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We have rscently conducted a preliminary study on the f lssibi l i t ;  

o f  coinbining the out-of-ecl ipt ic (OOE) mission w i  th a solar-probe 

mission. I n  part icular,  we have been looking a t  the poss ib i l i t y  o f  

having a high-incl ination OOE probe coinplemented by a second probe 

going from Jupiter t o  the sun along a rec t i l inear  path (at  least  f o r  

the seg,nent from 0.3 a.u. inward t o  the sun). 

The sc ien t i f i c  in terest  i n  approaching close t o  the sun i s  obvious 

sir,ce i t  enhances observation o f  part ic les,  f ie lds,  and gravitat ional 

harmonics. Our par t icu lar  choice o f  patn resul ts from the associated 

s impl ic i ty  of , the spacecraft configuration needed t o  provide, fo r  

exan?le, good thermal control , a drag-f ree system, and good communica- 

t ions with the earth. 



A preliminaty e m r  analysis conducted by 3. D. hdemon o f  the 

Je t  Propulsion Laboratory leads to  very interest ing conclusions fop 

an e l l i p t i c a l  o r b i t  wi th  a perihelion distance of 16Ro. Assuming that  

the nong~' iv i tat imal forces are compensated by a drag-free system 

(with three degrees o f  freedm) and tha t  the  spacecraft i s  tracked 

down t o  perihelion, the quadrupole moment o f  the sun can be determined 

7 with an accuracy o f  3 parts i n  10 . Since the e s t i u t e d  value o f  J2 

ranges f m  3 x (applying Dicke's theory) t o  1 x loo7 (assuming 

r i g i d  ro ta t ion  o f  the i n t e r i o r  wi th  the observed surface), the in ter-  

es t  i n  determining t h i s  moment wi th  an accuracy o f  a t  least  1 part i n  

7 10 i s  clear. Ye remember tha t  J2 gives i fundamental constraint t o  

2 the m e n t  o f  i ne r t i a  (or the r a t i o  C/MR ) and, therefore, on the 
U 

internal  density d is t r ibu t ion  o f  th, a sun. 

As mntioned above, the resu l t  obtained by Anderson implies a 

2 three-axis drag-free system wi th an accuracy o f  m/sec . A drag- 

f ree system having t h i s  accuracy has recently been flown i n  the 

TRIAD satel ji te. I f ,  however, we choose a solar-impact 

trajectory, then by using a spinning spacecraft, a one-axis drag-free 

system c?.n be implemented tha t  requires much less complexity. I n  

fact, a spacecraft spinning abotrt an axis aligned wi th  the rec t i l inear  

path would allow 1)  gyrostabil ization (from 0.3 a.u. t o  the sun), 2) 

an easier desi gn f o r  thermal shielding, and 3) a one-degree-of-freedom 

drag-f ree system. I n  part icular, a sphere wi th  an electrostat ic 



suspension i s  f ree to move along the spin axis wtth no exchange 

o f  f o r c ~ i i  along the path. The d i  s p l a c e n t  o f  the sphere along 

the spin.axis w i l l  be sensed, causing the thruster (oriented along 

We spin axis) to compensate the nongravitational forces along the 

path t o  the desired accuracy. The spacecraft w i l l  be forced to 

fo l low the proof mass and, therefore, to  follow a purely gravita- 

t iona l  path. Transverse forces should bec'4 orders of magnitude 

smal l e r  and need not be compensated. The drag-free sys tm can be 

calibrated when the probe i s  f a r  from the sun (5 a.gC.) i n  order t o  

f i nd  the equil ibrium posi t ion along the spin axis o f  the proof mass 

i n  the gravi ty f i e l d  o f  the spacecraft. 

