 440 700 755

'	 Category 6 is strictly an indicator of size. it is interesting to note
-

that the sizes are not in order of increasing complexity - e.g. the author of
E

t

Pragram 7 with its 791 instructions gave it a rating of 6 whereas the author
i

-	 of Program 12 with its 538 instructions gave it a rating of 9. This at least
s

^-	 indicates that some thought toward program characteristics as apposed to program

size went into the samples the programmers chase for analysis. it should be

pointed out here the difference COMMENT statements can make in some program

sizes -- e.g. Pragram 9 is cut by a factor of 2 in size when COMMENT statements
E

are not counted,
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._	 7. Percentage of Total Instruction Count that are comments.

rogram
dumber

i
2 3 4 5 6 7 8 9 l0 l l l2 i 3 14

%Comments 12% l7% 27% 5% i4% 27% 25% 9% 53% 20% 23% l8% 26% 19%

8. Percentage of Total Instruction Count that are unconditional statement

types -- the upper part of the block indicates the number with

COMMENTS included in the instruction count.

Program

Number 1 2 3 4 5 fi 7 8 9 70 11 12 l3 i4

..^w.. b^_ _3.%_ 2%.. _4%_ _5%_ _Z%_ _Z^_ _$^_ _3^_ _5^_ _3%_ - _3%_ - -Z%__ _a%
Uncondi t. 7° l % 2° 4 ° 5 2 ] 0% 5% fi% % 3% 3% 9

9. Percentage of Total instruction Counts that are conditional

statement types - the upper part of the block indicates

the number with COMMENTS included in the instruction count.

rogram
Number 1 2 3 4 5 6 7 8 9 i0 it l2 i3 14

---°-____-- 6°_ 4 _4° Z3 Z1 _5 21 I2 _5 __6°- __8°- __g _ _18 ° -- __g^___--
Conditional l8% 5% 5% 74% i2% 6% 28%^13w,11% ll% 10% ll% 24% 11%

l0. Perceniage of ^'o•^ai Instruction_ Counts 1F^at are 00_ statements - t1^e

upper part of the block indicates the number with COMMENTS included

in the instruction count.

Program
7^Number l 2 3 4 5 6 8 9 i0 it l2 l3 14

%Dq__-- - 4% i3% 3% 9% 3% 5% 4% 6% 1% 4% 10% 8% 2% 11%

5% 15% 4% 10°6 4% 7% 5% 7% 2% 5% 12% 10% 3% 14%

l80	 -	
J

_^....:.	 .::. _	 , _	 _	 _ . m, :. , ,	 -	 ..	 ,_.., .	 , .	 , _ ,..	 _, _ _. M _	 ..	 <...... ,	 _.^......	 ,> .rte_.	 _, . ..:.



_.	 ^	 ^	 _	
i

11. Percentage of Total Instruction Counts that are Sequential statement

types - the upper part of the block indicates the number with

COMMENTS included as an instruction type.

Program
Number 1 2 3 4 5 6 7 8 9 10 ii i2 l3 14

Sequential 70 79 88 72 79 8fi 57 75 $1 83 74 76 64 69

Categories 7 through 11 are a minimal attempt at instruction type

categorization. With few exceptions, the percentages under unconditional,

conditional, do, and sequential fall within similar ranges far each of the

programs. This suggests that instead of serving as a differentiating factor

between programs, these categories could serve as a norm against which programs

could be evaluated. Obviously, more samples need to be looked at befo g°e any

conclusions can be drawn but this initial data indicates how this type of

statistic could r4 used.

12. Average Subprogram Nesting Depth

Program
Number 1 2 3 4 5 6 7 8 9 i0 ll i? i3 i4
Avg. Subprogram
Nestin	 De th 1. i. 1. 1. 1.6 7. 2. 2.b 1^1.? 1.4 2.1 1.9 2.6

l3. Number of Subprogram Nestings - how many subprogram branches emanate

from main program.

Program
Number i 2 3 ^ 5 fi 7	 8 9 10 11 12 i 3 i 4
^ Subpro-
ram Nestin s 3 1 3 2 2O 6 17	 25 ll 6 21 ll 27 26
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'"	 the average depth of subroutine nesting, category 12, does vary

between programs but here average is not a good indicator of anything.

the median depth or maximum/minimum depths would yield a wider spread

;a	 between progr^ .ms. Perhaps, though, this average nesting depth should be

-	 looked at in conjunction with category 13, the number of nestings. For

example, the average nesting depth of l.4 of program ii compares favorably

with that of program 12 with its nesting depth of 2 when consideration is

given to the fact that program 11 has 21 such nestings whereas program 12

has only i1. 5o where program l2 has more depth in its function references,

program 31 has mare breadth, i.e. mare nestings to be concerned with.

i4. Number of Breaks in Sequential Flow of Program - how many times

is the program broken by a jump upward or downward or a do loop.

Program
Number i 2 3 4 5 5 7	 8 9 TO 11 12 13 i4

^
Breaks

22 3^, i b 45 58 7 8
^ ^

45 52 5^ g 4^ L^3 09

The number of breaks in sequential program flow obviously differsn-

tiates betareen programs - witness how program 9 and program l0 appear to be

totally out of place in this category with programs having eve}7 lower complexity

`	 ratings than they. This general category leaves the door wide open for expiora-

tion into all facets of this program flow problem and emphasizes the need for

inclusion of the contra? flow and structure data from programs SNOCONTf and

_,	 SNaCONTR2.
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15. Number of Instructions	 - an indicator of haw many program
Number of Sequential Breaks

statements on the average can be spanned without hitting a

"jump" of same sort. (The upper part of the block indicates

the average for total Instructions including comments - the

lower portion of the black is for instructions excluding comments.?

Program
Number 1 2 3 ^ 5 6 7 8 9 10 11	 l2 13 l^.

.	 .

4.9

Y

,^
tt

Inst. 4.2 5.9 14.3 4.1 6.5 12.9 4.1 3.3 15.2 7.7 6.5	 5.7 4.1

^ $eq.Breaks 4.9 10.4 3.̂ 5.7 10.3 1^ ^a3.1 7.2 6.2 ^5.0 4.7 3.^_ ^ - 8^,

Category 15 is an attempt to negate size and question within any

program, on the average, haw many statements can be spanned before hitting a

break in the f'iow. Notice that while program i is a relatively sma11 program

of 93 instructions with a not-too-high total number of breaks in sequential

flow {when this category leaked at independently}, it has a very low ratio

of program jumps to number of statements, indicated by category 75, making it

comparable in this regard to programs with complexity ratings of 70::

l6. Percenta a of Breaks in Se uential ^7ow Downward -

Program	
1	 2

Number
3 4 5 6 7 8 9 70 ll 12 13 14

° °
Down	 82	 24% 37.5° 54% 64/ 28% 72% 65% ,{;;+	 ^ 48ro 37% 50% 71 % 45%

9
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17. Percentage of Breaks in 5eguentia7 Flow Upward -

Program
Number 1 2 3 4 5 b 7 8 9 TO 11 12 T3 14

gp 0% 3% 25 9% T6%	 5% 12% 74% 36 23 2% 3% 21 4%

18. Percentage of Breaks in 5equentia7 Flow Due to DO laops -

^--^
Nrogram
Number 7 2 3 4 5 6 7 8 9 T O 11 12 7 :s 14

Loo 18% 73 37.5° 37% 20;6 67 i6% 2T% 15% 29% 6T 47 8% 51°

'F

Categories T6, 17, 18 delineate these flow breaks of category 14 into

^,^	 upward, downward, and iaap. This data, in its present form, daes not really

indicate too much of anything. Even within the set of programs with a Targe

number of breaks in their flow (e,g. P^;^gram 7 and Program il) the percentages

..	 of each under the three headings vary greatly. A lot of upward flaw, accord-

ing to good programming techniques is considered a bad a€nen -but perhaps this

is best measured in terms of numbers of 7ocps and backward Branches and the

span of each and not just by a count of how many upward jumps exist in the

program.

19. Average size of DO loopy -

program
Number 1 2^ 3 4 5 6 7 8 9 TO 11 12 13 T4

Avg. Do
Size 17.0 14.3 41.8 19.3 19.3 9.2 4.9 11.7 11.6 6.6 13.E 11.1 7.9 4.0

i84
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20. Number of DO Loop Nestings - the number of outer D p 's in the program.

Program
Numb_; 1 2 3 ^# 5 6 7 S 9 10 l i 12 13 14
# DO LOOP
Nes ti n s 2 12 q^ 2^- 9 1 l 3D 31 6 11 •54 25 19 79

2I. Average Depth of DO LOOP Nesting -

Program
Number	 1 2 3 ^# 5 6 7	 8 9 1D	 11 12 l3 19^
Avg. Nesting
tie th	 7. 1.3 .5 1.8 .7 .4 .l3	 .8 .7 .6	 1.7 .9 .45 .5

The average DD size, category 19, is again an instance where average is

not a good statistic. This average would tend to de-emphasize programs where

essentially the whole program was a DO loop but where there were many smaller

DO loops within the program thus decreasing the average size. A maximum;

minimum or median statistic or even the numbers of DO loops falling into various

size categories might be a better indicator of haw complex the DO loop structure

of the program really is.

Whereas the number of DO loop nestings seems to be a good differentiator,

the average nesting depth for a DD loop appears to be a faulty statistic in some

regards. It does not yield a good picture of how complicated the DO expressions

of a program are. Here a statistic such as the maximum nesting depth and

... breadth and the size of the outer DO for this nesting would yield a more informa-

;;	 five data point. Other statistics on nesting will at least indicate whether 	 -y3
^	 -

;o ^^	 what appears to be true right now, i.e. nesting depth of DO loops (no matter how	 `9

3	 it is measured} is minimal for most programs - is indeed correct. Also, we
i	 '..

„,;,
<^^	 .:

3 85
r ; ^ !	 _^

^< <
;,

,.
f^k



24. Total Number of Variables Rei'erenced in the Pro ram -
:,

^.

^m
S:
3'

11 a

_-	 25. Percentage of the Variables which ar,t :	 ^--	 -z^:	 ..

ri_

'^ ^
	

Program
a	 Number	 i	 2	 3	 4	 5	 6	 7	 8

^''	 ; n u t	 14/ 2a^ i ^,^ 24^	 6%	 8%	 2%	 b'

Program

Number 1 2 3 4 5 6 7 8

Vars. 28 30 707 9fi 773 100 ^ 3

want statistics that indicate "complicatedness" within a program and perhaps

the above mentioned is a better way to get at this.

22. Average Number of References to a Variable -

Program
Number 1 2 3 4 5 6 7	 8 9 10 l i i 2 i 3 14
Avg. #
Re^Fs. 5.4 5. 4.4 71.0 5.7 5.3 3.4	 4.0 4.9 6.7 5.7 3.6 3.7 6.4

23. Average Span of Each Variable .. on the average, what percentage

oi' the statements in the program are spanned by the variable.

Program
Number 1 2 3 4 5 6 7 8 9 i 0 11 i 2 13 ^ i 4
Avg.
S an 38.3 6. 23.9 35.1 30.5 37.7 25.6 32.0 34.4 35.6 33.0 32.0 31.8 42.2



^a

^^

,,,,}.	 ,.

^::

g:

}

a

1ariables within a program are considered under categories 22 through
.. ^: 	-^

'^^,^	 25. Of these four, only the number of variables differs greatly between the

programs. It is interest^ing to note that the average number of statements

^-^	 spanned by a variable from its first reference zn a program to Zts last

reference falls within the same approximate range for most of these 14 pro-

grams. It is also of interest to point out that this span of a variable's

reference is quite large - "remembering" a variable and its value for 30 state-

ments or more certainly retards retention span.

26. Average Segment Size - average number of statements between

labels.

Program
!Number 1 2 3 4 5 6	 7	 8 9 10 11 12 13 14
Avg. Seg-
ment Size 4.l 6.2 fi.4 8.0	 ^ 4.9 5.3 5.3 6.2

27. (Number of Labels in the Program -

,;

^:^.^

^:

Program
Number 1 2 3 4 5 fi 7 8 9 10 11 12 13 l4

abets 22 40 2fi i07 50 22 41	 5 17 G1 37 131	 fib 2^Q 9^

^E

Average segment size and number of labels is an attempt to loofc at

pieces of a program - what is the so-called eye-span for the programmer as

the program is scanned. This average and the count of labels is in no way
,,

^.^	 indicative of the program's flow,. Since a labeled statement tends to be a

"referred to" statement within a program, the fact that the data collected
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io.3 ^^ .Ŝ 67y y z. II •^ S.3 3T. i /ao ^Z ^o .7,Z

PRQGR A,n 7 ^ 7

-

a9b !.6 ^o
qyr

z-^7,
77"_ro

^ y ^ ^
S

^ ^
^. ^7 l93

.^ ,
7 I,Z7 /67 ^F9 3D .13 3.^ ,Z.s^6 ^oz ,c'^ 3.5 Q/,,y^ ,^ .^^ ^ 1

PrtOGRAr^ 8 ^...^ 13 yo% /•1,L /vd

^^^

^^ 1 ^o

^^.

S /z^^^:^'

67•

7''
Gq9

7S z.G ,ZS 2.7^

s.^

3.1 1° i1^7 .Z/7, 117 31 ,^ ^! 0 3z .0 y35 6 1c 3.T X77
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for average segment size differentiates between the programs, reinforces

the need for same sort of measurement of program pieces. The control flaw

blocks and interval analysis described previously is a better statistic for

this data ^- these data points at least follow the true control flaw of the

program yielding program segments more indicative of what the eye-span in

following the program has to be.

4.5.2 Future Analysi s

Figure 8 captains the data just enumerated in summary form. With even

a cursory look at this figure a couple of points are obvious: first, the

complexity rating scheme of the questionnaire, while providing an initial

means of separating the programs is too dependent on the individual programmer

and therefore is not uniform, and second, there is na one variable that by

itself appears to differentiate between categories of programs. But it is

clear that the analysis techniques employed in Figure 8 for getting counts,

averages, percentages,.etc. can yield valuable information and can serve as

a beginning in predicting trends in data. Same of these data categories indi-

cate they could be a standard norm against which programs can be evaluated,

e.g. complexity of logical expressions (category 4) while others are obvious

differentiators between programs, e.g. category l4, the number of breaks in

^^equential flaw. This type of analysis also points up where categories appear

to	 inadequate and yield no conclusive information and where a different
,.^
>3

^_Q	perspective on a variable is needed - e.g. average nesting depth of a DO loop.

There are a large number of ways to manipulate the data collected but

`"	 there are also limits as to how many samples can be collected and analyzed.

^a

i7

t



^^. A 50-dimensional feature vector cannot be put through an analysis based on

^^.,	 ^^ only 50 sample programs.	 Therefore, the types of analyses done in Figure; 8

must be used to refine the data ccllected into a set of relevant statistics

which can in turn be used in mare complicated schemes. 	 But even at this, there

,^ are just too many data paints in the program's feature vector. 	 Therefore,

^^= same type of selection technique must be chosen to decide exactly what variables

;".,	 . should constitute a reduced feature vector. 	 This implies in essence that we
^^

are selecting a specific measure with which to evaluate complexity.

