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PREFACE 

On May 15-16, 1975, a symposium was held at the 

Goddard Space Flight Center on the Study of the Sun and 

Interplanetary Medium in Three Dimensions. The symposium 

brought together more than 200 scientists from the U. S. 

and Europe to discuss the importance of exploring the inter- 

planetary medium, and viewing the Sun over a wide range of 

heliographic latitudes. Among the topics discussed were the 

missions that NASA and ESA are currently considering for 

possible flight out of the ecliptic plane, and the likely 

scientific returns of these missions in the areas of solar, 

interplanetary and cosmic-ray physics. The symposium was 

sponsored by NASA and ESA, and was a topical meeting of the 

American Astronomical Society and the American Geophysical 

Union. 

In this proceedings an attempt has been made to pro- 

vide a complete summary of the content of the symposium. 

J. A. Simpson has kindly summarized the various options for 

out-of-the-ecliptic missions. The speakers who addressed 

the likely scientific returns from these mlsslons have In 

most cases provided detailed summaries of their remarks. 

In cases where a full summary was not available, an abstract 

has been provided. In addition, K. C. Hsieh has kindly 

provided an article on direct measurements of neutral gas 

out of the ecliptic. Time was not available at the symposium 

for presentation of these interesting Ideas. 



The organizing committee of the  symposium is  very 

g r a t e f u l  t o  the  authors,  a l l  of whom have busy schedules, 

f o r  providing d e t a i l e d  summaries of t h e i r  t a l k s .  t?e would 

a l s o  l i k e  t o  express our s ince re  apprecia t ion t o  Mrs. Sandy 

Schraeder and Mrs. Martha Harding f o r  t h e i r  invaluable  he lp  

i n  organizing the symposium. 

A list of a l l  t he  speakers a t  t h e  symposium, and 

t h e i r  top ics  is given i n  Appendix A t o  t h i s  proceedings. 

A list of a l l  t h e  a t tendees  a t  t h e  symposium is provided 

i n  Appendix B. 

L. A. Fisk 

W. I, Axford 



TABLE OF CONTENTS 

Page 

Some In t roduc to ry  Remarks . 1 

CHAPTER I - THE MISSIONS 

Experiments Out o f  t h e  S o l a r  System E c l i p t i c  Plane:  
An I n t r o d u c t i o n  t o  t h e  E x e c l i p t i c  Mission; 
J. A. Simpson . . . 10-31 

An A l t e r n a t i v e  Option to  t h e  Dual-Probe Out-of- 
E c l i p t i c  Mission V i a  J u p i t e r  Swingby; G. Colombo, 
D. A. Lautman and G. P e t t e n g i l l  . . 3 7 9 z  

CHAPTER I1 - SOLAR PHYSICS 

Out-of-Ecl ipt ic  S t u d i e s  of  Coronal Holes and T h e i r  
Re la t ion  t o  t h e  S o l a r  Wind; R. W. Noyes . . 48- 

S o l a r  Magnetic F i e l d s  and t h e  Corona; G. Newkirk, Jr. . 5937 

3-D S o l a r  Radioastronomy and t h e  S t r u c t u r e  of  t h e  
Corona and t h e  S o l a r  Wind; J. L. S t e inbe rg  and 
C . Caroubalos . 6 5 - 3 5  

CHAPTER I11 - SOLAR W I N D  

IPS Observat ions  o f  t h e  S o l a r  Wind Speed Out o f  t h e  
E c l i p t i c ;  W. A. Coles and B. J. R i c k e t t  . . 8 4 ~ 6  

L a t i t u d i n a l  P r o p e r t i e s  of  t h e  S o l a r  Wind from S t u d i e s  
of I o n i c  C o m e t  T a i l s ;  J. C. Brandt . . 95 

Impl i ca t ions  of S a i t o ' s  Coronal Density Model on t h e  
Po!ar S o l a r  Wind Flow and Heavy Ion Abundances; 
W. C. Feldman . 108 

Thermal P r o p e r t i e s  of  t h e  S o l a r  Wind a t  High L a t i -  
t udes ;  M. D. Montgomery . . 138&)73/r 

CHAPTER I V  - INTERPLANETARY MAGNETIC FIELDS 

The Large-Scale Magnetic F i e l d  i n  t h e  S o l a r  Wind; 
L. F. Burlaga and N.  F. Ness . 142 

Three-Dimensional Aspects of  I n t e r p l a n e t a r y  Shock 
Waves; G. L. S i scoe  . . 166 

(Continued) 



(Continued) TABLE OF CONTENTS 

Page 

CHAPTER V - SOLAR AND GALACTIC COSMIC RAYS 

Cosmic-Ray Transpor t  Theory and Out-of- the-Ecl ipt ic  
Explora t ion ;  J. R. J o k i p i i  . . . . 188 

Cosmic-Ray Modulation i n  Three Dimensions; 
J. J. Quenby . . 210 

Cosmic-Ray Access a t  P o l a r  Hel iographic  L a t i t u d e s ;  
H. J. Volk . 217 

S o l a r  Cosmic-Ray Measurements a t  High H e l i o c e n t r i c  
L a t i t u d e s ;  K. A. Anderson . . 231 

Coronal Propagat ion:  V a r i a t i o n s  w i t h  S o l a r  Longi- 
t ude  and L a t i t u d e ;  G. Wibberenz . . 261 

CHAPTER V I  - INTERPLANETARY DUST/INTERSTELLAR NEUTRAL GAS 

I n v e s t i g a t i o n  of  I n t e r p l a n e t a r y  Dust from Out-of- 
E c l i p t i c  Space Probes;  H. Fech t ig ,  R. H.  Giese, 
M. S. Hanner and H. A. Zook . . 298 

A Means of  I n  S i t u  Measurements of Neu t r a l  H and H e  -- 
on an Out-of- the-Ecl ipt ic  Mission; K. C. Hsieh . 321 

APPENDIX A - THE PROGRAM . . 329 

APPENDIX B - ATTENDEES . 333 



Some Introductory Remarks 

Over the years studies of the Sun and interplanetary 

medium have occupied the attention of a sizeable fraction of 

the space community, and have constituted a considerable 

portion of NASA and ESA's efforts in space science. And 

rightly so. We attempt in this subject to understand our 

local environment in space. 

With our continuous and in some cases in situ obser- 

vations, we also provide in this subject detailed testimony 

as to what physical processes are possible on a star and in 

an astrophysical plasma. Our studies of the solar environ- 

ment thus influence our thinking as to what is possible in 

other astrophysical settings. In soms cases the influence 

is quite direct. For example, the solar wind should exhibit 

many of the properties of stellar winds. Shock waves in 

interplanetary space may resemble those in interstellar 

space. The behavior traits of cosmic rays propagating in 

the interplanetary magnetic field should be similar to those 

of cosmic rays in the galaxy. And so on. 

All of the spacecraft that NASA and ESA have flown to 

study the Sun and interplanetary medium, however, have been 

limited in one major respect. None of these spacecraft h ~ v e  

penetrated off the equatorial plane of the Sun by more than 

about - + lo0 in heliographic latitude. We have thus sampled 

particle emission from the Sun, or interstellar matter 



impinging on t h e  s o l a r  c a v i t y  (e.g. g a l a c t i c  cosmic r a y s ) ,  

on ly  over  a  narrow range of  l a t i t u d e s .  The look-angle f o r  

s tudying photon emission from t h e  Sun is  s i m i l a r l y  limited. 

This  l a t i t u d e  l i m i t a t i o n  would n o t  be s e r i o u s ,  of  

course ,  i f  w e  had any expec ta t ion  t h a t  c o n d i t i o n s  i n  t h e  

s o l a r  environment were i n v a r i a n t  with l a t i t u d e .  However, 

even t h e  most cu r sory  of examinations of a  white  l i g h t  

photograph of a  s o l a r  e c l i p s e  r e v e a l s  a  s t r o n g  l a t i t u d e  

dependence f o r  cond i t ions  i n  the corona. Sun-spot and 

f l a r e  a c t i v i t y  is known t o  be concent ra ted  i n  t h e  m i d -  

l a t i t u d e  r e g i o n s  on t h e  Sun. I n t e r p l a n e t a r y  s c i n t i l l a t i o n  

s t u d i e s  sugges t  t h a t  t h e  f low of t h e  s o l a r  wind i s  f a s t e r  

and more t u r b u l e n t  over  t h e  s o l a r  p o l e s ,  than  it  is  i n  t h e  

e q u a t o r i a l  p lane  (See Coles and R i c k e t t ,  i n  t h i s  proceedings) .  

The expected Archemedes s p i r a l  p a t t e r n  of  t h e  i n t e r p l a n e t a r y  

magnetic f i e l d  may cause t h e  r a t i o  of thermal t o  magnetic 

p r e s s u r e  of t h e  s o l a r  wind t o  vary s t r o n g l y  wi th  l a t i t u d e ,  

t h u s  r e s u l t i n g  i n  a  plasma over  t h e  p o l e s  which has  substan-  

t i a l l y  d i f f e r e n t  p r o p e r t i e s  from t h e  l o c a l  s o l a r  wind. This  

same f i e ld  p a t t e r n  may l e t  low energy g a l a c t i c  cosmic r a y s  

(-' 100 ~ e V j  p e n e t r a t e  unopposed i n t o  t h e  reg ion  of t h e  

s o l a r  p o l e s ,  whereas such p a r t i c l e s  a r e  excluded from t h e  

inner  s o l a r  system near  e a r t h .  And t h e  l i s k  goes on. 

We a r e  t h u s  fo rced  t o  conclude t h a t ,  t o  d a t e ,  space- 

c r a f t  exp lo ra t ion  of t h e  i n t e r p l a n e t a r y  medium, and measure- 

ments of t h e  Sun which a r e  look-angle dependent,  have s t u d i e d  

a  non-representa t ive  sample of our t o t a l  s o l a r  environment. 



We have s t u d i e d  i n  on ly  two dimensions, what is a th ree -  

dimensional s t r u c t u r e .  We have n o t  sampled t h e  f u l l  v a r i e t y  

of a s t r o p h y s i c a l  cond i t ions  t h a t  a r e  a v a i l a b l e  t o  d i r e c t  

measurements i n  our  l o c a l  environment. Thus, w e  have n o t  

adequately broadened t h e  base of  knowledge t h a t  w e  can use  

f o r  dec id ing  what is  p o s s i b l e  i n  o t h e r  a s t r o p h y s i c a l  s e t t i n g s .  

An Out-of- the-Eclipt ic  (O/E)  Mission,  i n  which t h e  

i n t e r p l a n e t a r y  medium i s  explored ,  and t h e  Sun is viewed 

over  a  wide range of h e l i o g r a p h i c  l a t i t u d e s ,  w i l l  p rovide  

t h e  measurements t h a t  can h e l p  r e p l a c e  our  c u r r e n t  p a r o c h i a l  

view, wi th  a  more a c c u r a t e  assessment of  our  l o c a l  environ- 

ment i n  space. 

The Current  S t a t u s  of t h e  O/E Mission 

A t  t h e  t i m e  of t h e  pub l i sh ing  of t h e s e  proceedings,  

NASA and ESA a r e  engaged i n  a  Phase A s tudy  of an O/E miss ion ,  

which could be launched i n  t h e  e a r l y  1980's .  Two p o s s i b l e  

miss ions ,  a  pr imary and a backup, a r e  c u r r e n t l y  under con- 

s i d e r a t i o n .  I n  t h e  primary mission two s p a c e c r a f t  a r e  t o  

be launched s imul taneously  by t h e  s h u t t l e ,  wi th  t h e  In te r im 

Upper Stage  (IUS) - 4 s t a g e  booster .  The s p a c e c r a f t ,  which 

would be s i m i l a r  i n  des ign  t o  Pioneers  1 0  and 11, would then 

f l y  t o  J u p i t e r .  There, one of t h e  s p a c e c r a f t  would be 

t a r g e t e d  so  t h a t  a f t e r  encounter  it p a s s e s  up o u t  of t h e  

e c l i p t i c  p lane  and over  t h e  nor th  p o l e  of t h e  Sun. The o t h e r  

s p a c e c r a f t  would be t a r g e t e d  s o  t h a t  i t  p a s s e s  over  t h e  south  

s o l a r  po le .  Following t h e i r  p o l a r  p a s s e s ,  each of t h e  space- 



c r a f t  would r e t u r n  t o  t h e  e c l i p t i c  p lane,  and then would f l y  

up over the  opposi te  s o l a r  pole.  I n  t h e  backup mission, one 

spacecraft is launched from t h e  s h u t t l e  / I U S  - 2 s tage.  This 

spacecraf t  is ta rge ted  a t  J u p i t e r  t o  pass  over one of t he  

s o l a r  po les ,  r e tu rn  t o  the e c l i p t i c  p lane,  and then f l y  up 

over t he  opposite s o l a r  pole.  I n  both missions the  space- 

c r a f t  can ob ta in  high hel iographic  l a t i t u d e s  ( 8 0 ~ ) .  

The major advantages t o  t h e  primary mission are:  

(i) I t  w i l l  provide simultaneods measurements of condi t ions  

i n  t he  northern and southern hemispheres of the  Sun. (ii) The 

t o t a l  sc ience payload (both  spacec ra f t )  c a r r i e d  i n  t h i s  mission 

is l a r g e  ( 60 kg) .  (iii) The two spacecraf t  passing by J u p i t e r  

w i l l  provide an i n t e r e s t i n g  opportunity t o  d i s t i ngu i sh  s p a t i a l  

from temporal e f f e c t s  i n  t he  Jovian magnetosphere. Indeed, 

t h i s  mission may provide t h e  only opportunity i n  t h e  forseeab le  

f u t u r e  when two spacecraf t  a r e  simultaneously ,near  J u p i t e r  . The 

advantage f o r  t he  backup mission is ,  of course,  i n  cos t .  I t  

c o s t s  l e s s  than the  primary mission, and ye t  i t  s t i l l  provides 

a  survey of condi t ions  a t  high hel iographic  l a t i t u d e s .  

I n  the  primary mission, it i s  planned t h a t  ESA would 

bu i ld  one of the  spacecraf t ,  and NASA, t he  other .  I n  the  

backup mission, the  spacecraf t  would be provided by ESA. 

In  both missions, NASA would provide the  launch veh ic le  and 

the  RTG power suppl ies .  

The Phase A study w i l l  be completed i n  t he  spr ing  of 



1976. After  t h i s  t ime,  NASA and ESA w i l l  d e c i d e  whether o r  

n o t  t o  proceed wi th  a j o i n t  O/E mission. A d e c i s i o n  can be 

expected i n  t h e  summer of 1976 a s  t o  whether a Phase B s tudy  

of  one of t h e s e  minsion o p t i o n s  ( o r  some o t h e r  o p t i o n )  w i l l  

be undertaken. 

D e t a i l s  on t h e  primary and backup miss ion ,  a s  w e l l  a s  

on o t h e r  o p t i o n s  f o r  O/E miss ions ,  can be found i n  t h e  review 

paper  t h a t  J. A. Simpson h a s  k i n d l y  w r i t t e n  f o r  t h i s  proceed- 

ings ,  I t  should be noted a l s o  t h a t  a  p a r t i c u l a r l y  i n t e r e s t i n g  

v a r i a t i o n  on t h e  O/E mission i s  d i scussed  i n  t h e  proceedings 

i n  t h e  paper  by G. Colombo, D. A. Lautman, and G, P e t t i n g i l l .  

I n  t h i s  v a r i a t i o n ,  one of t h e  two s p a c e c r a f t  i n  t h e  two- 

s p a c e c r a f t ,  Jupi ter-swingby mission i s  a s o l a r  probe,  which 

a f t e r  encounter  with J u p i t e r  is  d i r e c t e d  back a t  t h e  Sun 

a long a n e a r l y  r e c t i l i n e a r  pa th .  Accurate measurements of 

t h e  quadrupole moment of  t h e  Sun can be made from t h e  s o l a r  

probe,  a s  w e l l  a s  i n  s i t u  measurements of t h e  s o l a r  wind i n  

t h e  corona. 

O/E Science  

Some informat ion  on t h e  f low speed of t h e  s o l a r  wind 

a t  t h e  h igher  h e l i o g r a p h i c  l a t i t u d e s  can be ob ta ined  from 

obse rva t ions  of i n t e r p l a n e t a r y  s c i n t i l l a t i o n s ,  and a l s o  from 

obse rva t ions  of i o n  comet t a i l s .  I n  t h i s  proceedings  we 

have inc luded a paper  on s c i n t i l l a t i o n  obse rva t ions  by 

W. A. Coles and 3. J. R i c k o t t ,  and one on s t u d i e s  on comet 

t a i l s  by J. D. Brandt. I t  is I n t e r e s t i n g  t o  n o t e ,  however, 



t h a t  the conclusions of t h e s e  two papers  on the behavior  of 

t h e  average wjnd speed a r e  s u b s t a n t i a l l y  d i f f e r e n t .  These 

d i f f e r e n c e s  may be r e c o n c i l a b l e ,  a s  Coles and R i c k e t t  suggest .  

However, such d i s c r e p a n c i e s  i n  i n d i r e c t  obse rva t ions  emphasize 

t h e  need f o r  d i r e c t  i n  e i t u  measurements. 

The remefning papers  and a b s t r a c t s  i n  t h i s  proceedings 

d i s c u s s  t h e  impact t h a t  an O/E Mission w i l l  have on s t u d i e s  

of t h e  s o l a r  corona,  s o l a r  x-ray and EUV emission,  s o l a r  

r a d i o  astronomy, t h e  s o l a r  wind, t h e  i n t e r p l a n e t a r y  magnetic 

f i e l d ,  s o l a r  and g a l a c t i c  cosmic rays, i n t e r p l a n e t a r y  d u s t  

and zod ica l  l i g h t ,  and i n t e r s t e l l a r  n e u t r a l  gas.  I t  is  

recognized immediately from t h i s  list t h a t  O/E s c i e n c e  is  

h igh ly  m u l t i - d i s c i p l i n a r y ,  invo lv ing  many a r e a s  of s o l a r  and 

cosmic-ray phys ics ,  and a l l  a r e a s  of i n t e r p l a n e t a r y  physics .  

There a r e  a l s o  many d i f f e r e n t  t o p i c s  i n  each a r e a  which w i l l  

be a f f e c t e d  by O/E measurements. I t  is n o t  t h e  purpose of 

t h i s  proceedings t o  g i v e  an exhaust ive  survey of a l l  p o s s i b l e  

top ics .  Rather ,  w e  have simply h i g h l i g h t e d  h e r e  some of t h e  

more i n t e r e s t i n g  problems i n  O/E sc ience .  I n  t h i s  same 

con tex t ,  it should be recognized t h a t  an O/E mission i s  

exp lo ra to ry ,  and as such is  c e r t a i n  t o  uncover new phenomena, 

I t  is one of t h e  axioms i n  t h e  space program t h a t  when we f l y  

where w e  have never been b e f o r e ,  we uncover phenomena t h a t  we 

cannot a n t i c i p a t e  i n  advance 

The papers  and manuscripts  i n  t h i s  proceedings have 

been reproduced d i r e c t l y  from t h e  t y p e s c r i p t s  provided by 

t h e  authors .  I n  73dktion t o  cons ider ing  s c i e n t i f i c  qrie?t ions,  



the authors i n  some cases  have discussed the  hel iographic 

l a t i tude  that  an O/E mission must obtain f o r  bes t  r e s u l t s  i n  

the ir  part icular  area. NASA and ESA requested that  such 

information be provided i n  the talks a t  the symposium. 



CXAPTER I 

THE MISSIONS 



Experiments Out of the Solar System 

Ecliptic Plane: An Introduction 

to he Execliptic Mission* 

J. A. Simpson 

Enrico Fermi Institute and Department of  Physics 
University of Chicago 
Chicago, Il l inois 60637 

February 28, 1976 

I. Introduction 

The dramatic step made possible by direct measurements i n  space wi th sate! I i tes 

and probes during the past 18 years has totally altered our concepts of the Sun, the 

interplane tory mediutq and their influences upon Earth. This has been achieved **ti th 

observations confired solely to the vicinity of the equatorial plane of  the solar system. From 

these two-dimensional investigations we have made dubious attem~ts to extrapolate our 

knowledge to deduce what the Sun and space i n  the solar system i s  l ike i n  thiee-dimensions. 

However, the solar, interplanetary and galactic phenomena discovered i n  these years have 

raiscd many urgent scientific questions which can only be answered by direct observations and 

experiments far aut 0.: the ecliptic plane and over the solar pole to achieve a "global" concept 

of the Sun, the interplanetary mediuqand their relationship to Earth and the boundory of the 

heliospherc with the interstellar medium. We have been faced for many years with this age-old 

which occurs often in science, nnmely, the extrapolation of physical phenomena from 

two-dimensions to deduce phenomena i n  three-dimensions. The uniqueness and irnportancc of 

* Based upon invited talk a t  "Symposium on the Study of the Sun and Interplanetary Medium 

i n  Three Dirncnsions" -- May 15-16, 1975, Goddard Space Flight Centel, Grecnbelt, Maryland, 
and "Cl~orged Particle Astronomy in  Interplanetary Space at Higli Solar Latitudes", J. A. Simpson, 
Cliap. 5.3; NASA collcctcd papcrs for ESRO Docurncn! MS(74) 34 (1974). 



o scientific mission which con directly ochieve this global study and the recoani!ic?n of its 

potential for discovery has Leen clear for many years. In describing such oil exploratory 

mission, i t  i s  not unfair to make a comparison between the importance of Man's exploration of 

the spherical surface of  the Earth, and an execliptic missioq which i s  quali tarively 

similar i n  its conceptual and practical consequences for space science to the impact o f  the 

full exploratior~ of Earth on Man's intellectual advancements. 

If a mission out of the ecl ipt ic i s  so vital to the advancement o f  scier~ce then 

why has i t  not become a reality by now since the techno~o~\ f  for its accomplishment has been 

with us for several years, and Pioneers 10 and 11 have demonstrated that a Jovian grovity- 

assist to drive a probe out o f  the ecliptic i s  safe? Among the reasons appears to be the broad, 

interdisciplinary character of the most important investigations on the mission which, on the one hand, 

represents the greatest strength of  the mission, but, on the other hand, becomes a source of 

weakness for marshalling the sources and the support of the scientific communi ty, or even 

leadership within the federal agencies where the missions must successfully compete with other 

important types of space missions. Since the late 1950's an out of the ecliptic mission has been 

1 
under discussion. Now, hopefully, i t  i s  a mission whose time has come since i t  has recently 

elicited support from a wide segment of  the scientific community on tht? basis of its uniqueness 

and importance for science and the applications of science to our understanding of the Sun and 

i t s  influence upon Earth. Furthermore, as has been the case for the space program to date i n  

the equatorial plane, out-of-the-ecliptic observations are almost certain to yield important, 

unanticipated discoveries. We can best describe the quality of the mission objectives as 

exploratory and interdisciplinary and, therefore, the investigations must be designed tc encompass 

the unexpected. 

fie purpose of  this note i s  to summarize the most l ikely alternatives far carrying out 

a mission to achieve these broad scientific goals and to il lustrote wi dl specific examples drawn 



from charged astronomy, intcrplarletary and solar physics some o f  the cxperimcnts and 

observations which may bc carried oilr. I t  i s  not within the scope o f  tlris note to describe in 

detai l  the many exciting scientif ic challenges opened by the mission, but the reader easily w i l l  

J, 
perceive h i s  wide range o f  poziible investigations, many 6f  which are discussed in the 

2 3 
Proceedings of this Symposiuni or outlined by Page. As a basis for discussion of  he regions 

of the Sun and interplanetary space wllich may be explored byexccl ipt ic  missions I have 

prepared i n  Figure 1 a schetnatic represcnlcttion of the rnuin solar latitudc zones of hialiest 

intcrest and their possible interfaces wi th the interplanetary medium. In the f o l l o v ~ i n ~  discussion 

we w i l l  sutnmorize some of the alternative missions whic1.1 reach into these regions of space and 

the constraints :hey place up011 experin~ents. AS a secondary objective we shall olro describe 

the opportunities which somc o f  these missions prcvide for unique studies o f  the magnctosphei-c 

of Jupiter since, for the most l i I < ~ ! ~  mission chcicej, Jupiter becomes 

the "grrtewoy" fo space out of the ecliptic. 

lilLfc 1 i s  u summary of thc tnost oui~!~.nding rnissior~ cltcrnarives. Tl~cre  i s  

vel l i r .1~ technulody, hence sorne of the olte~notivc: ~ . l ~ c . ~ ~ n : c d  in TaSIt: 1 novi are only of 

historic01 int. ;-*-::. Rasical ly, 111e mission cptions arc? ~ l ~ ~ ~ t ~ d e n t  on luunc!~ vcl i ic le capabili!ics. 

i>i~.cct balli..tic injection UI - 1 a. u. (optio1.1 7and C) cv t r i  under optitnurn coi-~:li:in!is v / i l i  toke  

- 0 
a spacecraft to - 3 /  h ~ l i o ~ r ~ ~ l i i c  latitude. 111~ o id i t io i l  o i  sola; clcctr ic p:o~.llrl:ion ( S i r )  

nlokej i t  ~~es:il:lc to acllicve a spc~cc~.o f t  trajectory oici l iot ing i t 1  l i i t i tudc at 1 (I. u. , and 

synchronoils ~ ~ i l l i  tart11 tftus scanning o v ~ ~ l .  o north-,o:ltl\ laiitcldc rntlsc thot ~.cnci ,cr  a l im i t  

I < 60' wi!:lin 2. 7 ycars, under rnaxirnv~n launch cc;,n\%ilitic.s (opt;on 9, for cle'luils see - - 

rcfci.c.ncc I and 5). l l \ l :  11aic-ctory p!o:tcd in  a l>lcrr.l(- at 1 O . U .  i s  s!l:,\vn i n  fi;l:~il: 7. This ~yi.,,:' 

I J -  
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@jp-to*polar cap passes of Jupiter swin~by missions wi l l  achieve the latitude s a n s  uf the SEP 

&tons, although for a shorter interval of fils solar cycle. 

The alternative to direct injcclion i s  a gravity assist by Jupiter, i. e. by a 

lopiter swingby (JSB) -- a technique first proveti by Pionccr-19 to achieve a 5 0 1 0 1  system 

6 
&cape trajectory. This technique makes i t  possible to achieve solar polar cap pas5r.s with 

moxlrnurn latitudes depending on the launch constraints (options 1 - 6). Among those opticns 

that ochiova polar cap passes of - > - + 80°, options 1, 2, 3 and 6, offer ihe greoteit 

for ochicving our stated primc objectives of r!xploratioq und discovery. Option 6 enables a single 

spacecraft to reach - 79°rol~r lotitude viilll an ~tlas/Ccntaur vehicle Ley requ;riry on Earth 

swingby as shctwri in Figure 3. However, in addilion to the increased time toreaclr solar maximurn 

latitude (1.7 years longer), this missior~ suffers further from reduced re1 iabil i ty becuuse i t  

requires an additional spacecraft propulsion subsystem to undertake tvto add; tionol and critical 

spacecraft malieuvers as described i n  Figure 3. We focus on the most fruitful of a l l  the JSB 

options, hopefully the most likely to be adopted, namely a dual spacecraft 1au11c.h to Jupiter 

(options 1 or 2) which wi l l  result in spacccrafts over boll1 solar polar cops simul tar~cously with 

ko!ectories as shown in Figure 4 passing fiorn pole-to-pole in oppoti tion. Wc refer to this typc 

of niisrior, as the tandem Jupiter swingby (TJSB). 

-13- 



t tmjecbrtes. These are: (1) frsm Ear6 tu Jupf ~ r ,  (11) 

miqAe,ms over the radial range - 1.5 - 5 a u., (IV) over the afar pole, em9 pole-to- 

Ie transits ~f the two spacecrafts, d (V) post solar pole traiacbies. In each phase 

here are s ~ o r  prime missim goals for one or more of the scientific Investigations. In he 

fellowing discussion we take he reader on a "gufslsrd tour" through these five p h w s  of the 

TJSB missions udng illustrative scientific investigations which wi l l  I d  tb discovery or the 

answer to old questions, Although i t  i s  w possible to discuss in  t h i s  note al l  tha important 

scientific objectives of each phase, these traiectories provide a rich source of new invortigatians 

with each phase of the mission possessing i t s  own set of unique scientific obiectives. 

Phase (1): Earth to Jupiter 

Ihe two spacecraft travel near the ecliptic plane with a radial-spatial separation of 

6 
order 1Q kilometers and wi h simultaneous transmission of data. This separation makes i t  posriSle 

for us to undertake a new family of stwdics, since never bcfore have spacecraft been so separated 

for a long period of time free from the influence of a nearby planet and never before have we hod 

he opportunity to do correlative studies between closely spaced observatinn points aver a large 

radial range. For cxample we lnny undertake: 



a) the study of cItargcd particle-rnag!~ctic ficlcf interactions, espec;iully 

for very low energy tiucloar pari.icles i n  the range 0. 1 1.0 1 MeV. 

This spacecraft separation distance beconles comparable to the correlation 

length of the interplanetary magnetic field and to the scattr!ring scale 

size of the particles. 
8 

b) the study of the modes of propagation and interaction with magnetic 

f ie ld  in  interplanetary space of the electrans which have been recently 

found to be escaping from Jupiter. 9-1 1 

12 
c) measurements of the interplanetary acceleration of protons and electrons 

i n  
13 

the regions surrounding blast waves from the sun. I t  wi l l  also 

become possible to investigate in  detail the forward-backward moving shocks 

which are now observed to bs. associated with so-called " interplanetary 

14 
active regions" . These active regions and shocks are also associated with 

enhanced fluxes of - 1 MeV protons. 15 

l h i s  phase of the mission corresponds to an interplanetary version of the smaller 

scale Mother-Dough ter satellite combination devoted to magnetospheric studies in  the period 

1977-1980. No other interplanetary mission studies of the above type have been made, or are 

contemplated in the foreseeable future. 

Phase (11): Jovian magnetospheric studies 

Since for operational reasons the two spacccrafts in  opposite hemispheres wi l l  

have timesof closest approach 2 to 3 days apart, we obtain a unique and valuable separation 

of the two spacccrafts in the Jovian magnetosphere capable of attacking problems that could 

not be investigated by the Pioneer 10- 11 spacecraft, the Mariner-Jupi ter-Saturn spacecraft, or 

even a single Jupiter orbiter spacecraft. In Figure 5 we display a, meridionat plane projection 



of rhe traj.-ctorics of the two spcrcccl.ufts k otld R. Figure 6 i s  a proit?ctiollof the two spacecraft 

trajcctorics on the cci ipt ic plunc.. For cortrpar.ison the Pionccr-11 cr~cour l t~r  trajectory 

to Saturn i s  shown. AI the time of closcst approqcl~ for spacecraft A (position I), spacecraft B 

i s  at  a distance of  - 50 R,, and wllcn spacectoft B i s  a t  closest approacti (position 10) yacecmft  

A hos niovcd to - 50 P,. Thus i t  zhculd he poi~ ib le  to separate large scale spatial bum 

ternporal effects in  the Jovian rnnjnr-tosphere. I t  w i l l  also bc: possible to obtain measutements 

at four magnetic latitudes for each rodial dislance. Some of the key problcnis to be attacked 

are: (0) itivesligation: of the vurialion of the radial position of thc Cow sltock witl i tit* z, and 

(b) the distortions of the rnagnetoq:heric boundary in  response to fluctuations i n  the strength and 

directiori of the solar wind and the rotution of ihc magnctospl~ere. An important featu~e u i  the 

Jovian mt r~ne to~~hc r i c  observa~ions possible wilh the TJSB rnission i s  the riniul taneous 

measurement of the solar wind ov!iide the magne!osphere by one spacecrcft wliile measurements 

wilhi,; 15;. ~no_snctb:;I!rle ore under v~ay wit11 the second spucecruft. (c) The nature of the 

"global" ritnc dc i  - -ic!:nt !O hour variations of clec~ron intcn;iiy and sptctrum within the 

6, 9, 10, 
rnagrtc t:~~:>llere , how i s  this effect rclateci to the rotation eifecls of the eluutorial plasma 

s1iec.t ~ " r i !  t ! ~  ::,n!;(,llj' depcnccnt 10 hour varic;:ic;~? T h i s  i n  turn i s  rr l<~:c~d to the problctq o i  

the meclianisrn f o ~  t l ~ c  release of electrons from Jupi~er into i n t e ~ . ~ l a n e t a l ~  space. (d) Jovian 

satellite interacticns with the trapped radiation; cpecial cjpportunities exist whereby i t  i s  

possible to cross 11ic flux tubes associated wi:ii the satellite lo  and thus to investigate the natu1.e 

of thc control exclled by lo over decametric rcdio bursts. 
6 

In sum, ihe dual spucccraft out-of-the-c>cliptic mission w; l l  answer questions 

wliiclt would othcr\visc rcniclin a puzrle for sttjdics made with a siriglc spacecraft. 

Obsctvations moilc wi lh Pioriccr 10 and 11 have es~obli:ltcd thc importcncc of 

6 ,  16 
trat~sicrlt rhcnurncna for t h c  ~nagnetos~lic 1.c of Jit),iic.r, such as latac scolc diito, ! io, i i  



Observations with a single spacecraf~ cannot unam5iguously sepclrutc the tet~iporal ar~dspatial 

dependences o f  such transient effccts, so that a dual spacecrafi r~iission offers our bast hope for 

gaining a further understanding o f  the physics of the Jovian magnetosphere. 

Phase (I 11): Out-of-the-ecliptic at lal.ge radial distances ----- 
Figure 4 illustrates the trajectory characteristics for spacccrafts A and R as 

a function of time after a Jovian switigby. I n  a period of - 2 years, the h t o  spacecrafts 

traveling i n  ihe opposite hernispheres of the intcrplanetclry medium cover a radial distance of 

0 - 4 a.u. whi lc slowly traversing a solar latitude range of up to ncurly 90 . 
This phase of the mission offers ihc opporiunity to tuke snapshot: of solar 

active regions on the sun, (EUV, UV, x-rays, radio, etc.) for cornparisan wi th idclntical 

observations from Earth to form stereoscopic picture; of solar phenon?c~ia. I t  a!so becomes 

~ossib le to investigate new aspects of the Gegenschein. 
2 

% i s  phase o f  the mi:iion alsooifors il,e opport:~nih,/ to siudy the Le5avicr 

o f  magnetic scctor structure at large rudial distances from thc Sun i n  ihe solur act ivi ty zotie 

(Figure 1) to answer such qucstiot~s as: (a) 'SJhot role docs th- r e a i m  c f  solar ociivi+/ (10 to 

35 degrees) play i n  dcte~mirliny ihe Sectoi strvctc~rc of magneiic T i c  id: crtecoir>: ;roll 1 lo 

5 a. u. ? (b) To what exien: docs d ~ c  magnetic scctor structuic p ~ r i i s t  a t  high iciitudes and at 

great distances from the Sun? (c) How does the Sun'sdifferential rotation, ~ .~~h ichpr~ducesaro+at ion  

period9days Iongerat :he pole thanat the equator, change thc. structure of intclplanetary mcgnc tic fields? 

lhese and questions concerning the"y lohal shape" of blast waves in  the two I lcn~is~l icres consti t u ~ e  

major magnetic f ield and plasma studies for this of the mis:ion. The characteristics OF this 

region for charged part iclc p ropogat i~n  for both solar atid galactic arc entirely 

unknown, and their dctcrmination would be thc p~ inic goal of cl~argcd part iclc studies in t h i s  

region. 



Phase (IV): - The polar observationsat the Sun from - 1.2 - 2 a. u. 

A. Solar observations from i:lw viewpoint. 

The evolution of coronal features above solar acl.ive regions, coronal streamers 

and related transient, large scale phenomena -- now observable only by solar limb studies 

from Earth -- may he undertaken from the A t b r  5 spacecraft by time-lapse observations 

obbit?ed simultaneously at al l  solar longitudes. Coronagraphic studies on a spinnif~g spacecraft 

are difficult, but the potential i s  ;;:eat for understanding the origin and dyllamical structure 

of h e  inner and ot.'.er corona from simultaneous, polar and equatorial observations (J. A. 

Simpson to G. Newr .k, private communication, 1968). 

8. Sol, interplanetary studies. 

Somewhere i n  the region tentatively identified as the transition region above 

0 
solar latitude - 60 , characteristics of the interplanetary medium increasingly become 

determined by the properties of the sun and corona in  the polar regions. For example, i t  i s  

currently believed that the ~ o l a r  region may be represented by a coronal hole where a 

continuous emissionof the solar wind at high velocities (> 700 km/sec) i s  expected. l 7  i t  i s  in  

this region h a t  the rotational effects of the Sun cease to play a major role in  the large-scale 

structure of the magnetic field carried intointerplanetary space by the solar wind. The properties 

of t h i s  region are unknown and expected to be totally different from those so far studied i n  h e  

vicinity of the equatorial plane. For studies in h i s  region i t  i s  vital that measurements ir? the 

north and south polar regions be made simultaneously since i t  i s  well-established that both the 

temporal and spatial distributions of observable solar phenomena in the polar regions are frequently 

different at the two poles. In addition to the particle, magnetic field and plasma interactions 

which wi l l  be studied for the first time under these new physical conditions, we point out that 

low energy particles from the galaxy may find a relatively easy en try to this 



region, as discussed below. 

As shown in Figurc- 1, the two spacecrafts pass from pole to po:e in periods the 

order of 260 days (or on an overage of - 0. P per day). T h i s  corresponds to an elapsed time of 

- 10 solar rotations when the two spacecrafts are at radial distances - 1.2 to 1.5 a. u. Cleorly 

radially dependent effects are likely to be small compared with latitudinally dependent 

phenomena being studied simul~neously on the two spacecrcft. Rle observations to be made 

and the scientific obiectives of Phase IV of the dual spacecraft are essentially the same as those 

for the SEP mission (options 9 and 10). Both missions provide a scan of solar lati tudc at a 

rate of - 0.4 - 0.7 degrees per day at approximately constant radial distance from the Sun, 

although the dual spacecraft mission provides coverage of the polar region of the Sun, while 

the SEP mission does not. Among the latitude dependent phenomena to be investigated are 

(a) the effect of differential rotation on the magnetic field structure i n  interplanetary space; 

(b) the nature of the transition region from the polar coronal holcs to the band of solar activity 

(Figure 1); (c) the nature of transient phemomena such as shocks and high velocity streams 

at high solar latitudes. Measurementsrelating to these questions made in Phase IV are distinguished 

from similar measurements i n  Phase Ill by the fact that the radial position of the spacecrafts i s  - 
not an important parameter during Phase iV, thus providing a clean separation of latitudinal 

and radial effects. 

I t  i s  likely h a t  the combined direct solar observations, magnetic field, plasma 

and high energy particle studies wi l l  introduce a qualitative change in  our understanding of 

the differential rotation of the Sun, of the - 22 year magnetic cycle and, thereby, i n  our 

understonding of the internal dynamics of the Sun. 

C. Galactic composition of cosmic radiation. 

In part B above, measurements during the po le - t~ -~o le  cxcwrsion of the 



two spacecrafts were concentrated on tho electrodynamics of the i t 1  terplone tary medium 

and the role of the solar feature8 i n  determining the dynamics of the medium. I f  conditions 

over the solar poles are anywhere near those predicted i t would appear that cosmic ray particles 

of lw enorgy from  he galaxy which cannot othervjise propagate into tine inner part of the solar 

system near the equatortal plane becaus; of solar modulation be able to penetrate 

by way of the solar poiar magnetic fields to within .- 1 - 2 a. u. If so, we may be able to 

obtain for the first time samples of tF : I. enersy composition of galactic cosmic rays; 

that is, the relative abundances of the elements i n  the nuclear component of the 

cosmic rays and he relative isotopic abundanccs of hydrngen to nickel. 

Through such studies i t  may become possible to identify the low energy component of cosmic rays 

accelerated in our local region of the galactic arm. These studies wi l l  be of vital importance 

for deciding among models of nucleosynthesis of the elements in  the sources of cosmic rays. 

Furthermore, under such circumstances, i t  would become possible to obtain the energy densities 

in  interstellar space for these very low energy particles ( a problem concerned with the heating 

of interstellar clouds). 

Finally, al l  of these invesligations over thc sola- poic vrlien take i together with 

observations in the equatorial ,>I ..me wi l l  yield a "global " model for solar modulation which 

takes account of the propagation of nuclear particles and electrons extending dov~nwnrd in energy to 

energierwhere at prasent their moduiation i s  not understood. Recznt observations 
19,20 

shov~ 

that evenathigher energies, revisions ofour ideas obcut modulation may be required, possibly 

2 1 
involving processor taking place off tho ecliptic plane , or introducitig ill-erstcllar neutral 

particles in  the ~ i e l i o r ~ h e r c . ~ ~  The IMP satellites and Pioneer 10/11 Jeep spocc probe obrervatiuns 

have raised a number of interesting questions regarding whether or not low eticrgy particles 

could have acccss to h e  solar cquatorial zone. 



D. E n e ~ ~ c i i c  partitlas of mlar or ig i t~.  

Tho role of coronal tran~pol.t in the p ~ o ~ ~ o j a t i o n  of solal- pal liclc.; f ~ o m  f la1.e 

sltcs to h e  intcrplaiictary mcdium has been n~uch studicd but i s  not well undc~siood. 
23-26 

Out-of-t!?c-ccliplic missions w i l l  play a major role in deciding on the transport mcchar~isrr:, 

on he storage time and dish-ibution of rxvticlcs at ~ h c  sun, and, i n  t~ rn ,  vrhile vsillg solar 

particles as probcs of the intcrvcning magnetic fields, w i l l  obtain information on thencal-surt 

s~iognotic f icld structure including the distribution ol i r r ~ ~ u l a r i t i e s  in the magnetic field. I t  

may be possible that the effects of  differential rotation ccn be analyzcd best by studying tlte 

omission of solar flare particles at high solar latiludes. 

E. Models of the heliospherc. 

A t  the present time we connot choose conc!tlsivcly among models of the 

heliospherc with boundaries for particle modulation wliich,for example, could be a) par~cakc- 

l ike in character, extending the order OF say 20 to 50 a. u. i n  the equotoriul reg ion, but only 

a few astronomical units thiclc over the polcs, ot b) v ~ i  111 distant !;oundar;cs over the sc;lc-r 

27 
poles and therefore mucli more spherical in character, as sketclled in Figure 7. A1 t i ~ o v ~ h  

these two examples rcprcscnt c-~!l.t.mcs, i t  wsuld appc-or that data 0btai11r:d ou t-of-the- 

ecliptic pfonc could assist i n  deciding between them by using galactic cosmic rays as p r ~ b e ;  

of the outer magnetic fields of the interplanetary medium. Predictions for tb 'iarged p ~ r t i c l c  

gradients, particle anisotropies and cncrgy spectral cllanges as a f u~c t i on  ! ~ f  solclr la budc can 

be made; therefore a wide range of models can be tcstcd by thc dual spacccraft mission 

(e. g. reference 28). 

Phase (V): Pcst solar obselvations 

Ihc abovc four phases of  the dual mission illustrate the wide range of physical 

processes which can be studied during the mission. After leaving thc sun t(1c dual spacecraft: 

again travel outward frorn the Sun wII(:~c t l~cy arP a1)1c to :epeat sorne of tli,: ob~crvatiotls w l t i c l i  - 
were obtained bctwecn J v f ~ i  1c.r and lltc Sitn i n  Phusc JII us mucl) as a I ~ a l f  solnr cyclc earl icr .  - .- 

-21- 



I&e latter measurements would Indeed be very interesting since they can provide further 

evidence on the long-term chaqes i n  tlrc heliospher+ especially in tias latihrdinal structure 

of he interplanetary mqnetic fields. 

IV. Summary R e d s  

We conclude from the mission alternatives that the latitude scan missions 

arch as the SEP options 9 and 10 (Figure 2) are dedicated to more detailed observations 

and explora,;an of the soiar active zones (Figure 1) with a strong emphasis on extending 

the stereoscopic viewing of the solar phenomena now under observation with Earth orbiting 

satellites. On the other hand, the solar polar cap passe: further extend the exploration 

of new regions of the Sun and interplanetary medium, the evolution of solar coronal featvres 

seen simultaneously a t  al l  solar longitudes, and the possible access of low energy particles 

from interstellar space - via the polar magnetic fields. Such particlescan not be detected 

with deep space probe miss:ons near the equatorial plane in  the foreseeable future. Tl~us, 

in many aspects both fypes of missions are important for science, but are qualitatively different 

i n  their goals. 

With regard to strategies, the TJSB missions offer the unique advmtage of 

providing well-defined interfaces for international collaborations since one spacecraft coufd, 

for example, be the responsibility of the European Space Agency while the second spacecraft 

could be the responsibility d the NASA. 

Some instruments slaould cover the same measurements simultaneously on both 

spacecrafts, e.g. magnetic fields, plasmas, charged particles and x-rays. However, in  

addition one spacecraft could carry a set of complex instruments to complement the other 

spacecraft, - viz. a coronagraph on one spacec~,aft, and a complex super-thermal particle 

spectrometer and solar radio emission Jekc,or t::. the other spacecraft. 
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AltkePrgh T&le 1 suggests o wide q in costs h d  uptm h e  launch 

vehicle, rdra ultimate difference Bolwtesn a Pingla spacecroft JSB mission 4 TJ& miision ' 

wid far kient i f ic  inshwmnt pepamtion an8 in-ration, for data osquisi tion throughout 

the years of he mission and, most important, for the level of eonwni hwn t of hose i n  the scientific 

community motivated to undertake such a long k r m  enterprise. 

lb need for simultgn~us masurrmnts a t  Earth during on execliptic mission 

must net be overlooked i n  order to sparate spatial from tempoml changes in solar interplanetary 

phenomena, and to relate these observations to the present day scientific knowle&e derived 

from equatodal measureman b. 

Ingenious experiments and observations have been reported for many years 

to explore the high solar latitudes near the Sun and interplanetary space. These include 

h e  use of radio waves from distc~nt stars to study the magnetic irregularities and electmn densities 

near the Sun, the observation of comet tails at high lati tudcs and the scintillation effects 

of galactic cosmic rays to deduce propertics of the solar wind, and the large-scale probing 

of ihc interplanetary medium by high energy cosmic rays to estimate tlae scale size of the 

heliosphere. However, they cannot substitute for direct observations i n  the regions of the 

solar system to be penetrated by an execliptic mission. 

f i e  author apologizes for not adequately covering i n  this note the many alternate 

mission options with their unique scientific objectives. 

He wishes to thank Dr. Bruce McKibben and Mr. John Niehoff for 

assistance with the preparation of materials for this manuscript, and Mr. Don tierman 

of NASA and Mr. H. F. Matihews of the NASAIAmes Research Center for providing essential 

background material. Th is  work was supported in part by NASA grant NGL 14-001-006. 
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Table 1 

XIUR ExEcLlPnc MISSION o P r l a 4 s  FOR n !E EARLY 1980'~ 

No. of  Toml Mow. Spin (SP) or Time to 
Flight Launch Space- S/C (Science*) Solor S t d l e  (ST) h c h  Max. Lot., tkliorpheric Cos t d 

Option Modrf V d L e  cmft Moss, KG Lot., De$ S/C Y5at)  Ycors Coverajc - Sroc4et .- 

(1) JP Shuttfe/lUS(3!/ 2 %o(M)) 84 SP 1981.83 3 9 Opposed passrs, Mcd-Hi 
TE 364 4 Loti tude scans - 

(3) JSB Shuttle/lUSQ)/ 1 m(M) S8 SP 1981, 83 3.9 Single pass to La-Mcd 
TE 364 - + 88" 

(4) JY) ~ t l o s / ~ e n t / - 4 ~ ~  1 2YI(?n) 39 SP 198Q 4 Sinale ,as: hkd 
1 150(15) 77 SP 1980 . 4 Single pais Lo-k'ed 

(5) JSb Delta 3 9 1 4 h 2 f  1 150(15) -30 SP 1981,83 4 Sinplc pass Lo 

&) AVEGA Atlas' 1 3n3(39) 79 SP 1982 5.6 5ingle pas to hk 3 
+ JSd Cen?aur 'TE 364 - 4 79" 

(7) DB ~ i t m / ~ c n t / - 4 ~ ~ ' ~  1 253(30) 34 SP 1980-83 -0 .2 Singlc. lot. cork - 1 a. u. t&J-iti 
1 150(15) 37 SP 1990-83 -0. 2 \in31r 1.~1. scan - 1 o. (I. M d  

(10) DSCP Atlas ' ~ e n h v r ~  1 2.K)(?? 1 29 ST l?Gl,87, \I3 -7. 2 Lotitvdc sc311 -. ! O. U. h:ed-'-4; 
((*'ti "c: I 15r)(15! 34 . . ST 13UI,U2, b ,  -.!..) , I , t i t * ~ I c  s< . . -5  - 1 f t .  ,,. , . , e : i  - 

o. l h i s  vehicle or rhuttle/lUS l;ntarim wper s top )  equivalent for > 1901 lou~tches. 
b. -45 fE 361-4 solid kick notor with spin fable. 