During the 3.5da.y~ tha t  the spacecraft w i l l  spend i n  going fm 

0.25 a.u. t o  0.01 a.u. and closer, the eartksun-probe geometry w i l l  

permit the earth t o  be i n  the beam o f  the 0.2-*diameter antenna 

pointing para l le l  to  the spacecraft spin axis. The Jupiter-swingby 

technique has enough f l e x i b i l i t y  t o  enable the mission t o  be timed 

so that the earth-spacecraft l i n e  remains wi th in  a few degrees of 

the direct ion o f  the spacecraft track. A 20-cnr dish mounted on the 

s2acecrafi operating i n  the X band has a beamwidth o f  8' and a gain 

o f  27 do.  By using a 61-18 dish on the earth, th is  w i l l  allow a 

i i - a ~ ~ i ~ i i ~ s i o n  dsia rat2 f r o ~ n  56 t o  103 bits/sec, evsn wi th  the  nois2 

of the sur, i n  the backgrotind. Doppler tracking using two frequencies 

i n  the X b 6 n ~  (8 and 12 GHz) should y i e l d  a relat ive-veloci ty rrieasure- 

;;rnt accuracy of the order o f  crnlsec (1 ) with 60-sec iniegra- 

ticn t-;me. 



Fro& Jupiter inward Lo 0.5 a. u. , tile spacecraft w i  1 l operate 

i n  the Pioneer mode, performing selected experiments related t o  the 

so;ar stereoscopic and missions. The two-f requency radio- 

science experiment w i l l  allow the integrated electron content t o  be 

deterigf ned a t  each instant, and perhaps a wei ghteci component o f  the 

in2egrated magnetic f i e l d  (from Faraday rotation). 

From 0.5 a.u. inward, however, the mission w i  11 become m r e  sun- 

oriental. The spacecraft spin axis w i l l  be directed sunward a t  

th is  tire, and the drag-free servo system w i l l  be activated. S a w  

relevant' probc parameters inside 0.5 a.u. are given i n  Table 1. 

Table I .  Probe parameters. 

Solar Distance Time to 4% Velocity Equi 1 i b r i  urn 

(a*u. (Rs) (days (km/sec) Temperature 
(OK)  



The temperatures shwn i n  the table are surface temperatures 

related t o  a properly designed re f lec t i ve  heat shield tha t  covers 

the "front" side o f  the spacecraft; the internal  temperatures o f  

the spcecra f t  will not necessarily be so high. Furthermore, the 

l a s t  few solar r a d i i  are traversed i n  less than an hour, during 

which time, thermal equil ibrium w i l l  not be established. It i s  

en t i re ly  possible that  the system w i l l  survive t o  2 R,! I f  i t  does, 

a straightforward calculation shows that  tracking t o  a doppler 

accuracy o f  cm/sec over the half-hour in terva l  required f o r  

the spacecraft t o  fa1 1 from 3 t o  2R would permit J2 t o  be deter- 

rninrd t o  an accuracy o f  100~. Since a realistic estimate o f  the mg- 

n i  tude o f  J2 i s  about lom7, as i s  sham i n  the Append i x  , an extremely 

valuable resu l t  would be guaranteed. 

Obviously, many detai 1s o f  engineering design and sc ien t i f i c  

agplicabil  i t y  rsrnain t o  be worked out f o r  th is  mission. But the 

preliminary e f f o r t  so f a r  expended appears more than su f f i c ien t  to 

warrant t h i s  fur ther  pursuit. 



J2 OF THE SUN 

The value o f  J2 can be in fe r red  f o r  a r o ta t i ng  a x i a l l y  sym- 

metr ic  bocly by means o f  the f i r s b o r d e r  formula (Jef f r ies,  1970) 

3 - z J 2 - f g z  I", s (1 ) 

2 where f i s  the f la t ten ing  and m = u Re/ge i s  the r a t i o  o f  cent r i -  

fiigal force a t  the equator t o  g rav i t y  a t  the equator. The assump- 

t ions made are tha t  the grav i ta t iona l  potent ia l  i s  given by i t s  

f i r s t  two terms only, 

vg = P [I - J2 (3' P2 ( s i n  (jj , 

acd tha t  the surface i s  r o ta t i ng  uniformly so t ha t  the cent r i fuga l  

force can be derived from the potent ia l  

Then the actual surface w i  11 be a leve l  surface o f  the potent ia l  

i f  the surface i s  no t  ro ta t ing  uniformly, we can modify equation 

(i) ay assuniing that, a t  ally la t i tude,  the surface w i l l  be perpen- 

dicular  t o  t he  r e s ~ l i  tant  o f  the g rav i t y  force given by the  gradient 