Instead of choosing specific variables as definitive complexity factors,
:;^

a scheme was set up to investigate a wide variety of variables as passible{_

^= complexity factors. 	 Similarly, a more objective method for selection of a

" complexity metric would be to refrain from choosing a specific technique as

ti	 A ^

a measurement tool and instead explore multiple techniques that could serve

as a means far getting a complexity measure.	 The data can then be looked

at through various frames of references.	 That is, different sets of variables

^^- can be analyzed using varying techniques. 	 By not choosing one specific

direction for data analysis, the program can be viewed as a learning problem,

4r

as a series of retention barriers, or as simply a group of structural factors
^-

^M
or data factors ar combinations of each.	 Also, techniques that allow a

random choice of variables to be input and then provide a elassification of
3	 '.

^^

^,
,^

these arbitrary variables into groups can be utilized.

^^,

r

^_

^;^'
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Statistical techniques such as multivariate analysis, factor analysis,

	

^'	 and cluster analysis are eminently suitable for taking different pieces of

	

^-	 information and combining these pieces into a single "best" predictor of,
F̂_

complexity. It is possible to approach a measure in several ways using

these methods - e.g. as an equation for predicting an unknown complexity

score of a program from the known set of complexity factors or as a measure

	

^'	 of the significancE^ of differences among groups of feature vectors.t.

	

--	 There are methods then available for exploring various sets of complexity

	

"	 characteristics. These can be utilized blindly, i.e. with no rhyme or

	

i	 reason as to how the characteristics .ire put into the feature vector. The

interpretation of the results might be difficult in these cases and would

necessitate some type of subjective judgment as to what the measure actually

was predicting. Therefore, a frame of reference must be given to data used
i.

	'^^	 in these techniques. As was seen from the preliminary results, there are

quite a few natural groupings in the variables which could be used. Some

ideas for different frames of reference for the variables are as follows.

Weinberg [35^ states that "psychologists have long observed that the

	

^-	 capacity of the brain to deal with several items at one time is limited."

	

'^^	 He feels that about 30 lines of code, divided into 3 or 4 groups, is about

	

`;	 all that can be mastered. N^iller [36^ points out that there exists a finite

span of immediate memory and fora lot of different kinds of test materials
;.

	

':	 this span is about seven items in length. Further, to increase the amount
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:^
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^:

^'
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f

s

f

1.^

that organize a program into "good chunks"? Therefore, collected program

characteristics that affect retention span or affect our "learning" the

program can be used as input into a multivariate analysis scheme. Factors

such as numbers and sizes of modules, depth of subroutine and parameter

nesting, numbers of blocks in a flaw graph, numbers and sizes of unique

intervals the program can be broken into, etc. are just a few of the

possible input variables.

Another frame of reference would be to use Cunning's [37] style and

attempt to take the fog out of a program - to eliminate "noisy" unnecessary

complexity. Instead of coming up with f^tors that differentiate, a set of

standard norms would be developed - a set of principles which would serve

as a yardst?ck against which other programs would be measured. Variables

used in tnese techniques would be those that initial analysis showed could

6e normalized to give a number considered "non-harmful" or a reasonable

standard to set for the program's comprehensibility.

The list of possibilities for structuring the data is endless and each

presents a new orientation which is far more worthwhile than a single complex-

ity measure, Fc (Xl > X2 , ... Xn }, where each X i represents some arbitrary

program characteristic. The goal is a single complexity measure but one

which presents complexity as a multi-faceted problem. Structural complexity

versus interface complexity versus retention span complexity, etc. will all

be aspects far which measures are at hand. These are perspectives on the

problem which can in turn be measured for their individual worth in evaluating

a program. In this way, then, we wi11 have attempted to investigate the
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problem from all sides and will therefore have far better foals for an

evaluation and judgment for any program at hand.

4.5.3 5umma^

The previous sections have provided justification for an investigation of 	 ^

;,
program complexity and have described a method which attempts such an investi-

gation. The implementation phase of this data collection method is under-

way and emphasis is presently on actual data analysis. It is now possible
1

to discuss a program objectively in terms of its collectible characteristics.
^;

If results to date prove co,rect, even straightforward analyses of the

data can be quite useful in assessing a program via its complexity. ^fith

data available from CO^OI, programs as well as FORTRAN programs, inter-language

comparisons can be made. Conclusions from analyses are therefore applicable

in both the scientific and data processing spheres of influence.

Each phase of the investigation provides a reuseable tool for program

analysis not only in terms of complexity but also in other areas of an-going

research. The previous section described the thrust for future research in

the complexity area and the solution of the immediate goal of a complexity	 '`

measare. However, since the data collected provides objective information

on a program, then a profile ^f each program in terms of its measureab1e

characteristics is available. This provides a firm basis for understanding

the source of the reliability problem, the program itself. For it is impossible

to discuss sof^ware without objective data to reinforce opinions and this

data collection method makes uch data readily available. 	 _
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5.0	 INSTALLATION AND USE OF TWE DAVE SYSTEM
AT TEXAS A&M UNIVERSITY

^^ DAVE is a large FORTRAN program (approximately 22,000 FORTRAN state-

^^'r:
menu and :.omments) designed to perform static analysis of FORTRAN programs.

^;

DAVE was developed at the University of Colorado by Professors Fosdick and

Osterweil during the past two years.* A comprehensive description of the

DAVE System is provided in Section 6 of this report. 	 This section summarizesR°

^?p the experiences gained in installing DAVE at Texas A&M University for the

°- eventual purpose of running it through DOMONIC.

^a
DAVE was acquired by Texas A&M in order to gain firsthand experience

with a large, automated program testing Coal. 	 Installation of DAVE was:^

complicated by the fact that it was developed on a CDC 6400 Computer and was^..

transported to the IBM 360/65 at Texas A&M.	 A previous attempt to install

	^^	 DAVE on the IBM Computer at Argonne National Laboratory was unsuccessful,

	

^'	 largely due to incompatibilities between the CDC and IBM FORTRAN Systems.

	

T	 A tape copy of DAVE was received by Texas A&M in May, 1975. During the

next month, a low level effort was directed to reading the tape and setting

up the 30 separate disk files of information that comprise the RAVE System.

In June, the head Colorado programmer an DAVE visited Texas A&M for a

eel:. and substantial ro r^ss was made toward installation of DAVE. Aw	 p g

	^^	 short time later, after exchanging numerous phone calls and letters with
^r

Colorado, DAVE became operational at Texas A&M. As a result of the experience

gained here, DAVE was successfully installed at Argonne National Laboratory.

	

''	 * This work was sponsored by NSF Grant DCR 74-24546.
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Many of the problems encountered during the installation of DAVE were

	

;gin	 caused by the size and complexity of DAVE and by the resulting communica-

^;.
tion problems in understanding what was required to install DAVE. For

	

°°	 example, 30 files had to be created and named, and certain of the tiles

had to be processed in specific order to initialize the system.

Other problems were installation dependent. Tn some cases, bugs in

the DAVE System that did not affect the operations of DAVE on CDC equipment

^;
were exposed on the IBM System. For example, an array that was not properly

	

^_^	 initialized by DAVE did not affect the CDC operation, because the CDC

	

-^ }	 System automatically initializes core memory to zero. Wowever, the IBM
t

System does not initialize core and the problem became evident at Texas A&M.

	

^'	 Also, certain CDC non-RNST characters were used in writing DAVE and had

r
to be replaced with EBCDIC characters for TBM operation.

6^:

	

-,	 Another problem was that the maximum allowable length of a single

record on TBM equipment is 32K bytes, which is less than the limit that was

being used to write certain records of information on the CDC machine.

	

^^	 Daring the past two months (mid-July to mid-September), DAVE has been

used to analyze several FORTRAN programs. Experience with DAVE indicates

that it is a large system and that it is rather expensive to operate. For

example, processing a 50-Iine FORTRAN program requires approximately 300K

bytes of memory and l.6 minutes of execution time. Compilation of the DAVE

System, which is required only once per ins^callation, needed 1lOK bytes of

core memory and 25 r^inutes of execution time.

On the other hand, DAVE is very good at identifying illegal and

questionable FORTRAN program constructions. Atypical DAVE analysis of

r
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{'	 a FORTRAN program is attached to this paper. The cost; of analyzing a
:C

	

::' ^	 program using the DAVE System must of course be balanced against the cast

	

^'^	 of an undetected problem in the program.
uu

,-
One feature of the DAVE Sy^'cem deserves special comment: DAVE

	

^^	 assumes that the program being analyzed adh^^res to the ANSI Standards

	

,,-	 for FORTRAN programs. However, it does not checEc for conformance. Thus,
^.	wn	

a non -ANSI program can result in unpredictable behavior by DAVE. TI-^e
^..

	^,^	 system would be improved by adding an ANSI chec^Cer as a preprocessor to the

DAVE System. This would, of course, increase the size and complexity of an
x-

a1 ready large and complex system.

	

•^	 The following pages provide examples of output from the RAVE System.
^^-

^-
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6.0 TESTING, VALIDATION AND VERIFIGATION

The objective of testing, validation and verification is to produce

quality software. Yet, what is quality software? As the adjective implies,

quality software is software of high value. It is software that performs

the function it was designed to perform with dependability and reliability.

It is software that is well-structured and documented, as well as easily

manageable and modifiable.

This report is not concerned so much with the specifics of structure

and documentation, et al, as it is with the testing aspect of reliability --

the elimination of errors or bugs in software. An error or bug indicates

the software failed to perform its intended function far a particular input.

This is not to say that structure and documentation are not impo N^;ant aspects

of software quality that facilitate testing and, in fact, several aspects of

developing softwa^^e systems that facilitate testing will be discussed.

The following discussions deal primarily with testing batch programs.

These techniques are applicable. "o some extent to time--sharing and real-time

programs, but the additional complexities of these types of programs create

a number of difficult problems for testing.

6.1 Terminology

To establish a basis for discussion, several definitions will be

presented. Testing implies an attempt to measure haw well specifications

are met. There are two problems in this: first, to define the acceptance

criteria to be used, and second, to specify unambiguously exactly what is

2i4
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^^^

ry^ expected of a piece of software. The specification must be adaptable to
S

allow gxtensions and alterations to the code without making the acceptance

criteria ambigupus. Frrors or bugs are examples of failures to meet the
z
^^a

specifications for a particular piece of software. But differentiation
4	

between debugging and testing should be made. Testing has already been
u^

^-
defined, debugging starts with known errors and attempts corrections. The

.^	 two are related since testing discovers the inputs (errors) for the debug-

--	 grog prt,ress.
^:

'^	 Validation will be defined as assuring the logical correctness of a

^:
program in its operating environment. While verification will be concerned

with logical correctness independent of the program ' s environment, the
^^

^	 non-logical properties such as resource utilization, execution time, I/Q

^;	 device requirements and functional measures of effectiveness will comprise

^'	 the area of performance testing [1].

6.2 Goals of Testing

:;,	 The primary goal of testing, as mentioned earlier, is to aid in produc-

ing a piece of quality software. The objective is to remove errors in the
_	 ^,;

software so it meets its specifications. This is certainly anon- -trivial^.^,	 _^

^.	 problem. Dijsktra has said, "Testing shows the presence not the absence

^=	 of errors" [2a. ^Jnfartunately, this is all too true. Testing problems are
i

^roadiy placed into two categories: i} how do you test software, and 2} how

do you know you have effectively tested the software. The types of testing

will be discussed later.	 _^
_	 I

Simply stated, the goal of testing is to eliminate errors. Fora
^;

^ ^ Î	sophisticated piece of software, this becomes extremely difficult. The
;:

`^
3._	 ^.,

`	 ^ ^	 215	 ^ :.!
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,`

' ^ W._ ^^



. _	 _	 _	 _..	 ,	 ..	 1	 l	 ^

..^_
ûn

feasibility of testing all variable ranges and branch paths may well require
3	 ^^

:'s^ ^u	 astronomical amounts of time ^3]. So, what is the solution? After--the-fact

^,	 testing, as already stated, is a very difficult task. Some solutions to

tr
the problem may be found in software generation practices. Many techniques

i^

a
are now coming into vogue that generate software with fewer errors and also

..

^.
facilitate testing [3a,b,c]. The latter concept is very important -- to

design and generate software with testing plans incorporated. The above

;-	 approaches will tend to make testing a more tractable problem.
r

^^	 Concomitant goals of testing are to minimize effort, cost and time

k	 for checking software. Also, it is desirable to have same means for measur-

ing testing ^ffectivenes5. The continuous testing of software as it is being
^:

I	 generated, plus documentation of this testing, greatly enhances the over-all

;-	 aspect of testing.
f

r.	
Ideally, the test philosophy is that tests be complete, controlled, 	 <^°

}^	 reproducible and documented in depth.

-a

a'	 6.3 Types of Testing

Testing can be employed in a myriad of ways. The following sections 	 =`

discuss testing from informal tests through automated formal testing. 	 ^^

^^	 2J;,
^^

6.3.1 Informal Vers us Formal	 `'

One of the basic premises of testing is to test early in the develop-
.	 ^.

},	 men t. Statistics [4] have Shawn that testing can comprise up to 50% of

^-	 software development time. One simplistic way of trying to offset this	 -

large expenditure of time is to train programmers to perform informal

testing as they develop the software. Simple desk checking and the running
{ a

:- 1

1

'{ r 	 J
_	 ty

.' _

tju	 i

_	 2l6

k	

f

.	 ^s` ^=;	 I

^ t ..,	 ,.	 ,
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is
^i

i^

r^ [r

of a simple test case on small sections of code as it is developed can be

-	 a
^.

very beneficial .

-^ Formal testing can cover several aspects. Formal test specifications
i^nu

may k^e created with guidelines as to their executions. Formal proofs of

^^ correctness may be attempted. These are discussed in a later section.

Separate test teams may be formed to test the software.	 For if a
;-

?r separate test team can indeed test the software using only the system

^^ documentation as provided by the developers, we have a better piece of soft-

^.
ware.

^	 6.3.2 Testing Stages

^.^	 Beyond the stage of informal individual programmer testing of soft-
^'

ware, besting may be viewed in three stages; integration, acceptance and

i^
!	 field. Software systems are usually developed in modules. As modules are

completed, they must be integrated into the total system and interfaces

must be checked out to assure compatibility. Once ail the modules have

i^	 been integrated into the system and it has been delivered to the customer,

the software system must undergo an acceptance test, here, specifications

for the system are checked against the operational software. Certain

^^.
software systems may have field sites for operation. If this is the case,

1`
^-	 tests to check confirmation with field specifications are necessary.

6.3.3 Manual Versus Automated

;-	 The discussion of testing so far has centered around temporal aspects.

,:
"'	 But once we have decided when to test, how da we actually perform the test-

,	 ^	 ing? Testing runs the gamut from structured manual to automated systems --



i

which of these techniques is applicable? Flow can test data be generated,

manually or automatically? These tapirs will be covered in a latter cart

of the report.

6.4 Integrated Top^Down Testing

Classical software development has been a bottom-up procedure where

the lowest level programs are coded first and then tested and integrated

into the system. Extraneous driver programs are needed to perform testing

and lower levels of integration. Data definitions and interfaces tend to be

simultaneously defined by several people and therefore inconsistent. There-

fore, during integration definition problems arise. Interfaces and data

definitions frequently need to be reworked. Pro`^1em isolation is difficult

because of the large number of possible sources.

6.4. ^! i.^p -Dawn Deve1 apment

The tap-down approach is modeled after the approach to system designs

and requires that programming proceed from developing the interfaces and

data definitions downward to developing and integrating the functional

units ^5], Top-dawn programming is an ordering of system development which

allows for continual integration of the system parts as they are developed

and provides for interfaces prior to the parts being developed.