- 
c. *27: Stor 27 d i d  hick motor 
d. Cost bracket determined on basis of launch vehicles shown, not shuttle equivalents (see footno*e 0). 

Scicnce included i n  spacecraft mosses. 
# Latitudes: Lotiruder are heliogrcchic. Hcnce when totrdcrn spocccroft arc launched to so!or latitude, le, than OoO, one 

S / C b e l o w  the ecl ipt icond~f;eo?hcr above after swinsby, with - 14O diffcrence in  solar lotihrde i f  the swrrqLy i, 
of the rolor node. 
Flight Modes: JSB - Jupiter Svrin3by 

VEGA- AV -~;rth & o v i ~ i n i s t  
08 - m e e t  Eal l is t~c 
DSEP - gi rect  zolor Clec+rir ~ropulsicn 

pT7w,r?:;r~~m&ITY OF TBE 
I 1 ,  a 1) 4 GE IS POOR 



Figurc 1 ldealizcd meriodional plaile view of the ivr~crplanctary ~Segions associated 

w i  h ~r inc ipa l  featurcs on the sun. ke shaded rcgion represents a region 

+ ? in  solar latitude within which al l  measurements to date have been made. - 
The region of principal solar activity over a solar cycle extends from 10 to 

- 35-40 degrees north and south latitudes and i s  highly variable. A region 

from - 40 10 70 degrees is a transition teaion betvreen the region of solar 

activity and the polar region where the rotational effects on the magnetic 

field carried out by the solar wind begin to s~bside. I t  i s  believed h a t  the 

polar rcgion i s  mainly occupied by a coronal hole-like structure and therefore 

that the solar wind has a high velocity i n  ihis region. 

Figure 2 The solar electric propulsion mibsion i s  one i n  which the spacecraft remains in 

a 1 A. U. orbit from the sun and i s  therefore synchronous with earth. The orbit 

inclination i s  increased by thrusting ubout thc nodes. In a period of - 3 1/2 to 

4 years a full excuisicn of thc spacecraft i s  expected to be between 50 and 60 

degrees. The spacecraft i s  normally thrusting except for - 100 days per year 

at  the anti-nodes. Hcwever, the spacecraft propulsion can be turned off for 

a day or so during the normal opcrating periods to obtain scientific data. 

(See references 4 and 5. ) 

Figure 3 f i e  AVEGA flight mode (AV-Earth - -. - Gravity - Assist). In this mode the 

transfer event points are: 

2 -2 
Point 1 : Earth laur~ch 4/18/02, C3 = 27 Krn -;ec . 

- 1 
Point 2: Perihelion modification maneuver, AV = 900 m- sec . 



Figure 4 

Figure 5 

Figure 6 

Figure 7 

- 1 
Point 3: Ear~h powered swingby, AV -- 1000 m-sec . 
Point 4: Jupi tcr encounter 3.2 years after launch. 

The trajectory i s  not to seale. 

The out-of-he-ecliptic trajectory for the dual mission after Jupiter swingby, 

showing the radial distance of h e  spacecrafts from the sun and the 

heliographic latitude of each spacecraft as a function of time. (Adapted 

from reference 7, ) 

The dual spacecrafts A and B enter the Jovian magnetosphere approximately 2 

or 3 days apart. The figure i s  a meridional projection of the spacecraft 

trajectory with Jupiter at  the center of the coordinate system. l l ie fiducial 

marks on trajectory A represent 6 hour intervals which COI-respond i n  numbers 

to the 6 hour intervals along traiectory 6. Thus i t  i s  seen thatonespocecraft 

i s  near closest approach when the other spacecraft i s  a t  50 Jovian radii. 

'The traiectory of Pioneer 11 i s  shown for comparison. 

Projection on the ecliptic plane of the traiectories of spacecraft A arid 

spacecraft B. For comparison the trajectory of Pioneer 11 i s  s!,own. 

Two alternate models for the shape of the htliosphere. (See reference 27. ) 



Solar Activity 

idealized Meridional Diagram of Solar Regions 
Connecting with tho Interplanetary Medium 

Figure 1 





3 (sketch, not to scale) 

Figure 3 



Out of Ecliptic Trajectory , Heliographic Oistonce and Latitude 

Dual Pioneer Spocecrof t, Single Ti tan dE /Contaw/ T E 364-4 

Yeors of ter Lounch 

(adopted from Figure by H.E Motthews, NASAIARC) 

Figure 4 









AN ALTElbYATIVE OPTION TO THE MIAL-PROBE OUT-OF-ECLIPTIC HISSION 

VIA JUPITER SMINGBY 

6. Colombo 
and 

D. A. Lautman 
Center f o r  Astrophysics 

Harvard College Observatory and SmitJsonian Astrophysical Observatory 
Cambridge, Massachusetts 02138 

and 

G. Pettengi 1 1 
Massachusetts Ins t i t u te  o f  Technology 

Department o f  Earth and Planetary Sciences 
Cambridge, Massachusetts 02140 

We have rscently conducted a preliminary study on the f lssibi l i t ;  

o f  coinbining the out-of-ecl ipt ic (OOE) mission w i  th a solar-probe 

mission. I n  part icular,  we have been looking a t  the poss ib i l i t y  o f  

having a high-incl ination OOE probe coinplemented by a second probe 

going from Jupiter t o  the sun along a rec t i l inear  path (at  least  f o r  

the seg,nent from 0.3 a.u. inward t o  the sun). 

The sc ien t i f i c  in terest  i n  approaching close t o  the sun i s  obvious 

sir,ce i t  enhances observation o f  part ic les,  f ie lds,  and gravitat ional 

harmonics. Our par t icu lar  choice o f  patn resul ts from the associated 

s impl ic i ty  of , the spacecraft configuration needed t o  provide, fo r  

exan?le, good thermal control , a drag-f ree system, and good communica- 

t ions with the earth. 



A preliminaty e m r  analysis conducted by 3. D. hdemon o f  the 

Je t  Propulsion Laboratory leads to  very interest ing conclusions fop 

an e l l i p t i c a l  o r b i t  wi th  a perihelion distance of 16Ro. Assuming that  

the nong~' iv i tat imal forces are compensated by a drag-free system 

(with three degrees o f  freedm) and tha t  the  spacecraft i s  tracked 

down t o  perihelion, the quadrupole moment o f  the sun can be determined 

7 with an accuracy o f  3 parts i n  10 . Since the e s t i u t e d  value o f  J2 

ranges f m  3 x (applying Dicke's theory) t o  1 x loo7 (assuming 

r i g i d  ro ta t ion  o f  the i n t e r i o r  wi th  the observed surface), the in ter-  

es t  i n  determining t h i s  moment wi th  an accuracy o f  a t  least  1 part i n  

7 10 i s  clear. Ye remember tha t  J2 gives i fundamental constraint t o  

2 the m e n t  o f  i ne r t i a  (or the r a t i o  C/MR ) and, therefore, on the 
U 

internal  density d is t r ibu t ion  o f  th, a sun. 

As mntioned above, the resu l t  obtained by Anderson implies a 

2 three-axis drag-free system wi th an accuracy o f  m/sec . A drag- 

f ree system having t h i s  accuracy has recently been flown i n  the 

TRIAD satel ji te. I f ,  however, we choose a solar-impact 

trajectory, then by using a spinning spacecraft, a one-axis drag-free 

system c?.n be implemented tha t  requires much less complexity. I n  

fact, a spacecraft spinning abotrt an axis aligned wi th  the rec t i l inear  

path would allow 1)  gyrostabil ization (from 0.3 a.u. t o  the sun), 2) 

an easier desi gn f o r  thermal shielding, and 3) a one-degree-of-freedom 

drag-f ree system. I n  part icular, a sphere wi th  an electrostat ic 



suspension i s  f ree to move along the spin axis wtth no exchange 

o f  f o r c ~ i i  along the path. The d i  s p l a c e n t  o f  the sphere along 

the spin.axis w i l l  be sensed, causing the thruster (oriented along 

We spin axis) to compensate the nongravitational forces along the 

path t o  the desired accuracy. The spacecraft w i l l  be forced to 

fo l low the proof mass and, therefore, to  follow a purely gravita- 

t iona l  path. Transverse forces should bec'4 orders of magnitude 

smal l e r  and need not be compensated. The drag-free sys tm can be 

calibrated when the probe i s  f a r  from the sun (5 a.gC.) i n  order t o  

f i nd  the equil ibrium posi t ion along the spin axis o f  the proof mass 

i n  the gravi ty f i e l d  o f  the spacecraft. 

During the 3.5da.y~ tha t  the spacecraft w i l l  spend i n  going fm 

0.25 a.u. t o  0.01 a.u. and closer, the eartksun-probe geometry w i l l  

permit the earth t o  be i n  the beam o f  the 0.2-*diameter antenna 

pointing para l le l  to  the spacecraft spin axis. The Jupiter-swingby 

technique has enough f l e x i b i l i t y  t o  enable the mission t o  be timed 

so that the earth-spacecraft l i n e  remains wi th in  a few degrees of 

the direct ion o f  the spacecraft track. A 20-cnr dish mounted on the 

s2acecrafi operating i n  the X band has a beamwidth o f  8' and a gain 

o f  27 do.  By using a 61-18 dish on the earth, th is  w i l l  allow a 

i i - a ~ ~ i ~ i i ~ s i o n  dsia rat2 f r o ~ n  56 t o  103 bits/sec, evsn wi th  the  nois2 

of the sur, i n  the backgrotind. Doppler tracking using two frequencies 

i n  the X b 6 n ~  (8 and 12 GHz) should y i e l d  a relat ive-veloci ty rrieasure- 

;;rnt accuracy of the order o f  crnlsec (1 ) with 60-sec iniegra- 

ticn t-;me. 



Fro& Jupiter inward Lo 0.5 a. u. , tile spacecraft w i  1 l operate 

i n  the Pioneer mode, performing selected experiments related t o  the 

so;ar stereoscopic and missions. The two-f requency radio- 

science experiment w i l l  allow the integrated electron content t o  be 

deterigf ned a t  each instant, and perhaps a wei ghteci component o f  the 

in2egrated magnetic f i e l d  (from Faraday rotation). 

From 0.5 a.u. inward, however, the mission w i  11 become m r e  sun- 

oriental. The spacecraft spin axis w i l l  be directed sunward a t  

th is  tire, and the drag-free servo system w i l l  be activated. S a w  

relevant' probc parameters inside 0.5 a.u. are given i n  Table 1. 

Table I .  Probe parameters. 

Solar Distance Time to 4% Velocity Equi 1 i b r i  urn 

(a*u. (Rs) (days (km/sec) Temperature 
(OK)  



The temperatures shwn i n  the table are surface temperatures 

related t o  a properly designed re f lec t i ve  heat shield tha t  covers 

the "front" side o f  the spacecraft; the internal  temperatures o f  

the spcecra f t  will not necessarily be so high. Furthermore, the 

l a s t  few solar r a d i i  are traversed i n  less than an hour, during 

which time, thermal equil ibrium w i l l  not be established. It i s  

en t i re ly  possible that  the system w i l l  survive t o  2 R,! I f  i t  does, 

a straightforward calculation shows that  tracking t o  a doppler 

accuracy o f  cm/sec over the half-hour in terva l  required f o r  

the spacecraft t o  fa1 1 from 3 t o  2R would permit J2 t o  be deter- 

rninrd t o  an accuracy o f  100~. Since a realistic estimate o f  the mg- 

n i  tude o f  J2 i s  about lom7, as i s  sham i n  the Append i x  , an extremely 

valuable resu l t  would be guaranteed. 

Obviously, many detai 1s o f  engineering design and sc ien t i f i c  

agplicabil  i t y  rsrnain t o  be worked out f o r  th is  mission. But the 

preliminary e f f o r t  so f a r  expended appears more than su f f i c ien t  to 

warrant t h i s  fur ther  pursuit. 



J2 OF THE SUN 

The value o f  J2 can be in fe r red  f o r  a r o ta t i ng  a x i a l l y  sym- 

metr ic  bocly by means o f  the f i r s b o r d e r  formula (Jef f r ies,  1970) 

3 - z J 2 - f g z  I", s (1 ) 

2 where f i s  the f la t ten ing  and m = u Re/ge i s  the r a t i o  o f  cent r i -  

fiigal force a t  the equator t o  g rav i t y  a t  the equator. The assump- 

t ions made are tha t  the grav i ta t iona l  potent ia l  i s  given by i t s  

f i r s t  two terms only, 

vg = P [I - J2 (3' P2 ( s i n  (jj , 

acd tha t  the surface i s  r o ta t i ng  uniformly so t ha t  the cent r i fuga l  

force can be derived from the potent ia l  

Then the actual surface w i  11 be a leve l  surface o f  the potent ia l  

i f  the surface i s  no t  ro ta t ing  uniformly, we can modify equation 

(i) ay assuniing that, a t  ally la t i tude,  the surface w i l l  be perpen- 

dicular  t o  t he  r e s ~ l i  tant  o f  the g rav i t y  force given by the  gradient 

2 o f  s(;uaiion (2 )  and the centr i fugal  force equal t o  w ( ~ ) r  c o s ~  and 

directed away froii) the axis o f  ro ta t ion.  Assuming tha t  the shape o f  

tne surface i s -g iven  by r = RE ( 1 - Y ) ,  we f ind, t o  f i r s t  order, 



We assume tha t  the angular vc loci  ty o f  the s ~ n ' s  surface can be 
2 approximated by a(() = wo - u2 s i n  $ and obtain 

where mo a u 2 RJg,. Fur the sun, we have m = 2.14 x lo-', 4 - - 
0 

14.4 '/day, and u2 4.5°/day. so the second t e r n  i n  equation (5) 

l i e s  between 7.7 x 1 0 ' ~  and 10.7 x 10-', depending on whether the 

d i  f fe ren t i  a1 ro ta t i on  i s  included o r  not. The best determination 

o f  the f l a t ten ing  o f  the sun ( H i 1  1 ,  1974) i s  f = (9.6 t 6.5) x 10'~. 

It i s  c lear  t h a t  J2 cannot be derived w i th  ary accuracy f r o m  equdtion 

(5) ,  since i t  i s  the di f ference between two not  very we1 l-known quan- 

t i t i e s  o f  nearly equal magnitude. 

I f  the sun i s  ro ta t ing  uniformly and i f  the densi.ty d i s t r i bu t i on  

i s  known, J2 cae be d i r e c t l y  calculated. Following an analysis by 

Sterne (19396), we define the "apsidal motion coe f f i c ien t  ," 

where sS i s  the value a t  the surface o f  the var iable Q, which i s  zero 

a t  r = 0 and which sa t i s f i es  Radeau's equation: 

I n  equation ( 6 ) ,  p i s  the d e n s ~ t y  a t  r and p m  i s  the mean density 

i n t e r i o r  t o  r. Then, 



where m has been previously defined. The coe f f i c ien t  k depends 

so le ly  on the d i s t r i bu t i on  o f  mass w i t h i n  the star, ranging from 

zero f o r  a completely concentrated s t a r  t o  314 f o r  a homogeneous 

star .  Values o f  k have been calculated (Motz, 1952) f o r  so lar  

rrodels by Schwarzschild (1946) and by Epstein (1951). Motz obtained 

k = 0.00585 and 0.00599, which leads t o  J2 = 8.3 x and 8.5 x 

respe-tively. Calculating J2 f o r  three l a t e r  so lar  n~odels, we found 

J2 = 1.56 x lo-' f o r  a zero-age sun (Schwarzschi ld,  1958)and J2 = 

1.41 x and 1.20 x loo7 f o r  two models o f  the present sun 

(Wey~ann, 1957, and Sears, 1964). A1 though we do not a t  present have 

deta i led calculat ions o f  l a t e r  so la r  models, we note t ha t  a recent one 

(Hoyle, 15?5),proposed t o  explain the low neutr ino emission from the 
3 sdn , has the unusually 1 ow central  densf t y  o f  75 g/cm . The r a t i o  o f  

central  t o  mean density i s  then 53.2, which i s  qu i te  close t o  54.2, the 

r a t i o  of central  t o  mean density o f  the "standard model ," a polytrope 

o f  index 3. Russell (1928) found k = 0.0144 for  a polytrope o f  index 

3, so we consider 2 x t o  be a redsonable upper l i m i t  t o  the value 

o f  d2 ftir a uniformly ro ta t ing  sun. 

I: i s  o f  i n te res t  t o  consider a lower bound t o  k and, hence, t o  J2. 

The mast concentrated s ta r  w i th  a given central  density i s  the general- 

ized Roche model, which consists o f  a homogeneous core, w i th  a density 

equal t o  the central  density contafning a1 1 the s ta r ' s  mass, and an 

envelope w i th  in f in i tes ima l  



density. Radeau' s equation can then be solved analytically (Sterne, 

1939b) to obtain 

Uith current estimates of the central density o f  the sun ranging from 

about 75 t o  about 150 g/an3, we f ind  the lower l i m i t  of J2 to be 

between 1.4 x loo8 and 4.5 x loo9. 
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Recently solar physicists have gained tho ability to view the solar corona from 

a new perspective, by means of space obserkations at  x-ray and extreme ultraviolet 

(EUV) wavelengths, which permitsus to observe the forms of the hot, but very tenuous, 

corona against the relatively cml  solar disk (Figure 1). Ground-based observatuns 

of the corona, except for relatively low-resolution radio data, require natural 

(via eclipse) o r  artificial occultation of the bright disk, limiting coronal observations 

to "side views'? through the atmosphere extending beyond the occulting disk. The direct 

face-on view provided by EUV .and x-ray space observations, combined with detailed 

information on density and temperature of the emitting regions conveyed by the spectral 

character of the ultraviolet and x-ray data, has given us the first detailed information 

a 0115. on the complex structures of the corona and their iderrel-ti 

The possibility of looking down on the sun from a spacecraft high above the 

ecliptic plane opens up yet another perspective on the sun, one that is certain to help 

us understand the nature of coronal holes a t  high latitudes, and their relationship 

to the expansion of the three-dimensional solar wind. 

The large dark area on the x-ray image of Figure 1 i s  a corcnal hole - a pheno- 

menon whose properties are  just now becoming understood, largely through EUV and 

x-ray observations. Although the existence of large regions of low coronal density 

had earlier been inferred from coroni:raph "side vietvstt, we are  now obtaining detailed 

kno~vledge of their size, shape, density, temperature, magnetic field, and evolution 

from spacecraft observations at EC'V and x-ray wavelengths. 



Briefly, c o w  holes sue hqp mgiou ofthe eorana whose demftgr is some 
3-10 timels leer thaa that of the *averagett quiet mmm. The temperature, at kst  
at the lewel where rrmmmabb x-ray and EUV radiation is emitted, is also less, 
bvingr ~ u ~ d . b o l t l n l 0 ~ 9 ( ~ d o f a b a d 1 . 8 x  10'~. o.intbeavera(g 
co~oaa. A n a l g ~ i s  of low-1~8801uti01~ 080 data (Munro and Withbroe, 1972) suggested 
that tbs temperatme -ent between the 10% c l n ~ n m s p b r e  and 10% comma is 

abana an order of magnitude less in c o d  holes tBdLn in the averagw sun. As a result, 

tbe energy loss to the corona by thermal conduction back to the chromosphere, which 

is a very importa.nt energy sink for the amrage corona, may be much less significant 

for coronal holes. Due to the low density in holes the radiatiwe losses are also less 
(which is of course why they appear dark in the x-ray i- of Figure 1). Since 

energy losses by radiation and conduction are both drastically decreased in holes, 

we may conclude that either the heating of the corona is less in holes o r  some additional 

mechanism of energy loss is present in holes that is not found in other regions d the 

quiet sun. 

Coronal holes are assuming great importance today became of their apparent 

association with high-speed streams of the solar wind. The association, first suggested 

by Krieger et a1 (1973 on the basis of rocket x-ray data, has b e ~ n  put on a much firmer 

footing from detailed correlative studies of a 0 - 7  and Skylab data during the perid 

1973 to 1974. Nolte e+ a1 (1976) found that every large near-equatorial hole obserwd 

during the Skylab mission was associated with a high-speed stream at 1 a. u. Furthermore, 

there was a clear positive correlation between the velocity of the observed solar wind 

stream and the area of the associated coronal hole as measured from Skylab x-ray 

photographs. Finally, a very high correlation was fowa between the polarity of the 

interplanetary magnetic field associated with the high-speed streams and the magnetic 

field underlying the associated coronal holes. 

During the Skykb mission coordinated ground-based and space data revealed 

that the location of coronal holes can also be detected through ground-based observations 

of subtle properties of certain Franhofer absorption lines, notably He I ,.\ 10830 

(Harvey et al, 1975). This discovery has permitted the mapping of coronal hole 



boundaries during the two years after the termination of the Shylab missim. These 

hvo years were a time of large and persistently recurring high-speed solar wind 

streams, and oignifimnt,ly, a pattern of long-lived coronal holes was detected from 

the He I 10830 observations. Harvey et a1 (1976) have shown that, as before, there 

is a good correlation bedwean central meridian passage of holes that cross  the equator 

and high-speed streams during that time. In addition, when the data also include 

high latitude holes that also e-&end down to f 40" latitude, the correlation becomes 

even better. Thus there appears little question that the high-speed streams are 

related to coronal holes, and in addition there is evidence that some of the streams 

obserd  in the ecliptic plane are associated with holes at latitudes at least as high 

a s  40". 

To establish that the holes are the origin of the high-speed solar wind streams, 

however, it is necessary to identify a physical mechanism in addition to finding a high 

correlation between the two phenomena. In a search for a physical mechanism, 

first  note that coronal holes occur over areas  of unipolar photospheric magnetic fields. 

Although magnetic fields are measurable only in the photosphert, they may be mapped 

upwards into the corona, using potential theory along with the assumption that above 

about 1.6 to 2.5 solar radii they are stretched out radially by the expanding solar 

wind (Newkirk, 1972). Such calculations show the magnetic fields underlying holes 

to reach the source surface and thus to open out into the interplanetary medium, while 

fields underlying other regions in the corona generally close back on themselves (Altshuler 

e t  al, 1976). Thus holes seem an  easy pathway for the escape of coronal plasma 

into the solar wind. 

We have already noted that the density and temperature structure of holes in 

the low corona suggest that either the coroml heating rate i s  less in holes o r  excess 

energy may be available to accelerate the solar wind outward in holes. It i s  interesting 

that coronal holes a re  almost impossible to detect in the chromosphere o r  below, 

suggesting that at those levels the atmospheric structure does not depend on whether 

or  not a hole exists in overlying corona. This suggests (although i t  does not prore) that the 

amount of mechanical heating that passes upward through the photosphere is independent of 



the existence of coronal holes. Under tht assumption Pneuman (1973) 

and Noci (1973) showwid that the solar wind, expanding outward in regions of open 

field lines, would carry off energy through acceleration of the solar mind and through ouhvard 

thermal conduction, sufficient to compensate for the decreased energy losses from 

holes by radiation aml inward thermal conduction. Tha exact mechanism by which 

originally closed field lines break open to allow the expansion of the solar wind and 

the creation of a hole is not yet clear, but arguments based on energy flow support 

the reality of the process. 

If radial outflow really occurs over coronal holes. it should giw rise to 

observable doppler shifts of XUV emission lines. Preliminary reports (Cushmanand Rense, 1976) 

indicate the detection of outward velocities of the order of 16 km/sec, which may iil 

fact be the b e g i ~ i n g s  of ths solar wind expansion. However, the data arc scanty 

and further verification i s  needed. 

What does al l  of this have to do with the out-of-ecliptic mission? The significance 

lies in the fact that comnal holes have been found to occur very frequently a t  the solar 

poles. The polar holes appear to be very similar to equatorial holes in  their physical 

properties, with a rnajor difference that they a r e  much larger. A plausible hypothesis 

i s  that they too give rise to high-speed solar wind stream. These streams may 

emanate from the poies but spread out to  lower latitudes, even reaching the ecliptic 

plane if the polar hole extends to low enough latitudes. 

Unfortunately observations of polar holes from the orbit of earth still suffer 

partly from the projection problem described a t  the beginning of this paper. Because 

polar holes always occur near the limb (as opposed to near-equatorial holes, which 

are carried past disk center by rotatign), we always observe them from the side. 

This of course leads to loss of spatial resolution due to foreshortening. In addition, 

observations from the side are  particular!^ troublesome for observations of coronal 

holes, which a re  by their nature only czry weakly emitting, and tl~erefore a r e  very 

easily obscured Ily foreground and background emission from the neighboring "norml" 

corona. 



it is also extmmely difficult to get accurate measurements of magnetic fields 

associated with polar holes. Firstly, projection effects led to loss of reselmon. 

Secondly, the sensitivity of a magnetogrrtph is proportional to  the line-of-sight 

compolzent of the field direction; for vertical fields near the limb this becomes very small. 

Finally, of course, velocities of radial outflow above a coronal hole at tlae 

polar limb would not give rise to a line-of-sight doppler shift when observed from 

the orbit of earth. 

iVkt might one hope to observe from a spacecraft situated over the pole? 

Figure 2 shows a reconstruction of the appearance of the south polar hole as it would 

have been observed from such a vantage point during nine months of the Shylab mission. 

The images of Figure 2 were rectified using Shylab data from the Naval Research 

Laboratory XUV monitor instrument (Sheeley , 1975, personal communication). The lam 
size of the hole compared to typical equatorial holes (cf. Figure I), and its extended 

lifetime, a re  immediately apparent. 

A spacecraft able to observe the sun from higher latitudes (say greater than 60') 

for several months at a time, and properly instrumented, should be able to accomplish 

many significant observations of coronal holes. Large and sophisticated instruments 

such a s  have been flown on Skylab are  by no means necessary, and a re  probably out 

of the question for the foreseeable future. The following a r e  examples of importaat 

observational objectives, that could be met by realistic instrumentation aboard an 

out-of-ecliptic mission. 

1) Continuous mapping of the location of -polar holes, and stucly of their 

evolution. A simple imager at  any of a number of XUV or x-ray watrelengths, chosen 

such that the emission within the band pass largely originates at temperature in 
6 excess of about 1.5 x 10 "I<, would be adequate. Spatial resolution of about 30 arcsec 

would be sufficient. For a small instrument, count rates ~vould he quite low, but time 

resolution need be only of the order of many hours. so ions integration times are 



possible. I m a g ~ s  could be built up by scanning a point detector @erhape using the 

rotation of the s p 9 c e c e  for scanning). Data on the location of the hole and its 

boundaries would be correlslted with measurements from the same spacecraft of 

local plasma parameters (density, velocity, magnetic field, composition, temperature), 

4 as the spacecraft traverses directly above different parts of the hole o r  its 

boundaries, some idea of the three-dimensional flow field could be obtained. In 

addition, from the absolute intensities recorded, some useful limits on the density 

and temperature of the emitting plasma inside the hole could be obtained. 

2) With imamrv at two o r  more XX??Ir o r  x-rav wavelengths, one can obtain 

much hettsr information on the Dhvsirtal conditions in the coronal hole itself. 

Approximate values of density and temperature can be determined independently, 

and combined with modeling techniques, the data can give information on the variation 

of the parameters with height. Since both the density and temperature distribution 

in the low corona strongly determine the plasma flow properties at one a. u., correlation 

with these properties measured at the spacecraft itself will be very important. 

4 3) XUV spectroscopy at high spectral resolution ( >/A (133 x 10 ) would be 

very useful to measure the outflow velocity of material in the polar hole, in the manner already 

reported by Cushman and Rense (1976) for equatorial holes. Unfortunately the weakness of 

XUV emission lines in coronal holes, combined with the requirement for high spectral 

resolution, implies either a rather large instrument o r  extremely long integration times. 

This experiment, while very important, map therefore not be a suitable candidate for a very 

early explontory out-of-the-ecliptic mission. 

4) hleasiirernent of the polar magn2tic field from an  out-of-ecliptic spacecraft 

appears to he a natural and important objeciii'e. A s  mentioned ahove. there nre 

considerable admntages in observing polar magnetic fields from more nearly abovz 

the poles. Spntial resolution of 3 0  a;.csec: \voulrl be at-!ci!unte to rlctt?~ minc the  gross 

structure of the fields and to folloiv thcil* e t n l u l i o n .  :\ s t n n l l  m;~~;nu;ogmpli operctii~g 

with n solitl ctnlon fabry-perat filter i n  visual ~;al-c1e;igriis ~ t ~ i g h t  ncll i:t. fenslhlc 

lor inc1iis;on on dn exploratory o::t-of-ecliptic missio!-,. 



All of the above objectives would be considerably furthered by simulCaneous 

measures from the ecliptic plane, in order to obtain stereoscopic information. 

In the case of magnetic fields, for instance. observations from the earth would record 

those fields not recorded from the out-of-ecliptic spacecraft, and vice versa. 

Comparison of relative signal strengths from such paired observations could help 

determine the vector field in the photosphere, thus putting potential mapping of high- 

latitude magnetic fields on a more secure footing. Similarly observations from an 

earth-orbiting satellite of the XUV or  x-ray structures in coordination with simultaneous 

out-of-ecliptic observations of the same structures would yield the 3-dimensional 

structure unambiguousiy . 

We should note that the success of a program to study polar holes from out-of- 

ecliptic may depend strongly on the phase of the cycle during which the program i s  

carried out. It appears that polar holes may shrink and even disappear near sunspot 

maximum, doubtless reflecting the s k i d a g e  and disappearance of the unipolar magnetic 

field cap associated with reversal of the general dipole field of the sun, which occurs 

about that time. At about sunspot minimum, unipolar magnetic fields a t  the 

poles and polar coronal holes appear to reach their greatest extent. 

From the point of view of studying polar holes and their relation to the solar wind, then, 

it may be useful to time the passage of an out-of-ecliptic satellite over the solar poles, 

o r  at  least over high latitudes, to occur with a few years either side of sunspot minimum. 
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Figure 1. Skylab soft x-ray image of the sun, June 1, 1973. Filter bandpass 

2-32A and 44-54A. See Vaiana (1976) for details. Photo courtesy 

American Science and Engineering, Inc . , and Har varct College Observatory. 

Figure 2. Diagram of the evolution of a coronal hole a s  it would have been seen from 

above the south pole. Data are rectified from ATIVI Skylab observationu, 

May 1973 to February 1974, made with the Naval Research Laboratory 

XUV monitor instrument. Data courtesy N. R. Sheeley, Naval Research 

Laboratory. 
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The s t a t e  o f  t he  so la r  atmosphere, which i s  considered t o  include 

the solar  wind, i s  l a rge l y  determined by mapnetic f i e l ds .  Both the magnitude 

and the conf igurat ion o f  f i e l d s  a t  photospheric leve l  appear t o  determine 

the f lux  of non-radiat ive energy, mass, and momentum i n t o  the base of 

the corona. Likewise the  i n te rac t i on  between coronal f i e l  d and p1,-sca 

modulates the flow and produces the density d i s t r i b u t i o n  we see i n  the 

corona as we l l  as the s ta te  of the in terp lanetary medium. Rapid ann ih i la -  

t ions  of thz f i e l d  i n  the lower atmosphere associated w i t h  f lares and 

slower readjustments o f  the f i e l d  associated w i th  erupt ive prominences 

both lead t o  disrupt ions i n  the s t ruc ture  o f  the over ly ing  corona and 

so la r  wind. 

Although a d e f i n i t i v e  t e s t  o f  the r e l a t i o n  between coronal morpholoqy 

and magnetic f i e l  ds i s  s t i l l  1 acki ng, several charac ter is t i c  coronal 

structures are associated w i th  d i s t i n c t  topoloqies o f  the f i e l d :  

. The t i q h t l y  closed coronal loops and arches above act ive 

regions w i th  s i m i l a r  configurations i n  the f i e l d .  

. Corona? holes a t  low l a t i t u d e  o r  over the poles w i th  

magnetic f i e l d s  which open d i r e c t l y  i n t o  the so la r  

wind. Such regions appear to  be the o r i g i n  o f  f as t  

streams i n  in terp lanetary space. 

. Coronal streamers w i t h  la rge  arcades i n  the magnetir f i e l d  

below 2 t o  2.5Re and a c u r r e ~ t  sheet above t h a t  heiqht.  

Such features are detected as the "sector" boundary between 

1 arge scale, oppositely d i rected f i e lds  i n  in terp lanetary 

space. 

. Hot, dense knots o f  plasma i n  the very low corona and v i s i b l e  

as "br igh t  po in ts "  i n  X-ray irnaqes w i th  minute b ipo la r  regions 



dis t r ibuted mre o r  less uniformly over the surface. I n  the 

upper corona and interplanetary space such regions are hypothe- 

sized t o  give r i se  t o  minute current sheets which play a ro le  

i n  determininq the e lec t r i ca l  and thermal conductivity, the 

propagation o f  radio waves and energetic part ic les,  and, 

possibly, coronal heating. 

The characterist ics o f  the photospheric f i e l d  i n  magnitude, spacial 

extent, and 1 i fe t ime suggest tha t  the corona and interplanetary medium 

can be divided i n to  3 regions having re la t i ve ly  d i s t i n c t  properties as 

shown i n  the table. We note that  although interplanetary measurements 

have sampled both the plasma or ig inat ing i n  the l a t i t ude  zone 2 lo0  and 

shocks or ig inat ing a t  h gher lat i tudes, the influence o f  the 10' - 50' 

zone, which contains act ive regions, sn interplanetary medium i s  

s t i l l  uncertain. 

A real  understanding o f  the structure and evolution o f  the corona 

and interplanetary medium can be claimed only a f ter  we have constructed 

a self  consi stent 3-0 model o f  the en t i re  region and have tested i t  with 

con:omi tant  observations i n  the lower solar  atmosphere, i n  the corona, 

and i n  interplanetary spacp. The Out-of-the-Ecl i p t i c  Mission w i  11 provide 

not only the c r i t i c a l  tests of such models but w i l l  also a f ford  ins ight  

i n t o  the fundamental mechanisms governing t h i s  en t i  r e  region through 

the saw l i n g  o f  zones where d i f fe ren t  f l e l d  topologies, magnitudes , and 

evol utionary timescales (and presumably dif ferent mechanisms of mass, 

energy and momentum transport) dominate. Several spec i f ic  questions may 

be considered: 



. Are the polar  regions ident ica l  t o  the coronal holes a t  

low la t i tude? 

. I f  t h i s  i s  so, how do we account for  the fact tha t  polar 

regicns w i th  apparently ident ica l  magnetic configuration 

display a vast ly  d i f fe ren t  appearance i n  the corona? 

. b e s  the coronal and interplanetary microstructure change 

wi th la t i tude?  What influence does t h i s  have upon the 

heating, e lec t r i ca l  and thermal conductivity , wave content, 

and energetic par t i c le  propagation of the medium? 

. How i s  the coror a "mapped" i n t o  interplanetary space? 

. How does the solsr- interplanetary f i e l d  couple t o  the 

in te rs te l  1 ar  f i e l  i? 

. What ro le  does the continuous occurence o f  coronal transients, 

which or ig inate a t  115 60°, play i n  determining the state o f  

the interplanetary medi urn and energetic p a r t i c l e  propagation? 

. W9at mechanisms control coron21 and interplanetary abundances? 

These are but a few o f  the questions concerning the r c l e  of solar magnetic 

f i e l  ds i n  determininq the structure o f  the corona and interplanetary medi um 

which w i l l  be explored by an Out-of-Ecl i p t i c  Mission. 

Concerning the ~ i s s i o n  options two points should be kept i n  mind: 

1) Althouqh the appearance o f  the corona suogests that  a mission 

rest r ic ted t o  &<4o0 might be successful i n  reaching the polar 

zone, only a polar mission can guarantee that  a t r u l y  new region 

o f  the interplanetary medium i s  t o  be explored. 
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2) The comna and interplanetary medi urn are continual ly evol ving. 

To assure success the Out-of-Ecliptic Mission must encompass a 

coordinated program o f  solar and interplanetary measurements 

so that  a coherent attack can be made upon the important problems 

wh i ch beckon. 

This presentation was made possible through the generosity o f  colleaques 

a t  K i  tt Peak National Observatory, High A1 t i  tude Observatory, Smi thsonian 

Astrophysical Observatory, and American Science and Engineering who k indly 

a1 lowed the use o f  i l l u s t r a t i v e  material. 
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3-D Sola r  Radioastronomy and the  S t ruc tu re  of the Corona and the So la r  Wind 

J.L. S te inberg  and C. Caroubalos 

Observatoire de P a r i s  ,Meudm, 92 190 ,France. 

So la r  r a d i o  b u r s t s  a r e  i n t ense  r ad io  emissions from loca l i zed  

regions i n  the  corona and in t e rp l ane ta ry  medium. The i r  b r igh tnes s  

temperature is s o  nnrch h igher  than the  e l e c t r o n  temperature of the  

ambient plasma t h a t  t he  mechanism which produces them is c e r t a i n l y  

non-thermal ; the  necessary energy is brought i n t o  the source region 

by  ene rge t i c  e l e c t r o n s  which can give r i s e  t o  d i f f e r e n t  types of 

t r a n s i e n t  r ad ia t ion .  One of them i s  the type 111 r ad iobur s t  produced 

by ene rge t i c  e l e c t r o n s  t r a v e l l i n g  along open magnetic l i n e s  of fo rce .  

Another q u i t e  usual  form i s  the  type I b u r s t ,  t y p i c a l  of the Fieter wave 

lengths range. 

W e  do  n o t  f u l l y  understand ye t  how the  non-thermal energy i s  

converted i n t o  electromagnetic  energy ; but  we know t h a t ,  t o  be e f f i c i e n t  

enough, the conversion must take place a t  f requencies  c lose  t o  the 

resonant frequencies of the medium. At these  f requencies ,  the r e f r a c t i v e  

index f o r  r ad io  waves takes  extreme values : c lose  t o  0 f o r  t h e  plasma 

resonance, much l a r g e r  than I f o r  the gyro-resonances. A s  e lectromagnetic  

waves t r a v e l  away from t h e i r  source ,  those resonance c o n d i h n s  a r e  no 

longer f u l f i l l e d  because of the non-uniformity of the e l e c t r o n  d e n s i t y  

o r  magnetic f i e l d  ; the  r e f r a c t i v e  index comes back quickly  t o  u n i t y  ; 

such a v a r i a t i o n  of the  r e f r ~ c t i v e  index i s  favourable t o  beaming e f f e c t s .  

The r ad ia t ion  mechanisn i t s e l f  which can involve some amplif i c a t  ion may 

a l s o  produce a d i r e c t i v e  primary emission. In botil ca ses ,  t he  beam w i l l  

be or ien ted  along o r  a t  d e f i n i t e  angles t o  the p r i n c i p a l  d i r e c t i o n s  of t h e  

medium : the e l e c t r o n  dens i ty  gradient  or  the magnetic f i e l d .  



Using resu l t s  from the STFXtEO-I experiment, it i s  shown 

that  stereoscopic observations in  the deci t o  decameter X range 

can provide information on 

- the burst  emission mechanisms 

- the local electron density gradient and magnetic f i e ld  

vector a t  the source 

- the macrostructure of the corona and the solar  wind 

- the characterist ics of small scale electron density 

inhomogene i t i e  s . 
Radio bursts  of type I11 can also be used t o  map solar  

magnetic f ie ld  l ines of force throughout the iuterplanetarv 

medium up t o  the ea r th  orbi t  and beyond. 

Future exp9riments of these kinds should be carried out 

between an out-of-the-ecliptic probe and the earth or an earth 

s a t e l l i t e .  



Beaming of t h e  r ad i a t ion  of type I end type I11 b u r s t s  was 

predicted long ago, bu t  no t  observed u n t i l  recent ly.  Rather than 

giving up the b a s i c  mechanisms which seemed capable of expla in ing  

many observed proper t ies  bu t  implied beaming e f f e c t s ,  r ad io  astronomers 

suggested t h a t  random inhomogeneities of t he  r e f r a c t i v e  index sca t t e r ed  

the radiat ion.  (Roberts, 1959). This suggestion received s t rong  support 

when s c i n t i l l a t i o n s  from radio s t a r s  seen through the upper corona 

were discovered. Fokker (1965), Steinberg e t  a1 (1971). and Riddle (1972) 

carr ied out Monte Car10 numerical computations of the s c a t t e r i n g  of the 

radiat ion from a source embedded i n  the inhomogeneous medium. These 

authors used models which were extrapolated t o  low coronal a l t i t u d e s  

from measurements of rad io  s c i n t i l l a t i o n s  made f o r  pa ths  which did not 

cross the corona lower thar  5 s o l a r  r a d i i  o r  so. However, these s tud ie s  

were successful i n  accounting f o r  several  observations which could hardly 

be explained i n  any o ther  way. They showed tha t  the inhomogeneous 

medium produces a sca t te red  image broader than tl, - pource and appreciably 

displaced from it ; a t  the same time, the random propagation tends t o  

suppress any beaming of the radio waves and smoothes the rad ia t ion  pa t t e rn  

of the source. 

Measurements of the angular d i s t r i bu t ion  of the  i n t e n s i t y  of a 

source of radio burs t s  can th-.refore y ie ld  information on : 

- the or ien ta t ion  of the pr inc ipa l  d i rec t ions  of the  medium : 

-+ 
grad Ne or  if, the radiat ion mechanism and beaming processes. 

- the characteristics of smal l  s ca l e  inhomogcncities which 

cannot be obtained i n  m y  other  way. 



To measure c? i rec t iv i  t y  ,observations from t h e  ground only  a r e  

inadequate. For many years ,  au thors  t r i e d  t o  reach a t  l e a s t  a 

s t a t i s t i c a l  view of  t h e  d i r e c t i v i t y  of r a d i o  b u r s t s  ; f o r  i n s t a n c e ,  

from t h e i r  E.W. p r o b a b i l i t y  of occurence ; b u t ,  i f  t h e  o r i e n t a t i o n  

of the  r a d i a t i o n  p a t t e r n  of ind iv idua l  b u r s t s  r e l a t i v e  t o  the  l o c a l  

v e r t i c a l  through t h e  source i s  n o t  cons tan t ,  no informat ion on t h e  

d i r e c t i v i t y  can be obtained from a s i n g l e  observing s i t e .  Simultaneous 

observat ions  should be made i n  a t  l e a s t  two widely  d i f f e r e n t  d i r e c t i o n s  

(Ste inberg and Caroubalos , 1970). 

We have seen t h a t  the  suprathermal e l e c t r o n s  which ~ o d u c e  type 

I11 b u r s t s  a r e  guided along open magnetic l i n e s  of fo rce .  These l i n e s  

a r e  c a r r i e d  avay by the  s o l a r  wind i n t o  i n t e r p l a n e t a r y  space so  t h a t  

type I11 a r e  observed from low i n  the  corona t o  the  e a r t h  o r b i t  and 

beyond. I f  we were ab le  t o  nap the  success ive  p o s i t i o n s  o f  t h e  type I11 

source,  %e could a l s o  draw 3-D maps of some s o l a r  magnetic l i n e s  of fo rce .  

S te reoscop ic  observat ions  of r a d i o  b u r s t s  a r e  powerful t o o l s  t o  

s tudy the corona and s o l a r  wind. This may be i l l u s t r a t e d  by some recen t  

r e s u l t s  obtained wi th  the  S'ITEO- I experiment c a r r i e d  out  i n  197 1- 1972 

a t  169 Mlz i n  cooperation between France and the  Sov ie t  Union. 

(Caroubalos and S tc inberg ,  1974 ; Caroubnlos , Poquerusse and S t e i n b e r g ,  1974 ; 

Ste inberg ,  Carouhalos and Bougeret, 1974). A t  169 !11z, r a d i o  b u r s t s  of 

types I and I11 occur a t  altitudes i n  thc  range 0 . 3  - 0 .5  s o l a r  r ad ius .  

STEREO MUIOASTROK01N OF TYPE I BURSTS 

Let H be the  s t e r e o  anglc brtwcc~n the two ol,scrviny, d i r c c t i o n s .  

When 8 i n c r e a s e s ,  the  c o r r r  l a t  is,] lwtwt.cn the two i n t c n s i  t y -  1's t i n ,  - 



records  taken simultaneously ( i n  t h e  source  time s c a l e )  decreases  i n  gene- 

ral. Even w i t h  8 = lSO,  t h i s  i s  c l e a r l y  v i s i b l e , b u t  when 8 - 35O, t h e  

c o r r e l a t i o n  c o e f f i c i e n t  is l e s s  than 0.1. T h i s  means t h a t  t h e  beamwidth 

of type I r a d i a t i o n  is sometimes smal le r  than about 25'. However, on 

some consecutive days,  the  same i n t e n s i t y  may b e  received a t  both  

observing s i t e s  and then t h e  beam p a t t e r n  looks n e a r l y  i s o t r o p i c .  

Such an apparent c o n t r a d i c t i o n  can be resolved i f  w e  no te  t h a t  t h e  

STEREO-1 observat ions  were c a r r i e d  ou t  i n  t h e  e c a i p t i c  ; s o  t h a t  we 

a r e  a c t u a l l y  analyzing only a plane s e c t i o n  o f  a 3-D beam p a t t e r n  

and we do n o t  know the  conf igura t ion  of t h e  beam p a t t e r n  ou t  of t h a t  

plane ; we cannot,  f o r  i n s t a n c e ,  know i f  the  3-D beam p a t t e r n  i s  s o l i d ,  

multi lobed o r  even hollow. It is  easy t o  conceive beam shapes whose 

c ross  s e c t i o n s  by d i f f e r e n t  p lanes  can be e i t h e r  narrow o r  broad.  

The r a t i o  R of the  b u r s t  i n t e n s i t y  measured i n  Space IS t o  t h a t  

measured a t  the  e a r t h  IE v a r i e s  widely from even t  t o  event  ; s o  t h a t  the  

beam has t o  be randomly o r i e n t e d  i f  i t s  shape is assumed almost cons tan t  ; 

the rms dev ia t ion  of t h e  o r i e n t a t i o n  i s  about 0.25 of the  beamwidth and 

t h i s  is a r a t h e r  c l e a r  i n d i c a t i o n  t h a t  t h e  source  does n o t  c o n t a i n  a 

large  number of inhonogeneit i e s .  

This i s ,  i n  t u r n ,  connected t o  an o l d  problem : type I b u r s t  

i n t e n s i t y  can vary by a l a r g e  f a c t o r  i n  0.1 second ; but the  observed 

source s i z e  i s  about 3 a r c  min o r  0.3 l ight-second ; s o  t h a t  i t  was 

suggested long ago (~ggborn, 1960 ; Fokker, 1960) t h a t  what we s e e  

i s  a c t u a l l y  the  s c a t t e r e d  i rage  of 3 deeper and smal le r  source .  In a 

s c a t t e r i n g  corona,  the  assumed small  s c a l e  inhomogcneities do produce 

a broad s c a t t e r e d  image of a point  source bu t  a t  the  same time they 



broaden the angular d i s t r i b u t i o n  of the rad ia t ion  from tha t  point  source. 

Both e f f e c t s  are  in t imate ly  connected together v i a  the s c a t t e r i n g  power 

d i s t r i b u t i o n  along the path. The t o t a l  rms random angular devia t ion of 

the radio  rays over. t h e i r  t r i p  from the source t o  us cannot be l a r g e r  

than hal f  the observed beamwidth ; STEREO observations y i e l d  d i r e c t l y  

a measure of the beanwidth and,thtbs, an upper l i m i t  t o  the rms angular 

deviation along the path. This limit is  too small  fo r  the e x i s t i n g  

models t o  accouct f o r  more than a small p a r t  of the image s ize .  Therefore - 
e i t h e r  the re  is  l e s s  s c a t t e r i n g  than generally assumed t o  account f o r  

most of the source apparent s i z e  or the inhomogeneities b u i l t  i n  the  - 
mode 1s are inadequate. 