2 o f  s(;uaiion (2 )  and the centr i fugal  force equal t o  w ( ~ ) r  c o s ~  and 

directed away froii) the axis o f  ro ta t ion.  Assuming tha t  the shape o f  

tne surface i s -g iven  by r = RE ( 1 - Y ) ,  we f ind, t o  f i r s t  order, 



We assume tha t  the angular vc loci  ty o f  the s ~ n ' s  surface can be 
2 approximated by a(() = wo - u2 s i n  $ and obtain 

where mo a u 2 RJg,. Fur the sun, we have m = 2.14 x lo-', 4 - - 
0 

14.4 '/day, and u2 4.5°/day. so the second t e r n  i n  equation (5) 

l i e s  between 7.7 x 1 0 ' ~  and 10.7 x 10-', depending on whether the 

d i  f fe ren t i  a1 ro ta t i on  i s  included o r  not. The best determination 

o f  the f l a t ten ing  o f  the sun ( H i 1  1 ,  1974) i s  f = (9.6 t 6.5) x 10'~. 

It i s  c lear  t h a t  J2 cannot be derived w i th  ary accuracy f r o m  equdtion 

(5) ,  since i t  i s  the di f ference between two not  very we1 l-known quan- 

t i t i e s  o f  nearly equal magnitude. 

I f  the sun i s  ro ta t ing  uniformly and i f  the densi.ty d i s t r i bu t i on  

i s  known, J2 cae be d i r e c t l y  calculated. Following an analysis by 

Sterne (19396), we define the "apsidal motion coe f f i c ien t  ," 

where sS i s  the value a t  the surface o f  the var iable Q, which i s  zero 

a t  r = 0 and which sa t i s f i es  Radeau's equation: 

I n  equation ( 6 ) ,  p i s  the d e n s ~ t y  a t  r and p m  i s  the mean density 

i n t e r i o r  t o  r. Then, 



where m has been previously defined. The coe f f i c ien t  k depends 

so le ly  on the d i s t r i bu t i on  o f  mass w i t h i n  the star, ranging from 

zero f o r  a completely concentrated s t a r  t o  314 f o r  a homogeneous 

star .  Values o f  k have been calculated (Motz, 1952) f o r  so lar  

rrodels by Schwarzschild (1946) and by Epstein (1951). Motz obtained 

k = 0.00585 and 0.00599, which leads t o  J2 = 8.3 x and 8.5 x 

respe-tively. Calculating J2 f o r  three l a t e r  so lar  n~odels, we found 

J2 = 1.56 x lo-' f o r  a zero-age sun (Schwarzschi ld,  1958)and J2 = 

1.41 x and 1.20 x loo7 f o r  two models o f  the present sun 

(Wey~ann, 1957, and Sears, 1964). A1 though we do not a t  present have 

deta i led calculat ions o f  l a t e r  so la r  models, we note t ha t  a recent one 

(Hoyle, 15?5),proposed t o  explain the low neutr ino emission from the 
3 sdn , has the unusually 1 ow central  densf t y  o f  75 g/cm . The r a t i o  o f  

central  t o  mean density i s  then 53.2, which i s  qu i te  close t o  54.2, the 

r a t i o  of central  t o  mean density o f  the "standard model ," a polytrope 

o f  index 3. Russell (1928) found k = 0.0144 for  a polytrope o f  index 

3, so we consider 2 x t o  be a redsonable upper l i m i t  t o  the value 

o f  d2 ftir a uniformly ro ta t ing  sun. 

I: i s  o f  i n te res t  t o  consider a lower bound t o  k and, hence, t o  J2. 

The mast concentrated s ta r  w i th  a given central  density i s  the general- 

ized Roche model, which consists o f  a homogeneous core, w i th  a density 

equal t o  the central  density contafning a1 1 the s ta r ' s  mass, and an 

envelope w i th  in f in i tes ima l  



density. Radeau' s equation can then be solved analytically (Sterne, 

1939b) to obtain 

Uith current estimates of the central density o f  the sun ranging from 

about 75 t o  about 150 g/an3, we f ind  the lower l i m i t  of J2 to be 

between 1.4 x loo8 and 4.5 x loo9. 
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