In top-down programming, the system is organized into a tree structure

of segments. The top segment contains the highest level of control logic

and decisions within the program, and either passes control to lower 1eve1

segments, or identifies lower level segments for in-line inclusion. This

process continues for as many levels as required until all functions within

218
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	^= r„	 a System are defined in executable code. The top-down approach requires
,4

that the data base definition statements be coded and that actual data

	,'^	 records be generated before exercising any segment which references them.
r
c^

Software is produced which is always operable and always available

	

{	 for successive levels of testing that accompany the corresponding levels
^:..

k
of implementation.

d;,

6.4.2	 Testing and Integration

p The top-down approach to testing and integration starts with the tes t

i
ing of the highest level system segment once it is coded. 	 Since this seg-

°^ ment will normally call or include lower level 	 segments, code must exist

`^ for the next lower level segment.	 This code, called a program stub, may
._

be empty, may output a message for debugging purposes each time it is
k

executed or may provide a minimal subset of the functions required. 	 These

stubs are later expanded into full functional	 segments, which in turn

i - require lower level segments. 	 Integra ti an is,	 therefore, a continuous

activity throughout the development process. 	 During testing, the system

executes the segments that are coded and uses the stubs as substitutes

for what is not yet coded. 	 Thus, the need for special test data drivers

is eliminated.	 The developing system itself can support testing because

-- all the code that is to be executed before the newly added segments has

previously been integrated and tested and can be used to supply test data

to the new segments.	 Therefore, most problems are localized to the newly

added code.	 As the new segments are tested within the developing system,

the control	 architecture and system logic are also tested.
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v The testing cycle is pa rtitioned in the following manner. 	 Vest require-
1^.

E	 ^^N
ments identify the functions to be tested, specify the number of cases, the

^:
,>
-	 _ ranges and limits of data and describe the hardware and software environ-

ment.	 The test requirements specify the degree to which the product goals --

function, interaction, performance, operability, and useability are evaluated.

3"
^:

t	 t s ecification details the test deli n a 	 roach and testThe	 es	 p	 g	 pP

`

s	 ^^ ^

structure,, and identifies the methodology and procedures for testing.

The design review tests the software specification compliance with

,^ ^^. system requirements and assesses implementational feasibility. The review

also evaluates accuracy, compatibility with other software and hardware

.1
and compliance to standards.

^.^	 TOO 5Automated Testing _	 7

^_^.

Rutomated testing tools can be partitioned broadly into two categories.

First, the automatic generation of test data for exercising software and,

second, the automatic monitoring of software to obtain characteristics of the

i';
software.	 Qbviously, the two interface, for the test data may drive the

'^	 ^° program for automatic monitoring.

6.5.1	 Automatic Test Generation
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a	_	 alphanumeric, a7ph^betic, zoned decimal, packed decimal, binary number,

,.	 ^;.	^ 	̂ collating sequence and random number. The user supplies as input to IEBaG
`,,g.	

^	 the pattern type and the appropriate output pattern (random) is generated.

,.
:..	 3,

	'` k ="	 6.5.1.2 The question arises as to how to generate data to test

	

.^.	 ^ ,

-° <:
variable ranges. It would be desirable to have languages that allow

	

` "	 variable range specification. In turn, the compiler could insert code to]':

check these ranges.

Another approach being investigated is the Niunte-Carlo generation of

software tests. This is coupled with heuristics to make the test generation
,.

,;	 ^^	 process more efficient by increasing the probability that a randomly

	

^^	 generated test will exercise a portion of the range of a variable which had
r`
z -

npt previously been exercised and test the code more thoroughly ^6^.

	

'"	 6.5.1.3 A third problem is concerned with obtaining an optimal set

;-

	

'I.	 of test cases which exercise all branches in the source code of the user's

^;
saf^ware modules. Exercising every path is impractical, but it is desirable

and feasible to exercise all logical branches in a module. A determination

^	 of these paths allows generation of the test data.

	

'^	 To arrive at this objective, a segment of code may be defined as the

-	 .'
smallest set of consecutively executable statements to which control can

.:
be transferred during program execution. The first statement will be

	

^:	 directly accessible from another segment and the last will be a transfer

	

^:	 to a new segment. The segment relationship will be defined as the relation-
f

	^'	 ship between two segments of code resulting from the transfer of control

	

^^	 of execution from the first segment to the second. The objective now
f'

221
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^:

becomes: find the minimum set of paths which exercise all the segment
,^°

'` G^ uw	 relationships in any sub ,̂ ect module.

,^:, A method has been devised and mechanized to automatically generate

;f	 .
"^ the optimal path.	 This path and the relevant branch information in source

µ code form is displayed to the user to aid in generating the required test
nn

data for execution [3].

^̂^ Nowden [7] has developed a method for decomposing a program into a

^. finite set of classes of paths in a manner such that an intuitively complete
^.

~• set of test cases would cause the exe CUtiOn of one path in each class. 	 The

°^ approach attempts to generate test data for as many of the classes of paths
^.
,.

as passible.	 The method constructs descriptions of input data subsets

which cause the classes of paths to be followed. 	 Then the method transforms

i
these descriptions into systems of predicates which it attempts to solve.

.,
'- Miller [S^ has based automatic test case generation on a'priori knowl-

edge of two forms of internal 	 information: a representation of the tree

of subschema automatically identified from within each program text, and

a representation of the iteration structure of each subschema. This

^	 partition of a large program allows for efficient and effective automatic
s,.

^=	 test case generation using backtracking techniques,

'^^	 During backtracking, a number of simplifying, consolidating, and

consistency analyses are applied. The result is either ^l) early recognition

ti	 of the impossibility of a particular program flow, or {2) efficient generation

of input variable specifications which cause the test case to traverse each

`^ ^^	 portion of the required program flow.

f:^: ^r
^.

^' `^	 zzz^:.

^:=
u
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-	 _	 fi.5.2 Automated Monitoring Systems

`` i m	 The fallowing sections review five automated software systems for^.

_^	 the facilitation of testing and consequently improving software reliability.

^.
Two types of analysis may be recognized - static and dynamic. Static

t..
anayysis results in code being examined without execution, while dynamic

analysis studies execution time characteristics. The following systems

^.:	 exemplify both types.-

^^	 6.5.2.1	 PET

- f .	 ^"he Program Evaluator and Tester ( PET} Eg7 is a program test evaluation

tool which automatically generates self-metric software from existing soft-

^	 ware. Basically, the technique instruments the source code to effectively

measure its own behavior. This system was developed at McDonnell Douglas

^_
As^cronauti cs Company.

v This system has been implemented for FORTRAN and consequently has

demonstrated the value of a self -metric approach for higher level languages.

This tool basically instruments an application software package by inserting

the software equivalent of sensors into the package. Therefore the package

is self-measuring. Each time a significant event occurs, the system records

it.

,;
^-	 Two techniques have been used to implement software sensors: ( 1) direct

^	 code insertion, and (2) invocation of runtime routines. The `direct code
I?

insertion appears to be faster in most cases but the run-- time routine is
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As a result of running the instrumented application program, a profile
^^,,

^u	 is produced containing part or all of the following measurements:

--	 1. The number and percentage of all potential executable source

^8
statements which were executed one or more times.

2. The number and percentage of those program branches taken.

3. The number and percentage of thaw subroutine ca71s which were

executed.

A^. The number of times each subroutine was called, together wit1; a

list of those subroutines that were never entered.

5. Relative timing on the subroutine level.

6. Specific data associated with each executable source statement.

a. Detailed execution counts.

b. Detailed branch counts on all IF and GOTO statemer`.s.

c. Optional data range values (min/max/first/last} on assignment

statements.

d. Optional min/max ranges on DO-1oap control variables.

These summar i es and detailed reports can be employed t^ establish a figure

for the degree of testing to which the program has been subjected.

PET consists of 2 ma3or components (Figure 1):

tl) A high'ry structured preprocessor which instruments the source

program in such a way as to made it self-metric, and

(2} apost-processor to generate reports from the execution measure-

ment data produced by the instrumented self-metric software.

Both of these test systems components are written in a high-level

224
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--	 language to create a more easily maintained system. The post-processor
^.

°°	 component will generally be written in the same high level source language

for which the system was designed.
a^

As an example of results obtained from using PET, consider the evalua-

^,	 tion of an eigenvalue eigenvector ^^outine which had been in production for

;.
over two years. Counts of 'true' and 'false' evaluations for branches re-

z
••	 vealed a logically impossible flow path. Statistics showed that only 44.5%

f	 of the possible executable source statements were actually tested and only
{,.

X5.7°6 of the possible branches were tested. Information such as the above

^	 tends to indicate the software we design may be very inefficient and wasteful.

^soth space and time artifacts are introduced when using self-metric

•^

	

	 instrumentation. The time artefact ranges between approximately a 7.25 to

2.5 factor for the execution time of a self-metric program, depending on

the measurement options specified.

The space artifact also varies widely depending on the types of measure-

,	 menu being performed, Space artifacts are introduced in the following

areas:

^l) Additional memory is allocated for counters, taming ce11s, and

data range storage cells.

(2) Additional code is added to make the program self-metric.

6.5.2..2 PACE

`-
The Product Assurance Confidence Evaluator {PACE} System [70a is

^,	 designed to provide programmers with debugging tools and managers support in

^-	 determining and controlling computer program quality. Specifically, PACE
_	 ..

"'	 assists in the planning, production execution and evaluation of computer

^.
^n	
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program testing. PACE consists of the following four phases:

^;
j.	 (1) Test Planning (Prepa •ration of test materials}

° Analysis of computer program anatomy to determine what must
^^
}

be tested

p-	 Instrumentation of the pr ogram to render it measurable as a

^.	 test item
r._

^	 Development of test data to exercise the desired portions of
m4

program anatomy

..	 (2) Vest Production (Synthesis of test materials into a test package)

^-	 Synthesis of test stimulus c:^^ta for a test

^'	 ° Selection of test driver and data environment structure far a

^^'	 test

;.
° Configuration of test job containing the above materials ready

s
for execution

F	 ^^	 (3) Test Execution (operation of the computer program with test data)

Computer execution of the instrumented test item

``	 measurement and recording of test output
^;

(4) Vest Evaluation (Analysis of test results and program performance}

{;	 Analysis of execution frequency of program elements
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`^`	 PACE has been used bath far FORTRAN and assembly language programs.

^	 The initial implementation of PACE was the FLOW module. FLOW analyzes

a FORTRAN program and instruments the code such that subsequent compilation

^,..	 and execution is allowed. FLOW provides for an accumulation of frequencies

.^^	 with which selected elements (e.g. statements, small segments of Cade, sub-

't"	 programs, etc.} are exercised as the program is being tested. A modification

';^	 of, and extension to, FLOW for UNIVAC systems has recently been completed.,,
^^:

This system is called TDEM (Test Data Effectiveness Measurement}.

^e The T1]EM systems COn515t5 of three elements: QAMOD - the code analysis

instruction program, QAPROC - which monitors execution and provides summary

.,

	

	 statistics, detailed trace information and an indication of the effectiveness

of the test data, and QATRAK - which uses these results and displays internal

program transfer variables which can be changed to effect execution of the

unexercised code.

QATRAK also displays the statements which compute or input the transfer

°^	 variables. Figures 2 and 3 illustrate the program and data file interfaces

^`	 of the TDf.M subsystem.
,f

The QAMOD program sequence analyzes each statement of a FDRTRAN source

m^
program and the following results occur:

-	 (1) Thc^ first executable statement of each element (i.e., subroutine

°^

	

	 ar main program} is assigned a pseudo statement number of one.

Each subsequent statement is assigned a sequential pseudo number

^„
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(2} The code is instrumented by the insertion of traps to an execu-

tion monitor subroutine. The function of these traps is the genera-

tiara of a recording file during execution of the instrumented

program. The recording file registers the execution of each state-

ment and the order of execution.

After the analysis, the instrumented source code is output to a file,

NEWSRC, for compilation and execution.

A data file tKPROG) is also generated as QANiOD processed the program.

This file contains information describing each statement and information

relative to program size and structure.

The QAPROC program accesses the statement execution recording file

generated by execution of the instrumented subject program and produces an

evaluation and summary of the test case executed. The recording file is

sequentially accessed and the data are assimilated into an internal table,

MAPTAB. At times designated by the input control options, a display is

printed which included the following:

(l} A map, delineated by subroutine, indicating the number of execu-

tions which have been recorded for each statement.

t2) Statistics indicating the percentage of the total executable state-

ments which were executed.	 -

(3) Statistics indicating the percentage of the total number of sub-- 	 =`

routines which were executed. 	 `'

(4) A list of the names of subroutines which were not executed. ^s

After processing the entire recording file, statement usage frequency
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information is added to the data from the input KPPOG file and this revised

information is output on a data file KPROG7. Statistics from recording

files (i.e. several executions of the subject program) may be summed and

a cumulative summary compiled.

6.5.2.3 ACES

1•he Automated Gode Evaluation System (ACES} X11] is a language processor

which examines source statements, performs a lexical and syntactical analysis,

and generates a data base containing symbols and their use, a list of state-

ment types and a graphical representation of the program structure. 1"he

major advantabe of this system is the transfer of large amounts of programming

code into a more usable form (the data base) for use in the validation

process. An examination of the data base might show which subroutines and

functions are called by a system component and the names of parameters used

in each caT7, allowing an analysis of interfaces.

Analysis

ACES detects two types of program errors - those related to semantics

and language constructs and those related to program structure and we11-

formation. Additionally, program characteristics are collected and stored

in the data base, and an automatic monitor insertion feature is included

for an execution-time analysis of specified program variables.

Lexical Analysis .

A lexical and syntactical analysis forms the basis for the detection

pf semantic errors and undependable language constructs. Since the programs

submitted to AGES are supposedly working programs, they should contain few

,^.

^.

-

^^

^,
.	 .

_	 ^^ ^.
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synifactTCal or s emant i cal errors. This allows the statement sGanni^ig routines

to quickly pick out the pertinent information. For example, assignment

statements may be scanned for variable and function names while ignoring all

intervening operators.

One of the primary functions of the lexical analysis is the detection

of undependable language canstructs. Of course, this tends to be very

language dependent. Present programming languages are designed primarily

for effectiveness and flexibility rather than absolute dependability. As

a result, they often contiain language canstructs which are conducive to

executian errors.

CENTRAN, the language ACES was designed for, is no exception to this

rule. Certain constructs, such as GOTO like statements, are susceptible

to executian-time errors. ACES notes such occurrences and the corresponding

statement numbers are stored fir an error summary.

i'he analysis is a simple recognition process, but it does automatically

pinpo int source s for error. An extension of this process would be an auto-

matic exa.mir;ation of critical variables involved in statements such as

ro?^^pu ted fC?'0' s . careful examination and cons i derail an of a programming

language is necessary to determine error prone conditions such as those

described above.

Rata Base Gerecration

A primary fe^^.ure of ACFS is extraction ^^ prc^,r,^,^^ ^;haracteristics

and the construction of a data base which prov3de:^ a convenient means of
u-

-	 retrieving this information.

Z3Z

^^

.,

^^
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	_	 Therefore, the program investigators do not have to tediously examine
a

'^4

!:.

	^p	 program listings for the information to validate the program. The data base

	

f_	
consists of four tables: symbol table, symbol use table, statement type

n	
table, and an abbreviated connection matrix.

x	 The symbol table contains information regarding all variables, items,
..

functions, macros, and labels used in a program. An entry in this table

	

^^^	 consists of the symbol name, module number, type, and linkage to the symbol

-	 use table. The symbol use table contains a record of the use of a symbol
r

name in a program. An entry Consists of an indicator far the type of use

(either input or output), the statement number in which the symbol was used,

and linkage to other references ;:o the symbol contained in the table. The

	

'.	 statement type table is simply a list of codes indicating the statement

type of each statement in the program. The logical structure of a program

i .

is stored as an abbreviated connection matrix. Thus the data base provides

statistical information on symbol names and statements and can answer

questions such as:

	

..	 (1) Does variable V i appear as an input (output) to any of the

following statements: 	 S l , S 2 , ......, Sk?