I n  any case it has been demonstrated tha t  very i n t e r e s t i n g  

information on the beam or ien ta t ion  and shape can be obtained from 

stereoscopic observations. To-learn more, i t  i s  necessary t o  go out 

of the e c l i p t i c  plane f o r  the  following reasons : 

- t o  compare the beam or ien ta t ion  t o  tha t  of the densi ty  gradient  

we must know th2 l a t t e r  and therefore the 3-D e l ec t ron  densi ty  

d i s t r i b u t i o n  in  the source region. This can be obtained from 

coronagraphic measurements on the limb where the e lec t ron densi ty  

d i s t r ibu t ion  as a function of l a t i t u d e  w i l l  always be b e t t e r  known 

than the longitudinal  one. I t  i s  therefore nuch more e f fec t ive  t o  

measure the  beam or ienta t ion in a piane perpendicular t o  the c c l i p t i c  

than in  the e c l i p t i c .  

- operating a stereoscopic experir!csnt bctwct~n an out-of-tljc- 

e c l i p t i c  probe and the ear th  w i l l  a lso  provide a largcsr vnrictty of 

cross sect ions  of the beam pat tern  using s o l a r  ro ta t  ion ( f i g .  I ) ;  i n  

the e c l i p t i c ,  so la r  ro ta t ion movcs ttic s n n r  cross  section of ttw 

bean1 across our l i n e s  of s ic t i t .  Usirig an out-of-the-ecliptic s e t -  up 
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one should be able t o  get  much c lose r  t o  a complete descr ip t ion  of  the 

3-D beam pa t t e rn  of the  burs t s .  

I f  the  out-of-the-ecliptic probe is  on a 1 AU o r b i t ,  i n  a plane 

t i l t e d  t o  the e c l i p t i c ,  t h e  s t e r e o  angle w i l l  a l s o  vary q u i t e  rap id ly  

and t h i s  i s  again favourable t o  a de t a i l ed  descr ip t ion  of t h i s  beam 

pat tern.  

STEREO RADIOASTRONOMY OF TYPE I11 BtjRSTS 

The spectrum of a type I11 i n  a f requency-t ime donain (dynamic 

spectrum) shows a band of noise d r i f t i n g  from high t o  low frequencies.  

This band i s  sometimes s p l i t  i n  two components which, a t  a given time, 

are  centered on harmonic frequencies. Some type 111's are  therefore 

made of two components which ar;? believed t o  be produced,one ( t h e  

"fundamental") a t  the l oca l  plasma frequency f the o ther  a t  twice t h a t  
P ' 

frequency. h%en observed with a s ing le  frequency rece iver ,  the f i r s t  

component i s  recorded f i r s t  and the second some seconds l a t e r ,  making 

up a "pair" of type 111's. 

This i n t e rp re t a t ion  of p a i r s  a s  fundamental-harmonic p a i r s  has 

been questioned i n  recent t i n e s  but not i n  a convincing way ; and to  

s e t t l e  tha t  question , d i r e c t i v i t y  measurements are  important : indeed, 

the conversion mechanism and the propagation conditions a r e  d i f f e r en t  

for  tbc fundamental and the harmonic ; for  ins tance ,  the fondamentnl 

is  generated a t  about the local plasma frequency so that. i t  should he 

beaned i n t o  a narrow cone ; and i f  the corona i s  assuwd quasi  sph r r i ca l  

t h i s  cone should be about r ad i a l ly  or iec ted  so  t h a t  few fundamntal  

components should be seen in  high longitude events  ; t h i s  i s  not the case : 
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fundamental components a r e  seen near ly  a l l  over the disc.  

Stereoscopic observations showed t h a t  the f i r s t  (fundamental) 

component of a p a i r  i s  systematically more d i r e c t i v e  than the  second 

(harmonic) and t h i s  is a s t rong argument f o r  the  fundamental-harmonic 

in te rp re ta t ion  of p a i r s  (fig.2). 

The time p r o f i l e  of a type 111 at a f ixed frequency is  a l s o  

r i ch  i n  information a s  i t  is the convolution of an e x c i t e r  function 

by the t raneient  response of the  coroca which includes the e f f e c t s  

of multipath propagation. A t  169 MHz, it was found independent from 

the d i rec t ion  of observation ; therefore propagation condit ions do not 

play an impor*,:~t r o l e  i n  the  formation of the  time p r o f i l e .  

While the time p r o f i l e  is  independentof the d i rec t ion  of observation 

the in tens i ty  r a t i o  R = IS / IE can take values very d i f f e r e n t  from unity ; 

the r a t e  of change of the in tens i ty  with the observing d i rec t ions  can 

reach 2 10 dB and more over 30'. This proves, again,  tha t  coronal 

s c ~ t t e r i n g  i s  l e s s  e f fec t ive  than previously thought ; even l e s s  e f f e c t i v e  

than necessary t o  account f o r  some o the r  observations ; f o r  ins tance ,  

sca t ter ing-has  been invoked to  explain t h a t ,  a t  a given observing 

frequency f ,  the fundamental component ( local  plasma frequency f p  - f )  

and the harmonic component (2fp = f )  are  observed a t  the same posi t ion 

although the f i r s t  shouid take place a t  the f c r i t i c a l  level  and the 

second a t  the £12  c r i t i c a l  l eve l ,  higher up i n  the corona. This 

observation i s  indeed ex~ ln in i ib le  i n  a s c a t  t c r ing  corona ( K i d d l c  , 1 9 7 2  ; 

Leblanc, 1973) but the sci i t tcrinp power bas t c  be 1nrp.e:c.r than ttlc onc 

deduced from d i r e c t i v i t y  measuremepts. 

Another r e su l t  from STIS:(EO obscrvntions i s  that the d i r e c t i v i t y  

r a t ios  of various typc 111's can be very d i f fe r ( -n t .  T h i s  can be 
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in terpre ted i f  the  observed d i r e c t i v i t y  is  produced by coronal macro- 

structurmmostly i n  the forui of streamers, On Nov.14, 1971, f o r  ins tance  

type 111 have been observed through a streamer ; the  overdense streamer 

material  r e f l e c t s ,  absorbs and s c a t t e r s  the type 111 rad ia t ion ,  away 

Prom i t 8  source and produces the observed d i r e c t i v i t y .  I f  t h i s  

in te rp re ta t ion  is cor rec t ,  the s t r e a m r s  01 " l a m s  coronales" detected 

by Axisa e t  a1 (1971) do control  the type 111 image s i z e  and shape as 

a piece of ground glass  or  a l i g h t  shade, Observations of these images 

with radioheliographs together with Stereoscopic observations can be used 

t o  study the s t r e e r  s t ruc tu re  which is hard t o  resolve o p t i c a l l y  because 

of l ine  of s igh t  in tegra t ion e f f e c t s .  We s t i l l  do not know wher; arc: the 

type I11 sources located a5 compared t o  streamers ; t o  s e t t l e  tha t  question 

2-D posi t ion measurements a t  radio  frequencies a re  necessary but a t  the 

present time,they a re  nD more accurate than I a rc  min o r  so. Occultat ion 

e f f e c t s  are only detectable with Stereoscopic observations but  they a re  

very sens i t ive  t o  the posi t ion of the source r e l a t i v e  t o  the occul t ing 

s t ruc tu re .  They open up new ways t o  loca l i ze  the path of the type I11 

e lec t rons  r e l a t i v e  t o  streamers and the s i t e  ' n r e  these e lec t rons  are  

accelerated in  the ac t ive  region. Here again che stereoscopic observations 

Bbuld be carr ied  out on an out-of-the-ecliptic probe hccause the macro- 

s t ruc tu re  of tlre corona i s  b e t t e r  known from op t i ca l  obscrvarions as a 

function of l a t i tude  than of longitude. 

Olie of the most useful proper t ies  of type 111's i s  tha t  they arc  

produced over t r a j e c t o r i e s  which span the in tcrplnnetary  ~ s d i u r n .  A t  each 

a l t i t u d e  the 10- 100 keV elect rons  induce plasma waveR whiclr are scat  tcrcd 

i n t o  electroruagnetic wivcs a t  the local  plasma frequcr:cy f. o r  a t  twicc 

that  the frequency. Therefore from the measurement of ~ h c r  p o s i t i o r ~  of 

type 111's a t  severa l  frequencies, a map of the e lec t ron  dcnsitp along 

the t r a j ec to ry  and a map of that  t r a j ec to ry  i t z c l f  can be drawn, 
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AB the energetic e l ec t roas  travel mst probably along magnetic l i n e s  

of force, we have a way of p l o t t i n g  such em-rooted lines of force up 

to t he  e a r t h  o r b i t  and beyond even out  o f  t h e  e c l i p t i c .  

Such an experiment should be  ca r r i ed  out  at frequencies lower 

than 10 me i f  we are in t e re s t ed  i n  t he  coronal  and s o l a r  wind s t r u c t u r e  

higher than 10 ; t h i s  means t h a t  observations should be made from 

space as rad ia t ion  of these frequencies do not  reach the  ear th .  A s  a 

matter of f a c t  IMP-6 has j u s t  done t h a t  (Fainberg and Stone, 1974). 

IMP-6 was sp in  s t ab i l i zed  around an ax i s  perpendicular t o  t he  e c l i p t i c  

and car r ied  a dipole perpendicular t o  t h a t  axis .  Using the  n u l l s  i n  

the  receiving pa t t e rn  of a shor t  e l e c t r i c  d ipole  i t  i s  q u i t e  possible  

t o  measure the d i r ec t ion  of a eocrce a s  projected on the e c l i p t i c  plece. 

An experiment j o i n t l y  designed and b u i l t  by P a r i s  Observatory and 

Goddard Space F l igh t  Center t e a m  w i l l  measure fhe d i r ec t ion  of t h e  type 

111 source a t  24 frequencies on ISEE-C. Using a sp in  plane and a sp in  

axis dipole ,  the experiment w i l l  measure a complete d i r ec t ion  (two angles) 

a t  each frequency aqd w i l l  produce 3-D maps of some magnetic l i n e s  of 

force from 10 % a l t i t u d e  t o  t!re e a r t h  o r b i t  and beyond. It w i i l ,  

however, be t rcessary  t o  assure t ha t  these l i n e s  of force r o t a t e  with 

the sun as a s o l i d  body. The use of a second reRote s a t e l l i t e  equipped 

in  ~ d c h  the  sane way ds I SEE-C could el iminate  t h i s  r e s t r i c t i o n .  (f i g. 3 ) .  

There are  some icdicat ions from t h e  radioastronomy exper imn .: 

on IFIP-6 and o t h e r  exper imnts  tha t  few type TI1 have hccn detected 

far  03: from t l lc  e c l i p t i c .  This might very w e l l  be due  t o  sor.2 

a i r e c ~ i v i t y  of the rad ia t ion ,  but t h i s  d i f f i c u l t y  can be overcone by 

goin& out of t1;t . : l ip t ic .  



W e  of t h e  main purposes of any out-of-the-ecliptic mission 

w i l l  certaimly be t o  explore the 3-D topology of  the in terplanetary  

magnetic f i e l d  and more spec i f i ca l ly  its l a t i t u d e  var ia t ion  ; the ro le  

of s o l a r  active regions i n  the  determination of t h i s  topology w i l l  be 

studied. Rquipments designed t o  roeasure the  l o c a l  magnetic f i e l d  vector  

w i l l  be flown t o  achieve t h i s  goal but it w i l l  be very hard t o  reconstruct  

the magnetic configuration in- the whole heliosphere from l o c a l  measurements 

only. Type I11 t racking a t  several  frequencies can provide the overa l l  

descr ipt ion of t h i s  f i e l d  topology which w i l l  be e s s e n t i a l  t o  the 

in te rp re ta t ion  of m s t  local  measuremnts made on the  O/E probe : f o r  

instance the modulation of cosmic rays by the interplanetary  ~ a g n e t i c  

f i e l d  cannot be understood without a descr ipt ion of t h i s  magnetic f i e l d  

i n  the whole heliosphere. 

CONCLUSION 

Stereoscopic observations of s o l a r  r ad io  burs t s  are no t  needed 

only t o  improve our knowledge of the physics of these t r ans ien t  radro 

erniesions. I n  the  deci- t o  decameter-A range, they can be used t o  

probe the  macro and microstructure of the corona. In the hm t o  

km-A range, type 111's are natura l  t r ace rs  of sun-rooted magnetic l i n e s  

of force ; t racking them a s  a function of frequency w i l l  give a 3-D map 

of some l ines  of force from low in  the corona t o  the ea r th  o rb i t  and 

provide an overal l  p ic ture  of the in terplanetary  mcdium tihich i s  e s s e n t i a l  

;o the i.iterpret a t ion of local  masurerenLs. 

The choice Letween thc two uave lcngth rangcs depends upon t h e  

s c i e n t i f i c  objecr 'ves of the mission ; but i t  has been shown t h a t ,  i n  

h( - s ,  observatic:: should be carried out from an out-of-ecliptic 

pro+. 
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Steinberg - Caroubalos 

3-D Solar  radioar tron~tap 

Figure Captions. 

Fig. l Exploration by stereoscopy i n  a plane perpendicular t o  the 

e c l i p t i c  of the radiat ion pat tern of a radio burs t  using so la r  

rotation. The plane sect ions 1 t o  3 are  analyzed a t  difZ?rcn: 

t;mes. I f  the exploratior. was car r ied  out  i n  the  e c l i p t i c ,  

only one plane sect ion would be studied. 

Fig.2 A typical  pa i r  of type I11 burs ts  a t  169 Wqz as recorded 

irom the ea r th  (top) and from the  Mars-3 Soviet F-I .tee probe 

on Nov. 14,  1971. The in tens i ty  r a t i o  Ispace / I Earth 

f i r s t  component (fundamental) is always grea ter  than t h a t  of 

the  second component (harmonic). 

Fig. 3 3-D mapping of a -,olar magnetic l i n e  of force using a type 

I11 burst  as a t racer .  
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Abstract  

In te rp lane ta ry  s c i n t i l l a t i o n  (IPS) observations from 1971-1975 show 
t h a t  the average so la r  wind speed increases away from the s o l a r  equator, 
w i t h  a mean gradient  o f  2.1 km/s per degree. These r e s u l t s  are compared 
w i t h  spacecraft  observations over the i 7O a t t a i nab le  i n  the e c l i p t i c  and 
w i t h  those deduced from cornet t a i l s .  The r o l e  o f  temporal va r ia t ions ,  
especial  l y  those caused by l a t i t u d e  dependent so la r  wind streams, i s  
emptlasized. This po in t s  t o  the need f o r  extensive e c l i p t i c  a ~ d  ground- 
based observations dur ing an out-of- the-ecl  i p t i c  spacecraft mission. 



I n t r oduc t i on  

The s o l a r  wind bo th  i n  and o u t  o f  the e c l i p t i c  can be s tud ied  from 

the  ea r t h  by the  method o f  I n t e rp l ane ta r y  S c i n t i l l a t i o n s  (IPS). The 

method was pioneered by Hewish and h i s  colleagues, who deduced the  s o l a r  

wind speed from m u l t i p l e  s t a t i o n  observations. I n  1966 Dennison and 

Hewish (1967) found an increased speed out  o f  the  e c l i p t i c ,  wh i l e  i n  1967 

Hewish and Symonds (1969) found no such increase. The i r  mu1 t i p l e  s t a t i o n  

observat ions then ceased. I n  t h i s  paper we r e p o r t  s o l a r  wind speeds 

deduced from 74 MHz IPS observations made a t  UC San i l iego from May 1971 

through t o  A p r i l  1975. The observing system was described by Armstrong 

and Coles (1972) and by Coles e t  a1 (1974). Resul ts from 1972 were repor ted 

by Coles and Maagoe (1972). We w i l l  a1 so mention b r i e f l y  the  relevance 

o f  I P S  observat ions simultaneous w i t h  an out-of- the-ecl  i p t i c  spaceprobe 

mission. 

IPS Method 

The s c i n t i l l a t i o n  s igna l  i s  the  sum of waves scat tered along the 1 i n e  

o f  s i g h t  from a g iven rad io  source. Most o f  the sca t t e r i ng  occurs where 

the  l i n e  o f  s i gh t  i s  c l oses t  t o  the sun, because o f  the steep decrease w i t 5  

s o l a r  distance i n  the  s t reng th  o f  the e l ec t r on  dens i ty  c i i c ros t ruc tu re  which 

causes IPS.  For a sphe r i ca l l y  symmetric s o l a r  wind a weight ing f l ~ n r t i o n  can 

be def ined and the I P S  "mid-point" speed (Coles and Maagoe 1972) can be 

shown t o  be a s p a t i a l  average of the  so la r  wind speed centered on the p o i n t  

o f  c loses t  approach. However, i n  the presence o f  so l a r  wind streanis spher ica l  

symmetry does no t  apply. 

The l f f e c t  o f  the  spa t i a l  averase through such streams ;;as been invesbigated 

by conipar-ing the I P S  observat ion w i t h  those expected by 1:iapping p o i n t  observa- 

t i ons  made or, the  IMP-7 spacecraf t  out  alot ig the l i n e  of s i g h t  i n  question. 



Harmon (1975) and Coles e t  a l .  (1975) demonstrated a close agreement 

between I P S  "mid-point" speed and the IMP-7 data mapped t o  the po in t  where 

the l i n e  o f  s igh t  i s  c losest  t o  the sun, More de ta i led  comparisons are i n  

progress, i nves t i  gat ing the precise form o f  the spat ia l  weighting caused 

by streams. However, f o r  the present purposes the compari son demonstrates 

tha t  each IPS observation i s  representative o f  the so la r  wind speed a t  the 

po in t  o f  c losest approach, 

Results 

This e f f e c t i v e  observing po in t  changes i n  so la r  l a t i t ude ,  longitude 

and rad ia l  distance as the sun rotates and the ear th  o r b i t s  the sun. Thus 

for  radiosources not i n  the e c l i p t i c ,  about two months o f  high so la r  l a t i t u d e  

data can be obtained each year. The geometry, however, i s  such tha t  the 

high l a t i t udes  occur together w i t h  small so la r  distances. The distance 

dependence can be separated out by s t d y i n g  the four  ec l  i p t i c  radio-sources, 

f o r  which the l a t i t u d e  remains w i t h i n  10' o f  the equator; Figure 1 shows 

the solar  wind speeds averaged i n t o  i n te rva l s  of 0.1 AU i n  rad ia l  distance 

during 1971-1975. We conclude tha t  there i s  no s i g n i f i c a n t  va r i a t i on  o f  

average solar wind speed w i th  rad ia l  distance between 0.4 AU. and 1.1 AU. 

Figure 2 shows a s im i l a r  p l o t  f o r  a l l  sources versus l a t i t . . .  and, because 

there i s  no rad ia l  distance dependence, i t  can be in terpreted as showing 

the solar wind speed as a funct ion o f  l a t i r zde .  The v e r t i c a l  bars are 

2 2 standard deviations i n  the average solar  wind speed over l a t i t u d e  i n t e r -  

vals ind icated by the hor izonta l  bars. The r.m.5. var ia t ion  i n  a s ing le  

speed observation i s  remarkably constant a t  about 120 km/s, showing no 

s ign i f i can t  change w i th  la t i tude.  Tke ve r t i ca l  e r ro r  bars are la rger  a t  

high l a t i t udes  because there are fewer data points a t  h igh la t i tudes .  ( I n  a 
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typ ica l  year, 300 observations from 0-1o0Ii decreasing t o  25 observations 

from 5 0 ~ - 7 0 ~ ~ \ .  The major conclusion i s  tha t  there i s  a systematic increase 

o f  solar wind seed w i th  la t i tudes both nor th  and south o f  the solar equator. 

This i s  evident i n  each year from 1971 through 1975 as wel l  as i n  the grand 

average o f  a l l  data. The average gradient i s  close t o  2.1 km/s per degree 

of la t i tude.  However, the curves are not qu i t e  syranetrical but centered near 

l o O ~ ,  g iv ing an apparently steeper gradient i n  the south than i n  the north. 

This asymnetry i s  only marginally s ign i f i can t  and we are s t i l l  checking f o r  

second order systematic er rors  which could cause this.  

Discussion -- 
Our observed la t i tude  gradient must be compared w i th  other data. As 

a1 ready mentioned, the Cambridge IPS  observations detected a 1 a t i  tude gradient 

i n  1966 but not i n  1967. Whereas t h i s  could conceivably be influenced by 

solar cycle effects, i t  i s  more l i k e l y  tha t  the small number o f  observations 

a t  high la t i tudes i s  responsible. Their measurements included only about 

30 days each year which corresponded t o  la t i tudes above 20'; the long term 

average behavior could we1 1 be masked by the day-to-day and mon th-to-mon t h  

v a r i a b i l i t y  found i n  the solar wind speed. 

Spacecraft observations have been analyzed t o  look for ef fects due t o  

the f 7' la t i tude  range avai lable i n  the e c l i p t i c  (e.g. Hundhausen e t  al. 1971 ). 

Smith and Rhodes (1974) and Rhodes and Smith (1975) deduced large apparent 

gradients (10-15 km/s per degree) by comparing solar wind speeds observed 

near Earth (Explorer 33,34,35) and a t  Mariner 5. They analyzed data from 

nearly s i x  solar ro ta t ions over l a t i t ude  differences from 0' t o  6'. We 

suggest that  a possible explanation o f  t h e i r  large gradient over a few degrees 

o f  la t i tude  comes from solar wind streams. From our I P S  data i t  i s  c lear tha t  

so lar  wind streams often e x i s t  f o r  several so lar  ro ta t ions w i th  steep la t i tude  

gradients near the equator (see f o r  example the wide southerly stream i n  



Figure 13 of Coles e t  al. 1974). It i s  l i k e l y  t h a t  such features co~ l t r i bu te  

strongly t o  a s i x  month average. Figure 2 shows t ha t  i n  1972 the 

apparent gradient between f 5' was + 4 km/s per degree, while i n  1973 the 

apparent gradient reversed t o  - 3 km/s per degree. The inf luence o f  

steep l a t i t ude  gradients from spec i f i c  recurrent streams was probably the 

cause f o r  such large values. 

More d i f f i c u l t  t o  reconci le are the resu l t s  from comet t a i l  observa- 

tions. Brandt e t  al.  (1975) have analyzed 678 comet observations spread 

over 75 years and conclude tha t  the l a t i t ude  gradient i s  - 0.9 + 0.7 km/s 

per degree nor th  o r  south; tha t  i s  no t  s i g n i f i c a n t l y  d i f f e r e n t  from zero. 

Their observations are concentrated i n  the range 0' t o  50~15 (as are the 

IPS observations) and are scattered f a i r l y  we1 1 through the phases o f  the 

so lar  cycle. It would be o f  i n t e res t  t o  see i f  the high l a t i t ude  data 

were uniformly d is t r ibu ted  over the phases of the so la r  cycle. Except for  

so lar  cycle e f fec ts  we cannot suggest any simple explanation f o r  the 

discrepancy; though long term systematic o r  random temporal var iat ions could 

be responsible. 

Concl usi  ons 

We have presented strong evidence that  during 1971 t l~rough 1975 the 

average solar wind speed increased out o f  the equatorial plane g iv ing an 

average gradient o f  2.1 km/s per degree o f  l a t i t ude  e i the r  north o r  south. 

Our observations show tha t  stream and also slower var ia t ions can obscure the 

average l a t i t ude  behaviour i n  the so lar  wind (as they do also f o r  averagc 

propert ies i n  the e c l i p t i c ) .  I n  planning out-of- the-ecl ipt ic spacecraft 

missions such changes must be expected. Jup i ter  "swing-by" c.iissions would 

give 12-18 ~,lonths a t  nore than 30' from the equator. During t h i s  t i ne  i t  w i l l  

be irnportant t o  maintain regular observations i n  the e c l i p t i c  i n  order t o  



disentangle temporal and la t i tude  effects. A continued program o f  IPS  

observations throughout the period would cover a range o f  longitudes and 

lat i tudes and further help bu i l d  a picture o f  the spat ia l  and temporal 

structure i n  the solar wind. I n  addit ion t o  the average l a t i t ude  behaviour 

such j o i n t  observations would allow the la t i tude  structure o f  individual 

streams t o  be explored. 
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Figure Captions 

Figure 1. Solar wind speeds from 1971-1975 measured within 10' 

of the  s o l a r  equator, averaged i n t o  0.1 AU i n t e r v a l s  

of r a d i a l  distance. The v e r t i c a l  e r r o r  bars  a r e  2 

twice the  standard deviat ion i n  the mean. 

Figure 2. Solar wind speeds from 1971 through 1975 averaged 

in to  l a t i t u d e  in t e rva l s  shown by the  horizontal  bars.  

Ver t ica l  bars  a r e  + twice the standard deviat ion 

i n  the  mean. The lower r i gh t  graph is the o v e r a l l  

average from the o ther  f i ve  graphs. 
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LATITUDINAL PROPERTIES OF T H E  SOLAR WIND 

FROM STUDIES OF IONIC CCFET TAILS 

John C. Brandt 
Laboratory fo r  Solar  Physics and Astrophysics 

NASA-Goddard Space F l igh t  Center 
Greenbelt, Maryland 20771 

Abstract - Analysis of the o r i en t a t i ons  of ion ic  comet t a i l s  

gives  no support fo r  the suggestion tha t  the r a d i a l  s o l a r  wind speed 

i s  higher  near the so l a r  poles than near the  equator. These r e s u l t s  

r e f e r  t o  a long- term, global flow pa t te rn  and do not r e f c r  t o  short.. 

term var ia t ions .  



Evidence from comets concerning the l a t i t u d i n a l  va r i a t i on  of 

so l a r  wind parameters has been discussed previously by Pflug (1966), 

Brandt (1967), and by Bertaux, Blamont and Festou (1973). In t h i s  

short  report,  I summarize the evidence based on ion ic  comet-tail  

o r ien ta t ions  as  recent ly analyzed by Brandt, Harrington, and Roosen 

(1975), and show the d i s t r i b u t i o n  of the sample i n  l a t i t ude ,  time, 

and phase of the so la r  cycle. 

The basic  observation i s  the posi t ion angle of the t a i l  ax i s  on 

the plane of the sky (Belton and Brandt 1966). The posi t ion angle P 

i s  in te rpre ted  i n  terms of a t a i l  vector T-whose d i r ec t ion  i n  space i s  

determined by dynamical aberra:ion, viz. ,  

where w_is the so l a r  wind ve loc i ty  vector and V i s  the vector  ve loc i ty  

of the comet. Thc astrometric technique developed by Brandt, Rooscn, 

and Harrington (1972) does not assume that  the comct t a i l  l i e s  i n  the 

plane of the comet's o rb i t .  Each observation de tennincs e s s e n t i a l l y  

a ha l f  plane i n  ve loc i ty  space. A preferred so lar  wind ve loc i ty  vector  

w ) i s  determined as the one which minimizes the sum of the (wr, we, @, 

squares of the residuals  be tween the computed and obscrved posi t ion angles. 

At present,  a sample of 678 observations a re  ava i lab le  and these 

a r e  spread over approximately 75 years i n  time and between roughly 0.5 

t o  1.5 a,u. i n  hcl ioccntr ic  dis tance.  llle basic r c s u l t s  a re  a r ad i a l  

veloci ty ,  c: w > -- 400 kmlsec, an azimuthal ve loc i ty  < w > = 6-7 kmlsec r d 

(varying with so l a r  l a t i t u d e  b and dis tance r a s  cos 2*315 l b  l / r ) ,  and a 



RMS dispersion of 3?7. An addi t iona l  r e s u l t  from comet t a i l  

o r ien ta t ions ,  but not from the astrometr ic  techniquc, i s  t ha t  

Wr b 225 kmlsec (Brandt and Heise 1970). These values a r e  i n  good 

agreement with r e s u l t s  from spacecraf t  and provide confirmation of 

the basic approach. 

This technique has been previously used t o  search f o r  a 

meridional flow pa t te rn  i n  the so l a r  wind. A value w 2.5 kmlsec m 

( a t  0 = 45O, varying a s  s i n  20) has  been found i n  the sense of a flow 

diverging from the plane of the s o l a r  equator by Brandt, Harrington, 

and Roosen (1973). This r e s u l t  implies a rad ia l  va r i a t i on  i n  the 

equatorial  densi ty  of the s o l a r  wind of N a r -2*013. 1f t h i s  law 

held from the sun t o  ear th ,  the densi ty  would be 7% smaller than on 

spherical ly  symmetric models. 

The basic  technique can be used t o  search f o r  a l a t i t u d i n a l  

va r i a t i on  of the rad ia l  so l a r  wind speed by assuming tha t  i t  va r i e s  as  

where w and dvrldlb 1 a r e  constants  t o  be determined. The r e s u l t s  
0 

a re  given in  Table 1. 



Table 1. 

Solar-Wind Speeds With and Without a  
L a t i t u d i n a l  Var ia t ion  i n  Radia l  Speed 

w o r  w dw / d l b  1 w w r o  m RMS Dispers ion 
0 -1 

(kn s e c - l )  (h sef" deg-l)  (lo. see-') (kn sec  i n  (a - eC)  

The l a t i t u d i n a l  v a r i a t i o n  found i.n our  sample, i f  any, i s  i n  the  

sense of decreas ing r a d i a l  speed wi th  inc reas ing  l a t i t u d e .  However, 

the  e r r o r  i n  rdwrld(bl ]  i s  almost  a s  l a r g e  a s  the va lue  of-0.9 km sec-' deg-' 

found, and t h e r e  i s  c l e a r l y  no trend.  In  a d d i t i o n ,  the  b e s t  s o l u t i o n  a s  

judged by RMS d i s p e r s i o n  i s  s t i l l  t he  s o l u t i o n  wi th  [dwr/d lbl! 1 0. 

When an a d d i t i t n a l  s i g n i f i c a n t  parameter i s  included i n  the  model, the  

d i s p e r s i o n  must decrease  even i f  on ly  marginally.  The l a c k  of a  decrcase  

i s  .a d e f i n i t e  f l a g  t h a t  the  a d d i t i o n a l  parameter h a s  no s ign i f i cance .  

The s l i g h t  inc rease  i n  RFlS d i s p e r s i o n  i s  simply due t o  round-off e r r o r .  

The e r r o r s  i n  the  components o f  t h e  s o l a r  wind spccd inc rease  with a  

l a t i t u d i n a l  v a r i a t i o n  included because then a l l  cornponcnts a r e  f u n c t i o n s  

of  he l iograph ic  l a t i t u d e  and can be c o r r e l a t e d .  Poss iblc  c o r r e l a t i o n s  

between cornponcnts a r e  c a l c v l a t e d  and a r c  used t o  a s s i g n  the  probqblc 

e r r o r s .  This  i s  thc  exp lana t ion  f o r  the i~crcrrsra i n  e r r o r s  w l l i l c  the 

RMS r e s i d u a l s  remained e s s e n t i a l l y  cons tan t .  



'l'he negative r e s u l t  fo r  s ign i f  i c m t  l a t i t u d i n a l  va r i a t i on  i n  wr 

r e f e r s  only t o  a long-term, global s i tua t ion .  I t  does not ru le  out  shor te r  

term r e s u l t s  such a s  the one presented by Ricket t  (1975; preceeding paper). 

It does appear t o  imply t h a t  such short-  term v?.riations average out  

over the long term. 

The sample i s  concentrated i n  the range 0 S lb 5 50' a s  shown 

i n  Figure l a  where the so l id  l i n e  represents  the present sample of 

678 observations and the dasked l i n e  represents  the same number 

d i s t r i bu t ed  a t  randon; only 60 observations l i e  i n  the range 

50' S Ib(  S 90'. I f  we p lo t  the d i s t r i bu t ion  aga-nst l a t i t u d e  

instead of the absolute  value of l a t i t u d e  a s  shown i n  Figure l b ,  wc 

f ind  n strong concentration of  observations i n  the northern hemisphere. 

There i s  no obvious reason t o  expect an adverse e f f e c t  from t h i s  

observational bins. The sample by year of observation i s  shown i n  

Figure l c  which r e f l e c t s  the i r regular  nature of cometaLy appar i t ions  

and the reduction of observations.  ~ . i g u r r  Id shows the d i s t r i b u t i o n  

of t h e  sample with phase i n  the so la r  cycle; the observations are  

concent rhied toward so la r  maximum. 

Because the astrometr ic  technique can be applied only t o  f a i r l y  

la rge  groups of observations,  r e s u l t s  oc short-term va r i a t i ons  i n  the 

so l a r  wind s p e ~ d  cannot bc obtaiaed d i rec t ly .  Work on an i nd i r ec t  

technique i s  cur ren t ly  i n  progress. 

Nevertheless, there  i s  ample d i r e c t  evidence for  l a rge ,  short-  

term va r i a t i ons  i n  s o l a r  wind propert ies .  The time required t o  

e s t ab l i sh  a meaningful measuremel~t of an average property a t  a 



particular Ictltude i s  prubablp at  least one solar rotation. This 

was Xouad tu ba the case for spacecraft observations of w as reported 
6 

by Lazzrus and Gol~stetn (1971). Hence, direct out-of-the-ecliptic 

observations of the solar wind s'lruld uti l ize  an orbit wZth a slowly 

changing latitude. Several passes throu&~ a l l  solar latitudes and 

possibly several spacecraft will be required to map out the basic 

structcre of the solar wind tn three dimensions. 
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FIGURE CAPTION 

Figure 1. The distribution of the sample of comet observations: 

(a) in absolute value of solar latitude; (b) in solar latitude; 

(c) in date of observation; and (d) in solar cycle phase. See t e x t  

for discussion. 
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Implications of  Sai to ' s  Coronal Density !.!ode1 on t h e  Polar Solar Wind Flow 

and Heavy Ion Abundanceo 
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Los Alamos, New Mexico 87545 

ABSTRACT 

A conparison of polar solar  wind proton flux upper limits derived 

using Sai to ' s  coronal density model, with Ly a measurements of the  

length of the  neutral  H ta i l  of comet Bennet a t  high l a t i tudes ,  shows 

t h a t  e i t h e r  extended heating beyond 2 Re i s  necessary some of t h e  t i m e  

o r  t h a t  Sa i to ' s  polar densi t ies  are too low. Whichever p o s s i b i l i t y  is 

t h e  case, the  fac t  tha t  the solar  wind p e r t i c l e  f lux  does not appear t o  

decrease with increasing l a t i tude ,  indicates tha t  the  heavy element 

content of the  high l a t i t u d e  wind may be similar  t o  tha t  observed in  

the  e c l i p t i c .  It is then shown tha t  so lar  wind heavy ion observations 

a t  high l a t i t u d e s  allow a determination of t t e  electron temperature a t  

heights which bracket t h e  ,nominal locat  ion of the  coronal t enperature 

maximum thus  providing information concerning the  magnitude and extent  of 

mechanical d iss ipat ion i n  the  intermediate corona. 



1. Introduction 

There is, at present, a lack of information on the  physical 

conditions i n  the  polar regions of the  solar corona and balar wind. This 

lack resu l t s  i n  a corresponding uncertainty i n  the  global character is t ics  

and extent of t ha t  plasma of solar origin which fills interplanetary 

space and thereby controls the near solar environment. For example, only 

l i t t l e  is  known about the variation with heliographic la t i tude  of so 

f'undamentQ a flow parameter as the  solar wind mass flux. Similarly, 

hardly say, ing is  known about l a t i tude  variat ions of the solar wind 

energy and m .enturn fluxes. Yet, these parameters may be very important 

i n  determinink ;he physical s t a t e  of the polar corona and the  s ize  of the 

solar  dominated cavity over the  poles which separates the sun from the 

loca l  i n t e r s t e l l a r  medium. In  addition, the  existence of heavy elements 

i n  the polar solar wind may depend (~ l loucher ie ,  1967, 1970; Geiss e t  

al., 1970) on whether o r  not the proton par t ic le  flux exceeds a 

temperature dependent lower l i m i t .  

It is therefore useful t o  consider hypothetical variations of solar  

wind par t ic le  and energy fluxes with helfographic lat i tude.  This task is 

approached in  section 2 of t h i s  paper by calculating upper l i m i t  values 

of the  polar solar  wind par t ic le  flux implied by the most comprehensive 

coronal density model developed t o  date ( ~ a i t o ,  1970). This model was 

determined from an average K corona brightness dis t r ibut ion constructed 

using 15 solar eclipse observations as well as K-coronameter meaeuremects 

a l l  mde a t  the mininun phases of the solar ac t iv i ty  cycle. As a 

necessary resu l t  of the method employed, the nodel densit ies (and hence 



t h e  upper l i m i t  d u e s  of the  eolar wind p a r t i c l e  f lux derived below) 

determined f o r  the  polar regions are uncertain because it is not ~ ~ s i b l e  

t o  uniquely invert  the  convolution in tegra l  which r e l a t e s  the coronal 

brightners a ie t r ibu t ion  to  t h e  average l i n e  of eight electron density. 

Nwerthelees, it is shown that if the  polar corona1 densi t ies  are as low 

as celculated using Saito 's  model, then without extended heating, the  

emitted polar p a r t i c l e  flux should be substant ia l ly  l e s s  than t h a t  

observed i n  the  e c l i p t i c  plane a t  1 AU and less than that  necessary t o  

drag coronal heavy elements away from the sun. However, l imited evidence 

based on Ly a measurements of the  neutral  bydrogen t a i l  of comet Bennet 

( ~ e r t s u x  et al . , 1973; Keller , 1973 1, is consistent with a polar solar  

wind flux a t  1ea;t as  large a3 tha t  observed in  the e c l i p t i c  a t  1 AU. 

These observations therefore require e i ther  an extended coronal heat 

source (Ustinct from electron heat con&~ction or tha t  Sai to ' s  polar 

densi t ies  a r e  too low, In  any event s ince t h e  

p a r t i c l e  flux i n  the polar wind may be comparable t o  tha t  observed i n  the  

equatorial  wind, it is possible tha t  coronal heavy ions a t  polar 

l a t i t u d e s  do indeed expand with the  protons in to  interplanetary space. 

Since it is reasonable t o  expect tha t  heavy elements w i l l  be 

observable ?n the  polar solar  wind, the range of ionization s t a t e  

"freezing in" distances is estimated in section 3 for  selected heavy ion 

species a t  polar la t i tudes .  It is found that  the polar coronal density 

nay be su f f i c ien t ly  low t h a t  the ionization s t a t e s  "freeze in" below the  

nominal location of the temperature  mim mum. Hence high l a t i t u d e  heavy 

ion observations may allow a determination of the  t h e m a l  s t a t e  of the  

intermediate and low corona and provide an estimate of the ragnitude and 



extent of mechanical dissipat ion.  Section 4 summarizes the  m i n  

conclusions. 

2. Lati tude Variatioris of the  Solar  Wind P a r t i c l e  Flux 

It is currently thought That the  so la r  wind ev-?.ves from open f i e l d  

regions in  the  c o r w  P (see Hundhausen, 1972 for  a review). Such regions 

a r e  generaliy d i s t i n c t  from regions of a c t i v i t y  and a r e  generally characterized 

by low density. For t h ,  ? regions, the  electron density, N, as a function 

of so la r  distance, r ,  and heliographic l a t i tude ,  8,  has been modeled by Sai to  

(1970) with the  r e l a t ion  

0.0251 x 108(1 - s i n  l/Ze) cm - 3 
R2-5 

where R = r!Bo snd R is the solar  radius. 
0 

Upper l i m i t  values fo r  the  polar so lar  wind p a r t i c l e  flux can be 

derived using re la t ion  1 if various subsets of several reasonable 

assumptions conf:erning the s t a t e  of the  intermediate corona a r e  adopted. 

These assumptions a re  1) the  coronal gas cons is ts  of H, lie and e lec t rons  

only, 2) there  is no extended heating other  than t h a t  due to 

electron heat conduction much beyond the  coronal temperature maximum, 

3) the  energy equation may be closed with the standard r e l a t i o n  
- 
Q = -IC~T~'%' (chapman, 1954; Spi tzer ,  1956) which assumes t h a t  binary 

coulomb in terac t ions  limit the  mean sca t ter ing  length of a thermal 

electron,  4 ) coronal electron and proton veloci ty d i s t r ibu t ions  are  very 
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nearly !vhcwellian, 5 1  wave-particle intmractions and nacro8copic wave 

pressure e f f e c t s  a r e  negl igible  above the heating region, and 6) the 

magnetic f i e l d  is open but not necesearily r ad i a l ,  

The purpose of t h i s  sect ion is t o  show t h a t  i f  .he coronal-density 

over t h e  pole drops of f  a s  quickly a s  implied by Sa i to ' s  analysis  then 

some of the  above assumptions may be t e s t ed  by i n  s i t u  so l a r  wind 

observations. We begin w3th a standard s ingle  f3:rlid forznulation of  t:?e 

coronal expansion using equation 1 i a  place of an energy equation and 

derive upper limits f o r  the  p a r t i c l e  flux a t  1 AU. A separate  treatment 

based on various possible forms of the  energy equation is  considered next 

t o  provide independent e s t i n ~ t e s  of the 1 AU Plux upper l i m i t .  'me 

r e s u l t s  of t h i s  analysis  a r e  i n  agreement with those obtained by Durney 

and Hundhausen (197b), A s  w i l l  be shown i n  section 3 these upper l i m i t s  

a r e  subs tan t ia l ly  lower than t h a t  observed i n  t he  e c l i p t i c  a t  1 Al l  and 

a r e  su f f i c i en t ly  low, t h a t  i f  all of the above assumptions are cor rec t ,  

++ 
He and many of t he  heavier ions should not expang. with the  protons away 

from the sun at polar l a t i t udes ,  

( i )  Mass Flux, Momentum Flux and Density Equations, 

The mass and momentum conservation equations a r e  respectively; 

W A C R ~  = F (2) 

2 
Here A(R) i e  t h e  area of a flux tube which va r i e s  a s  R if t h e  expansion is  radia l ,  

G is the gravitational constant, M is the mass of the sun, rn 1s the proton 
0 P 

mass, M is the mean molecular weight = (1 + ba) / (2  + h) where a is the He 



abundance by number, k is Boltzmann's constant, H is the  proton density, V is 

the bulk convection speed and T is the one f lu id  temperature. Concentrating on the 

region i n  the intermediate corona between R = r/Re = 2 and 4, equation 

1 for 0 = 90" can be simplif ied to the form: 

S If it is ass=& that A(R) varies as R then eqcations 2, 3, and 4 can be 

integrated aoalyt ical ly  to obtain T(R) 

Here the subscrlgt o r e f e r s  t o  paranetcrs e-raluated a t  t he  base radius %. 
fh the follombg Re 13 c b s e n  equal t o  2- 

Equation 5 can be rewritten i n  sf~plified form as follo-JS? 

Here C1 and C2 are constants which a re  readily evaluated by co3paring 

equations 6 and 5. Inspection of squstion 6 shows tha t  T(R) depends parametrically on 

two variables, To and (NVIo. Folloirfng the analysis of Brandt e t  t .  (1965) 

it i s  possible t o  show tha t  two physicdly reasonable assumptions imply 

stringent constraints on the  range uf re l i izab le  values of To and ( I W ) ~ .  These 

two assumptions are: 1 )  the  derived t e ~ p e r a t u r e ,  T(R 1 ,  must remain posi t ive through- 

out the  range of va l id i ty  of equation 1; according t o  Sai to (19701, R < 4 ,  2)  there 

i s  not suf'ficient external heating F rond R = 2 t o  produce a second peak 3n T(R). 



It is seen from the th i rd  term on the r ight  hmd side of equation 5 

t h a t  for  a constant To, increasi= ( N V ) ~  eventually drives T (R) negative. 

The radius a t  k-hich t h i s  happens can be increased beyond R = 4 by in- 

6 creas ingT However i f  T i s  t o o l a r g e ,   the(^/%) t e r m i n f r q n t  o n t h e  
0' 0 

r igh t  hand side produces a second peak i n  T(R) beyond R = 2. Therefore 

acceptable ranges of T and ( W ) ~ C =  be determined as follows. The 
0 

minimum value of To, TL, is calculated for  (NV)o = 0 under t he  assumption 

t h a t  T ( R )  G 0 f o r  R 2 R where RX i s  the  limiting distance of  va l id i ty  of X 

equation 1. This gives 

Given 9 = 3, 1.1 = 0.547 (corrcr;pondir,g t o  a 45 abundance by number) and 
0 

6 6 
assuming RX = 3 and 3.5 then TL = 0.85 x 10 K and 0.89 x 10 K respectively. 

Upper l imi t s  for T arid ':rv; 8;e detedler l  fron eqiation 5 by finding 
0 0 

the  la rges t  value of To and (MI), r i ch  rnat T(R) 0 and dT/dR G 0 fo r  R i n  t he  

range Ro C R G RX. Thus for  each R t he  following two relat ions must be sa t i s f ied ;  



( 9 )  

Inspection of equations 8 and 9 shows t h a t  f o r  ( ~ I Y ) ~  = 0 both conditions 

can be sa t i s f ied  simultaneously. However f o r  each R both conditions cannot 

be  sa t i s f ied  i f  ( I W ) ~  is larger  than some maximum value. This maximum is  

obtained by equating the r igh t  hand sidss of equations 8 and 9. 

2 Setting S =  2 ( r a d i d  flow) and ( 1 ~ ) ~  = ( A Y ) ~  (Ro/~,) ( the  subscipt e re fe rs  t o  

parameters evaluated a t  the  orb i t  of the  ear th) ,  equation 10  is plotted 

i n  Figure 1 for  5 = 3 and 3.5. The minimum value of t he  r igh t  
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hand s ide of equation 10 for  R i n  the range Ro 4 R $ is  the  maxinum flux Sr 
at 1 AU consistent with the assumptions dT/&.? 9 0 f o r  R 3 2 and T > 0 for  

8 -2 6 
R C R r  Thus f o r  RX= 3.0, ( w ) ~  C0.4 x 10 cm sec-' with 0.82 x 10 K g  

6 8 -2 -1 
T(R = 2) 1.1 x 10 K and for  R = 3.5, ( 1 ~ ) ~  G 0.2 x 10 em sea with 

6 6 0.89 X 10 K ~ ( 2 )  G 0.98 x 10 K. The curves fo r  T(R), corresponding t o  

values of ( 1 ~ ) ~  and T( 2) determined f ran equations 9 and 10  evaluated near 

the  minimum of the curves i n  Figure 1, e r e  &ram i n  Figure 2. Drawn also 

2 for comparison are the polar scale height t=pereture, T ~ ( R )  = (GM m M)/(kr dlri;/lr) 

-2/ 7 
0 P 

and the curve T a R . 
-2 

Since it is  l i ke ly  tha t  the flow i s  nore divergent than R inside of 

s m e  radius,  %, it is. ne.cess.aqr t o  consider hov t h i s  possibility af,$ects. 

the upper l imi t  of ( w ) ~ .  This may be accorqlished by assuming the area 

S 2 
of a flux tube increases a s  R out t o  PD and then as R from there t o  1 AU, 

Re. Using t h i s  model, (NV) = ( N Y ) ~ ( R  /I IS = (NV),(R /R )2 and hence 
D O D  e D  

(NVle can be determined froc? equation 9 using the relat ion 

Investigations of equations 10 and 11 fo r  S i n  the range 2 S < 4 ,  

(%hlo) = 2, ( R ~ / R ~ )  = 1.75 and R R GRx show t h a t  the  maximum f lux a t  
0 

1 AU consistent with & single  temperature maximum below Ro is  not s ignif icant ly 

8 -2 changed from i t s  value for  S = 2 ( (w\$ 0.2 x 10 cm see-'). However, i f  

S i s  sufficiently large and/or ( R ~ I R ~ )  is suf f ic ien t ly  small, t h i s  upper 

limit is raised. For example choosing S = 5 with ( R ~ R ~ )  = 2 (which is 

equivalent t o  expansion from a polar region defined by 60' G 8 G 90' a t  



8 -2 -1 
Ro t o  t he  f'ull henLspbere a t  % ) , CITY), C 0.28 x 10 cm sec  . It should 

be noted though tha t  for  all cases of nonradisl expansion ( I I Y ) ~  is signif icant ly 

raised over t ha t  obtained f o r  S = 2. 

i i )  Energ;y Flux Supply t o  the  Polar Wind 

An a l te rna t ive  approach t o  the  polar par t ic le  f lux  problen i s  possible by 

considering the  energy equation. Here, a l i m i t  on (NV), Eay be established i f  the 

veloci ty  at 1 AU is known and i f  t he  usual assumptions about the s t a t e  of t he  

intermediate corona a re  made. Using a one f lu id ,  steady-state, spherically 

symmetric nodel, the energy equation 

may be conbined n t h  equations 2 and 3 and integrated t o  y i e ld  

If a supersonic solar  wind ex is t s  a t  1 AU but not a t  Eo then t h e  dcninant t e n  at 1 

2 5 
G?I m M 

1 
AU i s  F [- m MV ] while a t  Ro, the  domina~t terms are  A(R~)Q + F [- LT - 1. 

2 P e  2 c RoRo 
Theref ore 

Further progress is  not'possible without an additional closure 

relat ion which gives Q i n  terms of t h e  lower velocity moments. Usually 
0 

the Spitzer conductivity i s  assumed val id so that  



d t h  ro = 7.7 x erg ano1 sec K - ~ ' ~  (chapman, 1954; Spitzer, 1956); 

However, it is also possible that  the density is  suff ic ient ly  low over 
* 

the  poles tha t  equation 15 is  not obeyed. I n  part icular,  it is possible 

tha t  the polar density is so low that the dimensionless th i rd  moment, 

q = Q111.5 Nk!l!(kT~m~)"~], becomes impoaslbly large a t  a low a l t i t ude  

5 (Parker. 1964). For example if No = 1.23 x 10 ( ~ a i t o ,  1970). 