{2} In what statements does V i actor?

{3) What are the inputs (outputs} to statements Sk?

(4} Does any variable appear as an output and not as an input?

(5) What are the inputs for conditional branch S i ? Where do they

	

a^	 appear as Outputs? ldhat are the inputs to these statements?

^^v

,,, This information is important in the analysis of program behavior and

	

^^^	 is particularly useful as an aid to implementing changes in syntax, program
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modifications, and cha±^ges in programming practices. 	 For example, the effects
'^'^,

@^	 ^ of changes in a program variable, macro, or label can be easily determined

by accessing the list of references to that symbol 	 in the program module and

U^

i^
other related modules.

ti
^.,v

5tructural Analysis

The analysis of program structure is essential	 to the validation pro-

-
,.

cess since it allows the detection of structural flows and the examination

°p of critical or interesting flow paths through the program.

_ Program structure is modelled ny ACES as a directed graph in which

^' nodes represent program elements and edges represent lines of program flow.

^'
^.

Program elements may be either single statements or groups of statements

making up a program segment. 	 The graph is first generated and stored using

#^ individual	 statements as elements and later reduced to reflect the relations
^:

^'
between program segments.

^- An intermediate representation of program structure, consisting of a

- list of "non-normal	 transition pairs," is generated from the existing tables

i.

to serve as a basis for the following analysis.	 "Non-normal	 transition

pairs,"	 (i,j) represent permissible transitions from statement i to statement

j, excluding "fall-through transitions 	 (j=i -^-1)."	 The nece:,sary information

far their generation is the use of labels (explicit transfers) and the

^` identification of statement types (implicit transfers e.g. IF statement).

Special codes are inserted as the second element of a pair for certain

transitions, such as RETURN, END, computed GOTO, etc. 	 The list of pairs
s	 ._

is then transformed into a more usable set of linked lists.

^^

'_ ^
t

>a
=^l 1

3

a

'^

K"^`
;;;	 ,;,,
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From this information and that of the symbol table, it becomes a simple

	

^^_'^= ^.n	 matter to extract the structural characteristics of a program. These include

lists of undefined ;abets, unreferenced labels, unreachable statements, state-

^m	=	 ments with no successors within the program {RETURN, EIVU, true faults}, and

	

- ^^-	 direct predecessors to all labeled statements. In addition, an enumeration,, ,
;,
^^

	

-	 of program loops is provided.
i

	;^	 The structural analysis performed by ACES also includes the generation
4 w

^'
of reaching vectors fora specified set of statements. The reaching vector

	

µr	 of a particular statement provides a list of those statements whose execution

-, may lead to the execution of the statement in question. This information
..

can be easily extracted from the linked list representation of the program

^^
graph.

	

^'	 Automatic Monitor insertion
°.

^.._
The methods of analysis presented thus far- • are of a static nature,

	

®,	 i.e., the execution of the program to be validated is not involved. As

	

-•	 previously mentioned, exhaustive testing of large programs is not feasible.

^^
However, the bAhavior of certain critical variables may be important in

validation and a means of making selective observations at run-time would

be valuable. This capability is provided to a limited extent in debugging

systems through trace and trap routines. The approach taken in ACES is

	

g -	 somewhat different in that the program source code is temporarily modified
:^ ;
^.

by automatically inserting calls to a monitoring routine. This relieves

	

`;^^	 the investigator of the tedious task of locating all occurrences of a given
L^

variable and allows flexibility in the monitor functions performed.
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Thp input to ACES for the monitoring function is simply a list of

^.,	 ..
var^iab7es and their corresponding upper and lower bounds. The occurrence

n^
of one of these variables as output from a statement causes the ACES system

^^
t	 to insert a tali to a CENTRAN subroutine. This subroutine, which has been

^.	 written for use in conjunction with ACES, determines whether the current

^^	 value of a variable is within the specified bounds. If an out-of-bounds

`	 value is detected, the variable name, value, and corresponding statement
î .

number are reported to the user. Otherwise, no report is made. This
f

^:	 differs from the usual trace procedure of reporting every change of value.

{^	 The system also allows the value of a specified array to be checked

^'	 in iota, i.e. each change ire value of an gray element is checked against

the bounds for the entire array. In addition, provisions are made to

monitor implicit changes in program variables. 	 For example, CENTll,4N allows

'_ the declaration and referencing of bit patterns {items) with a data word.

;^
,.

If one item overlaps another item of the same variable, it is possible for

the value of one item to be changed 6y changing the value of the other item.

t-
'^: Subtle errors may be caused by such a condition which are very difficult to

detect.	 The detection of implicit changes therefore causes the monitoring
'v

s. subroutine to produce a warning message at run time.

'j^ Or^anizatian and Operation of ACES

E^;
The operation of the ACES package is performed in three phases: informa^

?- tian gather ing and monitor insertion, information publication, and structural

^^ analysis {Figure 4}. 	 These phases are further divided into functional

^:
elements {modules) each of which contains one or more subroutines. 	 Thus a

:^.	 ^	 '
modular structure is imposed an the system, facilitating modification and

t' extension as well as debugging efforts.

^t	 ^'3'(

;'	 R 23fi
^<	 ^:
^^	 ^	 F^

^:	
^^

f,jj
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Phase I

`^ ^	 Phase I consists basically of scanning the CENTRAN text, collecting::	 a ,.

;^^^	 information to be stored in the data base, and making any necessary modifi-

°°	 cations to the source code. The functional modules involved are similar

^;	 to those utilized by standard language processors (compilers).
^.^^

Phase II

Structural analysis constitutes a second phase of ACES processing.

Three functional modules provide for connection matrix generation, unreachable

statement detection, and loop detection. These functions are performed in

^'	 sequential fashion in the manner previously described, A separate module
_^

fc^r the detection of a reaching vector may be used in this phase of system
r

?.	 processing or as a stand--ai^ne program operating on the stared program graph

(connection matrix).

Phase IIi

`,	 A final phase of processing :.onsists of the publication of information
E

generated by the system. The extent of information reported is left to the

. discretion of the user. A scan of the data base results in a summary list-

ing which includes various statements and variable cross reference listings,
',

warning messages issued by the system, structural characteristics, etc.

The results of ACES analysis are a modified source listing, a printed

summary of information generated and a data base to be used for further
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	'4^ ,̀	inforr^ation from large volumes of source code which could not otherwise be•	 ,^
^;
^:	 obtained. When properly utilized, such automated systems provide the frame-

„
l',	 worEc for three important validation concepts:

''	 ^:
{1) Establishment of a running configuration of the software system

' a.	 through well-formation analysis.
..

(2) Generation of a structured data base far debugging and for checf^-

ing the compatibility of program updates and modifications.

r'	 (3} Instrumentation of the source code for run time analysis and

`^	 simulation.

- `'	 Same of the features of ACES would be most helpful in debugging efforts

during program development. For this reason, the incorporation of such

	

•	 features in compilers and run time systems would be valuable and could

'.	 reduce debugging time while producing more dependable code. However, this

does not reduce their effer,tiveness in evaluating existing software systems.

6.5.2.4 I5M
;-

The ISM System [6.5.2.4 is dEC^:gned to allow experimentation with a

wide variety of information collection, analysis, and display tools. The

^•	 design methodology is applicable to procedural programming languages, and

	

^`	 ALGOL 6O is being used as the vehicle for elaboration of design principles
^:

and implementation techniques.

^'	 ISM System Design Concepts

The ISM system provides the capability for characterizing programs by
,;.

^^	 both a static syntactic structure and a dynamic run time structure. Static

_'`	 information is obtained by performing a syntactic analysis of the program

!.
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text and recording certain structural attributes of the program in a data 	

^

base.	 Other attributes o'r	 'n^ ^,rogram can i,iEen be inferred from the collec-

t ted data.	 For example, recording attributes such as:
-

A• - modes and types of identifiers

- statement numbers that each identi^'ier appears in

i.
. - statement types

- input/output variables off' statements

- basic blocks

.. - control	 paths	 -

permits inference of attributes such as:

- graph structure of the program 	 -

- classes of execution paths

- unreachable code segments	 }

- input/output variables to subroutines

- calling sequences of subroutines	 -
'i

Dynamic analysis involves recording the program ' s execution history (or	 '`

some portion of it) into a data base and gleaning desired information from

the data after the program has terminated execution. 	 The execution history 	 `^
_^

^;^^
is collected by instrumenting the sourc:, program with subroutine calls to 	 s

-^

record program history events in the data base. 	 History collecting subroutine

calls are inserted into the source program by a preprocessor prior to compila-

tion of the program, thus rendering the source program "self -metric."	 The T5M

System is designed to collect, analyze, and display both static and dynamic

.. information.	 E^owever, major emphasis is placed on processing of dynamic 	 ''_^

information.	 ;'

"
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Dynamic information can be classified under the headings of:

a_
- Execution Summary Statistics}

r - Control Flow Information

^, - Data Flow Information	 -

- Data Sensitivity Information

-	 ^u - Execution Environment Information

^" - Assertion Verification

7
Execution summary statistics include ranges of variables, statement

execution counts, number of traversals of program segments, and timing

t - estimates.	 Control flaw and data flow information can be combined to
,,

_- provide variable dependency and computation dependency information. 	 As is
^^

-

_^

subsequently described, the execution history can be interpreted in reverse,
^_ '^

permitting control flow and data flow tracebacks. 	 Data sensitivity inform- 	
;`'
_^

..
ation can be collected to snow the effects of ; nput data inaccuracies and

._ finite word length by tracing the numerical	 significance of the computation.

^-
.^

Environmental	 information includes scope and extent of identifiers, and

. parameter passing and procedure evaluation environments. 	 Assertions can be

local or global.	 A local assertion is a conjecture about the state of the 	 -°

computation at a particular paint in the execution sequence. A global asser-

tion is a conjecture about invariant conditions throughout a given segment

(perhaps all} of the execution history. Assertions are verified (or refuted}

by comparing the expected behavior to the execution history.

The primary advantages of analyzing and displaying results from a post

mortem data base a •Fter the program has terminated execution are:
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1. The program is executed in the actual usage environment.

2. The functions of data collection and data analysis are separated,

thus making the analysis and display tools independent of the

programming language being analyzed.

3. Experimentation with a variety of testing aids is facilitated.

q^. Global summary information can be collected.

5. Global assertions concerning behavior can be checked.

6. The execution history can be interrupted backward in time,

`"	 permitting analysis and display of how a given camputatian was

influenced by previous computations.

7. Existing processors (compilers, inter^,reters, loaders, libraries)

._	 can be utilized to collect the data base.

-	 The primary disadvantages of the data base approach are: the inability

"-	 of the user to directly interact with an executing program, the potentially

`,	 large size of the data base, and the execution timing distortions caused by

the history gathering subroutines. The first difficulty is somewhat alleviated

e_	 by the ability to re--execute the instrumented program using new input data

-	 entered via the user's terminal, thus creating a new execution history. The

third problem is a consequence of the design methodology and is shared by

all se1r-metric performance evaluation packages.

;'	 The I5M Data Sase

.:	 -	 =:
Major components of the data base are: an identifier table, a program

_	 ;

model, and one or mare execution histories. In addition, the original source 	 '^^

text, and a textual crass reference table between the program model and

,,	 source text are maintained.	 ^^^^
"^

^<

^..^
2^2

'',

.:-,	 .,:.



I
f	 ^

^
^

,t

..

°°	 The various components of the ISM data base are interfaced to permit

^k:	 the association of names with values, and control flow with program text.
'	 ^.

The entire history can be searched to collect global information and summary
_	

S_

^`	 statistics. Far example, ranges of variables can be obtained, assertions
^.

about program behavior can be checked, data and control flow traces can be

•.	 accomplished, and statement execution counts can be obtained by interrogating

the data base. Local information concerning program behavior can be obtained
f

by aligning the history pointer to a particular position in the program

model and examining the computational state. Information is recorded into

the history to permit interpretation of the program model either forward or

'.	 backward in execution time. Thus, execution can be reversed in order to

determine haw a particular computational state was influenced by previous

states.

The IS^i Preprocessor

The preprocessor builds 'the symbol table and program model, prepares

a compressed version of the source program, and instruments the compressed

source code with subroutine calls. The various modules of the preprocessor

are generated automatically by a parser generating program (the PARSEC

metatranslator}. PARSEC accepts a B^VF-like notation (PARSEC} as input, and

generates a translator to parse and perform semantic actions on programs

whose syntax conforms to the grammar specified in PARStL.
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appropriately formatted information displays. The data base can be accessed

:^,	 in either the batch or the interactive mode, and the displays can be dis-

played on an interactive terminal or printed as batch output.

n°	 gisplays are termed semantic models of program execution. Many di^'ferent

types of semantic models are required to display i:he various attributes of

^^	 computer programs. A major goal of this study is to determine what informa-

`^	 tion is useful for testing purposes and how to display that information inri^

meaningful formats.

`°	 A partial list of useful information that can be displayed includes:

- variable range summaries
,.

- statement execution counts

- branch execution counts

- syntactic structure of various program components

- control flc^^r traces

- data flow traces

- control flow tracebacks

- data flow tracebacks

- data sensitivity analysis

_^	 - identifier accessing environments

- parameter passing environments

- procedure evaluation environments

- recursive procedure environments

- timing estimates

_-	 - assertion checks

°-	 2^^

^;^ ,...,. :::.	 ._ 1	 ..	 ....-	 .^..^„

t
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Program execution can be observed in either the control f1 ow domain

_^_ or the data flow domain. 	 In the control	 flow domain, control flow and source

-^^^

-

code displays can be combined to allow the user to observe the source state-

^

'" meats as they are executed in either the forward or backward direction.

'the complete source code of every statement can be displayed, or source code
a..

can be suppressed below a given 1eve1.	 In addition, data values can be

,. associated with every variable in every statement, or same variables in

._ some statements, if desired.

r ° In the data flow domain, the sequence of values assigned to variables

^^ can be displayed as they evolve forward or backward in execution time. 	 The
a.

association of source text and control	 flow information with particular data

values is possible.	 Thus, the dependence of data values on other data values

can be obtained from the data base, along with the source text associated

with those values.

'^ Preprocessing and execution of the program being tested results in

the creation of a data base that contains the source text, a symbol 	 table,

a program, model, and one or mare execution histories. 	 The various components

of the data base are interfaced to permit the association of names with data

values, and source text with control flow.	 Each step in the execution history

can be reconstructed, permitting both forward and backward execution of the

program.	 The entire history can be scanned to collect global	 information

{ and summary statistics. 	 The data base is constructed using primitive

_ construction functions, and accessed using primitive accession functions, thus

isolating the details of internal data base organization from construction

and access.
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6.5.2.5 DAVE

.
^^	 A study of data flow within a program provides a key to an understand-

ing of program behavior. Such problems as de^ection of semantic program
Y:}^

errors, automated creation of assertions and automated production of program

^^ ^	
'^^fig	 documentation can be attacked. Thus, the data flow analysis system to be

,^	 described tracks the flow of data from statement to statement, block to

n.	
block, and subp gram to subprogram. The system is called DRUE (Documenta-

tion, Assertion generating, Validation, Error detection) [3].

.,
The flow of control is represented by a directed graph. The nodes in

<•	 this graph are sequences of statements called basic blocks. A basic block

-^	 is a maximal sequence of statements having the property that whenever any

'	 one of the statements in the basic block is executed, every statement in

the basic black is executed.

A variable plays a role in data fiow for execution of a statement, a

^.	 basic block, and a subprogram by assigning an input-output classification

to it for each of these structures. Ina statement such as:

"	 A=B}C

^.
the variables B and C are referenced to define a value for A. To identify

the role of the variables B and C they are called strict input variables

.-	 for this statement and A is a strict output variable far this statement. In

a statement a variable may be strict input and strict output; this is the

a.	
case for X in the statement:

X = X ^- Y
q .:

For completeness, the input rode and output role of a variable in a

3,	 statement should be classified. In the first statement above A is non-input
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and strict output (NI,SO) while B and C are non-output and Strict input

^_
s•	 (5I,iVQ). The classification is extended to basic blocks and subprograms.

Thus a basic block or subprogram strict input variable is one which is

y	 referenced by the block or subprogram before all definitions of the variable.

A strict output is one which is defined for all control paths within the

"	 block or subprogram.

i.
Data F1 ow Anomalies Detected

,`	 DAVE recognizes two types of data flaw anomalies: event 1 - referring

to a variable which has not been assigned a value on a path leading to this

^-	 reference; event 2 - assigning a value to a variable which is not referenced

an a path leading from this assignment. Either of these events is considered

symptomatic of an error. Event 1 anomalies violate the princip^e that a

value must flow into a variable before it can flaw out, and event 2 anomalies

violate the principle that data which flows into a variable should flow out.

The viewpoint here is that there is a conservation principle to be applied

to the data flow: it should be free of sources and sinks, excepting data

boundary points (RERD's and WRITE's) and violation of this principle is

likely to be symptomatic of errors in the program. Violation of the

principle may be traced to such things as: key--punch error, misspelling,

".	 statements out of order, failure to initialize, incorrect iabel, incorrect

use of parameters in a subprogram reference, etc.

'"	 DAVE issues messages where the presence of data fiow anomalies is

detected or suspected, These messages are in the farm of warnings and

errors. Errors consist of those situations which are certain to yield an

,,	 illegal computation, while warning messages are issued only when the

2^7
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^?w possibility of an illegal computation is established. 	 Observation of event 1

`} on all control paths leading to a statement will cause an error message
^-	 ^^;

to be issued, while a warning message is issued if the event is present on
^-

some, but not all, control paths.	 A warning is issued even if event 2 is
^L:Y

present on ail paths, because event 2 does not seem to imply an erroneous

^- computation in the same way event i does.

Structure of the Analysis Pro+^ram

The structure of DAVE is indicated in Figure 5.	 The subject program,

_- consisting of a main program and all subprograms referenced either directly

or indirectly is first preprocessed by a program analysis and instrumenta-

tion package.	 It is assumed that the subject program is a syntactically

correct ANSI FORTRAN program, however, as noted below recovery procedures

. are possible when illegal 	 statements are encountered.

During this pass, the program is divided into program units and these

'^ are divided into basic blocks and statements. 	 Statement type determination

is also made here. 	 The preprocessed program is then passed to a lexical

analysis routine.	 This routine creates a token list to represent each of

the program's source statements. Clearly, knowledge of the statement type

makes the job of the token list generator easier.

As the token lists are created, comprehensive data bases of informa-

tion about the various program units are also created.	 The data bases are

accessed using a data base creation and accessing package, designed to

facilitate data base restructuring. 	 Each subprogram data base contains

°^

1,
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``^	 found in most compiler symbol and label tables, listing symbol and label

attributes as well as the locations of all references to the symbols and

7
.	 a^

labels. The primary purpose of the statement table is to hold the input--	 ^ ;_,

^^	 output classification for every variable referenced or defined in each 	 `-
d

executable or DATA statement. During this lexical scan phase, it is possible

to determine the input-output classes of all variable references and 	 '3

definitions except those in which variables are used as arguments to sub-'•

program invocations. DAVE contains

ANSI FORTRAN intrinsic functions an^

output classes of variables used as

determined during this phase. This

in the statement table. Blanks are

input-output classifications of variables used as actual parameters in sub-

program invocations; these blanks will be filled in during a later phase of

processing.

The table of subprogram-wide data for a given program unit contains a

list of all subprograms referenced by the program unit, as well as represen-

tation of non--local variable lists. Ultimately, the non-local variable lists

will 6e used to hold data about the subprogram-wide input--output behavior

of these non--local variables. The external reference lists of the various

program units will be used to construct the program tail graph.

During this piia.se of processing, statements which are syntactically

illegal under the ANSI standard may be encountered. The system is capable

oi^ pausing at this point and accepting a correction deck containing replace-

ments for the offending statements. In addition, the system will examine

the input-output classifications for

i basic external functions so the input-

arguments in these functions are also

determinable input-output data is stored

placed in the statement table far the

;^^:

^,	 ^^...
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the external reference lists to determine whether all referenced subprograms
-,	 ^,

ti
_, ^	 have been submitted. If not, DAVE will, at this time, also accept new

G

symbolic decks in order to satisfy such unsatisfied external references.

	

^` ^y	 In the next phase, DAlIE builds and examines the program call graph.

	

'^	 Dsing the call graph, leaf subprograms (those with no external references)	 '

are identified. For such subprograms, the input-output classifications

	

`: ^	 of all non-local variables are made. Hence, the input-output behavior 	 -

of ail variables used in all invocations of such subprograms can now be

	

^^	 filled in, enabling in turn determinations of input-output classifications

	

^'	 of non-local variables in other subprograms. Using this scheme, all input-

output classifications can eventually be entered for all variables in all

statement table entries in all program unit data bases. This leafs-up (in-

verse invocation order) subprogram reprocessing order is determined in the
4
I

	

1 -	 next phase through analysis of the program call graph.

	

^^	 The final phase of processing is the most interesting. During this
^`

phase, the program units are reprocessed in the above-mentioned leafs-up

	

3 H	order. missing input--output information is supplied, and global data flaw

analysis is performed. It is at this time that events of types 1 and 2 in

	

^^	 the data flaw are identified, and data flaw assertions are made.

	

n_	 Data Flow Analysis Phase of Processing_

The final phase of processing begins with the analysis of leaf s:^bprograms. 	 '^

	

^' a	
" I

	

^'	 The analysis begins witl^^ the construction of a basic block table for the sub•- 	 ^":;

	

^f	program. This table holds input-output information about all variables
`i
3to

referenced in each of the basic blocks. It is constructed from data in the

subprogram`s statement table.

_^'	
^,

251	 . ; ^
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Once the basic hack table has been constructed, the input-output

^^
classification of pr^agram variables can be determined through the use of

an algorithm X14]. The local variables are analyzed first. Rn error

message is generated far all local variables which are found to be strict

input f	 subprogram, since this situation implies a type 1 ancmaly

is certain. Correspondingly, local variables found to be of type input

cause the generation of a warning message. The last usage of all local

variables is also determined by means of an output category classification
k

	e•	 algorithm. If a local variable is used last as an output, an event of

	

-	 type 2 is present and a warning is issued.

The input-output classifications of the non-local variables are then

determined. These classifications are printed out, and a^sa stared in the

subprogram-wide table of the subprogram under study. Warning messages

	

•	 are also printed fr^r all parameters which are found to be non - input and

non-output. Clearly each of these items of data in the subprogram-wide table

can be viewed as being an automatically generated assertion about the sub-

program. These assertions are useful mcreover in producing documentation

about the subprogram. This table is then copied into a master data base,	 ^

	

^^-	 so that ail invoKing program units will be able to easily access the data

	

'-	 needed to classify the input-output categories of variables used as arguments

	

^^	 in invocations of this subprogram.

The analysis of a non-leaf program unit is mare complicated. Such a
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	us	 calling unit's statement table. Hence, such blanks are filled in. Certain

FORTRAN semantic errors are also detected as this proceeds.

	

^^	 The system also exposes concealed data flaws through subprogram invoca^

	

^'	 tuns. Concealed data flows result from the use of COMMON variables as
b.

inputs (or outputs} to (from} an invoked subprogram. Such situations are

easily exposed by examination of the COMMON block variable lists in the

subprogram--wide table of the invoked program. Beca,,tse data flows through

4

such COMMON variables just as surely as through explicitly referenced

parameters, the statement table entry of such an invocation statement is

augmented by the input-output classifications of such variables. This

	

^	 assures that the results of global input-output category determination
l .

within the invoking program unit will be correct for these variables.

i

DAVE can also print cut the names and usages of all the variables which are

used as input or outputs to a statement but are not explicitly referenced.

Such information seems to be useful as a form of automated documentation.

	

^	 It also seems to be useful as a debugging aid in that it may alert a

programmer to data flows which are hidden, perhaps forgotten, and hence

	

^	 more prone to error.

	

(	 The omission of a COMMON block declaration in an invoking program unit
^_

presents a tricky problem. If the COMMON blocfc is referenced in the invoked

subprogram, then the variables named in the COMMON block may or may ^^ot

become undefined upon return to the calling program unit. Undefinitian

	

,` ^^	 will not occur provided that the COMMON block is defined in some program unit

	

_''	 currently invoking the program unit which omits the COMMON c^?claration. In

. a
the absence of such a reference by a higher level program unit, errors are
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possible. In ,particular, variables in such a COMMON block which are strict

output or output from the invoked subprogram will become undefined - a type

2 event - and a warning is issued. Variables in such a COMMON block which

are strict input or if^put can receive values only through BLOCK DATA sub-

programs. Hence, a check of the subprogram-wide tables of such subprograms

'	 is made. If no data initialization is found, a warning is issued.

If a COMMON block, B, is declared by a high lLv^l program unit which

invokes a subprogram, S, in which the block is not declared, then the ANSI

standard specifies that B must still be regarded as implicitly defined in

S provided that some s^,^bprogram directly or indirectly invoked by S does

declare B. Wence, data referenced by the variables in B may flow freely

through routines which do not even make reference to B. As already observed,

such data flows are noted and monitored by DAVE. In addition, DAVE is

capable of printing out the names and descriptions of all COMMON blocks

whose declarations are implicit in a given subprogram. This, too, seems

to be useful program documentation. The algorithm far determining which

blocks are implicitly defined in which routines involves a preliminary

leafs-up pass though the program call graph and then a final root to leafs

pass.

Only after all of the above ^'eseribed c:liecking and insertion of input-

output data into the statement table has been done, does the system proceed

to the creation of the basic block table. As might be expected, the

creation of the basic block table entry fora basic block containing sub-

._

	

	 program 1 nVOCati0n5 is rather complicated. The algorithm must contend

with such problems as non--strict usage of variables, and references to

'^	 variables not explicitly named.

r.
2^4
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Once the basic block table is constructed, analysis of the variables, 	 -

explicit and implicit, proceeds as described in the case of a leaf subprogram.
ya

Subprograms are processed in this way until the main program is 	 ^ '^

''	 reached. Processing of the main program is the same as the processing of,.

any non-leaf, except that COMMON variables must be treated differently.

Any COMMON variable which has an input or strict input cia5sification for

t	 the main program must be initialized in a BLOCK DATA subprogram, if not,

z warning message (class is input} or an error message {class is strict

'.	 input} is issued. Similarly, if a COMMON variable's last use was as an

output from a main program, a warning is issued.

b.5.2.6 Discussion

exclusive of the DAVE system, the other systems ascertain test-effective-

Hess by determining whether 	 (a} each source statement has been executed

at least once; {2) each branch path has been executed at least once; and	 ^j

(c} each subroutine tail has been executed at least once. With this informs-	 ^'

tiara the systems seek to reduce the errors associated with the actual	 ';i

structure of the computer program to a minimum.

Tn addition to measuring test effectiveness, the tools may be useful

for debugging and tuning purposes. Branching problems and code receiving

high or low usage roan be determined by the tools. These features and

others such as tracing subroutine ca11s and reporting of assignment state-

ment limit values are important to understanding and correcting improper

program operation.	 `^

Tuning involves studying high usage areas of code, then trimming and

altering the code to produce mare efficient operation. Analyses have shown

-	 ,	 `^
"^	 255

:;,:;

.._.	 ^,
_ __^`...^`:.+^^^...._w_.:.r..^-...^.«^_^,_ ^_.y _.rte..-...	 .......	 t



ti

l ^

^ ,^

that sma11 percentages of code execute large percentages of the time -

therefore the need for tuning. Simplification of code can drarnatica7ly

impact the execution-time requirements it places on the system,

The objective of the test tools is aimed at increasing the reliability

of computer programs. Statistical informat^° gin (4) indicates they only

partially fulfill their purpose. Sequencing and control errors can be

significantly reduced, but these errors account for only about 2Q% of the

total error types commonly found.

Functional testing {confot^nation to specifications} is necessary,

especially if the software is time-critical. Structural analysis tools

do not attempt to test either the timing or data relationships that exist

within computer programs. Functional testing is also necessary to determine

that all required functions were implemented and that no functions were

implemented which worn not specified.

The key to effective and efficient use of these test tools to do

structural analysis is to base their use on levels of criticality applied

to the individual program modules. This aids in the goal of reducing the

cast required (CPU time, analyst hours and documentation} for using these

test tools properly. Tn certain cases these costs can easily outweigh the

benefits derived.

6.5.3 Debugging Techniques

We have speci-^ica1ly delineated testing and debugging into two separate

categories. The farmer is the precursor of the latter. Yet this is not a

hard and fixed definition and therefore, some aspects of debugging will be

discussed - primarily, interactive and batch debugging systems [15]. The

256
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philosophy taken is that the presence of an error is known, and some means

for locating the error is desired. Also, two additional requirements on

debugging aids will be assumed - transparency to the program and ease of

idFntifiication and removal.

5,5,3,1 Batch Debugging

Eor batch purposes there are some relatively simple techniques for

debugging programs. Hopefully, most syntactic errors will be detected by

the language translator. The simple concept of hand checking at a desk

can be beneficial, but is f requently not exploited. The programmer should

exhibit 'good citizenship` - completely checking each run to locate as

many errors as passible. Lazy programmers exhibit 'poor citizenship' by

trying to have the computer solve all their problems.

Cross-references produced by language translators also prove to be

invaluable for debugging; multiply defined variables, point of definition

and points of reference can be studied.

Trace routines may be imroked to fallow instruction -by- instruction the

program execution. Control flow and variable information are presented

in the trace output.

Dumps prcvide useful debugging aids. They may be complete, selective

or snapshot. The dump simply allows an examination of core images.

Execution profiles reflect characteristics such as control flow,

variable ranges, instruction execution frequency, plus additional features

that are dependent on the system producing the profile. Several of these

s x-

nr^.

::^ .
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a	 systems are discussed in section 6.5.2.

R	 6.5.3.2 Interactive Debugging

•	 Interactive debugging implies time-sharing execution at some type

`^	 of TTY or CRT terminal. Debugging aids similar to batch systems exist,

but interactive debugging extends beyond these through on--line interaction,

ease of use and speed of response.

Incremental execution with incremental traces may be invoked inter-

actively. A good text editor will allow rapid and sophisticated modifica-

tion cf program text. With an interactive system, insertion and deletion

of code becomes very simple. The ability to stop execution and change

variable values is a powerful tool.

Interactive computing tends to encourage 'bad citizenship' because

of its very nature. It is certainly easier in this environment to iet the

computer perform the work for you.