To = 0.98 x 10% (see section ( i )  above) and T a R - ~ ' ~  then q = 

( 0 . 1 5 ) ( ~ / ~ ~ )  or  q 2 1 when R 2 1.5 Ro. It is  therefore probable 

t ha t  below t h i s  a l t i tu2e  i n s t ab i l i t i e s  develop (~ors lund,  1970) which 

w i l l  l i m i t  Q t o  a value less  than the Spitzer upper l i m i t .  I n  other 

words, the heat flux w i l l  be limited within 1.5 Ro thus efpectively 

producing an isothernal region a t  lower a l t i tudes  and a regiot, of steeper 

than R- 'I7 temperature decrease a t  higher a l t i tudes .  

It is thus not clear how to  estimate the  value of Q i n  equation 
0 

14. For the sake of concreteness two al ternate  approaches are adopted 

below. The first assumes equation 15 t o  be valid with T a R ~ ~ ' ~  and the 

second adopts an exospheric approach. In  both cases the solar wind He 

abundance i s  assumed t o  be a f ree  parameter since its value is observed 

t o  be highly variable in  the ec l ip t ic  a t  1 AU and is not known a t  high 

polar lat i tudes.  Such an assumption i s  necessary since, i n  contrast t o  

the analysis presented in  section ( i )  where upper 1iDiit.s for (Wlo were 

independent of M (see e. g. equation lo), the magnitude of the He 

abundance may be significant here. This fact  resul ts  because most of the 

energy needed t o  drive the solar wind expansion goes into gravitat ional 

potential and kinetic energy which are both mass dependent. However t h i s  

effect  i s  more than conpensated for  by the fact  that  maximum values of 

-118- 



T derived from the analysis i n  secti2.r ( i )  scale l inearly with M (see e.g. 
0 

equation 9) .  

Assumiq f i r s t  that equation 15 i s  valid, T a R- 2/7 and 
6 To = (0.98 x 10 )(M/o. 547) h (see Fi-es 1 and 2) then upper l i m i t  values 

for (NV), can be calculated from equs'.ion 14 for chosen values of W and 

The resul ts  are sumoarized i n  T e S e  1 under the label ( w ) ~  ( ~ p i t z e r )  

for Ye = 320, 450 and 750 W s e c  and !,! - d u e s  corresponding t o  a He 

abundance of 0, 0.0b and 0.08 by nmkr. 

In t h e  appendix, a n  analysis i s  cresented which shows thxC it is not 

clear whether or  not electrons are ccllisionless below R = RX. If indeed 

coronal electrons a re  collisionless LeZr t o  but outside or 2 R then Q 
8 

must be calculated u.;ing exospheric tkezry (~ockers , 1970; Lemaire and 

- : ; ,71.* OF THE - % T': 
* , A~.L~U 1.3 t 



8cherer , 1971a,b ; Schulz a d  Eviatar , 1972 ; Hollweg , 1974 ; Eviatar and 

Schulz, 19751. In  t h i s  approach, only those electrons above the electr ic  

potaatial barr ier ,  l e ~ @ l  with velocities directed away from the sun can 

C a r r y  heat. The three f luid energy eq~at ions  may be combined and integrated 

to y1zld 

where the A synbol signifies a difference between any two radial  distances 

and e is the electronic charge. Choosing Ro and Re = 1 A U  as the two 

ref+rence-df stazcns thcz 

If both Ve and the shape of the electron distribution a t  R f ( ~ ) ,  are known 
0' 

then Q is readily evaluated using the relation 
0 

1 2 where meVB = A Assuming a Merrellien shspe for  f(V) then 



Equations 1 4 ,  17, and 19  can be combined t o  give a self-consistency 

condition f o r  €3 = Q ~ / [ ( N V ) ~ ~ T ~ ]  and hence M upper l i m i t  f o r  (IW); if 

t h e  bulk convection speed a t  1 AU is  t o  be grea ter  than o r  equal t o  Ve. 

where 

equations 20 and 21 along w i t h t k s  assumptions t h a t  R = 2, !I = 1.23 
0 0 

-3 6 crn (Sai to ,  1970) and l? = 0.98 x 10 (M/o. 547) K (see e.g. Figures 1 
0 

and 2) ,  upper l i m i t  values f o r  (NV) have keen calculated f o r  various values e 

of M and Ve and a re  a l so  l i s t e d  i n  Teble 1. 

A comparison of t h e  exospheric upper l i m i t s  with t h e  Spitzer  upper 

l i m i t s  f o r  (w) ,  shows t h a t  i f  both the  wave-particle co l l i s ion  frequency and 

t h e  coronal e lec t ron densi ty a r e  low enoug'n over t h e  s o l a r  pole so t h a t  an 

exospheric formalism i.s appropriate, very severe upper l i m i t s  can be placed on 

t h e  s o l a r  wind flux a t  1 AU whether o r  not t h e  H e  p a r t i c l e s  expand with t h e  

plasma. These upper l i m i t s  f a l l  well below t h a t  calculated from t h e  mass and 

momentum equations alone. However, since it 1s  l i k e l y  t h a t  t h e  corona is 

s u f f i c i e n t l y  turbulent  t h a t  an exospteric formalism i s  not appropriate, t h e  

t r u e  upper l i r i t s  fo r  (w), may be l e s s  than but c loser  t o  t h a t  calculated 

using t h e  Sp i t ze r  conductivity. 

A comparison of the  upper l i m i t  values fo r  (NV), derived using the  form 

of the  energy equation which incorporates the  Spitzer  conductivity, with t h a t  



derived using t h e  mass and momentum equations, requires a knowledge of M and Ve. 

Reasonable choices f o r  values of these  quant i t ies  a r e  made a s  follows. F i r s t ,  

inspection of  Table 1 shows t h a t  by choosing t h e  so la r  wind H e  abundance t o  be 

4% by number, t h e  e r r o r  made i n  estimating (IN), is  probably l e s s  than 20%. 

Therefore, f o r  t h e  purposes of t h i s  comparison, M is chosen t o  be 0.547. :on- 

cerning the  speed of t h e  polar so lar  wind a t  1 AU several  pieces of evidence 

have recent ly  indicated t h a t  V over t h e  pole is  higher t3an t h a t  observed i n  e 

tFe e c l i p t i c    ole, 1374) and may be close t o  750 k l s e c  (Gosling e t  a l . ,  1976; 

Felifman e t  al., 1976). i f  t h i s  is the  case then from Tab', ' , ecergy considera- 

8 -2 -1 * 
t i o n s  require t h a t  (w), be l e s s  than approximately 0.4 x 10  cm sec . This 

value compares favorably with t h a t  derived using t h e  m:.ss and momentum equations 

e 
((IN), $ (0.2 t o  0.4) x 10 see-I).  It i s  t h e r e f x e  concluded t h a t  i f  heat 

conduction i s  t h e  dominant mode of energy transport  a t  atout  2 R and i f  
Q ' 

Sa i to ' s  polar  densi ty node1 i s  correct  then the  p a r t i c l e  f lux  of t h e  pol.%r 

8 -2 -1 
so la r  wind should be l e s s  than about 0.5 x 10 cm sec . This upper l i m i t  i s  

about a f ac to r  of 7 tires l e s s  than the  solar  wind p a r t i c l e  f lux  observed i n  the  

e c l i p t i c  a t  1 AU ( ~ e l d 3 a n  et, a l . ,  1976). 

3. Latitude Variations of Heavy Ion " ~ r e e z i n g  In" Distar,ces 

Alloucherie (1967) derived an approximate c r i t e r i o n  necessary f o r  a 

heavy ion of m,=s Am and charge Z t o  d i f fuse  upward in  an expanding corona. 
P 

- - 

9t 
It should be noted t?-~it t h i s  value i s  an upper l i m i t .  If the  heat f lux,  Q, 

is regulated below 1 . 5  R as  suggested e a r l i e r ,  then t h e  rep,lon below 1 . 5  Ro 
0 

becomes more nearly isothernel  thereby reducing CT, Q, ~ . n d  hence the  upper 

l i m i t  value derived f o r  ( 1 ~ ) ~ .  

-122- 



His result is: 

where t h e  symbols a r e  as previously defined and In1 is  the coulomb 
6 -3 = 0.98 x 10 K and expressing logarithm. Choosing No = 1.23 x 10  cm To 

22 i n  terms of  ( w ) ~  w g e t  : 

s-2 

-2 -1 
(NW, ' cm sec 

Since f o r  a rad io1  expansion (S = 2 )  t h i s  l i m i t  is approximately a 

f a c t o r  o f  4 t o  10 times g rea t e r  than  t h e  upper l i m i t  f o r  (MT), der ived  above, 

it is reasonable t o  conclude t h a t  i f  Sa i to ' s  model i s  co r rec t  and i f  t h e  po la r  

corona i s  not  ex t e rna l ly  heated above r = 2RB, He may not expand wi th  t h e  

s o l a r  wind. This  conclusion r e r a i c s  v a l i d  f o r  S C 4 and (%/R*) = 2 as uell. 

However, observation of t he  length  of the  neu t r a l  hydrogen t a i l  of Comet 

Bennet (Bertaux e t  a l . ,  1973; Kel ler ,  1973) a s  a funct ion of hel iographic 

l a t i t u d e  ind ica tes  t ha t  t he  polar  so l a r  wind f l u x  is a t  l e a s t  a s  l a r g e  a s  

8 -2 -1 2 x 10 cm sec a t  1 AU. This  value is i n  disagreement with t h e  upper 

l i m i t s  deduced i n  sec t ion  2. It is therefore concluded t h a t  a t  l e g s t  one 

of t he  assumptio-, made i n  the  above ana lys is  is  not co r r ec t  and t h a t  i t  

should indeed be possible  t o  observe s o l a r  wind heavy ions a t  po lar  l a t i t u d e s  

a t  1 AU. I f  t r u e  then measurements of the  popu la t im  d e n s i t i e s  of individual  

heavy ion ion iza t ion  s t a t e s  w i l l  y ic ld  information concerning the  temperature 



e t r u c t u r e  o f  t h a t  region i n  t h e  polar s o l a r  corona where t h e  va r ious  i o n i z a t i o n  

6 t a t e s  "f reeze  in." 

It is  p o s s i b l e  t o  determine t h e  "freezing in'' d i s t a n c e s  of the various 

heavy i o n  s p e c i e s  as a funct ion o f  hel iographic  l a t i t u d e  us!ng equation 1 i f  

t h e  following a s s m p t i o n s  are made: 1 )  t h e  f l o u  i s  r a d i a l ;  2) t h e  v e l o c i t y  

d i s t r i b u t i o n  i s  Maxwel l i~n;  and 3) t h e  e l e c t r o n  temperature, T, depends on t h e  

rad ius ,  r,  a s  T = i (z-/%)-~. Following p r e v ~ o u s  work 
9 

(Hundhausen e t  al . ,  1968a, b; Barn. 2 t  a l . ,  1974) these  d i s t a n c e s  a r e  

-1 
defined a s  those  f o r  which t h e  expansion r a t e ,  T = (YdlmV/dr) becomes e 

l a m e r  than t h e  ion iza t ion  s t a t e  changing r a t e ,  rp: + r;: = N(Ri + Ci). 

He.: ' is t h e  e l e c t r o n  temperature a t  t h e  base of t h e  corona, V is the  
0 

s o l a r  wind speed, R is t h e  r a t e  of recombination from s t a t e  i t o  s t a t e  i-1 i * 
and C is t h e  r a t e  of c o l l i s i o n h l  io-i ization from s t a t e  i t o  s t a t e  i + 1. 

i 

Changes i n  t h e  "freezing in" dis tances  wi th  1a:itude of a sample of t h e  

most abundant ions  a r e  shown schemalically i n  Figure 3 superimposed on s c a l e  

height  temperatures ca lcu la ted  using equation 1 f o r  0 = 0' and 90". For 

6 
purposes of i l l u s t r a t i o n  an isothermal corona with T = 1.0 x 1 0  K and a 1 F 

8 -2 -1 
dU p a r t i c l e  f l u x  of 2.5 x 1 0  cm see  were assumed f o r  eva lua t ing  r-' -1 

r i  + 'ci' 

The scale height  temperature f o r  a s t a t i c  corona is given by T = 
B 

2 
(GMsmp~)/ (kr d l n l i d r )  . Inspec t ion  of Figure  3 shows t h a t  t h e  region i n  t h e  

corona f o r  which temperature values  can be determined frslu s o l a r  wind heavy 

ion  d a t a  moves inward from above t o  below t h e  temperature maximum a s  8 

v a r i e s  between 0" and 90'. Thus a t  some intermediate  l a t i t u d e ,  coronal  

temperatures bracketing t h e  maximum can be sampled allowing t h e  magnitude 

and e x t e n t  of mechanical d i s s i p a t i o n  i n  t h e  in termediate  corona t o  be 

estimated (see  e.g. t h e  a n a l y s i s  of Brandt e t  a l . ,  1965). 

*Col l ie ional  i o n i z a t i o n  and r a d i a t i v e  recombination (including d i e l e c t r o n i c  
recombination) c o e f f i c i e n t s  f o r  0, S i ,  and F e  were kfndly supplied by D r .  A ,  Dupree. 



4. Summary and Conclusions 

I n  t h i s  paFer two re la ted  aspects of t h e  physical s t a t e  of the  in ter -  

planetary plasma a t  high solar  l a t i tudes  were explored, In  t h e  f i r s t  pa r t  

upper l i m i t s  f o r  t h e  polar  so la r  win6 p a r t i c l e  flux were derived using a s e t  

of  reasonable assumptions concerning the  base coronal conditions along with 

Sai to ' s  (1970) coronal density ~ o d e l .  I n  the  seconC par t ,  it was determined 

whether t h i s  f l u x  was su f f i c ien t  t o  Crag the  heavier ions away from t h e  Run 

i n t o  interplanetery space. 

From t h e  analys is  i n  the  f i r s t  par t  it was concluded t h a t  i f  Sa i to ' s  

model i e  correct ,  the polar electron density is su f f i c ien t ly  low t h a t  i n  t h e  

absence of extended heating the  solar  wind f lux  at high l ~ t i t u d e s  should be 

a t  l e a s t  a f ac to r  of from 11 t o  10 t i r e s  l e s s  than t h a t  observed i n  t h e  

e c l i p t i c  a t  1 AU. Such a low p a r t i c l e  f lux was shown i n  t h e  second par t  

t o  be small enough t h a t  most heavy ions would not be expected t o  expand 

with the  protons i n t o  in terplacetary  space. 

However, ind i rec t  and l i ~ i t e d  evidence avai lable  a t  present i s  con- 

s i s t e n t  with a polar  s o l a r  wind thbt ?!as at l e a s t  a s  l a rge  a veloci ty  ( ~ o l e s  

e t  a l . ,  1974; Brandt e t  al. ,  197h) and as  large  a 2 a r t i c l e  f lux  ( ~ e r t a u x  

e t  al., 1973; Keller ,  1973) as  t h a t  observed i n  t h e  e c l i p t i c  a t  1 AU. From 

t h e  analysis  presented i n  sect ion 2, these observations then require e i t h e r  

tha t  extenCed heating d i s t i n c t  from tha t  provided by electron heat conduction 

is necessary some of  t h e  time above 2Ro o r  t h a t  Ss i to ' s  polar  dens i t i e s  

are  too  low. Whichever i s  t h e  case, the  fac t  t h a t  t h e  

solar  wind p a r t i c l e  f lux  6oes not aopear t o  decreaae with increasing heliographic 

l a t i tude  ( ~ e r t a u x  e t  a l . ,  1973; Keller, 1973) indicates tha t  coronal heavy 

ions may be expected t o  expand with the  protons away from the  sun. I f  t r u e  



then  measurements of t he  population dens i t i e s  of individual  heavy elenent  

i on iza t ion  s t a t e s  i n  t he  2o la r  wind v i l l  provide information at  1 AU con- 

cerning t h e  thermal s t a t e  of t h a t  region i n  t h e  intermediate  corona where 

t h e  respec t ive  i c a i z a t i o n  s t a t e s  f reeze  in .  It t - ~ n s  out t h a t  t h e  l a t i t u d e  

va r i a t i on  o f  these f reez ing  i n  d i s tances  calculated using S a i t o l s  model 

i s  such t h a t  t h e  region i n  t he  corona f o r  which temperature values can be 

determined moves inward f r c n  above t o  below t h e  nominal l oca t ion  of t h e  

temperature nzaximum as 8 va r i e s  between 0" and 90". Therefore, measu; slnents 

of heavy ions  at high s o l a r  l a t i t u d e a  may provide vaix?hle i n f o m a t i o n  con- 

cerning t h e  magnitude and extent  of  mechavical d i s s ipa t ion  i n  t h e  intermediate  

p o l a r  corone. 



I e* to t u  ms. L. Biermann, J- Coslhg, A. Eundhausen and 

M. Montgameq for many useful discussions. 

This  work was perfomed under t h e  auspices  of t h e  U. S. Energy' 

Research and Development Adninistration. 



References 

Alloucherie, Y. J. , Heavy Ions i n  t k  Solar Corona, F k D .  Thesis, 

Tbe Universfty of Maqrtand, 1967. 

Allo*icherie, Y. J., Diffusion of Heavy Ions fn the Solar Corona, 

J. Geophys. Res., 75, 6899, 1970. 

h e ,  S. J., J. R. Asbridge, W, C. Feldmen and P, D. Kearney, The 

quiet corona: temperature and temperature gradient, Solar Phys., 35, 

137, 1974. 

Bane, S, J,, J. R. Asbridge, W. C. Feldman, M. D. Montgomery, and 

P, Do Kemey,  Solar wind heavy ion abundances, t o  be  published i n  

Solar Phys. , 1975. 

Bame, S. J., Spacecraft observations of the so la r  wind composition, 

i n  Solar Wind, C. P. Sonett, P. J. Colaan,  Jr., and J- M. Kilcox, ed., 

NASA SP 308, p. 535, 1972 - 
Bertaux, J. L., J .  E. Blamont, and M. Festoa, Interpretst ion of 

hydrogen Lyman-dpha observations of comets Bennett and Encke, Astron. 

and Astrophys . 25, 415, 1973. 

Brandt, J. C., R. W. Y&chie, and J. P. Cassinelli,  Interglmetary gas X, 

Coronal temperatme, energy de~os i t i on  and the solar  wind, I c ~ ~ u s ,  4, 

19, 1965. 

Brandt, J. C., R. S. Hsrrington, and R. G. Roosen, Interpla?etary gas XX. 

does the rad ia l  solar  wind speed increase w i t h  la t i tude?,  Estrophys. J., 

196, 877, 1975. 

Chapman, S., The ~ i s c o s i t y  and thermal conductivity of a c o q l e t e l y  

ionized gas, Astrophys. J. 120, 151, 1954. 



Coles, W. A., B. J. Rickctt, and 3'. E. Rasey,  Interplanetary Sc in t i l l a -  

t fons,  in Solar t fhd  Three, C. T. ?lasell, ed. , Ihst.  of Geophys. and 

Planet. Phys., U.C.L.A., PuEl., p. 351, 1974. 

b e y  , B. R. and A. J. Hundhauser., The expansion of a low-density 

so l a r  corona: a one-fluid model wi;h magnetically modified thermal 

conductivfty, J. Geophys. Res., E, 3711, 1974. 

Evfatar, A. and M. Schulz, Quasi-e-r~spheric heat f lux  of so l a r  wind 

electrons, Report SAMSO-TR-75-139, 1975. 

Felrksn, W. C., J. R. Asbridge, S. J. 3-e, and J. T. Gosling, 

High speed solar  wind flow parweters  a', 1 P.U, suknitted t o  J. 

Geophys. Res., 1976. 

Forslund, D. W., In s t ab i l i t i e s  e s s 3 c i a t ~ 3  with heat conduction i n  the  

so la r  wind and t h e i r  consequer,ces, J. Coophys. Res., 75, 17, 1970. 

Geiss, 3. , P. H i r t  , and H. LeutuyLer, On acceleration and motion of 

ions i n  corona and so lar  wind, Sol.,- Pii:rs., 3.2, 458, 1970. 

Gosling, J. T., J. R. Asbridge, S. J. 3 z e  eqd V. C. Feldnan, A 

s t u w  of solar  wind speed variations: 1962-197kY submitted t o  J. 

Geophys . Res . , 1976. 

Hirayama, T., The abundance o f  helium i n  prozinences and i n  t he  

chmosphere,  Solar Phys. , By 38:, 1 9 n .  

Hollweg, .J. V., On electron heat :onduction i n  the so la r  wind, J. 

Geophys. Bes., By 3845, 1974. 

Hundhausen , A. J. , Coronal Expansion and so lar  Wind, Springer-Verlag , 

Berlin-Heidelberg , 1972. 

Hundhausen, A. J., H. E. Gilbert, and S. J. Bame, The s t a t e  of ioniza- 

t i on  of Oxygen i n  the so la r  wind, Astrophys. J., 152, L3, 1968a. 

Hundhausen, A. J. , H. E. Gilbert ,  and S. J. Bame, I o n i z ~ t i o n  s t a t e  of 

the  interplanetary plasma, J. Geo?hys. Res., 73, 5485, 1968b. 



Jockers, K., Solar wind n~dels based on exos-,heric theories, Astron. 

ahd Astrophys. , 6, 219, 1970. 
Keller, H. U. , Hydrogen production rates of contt Bennett (1969i) in 

the first half of April, 1970, Astron, and Astrc~hys., 27, 51, 1973. 

Lemaire, J. and M. Scherer, Simple model for an ion-exosphere in an 

open magnetic field, Phys. of Fluids, &, 1683, 1971a. 

Lemaire, J. and N. Scfrerer, IClnetrc models of t k  solar wind, J, Geophys. 

Res- , 76, 7474, 19715. 

Nakada,M. P., A study. of the composition of the solar corona and solar 

wind, Solar Phys. - 14, 457, 1970. 

Parker, E, N., Dynamical properties of steller coronas and stellar 

winds, 2, integration of the heat flow equetion, Astrophys. J. , EJ, 

93, 1964. 

Saito, K., A non-spherical axisymmetric model of the solar K corona 

of the minimum type, Annals Tokyo Astron. Observ., l2, 53, 1970. 

Schulz, M. and A. hriatar, Electron-temperature asymmetry and the structure 

of the solar wind, Cosmic Elcctrodyn. , 2, 402, 1972. 

Spitzer, L., Jr., The Physics of Fully Ionized Gases, Interscience, 

n. Y, , 1956. 
Yeh, T., A three-fluid model of solar winds, Planet. Space Sci., l8, 

199 1970. 



Table 1 

Upper LTait Velues of ( 1 ~ ) ~  

Consistent With the Enerry Equation 

% -2 -1 
crn sec 

He/H (!~)~(~pitzer) 

-2 -1 
cm sec 

(PW Exospherie 

1.24 x 10 6 

4.96 x 10 
4 

0.41 



Appendix 

Cornparisor? of Expected Electron-Electron Collision Lengths 

with Scale Lengths in the Polar Corona 

The mgnitude of the electron conductivity i n  she polar corona 

depends c r i t i c a l l y  on the electron-electron col l is ion length, Zc. If 

is small enough then the Spitzer conductivity is  appliceble but i f  it i s  

too large, then 8s exospheric approach is needed t o  evaluate the polar 

electrozl heat flux. It turns out tha t ,  according t o  Saito,  TI i s  
0 

suf f ic ien t ly  low over the  pole t ha t  it is not c lear  -zhether o r  not +Fnmal 

electrons a r e  co l l i s ion less  above R = 2~ For e x ~ l e  the se l f  scat ter ing t i ~ e  for e 
a' 

3/2 th.mel electron e t  2R i s  r = (1.1 x 1 0 - * ) ~ ~  /No = 87 sez (Spi trer ,  1956) 
0 C 

whereas a t  t ha t  distance the expansion time (assumin,- a radial  zagnetic 

f i e l d )  is re = (k? /n )1'2dln~/d~]-1 = 60.5 sec. Furthernore the coulomb o e 

scat ter ing length, 9: defined hy c ' 

may be e i the r  lerger  than o r  smaller than the temperature scale length, 

rT = I - ~ I ~ T / ~ R I - '  = 3.5 Ro. depending on the vzilue oE the maxisuer a l t i t z 3 e  

a t  which S a i t o f s  density model is  valid,  RX. This i s  readi ly s50-m by 

assuming a density model consistent with Sai to 's  resu l t s  (1979): 



with RIG h .  Cambining A l  and A2 and using Ro = 2 with No from equation 1 

evaluated a t  0 = 90° it is found that  L c / ~ o  = 1.33, 2.48 and 6.69 f o r  = 'k 
3.0, 3.5 and 4.0 respectively. 

Since the  actual  value of Xc may be e i ther  l ess  than o r  gres ter  * 

than RT depending on the value of Rx, it i s  not known whether t he  Spitzer 

conductivity o r  a conductivity calculated using exospher?~ theory is most 

valid i n  t he  polar solar  corona. However, the  fact  t ha t  Ec is  of the  same 

order of magnitude a s  llT suggests tha t  neither of the  above is  correct and 

tha t  t o  obtain an accurate detemination of the  t rue  conductivity a 

kinetic a~proach  rzy be necesaar:;. 



Figure Captions 

F i g u r e l .  P lo ts  of  equation 9 f o r  5 = 3 and 3.5. Radial flow is  assumtu 

2 
and hence ( w ) ~  = ( A V ) ~ ( R ~ / R ~ )  . The minimum value of each 

C 

curve corresponds t o  t h e  maximum f lux  a t  1 AU consistent  with 

the  assumptions d T / d ~  < 0 fo r  R 3 2 and T 3 0 f o r  R Rx. 

Figure 2. Coronal temperatures, T(R) f o r  values of ( w ) ~  and ~ ( 2 )  determined 

from equations 9 and 1 0  evaluated a t  t h e  minima of t h e  curves i n  

f igure  2. Drawn a lso  f o r  comparison a re  the  polar  sca le  height 

temperature, T (R) and the  curve T a R- (2/7) H 

Figure 3. Variations with. l a t i t u d e  of the  "freezing in" distances of  a 

sample o f t h e m o s t  abundant h e m  ions. Scale heightterzpera- 

t u r e s  are calculated using equation 1 f o r  0 = o0 and go0 2nd a 

6 
constant "freezing infr t e q e r a i u r e  of  T = 1 x 10 K is  zssuned. F 
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ABSTRACT 

The large-scale ,  th ree  dimsnsional magnetic f i e l d  i n  the  in te rp lane tary  

medicxu is expected t o  show the  c l a s s i c a l  s p i r a l  p a t t e r n  t o  zeroth order. 

iiowever, systematic and randon deviat ions can be expected, a1 thou,?. :heir 

nature and magnitude cannot be 2redicted. The sec to r  structure should 

be evident a: high l a t i t udes ,  but thz ac tua l  ex t en t  is unknown and the 

shape of the sec to r  boundariss is comroversial .  In te rp lane tary  

s t r eaas  w i l l  probably deteriniae the patcerns 02 magnetic f i e l d  intensLty 

but the ac tua l  ?a t t e rns  cannot be calculated a t  present because of our 

l imited kaowledge af speed ?roiciles and the source cocditions.  The 

large-scale s p i r a l  f i e l d  can i ; ? d u c ~  a meridional flow which might a l t e r  

the f i e l d  geometry sonewha:. ';he ?.on-unif0rr.i: Les caused by s t r e a r i  w i l l  

?robably s ign i f i can t ly  influence zhe notion of s o l a r  and g a k c t i c  ? a r t i c l e s .  

U n a b i ~ u o u s  and de t a i l ed  I ; ~ . ~ i c d z i :  of thc 3-d in~ns iona l  f i c  ld 3r.d i t s  

dynmica l  e f f e c r s  can only bc o'st=iincd by i n  s i t u  ncasurcrnents by a 

p r ~ b e  which goes over the 5::;:'s poles. 



I . 1K";OIX'CTTOS 

One cannot bc c. :sin of uht: w i l l  be obscrvcd on an out-of-the-ecliptic 

nrission, It is b;isic&ly cuyloretory. Gne czz t r y  t o  predict  what w i l l  

be seen, using current theories an2 t%c av.~i lablc  i ~ t c q l a n e t a r y  observations, 

and dris paper attcmpts to  do so for  tk.e i n z c v i a a e t a r y  naapctic f icld.  
-. . 

H m v e r ,  extraimlations t o  as  l i t c l e  as i oO  above the  e c l i 2 t l c  a-e highly 

rmcertain. Only in s i t u  rneasurcncnts c a  provide us  the  u n i x b i ~ o u s  and 

detai led knawledge that  w e  seck. 

Y i y  of the  propert ies of the nagnetic f i e l d  observed in  the  e c l i p t i c  

plcnc Eollow from a simple re la t ion  which i s  va l id  when the  magnetic stresses 

are not so large as t o  appreciably a l t e r  the motfon, viz. 

B(r) - [j(r)/po! I& - VZ - (1) 

whcre Z(r) is the f i e l d  in a radia l ly  mving volune element with constant 

speed, p is the  dcnsity, B axxd po a re  r5e f i e l d  and density a t  some surface 
-0 

naar the sun, and V X is  the gradient of che rlispiacenenr vector vhich is 
0- 

dstsrxined i f  the speed is  !mown on the sourcc surface. Thus, i f  Bo, ;o 

=d V are  !mom a t  s m e  inner boundary (say 0.1 o r  0.2 AU), and i f  ?(r) 
0 

is  known, then t o  good approsiiiatioz~ one can project  o r  map the f i c l d  any- 

where within A AU by ( I ) ,  i f  the r,agneLic s t r esses  can be neglected. *.is 

approach to the interplanetary nag.etic f i e i d  i s  discussed i n  Schatten 

(1972), Nolte and Roelof (1973), and -re generally i n  Burlaza 2nd Zaroxch 

(1975) i ~ 7 d  Bsrouch and Burlaga (1975~~).  It i s  val id  for  both t inc-dcpentmt 

flows and steady flows. 

Very l i t t l e  i s  latown akout t5e l a t i tud ina l  variat ions of V ncrx the sun 

(1ra(a)) so one mst 3e contcnt to c:qiore scvcral rcssonable ai tcrnativcx 

i n  order t o  study the e f fec t s  of T S on the thrcc dinensional f ield.  Of - 



course, tllc simplest a s s q r i o n  ;:: V=sons:;l?~, w11icii ;;lvcs thc: spiral Zicld, 

as discussed below. 

magnetic f i e ld  measurments u?ward throu;:~ ththc solar  cnvc l~pc  t o  the klfven 

point and beyond. Several techaigues for doing t h i s  a re  avail&le it? the 

' l i tera ture ,  although none is c o q l e t ~ l y  satisfactory. Tie ?ro3:cn i s  

i l lus t ra ted  in Figure 1 from Schattcn (197l), which sl~ows a sketch of XI 

eclipse in which the  l ines  presumbly represent magnetic f i e ld  lines. One 

sees a variety of structures, Near the sun, the f i e l d  is coqle:.: with many 

closed loops v i s ib le  a t  low lat i tudes.  Farther from the sun, the f i e l d  

l incs  ge-rally to  diverge and to  becom nearly radial. l h i s  is  

represented formally by assuaing potential  f i e lds  near the sun and su?posing 

that  only the lowest order hamonics coztribute t o  the interplm.e:ar- f i s l l ,  

The t ransi t ion to  radial  f i e lds  is gsneraily nade a r t i f i c a l l y  a: some 

distance, and structures such as h e l x t  streancrs can be nodeled by post- 

ulat ing that  currents are  prescnt only ia thin shects, Such methods a re  

sufficient  f o r  us to nake esticlates of t-fie f i e ld  out of the ecl i? t ic ,  but 

i t  nrust be emphasized that  these are  only approxhations based on models 

rather thar. firm theoretical predictions. There is no substi tute for  

in s i t u  neasurements of B out of the ecliptic.  - 
11, X5.GSETIC FIELD DIRECTION 

Parker (1958) presented a node1 fo r  the zeroth order con.figuration of 

the magnetic f i e l d  l ines ,  assunins constant V o, Bo, and.po, and steady 

corotation. In t h i s  case, ( I )  gives the well-known Archemedian spira l .  A 

good i l lus t ra t ion  of t h i s  pattern nay be found in Hirose e t  al. (1970). 

Measurements have shown that  3arker's nodal given an acceptable zeroth 

l?T?RODUCIBILI!lX OF THE 
. I l i - u x -  fQ _IMnD 



order approsim;ltiol~ for tllc f k l d  i n  the cc l ip t ic  p l m c  bctwecn 0.3 AU and 

5 cW (sce tllc review by Bci~jnnon, 1975, and the pcpcr by Xarimi c t  a l ,  

(1975)). l%cre is apprcciablc sca t tc r  of the obscrvcd points &out the 

theoretical curve, which n i&t  be duc in  ?ar t  t o  variations i n  and po 

(Burlaga snd Barouch, 1975), and one can expect to  observe similar scat  tcr 

away from the ecliptic.  One might also see systematic effects  i n  the 

direction of B due t o  systematic variations f.n I& assoc iaed  with structures - 
such as helmet streamers and polar plumes. 

Stenflo (1971) a t t q t e d  t o  compute r e a l i s t i c  interplanetary magnetic 

f i e l d  configurations by introducing a reasonable model fo r  V(r) near the 

sun, projecting measured photospheric f i e lds  to  a source surface a t  2.6~~ 

using the potential  f i e ld  mapping technique, and mapping f ie lds  from the 

source surface t o  Z AU by a technique equivalent t o  Eq.(l), An important 

resu l t  is  that although there are  co.qlex loop-confiprations close to  the 

sun, far ther  from the sun the f i e ld  becoaes nore radial  and only the lowest 

harnonics are significant fo r  the solar wind flow. In part icular,  the 

large-scale (w 1 AU),3-dimensional f i e ld  which he computed for the period 

Fab. 17 to  ?larch 10, 1970 was found to  have the sp i r a l  form predicted by 

Parker's model (see Figure 2). 

The pattern that  we have been discussing is altered by the presence 

of streams. The magnetic f i e ld  lines w i l l  be more radial  when the speed 

is  high than when it is low. This effect  is small, however, being jus t  

a few degrees in  the ec l ip t ic  plane (e.g., see Burlaga and Barouch, 1975) 

and probably even smaller a t  higher latitudee. 



III. BLWNETIC FIELD S I ~ S E  (smmrs) 

Wilcox and Ncss (1965) showcd tha t  the in te rp lmcta ry  mof,nctic 

f i e l d  is structured such that  it tcnds t o  point away from the sun for  

several consecut ivc  days, then abruptly changes direct ion by 180' end 

points  toward the  sun f o r  several days, etc.. I n  other words, the %sensen 

of the f i e l d  is sectored on the  mesoscale. In 1964, four sec tors  were 

observed by IMP 1 (Wilcox and Kess, 1967). Several papers, bcg inn iq  

with tha t  of Wilcox and Ness (1965), sl~ow that  the in te rp lmcta ry  sector  

s t ructure  is re la ted  t o  the po la r i ty  of the photospheric magnetic f i e ld ,  

I n  a recent study of t h i s  sor t ,  Efolte (1974) (see Roclof, 1974) computed 

tilc cross-correlation (calculated over nine solar  rotat ions)  between the 

interplanetary po la r i t i e s  which were mapped t o  t h e i r  connection longitudes 

on the sun using the so la r  wind s ~ e e d  and an empirical technique anA the  

H,. chromospheric polar i t ies .  He Zound tha t  the cross-correlation peaks 
u 

a t  l a t i tudes  +30° and -20°, suggesting that  the base of the f i e l d  l i n e s  

i s  generally not i n  the so la r  equztor; however, the  corre la t ion  was lor;, 

d .3 ,  When he computed the cross-correlation coefficient  fo r  magnetic 

f i e l d  data corresponding to  spesds %00'm/sec, he found a peak of 4 , 5  a t  

a l a t i t u d e  very near t o  the solar  equator, suggesting that  the s t reazs  

which are  observed or ig inate  near the solar  equator. 

Ness and Wilcox (1967) showed that  the sector  s t ructure  changes w i t h  

tine. Two sectors were observed i n  1962, four i n  1964, a d  the s tn i s tu re  

was coniplex i n  1965. Similar p lo ts  f o r  1970-1972 s r e  given i n  Fai r f ie ld  

and Kess (1974) together wich rcferencas t o  other papers on cine variat ions.  

Generally, the pattern of 2 or  4 sectors i s  the dominant one. 



Vilcos znd Svanl~arc! (197: j co:. . ;dcrL.d L.: i n t c r ~ - . t h s  p.~:rcrn i n  

1969, when 2 sec to r s  were prc2a:.ir.srlt i'ar sevcrz? s o l a r  ro:ctions. 

Comparison with t11c solzl- ftclcis, as  dcrernincc! by t h e  '*';lairy-11all" 

(poten t ia l  f i c l d  napping) r ~ d c l ,  showed &:,.lit rhc scc to r  boundary, projected 

from 1 1\U t o  tl;e sun, corrcspondcd :o LII "clrc~dc" of closcd loo;?s running 

approximately N-S, 'Elus, m c  expects t h a t  the scc to r  boundary c x t c n i s  

t o  r a the r  h i ~ h  latitudes i n  t h i s  case. 

i \ l tschuler  et  aL (1974) c o q u t e d  t h e  large-scale photospheric n a p c t i c  
0 rn 

f i e l d  i n  t e n m  of surface harr ,mics  (F" ( 8 )  cos nd and Pfi (6) s i n  rd) n 

l o r  the  years 1959 throa:sil 1972, Tor rhc ysai 1969 they found th:.~ the 

d o n l n ~ i t  pa t t e rn  was a d i?o le  t+.osc =is was i n  the s o l a r  eqc~Eorlcl 

a two-scctor p c t t c m ,  the  scc:or bo~.n- planc; Lq other  worLs, thcy  20.--' 

darys xnning K-S, cons is te3 t  nL:h :he rzscLrs of Wilcox and S v ~ a Z g r r d  

I?scl-ibeZ above, 

-4ltschcler e t  a1 (197Q) Z s s d  t:,: :he s o l a r  f i e l d  pa t t c rn  chxizcd 

with time in  a way cousfszect wich s?r;ce;rcft o b s c i - v ~ t i o n s  of t h e  i c r c r -  

planetary magnetic r'i,cld ?o:crlty. To ;  esc;;.?le, i n  1362 tke  icminrz:  

. . 7 a t t c r x  w a s  a g ~ i n  s d i y l c .  i n  ';:;c cc~uacorizl  p i  m e ,  ir: zzi-cix.;;: -..:-t.. 

- :.:arl;rer 2 obscrvctions. in 1953 t ; , - y  f~lir.2 :!:s c=i and ,=Ti -:I, :,- ,:;;~;li-/ 

Creq~er.:, corrcs;?andi-;i; t o  2 scc:oi-; a 2  :our sec Lors, i-cs?cc: ;:cl y,  

c ~ T . s ~ . c . c ~ . ; ~ K  ~ii!: t h e  I:.? o~; ; iT; :~o: - , ; .  '*;:ss, it 2??22:-3 th-: lu,. - ; t  

; ~ z n : o n i c s  o i  t : ~ c :  s o l a r  L i c ? d  i:..;Lt:::I..;; E:;G S C ~ ~ L ~ :  Strt lCiu;- ,  .;.-..: ,.';.: ! j ~  

- - ~ s e L  :o 7 rcd ie t  thc  s ec to r  S::-L::-L;L ,: :A, 1~:l:uZcs. 

.'.l:schulcr c~ al. (197:) , J ~ . . ~  '-. --' .-'- L L ~ L b  -' 2 sec tors ,  t ~ i t ! ~  thc si.i-. .;. 0, - a 



dipole wliose &xis is  i n  t11c L>..r ,u~torial  plrmc, is  tile doziinanc 7i l t tcm. 

f i~cy  also found t h a t  four  s ec to r s  occur frcqucnt ly a i ~ d  t h a t  o ::-S dipole  

predominates only  occctsionally. 31us, onc c:tpccts t h a t  gcncrn? l y  t h c r c  

w i l l  be two sec to r s  whose b o u ~ d a r i e s  extend K-S, s m c t i n c s  four  s ec to r s  

w i l l  be present ,  and occzs ioca l ly  the g o l a r  r c ~ i o n s  u i l i  tend LO ;jc 

unipolar  with a "sector bouninrjP in titc s o i a r  ec;arr:~risl ?lam. Z'hc 

time var ia t ions  can bc very 5 r ~ s r t c a t  f o r  a S/C xlzs ion  lastizi: :..;re than 

a year. It w i l l  be important t o  co r r c l z t c  meclsurc;r;lc;lts of t?lc s o l a r  

f i e l d ,  out-of-ecl ipt ic  neasurer,cncs, m d  measurcmcnts nadc ncai- the 

e c l i p t i c ,  to  separa te  the  s2sce- t i n e  va r i a t i ons  

Svalgaard e t  a l .  (1974) proposed a nodcl t o  dcscr ibc the  norc c o v l e x  

configurat iocs  i n  which both a N-S dipole  and a d ipole  whose &xis i s  i n  

t he  equator ia l  plane cont r ibu te  t o  the  in te rp lane tary  magnetic f i e ld .  

%is is i l l u s t r a t e d  i n  S i ~ r e  3 (boc:oiz), which shows t h a t  che po ia r  

f i e i d s  and the  equator ia l  f i e l d s  night  combine t o  g ive  sec to r  hounlaries 

t h a t  a r e  t i l t e d  with respect  t o  the s o l a r  equator, t he  d i r ec t ion  of  ::I: 

depnding  on the  p o l a r i t y  of the  f i e ld s .  The f igu re  a l so  i l l ~ j t r a c c s  t hc  

nag re t i c  arcades and the assoc ls ted  helmet streamers t h a t  t r e  ?rcscced 

t o  be associated with sec to r  boundaries. Svalgaard e t  al. (i471) 

presented evi3ence t h a t  s t rongly  su?porrs t h i s  p i c t u r e  f o r  thc  per506 

t h a t  they s tudies .  An a l t e r n a t i v e  :;.ode1 (see P isure  3) was ?resented by 

Hansen e t  al. (1972) based on data obtained i n  1472, when 4 scc to r s  wcrs 

obscrvcd at 1 AU and coronal s t rcai icrs  wcrc obscrvcd by OSO-L. ::a.-.sen 

c t  a l .  pos tu l a t e  a coronal b z i d ~ e  corresponding t o  the  low-lat leuic  

srcades of Svalgaard e t  a i . ,  but Alcy ciiffcr i n  pos tu lc t  i n 6  ;;.l,:q~;.lt~r;: 



streamers at high lat i tudes.  Thc re la t ive  merits of these two models 

has not been established. Out-of-ecliptic measurcmcnts could be decisive. 

Rosenberg and Coleman (1969) showed that  the number of days with 

negative po la r i ty  varied sinusoidally with a period of 1 year between 

1964 and 1967, randomly i n  1968-1969, and sinusoidally with a 180' phase 

s h i f t  i n  1970-1973. This pat tern  showed the expected change i n  1974-1975 

(F&rfield and Ness, 1974). Following a suggestion of Rosenberg and 

Coleman (1969), Schulz (1973) suggested tha t  t h i s  is a consequence of 

"warping" of the  equatorial plane (minimum B surf ace) of a dominantly 

N-S solar  dipole with s igni f icant  quadrupole contributions. This conf l i c t s  

with the resu l t s  of Altschuler e t  al. (1974) which show tha t  the  N-S dipole 

is  not frequently observed a t  the sun. It a l so  implies tha t  the sector  

boundaries should t race  a "sinusoidal" l i n e  with small ampi i tude about 

the solar  equator, i n  contradiction with the r e s c l t s  of Svalgaard e t  al. 

which suggested that  sec tor  boundaries a re  not t i l t e d  so much. This 

difference has not been resolved, but could be s e t t l e d  by an out-of-ecliptic 

mission. 

IV.  MAGNETIC FIELD INTENSITY 

Parker's model, based on the assumption of constant and uniform V 

and Bo, provides the zeroth order approximation of the  interplanetary 

magnetic f i e l d  intensi ty.  It predicts  the measured value of c 57 i n  the 

e c l i p t i c  plane a t  1 AU for  reasonable values of B near the sun, and i t  
0 

prcdicts  somcwhat s m l l c r  f i e l d s  near the poles. A somcwhat more 

complicated model, assuming constant V and a N-S dipole giving B was 
-0, 

discussed by Parker (1958) and considered in  more d e t a i l  by Stern (1964). 



In  view of the  rc'i3ults of 1 1 l t ~ ~ i i u l ~ ' ;  c t  a l .  (1974), whicl\ showcd rlmt a 

N-S dipole r a r e l y  dominates, t h i s  aodcl is gcnc:ally not  appropriate.  

Superimposed on c l ~ c  large-scalc  va r i a t i ons  in  m a y e t i c  f i c l d  i n t e n s i t y  

a r e  non-uniformities due t o  streams. These e r e  the  r c s u l t  02 73 * 0 i n  

q ( 1 )  Fas te r  plasma ovcrtdccs slower plasma, causing a c m . p r c s s i ~ n  of 

the  plasma and (because the f i c l d  is "frozen" t o  thc plasncr) an en;lanccnent 

i n  B. S l ~ c a r s  i n  V can a l s o  c a s e  a change i n  t hc  nagnct ic  f i c l d  i n t ens i ty ,  

and t h i s  too is imp l i c i t  in (1) (see Burlaga and Earouch, 1975). Enhance- 

ments i n  B a r e  genera l ly  observed a t  the  leading edge of  streams a t  1 W ,  

of t en  a s  l a r g e  as four  times the  anbicnt value. Similar  cnhanccncnts 

n ig5 t  be 05served out of  t hc  e c l i p t i c ,  deynd ing  on the  ve loc i ty  prof i les .  