6.6 Certification

Certification can be considered the endpoint of testing, validation

and verification [15]. Ultimately a certified program is one which has

been widely accepted within the community of experts and users. It carries

the connotation of an authoritative endorsement and seems to imply testifying

in writing that the program is of a certain standard of quality. To assure

this credibility, the process of certification should include examination of:

1) completeness of program documentation

2) performance of the program relative to its documentation

3) comparison of the program with others of the same type in terms
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appropriate to the problem

4} adequacy of continuing maintenance and support

R formal guarantee that the certification process has been satisfactorily

performed would be expressed by a document issued by an agency or institution

^,.
recognized by the communities of users and experts.

G.7 Proof of Correctness

Given the formal specifications and the text of a program in a formally

	

..	 defined language, the question can be asked whether the program text is

-	 correct with respect to those specifications.

	

"	 it should be made clear that a proof of correctness is decidedly different

from the standard process of testing a program. Testing can and often does

prove a program is incorrect, but no reasonable amount of testing can ever

prove that a non-trivial program will be correct aver all allowable inputs

[17,18].

6.7.i Nature of Correctness Proofs

The idea of proving program correctness was conceived to a large extent

in the earliest days of computing. Goldstine and von ^Eeuman noted that a

proof of program correctness could be achieved if the programmer could

provide or assert a description of the state of the vector of program

variables after each step, or only selected steps, of the program. This

	

,_	 state information, which can be viewed as a relation among program variables

at a given instant, can then be used to verify the program.

	

'"	 This assertion approach has been recently formalized by Fioyd [19] and
'`

Manna [20].	 the goal ti;ith regard to proving the implications associated 	 ^'^
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i
°°	 with state assertions, is far the mechanization of the process through the

use of automatic theorem-proving programs.
no	

The procedure is generally known as the method of inductive assertions.

,A,^	 The assertion at the output is the specification of the correctness of the

_	 program. The assertions at the input define the input conditions for which

••	 the program ic. ^.ct produce output satisrying the output assertion.

The proof tE+chnique works as follows: somewhere within each loop

of a program an assertion is added that adequately characterizes an invariant

property of the loop. It is haw possible to break the flow chart of a

program into tree-like sections such that each section begins and ends

with assertions and no section contains a loop. It is desired to show that

if the execution of a section begins in a state with the assertion at its

head true, when the execution leaves that section, the assertion at the

exit must also be true. By taking an assertion at the end of each of these

sections and using the semantics of the program statement above it, one

can generate an assertion which should have held before that statement if

the assertions after it are to be guaranteed true. Working up the tree,

all the assertions at the head of the respective sections can be generated.

each section will then preserve truth from its first to its last assertions

if the first assertion implies the assertion that was generated at the head

'^	 of the section. One thus obtains the lagica7 theorems or verification

conditions for each section. If th^:ase theorems can ail be proven and if

the program halts, then it will halt with the correct output values.
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6.7.2 Manual Proofs

,_	 The size of programs which can be proven by hand depends on the level

of formality that is used. Amore informal approach to proofs has come

"	 into vogue. The approach is rigorous, but uses a level of formality like

that in mathematics texts. Arguments are based on an intuitive definition

of the semantics of the programming language without a complete axiomatiza-

tion. Using these techniques a number of efficient programs to do sorting,

merging and search have been proven correct. The proof of a twenty line

sort program may require three pages.

A person proving a program correct by manual techniques must first

achieve a very thorough understanding of all details of the program. Manual

proofs techniques therefore are clearly limited to programs simpl y enough

to be totally comprehended by the program provers.

fi.7.3 Automated Proofs of Correctness

Computer generated proofs at the present have not produced very

meaningful results except for very small and simple programs. Effort is

now being directed toward compu^er assistance for proving correctness.

This takes the form of systems to generate verification conditions and to

da proof checking, formal simplification and editing and semi-automatic or

interactive theorem proving. Unfortunately, at this time almost any

automation of the proof process farces one into mare detailed formalism

and reduces the size of the program that can be proven. This is because

the logical size of the proof steps that can be taken in a partially

automated proof system is still quite small.



^^	 6.7.4 Integrating Proofs with Program Design.

-	 Classically, proving a program correct has been done after the program
=,

is written. An alternative is to integrate the proof with the program

=r	 design. This direction gives credence to the hope that proofs will eventually

-	 help to organize and simplify the program production process. A ^^oof of

^.
correctness will greatly increase the amount of formalism that must be

dealt with. However, if a proof can be integrated into the design and
4 z

writing sages, it should eliminate most of the need for debugging and may

^,.	 alleviate the problems of documentation and maintenance.

6.7.5 Discussion

Programs can be said to be correct only with regard to formal specifi-

cations or I/O assertions. Nothing says these specifications express

what the function of the program actually is. The assertions must be

manually produced, requiring in-depth understanding of the program. Areal

problem lies in the fact that even far simple programs, the theorems that

_

	

	 are generated become quite long. After the proof is cor^pleted, a number

of things could still be wrong. That is actually proven may not be what

one thought was being proved. The proof may be incorrect or assumptions

about either the execution environment or the problem domain may not he

a.
valid.

In light of the above inherent difficulties, one may ask - Is proving

y -	 correctness worthwhile? The answer must be affirmative to the extent that

proving correctness causes an in-depth inspection of the pragras^ and con-
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6.8 Summary	 ;,

^^,	 As we view the prospect of testing a piece of software, hopefully

_	 much thought and concern with regard to testing has taken place in the	
.a

^i

°^	 specification, design, coding and documentation of the code. If not, testing 	 -1
°^

-^	 tends to become an almost intractaa7e problem, especially fora large

software system.

What are some of the features of the code and its development that

cause the code to be amenable to testing? The code should be readable

j	 (we11 documented}, easy to modify, easy to maintain. The code should be

structured in modules. The code should be simple - e1tminate coding tricks.

'

	

	 Aspects of the management of code development are very important.

Top-down development presents several advantages for its use. Continual

awareness of testing and planning for testing as code is developed are

•	 important considerations.

The use of automatic monitor systems can check the degree to which

code is exercised and produce u:^efu7 execut e:; profiles, Automatic test

case generation is still in the rudimentary stages of development but

offers promise for the future.
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^IODE^+^ SOFTWARE DESIGN TECHNIQUES

=a	 7.0 TNTRODUCTIDN

^-	 The end product of the software design process is a set of design

^.,
specifications fora software system that will implement an acceptable

solution to the problem at hand. Design specifications are detailed
4

descriptions of the algorithms, data structures and Interfaces necessary

to satisfy the fur^ctional requirements of a system. Typically, the

functional requirements are the starting point of a software development

'	 project; they include a description of the problem to be solved, and the

constraints that exist far its solution. Design specifications are derived

from the functional requirements, and in turn form the basis for impiementa-

tion, acceptance testing, and delivery of the system; design specifications

thus provide the link between functional requirements and an implemented

software system that satisfies those requirements.

Creative aspects of the software design process include establishing

a conceptual view of the system, developing algorithms and data structures

to reflect that conceptualization, identifying system functions, decoupling

the functions, decomposing functions to elementary levels, deciding what

functions to place in which program modules, establishing interfaces between

modules, and establishing interfaces to global data structures. All of this

must be accamplished within the framework of meeting operational requirements,

satisfying various design constraints, and promoting desirable quality

^	 attributes in the system.

'	 The cost, complexity, and failure rates of existing software systems

are well known ^1). During the past few years, software has increased in
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size and complexity to the point that software design and development costs

,,.	 presently exceed computing hardware casts; the expectation is that this

trend will continue into the foreseeable future. Soft rare is typically

'-	 late in delivery, overpriced and unreliable. In addition to the high

development casts of new systems, enormous fiscal and social costs are

accrued by poorly designed, unreliable software systems that are in the

"production" phase of the software life cycle. There is considerable

social and economic incentive for the systematic design and implementation
•	 of reliable and efficient software systems, developed on time and within

cost estimates. This b ask is the charter of the software engineering
discipline.

The goal of systematic software design is development of detailed design

specifications for software systems that wi11 meet their operational require-

ments, satisfy various design constraints, and exhibit desirable quality

attributes. Design constraints are imposed by functional requirements, and

by the resources available to implement and maintain the system. The func-

tional requirements might, for example, specify COBOL as the implementation

language (perhaps in the interest of transportability}, even though technical

considerations would favor the use of a special purpose language mare suitable

to the particular application area. Resources required to implement and

maintain a system include the hardware, supporting softwa ,personnel

(programmers, operators, users}, and time. A softtdre system must of course

he realistic in terms cf resource utilization.

The primary quality attributes of software include design clarity,

reliability, efficiency, and modifiability. Design clarity and reliability
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are generally the most important attributes of a software system, Efficiency

is usually a secondary consideration to reliability; efficiency is of interest

only when the system is functioning properly. There are two aspects to

design clarity: First is the clarity with which the system design reflects

the functional requirements; and second is the degree to which the design

specifications are mirrors in the source code impiemPntation of those

specifications. bath aspects of design clarity are essential in achieving

a well-designed and properly-implemented software system. Design clari^4y

contributes to all of the other quality attributes, including efficiency;

the performance of a well-designed and properly-implemented system is by

definition more easily measured and tuned than is that of a poorly designed

system. Similarly, a well designed system will be easier to understand and

debug, hence easier to modify and maintain.

Functional modularity is the key to design clarity. Modularity is

achieved by decomposing a sysfi^m into distinct program modules that communi-

cate through well-defined interfaces. Program modules are named sequences

of statements that can be referred to by their collective name, hiethads

of implementing pragr; n modules include closed subroutines, macros, and library

members. Methods for establishing the interfaces between modules are discussed

later.

Functional modularity is achieved by identifying each module in the

system with a specific, we71-defined system function. Functional modularity

reduces system complexity and enhances design clarity by decoupling the

interactions among modules, This decaupiing has numerous beneficial effects:

interfaces between modules are explicitly specified as part of the design

Z69
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process; modules can be tested either independently or in integrated

fashion; errors and design deficiencies are more easily localized; and

modifications can be made with minimal side effects.

The art and craft of software design is comprised of identifying the

system functions, deciding what functions to put into which modules, and

establishing interfaces between the modules, However, modularization ofi

a software system is a somewhat arbitrary process without a con ceptual

framework far systematically achieving the goals of the design process,

Liskov ^2) discusses the fact that improper modularization may introduce

additional co;^,plexity into a system i^^ t,ne or mo^ ,e of the fallowing ways:

(1) too many related but different functions in a module will

tend to obscure the logic with tests to distinguish among

the various functions

^2) a common function is not identified soon enough, and as a result,

it is distributed among several different modules, obscuring the

logic cry each

(3) modules may interact on common data in unexpected ways.

In this chapter, several techniques for achieving modular designs are

described. Also included are discussia^s of notational schemes for specify-

ing the design, intramodule design, and the influence of the implementation

language on the design. The thesis of this chapter is that software quality

must be designed into a software system, and that design techniques and

notational schemes are available to facilitate the production of high quality

sr^ftware systems.

The effect of size and scale must be taken into account in any meaningful
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discussion of software design. In a small system {one written 6y one man

^^	 '+	 in less than one month) modular design will result in a superior product,
^.

but is perhaps not essential to the success of the project. In larger

^.	 systems, a methodical approach to modular design is a necessary condition

-	 for the success of the project.

7.1 Basic Design Strategies

-^	 Two basic strategies for achieving a modular design are the " top-dawn`°

and "bottom -up" approaches. using the top--down approach, attention is first

focused on global aspects of the overall system. As the design progresses,

the system is decomposed into sub-s y stems and more consideration is given to

specific issues. In the bottom-up approach to software design, the designer

first attempts to identify a set of primitive concepts, notions and actions.

Higher level concepts are then formulated in terms of the basic ones. The

system design is thus facilitated by identification of the " proper" set of

primitive ideas. In practice, the design of a software system is seldom

(if ever} accomplished in pure mop - down or pure bottom-up fashion. However,

most authors advocate a predominantly top-dawn design strategy.

The top-dawn strategy of decomposing tasks into algorithms and data

into data structures has been termed " step-wise refinement," "step-wise

program development," and "successive refinement" { 3}. The basic principles

,f step-wise refinement include:

(1) decomposing design decisions to elementary levels,

(2} isolating design aspects that are not truly interdependent, and

(3} postponing decisions concerning representation details as long

as possible.
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Numerous examples of the step-wise program development process can be found

in references 3, 4, 5, and 6. Perhaps the best known example for illustrating

step--wise program development is the 8 queens problem discussed by Wirth

in reference 5, and by Dijkstra in reference 6.

The concept of backtracking is fundarrwntal to top--down design. As

.	 design decisions are decomposed to mare elementary levels it may become

apparent that higher level decisions have led to an inefficient or awkward

moduiarization of lower level functions. Thus, a higher level decision

may have to be reconsidered and the system restructured accordingly. In

order to minimize backtracking, many designers advocate a mixed strategy

which is predominantly top--down, but which permits specification of the lowest

level modules first. Apure top-down strategy is most successful when a

well-defined environment exists for software development; as for example,

in writing a compiler for use with an existing operating system. When the

environment is ill defined, as in the development of an operating system

fora new machine, the design strategy must of necessity be a mixed strategy

or perhaps a predominantly bottom^up strategy.

7.2 Interface design

The techniques by which interfaces between modules are established

provide a point of reference for discussing modular design methodologies.

The types of interfaces that exist betwen modules include: control interfaces,

data interfaces, and service interfaces. Dontro1 interfaces exist in the

invocations of, and in the entry and exit points of, the various modules.

Data interfaces are established by the parameters used to pass information

between modules, and by global data that is referenced ir, two or more modules.
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Service interfaces among modules are manifest in the services that modules

perform for one another.

7.2.1 Control Interface Desi

Traditional software design techniques concentrate on control interfaces.

Systems designed along control interface lines are characterized by the use

of flowcharts as design tools, and the program modules are typically imple-

mented as subroutines. This strategy can produce clearly defined control

interfaces, but it also tends to produce complex data interfaces.

A control interface design methodology that has yielded impressive

results is the strategy of integrated top--down design, coding, and testing [7].

In .ntegrated top-dawn design, coding, and testing, the design proceeds

top-down from the highest level routine whose primary function is to coordinate

the sequencing of lower level routines.	 ower level routines may be imple-

mentations of elementary functions those which ca 11 na other routines), or

they may invoke mare primitive routines in order to accomplish their function.

There is thus a hierarchical structure to a top-down system in which routines

can invoke lower level routines but cannot invoke routines on the same ar a

higher level.

The integration of design, coding, and testing is illustrated by the

following example. It is assumed that the design of the system has proceeded

to the point illustrated in Figure 1. The purpose of procedure MAIPd is to

coordinate and sequence the GET, PROCESS, and PdT nodules. These three

modules can communicate only through MAIM; similarly, SllB1 and S11B2 (which

support PROCESS), can communicate only through PPOCESS. Some designers 	 ^=^
'^

wool d allow MAIN to cammuni cafe di res;tly with SUBI and 5062 while others `,
^,
-^
:^
^3
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would require that E4AIN communicate with 5UB1 and SU62 by going through

PROCESS. In some cases a designer might restrict communication of data

between modules to the parameter lists, while in other cases global variables

might be pet°mitted. A reasonable compromise is to restrict access of

commas global data to modules on the same level of hierarchy. This approach

is particularly attractive when each hierarchical level is identified as a

"level of abstraction" in the system design [8].

The coding anti testing strategy for the example might be as illustrated

in Figure 1.

Stubs are dummy modules that are written to simulate subfunctions in

support of higher level functions. As coding and testing progresses, they

are expanded into full functional units which may in turn require lower

level functions to support them. The stub can provide a number of useful

purposes prior to expansion into a functional unit. Stubs can provide output

messages, test input parameters, provide simulated output parameters, and

simulate timing requirements and resource utilization. In this manner, a

simulated system can be operational as the design progresses.

The integrated top-down strategy provides an orderly and systematic

framework for syste^^ development. Design and c.^ding are integrated because

expansion of a stub will typically require creation of new stubs to support

it. Test• cases are developed systematically and each module is tested in

a simulated operating environment. A further advantage of the integrated

top-down approach is the reduction of the system intec,• ration phase of the

project; the interfaces are estabi3shed, coded, and tested as the design

progresses. The primary disadvantages of the top-down approach is that early,
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high level design decisions (such as choice of data representations} may

v	 have to be reconsidered when the design progresses to the lower ]evel

functions. This may require design backtracking, and considerable rewriting

^'	 of code.

-^	 7.2.2 Data ]nterface Desi

Traditional approaches tG data coupling between program modules include;

parameter lists in the calling module, global variables knotirn in two or more

modules, and access to a common data base by several modules. Many trans-

action driven systems are designed around a large data base, which is the

focal paint of the design.

Liskov has described a design strategy which emphasizes data interfaces

[9^. In her approach, a software system is viewed as a collection of abstract

data types and operations on those data types. An abstract data type is

defined in an "Operation Cluster," which defines the data type in terms of the

operations that can be performed on it. For example, a stack might be defined

b y the abstract operators: push, pop, return top, erase top, and empty test.

The internal details of operation clusters are hidden from the modules that

make use of the clusters. Thus, a stack can only be accessed by the defining

operators and thRir parameters. This reinforces the functional modularity of

the system.

A programming language called CLIJ is being developed to support direct

implementation of software systems designed following the data interface

strategy. In CLU, a cluster definition consists of four parts: (1) a

description of the interface which the cluster presents to its users

(cluster name, parameters, and list of operations defining the cluster type},
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`'	 ^2) details concerning the internal r4presentation of the data type, {3} the

code required to create instances of the data type, and {4} the operator
z:,

definitions. Operator definitions are similar to ordinary procedure

declarations, except that they have meaning only as part of a cluster

_	 declaration.

•°

	

	 The cluster description defines the template of an abstract data type;

instances of that type are created by assigning the template name to program

variables. It is therefore possible to define the abstract data type "stack"

and to create and manipulate several instances of stacks in the program.

The situation is analogous to the treatment of classes in SIMULA L10^.

:-

	

	 Because the manipulation of abstract data types involves their defining

operations, most of the procedure calls {abstract operations) in a program

are specific to, and subordinate to, the data types being manipulated in the

program. In this manner, the data interfaces in the program are emphasized,

and procedure calls are incidental to the manipulation of abstract data. An

illuminating example of programming with abstract data types is prase+^ted

in reference T0.

--	 7.2.3. Service Interfaces

^^	 In the service interface design me-chod, a .software system is viewed

as a set of modules that perform services for one another. Emphasis is

placed on identification of a set of service functions that will implement

the system task. Three design strategies in the service interface category

are: levels of abstraction, nucleus extension, and information hiding. As

-	 originally described by Dijkstra [S] levels of abstraction is a bottom--up

design technique in which an operating system was designed as a layering

:.E.
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of hierarchical levels, starting with level D {processor allocation, real

time clock interrupts) and building up to the level of processing independent

user programs. Each level of abstraction is composed of a group of related

functions, same of which are external (can be invoked by functions on higher

levels of abstraction), and some of which are internal to the level. Internal

functions can only be invoked by other functions on the same level and are

used to perform tasks common to the work being performed on that level of

abstraction. Each level of abstraction performs a set of services far the

functions on the next higher level of abstraction. Thus, a file manipulation

system might be layered as a set of routines to manipulate fields (bit

vectors an level D), a set of routines to manipulate retards (sets of fields

on level 1), and a set ofi routines to manipulate files (sets of records on

level 2). Each level of abstraction has exclusive use of certain resources

(I/D devices, data) that other levels are not permitted to access. Higher

level functions can invoke functions on lower levels but lower level functions

cannot invol^.a or in any way make use of higher level functions. The latter

restriction is important because the lower level modules are self-sufifiicient

far supporting abstractions up to their level; they can be used without

change as the lower level routines in other applications, or in adaptations

and modifications to an existing system. In addition, i• lie ctrict hierarchical

ordering afi routines permits "intellectual manageability" of a complex soft-

ware system [6^.

A related design technique is the nucleus extension approach described

by Mansen Brinch [11]. Using this approach, the basic nucleus of a software

system is identified and implemented in such a way as to permit systematic

extension of the nucleus to a complete system. In the case of an operating
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' it'	 ndle d n 'c creat'ansystem, the nucleus might consist of fac^7 ies to ha 	 y amp	t ,

., ^	 control, and removal of processes, as wail as communication between processes.

Although levels of abstraction and nucleus extension were develops d

specifically as bottom-up techniques for the design and implementation of

operating systems, they are of much broader applicahility. For instancy,

u.•	 some software designers advocate a combined top--d^^wn and levels of abstrac-^ion

approach to software design [2^. In this case, levels of abstraction provides

a conceptual framework far the placement of ;nodules within the top-down

hierarchy.

The third service interface approach to be discussed is the "information

hiding" tychnique described by Parnas X12, 13^. Using this technique, each

module is chosen and designed to hide as much information as possible from

the other modules in th y system. This criterion not only provides a basic

design strategy, but also provides a standard for elaboration and refinement

of a design. Parnas observes that the approach results in designs that are

functionally modular, and that have minimal coupling between mndules. Tr^is

in turn provides increased clarity of the design.

An interesting aspect of the information hiding approach is the use

of anon-procedural specification language to describe the functional modules.

In a well known example, Parnas illustrates the conventional cantrrol interface

design of a KWIC index production system, and an unconventional design of

the name system using the information hiding strategy [12^. The later design

is clearly superior to the conventional design in terms of functional modularity.

However, the information hiding approach tends to produce systems whic F^ require

a great deal of switching between modules. Efficiency considerations dictate

•	 that the implementation of linkancs between modules be accomplished by
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techniques other than the traditional procF^dure call (which would impose a

3 °	 control interface implementation an a service interface design). Parnas

suggests that functional modules be written as procedures to reinforce
..

modularity at the source code level, but assembled by in-line compilation

of code and by highly specialized linkage mechanisms, thus obscuring the

modularity of the object codE^ and improving the efficiency of the implements-

tion.

7.3 Structured Design

R software design methodology called "Structured Design" or "Composite

Design" has been described by Stevens, Meyers, and Constantine [14^. In

structured design, the goal is to make coding, debugging, and modification

easier, faster, and less expensive by reducing the complexity of whe system.

It is argued that the pragrarr^er cast is the largest factor in the cost of

producing and maintaining a software system, and that reducing program

complexity will increase programmer productivity. Of course, the techniques

must be balanced with other constraints such as memory space and execution

time required for the resulting programs. However, it is always easier to

optimize a functionally correct program of straightforward design than it is

to understand and debug an efficient but poorly designed and unreliable

program.

The conceptual approach advocated in structured design is to configure
:;

the system so that the number and complexity of connections between modules

is minimized.	 'his is accomplished by minimizing the .iigree -.f coupling 	 ^'

between modules and by maximizing the internal cohesion of each module. ^'he 	 ^^^

strength of the coupling between two modules is influenced by several factors,	

;s,^
;^,_

zsa

,.

_.
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including: (1) the complexity of the interface, (2) the type of can^^ectian,

_•	 and (3) the type of communication.

The complexity of an interface is ti function of how much information

is needed to state or understand the connection. Thus, obvious relationships

result in lower coupling than obscure ar inferred ones. For example, inter-

faces established b ,y common control blocf:s, common data blocks, common

overlay regions of memory, common I/ g devices, and/or global variable names

are „^urz complex (more highly coupled) than interfaces established by

parameter lists passed between modul^:s.

The connections between modules may be established by referencing a

module as a functional unit by name, which yields lower coupling than a

connection which ,^eferences internal elements of another module. In the

lati:er case, the entire content of the referenced module may have to be

taken into account when updating modules tr^•.t refer to it. Modules that

can be used without any knowledge of their internal details produce lower

degrees of coupling.

The type of communication between modules includes passing of data,

passing elements of control (such as flags, switches, labels, and pracedur^.

names), and modification of one modules code by another module. The

degree of coupiingis lowest for data communic^.tian, higher for control

communication, and highest for modules that modify of her modules.

Internal cohesion of a module is measured in terms r," the strength

of binding of elements within the module. Bindin+3 of elements occurs on a

scale of weakest to strongest in the following order:

281

a^

:^.

^.;.



z$z

,;.

4. ^^,

d

r._s

^`,

`''- ^.,

t

^>

^^r̂^.

^.

Y:
t.:

^.

3

Coincidental binding occurs when the elements within a module

no apparent relationship to one another. This results from "modularizing"

an existing program into arbitrary modules, or from creating a module of

unrelated instructions that appear several times in one or more modules.

Logical binding implies some relationship among the elements of the

module; as for example, in a module that performs all input and output

operations, or a module that edits all data. A logically bound module

often tends to combine several related functions in a complex and inter--

^^	 ^	 ^

1) coincidental

2) logical

3) temporal

4) communicational

5) sequential

b) functional

related fashion; resulting in the passing of unnecessary parameters, and in

-	 shared and tricky code which is difficult to understand or modify. For
s

	^-	 example, a module to edit a17 data might better be decomposed into four modules

-	 for editing master records, editing update records, editing addition records,i

l	 and editing deletion records.
f

^	 Modules with temporal binding tend to exhibit the same disadvantages

as logically hound modules. However, they are higher on the scale of

`'
'^	 ^	 binding because all the elements are executed at one time, and no parameters

>. _	 i,	 .

	^	 or logic are required to determine which elements to execute.
!	

,_,	 ^,;	 1

^=`	 The elements of a communicationally bound module are related byr	 ,.	 j",.

^

z.

'^^ ^^ ^^	 reference to the same set of input and/or output data. For example,



I.,:..

^#,

^'
-	 i^9

'''	 ^ "print and punch the output file" is communicatianai1y bound,	 CorrmunicationaI

'^	 `^	 `^^' binding is higher an the binding scale than temporal binding because the
%.

U
elements are executed at one time and also refer to the same data.

-
Sequential binding of elements occurs when the output of one element

,_

^q is in the input for the next element.	 For example, "read next transaction

^-

^'

and update master file" is sequentially bound.	 Sequential binding is high

on the binding scale because the module structure usually bears close

^._
resemblance to the problem structure. 	 However, a seq uential7y bound module

can contain several functions or part of a function since the procedural

^Y process in a program is often distinct from the function of the program.

Functional binding is the strongest, and hence most desirable, type of

^' binding of elements in a module because all elements are related to the per-

^.
formance of a single function. 	 Examples of function bound modules are

^.

"compute square root," "obtain random number°," and "write record to output

„ i file."

-_

^'

A useful technique far determining whether a module is functionally

-	 '^	 bound is to write a single sentence describing the purpose of the module,

f	 (	 and to perform the following tests on the sentence:
L

1. If the sentence has to be a compound sentence containing a 	 --

_! comma or containing more than one verb, the module is probably	 _

performing more than one function. Therefore, it probably has

sequential or communicational binding.

2. If a sentence contains words relating to time, (such as 	 -
l;	 ]^	 •'f

1°first," "next," "then," "after," etC.}, the module probably 	 ;
Y

°	 ^	 has sequential cr temporal binding.

_	 F:'.

t; r'

j=;



3. If the predicate of the sentence doesn't contain a single

specific object following the verb, the module is probably

logically bound; for example, Edit All Data has logical

binding. Edit Source Data may have functional binding.

4. Words such as "initialize," "clean up," etc, imply temporal

binding.

If the types of sentences described are unavoidable in a complete

description of the module, then the module is probably not functionally

bound.

The division of sub-functions into separate ;nodule: should be continued

until each module contains no subset of elements that could be useful alone

and until each module is small enough that its entire implementation can be

grasped at once. It is suggested that the implementation of a module should

require between 5 and 100 executable source statements. Weinberg has

suggested that a group of about 30 statements is the upper limit that can be

assimilated on first reading of a module X75]. In the initial design, one

should subdivide too -Finely when in doubt because small functions can easily

be recombined later, and duplicate functions may not be identified if the

subdivision is too coarse.

The hierarchical tree structure depicted in Figure 2 is suggested as a

general form that will usually result in the lowest cost implementation. The

concepts of "scope of control" and "scope of effect" are useful aids for

determining the relative positions of modules in a hierarchical frameworEc.

The "scope of control" of a module is that module plus ail modules chat are

subordinate to thF module. In Figure 2, the scope of control of module B

i

r.

_	
^	 ^^

t,

i
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is B, D, and ^.	 The "scope of effect" of a decision is the set of all
- ^,

_
'`	 ;

"?^^^^ ^; modules that contain some code whale execution is based on the outcome of

that decision.	 Systems are simpler when the scope of effect of a decision

^= is within the scope of control of the module containing the decision, 	 The

'i' following example iiiustrates the situation. 	 `':

us

Referring to Figure Z, if the execution of same code in module A is

dependent on the outcome of decision X in module B then either B will have

to return a flag to A, ar the decision will have to be repeated in A. 	 The

^^ former approach results in added coding to implement the flag, and the latter 	 _

results in duplicating some of B's function 	 (decision X} in Module R,

Duplicates of decision X result in difficulties of coordinating changes to

- '.
both copies if the source code for decision X should be changed. 	 In general,

the scope of effect can be brought within the scope of control either by

moving the decision element upward in the hierarchical structure, ar by

ta^Cing those modules that are in the scope of effect but not in the scope of
p.

-

t

control and moving them so that they fall within the scope of control.

E'.

^^ 7.4	 Software Design Natation

^^ In software design, as in mathematics, the notational scheme employed
^.

'' is of fundamental importance.	 Good notation can clarify the interrelation-

`` ^^u^ ships and interactions of interest, while poor notation can complicate and _
F

interfere with good design practice.	 At least two levels of design speci-

,- °^- funations exist: general design specification describing the structure of 	 1

the system (what functions, what interfaces}; and detailed design specifica-

tions describing control flow and algorithmic considerations within the

`^
:;°
'= various modules.	 Some notational schemes are appropriate 5̂r=r stating
,a
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both general and detailed specifications while same are appropriate for one

or the other. This section describes several notational schemes commonly

used in software design, including Structure Charts, HTPOS, pseudo cede,

structured flowcharts, and decision tables.

7.4.1 Structure Charts

Structure Charts are useful during general program design as an aid

in determining the funct`ans, parameters and interfaces of the system. A

structure chart differs from a flowchart in two ways: a structure chart

has no decision boxes; and the seguentia1 ordering of tasks inherent in a

flowchart is suppressed in a structure chart. Figure 3 illustrates a

flowchart and a structure chart for three modules; A which calls S which

calls C. The structure chart emphasizes the connections between modules

more clearly than does the flowchart. Thus, for example, it is obvious from

the structure chart that module A is responsible for invoking module S.

This, in turn, focuses attention on the parameters to be communicated

between A and-B.