31cy nish t be the most i ~ o r t a z t  m ~ ~ c t i c  f i e l d  Lntcnsi ty  va r i a t i oaz  

a t  Sigl-1 l a t i t udes .  I l l u s t r s t i v a  s p a t i a l  c o z f l g ~ r a t i o n s  of ti:c m p z t l c  

f i e l d  i n t e n s i t y  on a  spherical  s h e l l  with radius 1 AU, r e l a t i v e  t o  ~ h c  

unperturbed equatorial  f i e l d  a t  1 AU, are shown i n  Figurz 4 froa 2;lrczch 

and Burlaga (1975a), A t  the top, i s  :he r e s u l t  f o r  V = Vo (I-.'. cos L $ j  

- 2 
cos 8; at the bot toa  i s  the r e s u l t  :or V = Vo (1iA cos 4$)c:.?:-(6-ia) . 
I n  the  f i r s t  case,  one c q c c t s  thii: the r ' ie ld  i n t c n s i t y  ni;;i,t bc q?:o:.:- 

i ~ a t e l y  twice the ~npe rcu rbcd  ince;-.sity i n  son2 regions ou: of :hc cc:i?tic, 

i f  the streams extend co hl:h l ~ t L > - l > s .  In t5e second casc, i:: ~,;?.lc;~ 

s t r ea id  a r e  confined near  the ec i i ? t i c ,  B ( 6 )  i s  s t rong ly  ~>cr turbcd  only 

near t hc  ec l ip t i c .  

C i i l i ngs  and Robcrrs (1555; suy;:;rci LILL scrcm; c o x  i:-oz rc-' ,ons 

of open axa diversin2 zz2nc:Lc f ic '  .. L, ' 1 i n ~ s  net: t11c s.;:, cnl t;; ;t; :; :s-.J 

;olas;r,;l is sssoc is tcd  w i : ! ~  c i o s ~ i  Lac?;. Zlis is con:iistcn': u l f : ~  : : ;c  



rrb:;,*rv;ltion tha t  the s o l a r  wind S P C C ~  i s  gcncrnl ly sclcll.1 ncar sc:t:or 

boundaries, which according t o  S v a l ~ a a r d  c t  al. (1974) arc. a2:;ociatc.d 

with "arcades" of closed loops nccr  the  sun. It is a l s o  con:;i:;tcnt t ~ i t h  

mappings of streams back toward thc  sun (Roclof, 1974j. Pncuna (1373) 

and Pneuman and Ropp (1970, 2971) modeled t h i s  s i t u a t i o n  ~ i t i i  a di~o3r. i n  

the  s o l a r  equator ia l  plane. Thc bas ic  i d e a  i s  t h a t  when ~l:r field l i n c s  

diverge, heat  i s  r ead i ly  conducted t o  tha c r i t i c a l  po in t  k;l:crc i t  c t ~ l  

e f f ec t ive ly  acce lera te  the s o l a r  wind, vhcreas when the  f i e l d  l i n c s  arc 

closed hea t  cannot be conducted r ~ c l i a l l y  because of the  low pcr;>cn2icular 

conduct ivi ty  and energy is  no t  avail;>lc f o r  accelerat ion.  O f  cocrsc,  

ocher models a r e  a l so  possiblc.  The po ia t  t h a t  wc wish t o  cq l ia s i ze  is 

tha t  s t r e a n  p r o f i l e s  might be r e l a t ed  t o  the  rnagne' f i c l d  ncar thc  sun. 

Calculazions which explore the consequences of va r i ab l e  B (8,d) a rc  given 
0 

i n  Barouch and Srrrlaga (1475~) .  'i;hc r2su:t i s  t ha t  thcrc  ni$t 5 c  a 

l z t i t u d i n a l  va r i a t i on  of t h z  s:rwz 2-duccd ?er turba t ions  i n  3 x h i c i ~  

r e su l t s  from t he  l a t i t u d i n a l  dc - c !nd i~ td  of 3 . 
3 

. . -  I:'c concludc tha t  strc&:s ir.Cu-.c ;;.,i.-,~icz~: 6Cs t o r t  i ons  ill :hL r-.;.,:. r : ic 

f i c l d  in:cnsity which nust bc: cozsiicrccl I n  zcasurln; s " z i ~o l - : , I 1  o:Lz:- 

f i e ld .  'ihcy arc also ineezcsi-z;..~ 12 t:~clzsalvi.s a7.L m y  11,:?;> :a u:::. .-;::.:;c: 

the a u r c e  of s t r e m s .  F ina l ly ,  Lhsy I:LVC i-?or:ix:.t c f f c c t s  on so:-r 

p a r t i c l e s ,  ga l ac t i c  ? a r t i c l e s ,  ~ n d  ~ s s s l b l y  c ,  l a r  wicd flow ~c i -~urL . i ' ;L~ . ; . , ,  

as discussed i n  t h e  next s c c : l a ~ .  

v. ;::?FECTS 6' 3(8 a)  GS CcS:..Ic ;L'>.',-; .'.':2 '-- ~ ' l . i !>: -  ' ",' - 

Several authors (c.g. so2 L;,C ~ C ' J ~ L ~ J  of >;~at ;o :~ .~ry ,  197;; L:L;CL L .  .. 
,. . 1 .. t k s t  2 a r t i c l c s  si.~ould have ecz i c r  ~ c c ~ z s  2nd .;!~or:~'r ?c:;:.; L; L . , . .... . . 



t ] ! ~  :;,>I :;y:;c,-;;j ov,br t l ; ~  r;i,i:..,! : y ci~.vc~:.,,i;;~ ?a1,1:* :! . '::A: . I  l . ; , r , y  

C - cct,-.:. tllc ~i, , , !~;r ly  wound :;?i;-aI :. L;:c. cc;i:t:j.s. 'I:I,. :.c t: i . . i  i . . . L L  : ,. not  

kr,ovn, s ince  i t  d c p ~ ; ? ~ ! ~  on ii:c L;ucil.:;;io::s of ?, %Joy ;~.C.:.I t : , ~  c.cl::,Lic 
-. 

as  w e l l  as on the l s r g c  s sa l a  to;)oia~y. 3ircc: c c z s u r c x n t s  w w L d  bs 

dccis  ivc . 
It   as a l s o  bccn suggc:tii: L!:L;: Z C : : D S C ,  c co:~fi~u-i.ation; ;IUI;OCLLTL.C? 

-. wLt11 shock wavcs (Cold, 1959; ;'t;.:ci.r, l ;~.~,  . . .;:>rcciaL;jr :)L;~d;;, coz:.7ic 

:;.ys and cause "Forbush Jccrc;scsl' i n  d1~i.r i n t c c s i i y ,  sac. t;;cre is  so:& 

cviii.;:tc i n  support: of  t h i s  view (e.g. Barndcn, 19'3). Obvi-ously, 

3 , . .L,.n~~zcl ..-..- - -  variat2oxs i n  suci: c o n f i ~ u r a t i o n s  would have corresponding 

cf2ccts  02 t5e coszic  r;ys, 5uc Zirzct  z2zscrc:;cncs arc z;.J;i t o  dc tc r -  

- - c i n e  the rizturc 01 these vciriz:i,~:.s LA :hi. s i z e  o-C LI;; C ~ ~ C . : C S ~  

. -. '-ZIC yrr'scncc 04 strear.-l;..':ccd ~ i - ~ Z L m . t s  in 2 can ai.50 s i ~ n : ; r z a t l y  - 
- - czicc t cosrnf c rcys. Barouc;l rr.L Surlagc (i975b) showcd t!~cr For3uz;l 

dccreascs and s imi la r  2alccLLi cz s r .2~  ray i n t e n s i t y  variatiorrs a r c  s c r o n ~ l y  

-. correlated with ~::agnctic * ~ c l d  c:-:?~:cxac?n'is assoctatcd with s t r c m s .  

Zlcy ~ r o p o s c d  t h a t  these arc ~ : ; e  rcsu lcs  of ;>ei-penikular gradient  dr iEts ,  

a d  Earouch and 3urlaga ( 1 9 7 5 ~ )  si-.o~!sd that the  d r i f t  specds a-c 

z??rcciably higher t l ~ a  the syeeis I:. s t r caxs ,  a s  required. 1: s t r c z s  

c-stcnd 20 high l a t i t u d e s ,  onc 2:qects t o  o5serve Forbusl, Iccrcclscs ';i~crc. 

If s t r czns  do not cxtend t o  i l i &  :!: :~tituics,  t he re  w i l l  be small d r i f t s  

duc t o  the  s 7 i r a l  f i e l d  configurat ion ('Jinge and Colcinan, 1968), but thcrc 

x:~y bc no o b s c r v ~ b l c  clr'ccts. 

S t r c ~ i s  causc f i e l d  lines t o  divci-ga less rspicly and c v c ~ t a ~ l : y  

coslvcrgc in  the  compression =;.:ions i n  f ron t  o k t r c a n s .  3,us, solar  

p a r t i c l e s  clovinz i n  such n c s o i c ~ l c  sonli;grations w i l l  bc c o l l i ~ a t c d  ;,.ss 



. . (Barouch cmd Curlaga 1975&), ;=;vln: ::J;;;C-:-T rc la tcd  5;-.tc;i:;i:y r ~ , d  ;i;;i:;otropy 

prcrfilcs. Cna expects sys tcna t lc  LLl-'fcri.nces ir. t l i i ~ ~ i :  ?ro:Tle: wit:. in- 

creas5::~ l a t i t u d e ,  cicpcndin~ 0:-. rhc vcriclrions of the strccL7.s. 

. --  .....<,nL,r ic Low energy (thermal) p ~ r r i s l c s  2rc ;?so ~r.,,xcnccl by tiic - - - l r .  

f i e l d ,  a l t h o u ~ h  not as s t r o c s l y  as  :!:c >:.'I c z c r ~ y  ?ar:iclcs :.; o;c . .;, r ~ y  

, 'C , - ,C  dens i ty  is  much l c s s  t11as-i s2/(s-). In f a c t ,  Par;;ci-'s z o i o l ,  1: i c . .  . ....-. 
constant V and gives a s p i r a l  2icld,  i s  zot cxac t ly  s e l f - c o a s i s ~ c a :  Tor 

t h i s  reason (Gussenhoven and Czrovillcno, 1.373; ,Ilck5cycr c t  al. 2371). 

I n  n a r t i c u l a r ,  the  s p i r a l  f i c l d  gives a JsB = (gx",)x3 force ti:&: cxiscs  - - 
a ac r id iona l  flow away from the  c c l i p t i c .  This flow has been s tudicd by 

\tinge and Coleman (1974) and by Sucss (1974). Its magnitude n ight  bc a s  

m c h  a s  u 1 kmlscc i n  the e c l i p t i c  a t  1 AU. Rosenberg and Coleman (13733 

iavoked t h i s  flow and the  frozen fLcld condition t o  explain  !lLs o b s ~ r v a t i o ~ . ;  

t h a t  t hc  magnetic f i e l d  d i r e c t  i ~ i l  Llvcrzes ~ ~ t ~ a y  from tlic e c l  i7;ic p: 2r.c. 

=less e f f e c t s  a r e  smll and kavc not  been confilmad. Tiley vary with 

l a t i t u d e  i n  the s p i r a l  f i c l l  c o c f i g u ~ s t i o n ,  and they might be strons;y 

mdif icc i  by streams. 

VI . SL:.xs.IIY 

.,La One expects the  large-scale, c;l:ce-dixensioiial ~ a g n c t i c  f1clt i  :i--- 

of the  so l a r  wind t o  have the foim O F  s n i r a l s  wrzppcd on cones, as 
L 

described b y ' t h e  solut ions of e'acr. S o l a r  wind streams and s o l a r  

magnetic f i e l d  configurations ?robably w i l l  not o l t c r  t h i s  vcry nuch, 

althouzh small, systematic s f f ~ s t s  i uc  t o  the  va r i a t i on  of the o r i en t a t ion  

. . uf g near the sun might bc ob;,rvz~.c. 



Tlrc s c c t o r  p a t t e r n  p o s s i b l y  cxtcnds t o  h i ~ h  l o t i t u d c s  and can change 

appreciably  dur ing a year. TIlc 2:;tci.z and c x t e n t  o f  s c c t o r  boundaries 

is  n mat te r  o f  controversy.  E x t r a p o l a t i o ~ s  o f  t h e  s o l a r  f i c l d  and mapping 

o f  t h e  i n t e r p l a n e t a r y  f i e l d  t o  t h e  sun suggest  t h a t  t h e  boundaries extend 

n e a r l y  north-south,  although t i l t e d  somewhat depending on t h e  p o l a r  and 

s c c t o r  f i e l d  d i r e c t i o n s .  On t h a  o t h c r  hand, t h e  "Rosenberg-Colcman 

dominant p o l a r i t y  e f f e c t N  and sane c a l c u i a t i o n s  suzgcst  t h a t  s c c t o r  

boundary s u r f a c e s  a r e  confined c l o s e r  t o  t h e  equator.  Two d i s t i n c t l y  

d i f f e r e n t  models of s e c t o r  boundaries have been proposed by Svalgaard e t  

a l e  and Hsnscn e t  al., but one cannot chose one o r  thc  o t h c r  a t  t h e  moment. 

The i n t e r p l a n e t a r y  magnetic f i e l d  i n t e n s i t y  w i l l  va ry  with l a t i t u d e  

depending on t h e  photospheric f i e l d  conf igurat ion.  For a s o l a r  monopolc, 

t!lc p o l a r  f i e l d  n e a r  1 AU i s  d 2  smal le r  than t h e  e q u a t o r i a l  f i e l d .  The 

i n t e n s i t y  n i ~ h t  va ry  more than t h i s  on a s x i l i c r  s c a l e ,  < 1 AU, due t o  

the  prescnce of streams. The a c t u a l  conf igura t ion  d q c n d s  on both t h e  

stre&? p r o f i l c s  and the  nagne t ic  f i c l d  i n t e n s i t y  p r o f i l e s  near  t h c  sua, 

but these  a r e  no t  lcnown a t  p resen t .  

Tllc g r a d i e n t s  i n  magnetic fL;.';c! i n t e n s i t y  produced by s t r c ~ - . ; s  c ~ u s c  

energe t i c  ? a r t i c l e s  t o  d r i f t  away f ron  t h e  e c l l ? t i c ,  ;r.d thcy sk ;h t  L C  

rcs7o;lsible f o r  Forbu;;~ dccreascs .  If so,  thcsct dccreascs  s;:rju:d c;Isi.s?:~r 

a: high l a t i t u d e s  i f  t h c  s2ceds crc confincd ma.- t o  th i :  c c l i ? ; l c .  Strcai:. 

i : ~ d ~ i c ~  L c::.r,nctic L i c l d  c:~i~~nci::;:,;;:., ;.:',::l;t a l s o  z i r r o r  ; o i a r  ;> . . -c ;c . .  ,; 

. . 
: A  ...I I-, & . . i ~  t ,  :;tt:ir c o l  1 i :  .... ; i , ) ~ : ,  c. . , , ! . :  1 ; i . i  :,LI-,...:,I-:-C~ .:Led CI. .L;I:;L~:;  L,.  in^^::.. i :y 

2 : s o  The i.LCfdct v;r;~s w i t ! :  I c t i t ~ l c  i n  a sys t~aa .Lc  w,;:, ,a 

. . . . - .  . . . . , , .. . L;.LL G Z c  cZZ t ~ S t  t;;ci~&. ,,.i,., . ,,.. ..:. 3 ~ ~ - 3 , - i . . , i " 2 ~ 1  I l 7 t . l ~  :::i:,., . .I;:. 



Thc ! -rr;c-scnlc spiral fic!ld cnuscs o m a l l  ncrid;oz:.l Z l o ~  as; a 

consequcncc of tllc J x B  forcc .  illc r.i;:~,litudc o: chis o:! rS -:;. t. bc 
AI U 

altcrcd by streams md vary w i t : ;  l i z t i tudc  for this rcs;orr. 

In conclusion, an out-of-thc-ecliptic mission w i l l  o:low us t o  t e s t  

present models of the intcrplanctary zaznetic f i e l d ,  rcsoivc sonc 

controversies, provide ;,lfor;.;sr ioa  necdcd to undcrs tand cncr: ;~ t i c  

part i c l e  and plasma motioca, and i t  w i l l  probably give new resul ts  that 

we cannot anticipate.  
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Figure 4 
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Figure 1 S?cctch of a so la r  cc;i?sc on 39 I:cy 1 4 6 4 ,  'SIC contours 

a rc  bclievcd to  indicztc the  direct ion of t h i  n z y c t i c  

f i c l d  

Interplanetary ma~ne t i c  f i e l d  l i n e s  on a sctllc of 1 'U, 

seen by an observed i n  the e c l i p t i c  piane. Tncy wcrc 

computed by Stcnflo using ?hotospl:cric niagnctic f i e l d  

measurements . 
Sector boundaries. This l l l u s t r a t c s  two conceptual zodcls 

of sec tor  boundaries and t h e i r  r e l a t ion  t o  coronal streamers. 

Magnetic f i e l d  in tens i ty  contours r e l a t i v e  t o  t h e  un- 

perturbed in tens i ty  i n  the e c l i p t i c  plane a t  1 AL', on a 

surface with radius 1 AU. The top f igure  shows the  

pat tern caused by a s t r e a .  which var ies  with l a t i t u d e  as 

cos 8, and the bottom figure describes the  r e su l t  of a 

stream which is  confined near the  ec l ip t i c .  
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Abstract 

Initially spherical blast waves are systematically distorted due to persistent 

latitudinal solar wind structure. This i s  to be distinguished from the non-systematic 

(random) distortion due to va~/ ing structure i n  longitude which introduces an 30' 

average deflection of shock normals from radial. The systematic latitudinal effect 

should be at least 25' at mid-latitudes, andobservable i n  the 300 noise level wi th  

14 or more shocks for statistics. The observed occurrence rate of shocks during 

solar maximum i s  sufficient to detect the effect. Corotating shclcks should become 

dete~table between 1 and 5 AU. Identification could be a problem because of the 

30' noise level becoming greater beyond 1 AU. However, the three-dimensional 

geometry of corotating shocks show a strong latitudinal structure which can be used 

in  an out-of-the-ecliptic mission for a statistical identification based on shock 

occurrence rates. 



Introduction 

Most of the interplanetary shock waves observed with 1 AU of the sun 

originate from some short lfved solar event, such as a solar flare, and then 

propagate out as a more-or-less spherical shock wove until they leave the solar 

system. Beyond 1 AU another class of interplanetary shock wave becomes common-- 

the cortating shock pair formed by the interaction of long lived solar wind streams. 

We discuss here the three dimensional geometry of these two classes of interplanetary 

shocks and how these geometries can be studied with an out-of-the-ecliptic mission. 



Out-of-the-Ecliptic Distortion of Solar Blast Waves 

Lack of spherical symmetry in  the solar wind distorts tke surface of a shock 

wave as i t  propagctes away from i t s  solar origin into interplanetary space. This 

phenomonon i s  observed near the solar equatorial plane at 1 AU, where the inhomo- 

geneities associated with solar wind streoms produce typically a 30' deflection of 

the shock wave normal away from the radial direction (Heinemann and S;scoe, 1974; - 
Hirshberg et a!., 1974). The distortion results from differential advecrion of the 

shock front due to solar wind speed variations and from differential propagation 

speed of the shock in the solar wind due to density variations--the shock propagates 

more slowly in : j h  density regions. In spite of the large distortion of individual 

shocks, the averaged shock normal direction near the equatorial plane at 1 AU i s  

radial from the sun (Chao and Lepping, 1974; Yeinemann and Siscoe, 1974). - 
A systematic variation i n  latitude oi (he solar wind speed and density pro- 

duces a systematic distortion in  latitude of the surfaces of solar produced shock waves, 

That is, the averaged shock normal direction (;; ) in general wi l l  not be radial from 
-6 

the sun. The angle between and the radial direction wi l l  depend on latitude in 
-5 

a manner which reflects the average latitudinal dependence of the solar wind speed 

and density. 

A lower iTm t on the deviation of 6 from rad~al  i s  shown in Figure 1, Hare 
5 s  

a shock wave that was spherical at 20 solar radii becomes distorted irito a quasi- ellipse 



at 1 AU by the action of a differential advection of 400 km sec-' ~t the equator 

-1 
increasing smoothly to 600 km sec at the poles. This latitudinal gradient of solar 

-1 -1 
wind speed, approximately 2 km sec d g  , is at the lower end of the range of 

gradients suggested in  the literature (see reviews by Gosling, 1975, Hundhausen, 1975, 

D&rowolny and Moreno, 1975). The figure probably also underestimates the dis- 

tortion for h e  assumed gradient since i t  neglects the possible latitudinal gradient in  

density-decreasing toward the poles (Hundhausen et al . , 1971)--causing the shock to 

propagate faster i n  the solar wind at higher latitudes. 

The maximum deviation of from radial (A9 ) occurs at mid-latitude a-d 
s max 

is about 25O at 1 AU. In order to observed this effect, enough solar generated hock 

waves must be measured while a spacecraft i s  i n  the mid-loti fude region to obtain a 

value for the polar angle 6 ) of n with a statistical error considerably less than 
s * 

*Omax 
. For the sake of having a numerical e.:ample, we toke the requirement that 

the expected standard deviation of 5 be less than or equal to 1//3 of the conservative 
s 

0 
value obtained above for A8 

ma' 
i.e. S. D. 6 ) s8 . 

s 

Near the equo+orial plane the distortions produced by solar wind streams 

0 
cause approximately a 30 standard deviation in  the ongle between individual shocks 

and their average, radial direction. The standard deviation of the average mgle of 

0 0 
N slacks i s  30°/ J N  . For N = 14, this i s  - 8 . Thus in o 30 backgrounc boise 

level ir the angle of individual shocks due to stream structure;it taker 14 shocks to 

0 
cbr-~r a value of with a3 expected standarc; deviation of 8 from the true value. 

s 
0 

I t  i s  likely that the noise level at mid-!otitudes i c  less thun 30 since the effect of streams 
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in producing solar wind inhomogeneities as measured by enhanced radio scintillations 

is  apparently confined to within 40° of the equator (Houminer, 1973). Thus the 

requirement of 14 shocks i s  probably more than necessary. 

To estimate the time needed to observe 14 solar generated shocks, we use 

the 100 years of SSC statistics compiled by M ~ d ( 1 9 7 5 ) .  The validity of this 

procedure i s  based on the study of Chao and Lepping (1974) showing that a t  least 

874 of SSC's can be associated with solar activity such as solar flares and type 2 

and type 4 radio bursts. There are on average about 10 SSC8s per ye0  during solar 

minimum and about 35 SSC8s per year during solar maximum. Thus about 17 months 

ore required in the first case and 5 months in  the second of mid-latitude observations 

to observe 14 shod: waves originating from a solar surface source. We conclude that 

an ou t-of-the-ecl iptic mission scheduled for solar maximum would have high probability 

of observing systematic shock wave distortion even if the worst-case example discussed 

above should apply. 

The importonce of measuring the systematic distortion of the shock shape lies 

in its use in determining the systematic latitudinal dependence of solar wind parameters. 

This method i s  independent of al l  other methods. It does not involve unravelling 

separate space and time variations. In the case of an out-of-the-ecliptic mission via 

Jupiter, the space dependence involves both radial distance and latitude angle which 

coo give independent contributions to any variation. observed i r l  i n  situ measurements. -- 
Knowledge of the three dimensional shape of blast waves i s  important also for determining 

the flow of flare ener- y into interplanetary space. A non-spherical shock hope implies 

tl~a! , q y  i s  not distributed uniformly but converges in some places--relative to 



a purely radial flow--ond diverges in  others. In the case considered, energy would 

diverge away from the equator cawing the shock strength to decrease faster in the 

equatorial plane thun would be expected on the basis of spherical symmetry. 

Three Dimensioml Structure of Cototating Shocks 

Near the equatorial plane the border between contiguous solar wind streams 

is a spiral ( S d h a i ,  1963; Dessler, 1967). If the trailing stream--in the sense 

determined by the direction of the solar rotation--is foster, a pair of shock waves 

will form at some distance from the sun (Hundhousen, 1973 a,b). Such shock wave 

pai rs  hove a pafently been observed between 1 and 5 AU by the Pioneers 10 and 11 

spocecreft (Hundhousen and Gosling, 1975; Smith and Wolfe, 1975). In o steady 

state situation, the streomt. their spiral border, and the shock pair al l  corotate with 

the sun. In th is  section we estimate the heliocentric distance of shock formation i n  

the equatorial plane as a function of the speed differential between the streams and 

give a qualitative description of the three dimensional shape of the shock surfaces. 

For the latter we assume that the stream border i s  perpendicular to the equatorial 

plane. This example il lustrates the essential aspects of the geometry and possibly 

represents the typical case as indicated by radio scintillation observations (Houminer, 

1973) and the north-south alignment of coronal holes which might be the sources of 

fast streams (Krieger et al. , 1973; Noyes, 1075). 

Figure 2 shows the relevant geometry in the equatorial plane. The figure 

also i ilustrates one argument for expecting the existence of shock pairs which at the 

same time suggests a simple calculation for the approximate heliocentric distance to 

their point of formction. The spiral labeled stream interface i s  the border between 



the streams. Sample flow streamlines-labeled fast and slow--are shown in  the eorotating 

reference frame in  which a l l  geometrical features are time independent. With the fad 

stream trai lirg, the pitches of the spiral streamlines i n  both streams are such that they 

would intersect the spiral interface unless prevented from doing so by forces that act to 

deflect the flows away. The build up of pressure at the interface resultirq from the con- 

vergence of the flow there produces such a force (Siscoe, 1972). Relative to the flows - 
in the two streams, the interfat, looks, l ike a C-ng wall and the flows are forced to 

follow the curve because of the increased pressure. The compressive deflection of a 

supersonic flow by a curving wall is known to produce a detached shock wove i n  the 

flow (Landau and Lifschitz, 1959, p. 429). Streamlines intersecting the shock waves 

are deflected paallel to the interface spiral, bringing to an end the compressive 

interaction between the streams. 

The approximate location of the origin of the shock mires can be found by 

considering the characteristics of the flow eminating from a point, A, on the interface 

close enough to the sun that the streamlines are essentially radial but far enough from 

the sun to be i n  the supersonic region. The characteristics are generated by foll ,wiw 

the progress of a sound wave starting at A and subsequently expanding and being con- 

vected with the flow, as illustrated i n  the figure. However, before the shocks are 

formed, the flow converges cn the interface; thus the sound speed ml~st be greater than 

the speed characferizirq the convergence in  order for the sound wave to expand. As 

the wave moves out fmrn point A, the sound speed decreases because the solar wind 

cools as i t  expands, and the speed of convergence increases becouse of the relative 
, 



pitches of the spirals. A distance i s  reached when convergence exceeds the speed of 

sound and the wave begins to shrink. 

From the point of view of an observer moving with the flow along a streamline, 

and l d i n g  at the wall represented by the interface, he sees the wall approach him- 

that is, convergence in his fmme of reference. If we think of the wall CIS a piston 

moving into the flow, at the point where the sound wave begins to shrink, ti.? piston 

i s  moving faster than the local speed of sound, and a shock wave will form upstream 

from the piston. Thus, the origins of the shock waves will be approximately at points B 

i n  the slow stream cmd C in the fast stream marking where the sound wave stops 

expanding away from the interface. 

To find the approximate locations of these points and ti.. ir dependence on the 

speed c;Ifference between the streams, we consider an idealized case in which the slow 

stream has constant speed Vs, the fa t  stream has constant speed Vf, the speed at the 

interface i s  Vo = (VS+vf)/2, and the Mach number, M, i s  constant throughout. Using 

the procedure given in Heinemonn and Siscoe (1974), we find the equations of the 

characteristics to be 

where r) i s  the azimuthal angle in the corotating reference frame, r i s  the heliocentric 

distance, and r, = V/M CI, rf = Vf/Mn . Without h e  en terms, these are the equations 



of Parker's solar wind s.3imls (Parker, - 1963, p. 138). The qin terms represent the 

movement of the sound wave away from the spiral. The equation of the interface is 

with ro = VJM n . To estimat~ where the shocks form we determine where the radial 

separation between the characteristics and the interface begins to decrease, i.e. set 

dAr/d q = 0. The result i s  h o r n  in  Table 1 for different speed differentials, Vf -Vs 

-1 
with Vo = 400 km sec and M = 4. 

As expected, the bigger the differential, the nearer the sun the shocks form, 

111 the biggest case corsidered 160 km set-', they form near the orbit of M a .  Ay 

-1 
differential bigger than approximately 50 km sec produces shocks inside the orbit 

of Jupiter, Although this example i s  idealized, it gives a fair test of the argument 

based on characteristics to predict qualitatively the essential geometrical aspects 

of the formation of corotati ng shocks. The prediction that typical solar wind streams, 

-1 
which have di fferectirtls bigger than 50 km sec , should form shocks between the 

orbits of Earth and Jupiter i s  apparently confirmed by the Pioneer 10 and 11 observations. 

This justifies applying the argument to determine the out-of-the-ecliptic shape of 

corot~fing shock waves. 

The application is  straightforeward, and the result i s  immediate i f  we consider 

the situation at the poles. Here the border between the streams i s  a radial line--the 

polar axis. The pitches of the streams lines are essentially zero and, hence, so i s  the 

speed of convergence of the streams. A sound wave starting here wil l  expand forever, 



althoqh it wi l l  slow down because of the radial decrease i n  sound speed, Thus 

corotating shocks wil l  not form over the poles. At intermediate latitudes, the pitches 

of the streamlines and the M e r  are not zero, but they are leu than at the equator, 

A sound wave must travel further before the convergence speed overtakes the sound 

speed and shocks form. Thus, the distance to the formation of the shocks increases 

with latitude. 

The three dimensional geometry of the stream interface and the shock pair 

i s  sketched in Figure 3. The interface is generated by an expanding meridian circle 

that rotates about the polar axis as it exponds so that its intersection with the equatorial 

plane moves along the border spiml. The leading points of h e  shocks are i n  the 

equatorial plane and the leading eclges spiml outward as they move away from the 

equator, maintaining a proximity to the interface. A sketch on an expanded scale 

of a single corotating shock surface i s  shown i n  Figure 4. The motion of this surface 

i s  analogous to that of a tapered paper banner attached to a st ick that is being twirled 

around the polo- axis. f i e  length of the banner i s  determined by the lifetime of the 

solar wind stream. 

To study these structures an out-of-the-ecliptic mission i s  needed that coven 

the radial range between Earth and Jupiter. Knowledge of the three dimensional 

nature of these shock waves i s  essential for the interpretation of cosmic ray data and 

for applications to other astrophysical situations. The distortion of solar shock wav& 

as described earlier and the highly structured geometry of corototing shocked woves 



illustrate the complexity of the problems faced by galactic cosmic rays as they try to 

enter the inner solar system. Three dimensional probing of the interplanetaty medium 

is  required to obtain a complete picture of the extended stellar envelope of a 

representative from a major population of main sequence stan. The interaction of 

such stars with the interstellar medium in various galactic situations can they be 

treated with a fuller understanding of the stellar parameters. Comprehension of the 

three dimensional aspects of structures generated because a star rotates has application 

to contemporary astrophysical problems such as the interaction of the Crab pulsar with 

the Crab nebula. 
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Table 1. Approximate heolcentric distances in the equatorial plane to the 

formation of shock pairs dcj  to interacting streams with various 

- 1 
speed differentials. In this example the average speed i s  400 km sec 

and the Mach number i s  4 throughout. 
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Figure Captions 

Figure 1. A meridian plane cross section through a solar origin shock surface assumed 

to be circular at 20 solar radii and distorted into a quasi-ellipse at 200 solar 

radii by the action of equator to pole solar wind speed differential of 200 km 

- 1 
sec . 

Figure 2. A sketch of geometrical features of the flow in  the equatorial plane and in  

the corotating reference frame. The stream interface separates a slow stream 

(leading) and a fast stream (trailing). Sample streamlines and corotating shocks 

in both streams are shown. The shocks deflect the streamlines parallel to the 

stream interface--with no deflection they \~ould intersect the interface. The 

circles are sequential snapshots of a sound wave starting at A and expanding 

while being convected with the flow (distortion due to the flow speed dif- 

ferential i s  neglected). Shocks form where the sound wave begins to shrink 

which happens when the speed of convergence of the streams toward the 

ir,terfar;e (due to the differences in the pitches of the various spirals) becomes 

bigger thon the local sound speed. 

Figure 3. A sketch of the three dimensional geometry irr the northern hemisphere of the 

stream interface and associated shock pair. The interfoce i s  generated by an 

expanding meridian circle that rotates about the polar axis as i t  expands so 

that i ts  intersection with the equatorial plane follows the interfoce spiral, like 



a needle in the groove of a record. The interface separates the shock poir, 

Their leading point i s  in  the equatorial plane and their leading edges spiral 

away from the sun as they move away from the equatorial plane, maintaining 

a proximity to the interface, 

Figure 4. A sketch on an expanded scale of a single shock surface. The location of 

the equatorial plane is  indicated by lines radiating from the sun. The motion 

of the surface i s  similar to that of a tappered paper banner attoched at its 

point to a stick that i s  being twirled around the polar axis. The length of 

the banner i s  determined by the lifetime of the streams. 











CIlAPTER V 

SOLAR AND GALACTIC COSMIC RAYS 



Cosmic-Ray Transport Theory and Out-of-the-Ecl ipt ic Explorat ion 

J. R. J o k l p i i  

Department o f  Planetary Sciences and Department o f  Astronomy 
Un i vers i t y  o f  Arizona 

The reasons f o r  studying cosmic-ray t ransport  theory are  

sunmar ized and the fundamenta 11 y three-d imens iona 1 nature o f  the 

process i s  pointed out. Observations i n  the e c l i p t i c  plane cannot 

unambiguously tes t  transport theories since the so lu t ions  t o  the 

transport equations depend c r i t i c a l l y  on boundary condi t ions and 

va r ia t i on  o f  parameters such as d i f f u s i o n  tensor ou t  o f  the e c l i p t i c .  

Sample ca lcu la t ions  are shown which i l l u s t r a t e  the problem. I t  i s  

concluded tha t  ou t -o f - the-ec l ip t ic  observations are essent ia l  t o  

fur ther  tes t  transport theory. 



I. Introduct ion 

The study o f  cosmic-ray t ransport  theory has en o l d  and vener- 

able h is tory ,  f o r  i t  i s  c lear  t h a t  i n  order t o  understand anything 

I n  cosrni c-ray astrophysi cs we must f l r s  t unders tend transport.  The 

observed near-isotropy of cosmic rays was e a r l y  recognized to imply 

tha t  the o r b i t s  o f  the p a r t i c l e s  have been severely d i s t o r t e d  i n  

t h e i r  motion through space. Since the work o f  Fermi (1949) i t  has 

been understood tha t  the motion must be t reated s t a t i s t i c a l l y ,  s ince 

the plasmas and magnetic f i e l d s  through which the cosmic rays move 

are i r regu la r  and turbulent.  This basic f a c t  leads t o  the view t h a t  

the s p a t i a l  mot ion o f  cosmic rays i s  t o  a very good f i r s t  approxima- 

t i o n  a random walk i n  three dimensions. 

The so lar  wind provides an excel lent  loca l  laboratory for t e s t i n g  

our ideas o f  cosmic-ray transport by comparing i n  s i t u  observations 

w i t h  theory. A comprehensive theory has been developed which has 

had reasonable success i n  expla in ing the various cosmic-ray phenomena 

i n  the so lar  wind (see reviews by Jok ip i i ,  1971 and Volk, 1975). 

Before going on to  discuss t h i s  theory i n  d e t a i l ,  i t  i s  usefu l  t o  

emphasize tha t  i r respect ive  of the deta i led  theory, cosmic-ray trans- 

po r t  theory i s  fundamentally three-dimensional and tha t  t h i s  problem 

i s  much more severe than f o r  some other aspects of the physics o f  

the interp lanetary medium. The general p i c tu re  i s  i l l u s t r a t e d  i n  

f i gu re  1 f o r  p a r t i c l e s  o r i g i n a t i n g  i n  the galaxy o r  a t  the sun. I t  

RF:PRODUCIBILITY OF !CIU 
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!; ~vic!e:t iht, fa r  exaz?le, there i s  - no viewing d i r -ect ion i n  which 

one sees cosmic rays which have sampled on ly  the e c l i p t i c  plane. 

f n i s  conclusion depends on ly  on the turbulent  na ture  o f  the i n t e r -  

planetary p l a s ~ a  and the consequent s tochast ic  motion of the cosmic- 

ray pa r t i c l es .  

One can, o f  course, dream up experiments which could be used t o  

scudy cosric-ray transport l oca l l y .  For example, a usefu l  exper i -  

?e?t would be t o  i n j e c t  a small beam of "tagged" cosmic rays a t  one 

po in t  and measure them a distance -0.1 a.u. away. But such exper i -  

Tents are  c l e a r l y  not  possib le i n  the near future. We must be 

content v i t h  what nature provides, and work w i t h  the  f u l l  three- 

di-ensional 7roblen. 

The preceding discussion h3s i n t e n t i o n a l l y  been as general as 

?css ib le  i n  order t o  emphasize the fundamental na ture  

o' i h ~  C O ~ C ~ U S ~ O ~ ~ ,  I n  the next section, the cur ren t  de ta i l ed  theory 

9f c3sqic-ray t r m s p s r t  i s  discussed, then some q u a n t i t a t i v e  calcu- 

; a t i o n s  are presented which i l l u s t r a t e  the e f f e c t s  o f  uncer ta in t ies  

ir paraneter outs ide o f  the e c l i p t i c .  



11. Current Transport Theory 

The current theory o f  cosmic-ray transport has been camprehen- 

s ive ly  discussed i n  an ea r l i e r  review by the author (Jokfpi i, 1971). 

The theory works a t  two levels, whl ch could be termed the "macro- 

scopic" and the 'tmicroscopic't. This i s  i 1 lus t ra ted schemat ical l y  

i n  f igure 2 which shows the p a r t i c l e  being scattered randomly by the 

magnetic fluctuations. Hence the pa r t i c l e  p i t c h  angle 8 undergoes a 

random walk. The de ta i l s  o f  t h i s  scattering process and i t s  r e l a t i on  

t o  the detai led microstructure o f  the magnetic f luctuat ions are 

studied i n  the microscopic theory, whereas the resu l t ing spat ia l  

d i f fus ion i s  considered i n  macroscopic theory. Thus, for example, 

i n  the simplest form o f  quasi l inear theory, where on ly  planar magietic 

f luctuations w i th  wave vector para1 l e l  t o  the average f i e l d  are con- 

sidered, the pitch-angle scat ter ing i s  characterized by the Fokker- 

Planck coef f ic ient  

where w = qB /mc i s  the p a r t i c l e  cyclotron frequency i n  the average 
0 0 

f i e l d  Bo, p = cos0, w = p a r t i c l e  speed, r = w l w  and PL(k) i s  the c G ' 
spat ia l  power spectrum o f  the magnetic f luctuat ions as a function o f  

wavenumber k (see, e.g.  , Jokipi i 1966, 1971). Other more complex 

expressions resu l t  i f  other magnetic f luctuat ion configurat ions are 

assumed. S i m i l a r  expressions resu l t  for the other Fokker-Planck 

coef f ic ients  such as < A X * > / A ~ ,  etc. Hence, i f  x i s  a d i rec t ion  



normal t o  Bp, r e  have 

The above expressions are examples o f  microscopic t ransport  theory. 

However, i n  most s i t ua t i ons  the cosmic-ray angular d i s t r i b u t i o n  

i s  d r iven essen t ia l l y  isotropic by the scatter ing, so tha t  the 

transport must be described by the d i f f us ion  approximat ion. I f  

U(<,~,T) i s  the p a r t t c l e  density averaged over p i t c h  angle as a 

funct ion o f  pos i t i on  1, time t 2nd energy T, then the d i f f u s i o n  

equation reads i n  the r e s t  f vame ( ~ a r k e r  1965, Gleeson and Axford 1967, 
Jokip i  i and Parker 1970) 

w i t h  an associated f l u x  of p a r t i c l e s  i n  the res t  frame 

where K i s  the cosmic-ray d i f f u s i o n  tensor, yw i s  the so lar  wind i J  
ve loc i t y  and a ( ~ )  = (2rnc2 * ~ ) / ( r n c ~  * T) .  The associated anisotropy 

i s  161 = 3 1 ~ l / w ~ .  In  a coordinate syste;;? w i t h  the z -d i rec t i on  or ien ted - 
along the average magnetic f i e l d  flO, rii may be w r i t t e n  



where the para l le l  d i f fus ion  coe f f i c ien t  K,,, the perpendicular 

d i f fus ion  coe f f i c ien t  uLand the e n t i s y m t r i c  d i f fuston coef f ic ient  

K~ can be wr i t ten 

The d i f fus ion  equation (3) embodies the macroscopic theory which i s  

connected t o  the microscopic theory by equations (5) - (7). A t  

present, cornpari son of transport theory w i  t h  observation must be 

done through the use o f  macroscopic theory and then working back t o  

the microscopic theory. We are unable t o  measure <b&/bt, etc. 

d l  rec t ly .  

With regard t o  the problem o f  out-of- the-ecl ipt ic  exploration, 

i t  i s  clear that the solut ion t o  equation (3 )  depends on a knowledge 



o f  K~~ and Vw tbrsugnout the modulating region and on the value of 

U on the boundary. There appear to  be no purely loca 1 l y  measurable 

properties of the solution which can be used i n  checking transport 

theory. 



I l l l u s t r a t i ve  Calculatlons 

To i 1 lustrater the rather large uncertaint ies introduced by lack 

of knowledge of parameters out o f  the ec l i p t i c ,  I present i n  t h i s  

section a summary o f  some analyt ical  calculat ions published elsewhere 

(Owens end Jok ip i i ,  1971). This problem has a lso been considered by 

Sarabhai and Subramanian (1966) and L i e t t i  and Quenby (1968). Con- 

s ider thdA 11-year solar cycle modulation o f  ga lac t ic  cosmic rays by 

a solar wind which i s  not spher ical ly  symmetric. The 11-year solar  

cycle var iat ions are ~ s u a l l ~ ~  regarded as slow enough that  the time 

der ivat ive  I n  equation (3) can be neglected i n  solv ing for  U. I n  

t h i s  calculat ion the various parameters i n  the transport equation 

are allowed t o  vary w i th  heliographic la t i tude  and the e f fec ts  of 

the var ia t ion on the density U and the f l u x  F i n  the solar  equatorial 

plane are considered. 

The fo l lonIng forms f o r  the various parameters were assumed: 

The various components o f  the d i  f fusion tensor are independent o f  

energy T and are proport ional t o  he l iocent r ic  radius r out t o  some 

boundary r = D where K + The cosmic-ray dens i t y  u tt-,T) i s  

assumed t s  take on a given i n te r s te l l a r  value UaO(T) -  AT'^*^ a t  r = 0. 

Fina l ly ,  we fo l low the us::al pract ice o f  circumventing the 

problem o f  proper boundary conditions - at -. the - Sun by requir ing the 

solut ion f o r  U t o  be f i n i t e  at  the or ig in .  This w i  11 be shown t o  

lead t o  neg l ig ib le  er ror  i n  the present case. See Jokipi i (1971) 

f o r  a more complete discussion o f  t h i s  problem. 



Equation (3a) for U(~,Q,@,T) becomes, i n  spherical polar  

ceard inates 

I n  what follows, we consider only mCels which are axisymmetric 

(independent o f  4). I f  @ =  0 i s  the ax is  o f  solar rotat ion,  t h i s  

corresponds t o  a latitude-dependent solar wind. Effects o f  magnetic 

sectors could be represented by taking 0 = 0 along a sector. The 

two terms containing K cancel from the density equation (8) i f  A 

3rA//33 = a ~ ~ / a (  = 0 ,  as i n  our axisymnetric model. Thus the terms 

i n  do not contribute, and equation (8) becones 

S i ncc  K ,, and K~ are taken t o  be independent o f  energy, equation (9) 

separates, and one w r  i tes 



Upon neglect ing the small energy dependence o f  a(T) , one f inds 

lmntediately tha t  S must sa t i s fy  * -' IG 

w i t h  

Q(T) = ~!Jq/2.)-1 

The separation constant q must be chosen t o  agree w i t h  

U=(T) a T - ~ ~ ,  i n  which case we choose g 2 -1. 

A number o f  d i f f e ren t  forms f o r  the var ia t ion o f  the parameters 

Vw, K,, and K~ were chosen. Define 

and K~ = IJK,, . 

The problem may be solved i n  terms o f  a series o f  Legendre 

polynomials and the general so lu t ion i s  given by 0 w e . 1 ~  and Jok ip i i  

(1971)- An i l l u s t r a t i v e  ve loc i ty  var ia t ion is given by 

V = vo[1 + .30p2 ( c o s ~ ) ]  where Vo i s  the average ve loc i t y  and P2 i s  

the Legendre polynomial o f  order 2. This ve loc i ty  va r ia t ion  i s  

i l l u s t r a ted  i n  f igure 3. Some typical  resul ts of the calculat ions 



are illustrated i r r  figurss 4, 5, and 6: - It is clear t h ~ t  many of 

the parameters observed in the solar equatorial plane can be sub- 

stantially changed by varying the solar-~;nd parameters out of the 

solar ecliptic plane. O f  particular note i s  the fact that the radial 

anisotropy observed in the equatorial plane is extremely sensitive 

to parameters outside the equatorial plane. As shown in figure 6, 

even the sign of the anisotropy can be changed by relatively small 

velocity variations. 



IV. Conclusions 

qCe may conclude from the above discussion that  fundamental 

ambiguities in test ing cosmic-ray transport can be removed by 

carrying out measurements out o f  the ec l  i p t  ic. The out-of-the-ecl i p t i c  

measurements nost necessary t o  study cosmic-ray propagation are: 

a) Heasurernents o f  the f l u x  o f  cosmic rays as a function 
of so l i d  angle and energy w i th  as much resolut ion as 
pass i'ble. The an isotropy measurements are eas i e r  t o  
carry out on a spinning spacecraft. 

b) Simultaneous measurements on board the same spacecraft 
of the plasma and magnetic f i e ld .  These measurements 
should be spaced i n  time so that good time-series 
analyses (power spectra, etc.) can be obtained. 

c) The spacecraft should go as f a r  out o f  the e c l i p t i c  
as possible t o  insure that any var iat ions w i th  he l io-  
graphic la t i tude  w i l l  be seen. 

d) Good base-1 ine measurements a t  Earth o r  i n  the ec l  ip -  
t i c  plane should be obtained simultaneously. 

It i s  not crucial  that these measurements be carr ied out a t  

constant hel iocentr ic radius, although th i s  might a i d  interpretat ion. 

It appears that measuring protons and possibly electrons w i l l  be 

adequate and i t  i s  bet ter  t o  optimize measurements fo r  one species 

rather than compromise these i n  order t o  study composition. 
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Figure Captions 

Fig. 1. Schematic i l l u s t r a t i o n  in a meridian plane of t y p i c a l  

t r a j e c t o r i e s  o f  so la r  cosmic-rays (dashed 1 ine) and 

g a l a c t i c  cosmic rays ( so l i d  l i n e )  which reach a detector  

a t  1 a.u. The fundamentally 3-dimensional character of 

the motion i s  apparent. 

Fig. 2. I l l u s t r a t i o n  o f  the "scatter ing" o f  a cosmic-ray p a r t i c l e  

by a magnetic i r r e g u l a r i t y .  I f  the region over which AO 

i s  cor re la ted  i s  small, a Fokker-Planck equat ion resu l ts .  

Fig. 3. I l l u s t r a t i o n  o f  the v e l o c i t y  p r o f i l e  used i n  some o f  the 

calculat ions.  3 i s  the angle r e l a t i v e  t o  the  z-axis. 

Fig. 4. Comparison o f  1 inearized and exact so lu t i ons  f o r  the case 

V = vo[l  + 0.30 P2(cos o)], K , ~ =  ~ ~ r ,  L = 3.  The densi ty  

~ ( r , 9 )  i s  given f o r  both solut ions as a func t i on  o f  angle O 

r = 0.2 D i n  terms o f  Urn = ~ ( r  = D,o) .  St ra igh t  l i n e  shows 

the corresponding r e s u l t  f o r  an i so t rop i c  wind V = Vo. 

The l inear ized ca l cu la t i on  keeps terms o n l y  t o  f i r s t  order 

i n  6 as def ined i n  equation (4).  From Owens and J o k i p i i  (1971). 

Fig. 5. Tota l  cosmic-ray f l u x  as a func t ion  o f  r , O ,  and w i t h  F 
Q 

suppressed. The pat te rn  i s  az imuthal ly  symmetric and even 

about the equator. (a) The parameters V(O) = v O [ l  + 0.30 P2(cos o)]. 

~ ~ ( r , 2 )  = K r and p = 4 were ubcd. The p o s i t i o n  o f  Earth 
0 

f o r  D = 5 a.u. i s  indicated. O f  p a r t i z u l s r  in te res t  i s  the 



v i r t ua l  source of par t ic les  i n  the equatorial plane a t  

r * 0.5 D. (b) Same as (a) except that  V(Q) - vo[l + 0.56 P~(COI B)]. 

Note that  the f l ux  i s  much larger and v i r t u a l  source has 

moved out t o  r - 0.9 0. From Owens and Jok ip i i  (1971). 

Fig. 6. Anisotropy i n  the equatorial plane a t  r = 0.2 0 f o r  

V(0) - Vo + V,P,(COS 0) , as a function of  V 2 N o .  

Note that i n  our model the anisotropy i s  radia l .  From 

Owens and Jokip i  i (1971). 
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COSMIC RAY EM)DULATION I#  THREE DINENSIONS 

J. J. Quenby 

Physics Department, lmperial College, London SW7 2B2 

Abstract. A b r i e f  c r i t i que  o f  spherical ly symmetric conventional 

modulation theory i s  supplied. Estimates are made o f  the cosmic 

ray intensf t y  a t  high solar lat i tudes. Direct evidence f o r  

s ign i f icant  o f f - ec l i p t i c  cosmic ray gradients i s  reviewed i n  

support o f  the requi reant  f o r  an o f f - ec l i p t i c  spacecraft mission. 

The possibi 1 i t y  o f  nieasrting the galact ic spectrum i s  discussed. 

1. Spherically symmetr icdr ; la t ion theory and i t s  problems. 

Cosmic ray modulation arises because motion o f  the energetic par t ic les  

along the sp i ra l  interplanetary magnetic f i e i d  l ines i s  control led by 

scattering due t o  magnetic i r regu la r i t i es  which are being convected 

outwards by the solar wind. Inward d i f fus ion  i s  balanced both by outward 

convection and energy loss o f  the par t ic les-as they suf fer  adiabatic 

deceleration i n  the expanding wind. A Fokker-Planck equation expressing 

these ef fects i n  a spherically symmetric, steady-state s i tua t ion  i s  

(Parker 1965, Gleeson and Axford 1967) 

Here U i s  the d i f f e ren t i a l  par t i c le  number density a t  pos i t ion r and 

k inet ic  energy T,a= + 2Ta wi th  To as rest  mars energy. V i s  the solar 
T + To 

wind veloci ty and Kt-, the ef fect ive radial  d i f fus ion coeff ic ient ,  i s  given 

by Kr - 1: , , cos2$ + K sin2$ for  K ,, ar.d K&respect i ve ly  the para1 l e l  and I 
perpendicular d i f fus ion coeff ic ients wi th t;, == cos-l (B.L / 1E1 ) r ]  - ) .  

Par t ic le  streaming - S i s  due to d i f fus ion i n  the wind frame plus an 

additional term involving a Lorentz transformation t o  the rest  frame v ia  

the Compton-Getting factor C such that 

-210- 



1 6  - 
with C -  1 - (~Tu)  and 1( as the tensor d i f f us ion  coeff ic ient.  

At magnetic r i g i d i t i e s  exceeding about 1 W, radia l  streaming i s  

usually negl ig ib le and alder these circumstances the Fokker-Planck 

(1) can be integrated t o  give a re la t ion  between the Galactic density 

U(rg. Tg) and the observed density U(r,T). 

f o r  spherical synnnetry wi th r determined by the e f fec t ive  outer bound 
9 

t o  the interplanetary scatter ing process. 

It i s  important f o r  Astrophysics t o  know the energy spectra o f  

various nuclear species o f  cosmic rays i n  the galaxy and a cannon method 

f o r  achieving th i s  "demodulation" i s  as f o l  lows: 

(a) Estimate the Galactic electron spectrum from radio synchrotron data. 

(b) Compare the near-earth electron spectrun w i th  the Galactic spectrum 
r 

t o  f i nd  the magnitude and r i g i d i t y  dependewe o f  Ir (w/~r).dr. 

(c) Use the results o f  (b) t o  correct the near-earth proton and heavy 

nuclei spectra for  modulation. 

Various objections can be raised t o  t h i s  scheme. F i r s t ,  the average 

Galactic electron spectrum derived from radio data may not represent the 

local spectrum and in  any case one must be sure of the model enabl ing the 

effects of local, cold, absorbing in te rs te l  l a r  clouds (Goldstein e t  a l  . 
1970a) to  be taken i n t o  account. Second, there i s  no adequate theoretical 

explanation as yet for  the magnitude, r i g i d i t y  dependence and radial  

dependence of K,, as witnessed by investigations of solar proton d i f fus ion  

!e.g. bkbb e t  al .  1973) and the measurement o f  cosmic ray radia l  gradients 

(<lO%/AU) which are much less than those expected on the basis of 

theoretical Kr values (e-g. Uebber and Lezniak, 1973). I t  i s  important t o  

knaw the r dependence o f  the integrand i n  (3) since.adiabatic deceleration 

i s  inverseiy proportional t o  r. This importance becomes apparent i n  our 

t h i r d  point, based on the work o f  Goldstein e t  a l .  (1970b) and Gleeson auld 



Urch (1971) who, fo r  certa in choices of r dependence and reasonable 

megnitudes o f  4, f ind that  adiabatic deceleration may completely 

exclude a11 2100 hVlnucleon par t ic les  from the inner solar  system. 

Thus no cer ta in  knowledge o f  the lowest energy Galactic primaries i s  

possible. Fourth, the cause o f  time variat ions in the modulation i s  

unknown, w i th  not enough solar cycle var ia t ion i n  the solar  wind 

parameters being observed near earth t o  account for  the known changes i n  

the cosmic ray f l u x  (e.g. Hedgecock e t  al. 1972). For exaciple, the 

p e r  spectrum o f  magnetic i rregular i  t ies a t  10 '~  Hz should change by a 

factor >2 i n  order t o  account fo r  the observed modulation o f  1 GW par t i c les  

between and 1969 according' t o  resonant, wavdpart i c  l e  interact  ion 

theory whi l e  i n  practice the change i s  <lo% (Hedgecock 1975). O f f -  

e c l i p t i c  control o f  modulation v i a  the ef fects f a r  beyond 1 AU o f  solar  

streams emerging from the zones o f  maximum solar a c t i v i t y  may be the 

only way t o  explain the cosmic ray 11-year cycle. Hence careful study 

by o f f -ec l ip t i c  spacecraft i s  required. 

2. The o f f - ec l i p t i c  route t o  the boundary. 

I t  has been thought that a d i rect  determination o f  the Galactic cosmic 

ray charge and energy spectrum can be achieved employing e c l i p t i c  plane 

spacecraft t ra jec tor ies  t o  theouterp lanets .  I n  th isway  the problems 

of section 1 are a l l  by-passed. However, the boundary t o  modulation 

could be as fa r  as 100 AU and the low, measured cosmic ray density 

gradients seen by Pioneer 10 render th is  approach uncertain. Al ternat ively,  

we note that cosmic rays have an easier inward motion over the solar poles 

where the geometric path length dlong the interplanetary f i e l d  l ines i s  

much shorter than i n  the t i g h t l y  wound spiral  regime of  the equatorial 

plane ( L i e t t i  and Quenby 1968). An appropriate Fokker-Pl anck equat ;on 

for the steady state which relinquishes the requireincnt o f  spherical 

symnetry and takes i n to  account the spi ra l  geometry i s  then 

i f  KA - 0 for  path length s along a magnetic f lux  tube o f  area A. 

A l lw ing  K = Ker sinqe where O i s  solar lat i tudc yields I I 



U and if p o and IUp ' ' h  a t  1 N, we obtain the fol lawinp table f o r  

the percentage residual a d u l a t i o n  a t  1 N :  

e - goo e - 300 e = 00 

(it 1 bV) 612 22% 9% 

Thus on a simple model for  scattering, a spacecraft passing over the poles 

a t  1 AU may see ~ 9 0 %  of the unmodulated in tensi ty  and therefore get a bet ter  

measurement o f  galact ic conditions than i s  available a t  Jovian distances. 

3. Direct evidence fo r  o f f -ec l i p t i c  gradients 

Observations confined t o  the e c l i p t i c  plane can only reveal the existence 

of o f  f-eci  i pt i c e f fec ts  by noting modi f i cat ions to  cosmi c ray s t  r e m i  ng 

f romtheexpectat ionsof  thespher ica l ly  symmetricmodel case. Equation 

(2) i n  a more general form i s  

where v i s  energetic pa r t i c l e  veloci ty and w i s  cyclotron frequency. I t  

has been assumed that d i rec t  slippage o f  par t i c les  across f i e l d  l ines makes 
% 1 #-- 

only a small streaming contr ibut ion (K,/K %-<<I, C being time t o  - I1 o c  
t ravel one paral le l  mean free path). Furthermore, we assume the short- 

c i rcu i t i r tg  by scattering o f  that perpendicular gradient which would cancel 

out the anisotropy due t o  (Ex - - B),Ldrift i n  the non-scattering l i m i t  when 

L iouvi l le 's  theorem applies t o  the par t i c le  intensity.  A t  high r i g i d i t i e s .  

stnw few t o  a hundred GV, the radial streaming i s  negl igible over long 

periods w i th  the th i rd  term on the r ight  o f  (b) cancelling out on average. 

Then the f i r s t  two terms combine to give the streaming from the east or 

1800 hr Lfanisotropy. When, however, the anisotropy i s  studied i n  

practice as a function o f  sign o f  the interplanetary f i e l d  sector structure, 

two effects of the t h i r d  term become apparent. A north-south anisotropy 
6 U arises due to  ( - ) x B, or  the effect of  the radia l  gradient and an 
b r  radia l  - 

e c l i p t i c  plane anisotropy arises due to ( Iz x g, or the ef fect  o f  o f f -  



e c l i p t i c  gradient. Hashimand Bercovitch (1972) find GZE5.5  R'O-~%/N 

directed north + s w t h  i n  1967t68 f o r  tha l a t t e r  effeet, possibly 

physically resul t ing from the excess northern hemisphere solar a c t i v i t y  

suggested a t  that time by coronal green l i n e  5303A emission. 

The previous discussion refers t o  the f i r s t  derivat ive o f  density, 

but studies of the second harmonic of the cosmic ray in tensi ty  can reveal 

the presence o f  a r i s ing  o r  fa l l ing ,  s ~ t r i c ,  o f f - e c l i p t i c  gradient v i a  a 

dependence on the second derivative. L i e t t i  and Quenby (1968) essential l y  

use a version o f  (5) for the r i s ing  gradient case t o  predict a second 

harmonic wi th d i rect ion o f  maxinura perpendicular t o  and amplitude 
1 * 6 2 ~  

g -T 5 *0.005~ % a t  r i g i d i t y  P, cyclotron radius p. This 

expression i s  i n  reasonable accord wi t h  ooservat ions a: though Nagashima 

e t  al .  (1972) claim chat a cy l indr ica l  p i t ch  angle pa r t i c le  d is t r ibu t ion  

about !with a d i f ferent  physical cause bet ter  f i t s  cosmic ray anisotropy 

data. 

With f i n i t e  K the symmetrical gradient w i  11 e i ther  feed par t ic les '  
I' 

i n to  the equatorial plane or  draw them o f f  t o  higher latitudes, thus 

sett ing up radial streaming. A correction t o  the Fokker-Planck (1) i s  

empl wed by add i ng 
Kd 6U d iv  C - - ( ~ ) l t o  the r igh t  hand side. Dyer 

u Q 
e t  a l .  (1974) i n  par t icu lar  evoke thTs streaming fo r  a f a l l i n g  gradient t o  

explain a sunward f l o w  at  2 1 GV seen by a s a t e l l i t e  detector which i s  

too large t o  be explained by any energy loss effects i n  a spherically 

symmetric model. These authors require maximum modulation over the 

sunspot zones wi th mr id iana l  flaw patterns set up t o  draw part ic les down 

from 0 POO and up from 0 -- 90'. Cecchini e t  ai .  (1975) have developed 

acomputational model to  confirm the above model. Chief features are: 



c = 0.5, 1AU; V, const.; Po 100 MV; Ug a ( ~  + TO) '2-75 

Thus s/K,, -0.05 a t  1 GV. The resu l t s  o f  employing an a l te rna t ing  gradient 

technique t o  solve the corrected Fokker-Planck, w i t h  f i n i t e  K i s  to pred ic t  1' 
an inward streaming s0.3% i n  amplitude between 2 and 10'' GeV, a rad ia l  

gradient slO%/AU a t  1.1 GeV between 1 and 10 AU and a r a t i o  U ( B ) / ~ ( ~  - m i a t  1 AU varying from 2.5 a t  8 = O t o  0.7  a t  9 -- 600 f o r  1 .1  GeV protons. 

Hence i t  i s  possible t o  expla in the rad ia l  streaming w i t h  reasonable gradients 

and KA/K rat ios.  
14 

4. Conclusions. 

We have shown that  study o f  cosmic ray modulation by in tegra t ing  the transport 

equation outwards i n  the e c l i p t i c  plane, assuming spherical symmetry, 

encounters various problems. The transport processes and boundary condi t ions 

are i n s u f f i c i e n t l y  we l l  understood, modulation may be cont ro l led  by o f f -  

e c l i p t i c  gradients and assymetries can have not iceable e f f e c t s  on so lar  

equatorial  plane observations. Three-dimensional study o f  the so lar  

cav i ty  cosmic ray d i s t r i o u t i o n  i s  required to: 

(a) Measure o f f -ec l  i p t i c  gradients anC streaming. 

(b) Enhance understanding o f  the solar  contro l  o f  i n t e n s i t y  time 

var iat ions.  

(c) Gain bet te r  knowledge o f  boundary condi t ions, especial l y  the 

p o s s i b i l i t y  o f  measuring a near-Galactic energy spectrum over the 

solar  poles. 

Objectives (a) and (c) are s a t i s f i e d  by a Jovian swing-by mission 

but (LI; requires a d i rec t  i n jec t  ion a t  1 AU spacecraft for detai  led t irnc 

var ia t ion  studies on so lar  wind and solar  parameters. 

RF~'~!o~UCIBIL~TY OF THE 
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Abstzact 

Based on a modified WKB analysis of the interplanetary irregulatity spectra, 

a discussion of the radial dependence of the radial cosmic-ray diffusion coef- 

ficient a t  polar heliographic latitudes is presented. A t  1 AU radial distance 

the parameters are taken to equal those observed in  the ecliptic. In the sense 

o* a present best'estimate it is argued that relat ivist ic  nuclei should have signi- 

ficantly easier access to 1 AU a t  the pole than in the e c ~ ~ p t i c .  The reverse 

may very well be true for the direct access of very l > w  rigidity particles. 



L 

1. Jntrduc t ion 

The access of g a l a c t i c  cosmic rays  to  the  inner  s o l a r  s y s t e e  is  regula ted  

by the cumulative a f f e c t  of t h e  i r r e g u l a r  f i e l d s  which s c a t t e r  t h e  par- 

ticles on t h e i r  way in.  % determine the  degree of t h i s  access  , , hel io-  

graphic l a t i t u d e s  t h a t  a r e  s i g n i f i c a n t l y  d i f f e r e n t  from t h e  s o l a r  equa- 

torial plane, one has t o  r e l y e o n  t h e o r e t i c e l  es t imates .  These conventional- 

l y  assume a  d i f f u s i v e  propagation scheme. Of primary importance is then 

t h e  s p a t i a l  d i f fu s ion  c o e f f i c i e n t  o r ,  more genera l ly ,  the d i f f u s i o n  ten-  

sor,and i n  p a r t i c u l a r  i ts  s p a t i a l  va r i a t i on  i n  t he  s o l a r  system. 

I n  t he  , e a r l i e r  work of  V61k e t  a l .  (1974) t he  i r r e g u l a r  f i e l d s  were assumed t o  

be Alfvbn waves of s o l a r  o r ig in ,  convected outwards by t h e  s o l a r  wind. 

In  a (on the  average; s t a t i ona ry  in t e rp l ane ta ry  medium with a x i a l  symme- 

try around the  s o l a r  r o t a t i o n  a x i s ,  t h i s  l e d  t o  a  r a d i a l  d i r e c t i o n  f o r  

almost a l l  wave normals beyond about 1 AU. Assuming t h e  e f f e c t i v e  average 

magnetic f i e l d  t o  be i n  t he  idea l  s ~ i r a l  f i e l d  d i r e c t i o n  and t h e  wave an?- 

p l i t udes  t o  vary according t o  the  (WKB) approximation of geometrical 

op t i c s ,  a r a d i a l  dependence of t h e  coef:,~:ent f o r  d i f f u s i o n  along t n e  

average f i e l d  was ca lcu la ted .  As a  s e n s i t i v e  funct ion of t he  angle be- 

tween wave normals and average f i e l d ,  the  value of t h i s  d i f fus ion  coef- 

f i c i e n t ,  or equivalently, ,of the  mean f r e e  pa th ,  va r i e s  from a  minimum 

a t  0 degrees t o  i n f i n i t y  a t  90 degrees. Since in  the  s o l a r  equator ia l  

plane the  angle between thc radral and the  s p i r a l  f i e l d  d i r e c t i c n  i s  

l a rge  already a t  1 A!', and incrcases  with radial d i s t ance ,  devia t ions  of 

t h e  wave normals from the  r a d i a l  d i r ec t ion  have been discussed by Richter -- 
(1974) i n  the context of  the so l a r  wind stream s t r u c t u r e ;  sce a l s o  Hollweg 

(1975) . 
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We do not  intend t o  evaluate here the  e f f e c t s  of devLationr from t h e  

simple picture of V6lk e t  a l .  (1974) a t  low l a t i t u d e s  and r e f e r  to a 

fu tu re  publicat ion (Morf ill e t  al., i n  preparation) . A's s h a l l  r a the r  

concentrate on the s i t u a t i o n  a t  polar  heliographic l a t i tudes .  There the  

assumption of a l l  wave vectors  & being r a d i a l  and p a r a l l e l  to the  average 

f i e l d  leads to the minimum value of the  r a d i a l  d i f fus ion coeff i -  

c i e n t  )C as f a r  a s  its dependence on the  angle between &and  is 

concerned. Thus, within the  WKB approximation f o r  the  r a d i a l  development 

of the  sca t ter ing  centers ,  t h i s  provides a lower l i m i t  f a r  k . Such a 

lower l i m i t  is of i n t e r e s t ,  i f . i t  can be argued, o r  a t  l e a s t  be specu- 

I - ! : -d  i n  a reasonable way t h a t  even i n  t h i s  case there is e s s e n t i a l l y  un- 

impeded access t o  about 1 AU f o r  a s ign i f i can t ly  l a rge r  p a r t  of the  galac- 

t ic energy spectrum than i n  the  solar  equator ia l  plane. 

We s h a l l  give a shor t  discussion here, motivated by three  considerations. 

The f i r s t  one is t h a t  i n  two e a r l i e r  publicat ions t h i s  author was associated 

with (Vblk e t  a l . ,  1974; Vblk, 1975): a ra the r  d i f f e r e n t  r e s u l t  was be- - 
l ieved to hold true.  Another reason is given by the present discussion of 

an ex-ec l ip t ica l  probe t o  explore the sun and the  interplanetary medium. 

The f i n a l  reason is  t h a t  v ia  easy access a t  the  poles much l a rge r  regions 

of interplanetary space might possibly be populated by p a r t i c l e s  of galac- 

t ic  or ig in .  

In the next section we s h a l l  present  che general behavior of # i n  a modified 

WKB analys is ,  using simple approximations t o  two ra the r  different .  measured 

interplanetary power spectra. In the l a s t  sect ion the r e l a t ion  t o  t h e  expected 

ac tual  s i tua t ion  a t  the heliographic pole is discussed. 



2. 001(B Analysis 

Consider the simgleet, axisyulmetric, Sntetplanetary medium,  whete a l l  quanti- 

t ies depend on heliocentric distance r and whete only the ideal sp i r a l  f ield 

B w i t h  components - 

an8 the power spectrum P (f ,r, 9 ) may i n  addition depend on heliographic 19- 

U t e  . r e  ro is a radial  reference level ,  Bzo i o  independent of 8 ; 

# denotes heliographic longitude,Qs# 1.65 x ld6 cps f s the angular fre-  

quency of th@ sari's rotation,  V is the solar  wind speed (assumed t o  be radial  

and constant), and f i s  the wave frequency seen by an observer a t  t e s t  re- 

l a t i ve  to the sun's center. Then it is simple to  show (Vblk e t  al . ,  1974) 

t ha t  for  @ -4 f the radial diffusion coef f ic ienr  is given by 

In equation (2) we have /Q = , the r a t i o  of par t i c le  velucity w to  the 

velocity of l igh t  c ;  R denotes par t i c le  r ig id i ty ;  & = ( 4 T P  ) - I  i s  

tho (vectorial) Alfvbn - speed, where? i s  the average solar wind mass den- 

W ~ i t y r r  - a /, is the cosine of the par t i c le ' s  pitch angle, where u is 
I 

the velocity component paral le l  t o  g; rl = 1 AU. The am l i f i c a  
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for the AlfvOn wave amplitudes % 

is independent of wavevector k and @ . If both r,, and r a r e  la rge  compared 

to the Alfvenic c r i t i c a l  radius (f? 20 R e  i n  the  equatorial  plane) , +hen 

the  approximation on the f a r  r.h.s. of equation (3; holds i n  t h i s  lowest 

order WKB approximation . However, f o l l c ~ i n g  equations (1) and (3 )  we have 

e ,) / B~ (r, B 1 n~ r ,  where <rB2 ) is the ro ta1  ( a t e  = go0): (Cg (r , -- 
2 power in  the  f luctuat ions.  Thus, the  possibi . l i ty a r i s e s  t h a t  (68 ) / 2) I 

beyond some rad ia l  distance i n  which case we expect wave propagation t o  be 

ra ther  d ras t i ca l ly  a l t e red  by non l inea~  e f i e c t s  t h a t  ul t imately should lead 

t o  d iss ipa t ion  or' wave energy. To take t h . i s  possible e f f e c t  in to  account, we 

modify equation (3) so t h a t  fo r  a l l  r 

A s b i l a r  device has been uscd by Hollwez (1973) an3 appears as a s i n p l t  i f  

crude way t o  take the inadequacy of t h e  l inear iscd  WKB epproxb~at ion  1r;to 

account. 

I t  is clear  physically tha t  equations ( 1 ) .  ( 2 1 ,  ( 3 )  and (3'1) also hc) id  i f ,  

a t  given ro,Rro , V and 3 a re  d l f  frrenL froin t h r l r  vdlucs a~ OM C .  dc. ; U I A C J  ur. 

1 d ' f  t he i r  dcpendcnce on 0 is  wcak. enouvh, such that for cxample - -- k t '  1 . 
V de 

For the r e s t  of t h i s  sect ion,  h ~ w e v c r ,  wc w i l l  conzldcr D ( r l ) .  V ,  ? ( r l )  r 

and P ( f ,  0 , r l )  as given by t h e i r  values in tho  ~Waltur l .11 



Observed paer spectra a t  ~ E O  and r s r l  ( e ~ .  J o k i p i i  and Colersn. 1968; 

Betcovitch, 1971) , gene ra l l y  approximate rather well a power law for P(f  , r l )  

at high frequencies,  while f l a t t e n i n g  at l o w  frequencies.  Quel i ta t iwely,  an 

w i t h  parameters C f r  fo,and q <(),is no t  an unreasonable represen ta t ion .  With 

equation ( 4 )  t h e  general  charac te r  of IC ( Y )  can be  in fe r red .  For small  enough 

3+ 2q 
r i g i d i t y  R. so that (a( V/R> 2 k f 0  w e  have fe w r whereas K N  r3 f o r  

v/R & 2 ~ f o .  The exponent of r is additivel.y increased by u n i t y  when- 

ever t h e  s9pplementary r e s t r i c t i o n  (3a) comes i n t o  force.  For our presen t  

2 discussion w e  choose q = -3/2. Thus, K G co.1.t (or u r) f o r  small  R . r . 
3 4 whereas K nr (or ur ) f o r  l a rge  R - r2. A t  zcffi-5-.,tl.y l a rge  r, IL w i l l  

4 be wr' (or ~r ) f o r  any R. A t  f i xed  values  of  p and R, t he  t r a n s i t i o n  of  

4 h to the  r' {or r ) dependence increases  with decreasing f,c£. equat ion (2 ) .  

As  an as ide  w e  should mention t h a t  f o r  t h i s  value o f  q and f o r  the p re sen t  

case of  5 fi = t h e  quas i l i nea r  expression f o r  K used i n  wr i t i ng  i n  equat ion 

(2) is numerically q a i t e  s a t i s f a c t o r y  and the modi f ica t ions  i n  the  region 

around = 0 (e.g. Jones e t  al., 1973) therefore  not  e s s e n t i a l .  

Numerical r e s u l t s  a r e  shown i n  Figures  1 and 2. Figure 1 i s  ca l cu l a t ed  usinq 

t h e  spectrum of J o k i p i i  and Coleman (1960) where, i n  re fe rence  t o  equation 

- 5 
(4 ) .  Ct L 16 x i d 3  . $'2(~r)-1-q; ~7 x 10 .Hz) qs - ) / 2 ,  and n l fven  wave fo- 

propasation was s t a r t e d  at ro = 20 R O  ( so la r  r a d i i ) .  Figure 2 u se s  t h e  spec- 

trum published by Bercovitch (1871) which w e  roughly approximate by C @ 6  x lo-! 
2 4- 
H Z ;  fo 7 x 10 -~ -Hz ;  qs -3/2. Although the  r e s u l t s  a r e  not  very much 



%iZPerent for both cases near r = 1 AO, the very different go-walues lead to 

3 4 stmng differences in the oaset distance of the r (or rather r ) law. We 

~1~ mention here that we used here the component of the magnetic spec t ra l  

tensor m r d l i c u l a r  to the e c l i p t i c  to represent the total power per fre- 

quency interval, For true axiqnmetry of the spectrum all  1 vdues i n  Figures 

1 and2 should be multiplied by a fac tor  112. This is an unavoidable uncertain- 

tp 

The interest ing aspect of these results is that they imply l i t t l e  modulation fo r  

r e l a t L w i s t i c  nuclei, where adiabatic deceleration is small~considering the 

value of fo i n  Figure 2 as a rather  extreme lwer l imi t  to the actual s i tua t ion .  

For 1 GeV protons, for example, a 10-20 percent modulation is estimated i n  

the diffusion convection approximation. 

3. Discussion 

The above r e su l t s  were obtained by f i t t i n g , a t  l.AU,the average so l a r  wind 

pararr~eters a s  w e l l  a s  power spectra by the corresponding quan t i t i e s  observed 

at 1 AU i n  t!%e ec l ip t i c ;  the spa t i a l  dependence of t!!e spectra assumed a modi- 

f i ed  WKB approximation for  the i r regular i t i es .  In r e a l i t y ,  the polar region of 

the  corona may well be a large,  s ta t ionary coronal hole, resul t ing i n  a some- 

what (perhaps f i f t y  percent) larger  flow speed and, possibly, somevhat more 

power in the frequency region f )c,f . A l l  t h i s  would lead t o  a moderdtely in- 
0 

creased modulation. 

On the other hand, it may very well be tha t  the power 

i n  frequencies 6 f o  is much smaller a t  0 = x/2 than near 9 = 0 .  He have taken 

these fluctuations a l so  t o  be AlfvSnic which leads t o  the amplitude variation 

given i n  equation (3) .In r ea l i t y ,  the par t  in the spectrum with f$  f may well 
0 

be due to the so la r  wind stream structure  (Goldstein and Siscoe, 1972). I f  

the l a t t e r  is assumed t o  be absent a t  6 = gop, a l so  the powor a t  f,( fo  would 

be absent w i t h  a corresponding decrease i n  modulation. In t h i s  l i gh t ,  a l so  



tlm possibil ity of Lacreased scatterfng at larger di9tmces due to lecal pro- 

&action of waves - a situation that is quite likely at ear0 - appears 

rather weak. Irregularities produced by eokmced (campwed to the ecliptic) 

tmrbulence due to radially increasing departures frola thermal equilibrium at 

tbe poles should be assumed to have small scales, irrelwant for cosmic rays 

tiwen in the case of the Firehese instability. I t  should be added that in con- 

trast to a popular feeling this result for K and the coosequent argument for 

modulation has little to do with the shorter geometrical path along g o f  a 

galactic particle to, say, 1 AU, but rather to  the strong decrease w i t h  r of the 

magnetic field a t  the poles, 

Thus, barring unknown new effects, the present best estimate is that cosmic 

ray access at the poles should be significantly better than a t  for rela- 

t ivist ic niiclei. For very low-rigidity particles on the other hand, the sharp 

increase o f& w i t h  r occurs only a t  such a large radial distance that their 

direct access may be a t  least as strongly prohibited as in the equatorial plane. 

Bowever, for this last  kind of statementr, the present estimate is not well 

suited. 
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Figure Captions 

Figure 1: The radial diffusion coefficient  & at heliographic la t i tude  

0 = go0 as a function of rad ia l  distance r i n  solar r a d i i  RE) 

for  various proton energies. The power spectrum P(P)=Cf fq 

-3 2 - -5 
with the vakues Cf = 16 x 10 r (Hz) , fo= 7 x 10 BI 

(Jokipii and Coleman, 1968). Wave normals are  assumed t o  be 

radial .  The calculation was s tar ted a t  r = 20 R O  . 
0 

Figure 2: The same as Figure 1 with values of Cf and f adapted t o  the spec- 
0 

t r a  of Bercovitch (1971) . 
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Introduction 

Observation of solar cosmic ray fluxes at high heliocentric latitudes 

would provide several new dimensions in specifying important physical 

processes in the solar atmosphere and interplanetary space. Valuable 

new approaches would be available for such problems a s  the steady state 

acceleration in the solar atmosphere, propagation of fast  charged particles 

in the solar coronal magnetic fields and in  interplanetary space, the true 

interplzn? taxy particle spectra free of transient solar influence, and accel- 

eration in interplanetary space by shock waves. For  this brief review 

of what might result from a program of solar cosmic ray observations on 

I I out-of-the-ecliptic" spacecraft the following outline will be used: 

A. Th- magnetic fields of the S-in a t  high latitudes 

B. Propagation of fast charged particles in the solar corona and 

in interplanetary mace  a t  high latitudes 

C.  Origin of interplanetary particle populations 

D. Other particle phenomena in interplanetary spacete. g. , accel- 

e r a  tion of shock waves) 

E. Effect of spncecraft mission characteristics on solar cosmic 

ray studies a t  high latitudes 
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A. Solar Coronal Magnetic Fields 

It is now wel l  known that the magnetic fields close to the Sun 

control the intensities of charged particles that appear in interplanetary 

space. They do so in a variety of ways and to varying degrees. For 

example, particles from Mares near the East l i m ' ~  are  detected at  central 

meridian and more westerly longitudes only several hours after the flare 

(Van Hollenbeke - et al., 1975). The measured low cross field diffusivity 

of the particles in interplanetary space requires that the diffusion occurs 

hi the corona. This is a reasonable requirement since hydromagnetic 

wave activity should be more intense in the solar corona and the wavelength 

of such waves can be of the size needed to effectively scatter solar flare 

particles . 
Energetic solar particles stream fromthe solar corona in high 

intensities for many days, even weeks, following large solar flares. In 

general terms, this basic observation means that there i s  a sequence in 

which the particles are  first accelerated, then stored for some time in 

the solar corona, then released into interplanetary space. The quantitative 

behavior of each of these steps i s  not well known and in fact is  at the center 

of much controversy. For example, the acceleration may be essentially 

steady state and the storage transient. On the other hand there i s  the 

possibility that the acceleration is impulsive and the storage long term. 

Such a situatior, requires very low collisional energy losses, something 

I 1  that might be achicvcd in a cosmic ray plasma" where all particles are 



energetic, approaching a Maxwellian distribution (Anderson, 1072 1. In 

either case the magnetic fields of the sun play a major role in each etep 

of the three step sequence, All our experience with these processes has 

been in the magnetic fields of the solar activily zones. It seems unlikely 

that the full sequence olf acceleration, storage and release takes place 

in the high latitude coronal fields. However, there a re  two inversely 

related questions of basic impor tancc : 

1, Do solar particles, accelerated in the activity zones, propagate 

into the high latitude solar regions? 

2. Can we use the solar particles, if they do indeed move into 

the high latitude regions, a s  probes of the solar magnetic 

fields there ? 

With these two questions a s  the basic motivation for solar cosmic 

ray studies at  high heliographic latitudes, we next summarize some of 

the information now available on high latitude solar magnetic f ieldu. 

Figure 1 i s  a photograph of the solar corona that shows the polar plumes. 

This old photograph is of interest because it shows an intermediate corona, 

the kind expected in the 1983 to 1985 period. The polar plumes have 

generally been considered to outline the magnetic fields over the Sun's 

polar cap and their appearance suggests that the field lines in these 

high latitude regions are  open Eotice that the polar plumes appear only 

above latitudes of 50 to 60'. Because these field lines are so different 

from the activity zone and transition zone field lines, a strong imp-.tus 



ie given to going to the highest possible solar latitudes in order to encounter 

r qualitatively different phenomenology. 

Magne tograph observations suggest that the Sv:nts polar magnetic 

fields a r e  not uniform bundles of lines, Figure 2 shows measurements 

by Stenflo (1971) that lead to the following conclusions about the high sl t i  tude 

fields : 

1. They a re  patchy with large regions (channels) of weak (less 

than 10 Gauss) fields. These channels extend from the poles 

down to latitudes less than 50' . 
2. The strengths in the t trong field patches range from 10 to 20 

Gauss. 

Polarization methods of magnetic field determination (Charvin, 1 971 ) 

indicate that the polar fields may not consist entirely of open field lines. 

Figure 3 shows the polar field topology based on t!!e optical technique. 

On the other hand the Skylab coronograph shows Cle polar regions as  

large coronal holes which a re  evidently stable at  least ovcr the duration 

of the Skylab mission mewkirk, 1975). This observation implies that 

most of the field lines ovcr the polcs a r e  open. 

B. Solar Cosmic Ray Propagation at liigh Solar J.,ati iud?s 

A rccent statistical study of solar flare cosmic ray events by 

Van Hollcnbeke ct al. (1 975) has rcvcalcd that: - 
1. The onset time of 20-80 h4cV proton f luxcs a t  Farth systcniati- 

colly dccrcascs with hcliolongitudo away from a minimum 

point at  50' i 3 0 ° W  of ccntrnl mcritiian (I:igurc? 4) .  



2, The intensity of solar cosmic rays at  Earth is strongly depen- 

dent on the distance in longitude from the flare site, The 

prefiirred connection region i s  20° W to 80°W longitude with 

ktomo of the spread being due to the variable solar wind velocity. 

3. Flare sources on the back side :an some times be identified 

by very large X-ray and radio emission regi01.s which extend 

above the limb. Particles from flares located away from the 

preferred longitude region a s  n~uch as 150° are  sometimes 

detected at Earth in this way. 

4, The energy spectra of the protons from individual flare events 

loct ted in the preferred connection region (20 to 80' W) a r e  

remarkably similar: most of these spectra a r e  fit by power 

law exponents between -2 and - 3 , l  (Figure 5). 

5, The ecergy spectra of flare parcicles measured near Earth 

changes systematically with distance from the preferred- 

connection longitude. At 40' E the range of power law 

exponents i s  -3 .7  to -5.0 (Figure 5). 

The authors have eliminated interplanetary diffusion and adiabatic 

cooling a s  causes for the above observations. They explain the results 

in terms of energy depandcnt diffusion of the flare particles from the 

narc  site through the coronal magnetic fields out to the spiral inter plane- 

tary field lines that ccnncct to the observing site, The progressive softening 

of the flare particle energy spectra is attributed to the more rapid loss 



of the higher energy particles onto spiral field lines leaving in the vicinity 

of the flare site. The lower energy particles a re  preferentially retained 

so that a s  the diffusing particle population ages. its average energy and 

spectral slope decreases. 

Such observations wi l l  make i t  p~ssible  to spzcify certain physical 

conditions in the coronal regions, especially the pzrticle diffusion coef - 

ficient. Experiments at  lower energy can determine the total amount of 

matter traversed Iry the particles and thus a physical model of the diffusion 

in the high latitude corona can be built up. 

The out-of - the ecliptic missions offer the possibility of doing an 

analogous experiment in which latitude i s  the variable, thus complementing 

the longitude studies. In the latitude case the situation is even more 

complex but also should be more revealing about the spatial structure 

and characteristics of the solar coronal magnetic fields. To reach high 

latitudes, the particles wil l  have had to propagate through the transition 

zone a s  well a s  appreciably into the palar fields. There are  bound to be 

great surprises in such observations too far outside our present experience 

to anticipate. Nonetheless, Figure 6 attempts to qualitatively indicate 

what might be the outcome of solar cosmic ray observations a t  high latitudes. 

C .  Origin of the InterLtne tary Particle Populations 

Figure 7 shows the so-called quiet time proton energy spectrum in 

interplanetary space. At the lowest energy end there are  the solar win3 



protons. At high energies (greater than 10 GeV) the protons almost 

certainly belong to a galactic population of particles, and a t  the very 

highest energies, the particles may even be intergalactic in distribution. 

In *:e range 30 MeV to about 10 GeV %e protons are probably galactic 

bat their i n l n s i e  is strongly modulated by the Sun's magnetized plasma 

wind, at least near the ecliptic plane. The range from 2 to 100 MeV has 

recently been studied extensively bgr the University of Chicago and 

Goddard Space Flight Center Groups. A detailed study by J. Kinsey (1 970) 

is based on the hypothesis that the protons in the energy interval come 

from two distinct pop~la tions. Figure 8 shows some spectra in this 

energy region. Those observations may be represented by 

d J / ~ E  is the number of protons per square centimeter-s teraciian-second- 

MeV. Fs, F s and g are parameters that give best fits to the obser- 
g ' 

vations. It i s  fo-~nd that F and s are  high$ variable while F and g 
8 g 

vary much less. The interpretation is that the first term on the right 

hand side of Equation (1) represents a proton component of solar origh 

while the other term is presumed to be galactic in origin. 

No doubt the proton fluxes in this energy range will  prove to be 

quite different when observed at high heliographic latitudes. There 

detectors presumably would be far  removed from the solar sourc'e regions 

and the reduction of intensity in the galactic component by modulation 

should be much diminished. 



Figure 9 shows the energy spectrum of electrons at  times of 

lowest solar flare activity often referred to as the "interplanetary electron 

spectrum". As in the case of the protons, the highest energy electrons 

are presumed to fill the gaIaxy, while the lowest energy electrons are 

known to be of solar origin -- they are the solar wind electrons. Be tween 

these two components the situation is complicated, perhaps even more 

so  than in the case of protons: 

1. The solar wind electrons have a non-Maxwellian tail a t  energies 

above about 100 eV. This tail a p p a r s  to extend to 1 o r  2 keV. 

-5.1 It can be described by a power law of E . 
2. The non-Maxwellian becomes submerged in a new particle 

population which extends to about 1 MeV. This spectrum 

- 3 approximately follows the power law E . 
There appears to be no spectral f1.attening of the 2 keV 1 MeV 

component a s  there is in the case of the protons. 

The study of the complex electron spectrum would be greatly 

advanced by observations a t  high solar latitudes. Much wi l l  be learned 

by investigating how the electron spectrum changes relative to the proton 

spectrum. 

Among the questions we can now pose about the interplanetary 

fluxes are: 

I .  Wil l  the medium energy component decrease significantly as 

the detectors move away from the active sunspot zones? 



2. From observing such a change systematically with latitude 

can we learn more about the sources and the transport of the 

particles through the coronal mgne tic fields at high latitudes ? 

3. Can we identify a component that is  generated by instabilities 

in the solar wind? Possibly the 130 eV to 1 keV non-Msxwel- 

lian tail ar ises  in this way. As  the solar wind flow changes 

as a function of latitude does the character of the non-Maxwel- 

lian tail change? Possibly even the 2 to 10 keV region 

originates, a t  least in part, from internal energy sources 

of the solar wind by means of plasma microinstabilities. 

4. Is there an electron component, for example the 10 to 100 

keV region, which i s  supplied, a t  least in part, by strong 

cosmic X-ray sources ? 

The high latitude electron and proton measurements- will be free 

of planetary scurce effects: the Earth's bow shock and magnetosphere 

and Jupiter's magnetosphere. This is  another important motivation for 

out-of- the ecliptic missions. 

D. Shock Waves and Other Interplanetary Phenomena 

A variety of complex energetic particle phenomena take place in 

interplanetary space. A1 though they must involve basic plasma processcs 

they a re  not yet well understood. The motivation for further study is 

strong, however, since thcsc processcs must occur throughout our galaxy 

in systems of similar and larger scale sizes. 



One such phenomenon i s  the acceleration of particles by shock 

waves of solar origin in interplanetary space. Figure 10 illustrates 

this effect in a particular case. The important observational features 

in this event are (R. E. McGuire, Ph. D. thesis, University of California, 

Berkeley, 1976): 

1. The shock velocie was 520 km/p and the shock normal was 

close to the Sun-Earth line. 

2. Preceding the shock passage the electron and proton flux 

increased by a factor of 10 due evidently to a flare. 

3. Twenty minutes before the shock passage the protons above 

200 keV increased by a factor of 20. The flux maximxm 

occurred about one gyroradius in front of the shock. A more 

gradual increase in the medium and high energy electron 

flux also occurred. 

4. Electrons 0.5 to 14 keV increased 20-fold just behind the 

shock front. This flux increase may be associated with dissi- 

pation 01 energy by the shock. 

Although several detailed models for shock acceleration exist, 

none seem completely satisfactory. By observing shock effects on par- 

ticles a t  high solar longitudes where the characteristic of the interplane- 

tary field are presumably much different it  should be possible to arrive 

at a satisfactory shock acceleration model. This is a problem of f i r s t  

order importance to cosmic ray studies since shock acceleration occurs 



in cosmic systems. For  example, shock waves probably play an 

important role in the production of energetic flare particles; shocks may 

accelerate the entire fast electron component. And i t  i s  known that 

shock waves carry energy into interplanetary space in smounts equal to a 

large fraction of the total flare energy (Hundhausen and Gentry, 1969). 

There i s  still no satisfactory':theoretical solutioll to the problem of mag- 

netic field line merging as an energy source for flare phenomena and it 

thus becomes vital$ important in the study of the flare process to know 

as much a s  possible about shock acceleration. 

At high solar latitudes the magnetic field wi l l  make a smaller 

angle with respect to the solar wind flow direction, on the average, com- 

pared to lower latitudes. Also, one expects that the power spectrum of 

fluctuations in the interplarietary field to be considerably reduped a t  high 

latitudes a s  compared to the latitude range of the activity zones. These 

differences can then be used to explain differences in the shock accelera- 

tion of particles a s  a function of heliocentric latitude. 

There seem to be several solar-interplane tary phenomena which 

emerge clearly during part of the solar cycle but then become less  apparent 

o r  disappear later in the solar cycle. In his presentation a t  the sympo- 

sium Dr. Hundhausen (1976) mentioned such an effect in the solar wind. 

Another example is the abundance of long lived particle streams (recur- 

rence events) early in the solar cycle (McDonald and Desai, 1971). Yet 

another example is the electron-proton "splitting" effect reported by 



Lin and Anderson (1 967). This effect occurs in solar co-rotating streams 

that appear near Earth one o r  two days following solar flares. The elec- 

trons in these streams are displaced to the west of the protons and thus 

are observed to pass over the detectors before the protons do. This time 

displacement is a few hours up to 10 hours (a few degrees in longitude). 

An example of electron-proton splitting i s  given in Figure 11. 

None of the proposed mechanisms has been shown to quantitatively 

account for this effect, and no explanation has been offered for their 

apparent disappearance latzr  in the solar cycle. Lin and Anderson (1967) 

thought that the effect could be due to the larger drift velocities of the 

protons compared to the electrons (the larger gyroradius of the protons 

means that the protons sample any gradients in the magnetic field to a 

greater extent). Jokipii (1 969) proposed that the splitting can occur in 

interplanetary space due to combined gradient and curvature drift in 

the interplanetary magnetic field. 

One expects that these phenomena and perhaps others still unex- 

plained can be effectively studied by an out-of-the ecliptic mission. 

E. Jupiter Swing-by Out of the Ecliptic Missions 

For  a two-spacecraft launch in late 1980 by a Titan-Centaur 

vehicle a s  described by the NASA-Ames Research Center group, Figure 

12 shows when the spacecraft would reach high solar latitudes with' 

respect to the sunspot cycle. A 1980 launch is  probably not ideal for solar 



cosmic ray studies since the spacecraft  arrive a t  high latitudes near  the 

expected decline of solar cycle 31. However, i t  is worth noting that 

several  very large f la res  occurred in this portion of so la r  cycle 20 

including the very grea t  August, 1972 flares.  The  spacecraft remains 

above latitude 3S0 N and 35 s for somewhat more than 2 years .  

Figure 13 shows where the spacecraft  a r e  positioned in so lar  

latitude on a Maunder's butterfly diagram. This  figure shows that there 

is some advantage in arr iving a t  these high latitudes late in the so la r  

cycle since the activity zones have retreated toward !he equator. 
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Figure Captions 

Figure 1. The intermediate solar corona. This photograph was taken 

following solar maximum and before solar  minimum. At this time 

the polar plumes are clearly visible, Their appearance suggests 

that the polar zone magnetic field lines do not close in the vicinity 

of the Sun. (Yerkes Observatory photograph, ) 

Figure 2. Synoptic charts of the polar magnetic fields Hl~lcose.  Solid 

lines represent N polarity, dashed lines S polarity. The isogauss 

levels are 10 and 20 G. The areas covered by the observations 

are enclosed by curves with shadings on the outside. (a) North 

pole. Observations from August 1-23 1968. (b) South pole. 

Observations from July 31 -August 23, i8. (From J. 0. Stenflo, 

Observations of the polar magnetic fields, in Solar Magnetic Fields 

(ed. R, Howard), D. Reidel Publ. IAU Symposium No. 43). 

Pigure 3. Schematic map of the polar coronal magnetic fields (July 26, 

1970) .  The prominences and filaments observed on spectroheli- 

ograms a re  shown on the map. (From P. Charvin, Experimental 

study of the orientation of magnetic fields in the corona, in Solar - 
Magnetic Fields (ed. R. Howard), D. Reidel, I.A. U. Symp. No. 43). 

Figure 4. The difference 4Tm of the time uctween onset of 20-80 M e V  

proton and maximum particle illtensity i s  plotted a s  a function of 

the heliolongitude. The solid line is a least square fit through 

the data. It shows a minimum at  - 50' f 30' W of the central 

meridian. 



Figure 5. Variation of the spectral index y in the 20-80 MeV range as 
P 

a function of the heliolongihlde lo. The open circles a r e  'long 

rise time events1 with a r ise time longer than 24 hours. For 

these events, effects of interplanetary propagation may be sig- 

nificant. The dashed countour lines enclose 92 % of all  

the other events. The solid line i s  a least square fit obtained for 

them. y (A ) can be represented approximately by y (1 ) = 
P 0 P O  

2.7 [ l  + A A / ~ ] .  

Figure 6. This figure idealizes how solar  flare particle fluxes might 

depend on latitude for various coronal magnetic field configurations 

which vary with heliographic latitude. 

Figure 7. The interplanetary quiet time proton spectrum i s  made up of 

several components: a t  the lowest energy the solar wind protons 

and a t  the highest energies, the galactic cosmic rays. In between 

i s  a spectrum which probably has solar origin. 

Figure 8. This figure shows the region of presumed overlap between 

interplanetary protons of galactic and of solar origin. 

Figure 9.  The interplanetary quiet time electron spectrum is also made 

up of several comp~nents: the solar wind electrons at the lowest 

energies and the galactic component at the highest. Several com- 

ponents appear to exist at  i~~termediatc  energy. 1,ittle is known 

about their origin. 



Figure 10, An interplanetary shock (speed 540 kmlsec at  1 AUI that 

produced large effects on particles. Protons in the 0.3 to 0.5 

MeV range are swept up or  accelerated by the shock. A blanket 

of hot electrons appears just behind the shock possibly the result 

of energy dissipation by the shock. 