The structure of a hierarchical system is often described using a 	 `'

^^
	^^	 structure chart as in Figure 4. The chart can be augmented with a module

a.c
i

	^-	 by module description of the input and output parameters. At the higher 	 '^
'`

	

Y	 levels parameters are abstract; they become mare concrete at the lower

	

.'	 levels of the hierarchy. The lowest level routines deal with physical data

ob,^ects as input and output parameters.
`i

	

^'	 ``^

	

".	 7.4.2 NIPOS

	

np	
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^
'``	 NIPO Diagrams ^^lierarchy plus Input-Process-Qutputj were developed 	 ^^
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by IBM for use as taals in tap-dawn software development, and as software

documen'^:ation aids. HIPOS are formalized structure charts; as such they

^`
^'F
^=

describE function and not internal flow control. 	 A HIPO package comprises

a set of diagrams that graphically describe the functional nature of a

^^ system proceeding from the general to the detailed level. 	 Typically, a set

of FlIPO Diagrams consists of a Visual Table of Contents, Overview Diagrams,
E.}

^^ and Detail Diagrams. 	 The Visual Table of Contents is a directory to the set

^"}^ of diagrams in the package; it consists of a structural overview diagram, a
n.
oe

^:..
summary of the contents of each of the overview diagrams, and a legend of

^^
^:

symbol definitions.

. Overview Diagrams describe inputs, a process to support the function
^::-	 ,^

a,`^	 ^^'u. being described, and the results of the process.	 Each overview diagram may

'^' paint to several subordinate detail diagrams, the exact number being a

'}	
q<

function of the process described. 	 Typical formats for the Visual Table

^!'	 ^^
z

of Contents, Overview Diagrams, and Detail Diagrams are presented in

Figures 5 and 6.	 HIPOS can be used as design tools and also a^ documenta-
^:

^;,;; flan aids; design specifications and documentation are thus in the same
;^

{:,	 - format, which facilitates comparison of the desired product and the actual

'''
E `	 product.

-	 ^i
^^` '^	 7.4.3 Pseudocode

;°	 Pseudocode notation can bP used in both the general and the detail
i,̂:

y	 design phases. The designer describes the design using short concise_;

'' ^^	 English language statements that ure structured by key words such as IF-THEf^-

--; ^,	 ELSE-DO-I^HILE and E^IDDO. Key wards and indentation describe the flaw of

.. ^	 control, while the English phrases ^ES^i'iue the processing function.

t
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As an example of a pseudocode design specification, assume that a word
+`	

l

frequency analysis program is to be described.	 The program will read a set

^, of textual records and extract each individuai word from each record. 	 A

table is to be constructed that contains each unique word found in the text,

and a count of the number of times each word occurs. 	 4^hen all records

have been processed, the contents of the table and other summary information 	 -

is to be printed. 	 The pseudocode code description of the word frequency

analysis program might have the following form:

_ INITIALI7.E THE PROGRAM

READ THE FIRST TEXT RECORD

';	 ^ IXl W^{ I LE THERE ARE MORE WORDS I N THE TEXT RECORD

DD W^-IILE THERE ARE MORE WORDS IN THE TEXT RECORD

EXTRACT iNE NEXT TEXT WORD
'9

SEARCH THE WORD—TABLE FOR THE EXTRACTED WORD	 ^
1

.^
_^

IF THE EXTRACTED WORD IS FOUND 	 -j

INcR^M^NT THE woRD's OccuRRENcE couNT

^-
E^ S^

INSERT THE EXTRACTED WORD INTO THE TABLE	
'

:^_

FJ^(D I F

INCREMENT THE WORDS—PROCES.,ED COUNT

..	 ^ EI^D DO AT THE END OF THE TEXT RECORD 	 ,

`: READ THE TEXT TEXT RECORD 	 a
:^ 1

EIyD I^ WHEN ALL TEXT RECORDS t-^'^t^ BEEN READ	 -

PRINT THE TABLE AND SUMMARY INFORMATION
^;.

^^^t —
TERMINATE THE PROGRAM

29 3	 `: , ,I^

^ a
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in the top-down design strategy, each Fnglish phrase in the pseudocode

can be expanded into a more detailed pseudocode description of that phrase.

This can be continued until the design reaches the actual coding level.

pseudocode can be used to replace flowcharts, and to reduce the amount of

external docut«entation required to describe the design.

7.4.4 Structured flowcharts

Flowcharts are the traditional means for specifying and documenting

a software system designed along control interface lines. Typically, flow-

charts incorporate rectangular boxes for actions, diamond shaped boxes for

decisions, directed arcs for specifying inter-connections between boxes,

and several other specially shaped symbols [16]. Structured flowcharts

differ from traditional flowcharts in that structured flowcharts are

restricted to compositions of certain basic farms. This makes the resulting

^.

^.

^.

,_

^,
^.

,:^.,

S' kj

^,^..

flowchart the graphical equivalent of a textual pseudocode description. A

typical set of basic farms and their pseudocode equivalents are illustrated

in Figure 7. The basic forms are characterized by single entry into and

single exit from the form. Thus forms can be nested within forms to any

arbitrary level, and in any arbitrary fashion, sa long as the single entry-

single exit property is preserved. A composite structured flowchart and its

pseudocode equivalent are illustrated in Figure 8. Because structured

flowcharts are logically equivalent to pseudocode, they have the same

expressive power as pseudocode. in particular, the single entry-single

exit property allows hierarchical nesting of structured flow charts to

describe a tap-down design, starting with general design considerations and

proceeding through detailed design. Structured flowcharts tend to place
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increased emphasis on flow of control mechanisms due to the graphical nature

	

^^	 of the visual image. They are thus appropriate when the decision mechanismsr ''s

	, p	and sequencing of control flow are to be emphasized.

i

7.4.5 Decision Tables
r•-^

	°^	 Decision tables, like flowcharts, are useful far describing flow of

control mechanisms. Decision tables are particularly useful when the flow

	

^`^	 of control is de endent on com 1e combinations of several conditions.p	 p x

	

^	 In this case, flowcharts tend to became complex and difficult to follow.
..t

	_	 A decision table consists of four quadrants called the condition stub,

	

^.	 condition entry, action stub, and action entry. The condition stub occupies

the upper left quadrant, and contains a list of the conditions i.o be

examined. The condition entr is in the u er right uadrant of the table.Y	 pp	 q

The condition stub and condition entry specify the conditions to be tested.

The lower left quadrant is called the action stub and con}^ains a statement

corresponding to each action that can result from the con di ticns described

in the upper quadrants. The action entry section of the table flower

right quadrant) indicates which of the actions in the action stub are t0

be accomplished in response to a particular condition. A comprehensive

discussion of decision tables is presented in Reference 17.
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^^

^	 w 7.5	 Influence of the Imp^emen^ation Language

^,	 3„
°^s

The implementation language provides a conceptual framework and a

set of basic notions for the design of a software system. 	 Thus, a LISP-like
S

^	 v language based on recursive function theory and list structures will encourage

^{ the designer to formulate algorithms as recursive expressions operating on
-	 .^	

^y
^'

,.

lists and binary trees, while FORTRAN will influence the designer in the

^
^

t

direction of algorithms operating on arrays.	 Implementation of a software	 °,
^`. .i;"

system is simplified when the data types, data structures, algorithms, and	 -

i interfaces described in the design specification correspond to notions
^:

supported by the implementation language.

'	 -{ The conceptual aspects of a programming lang^.^age are manifest in the

`^
^'

data types, o perators, and control structures of the language. 	 Data types

- include basic and structured data types.	 The basic data types available

in a programming language are typically a subset of the data types supported

by the hardware, and may include any or all of:	 integers, floating paint

^^ nombers,	 decimal numbers, characters, 	 logical values, address pointers and

bit vectors.	 Mechanisms far structuring basic data types include arrays,

hierarchical	 structures, character strings,	 lis^ES, trees, graphs, sequences,

and sets.	 The ease of writing algorithms to transform and manipulate data

of a given type (basic or stroctured7 is determined by the operators pro-

^^ vided for that data type. 	 FORTRAN and ALGOL 60 provide arithmetic, relational,

(
1_

and logical operators for the basic data types of integer, floating paint,

_^ and logical.	 A subroutine capability allows the user to implement abstract

operators on basic and structured data. 	 Newer languages, such as FL/l and

i
APL provide some built-in operators for the structured data types, and a

subroutine capability for user definition of abstract operators.

3
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^, The control structures in most programming languages reflect the basic 	 ^;
^'

'^ architecture of sequential machines; in the absence of explicit control
i

constructs execution proceeds from one statement to the next in lexicographic
t:

order,	 Explicit control statements include various forms of con di tianai

`^ statements, iteration mechanisms, and subprogram calls and returns. 	 Con-	 ^	 -,

"^ di ti o^^ai statements i nc1 ude the arithmetic and 1 ogi cal	 I F of FORTRAN, nested,^..

IF-THEN-ELSE statements in ALGOL 60, success and failure exits in 5P1060L 	 ^;;
E'=

t statements, and the CO1VD expression of LISP. 	 Iteration mechanisms include

,;
'^' looping statements (such as the FORTRAN and PL/1 	 DO statement, and the 	 `

ra

.:
ALGOL 60 and PASCAL FOR statement) in which initialization, incrementing	 -

and exit testing is described in the statement forms, as we11 as loops

s constructed using IF statements and GOTOs in which initialization, incre-
-	 4

Y i

menting, and testing is handled explicitly in the source text.

The current interest in structured programming is motivated by the

- -
desire to provide control constt^acts that preserve the clarity of the

-;;

design specifications in the source code implementation of the design._

^ ^"
- ^: Sasic premises underlying the use of structured control mechanisms are:

1} each basic construct must preserve the single-entry/single-exit property, 	 n

and 2} no basic construct permits backward transfers of control in the

v	 source text {except the implicit transfers in looping constructs). Single- 	
h_-	 _.	 :^

entry/single--exit control structures can be hierarchically nested within 	 `^
:.^

other control structures to any arbitrary depth, and indentation of nesting

^:	 levels facilitates readability of the source Cade. ^Ihen the assumptions ^.

'^ ^	 of nested single-entry/single exit constructs and no backward transfers
—i

Iare satisfied, the dynamic execution flaw through the program can be made

r-	 k	 300	 ';
^`	 '



^'
^^`^t^

l^
;;..
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U
to correspond closely to the static structure of the source text. The source

text is thus highly readable and maces a significant contribution to its own

documentation.

The use of GOTQ statements has been criticized by structured programming

advocates because the GOTO provides an unrestricted mechanism for structuring

control flow, and it is quite easy to ^intentional7y or unintentionally)

violate the basic premises of structured programming using GQ TO `s. Elson

lists the fallowing positive benefits to programming without GO TO's ^78^:

1) The programmer is forced to discipline his thought processes,

to formulate his logic according to an appropriate structure.

2} The programmer finds himself ioalcing for similarities rather than

differences in sub-porcians of this problem. Rather than simply

generating conditional branches to many program locations to

handle a number of cases, he is encouraged to handle them together

perhaps with additional use of variables serving as parameters to

differentiate between the cases.

Tree reader ar inheritor of a program has a much easier time

following program logic if he ran read the program sequentially

rather than with constant page flipping through the program listing.

Much of the current research in structured programming is concerned

^_:
with development of control structures that reflect the system design in the

source code without unduly restricting the programmer ar forcing him into
N-.

,'.
unnatural modes of expression.

^_.

a`'` ^^^

	

	 In addition to selecting a language app rapriate to the application,W.

numerous implementation details will influence the quality of the software
a.,

^y

rn

^7

Y

^	 ^.,.^

^a1



,^,t
2) Nfemory space utilization

	

^^	 3} Adequacy of error messages

	

"^	 4) ^?ebugging options^:
ua

5) Adherence to formal standards

r
6) Stability of the implementation

^f.j a

	_	 The stability of an implementation is revealed by answers to a series

r^
	^a	 of questions such as: who maintains the implementation? at what level

	

;i	 of support? when was the last update released? haw long has the language
;^	.^	

been installed? how often is it used? what are the experiences of other

users?
u.

Documentation should be clear, concise, and well-structured. They.

documentation should include an introductory users manual, an authoritative

	

,,^	 reference manual, and explanations of machine dependent implementation

	

^^	 features. A11 documents should be cross-referenced and indexed to permit
^.

-.
-	 ^;	 rapid access to any desired level of detail. The implementation of

ambiguous, incarrrplete, and inconsistent features should be noted, along

with extensions to, and sub-setting of the language.

^.

,^_

._

^^a
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z
yin

^'
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`^
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7.6	 Summary	 ^

This chapter has discussed various aspects of the software design 	 -
u

process, including methodical approaches to software design, notational

f^ schemes for describing the design, and the influence of the programming 	 '

_-
;,^'

language on the design process.
,,: i	

ar
Design approaches discussed included top-dawn and bottom-up design;

i

};

,f^^

SllCCe55IVe refinement; integrated top-down design, coding, and testing; 	 ^
4F

programming by action clusters; levels of abstraction; nucleus extension;

^^
^: information hiding; and structured design.

Notational schemes discussed included structure charts, HIPOS,

^^
;:

pseudocode, structured flowcharts, and decision tables. 	 Various language
-

concepts and their Influence on the software design process were mentioned.

The theme of this chapter has been that high quality software can

only be achieved by thoughtful design and implementation, and that design

methodologies and notations do exist to facilitate the production of high

^' q uaiity software,	 All of the techniques described have relative strengths 	 -

and weaknesses which make them more or less appropriate in particular cir-
..

cumstances.	 No single technique is clearly superior to a71 others in a17 	 -

^. situations.

The tragedy of sloppy system design and poor quality software is not

^ due to the lack of notational schemes and design techniques, but rather is

^^ largely due to our failure to apply and experiment with the existing

methodologies.

-	 -	 is
^.

^-

_
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8.0 FUTURE EXTENSTONS

The DOMONTC system is operational and is being used in a number of

software projects at Texas A&M University. The latest version of DOMONTC

was installed at NRSA, Greenbelt, in June 1975. The system presently con-

sists of 315 separate modules and requires 290K bytes of memory. The

OOMONIC system contains an editor which can be used to edit source pro-

grams as well as ail forms of documentation. The DOMONIC system has been

optimized to interactively edit documentation while requiring the voluminous

documentation to be produced off--line. At present, the compilation process

can be initiated from an intn^active terminal but must run batch. The

DOMONIC system shauld be modified to allow the user to compile and execute

programs in time sharing made. The actual compilation and execution process

shauld be performed under appropriate systems such as TSO an the IBM 360/370.

Other system improvements such as improved garbage collection routines and

appropriate utilities far transferring documentation units from disl: to tape

should be developed.

Many aspects of program activity, project status, etc. can be monitored

through the monitor points made available within DOMONIC. Effectiveness of

a monitor requires more than designing monitoring capabilities into the

system. The monitor data must be captured in a farm that can be digested

and reportea in dac.uments that are meaningful to management. Currently, the 	 '

DOMONIC system is monitoring resource utilization within the DOMONTC system.

Some of this data is useful for driving the reliability made? developed as

part of the DOMONIC project. A monitor shauld be extended to automatically 	 `'
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record and report information useful in validating software reliability models.

^Y
Two reliability models (a completion model and an acceptance model) were

-	 developed as part of this project and were described in detail in Chapter III.

	

;^	 The DOMONIC system should be used to gather extensive data to validate the

above models as well as other reliability measurement algorithms described in
^:

	

°'`'	 the 1 ^ terature.

	;;^	 While the gOMO^lIC system has a number of existing documentation aids,
^;

additio^aI documentation aids should be developed for use with the system.

	

- ''	 A generalized graphics documenting system should be incorporated in DOMf1NIC.^;

^- This system should have the ability to draw flowcharts, hierarchical diagrams,

	

^-	 overlay maps and HIPO charts.

;-

^-

^.

^'