Figure 11. This figure shows an example of electron-proton splitting 

early in solar cycle 20. The particles arrive a1 Earth in a co- 

rota.tir,g stream but the electrons are  displaced toward the West 

by a few degrees. The origin of this effect is not known and i t  

appears to become less frequent later in the solar cycle. 

Figure 12. This figure shows that for certain Jupiter swing-by out-of - 
the-ecliptic missions launched in late 1980, the s~ucecraft  will 

arrive at high (> 35O) latitudes in late 1983 and remain thcrc for 

somewhat over two years. 

Figure 13. For the saxnc missions the spacecraft is seen to rapidly 

rise past the sunspot zones which, late in the solar cycle, have 

moved close to the equator. 
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CORONAL PROPAGATION t VARIATIONS WITH SOLAR LONGITUDE 

I n s t i t n t  Pnr Reine und Angewandte Kernphysik de r  

Abstract t 
Observational r e s u l t s  on t h e  East-West e f f e c t  are summarized and 
discussed i n  t h e  context of ex is t ing  models o f  coronal prapagation. 
The va r i a t i on  of  the number of events w i t h  s o l a r  longitude is  
surpr is ingly  s imi la r  for  p a r t i c l e s  covering a l a r g e  in t e rva l  o f  
r i g i d i t i e s .  Over large longi tudinal  distances,  time delays t o  t h e  
event onset and maximwn i n t e n s i t y  a r e  independent o f  energy and 
velocity.  This has important implications and w i l l  r equ i r e  probably 
a transport  process which i s  determined by fundamental p roper t ies  o f  
solar magnetic f i e ld s ,  e .g . reconnect ion processes between open and 
closed f i e l d  configurations. 
A f i t  of Reid's model f o r  d i f fu s ive  propagation i n  t h e  corona t o  
t h e  observed delay times gives  a (p-d imens iona l )  d i f fus ion  
coeff ic ient  I< corresponding t o  r z l O O  hours (r = dis tance 
of t h e  t h in  d f f h s i n g  s h e l l  from h e  8enter  of t he  &n). Limitat ions 
of t h e  di f fus ion model are given by t&e exis tence of  a f a s t  ropagation 
region which may extend up to  40...50 from t b e  f l a r e  s i t e .  !y t h e  
poss ible  existence o f  an energy independent drift process, and by the 
influence of so l a r  sec tor  boundaries. The r e l a t i v e  r o l e  of  open and 
closed f ie1.d configurations i s  extensively discussed. Some evidence 
is  presented tha t  t he  accelera t ion of protons t o  higher ( 310 M ~ V )  
merg ie s  i s  r e l a t e d  with a shock wave t rave l ing  i n  t h e  so l a r  atmosphere. 
The importance of measurements performed from spacecraft  out of  t h e  
e c l i p t i c  plane i s  s t ressed,  i n  pa r t i cu l a r  with respect  t o  t h e  
fundamental problems of p a r t i c l e  accelera t ion i n  t h e  flare process 
and f o r  understanding fundamental dynamical p rope r t i e s  of large-scale 
solar magnetic f i e ld s .  

* 
Extended version of a t a l k  presented a t  t he  wSymposium on t h e  

Study of t he  Sun and In te rp lane ta ry  Medium i n  Th-ee Dimensionsw, 
Goddard Space F l igh t  Center, USA, May 15/16, 1975. 



The story of coronal propagation begins with the Eest-Vest-effect. 
for solar cosmic ray events: with increasing longitude of the 
parent flare on the Eastern hemisphere of the Sun the number 
of events detected at the earth decreases considerably, a1.2, 
for those event8 which are detected, the delay between the 
flare and the arrival of particles at the earth increaees 
(see Burlaga, 1967, for asummary of some earlier results). 
The reason for the East-Vest-effect is obviously the asymmetric 
nature of the interplanetary magnetic field with respect to 
2ke central meridian on the Sun. For average solar wind 
conditions, a bundle of interplanetary magnetic field ( i r z r ' )  lines 
observed near the earth connects back to a point on the Sun 
which is close to 60' U. However, the c~ntrolli~lg nature of 
the re~ions close to the ,Sun for the azimuthal propagation 

t 

of energetic particles became only clear, when it was established 
that the propagation of energetic particles in space occurs 
preferentially alon~ the imf. The arguments for negljgible 
particle mo+ion perpendicular to the imf have meanwhile been 
summarized by various authors. In addition to the arguments 
presented e.g. by Roelof (1974) we wish to point out that the 
variation of delay times with solar longitude is inde~endent 
of enerpy, which is another stroll, argument against interplanetary 
perpendicular diffusion (~einhard and Wibberenz, 1974, Ma Sung 
et al., 1975). 

These effects of "coronal propagation" whirl: depend on the 
relative azill~uthal distance between a parelit flare on the Sun 
and the point in space where the energetic solar particles 
are observed, could be studied so far only [ lx a function of 
solar l o n ~ i t u d c ,  It is the purpose of thin papar, (j.) to 
summarize the observational resul-tc and to (lrder thcrn with 
respect to existing nodo 1.s , (ii) to polnt o l l t  wLich f unc~a~ncn~ to l . l y  

new results we should expect by studying v a - i a t i o n s  wit11 solar 
latitude, i . e ,  by using observations in space out of the 
ecliptic plnnc. 



We shall start in section 2 to summarize the methods, by 
which various transport processes can be separated. In section 3 
we discuss the statistical methods, where the variation of 
characteristic parameters of solar events with solar longitude 
is studied far a large nurn5er of events. Different models 
have been developed to describe the average longitudinal 
variations. An independent method described in section 4 
ccnsists in detailed studies of individual events, including 
multi-spacecraft observations at different heliocentric longi- 
tudes, simultaneous intensity and anisotropy measurements, and 
the relation to observations of solar surface structures. Some 
indications to the acceleration process itself are treated 
briefly in section 5. Finally we summarize the open questions 
in section 6 and try to relate them to studies of solar particle 
events off the ecliptic plane. 

2. Separation of various trans~ort processes 

In the sequence of ev9nts tetween the first acceleration of 
particles on the .% and their final observation in space, 
we can ask different questions: ITOW is the solar atmosphere 
filled up with energetic particles following the original 
acceleration process? How do the particles escape into space? 
How can the interplanetary propagation be separzted from the 
solar transport processes? Let us start with some terminology 
related to the different steps. 
(a) The acceleration process is visualixed in many models as 

a plse-like ?recess limited in spatial extent to the flare 
a18ea itself, apprcximated by s delta-function in space and 
time. In princi:~le, the rcceleration could also occur over 
ar* extended area I n  the s~lar atmosphere for long periods of 
time (see below). 

(b) The accelerated particles spend a certain time in the 
vicinity of the Sun. We wish to make a distinction between 
pro~;r.cation when they move away from the acceleration region 
an3 finally accupy a large area on the Sun, and s to rape  when 

the particles reniain confined to a certain region. The difference 
J s depicted se' ?mat! a l l y  in Figure 2. In rea1it.y. we !nay have 

a mixture of roth processes. 



(c)  The number of solar particles observed in space is determined 
by the probability per unit time that a particle will leave the 
solar atmosphere by finally reaching an open field line leading 
out into space (Reid, 1964; Newkirk, 1973). This release mechanism 
has a very important influence on the azimutilal distribution 
of particles, because it also determines how cany particles are 
left for further propagation along the solar surface. 

(d) Sufficiently far away frorn the solar surface we only fi:;d 

open field lines which lead out into the interplanetary :.c-diurr,, 

Along this "source surface" ('lewl.:irk, 1973) the prc,cesct.:- 

(a)  to (c) define an - in,iectian %!I- t i o n  !I(? , ;, t). I..er:s:~r*c- 

merits on a single spacecraft cornect back to a cert~ln e , ? l k r  

longitude $ close to the s o l z r  ecuator ( ?  e?), r : r d  fcr 2 ~ l v e r - :  

solar wind velocity the con~ection longitude v ( t )  n s  a fli:;ct.io~; 

of time may tje determine? ( s e e  e . ~ .  Kolte arid floelo:,, 1'('":). 



A r-le satellite aerefops aseesn an in;leetion profile 
I(t) = PQ(#(t), 0 ,  t). Roglof and Kr&pQgirs (1973) have described 
en efE6tetive IIPQI~~'A& to ~epapate real Zongltudinal chmger 
i3 #/a$ fvom changes in the iaection f'umtion ill/&. Since 
dI/dt - (am)d$/dt + &+I/&, the relative contribution of 
%be two terms to the obsemm3 dI/dt depends on the motion 
d@/dt of %Be eonngctlon loxqitude. For a negative gradient 
in the solar wind vetlocity V,,,, a solar wind ndwell*, d@/dt 
ist very small, so that dI/dt k d ~ / d t .  FOP a positive gradient 
in V,, d$/dt is large, the second term can be neglected, and 
one may directly construct the coronal distributxon N($). 
A more direct method for determining N(@) is of course the 
ase of multi-spacecraft observations (McCracken et al., 1971; 

~ b t a  et aL, 1972), in particular if combined with actual 
solar wjsd measurements for determination of the connection 
longitude @(t). Results of this method are summarized by 
Reelaf (4974). 

(e) It is clear that any attempt to determine the (corcnal) 
injection profil, .it) or the related longitudinal distribution 
N(@) has to start from observations in space, and, therefore, 
one first has to separate the effects of interplanetary 
propagation. Methods available to perform this separation are 

(I) statistical studies in which the properties of solar 
particle events (maximum particle flux, times of onset 
and of maximum flux, shape of energy spectrum etc.) 
are ordered with respect to the lon~itude of the parent 
flare ; 

(2) multi-spacecraft observations. by which longitudinal and 
temporal changes ce:l be seprated; 

(3) simulta~eous intensity and anisotropy measurements, which 
allow to scparatc. long-last in^ solel .  i~ l j ec t i c l r  procegses 
from long-lasting interplanetary st,oragei 

(4) the tlmappingw of observed interplanetary particle fluxes 
to the high coronbl source longitr.:da, by using the 
siu~ultaneously meastlred solar wind ve3.ocity. 

\Je shrill s t a r t  wjth  a sunmarly of r e s u l t s  ohtained by niethod (1 ), -- 
s l n ~ e ~ ~ ~ ~ . ? ~ o l .  the l r r rgcs t  oi;~ount of o1i:;crvationnl data and 
gives insjcht  into the ;iver.agc hrl\aviour. i.!othods (2) to (4) can 
then be used t o  check predictions 0," mode.l.:; which have been 
dzveloped an4 t~ provide additiol?nl insicht into the relatiun 
with certain features observed on the solrtr surface. 



3. Statistical studies of lon~itudinal effects 
Let us first discuss how the total number of observed events 
varies with solar longitude. Figure 2 shows the longitudinal 
distribution of solar particle events for four di.fferent sets 
of observations, The dashed line is for non-relativistic 
electrons (after Lin, 7974). the dotted line for relativistic 
electrons (after Simnett, 1 9 ' 7 ~ 1  plotted for longitudinal bins 
of 10' or 30'. respectively The full l i n e  is the original 
curve of Van Hollebeke et al. (1975) for 20-80 MeV protons, 
and the hatched area indicates results for ground level neutron 
monitor data (GLEs) ,  as taken from Pomerantz and Duggal  (1974). 

All four curves show the largest number of everts observed 
when the parent f l a r e  is on the western hemisphere of the 
Sun, with a broad maximum somewlullere between 30 and 90O~. The 
number of events clearly decreases a s  one goes to the Eastern 
hemissphere and beyond the West limb, Note that because of 
the difficulties of flare identification no eleztron data have 
been plotted beyond. 9o0W. 

The overall similarity of the curves is rether surprising; 
only for the non-relativistic electrons the decrease in the 
number of events seems to :.tart for a morc? ~resterly longit~2e. 
The similarity in the other three curves suggests a corn:non 
propagation characteristics for the different particle species, 
which cover a raage of Lnreor radii of at least three orders 
of magnitude. Apart from the clear decrnase of the distributions 
of Figure 2 east of about \,-TO s o l a r  Ic.ngit lcrJe,  t.he f u n c t i o n a l  
shape of the curves cannot be determined precisely. From a 
different set of data,  Sinart et al. (1375) have fitted a 
Gaussian distribution - ~ 3  the 1ongit~Ainal di strihution of 154 
flares on the visible hemisphere of t h e  Sun,  wk.ici l  have 

produced protoil events .  T h y f i n d  tho highest ircclucnsy of 
flares grouped between W30 and WltO, cind a standard devistlon 
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of the Oaussiarn of 55'. A Gaussian curve with these parameters 
supplies a rather goad fit also to the three similar curwes 
in Figure 2. Fraa this fit, one can now extrapolate to the 
invisible hemisphere of the Sun, with the result, that 
roughly 20 $6 of all events should not be associated with a 
flare an the visible hemisphere of the Sun (for details see 
Smart et al., 4975). A similar result has been found by 
Van Hollebeke et al. (9975). 

As we shall see below the decrease in the number of events is 
mainly deterrained by the escape rate of particles from the 
Sun, so that distributions of the type sho~m in Figur- 2 can 

be used to determine the escape rate. !'e note then tin3t t22 
similarity in the distribution function for different particle 
species suggests escape rates which do not depend strongly 
on particle type and e n e r Q Y F t  us turn now to the variation 
of characteristic times of solar events with longitude. If 
the parent flare of a s[l?.ar particle event is located 02 the 

Eastern hemisphere of the Sun, the arrivzl of energetic 
particles hecomes more and more delayed with increasir~g solar 
longitude (2urlaga. 1367; Englzde, 1971 ; Lbatl~ut, 1971 ; Barouch e t  

Sirnnett, 1972; McKibben, 1372; Lanzerotti, 1S73; Reinherd al., 1971 

and Hibbercnz, 1974 ; b:a Sung et al. , 1975). 

As discustsed above, azinuthal propagztion ,3i particles in 
the interplanetar:? n~eciitc::~ cannot account i'l.;r t.k.e sbseravt:ti ons. 
The first; q~ i ; r~ l t i ta t . i t~c  model for p a r t i c l e  ~ r i ~ p ~ ~ ; + t i o n  in 

a surfscu layer aroutlc! +i-.e 7.t1n tias ;it:v~lo;:c,? Ly i , e id  ( l - !t;!t)  

and e;;te~~c?ed k~y /!:rfortf (13cc,) . Tn i j r a l ?  ' s I..* ,:de,L , t!,c in.:ec::..ic,r, 

f u n c t i o n  c;:n be \.rrit;tt.n 2 5  

Iierc , is the loss t ime  which I!FSCI.~::I-C. + : , 3  C P C P J ~  of 

parati cles i n t o  intcrplanetctry snncc!, K,. I .. t i t r  corotl:.J 

diffusion coefficieni:, and r, the (11 r;t:tr.~ct: t ~ f  t k... t i  1 !':i~r: ilic 
c % 

l.;lyer* from the center of the SUE. :';o I. ' /K, - rc, ; - :I I-i.:. :.:.'. ! p r ;  c- 6 i c 
C 

tirne It tnkcs the particlcr; to diffuse 1 ) ~  7 . n  : i 1 > ~ \ 1 1 i t 1 .  c!lr;i.;!r,ce 
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of p r a d  = 81' from t h e  flare origin.  In what follows, r e  
put  the f l a r e  o r i g i n  st X = 9 and measure t he  anguLar 
distance XErom the flare t o  the roo t  of a bundle of f i e l d  
l i n e s  leading ou t  i n f o  space where an observer is located 
a t  longitude BR and lati-bude +o0. Note t h a t  flares occur o f f  
Ula s o l a -  equator, say a t  iongitude BF and l a t i t u d e  OF. so  

2 2 that 8' = BF + (flF -$) ..On thr average €IR 3 20'; i n  what follows, 
wa shall disregard the depet~dence on solar l a t i t u d e  and put  

X =  - BR. Observationaliy it is no t  poss ible  t o  f i nd  

systematic d i f ferences  over a 20' angular  in te rva l .  

Both CL and r, a r e  asaumed indspendent of X ,  but may vary 
w i t h  p a r t i c l e  energy. Reid (:964) or ig ina l l y  obtained an 
aatimnte of Zc = 3 .+  hours and Ci);1.2 hr .  Applying Axford's 
(1965) version of t h e  coronal d i f fds ion  uiodel, Kirsch and 
H h o h  (1974) obtain values f o r  t he  coronal d i f fus ion  coef f ic ien t  
of the  same order of magnitude f o r  t he  event of Nov 2,  ;969. 
L a ~ ~ e e r o t t i  (19'73) used t h e  Reid mcdel t o  describe the 

var ia t ion  of onaet times f o r  0.6 t o  25 MeV proton.; with 
longitude. He e s~ ima ted  7 brgTc 416 hr. These values a r e  
probably underestimated because tc r e f e r s  t o  t he  bulk of p a r t i c l e s  
t o  d i f fuse  and not t o  t h e  " f i r a t "  p a r t i c l e s  which define the  
event onset. It is remarkable t h a t  tc shows almost no energy 
dependence. This energy independence of t h e  coronal t ranspor t  
times over l a rge  longi tudinal  d is tances  is meanwhile f irmly 
eetablidhed (NcICibben, 1972; Reinhard and Wibberenz, 1974; 
Ma Sung et a l . ,  1975). 

Themost ca re fu l  s tudy so f a r  i n  applying the  Reid/Xxfnrd model 
t o  t h e  East-West e f f e c t  has been performed by Kg and Cleeson 
(1975;. They have replaced the  plane appraxima-tion by d i f fus ion  
i n  a real spher ica l  s h e l l ,  and t h e  coronal inaection p r o f i l e  
i s  then ~ ~ s c d  u s  the  boundary condit ion f o r  in te rp lane ta ry  
propagation, taking in to  account anisot ropic  d i f fus ion  along 
the  s p i r a ~  shaped i m f ,  convection, ad iaba t ic  decelera t ion,  
and corota t ion of the  flux tuhes past t h e  observer. With t h e i r  
two stage propagation model they reproduce many features of 
so l a r  events. They have used i n  p a r t i c u l a r  the  r e s u l t s  by 
McKibben (1972) on the  var ia t ion  of the time-to-maxl.:.uln w i t h  

longitude. 
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Their best estiraat&s of the coronal paramete, -8 are 
53s Z, s100 hr and 106CLs15 hr. For fhe interplanetary 

propagation they obtain a value of the (radial) meran free 
path, which comesponds to 0.03 AU fop 10 MeV protons. This 
value is probably too small (see Wibberenz, 1974). since in 
many cases even for Western hemisphere events part of the 
delay is due to coronal, and not t~ interplanetary propagation 
(Reinhard and Wibberenz, 197'4). But for 'the discussion of the 
East-West effect this difference is not critical. 

In Figure 3 we compare the computations of Ng and Gleeson (1975) 
with t,-values for >I0 MeV arotons (~einhard and Wibberenz, 1974). 
FOP both curves (a) and (c) there is a well defined minimum 
close to ~ 60, and a systematic increase on both sides of this 
idea3 connection longitude. The apparent linear relation 
between t, and ;y results from the escape term, which largely 
influences the coronal injection profile (1) for t2tL. The 
!tlinimum value of t, is related to the interplanetary propagation 
and could be shifted downk~ard by a factor of 2 or more, without 
changing the ger:eral conclusions. We can see now the limitations 
of the (modified) Reid model. For curve (a), a small value for 
the ~oronal diffusion time has been taken, rG* 13 hours. This 
gives the desired flat longitudinal dependence for western 
events, but does not explain the large values of t, for eastern 
events. Iri model (c), the larger value for the coronal diffusion 
time,'C, = 100 hr,gives the larger increase of t, on the 
eastern hemisphere, but this increase now starts right away 
at W6O and ia in strcng disagreement with the bull; of data 
between 0 on< Wg0. 

It had already beel pointed out by Reinhard and Wibkrrenz (1974) 
that observational evidence speaks against a well defined 
minimum in the propacatio3 times sofl~et~here between W W )  and :i6n, 
and that very fast propagation with small or negligible coronal 
propagation times can be f w n d  for events where the parent 
flares are located between about 0 and Ul(;i l .  The horizontal 
lines in Figure 3 are meant to indicote t f i c ?  existence of a 

fast propagation rsgbonI1 (FPR) where minimal propagation 
times can be found. The extent of this Fkti may vary from one 



event t o  the  other. The existence of a very e f f i c i e n t  so lar  
propca@ion f o r  certain-longitude ranges had a l so  been pointed 
out by Fan e t  al. (1968). The **open cone of propagationla f o r  
s40 keV elee t rsns  found by Anderson and Lin (1966) and 
U n  (1970). which a l s o  has an extent of about 1 0 0 ~ .  may be 
ident ical  with the FPR. A Ureglion of preferred connection 
longitudesn ranging from about W20 t o  V80 is defined by the  
work of Van Hollebeke e t  a l .  (1975). It may indeed be u~ore 
appropriate to t a l k  about a preferred connection t o  the 
acceleration region than about a f a s t  Prooo~at ion from it. 
We sha l l  re turn t o  t h i s  point in  section 5.  

Let us return t o  the  slow coronal propagation outside the SPR. 
One w i l l  obviously get  a be t t e r  fit t o  the data (see Figure 3) 
i f  e.g. curve (c)  describing the coronal propagation toes not 
s t a r t  around W60, but with the  same slope on both sides of 
the  FPR. Clues t o  the possible na tu re  of t k ~ i s  slow coronal 
propagation may be found by a study of the  dependence of  t, 
on par t i c l e  parameters. Reinhard and Wibberenz (1974) have 
studies time h i s to r i e s  f o r  56 events in  the energy rarge 
10-60 MeV and found tha t  the most probable t r ave l  distsrlce 
vt, is  9 l inear  re la t ion  of velocity,  or with other words, 
t, can be written a s  t, = c, * cp/v. The velocity dependent 
term in  tat Is found t o  be independent of so la r  longitude and 
describes interplanetary propagation. On the average, ~ ~ 2 4 . 5  Al l  

(with variations between about 2 and 10 ! t i ) .  On the other hand,C, 
increases s teadi ly with s o l s r  longitude East of central  meridian 
and is  independent of proton enkrgy. 

These re su l t s  have been confiriiied hy I<? Yur~c e t  a l .  (19'5) arid 
extended t o  higher vcloci t i e s  ( n e a r - r e l a t  i v i s t i c  e1ec:trons) and 
t o  t h o  inclusion of the i:Vel?t otlset Z;j.mes I , ~ ~ .  They ! ; t - ~ r . t ~  l.h-?t 

fo r  the onset times a s i t r~i lar  rel.ation t : t ; I , - s ,  naliioly 

ton = 'on + 'on /v, w i t h  two additionel c\)n~:tants Son m d  Eon, 
which have t o  be determined f a r  each event i n  additional. t o  
c1 (S Dnlax) and C 2  (3 ha*)* Acn '"d Anlax "0 not Vary 
systen~tltically with so lar  longitude, s o  t l l n t  they can be taken 
t o  describe interplanetary propagation. ' l ' l~r .  nrrn~crical va lues  
( ( A ~ , )  = 2 AU, <aa,} = 4 AU) confirm thot interp1anc;tary 



propagation plays a relatively minor role up to the time of 
ruimm particle intenalty at 1 AU. BOn and Em- = C, deaaribe 
the onset time and the time of maxiwup of the  solar iaection 
profile, respectively. B o a  parameters are relative small on 
the Western hemisphere (of the order of I hour if averaged 
over many events) but increase aystena tically with increasing 
longitude on the Eastern hemisphere. Both parameters are in- 
dependent of energy and/or velocity of the studied particles 
(0.5 to 1.1 MeV electrons, 4-80 MeV protons). 

The energy independence of the coronal transport puts severe 
limits on the possible physical mechanisms. Any particle motion 
in a given static mahgnetic field configuratfon gives transport 
times with (velocity)-' as one factor. This excludes e.g. 
gradient or curvature drift p s  one basic mechanism as well as 
the current sheet diffusioi; (Fisk and Schatten, 7972). since 
a diffusion mean free path which varies inversely with 
velocity (to give K* v h = const) indepenuent of the particle 
type is physically unrealistic. Ma. Sung et al. (1975) propose 
a *leaky box modelu with a diffusion coefficient ! tL- (o~)2/~r  , 
where 4 L  is the scale size of the boxes i:l~ich open rhndomly 
on a time scale bC. The leaky boxes could be idealized models 
of large coronal magnetic field loops, and the process of 
field line reconnection providzs the rzndorn openin$ of the 
boxes. In this model, the direction and speed of transport 
processes is not governed by the particle parameters (1iP.e 
velocity or rigidity) , hu t  by funEanlenta1 .,)rcpert ies ol' solar 
magnetlc fields; it i s  tile randoinness of 1:l.e reconnectic,n 
process w.lhicI'l would be lac-sponsibl e f o r  a r'i f fusion-1 i!:e 

behaviour, trherctns the pcrticle r;,ot:.on j ..; ~'el;err~iinist i .c: .  Tiote 
that this concept 1.15gllt  SO l e a d  t o  non-I '  ffu::ive prr.~ccsses,  
if there is only n small. r~u1:11,cr of 11or.e:; (11. ci~unl..cls : ~ l o n ~  

which tllc 1)artic:lc.c prop::ijnt.e. r, r;~ox-c t i c l . t . : ~ : ~ ~ i n i s l .  ic pl-oci.!is, 

namely an cner[?;y-indepeliclc~~t d r i f t ;  , k:h i  CIA ::l: .~ul cf act in 
addition to coronal diffusion, has been proposed by Heinhard 
and tlibherenz (1374). One of the original :.;upports f o r  t l ~ l s  
idea, nnae1.y t h e  l i n e a r  rcl .nt ionship betwucn ti:; and X ,  can 
no lon~cr bo maintained, since 1,ec:iu:;c of the  escape processes 
a quasi-linear relation can also be s iruul .~ted in a diffusion 



model (Ng and Gleeson, 1975). However, the t o t a l  iMect ion 
t h e  prof i l e  depends c r i t i c a l l y  on the nature of the  processes. 
Reinhard and Roehf (1975) have studied the re la t ion  between 
onset times WAC¶ maximum times and confirmed the  necessity t o  
include so la r  d r i f t  processes. *l!heir ( l inear )  dr i f t -diffusion 

2 
model contaf ns a dr if* r a t e  tE. a d i  iiusl on time r, I r, /I(,, 
md a l o s s  time rL. When the corresponding inject ion p ro f i l e  
is convoluted with interplanetary diffusion processes, one 
ge ts  a good d e s c ~ i p t i o n  of the measured time prof i les  of 
10-60 MeV protons. The parameters of the  so lar  inject ion 
profi le  and the interplanetary scat ter ing mean f ree  path 
a re  independent of proton energy. From a f i t  t o  several  Eastern 
events, Reinhard end Roelof (1975) determine average values 
f o r  the coronal parameters a s  rE = 0.42 hr/grad. Cc = 44CO hr., 
CL = 13 hr. 

This choice of T, takes care of the observvd widening of the 
time prof i les  with increasing so lar  longitude, whereas it is 
essent ial ly  the d r i f t  which determines t h e  increase of the  
absolute time delay w i t h  so lar  longitude. The corresponding 
dependence t,(@) f o r  the dr i f t -dif luslon oodel is indicated 
by the dashed l i n e  i i .  Figure 3. Here an extension of the 
FPR of  2 40' has been asswed, centered around W50 longitude, 
so the increase s e t s  i n  East of W10 and West of ~90'. Thc 
average contribution of the inte.-planetary propagation 
corresponds t o  a time a e S ~ y  of 4.4 h r  f o r  19 IbieV protons. 

The loss t ime  of 73 houras i s  wi-thin t he  rcnge assurned t o  be 

r e a l i s t i c  by Ng 2nd Gleeson (1375). Let u s  see how the Loss 
time rL can he determlnefi obser \~a . t ional ly .  

There are  i n  ~ , ? r n a l  two p r o e s s e a  by whicl: for a given point 
on the solar  surface .Ll.ic irrtensit.y is  d i ~ i i i  xl:;hed, (1 ) the 
lateral spread of y ~ r ~ t i c l e a  crit1nc.s rt c o r r ~ : ; ; - o n d l n ~  dc-crease 
i n  surface density, (2)  tlie inJection in.tc1 the intc.rpl.anetaz-y 
medium causes a general loss ?roportional t o  the number of 
par t ic les  present. Thesc t w o  po int s  a160 de3terrnine t h e  maxjm~tm 
intensi ty  N,,,,x i n  the in,jection f u n c t i o n .  I f  we t a k e  the 
ReidlAxford mr~rlcl ceriounly, scc equ. (l), 'r10 can der-i.ve the 
fo l lo~t ing  predictions: 
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(a) For smell distances the propagation times are emall 

to ulat the escape term exp(-t/rL) has no influence on the 
time &f the intensity maximum c of the ccronal in3ection 

2m function. In this case em = (r )*f and we get from equ. (I ) 

(independent of the coronal parameters). Thus, a str~ng dependence 
of in the coronal injection profile on angular distance 
from the flare is predicted by the Reid/Axford model. Its 
verification by observations in space is limited, (a) by the 
convolution +th interplanetary propagation, (b) by the fact 
that most flares occur remote from the solar equator (see above, 
eFaaoO). 
In addition, the existence of the FPR will initially fill up an 
extended area close to the flare site, which will preclude the 
sharp dependence of N,, on x as suggested by (2). In any cPqe, 
the relatively Flat distribution of the number of events with 

longitude on the western hemisphere (see Figure 2) favors a 
model with a moderate variation of Nmax over small distances 
from the flare. 

(b) For large distances x , it is mainly the exponential term 
exp(-t/rL) in equ. (1) which deter;t~nes the decrease of Nma,. 
(It should be noted that in the more realistic versi~n of the 
Reid model treated by Kg 2nd Gleeson ( 7 9 7 5 ) ,  a t  late tices 
this is the only term in the temporal variation, because thz 
whole solar surface is covered wjth particles, there is no 
I /t-f actor left). 
Let us describe the averoiye decrneosr? of t he  number c;f yorticlcs 
at the 1naxinru111 of the in,jc:c:.i JII function wi'h P ( P ) .  P ( 9 )  is 
allowed to vary with tinergy, but shall be t l ~ e  salae for every 

event. liere we measure fl elong the solar equat~r.  and let P($) 
be normalized to 1 for events close to fl*Oo. It is thjs 
variation 



which determines how the number of avents deteoted v a r i e ~  with 
so lar  loneitude (Reinhard and Reelof, 9975). For normally an 
#event@@ is ident i f ied when the number oP g s l r t i c l e ~  during the 
gldlximunr phase exoe~da, a cer ta in  threshold, which i s  determined 
by detector background rand counting r a t e  statist40s. Let the 
~ b t e  distribution ( the number W of events where the maximum 
l n t e m l t y  of pa r t i c l e s  exceeds a given value Nma,) be a 
separable Nnct ion of N,, and longitude, e t h e  longitudinal 
dis t r ibut ion is independent of the s i ze  of the event* 

With N,, = T = threshold f o r  detection of ;he event type under 
study we get W(T,O) = t o t a l  number of events above threshold 
close t o  the preferred connection longitude around,U4Q ... 116% 

and ? J ( T , ~ )  = f ( T ) g ( @ )  is the longitudinal flare distr ibut ion 
(see Figure 2). 

On the other hand, we have froin equ. (3)  i t )  = 1 / ' ( ) ,  q. 
Equating the two expressions f o r  i;:, we f inz l ly  obtain 

Relation (4) has been verif ied by Reinhard end Roelof (1975) 
f o r  protons > 10 IvIeV, > 30 MeV, and > 60 Rev, and they showed 
t h a t  f ( ~ , , , ~ , )  can be described by a power lc:! (~,~~);r w i t h  

b= 0.36. Insorting t h i s  into (5) they get: i p ( C j  = p(gjJ 0e36 
ax  re la t ion  hetween tht? l o n g i t u d i r l n l  d i s t r i l ~ u t i o n  R and the 
s ize variation P. !rote t h ~ t  th i f l  re3.ation 5 :  ? l i e s  t h a t  ~ ( f l )  
is  rather  Insensit ive t o  the aixr* variation I - J ( ~ ) .  Thi s  i s  
even more so, i f  we t ~ l z e  an in<je!',e:nt\e~~t d e l o  rminnt ion o f  the 
 ire spectrlim frotn Van riol.'l.ehclri.* i t t  a:L. (I(.''*i) ; tliey o b t a i n  
for t h e  d if iercnl. i i i l  i; i ze spec trim ~ I i , ' / ~ . l ~ : ~ . , ~ ~ , ~  ** t411iay '- OC w i  tli 

+ ot= 1 .15 - . O 5 ,  ~ i ) i ~ h  i!:rplit's th.3 t t;tit: iri-t , t -  - ~ * ; i l  spectrS\u!~ 9 
is  r a t h e r  flat and u zc,.l5 ir~stead 01' 0 . ; ~  ;.s ubove. / 
The 1on~itudin;nl d i  stri hutf on h a s  bee11 d ~ t c ; . . : i l n c d  by Rei nhard 
and Roelof (1975)  as g(g) - exy(r~l$) w i t h  nl - - 1  (de[:ree)-'. 
Insertion into the d r i f  t - c \  if f u s i o n  u~odel w i  k1.1 the overage 



parmetera cited above leads to a loss time tL - 13 hour8, 
independent of energy. In contrast, Pan Hollebeke et al. (1975) 
have concluded from a variation of the observed spectral shape8 
of proton spectra with longitude, that the escape rate should 
be energy dependent. They find an average loss time of 
tL = 1.85 hour. lor protons with a mean ener6y of 40 MeV, and 
an increase in the loss rate of 35-45s from 20 MeV to 80 MeV. 
The smaller loss time for the higher energies would then be 
responsible for the observed steepening of the spectrum trrith 
longitude. 

Reinhard and Roelof (1975) do not find a systematic varistiion 
of the spectral slope with longitude. The reason for the 
discrepancy is not clear, it should be partly related to the 
use of a different set of data (difference in the threshold 
T for event detection; different selection criterio for nsolar 
events"). In any case, it appear8 that a loss time of about 2 
hours is too small to be compatible with observations; the 
corresponding decrease in the injection function by a factor 
of 40 every 4.5 hours would make events from the Eastern hemi- 
sphere of the Sun praktically undetectable. Because of the 
intensitivity of the size distrJbution or! rL (see the discussion 
following equ. (5) above) nore direct deterr.iirlations will be 
necessary (see section 4 for some indications), 

Let us close this section on the variations of solar eyrrznt 
piira~nctcrs with solar lon~it~rcle. :Je have di:;cussed the d s 1 . e ~  

times (onset t~nd time-to-riaxin~u~n), ;he gersc.:.nl slispe of the 
intensl ty- t j .nc prof ilen, and t h ?  d j  strit~t1tj.c.n of t h e  nuicber 
of events with longitude. ilc have tried to 1 elate the everace 
behaviour of a l a r ce  nu~iibcr of events  to spc.cific coron;il 
propagation motlels. 1.ct u:? *I. r,a~arize tile e~r;i!nti i i l  b s p e c t s  
of the vurl  ous   nod el.^, i n  parr . icul .nr  wi Lli  r.c.zpect. to prac.di c t l  c1-1: 

of l .at  i .ttrdinal. s o l u r  v:ari [ ~ t i o ~ i s .  

(1 ) Propacat ion over small angular distances exis$encc of --.. .- ---------.-,-..--,,-- ----------- - -  A,-,-. -,, -, - - 
!. ISa:;t ---- p-~~mg:J w l T 9 g ; z  

In the lleitl/t2xfor'd-n~odcl there i:; , just one I ~i~dnrircr~tcrl  process 

acting tho\~[:llout tho sol or ouri'nce, choroc tcrized by a d j.fl'\lsl on 
coeff'icieni; kc, Wc had pointed cut; the difficulty to describe 
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The essential point in the rndlrift* process is that  the transport 
process in the corona is not totally statistical (like in a 
diffusion process, where the net streaming of particles Is 
simply proportional to the density gradient), but +hat there 
is a preferential bulk motion of particles into one direction 
superimposed, The filling up of oae large *%axn which was 
initially empty might be one such process (see the abc r e  

discussion about the "leaky box conceptn). A pure drift, where 
all particles move into the sase direction, is Oepictsd srhe~e- 
tically in the outer right part of Figure 4. in pz-drift sf 
the required order of magnitude (.;orrespor?bing to velosftfes 
of 7 kmisec if +, = 1 solar radius) is not very l j b e l y .  

However, a very direct proof would be the s:;.stelr,atfc depletion 
of particles from the region close to the criginal flare (see 
Fig. 4, right part). The shift of time intensity profiles 
between spaceprobes separated in heliocentric longitude has 
been shown to be consistent with nom2l corotation for four 
individual solar events in 1968 (WcRibben, 1973) 2nd does not 
require an additional drift. Moreover, the azimuthal gradients 
are in general positive when one approaches the heliocentric 
longitude of the flare (see Kccracken and ftao, 1970; Kccracken 
et al., 1971). 

So one should still regard the drift-diffusion model as 
hypothetical and a convenient mathemztical tlescription to 
descrjhe coronal jn3ection profiles at one longitude. '2l.e 

consequer.ce of a depletitjn aroud $%f?  at l:.te tines Lss still 
to be confirmed. 

Let us turn now to the question of di~ensi:..;ality of transport. 
The d j  stirlction is sho~m in the two l e f t  st-..er?.es in Figure  7 .  
The question is still open wlletilc.1. t i l e  c o n  1.21 prcrpaljrrticr, is 

relatc-ti t c )  a f und:~mental zolar pro,-c.xn :.;!!i: act..; slr.,i l:.rl y 

all over tile so la^. surfsce, o f  if i t  I s  re!  -tcd to sl jecif ic  

processes which are typic~l for the activit-; belts say. If the 
propagation is somehow related to large PC:*! e ~nagnetic f ie1 .d  
loops, one should expect a yrcfe i -ent la l  pro,,n::ation rtloxg the 
East-West direction because of tile prefercnt- inl  o r i e n t s t i o n  
of the loops In this way. This t~ould f r ~ v o l -  1 1  one-d1mer:::ionnl 



propagation in a limited latitudinal range (see second sketch 
froor the left in Fugure 4). In this case, observations beyol,d 
about 40 or 50° in latitude would hardly show an detectable 
anmuat of solar energetic particles, and the large coronal 
holes found sometimes at the solar poles would be totally 
m e  of solar flare particles. 

On the other hand, coronal S~opagation might be related to 

a process which is occurring all over the Sun, similar to 
the supergrar~ulation, or to the nunerous current sheets and 

minute dipoles with average strength of 500 - 1000 CauR and 
12 hour lifetimes (see Newkirk, 1375, for discussion). In such 
a universal process, weshould more expect a distribution 

sketched in the outer left part of Pigure 4. It is clear that 
studies of particle populations at large heliocentric latitudes 

offer a unique opportunity to distinguish between the two 
fundamentally different possibilities. 

4. Detailed studies of individual events 

It is not intended to give a detailed account of the numerous 
studies of longitudinal effects for single events or for 
selected periods of time. \:re sinply want to describe various 
methods and to describe a few results which give the necsssary 
and important supplements to the statistical studies discussed 
so far. 



UcCracken et  al. (1971) have studied d a t a  from f o u r  Pioneer  
~ p c a c n f t  separated by o 180' i n  h e l i o c e n t r i c  longitude.  A t  
late times ( 2  4 days) i n  the events  they ratill found s t r o n g  
g rad ien t s  i n  longi tude,  w i t h  e-folding angles f o r  10 MeV 
protons of the o rde r  7 = 30'. and no temporal change i n  the  
r e l a t i v e  gradlent .  This corresponds t o  a f a c t o r  of  10 decrease  
every 70°. Note t h a t  t h i s  va lue  of 7 has only been d i r e c t l y  
determined f o r  two events. Van Hollebeke e t  al .  (1915) from 
the study of  a much l a r g e r  number of  events  conclude t h a t  on 
t h e  average t h e  event s i z e  f o r  protons around 40 MeV decreases  
by about two o rde r s  of  magnitude every 60' away f r o m  t h e  
preferred connection region. This value is a l s o  cons i s t en t  
w i t h  an exponential  gradient  i n  longitude corresponding t o  
a change of two orders  of magnitude over  a longi tudina l  
d is tance  of 40'. . .60° (Roelof e t  a l . ,  1975) f o r  HeV protons 
and alpha p a r t i c l e s .  A comparison of t h e s e  g rad ien t s  w i t h  

spec i f i c  coronal propagation models has not  y e t  been per- 
f orarea. 

P e r s i s t e n t  an i so t rop ies  along t h e  i m f  from t h e  general  s o l a r  
d i r e c t i o n  have been among t h e  first i n d i c a t o r s  t h a t  t h e  s o l a r  
source has  t o  be described by a long-last ing i n j e c t i o n  ins tead  
of a del ta-funct ion i ~ r  time (Bart ley e t  al . ,  '1966; Fan e t  al., 
1968; Krimigis e t  a l . ,  1971). The i n t e r p r e t a t i o n  of these  
p e r s i s t e n t  l a r g e  an i so t rop ies  depends on whether o r  n o t  i n t e r -  
p lanetzry  propagation can be neglected. Schulze e t  aL. (1974) 
gave an example where t h e  simultaneous f i t  of i n t e n s i t y  and 
anisotropy da ta  for 22-60 l<cV protons during the Nov 18, 1368, 
event allows t o  determine the approximate duration of the solar 
i n j e c t i o n  as well as  the  in te rp lane ta ry  nean f r e e  pat!]. As 
pointed out l a t e r  (Schulze e t  81.. 1975) the i n t e r p l a n e t s r y  
data are  r e l a t i v e l y  insensitive t o  t h e  fern of t h e  so lar  



injection profile. A change in the form (not the characteristic 
duration) of the solar injection profile can be canceled by 
a suitable change in the interplanetary scattering mean free 
path without changing essentially the intensities or anisotropies, 

The situation is different when interplanetary scattering 
within the inner solar system can be neglected. For the 
scatter-free proton event of April 20, 1971, Palmer et a1.(1975) 
could directly determine the solar injection profile and 
obtained a solar decay time of about 7 hours for 7-6-55 bieV 
protons. Roelof and Krimigis (1973) have pointed out that 
for low energy protons (61  he^) scattering in the inner solar 
system is almost absent, Here the magnitude and the direction 
of the anisotropies are used to infer the small interplanetary 
~zattering, and by use of the "mappingn technique conclu~ions 
can be drawn on the coronal injection profiles. Various tine 

periods have been studies in a series of papers (Roelof, 1973; 
1974; Cold et al., 1974; Krieger et ale, 1975). Typical coronal 
profiles are ramp-like structures, which are relatively smooth 
as long as the observer is connected to the same unipolar cell 
on the Sun, and sharp changes in intensity when a neutral 
field line on the Sun is crossed. These results are seen with 
corresponding time delays at spacecraft widely different in 
heliocentric longitude, (Roelef and Krimigis, 7973) which 
confirms the spatial rather then the temporal structure of 
the profiles. 

The ordering of solar energetic particle data by solar 
structures observable in i I d  -f iltergrarns beconles also clear 
in the large solar events of August 1972, where Roe lo f  et 2.7. 

(1974) have studied flux histories for protoris > 1 : . 5  I.!eV 
from Pioneers 9 and 10 and Il.!? 5. The different accesc  of 

particles to reeions on bo th  side:: of  a w l a r  sector bound::ry 
is clearly established. Tile crossings of s o l a r  sector 
boundaries are therefore in many cases seen by abrupt changes 
in the intensities of solar energetic particles, but t t ~ e y  

can also lead to marked cl-ranges in tile ricrie or decay t in!es 
of the total profile (see Rcinllard, 1375b). '11 is vcQr;l 



remarkable t h a t  t h e  s o l a r  s e c t o r  boundaries, which a r e  
in fe r red  from t h e  I1a.-filtergrams (PlcIntosh, 1972) and which 
are found t o  play such an important r o l e  f o r  t h e  access  
p r o b a b i l i t i e s  of s o l a r  energet ic  p a r t i c l e s ,  do n o t  i n  each 
case coincide with i n t e r ~ l a n e t a r y  s e c t o r  boundaries. A 

poss ib le  explanation by chromospheric n e u t r a l  l i n e s  which a r e  
no t  continued i n t o  an in te rp lane ta ry  magnetic f i e l d  s e c t o r  
boundary, has  been given by Roelof (1974). 

The i r r e g u l a r i t i e s  which a r e  r e l a t e d  with the s o l a r  c e l l s  of 
d i f f e r e n t  po la r i ty  c e r t a i n l y  have t o  be superimposed on t h e  
overa l l  deyendence on s o l a r  longitude which we discussed i n  
sec t ion  7. Formally t h i s  could be described by a v a r i a t i o n  
cf t h e  coronal parameters wi th  s o l a r  longitude.  T h i s  heme 
might o f f e r  an explanation f o r  the  observations of ~anornalousw 
i n j e c t i o n  p r o f i l e s  of s o l a r  p a r t i c l e s .  Keath e t  a l .  (1971) 
have shown t h a t  the  favored path f o r  cosmic ray propagation 
i n  t h e  March 12, 1969 event was about 40' eas t  of t h e  nominal 
Archimedes s p i r a l  l i n e  of force from t h e  f l a r e  loca t ion .  
Palmer and Smerd (1972) a l s o  found a deviat ion f r o m  t he  
t tc lass ica l f l  p i c tu re ,  where the  best  connection i n t o  snace 
should be c lose  t o  the  f l a r e  s j t e .  They explain the  anaear- 
ance of A p~ompt low e n e r p  ~ r o t o n  comnonent f a r  away from 
t h e  o r i g i n a l  f l a r e  by t h e  t r i g g e r i n g  ac t ion  of a shock wave 
t r a v e l l i n e  i n  the  s o l a r  atmosphere. Cherki e t  a l .  (1974) 
find by analyzing the  March 39, 1970 event t h n t  p a r t i c l e s  o f  

d i f f e r e n t  r i g i d i t y  a r e  e  j ~ c t e d  a t  d i f f e r e n t  lonpi tudes on 
the  Sun. Barouch p t  a l .  (1971) stucijed t h e  onset times o f  

6-25 PIeV protons f o r  several  flare..; f r o m  t h e  S ~ ~ I T I P  a c t i v e  

repion, mil concluffe thnt t h e  mij~nntic  f i e l d s  c l o s t ~  t o  the  
ac t ive  region ~ h o u l d  be consjdcrnbly d i s to r t  erl from t h o  

nomina l  A r c h i m ~ d ~ a ?  f'i eld. 

These examples show t h a t  f o r  individual  vents tho  release 

mechanism from t h e  Sun may become very complicated, and t h a t  
the  modela and coronal parameters d i s c u s s ~ d  I n  scc t lon  3 

only descr ibe  t h o  averaKe chart- ic ter is t ics  over mnnv e v e n t s .  



I n  a l l  C ~ R ~ R ,  however, t he  unusual p a r t i c l e  escnDe f r c m  the  

Sun is thought t o  be r e l a t e d  t o  processes  occu r ing  i n  t h e  
v i c i r r i t y  o f  t h e  Sun, i n  p a r t i c u l a r  i n  t h e  corona l  magnetic 
f ie lds .  A s  d i scussed  a l r eady  i n  s e c t i o n  3, l a r g e  coronal 
m f  l oops  probably play a prominent r o l e .  Over which ' lonci t -  

u d i n a l  ranee  and how f a r  u p  I n t o  t h e  corona t h e s e  l oops  extend 
is no t  yet  c l e a r .  Simnett (1674h) i n  ca se  of  t h e  A u ~ u s t  11, 
1970 event has  sucgcsted t h e  e x i s t e n c e  of a s t a b l e  loop  
ex tending  seve ra l  s o l a r  r a d i i  above t h e  s o l a r  s u r f a c e  and 
ahaut  loo0 i n  lonpi tude .  Two r e l e a s e  p o i n t s  should e x i s t  
f o r  s o l a r  ~ r o t o n s  on both sides of  t h i s  loop ,  w i t h  q u a s i -  

s t a b l e  t r a p p i n g  inside t h e  loop.  
Observat ions  from Sk:?lah have c a s t  some doubt on t h e  r r j s ~ e n c a  
of  s t a b l e  l oons  of  t h i s  e x t e n t .  Chase et a 7 .  (1475) hove 
s tud ied  one hundred loons  d e t e c t a b l e  i n  s o f t  X-ravs and  

show t h a t  t h e  number of In t e r connec t ions  dec reases  s t e e p l y  

f o r  l onge r  d i s t a n c e s ;  t h e  l onges t  i n t e r c o n n e c t i n g  loop  
extends over  en angular d i s t a n c e  of '57'. 

The ques t ion  how f a r  t h e  l oons  extend and which no r t ion  o f  
t h e  s o l a r  s u r f a c e  i~ covered w i th  "closed" o r  "openw config- 
u r a t i o n s  is  c r u c i a l  f o r  t h e  whole propagation problem. The 

e n e r g e t i c  p a r t i c l e s  perform rrvrati ons nhoilt t h e  f i e l d  I . ines,  
and the  t r a n s p o r t  of ? a r t i c l e s  from one f i e l d  l i n e  t o  t h e  

neighbouring one does no t  denend on whether t h e  f i e l d  l i n e s  
a r e  c losed  ( i . e .  r e t u r n  t o  t h e  s o l a r  atmosphere) o r  open 
( i  .e.  l ead  out  i n t o  interplanetar21 space ) .  However, t h e  
number of c l o ~ e d  f i e l d  l i n e s  de te rmines  t h o   mount o f  t r apn ing ,  
and once p a r t i c l e s  hove been t r a n s m i t t e d  t o  ope11 f i e l d  1 l n e s  
they  w i l l  escane i n t o  space.  This rrle~tns t h a t  an e ; f f j c i f * l l t  

s t o rape  mcchilni s m ,  a n d  n t r ;~nsnor t :  whi ch f i  11a1 l v  a1 1 ows t o  
f i  11 ??Y-if?f,i c:rI 1.y t h e  whole so1 nr ntmn.q~hf*r+? ( s ( ? r  14cCracker-I 

r ? t  a1 ., lc)7l; McKibh~n, 10'77) our*ht; t o  11c. n n l v  no : : s i . l ) l~  i f o 

l a r c e  f r i j c t ion  of  t h e  s o l a r  s l r ? * f r ~ c l c !  i n  "c:loncd". T h i s  i n  

confirmed hy obse rva t iona l  evidence;  t h e r e  should be n r e l a t i v e  
amount of open f i e l d  l i n e s  of thc! o r d e r  19-15 $ i n  eqicttt:r*inl 

r eg ions ,  25-40 $J nveroged over  t h e  wholc Sun ( i i c w k t r k ,  p r i v a t e  

communicotion), Thcse f i g u r e s  art? bnscd on t h e  potent i r i l  
( c u r r e n t - f r e e )  coronal  f i e l d  c a l c u l a t e d  from the ohst:x-ved- 

l ine-of -a igh t  f i e l d s  a t  t h e  pliotospheric Icvt;!  ( ~ l t s c t ? ; l ~ . r  



and Mewkirk, 1969) and mnv hrrve t o  ha modified 11g thc 
in f luence  of  t h e  exnandin~ ~ o l a r  wind. 

Newkirk (1973) conc l t~des  t h a t  t h e  amhiant fie1.d conf igura t ion  
around a c t l v e  r ec ions  a l s o  determines whether o r  not  pro tons  
escape from e given f l a r e .  It is found t h a t  amonq a11 flares 
proton f l a r e s  have s i m i f i c a n t l y  more open f i e l d  l i n e s  
emerging f r o m  t h e  v i c i n i t y  of t h e  active reg lon .  Newkirk 
assumes an n i n j e c t i o n  su r facem of  x 76' centered  on the 
f l a r e  and f i n d s  t h a t  t h e  spread i n  longi tude  of open f i e l d  
l i n e a  is cha rac te r i zed  by n full-width-at-50 percen t  of 10' 

t o  20' which is  insufficient t o  expla in  t h e  observed l o n e i t -  
ud ina l  d i s t r i b u t i o n  of e n e r q e t i c  p a r t i c l e  events .  One noss ib le  
explanat ion f o r  t h e  discrepc'incy is t h a t  perhaps the o r i g i n a l  
i n j e c t i o n  sur face  m u s t  be larger .  T h i s  would occur  if s f~ocks  
e re  t h e  p r i n c i p a l  sources  o f  ent-raettc prot,ons I n  the  corona. 
We s h a l l  d i s c u s s  this point  i n  somewhat more d e t a i l  i n  t h e  
next see t i on. 

5. R e l ~ t i o n  t o  the accelr~, '::ition nrocess i n  s o l a r  f l n r e s .  

Let us  f i r s t  siamrnarize some of t h e  p r o p e r t i e s  of coronal  
propagation a long t h e  ideas  of Simnett (1974)  o r  IqlcKibben 
(1977). There is a "prompt component1' o r  "phase 11' of s o l a r  
p a r t i c l e  events .  This 1s due t o  p a r t i c l e s  which e i t h e r  h:!ve 
been d i r e c t l y  acce le ra t ed  on onen f i e l d  l i n e s  o r  have been 
i n j e c t e d  onto open f i e l d  1 l.nes shortly n f t e r  t h e  f l a r e .  The 
longi tud ina l  ex tent  where t h e s e  prompt n3 r s t  i c l c o  arc. found 

should correspond t o  t h e  ' ' f a s t  propclffotioti ref:ionfl di t icussed 

above. These i n i t i a l l y  inject,ttd ~ { ~ r t i c l e s  g ive  r i s e  t o  a 

r e l a t i v e l y  short decay tinre (1-icKibIten, 197'5). 

There i s  a "delayed cornr)or:cns" o r  l'ph:~:~e :'ff of  s o l a r  t ) i ~ r t . i c l e  
evcnts .  I t  is very p~~oh:rl.~lr? t11;rt t l ~ l ? n ( ?  del :~vt 'd  p i ~ r t i  c l  e n  have 
\wen uccelernted on clo:;~li  f'i c : ld  1 int .2,  l '! ,~*v t 1 1 r . n  pror?a:r;~ Ce 

i n  t h e  corona, from one c loned  c 0 1 1 f i ~ ; u r i i 1 ~ 0 1 1  t o  t i le  n e x t ,  
maybe according  t o  t h e  concept of t h e  l euky  boxes diucuased 
above, and from thereon t h e r e  is oilly rd gradual  r e l e a s e  of 

theoe p a r t i c l e s  i n t o  space. I f  thir; re1c:a:;e welse ins tear l  vay 
f a s t  and e f f i c i e n t ,  we would never observe t h a t  flare 

p e r t i c  lea have f i n a l l y  occupied csoenl  it11 1.y tht: whole! inner  
a o l a r  system! 
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Them carer two d i f f e r en t  s o l a r  decay times f o r  t h e  two types 
of pe r t i o l e  populations. Wibberens and Reinhard ( 1975) and 
Reinhard (1975e) show t h a t  by convoluting t h e  s o l a r  decay 
processes with in terplanetary  propagation one can qu i t e  
na tura l ly  explain t he  exponential o r  quasi-exponential nature 
of the  in te rp lane ta ry  decay, and t h a t  no " f r ee  escape boundaryt1 
around 2...3 AU is  required, which would be d i f f i c u l t  t o  be 
moonciled anyhow with the  Pioneer 1Q and 11 observations. 

We tu rn  now t o  t he  phase-1 p a r t i c l e s  within t h e  FPR. It has 
been shown t h a t  t he  i n j ec t i on  p r o f l l e s  f o r  these  p a r t i c l e s  
a r e  not of t h e  delta-function type i n  time, but f i n i t e  i n  
width (Palmer e t  a l . ,  1975; Reinhard, 1975a). It is cer ta in ly  
d i f f i c u l t  t o  d i s t ingu ish  whether these  f i n i t e  i n j ec t i on  
p ro f i l e s  stern f r o m  continuous re lease  o r  continuous accel- 
e ra t ion  of pa r t i c l e s .  But i f  the  decay i n  phase 1 is  much 
s teeper  than i n  phase 2 (McKibben, 1973), then t he  p a r t i c l e s  
cannot be replenished by the  neighbouring s torage region 
through the  aame process a s  the  phase-2 pa r t i c l e s .  There 
might be a small s torage region close t o  the  f l a r e  with a 
d i f fe ren t  rc lease  mechanism f o r  the phase-1 p a r t i c l e s  ( t h i s  
mechanism might e x i s t  because of t he  high degree of disturbance 
i n  t he  s o l a r  atmosphere following the  f l a r e ) .  O r  we have t o  
assume t h a t  t h e  in jec t ion  p r o f i l e  d i r e c t l y  gives the  number 
of p a r t i c l e s  as they a r e  accelerated.  

The eecond poes ib i l i t y  i s  very i n t e r e s t i ng  with r e s ~ e c t  t o  
the  twomatage aacePeration procees, which 1s d f s c u ~ o e d  i n  
d e t a i l  e.g. by Lin (1974). In  the first phase non- re la t iv i s t j c  
e lec t rons  a r e  accelerated.  If a su f f i c i en t ly  l a rge  number of 
e lec t rons  is damped i n t o  the  chromosphere and lower corona, 
explosive heating occurs and produces nn e jec t ion  of n~atr!rial 
and n shock wave which accelera tes  e lect rons  and proton5 t o  
re lavi  st i c  enereies.  This p ic ture  s confirmed bv S v ~ s t k a  an11 
F r i  taovh-Sveetkova ( 1974). They prq?~ent convincj ng evidence 
t h a t  proton accelera t ion t o  higher energiea (210 MeV) is 
c l o ~ e l y  connected with type 11 burets ,  t . e .  shock wnves 

t r a v e l l i n e  in  the  so l a r  atmosphere. O u r  above In te rpre ta t ion  
t h : ~ t  the f i n i t e  i n j ec t i on  p ro f i l e s  tnight reoembls the! f i n i t e  
dui*ation of t h e  ~ c c e l c r a t l o n  process i t s e l f  would f a v o r  t h e  

ehock accelere t ion model f o r  protons, and i t  0180 explulnn, 
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why protons may be found on a  wide 1onp;ltudinel ranqe of 
open f i e l d  l i n e s .  

T h e m a l l  l ong i tud ina l  v a r i a t i o n  of t h e  s lopes  of t h e  
proton anerq  epectrum diflcussed i n  sec t ion  3 Implies t h a t  
t h e  p a r t i c l e s  of  phann 1 and phase 2 have the  same energy 
speotrum, which means t h a t  t h e  acce le ra t ion  process should 
work I n  the  same manner on open a8 we l l  as on c l o ~ e d  f i e l d  
l i n e s .  I n  add i t ion ,  any model of t h e  a c c e l e r a t i o n  procea 
s h ~ u l d  expla in  why t h e  s p e c t r a l  e lones f o r  high energy 
protons end r e l a t i v i s t i c  e l e c t r o n s  a r e  rouchly t h e  same, 
8 * 7  (aee Van.Hollebeko e t  a l . ,  19?5). It would a l s o  be 
in tare st in^ t o  see  i f  t he  energy dependence of t h e  decay 
times. a s  suggested by Reinhard ( 1975a) can be reproduced 
by a shock modal acce le ra t ion .  

We cl.08e wi th  a remark which e m ~ h a z i s e s  t h e  r o l e  which t h e  
f a s t  propaeation region mav play f o r  t h e  ~ t u d p  of ~ o l a r  

z 
acce le ra t ion  processes.  The He - r i ch  eventR which a r e  a novel 
f ea tu re  of  s o l a r  cosmic r ays  (Serlemitsos and Balasubrahmanyan, 
1975) appear t o  he observed onlv f o r  ciufficient1.y small 
events  and a r e  only founc! when t h e  parent  flare i s  on t h e  
Western hemisphere (McDonald, p r iva te  communication). This 
might i n d i c a t e  a  spec5 f i c  conf igura t ion  nea r  t h e  Sun, where 
t h e  acce le ra t ion  process supp l l c s  ~ e ?  nuclel  only d l  m c t l y  
t o  open f j e l d  l i n e s .  

6. bonc la~ ionu .  

There Rre two Smportant f e a t u r e s  of the I n te rp l  ane t a r v  
nropagation which allow u s  t o  study coronal t ransnor t  nhenomenn: 
(1)  the  motion o f  ene rqe t i c  p a r t i  a l e s  v e r n ~ n d i c u l n r  t o  t h e  

t m f  t e  small ,  ( 2 )  t h e  s c a t t a r i n q  mean f r ~ e  pa th  alonp the  

i m f  is l a r g e ,  s o  t h a t  detnils o f  t h e  a o l : i ~  i n j ~ c t i o n  p r a f i l ~ s  
can be recained from n ~ ~ n m r ~ m e n t s  i n  RpncP. 

We have t r i e d  t o  order  t h e  mat,erl el  hv mo(ielff f o r  nncr?! - 
e r a t i o n ,  i n j e c t i o n ,  and p r o ~ n ~ n t i o n  nrocernee. None of t h e m  
modelfl h a s  been proven t o  p i v ~  t h e  rea l  phyeical  p i c tu re ,  
because t h e  underlying processes could not ye t  be Iden t i f i ed .  
I n  t h i s  b r i e f  summary we s h a l l  concentrstr! on t t ~ o a e  a w n  nnl ntn 
which could be f u r t h e r  clarified by spncecraf t  rnensurem~nt~  
performed out of t h e  e c l i n t i c  plane .  



( 1 )  What 18 t h e  n a t u r e  of t h e  I l P n ~ t  nranoynt lnn remion1I 
(nrohahlv  + d e n t 1  cnl w l  t h  t h e  "anen cone o f  nr0nnpot.i onn nr 
the  " rep ion  of  p r e f e r r e d  connac t ton  l o n ~ l t u d s a ~ ) ?  Is t h e r e  
ale0 a r e g i o n  of nrefc,rred annneetian l a t i t u d e s ?  If t h e  
l a t i t u d i n a l  e x t e n t  is l i m i t e d ,  what is t h e  n a t u r e  of  the  

boundary? 
( 2 )  If t h e r e  is a t r a n s p o r t  p r o c e s s  involved w i t h i n  t h e  f a s t  

propaga t ion  r e g i o n ,  what is the n a t u r e  of t h i s  p rocess?  
Could i t  he A diffusive prnccss w i t h  R s a ? f i a i ~ n t ! y  larnc! 
d f f f u ~ i o n  c o e f f l n f e ~ + ?  I n  t h i s  case one shnt~lr l  be a b l e  t o  
see t h e  r e l a t , i v e l v  n t r n n p  dcnc!nderir?+* of t h e  mnxlrturn int-enwjtv 
nn a n ~ u l a r  d i s t a n c e  fl f o r  smal 1 8 R S  ~ ~ . S C U S S P ~  jn m c t i  on 3, 
becauua t h e  connect ton p o j n t  of  an e x - e c l l ~ t i c  ~ ~ a e e c r n f t  
comes c l n ~ e r  t o  t h e  a c t i v a  r e p i o n s .  

( 7 )  Is t h e  a c c e l e r a t i o n  n r o c e s s  d i r e c t l y  res?nnsi .b le  f o r  t h e  
l o n g i t u d i n a l  width  o f  t h e  FPH :in11 f o r  t h e  f a s t  a c c e s s  o f  
p a r t i c l e s  t o  open f i e l d  l i n e s ?  If p a r t i c l t ? ~  a r e  a c c e l e r a t e d  
on open f i e l d  l i n e s  by a t r a v e l l i n g  shock and mny then 

escape  i n t o  space, t h e  e x t e n t  o f  t h i  s " p ~ - o m p t ~  r e g i o n  should  
be determined by t h e  d i s t a n c e  which t h e    hock can trnvel  i n  

lonq i  t u d e  ~ n d  l a t i t u d e .  W i l l  we see n a r t i c l  es n r r l v e  VPYV 

f a s t  over t h e  p o l e s ?  
( 4 )  Which r o l e  d o  the s o l a r  s e c t o r  holrndarirts p lav?  Ia t h e r e  n 

s i m i l a r  change i n  t h e  acceuu p ~ o \ ) a b i l i t I e s  i f  one l e a v e s  a 
unipo1.ar c e l l  an  t h e  n o r t h e r n  o r  t.he sou thern  houndnrv? 
If t h e r e  is one l.arpe u n i n o l a r  c e l l .  ( e . ~ .  a corona l  h o l e )  
extendinir, from ishe pole  t o  tht* equrrtor,  i : ~  there  the nljrne 

a c c e s s  p r o b a b i l i t y  nll oveF this ce1.1, o r  is t h e r e  n erndual  
o r  d r a s t i c  change wi th  l a t i t u d e ?  51ould on,? d e t e c t  He ' - r i c h  
e v e n t s  o v e r  t h e  po les?  

( 5 )  What is t h e  n a t u r e  of t h e  c n e r r * y - i n d ? n ~ n r ! ( , n t  slow cor*o~1:11 
p r o p n ~ a t i  on o v e r  lnrf-e d i  . q t : ~ n c c ~ s  i 71 1 orlrri t . l ~ t l ~ ' ?  1~ ~ . \ I c T * ~ ?  '1 

clri f t  nroceRs ( p o f l ~ i b l y  re1 , r t e r l  l o  e l  ec1:r.i r? f ic:llr:;) i nvo lve , l?  

Are the  t , i m r ?  dc layo  and t h e  i n l . enc i  t;v d(1c !.t.:~:;e:; mt?rc*'l I; i~ f ~ ~ ~ ~ c t i o n  
o f  t h e  a b s o l u t e  angular  d i s t a n c e  between f lmre  and o b s e r v e r .  
o r  a r e  t h e  v n r f n t i a n s  t y r , i c u l l v  tliffererit i!~t.o thc  E:n6t.-'dest 

and I n t o  t h e  North-south d:rcctinn'. '  I f  t h o  litrrTe ~ c a l c .  m f  

l o o p s  i n  t h ~  C O I - ~ ~ ~ J  n l ay  an i mpor l . :~n t  role f o r  t+ho  pron:~lyilt;i on. 
onc worlld expect  euch ~ y e t e r n i ~ t i c  ti i f fr!rc!nceu, and thcrr t tie 

p r e f e r r e d  d i r e c t i o n  of  the propogution and the 1n t t tud in : i l  
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extent up t o  whioh partioleo are transported may vary 
with the solar  cycle, because of the difference In the 
average orientation and location of the loops. If the 
interpretat ion i n  section 9 on the importance of magnetic 
reoonneotton processes i e  correct,  the study of large scale 
oorsnaP par t ic le  traneport should give insight into a 
fundamental solar problem. 
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Figure 1: Schematic representation o f  npropegationa and astoragew 
processes, The main difference is in the lateral 
distribution of particles, whereas an observer close 
to the original acceleration region may see the same 
injectlan function in both cases, 

Figure 2: Number of solar events as a function of solar longitude, 
for different particle types and enrgies. Data have 
been collected from Lin (1974). Van Sollebeke et al. 
(1975). Yomerantz 2nd Duggal (1974). and Simett (1974). 

Figr:re 3: The tine of the intensity maximuin (t,) 5s a Function 

of solar longitude. The collection of experi~iental 
points taken from Reinhard and \.'itberenz (1374) is 
compared with calculations. Curves (a: and (c) are 
based on the coronel diffusion nodel (Zeid, 1964) in 
the extended version of F!g and Gleeson (1975), curve 

(DD:, is based on the combination of 2 fast gropagation 
region with the drift-diffusion node1 (Seinhard and 

Roelof, 1475). 

Fipre 4: Angular spread over the solar surface for different 
coronal propagatior, models. Temporal deve1opr;lcnt 
from top to bottom. The influence of the escape 
process is neglected. M is the average particle 
denslty within the cross-hat.ched area ,  @ is 8 
charucteristic r!.:ixiou~r. di s Lance I'; or:. t h e  17.t l'e si te 
reacher] c?fter t ime t. 
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ABSTRACT 

Measurements of i n t e r p l a n e t a r y  d u s t  v i a  z o d i a c a l  l i g h t  

o b s e r v a t i o n s  and d i r e c t  d e t e c t i o n  a r e  d i s c u s s e d  f o r  an 

o u t - o f - e c l i p t i c  s p a c e  probe.  P a r t i c l e  f l u x e s  and 

z o d i a c a l  l i g h t  b r i g h t n e s s e s  are p r e d i c t e d  f o r  t h r e e  

models of  t h e  d u s t  d i s t r i b u t i o n .  These models p r e d i c t  

t h a t  :!lost *f  t h e  i n f o r m a t i o n  w i l l  be o b t a i n e d  a t  s p a c e  

probe d i s t a .  :es less t h a n  1 A.U. from tile e c l i p t i c  p 'ane.  

J o i n t  i n t e r p l  '-.ation of t h e  d i r e c t  p a r t i c l e  measurements 

and t h e  z o d i a c a l  l i g h t  d a t a  w i l l  y i e l d  t h e  b e s t  knowledge 

of  t h e  th ree-d imens iona l  p a r t i c l e  dynamics, s p a t i a l  d i s -  

t r i b u t i o n ,  and p h y s i c a l  c h a r a c t e r i s t i c s  o f  t h e  i n t e r p l a n e -  

t a r y  d u s t .  Such neasurements  are impor t an t  f o r  o u r  

unde r s t and inq  of  t h e  o r i g i n  and r o l e  o f  t h e  d u s t  i n  r e l a -  

t i o n  t o  n e t e o r o i d s ,  a s t e r o i d s ,  and comets ,  a s  w e l l  a s  t h e  

i n t e r a c t i o n  of  t h e  d u s t  w i t h  s o l a r  f o r c e s .  



Introduction 

The microscopic dust particles are an important constituent of 

our solar system. A knowledge of the physical and dynamical 

properties of these dubt particles in three dimensions should 

aid our understanding of the origin and evolution of the plane- 

tary system and furthermore of circumstellar dust clouds as de- 

tected by infrared astronomy. In this.paper we discuss the type 

of dust measurements suitable for an out-of-ecliptic mission and 

the information which could be expected from these measurements. 

The interplanetary dust can be explored from space probes by two 

complementary methods : 

1. Direct detection of individual particles intercepted by a 

sensor. Velocity and mass parameters can be derived and, 

depending on the specific experiment, information on the 

chemical composition. Recent experiments have extended the 

limiting sensitivity down to masses of about 10 -16 g at 

impact velocities of approximately 20 km/s (Hoffn:an et al. 

1975). 

2. Zodiacal light observations. Measurements of the brightness, 

color, and polarization of sunlight scattered by the dust 

particles give information on the average scattering proper- 

ties and the spatial distribution of the dust along the line 

of sight (ref. Leinert 1975). 

Cirect detection has the advantage of defining a complete set 

of parameters for individual particles but the drawback of 



sampling on ly  a  s m a l l  number o f  p a r t i c l e s .  The z o d i a c a l  l i g h t  

o b s e r v a t i o n s  sample a l a r g e  volume o f  s p a c e ,  b u t  t h e  i n f o r m a t i o n  

on t h e  p h y s i c a l  p r o p e r t i e s  o f  t h e  p a r t i c l e s  is i n d i r e c t .  

Combined d a t a  from t h e s e  two methods can be  v a l u a b l e  e s p e c i a l l y  

i f  t h e  d i r e c t  d e t e c t i o n  in s t rumen t  i s  s e n s i t i v e  enough t o  cove r  

t h e  e n t i r e  mass range  which may c o n t r i b u t e  t o  t h e  z o d i a c a l  l i g h t .  

The combined d a t a  can i n  p r i n c i p l e  s p e c i f y  p a r t i c l e  v e l o c i t i e s ,  

o r b i t s ,  s i z e ,  mass rang ' .  s p a t i a l  d i s t r i b u t i o n ,  and t h e  g e n e r a l  

p h y s i c a l  composi t ion o f  t h e  d u s t  g r a i n s  ( s t r u c t u r e ,  d e n s i t y  

e t c . ) .  These pa rame te r s  a r e  neces sa ry  f o r  an unde r s t and ing  o f  

t h e  dynamical h i s t o r y  of  t h e  d u s t  p a r t i c l e s ,  t h e i r  r e l a t i o n  t o  

cometary and a s t e r o i d a l  m a t e r i a l ,  and t h e i r  i n t e r a c t i o n  wi th  i t .  

Ex tens ive  ground-based photometry and p o l a r i m e t r y  of  t h e  z o d i a c a l  

l i g h t  has  been c a r r i e d  o u t  (see Eor example Weinherg 1964, 

Dumont and ~ i n c h e z  1975) .  IIowever, o b s e r v a t i o n s  from t h e  e a r t h  

a l o n e  have t h e  fundamental  drawback t h a t  t h e  s p a t i a l  d i s t r i b u -  

t i o n  and t h e  p a r t i c l e  s c a t t e r i n g  f u n c t i o n  can n o t  be unique1.y 

s e p a r a t e d ,  u n l e s s  some assumptions a r e  made about  t h e  J e c r c a s c  

of  p a r t i c l e  number d e n s i t y  w i t h  s o l a r  d i s t a n c e  and about  t h e  

independence of  d u s t  c o n p o s i t i o n  from t h e  p o s i t i o n  i n  t h e  s o l a r  

system (Dumont and ~ i n c h e z  1975) .  In fo rma t ion  about  t h e  v a l i d -  

i t y  of such assumptions car1 he ob ta ined  b y  z o d i a c a l  l i g h t  pho- 

tometry and p o l a r i m c t r y  i r o n  space  probes  s t i l l  i n  t h e  e c l i p t i c  

p l ane  b u t  f a r  from t h e  e a r t h ' s  o r b i t  (Giese and Dzicmbowski 

1 9 6 9 ,  f lanner  and L c i n c r t  1 9 7 2 ) .  



The zodiacal light experiments on Pioneer 10/11 and 1Ie.lios 

provide the brightness and polarization of the zodiacal light 

a function 0.f heliocentric distance in the ecliptic plans, 

(IIanner ct al. 1975, Link et al. 1975) from which the large- 

scale spatial distribution in the ecliptic between 0.3 and 

3.3 A.U. can be derived. 

Impact detectors with increasing sophistication have been used 

to measure particle fluxes and velocities by experiments on the 

space missions of Pioneer 8/9, Prospero, IIEOS 2, Pioneer 10/11, 

and Helios (Berg et al. 1971, Stdford 1975, Dietzel et al. 1973, 

Hoffmann et al. 1975, Ilumes et a l .  1974, Soberman et al. 1974). 

Pioneer 8/9 and submicronsized impact craters on lunar surface 

samples showed the existence of a component of small particles 

moving vutward from the sun under the influence of non-gravita- 

tional forces (Berg and Grun 1973, Fecktig et. 61. 1974). 

The interplanetary dust forms a non-stable dust cloud in the 

solar system. The continuous sources are mainly c wta, aster- 

oids, and space erosion processes. It is, however, unk~own 

which of these processes contribute to which extent. The main 

dust sink is, besides impacts on planets and their satellites, 

undoubtedly the sun: dust particles spiralling into the sun 

according to the Poyntiny-Robertson effect (Wyatt and Whipplc 

1950) presumably lead to a vaporisation near t h e  sun (Sckanina 

1975) alld hence to a dust stream of s~brr~icronsizcd remnants 



l e a v i n g  t h e  solar sys tem as a r e s u l t  o f  t h e  r a d i a t i o n  p r e s s u r e  

f o r c e .  These so -ca l l ed  beta meteoro ids  (Zook and Berg 1975; 

Zook, i n  p r e s s )  are also produced by mutual  c o l l i s i o n s  o f  

meteoroids .  Hemenway h a s  sugges t ed  t h a t  a component o f  t h e s e  

b e t a  meteoro ids  is be ing  formed d i r e c t l y  a t  and e j e c t e d  by t h e  

sun  (Hemenway et  a l  1972) .  I n  a d d i t i o n  t o  t h e s e  i n t e r p l a n e t a r y  

p a r t i c l e s ,  a component o f  i n t e r s t e l l a r  o r i g i n  can  p o s s i b l y  be 

expec ted ,  

Models o f  Out -of -Ecl ip t ic  Dust D i s t r i b u t i o n  

To p r e d i c t  t h e  p a r t i c l e  f l u x  and t h e  z o d i a c a l  l i g h t  b r i g h t n e s s  

which might b e  observed  from an o u t - o f - e c l i p t i c  p robe ,  w e  chose  

t h r e e  models f o r  t h e  s p a t i a l  d i s t r i b u t i o n  o f  t h e  d u s t ,  as de- 

s c r i b e d  by G i e s e  (1975) . 

I : n ( r )  = no- r  -V (1 + (ysine,) 2 -v/2 I ;y = 9.0 (dL ipso id  model) 

-v 
1 : n ( r )  = n - r  o exp [ - ( Y z ) ~ ] ;  Y = 2.5 (Gauss model) 

-v 
111 : n ( r )  = n - r  exp  [ - l r s inB  I ; 1 Y = 3.0 (Fan model) 

0 0 

Here n ( r )  is t h e  p a r t i c l e  number d e n s i t y  a s  a f u n c t i o n  o f  d i s -  

t a n c e  r ( A . U . )  from t h e  sun ,  no is t h e  number d e n s i t y  a t  1 A.U. 

i n  t h e  e c l i p t i c  p l a n e ,  z (A.U.)  i s  t h e  d i s t a n c e  above o r  below 

t h e  e c l i p t i c  p l a n e ,  and !Be is t h e  h e l i o c e n t r i c  e c l i p t i c  l a t i t u d e  



(sinBo = z / r ) .  W e  have set t h e  parameter v = 1.0, c o n s i s t e n t  

wi th  the Pioneer  10/11 and Helios zod ieca l  l i g h t  d a t a .  The 

f l a t t e n i n g  parameter y w a s  a d j u s t e d  f o r  each model t o  g i v e  t h e  

ratio 0.32 f o r  t h e  b r i g h t n e s s  o f  t h e  z o d i a c a l  l i g h t  a t  t h e  

e c l i p t i c  po le  to  t h e  b r i g h t n e s s  i n  t h e  p lane  a t  e longa t ion  go0, 

a s  observed by Dumont (1973). 

Contours o f  e q u a l  d u s t  d e n s i t y  a r e  i l l u s t r a t e d  i n  Figures  l a ,  

l b ,  and lc  r e s p e c t i v e l y  f o r  t h e  t h r e e  examples. A l l  t h r e e  

models p r e d i c t  t h a t  t h e  d u s t  is considerably  concent ra ted  

toward t h e  e c l i p t i c  plane. In  comparison, t h e  s p a t i a l  d i s t r i -  

bu t ion  of r a d i o  meteors de r ived  by Southworth and Sekanina (1973) 

shows a s i m i l a r  z-dependence a t  a x-distance o f  1 A.U., b u t  an 

i n c r e a s i n g  nlunber d e n s i t y  b e y ~ n d  1 A.U. i n  t h e  e c l i p t i c  p lane .  

The 0.5 contour  i n  our  examples ranges from z = 0.2 t o  0.4 A.U. 

a t  x = 1.0 A.U.. The s p a t i a l  d e n s i t y  a t  1 A.U. away from t h e  

e c l i - p t i c  is a t  m o s t  0.1 n . Thus, obse rva t ions  of t h e  zod iaca l  
0 

l i g h t  and d i r e c t  d e t e c t i o n  of p a r t i c l e s  w i l l  t a k e  p lace  mainly 

a t  space  probe d i s t a n c e s  less than 1 A.U. from t h e  e c l i p t i c .  

Direct Detec t ion  

Direct measurements from an o u t - o f - e c l i p t i c  mission could h e l p  

t o  i d e n t i f y  t h e  va r ious  sources  and s i n k s  of t h e  non-stable d u s t  

cloud. On t h e  b a s i s  of t h e  r e s u l t s  of P ioneers  8/9 and HEOS 2 



missions in the ecliptic at 1 A.U. and on the basis of the 

three models referred to above, the number of events per orbit 

were computed for a detector surface of 100 cm2 and a space 

probe on a circular orbit of 1 A.U. radius having an ecliptic 

i~clination of 30° or 60° or 90° respectively. Two cases of 

vehicle stabilisations (spinner with axis perpendicular to the 

orbital plane and three-axis stabilisation) were considered. 

The results are presented in Table 1 excluding or including 

the case of particles coming directly from the sun (marked 

'no sun particles' or 'sun particles'). 

From these data it is evident that, while such a particle detec- 

tion experiment is not able to differentiate among the various 

nlodels of the spatial distribution directly, it could provide 

information on the role of the sun as a possibie dust sink or 

source. Furthermore, the event rate is sufficient to continue 

analysis of enough individual particles to look for differences 

in conposition between particles with low- and high-inclination 

orbits . 

Zodiacal Light - 
The brightness and polarization of the zodiacal light can be 

predicted theoretically as a function of observing direction 

and observer's position in t!~e solar syster.1 for any spatial 

distribution. If one assunes, that the average scattering 

?roperties of the particles are independent of location in the 



solar s y s t e m ,  t h e n  t h e  b r i g h t n e s s  variation w i t h  s p a c e c r a f t  

p o s i t i o n  is d i r e c t l y  r e l a t e d  to  t h e  s p a t i a l  d i s t r i b u t i o n  o f  

t h e  dus t  (IIanner and  L e i n e r t  1 9 7 2 ) .  t i o d e l s  f o r  t h e  z o d i a c a l  

l i g h t  d i s t r i b u t i o n  o v e r  t h e  s k y  as s e e n  f rom a n  o u t - o f - e c l i p t i c  

s p a c e  p r o b e  w e r e  d i s c u s s e d  by G i e s e  ( 1 9 7 1 ) .  Ey u s e  o f  t h e  

same program we h a v e  corrputed f o r  o u r  t h r e e  d u s t  n o d e l s  t h e  

v a r i a t i o n  o f  z o d i a c a l  b z i g h r n e s s  f o r  a n  o u t - o f - e c l i p t i c  s p a c e  

p r o b e  on a  c i r c u l a r  o r b i t  of 1 A.U. r a d i u s  a s  a f u n c t i o n  o f  t h e  

z d i s t a n c e  between t h e  s p a c e p r o b e  and  t h e  e c l i p t i c  p l a n e .  The 

maximum v a l u e  zm o f  z  is  r e l a t e d  t o  o r b i t a l  i n c l i n a t i o n  i by 

zm = (1 A.U.) - s i n  i. F o r  t h e  s c a t t e r i n g  f u n c t i o n  a s i m p l e  

d i f f r a c t i o n  p l u s  i s o t r o p i c  r e f l e c t i o n  form ( a l b e d o  = 1) was 

chosen.  The s i z e  d i s t r i b u t i o n  a d o p t e d  was a 3 - p a r t  power l aw 

n ( a ) d a  a-' w i t h  K = 2.7;  2 ;  or 4 . 3 3  i n  t h e  r e g i o n s  o f  p a r t i c l e  

r a d i i  f rom 0.008 t o  0.16; 0.16 t o  29; or 29 t o  189 urn,  and  

i n  e a c h  reg ime ,  r e s p e c t i v e l y .  T h i s  i s  a f a i r  a p p r o x i m a t i o n  

t a k i n g  i n t o  a c c o u n t  b o t h  t h e  d i s t r i b u t i o n  o f  p a r t i c l e  r a d i i  a s  

d e r i v e d  by Grun (1975)  f rom d i r e c t  measurements  ( F e c h t i g  e t  d l .  

19741,  and  the b r i g h t n e s s  of 200 stars o f  t e n t h  magni tude  p e r  

s q u a r e  d e g r e e  (200  SlO) found by Dumont and  ~ i n c h e z  (1975)  a t  

E = 90' e l o n g a t i o n  i n  t h e  e c l i p t i c .  

F i g s .  2 a  t h r o u g h  2c  p r e s e n t  t h e  d e c r e a s e  o f  z o d i a c a l  l i g h t  

b r i g h t n e s s  w i t h  i n c r e a s i n g  o r b i t a l  a l t i t u d e  z o f  t h e  p r o b e  f o r  

t h e  t h r e e  models of  F i g .  1. The v iewing  d i r e c t i o n  from t h e  



probe is parallel to the ecliptic plane and perpendicular to 

the sun (Fig. 2a); in the positive z direction (Fig. 2b); or 

parallel to the negative x direction (Fig. 2c), In all cases 

the models predict brightness values easily observable ( ? 10 SlO) 

at space probe z distances up to 0.4 A-U. (Model 11) or up to 

approximately 1 A.U. (Models I and 1111, and at the same time 

observable differences between the models, particularly in the 

case of Model I1 with its flattened outer contours. Even if 

the density does not follow the functional forms we have chosen 

as examples, the brightness variation with space probe z dis- 

tance at a constant observing direction will give a measure of 

the rate of dust decrease away from the ecliptic plane. To 

look for any systematic changes in the average scattering proper- 

ties of the particles (size, composition) with z distance, 

polarization measurements as a function of elongation are neces- 

sary, in addition to brightness observations (see Giese and 

Dziembowski 1969). 

Interstellar Dust - 

The existence of an interstellar component in the solar system 

dust cloud has been proposed by Greenberg (1969) and others. 

Even if such small particles are excluded from the inner solar 

system by radiation pressure, they might be observable with a 

sensitive detector at large heliocentric distance, during the 



transfer orb i t  of  an out -of -ec l ipt ic  probe. If w e  take, for  

example, a number density o f  3 - 10-l) particles/cm3 of  

i n t e r s t e l l a r  or ig in  and a r e l a t i v e  ve loc i ty  o f  30 km/sec 

between the par t i c l e s  and a 100 cm2 detector ,  8 such p a r t i c l e s  

should be detectable each day. 



Conclus ion  

A j o i n t  d u s t  exper iment  which combines d i r e c t  d e t e c t i o n  o f  t h e  

v e l o c i t y  and mass of i n d i v i d u a l  p a r t i c l e s  w i t h  measurements o f  

t h e  z o d i a c a l  l i g h t  b r i g h t n e s s  and, i f  p o s s i b l e ,  p o l a r i z a t i o n  

w i l l  b e s t  s e r v e  t h e  purpose  o f  an  o u t - o f - e c l i p t i c  mi s s ion .  

These two complementary methods t o g e t h e r  w i l l  g i v e  a p i c t u r e  

of t h e  th ree-d imens iona l  dyni~mics  and s p a t i a l  d i s t r i b u t i o n  o f  

t h e  i n t e r p l a n e t a r y  d u s t .  Such a  p i c t u r e  w i l l  h e l p  t o  c l a r i f y  

t h e  r e l a t i o n  o f  d u s t  p a r t i c l e s  t o  cometary and a s t e r o i d a l  ma- 

t e r ia l  as w e l l  a s  t h e  i n t e r a c t i o n  of  t h e  d u s t  w i t h  t h e  solar 

r a d i a t i o n  f i e l d .  The i n f l u e n c e  of t h e  sun on p a r t i c l e  n o t i o n s  

and p h y s i c a l  c h a r a c t e r i s t i c s  h a s  a  s i g n i f i c a n c e  f o r  t h e  role o f  

t h e  d u s t  i n  t h e  e a r l y  e v o l u t i o n  of t h e  s o l a r  nebu la  and e a r l y  

phases  o f  s t e l l a r  e m l u t i o n .  
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Figures 

Fig. 1 Surfaces of equal number densi ty  of dus t  p a r t i c l e s  

i n  the  in terp lanetary  cloud 
no number densi ty  i n  the  e c l i p t i c  plane a t  1 A.U. 

from the  sun 
x 8o la r  dis tance i n  the e c l i p t i c  plane (A.U.) 

z hight  above the  e c l i p t i c  plane (A.U.) 

a )  El l ipsoid  Model ( re f .  t e x t  case I, v = 1; y = 9 )  

b) Gauss Model (case 11; v =  !; y =  2.5) 

C )  Fan Model (case 111; v =  l ; y =  3 ) .  

Fig. 2 Brightness of the zodiacal l i g h t  a s  seen by a spaceprobe 

ascending t o  an a l t i t u d e  of z (A.U.)  above the e c l i p t i c  

plane on a c i rcu la r  o r b i t  of 1 A.U. radius.  
SI0:Stars of 10th magnitude per square degree 

dashed curve: Ellipsoid-moCol 

dots : Gauss-model 

so l id  curve : Fan-model 

a )  d i rec t ion  p a r a l l e l  t o  the e c l i p t i c  plane a t  r i g h t  

angle t o  the so la r  d i rec t ion  ( E  = go0) 

b) direc t ion  towards t h e  ccliptl: pole (+  z d i rec t ion)  

C)  directioi? parallc.1 t o  ?:he -c! .i ptic plane and 

p a r a l l e l  t o  the cnrth'sun dirc:c: t io~.  ( -  x a x i s )  . 
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A MEANS OF -- I N  SITU MEASUREMENTS OF NEUTRAL 

H AND HE ON AN OUT-OF-THE-ECLIPTIC MISSION 

K. C. Hsieh 

Department of Physics 
Univers i ty o f  Arizona 
Tucson, Arizona 85721 

ABSTRACT 

On an out -o f - the-ec l ip t ic  mission, - i n  -- s i t u  nlcasurements o f  

densit ies and temperature of i n t e r s te l  t a r  neutral  H and He i n  the 

he1 iosphere should complement observations based on backscattered 

Lyman-alpha in tens i t ies .  A nleans o f  performing the -- i n  s i t u  measurements 

i s  b r i e f l y  described. 



The experiments performed by the groups a t  the University o f  Paris 

(Bertaux and Blamont, 1971) and a t  the Univers i ty o f  Colorado (Thomas and 

Krassa, 1971) have provided us the f i r s t  glimpse o f  the presence and the 

d is t r ibu t ions  o f  i n t e r s t e l l a r  neutral H and He i n  the heliosphere. 

L ike a l l  opt ica l  observations, the observations o f  neutral  H and He by 

backscattered Lyman-alpha photons are i nd i r ec t  and in tegra l  i n  nature. 

Therefore, t h e i r  resu l ts  are constrained by the assumptions one must make 

about the propert ies o f  the solar wind and those o f  the solar  H and He 

Lyman-alpha emissions as well  as the temperature o f  the i n t e r s t e l l a r  H 

and He. To complement the opt ica l  measurements, i n  s i t u  d i rec t  determination 

o f  the densit ies and temperature o f  the H and He w i  11 be necessary. 

An out-of- the-ecl ipt ic  mission would provide the unique opportunity for  

such an e f f o r t  since the re la t i ve  ve loc i ty  o f  the sun t o  the i n te r s te l l a r  

medium points ou t  o f  the ec l i p t i c .  

The necessary -- i n  s i t u  measurements can be performed wi th  an 

instrument o f  low power (1  W), low mass (< 3 kg) and s ing le-par t ic le  

counting capabi l i ty  such as the f ie ld - ion iza t ion  neutral detector (FIND) 

being developed a t  the University o f  Arizona (Curt is  al-. , 1975). Figure 

1  i l l u s t r a t e s  the pr inc ipa l  parts o f  FIND. The i o r~ i za t i on  t ips ,  the g r i d  

and the surface-barr ier S i  detector are encased i n  a  chamber w i th  an 

entrance aperture. Neutral H and He enter the chamber and as they 

reach the v i c i n i t y  o f  the t ips ,  they are f ie ld- ion ized .to become H' and 

t 
lte , respectively. These + I  ions are immediately accelerated towards the 

detector and t he i r  e lec t r i ca l  signals analyzed. 

Although a l l  the ions a r r i ve  a t  the detector w i th  essent ia l ly  
t 

i dcn t i ca l  k i ne t i c  cneryies acquired i n  acceleration, He , b e i n g  wore 



massive, w i l l  i n t e rac t  w i th  the c rys ta l  l a t t i c e  o f  the detector more and 

thus provide a smaller e l e c t r i c a l  signal thdn an H' o f  same energy. 
+ 

Figure 2 i s  a composite p l o t  showing that  the He peak i s  shi f ted by 2.8 KeV 

from the H' peak which appears a t  26 keV, corresponding t o  the accelerat ing 

potent ia l  o f  26 kV. We note t ha t  each pulse-height d i s t r i bu t i on  i s  gaussian 

and has wel l  defined peak pos i t i on  and FUHM. Therefore, using only one 

detector and one pulse-height analyzer the two species can be separated. 

Our laboratory resu l t s  a lso indicate that  w i th  a bundle o f  200 

needles a t  +26 kV facing a 1 cm2 detector a t  a distance o f  1 cm, sens i t iv -  

i t i e s  o f  3 x 10" counts sec" per u n i t  f l u x  (1 u n i t  f l u x  = 1 rm'2 sec'l) 

f o r  H and 4 x 10" f o r  He i n  the same un i t s  can be attained. Assuming 

an H f l u x  o f  l o 4  sec'l, e.g., n = 0.01 cm'j and v = 10 km sec", 

a detector background of 1.4 x E'le2 set-I keV" (G. Gloeckler, 

pr iva te  communication, 1974) and an FWHM o f  3 keV, then H signals can be 

we1 1 separated from the background i n  one day's accumulation. (Actual 

background can be determined i n  f l i g h t  by turning o f f  the high voltage 

supply t o  the ion izat ion t i ps . )  Figure 3 i s  a computer simulation based 

on the above assumptions. I n  add i t ion t o  H , He o f  three d i f fe ren t  r e l a t i v e  

abundances are also included. The varied n(He)/n(H) are due t o  the 

d i f ferent  values the parameter 1~ might take (see review by Axford, 1972). 

A least-square f i t  of two gaussian d is t r ibu t ions  of known peak posit ions 

and FWHM's t o  any of the three curves shown i n  Figure 3 w i l l  y i e l d  the 

corresponding n(H) , n(He) and n(He)/n(H). 

The above descr ipt ion of FIND leaves l i t t l e  doubt that  i~ eiy deter- 

mination of neutral  H and He concentrations can be performed. I n  addit ion, 

i f  the aperture of FIND scans the pa r t  o f  the sky surrounding the d i rec t ion  

o f  ~l~axirnuel f lux, the angular d i s t r i bu t i on  o f  the neutral f l ux  would then 



be a measure of the  temperature o f  the neutra l  gas a t  the p o i n t  o f  

observation. With an i n s t r u ~ ~ i c n t  such as FINO complementing a Lyman-alpha 

spectrometer on a spacecraft t h a t  covers l a rge  he1 i o c e n t r i c  distances and 

l a t i t udes ,  the  l o c a l  i n t e r s t e l l a r  mediufi and it: in terac t ions  ni t h  the 

s o l a r  wind can be examined f u l l y .  
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FIGURE CAPTIONS 

Figure 1. An over -s imp l i f ied  diagram o f  FIND. For actual space missions, 

the i o n i z a t i o n  t i p s  and the detector  assembly should be protected 

from low energy charged p a r t i c l e s  by the  use o f  repel 1 i n g  g r i ds  

a t  the entrance aper ture and from y-rays and secondary 

p a r t i c l e s  by the use o f  an a n t i  -coincidence guard counter 

immediately behind and surrounding the  i o n  detector.  

Figure 2. Laboratory r e s u l t s  showing the d i f ference i n  the pulse-height 

d i s t r i b u t i o n s  o f  H+ and ~ e '  s ignals by a 2.8 keV s h i f t .  

Both i o n  species have an average k i n e t i c  energy o f  26 keV. The 

noise o f  the de tec tor  i s  5.5 keV (FWHM). 

Figure 3. Predicted pulse-height d i s t r i b u t i o n s  o f  an H f l u x  o f  1 x l o 4  

sec" and He f luxes o f  l o 3  , l o 4  and l o 5  c~n'~ sec'l as seen 

i n  on; day's dccun~ulat ion by a FIND having an accelerat ing 

po ten t i a l  o f  26 kV, a detector  noise of 3 keV (FWHM) and a 

background fo l lowing the d i s t r i b u t i o n  1.4 x 10" E ' l e 2  sec'l kcU" . 
The sens i t i v i es  t o  H and He used i n  t h i s  ca l cu la t i on  are  

3 x  10'' counts set" per u n i t  f l u x  i n d  4 x 10-' counts sec'l 

per u n i t  f l ux ,  respect ive ly .  



SCHEMATIC Dl AGRAM 
FIND:Field- Ionization Neutral Detector 

G Multi-channel 
DISC --+ ?HA > 

+ IT = ionization tips 
G =grid at ground potential 

H.V D =Si detector 
SUPPLY CSA= charge- sensitive amplifier 

Dl SC=discriminator 
PHA=pulse height analyzer 

- - - 
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