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Abstract

The reasons for studying cosmic-ray transport theory are
summarized and the fundamentally three-dimensional nature of the
process is pointed out. Observations in the ecliptic plane cannot
unambiguously test transport theories since the solutions to the
transport equations depend critically on boundary conditions and
variation of parameters such as diffusion tensor out of the ecliptic.
Sample calculations are shown which illustrate the problem. It is
concluded that out-of-the-ecliptic observations are essential to

further test transport theory.

-188-



I. Introduction

The study of cosmic-ray transport theory has an old and vener-
able history, for it is clear that in order to understand anything
in cosmic-ray astrophysics we must first understand transport. The
observed near-isotropy of cosmic rays was early recognized to imply
that the orbits of the particles have been severely distorted in
their motion through space. Since the work of Fermi (1949) it has
been understood that the motion must be treatasd statistically, since
the plasmas and magnetic fields through which the cosmic rays move
are irregular and turbulent. This basic fact leads to the view that
the spatial motion of cosmic rays is to a very good first approxima-
tion a random walk in three dimensions.

The solar wind provides an excellent local laboratory for testing
our ideas of cosmic-ray transport by comparing in situ obserQations
with theory. A comprehensive theory has been developed which has
had reasonable success in explaining the various cosmic-ray phenomena
in the solar wind (see reviews by Jokipii, 1971 and V61k, 1975).
Before going on to discuss this theory in detail, it is useful to
emphasize that irrespective of the detailed theory, cosmic-ray trans-
port theory is fundamentally three-dimensional and that this problem
is much more severe than for some other aspects of the physics of
the interplanetary medium. The general picture is illustrated in

figure 1 for particles originating in the galaxy or at the sun. It
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'3 a2vident that, for exanmple, there is no viewing direction in which
one sees cosnic rays which have sampled only the ecliptic plane.
This conclusion depends only on the turbulent nature of the inter-
planetary plasma and the consequent stochastic motion of the cosmic-
ray particles.

One can, of course, dream up experiments which could be used to
study cosmic-ray transport iocally. For example, a useful experi-
ment would be to inject a small beam of ''tagged" cosmic rays at one
npoint and measure them a distance ~0.1 a.u. away. But such experi-
rents are clearly not possible in the near future. We must be
content with what nature provides, and work with the full three-
dimensional problem.

The preceding discussion his intentionally been as general as
pcssible in order to emphasize the fundamental nature
o° the conclusions, In the next section, the current detailed theory
of cosmic-ray trinsport is discussed, then some quantitative calcu-
iations are presented which illustrate the effects of uncertainties

ir parameter outside of the ecliptic.
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II. Current Transport Theory

The current theory of cosmic-ray transport has been comprehen-
sively discussed in an earlier review by the author (Jokipii, 1971).
The theory works at two levels, which could be termed the “‘macro-
scopic' and the "microscopic'. This is illustrated schematically
in figure 2 which shows the particle being scattered randomly by the
magnetic fluctuations. Hence the particle pitch angle 0 undergoes a
random walk., The details of this scattering process and its relation
to the detailed microstructure of the magnetic fluctuations are
studied in the microscopic theory, whereas the resulting spatial
diffusion is considered in macroscopic theory. Thus, for example,
in the simplest form of quasilinear theory, where only planar magnetic
fluctuations with wave vector parallel to the average field are con-
sidered, the pitch-angle scattering is characterized by the Fokker-
Planck coefficient

w2
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wvhere mo = qBO/mc is the particle cycliotron frequency in the average
field B, u = cos®, w = particle speed, r.= w/wc, and P, (k) is the
spatial power spectrum of the magnetic fluctuations as a function of
wavenumber k (see, e.g., Jokipii 1966, 1971). Other more complex
expressions result if other magnetic fluctuation configurations are
assumed. Similar expressions result for the other Fokker-Planck

coefficients such as <Ax2>/At, etc. Hence, if x is a direction
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normal to BQ. we have

<ax2> _ [plw -
it 82r:,_(k 0) . (2)
0

The above expressions are examples of microscopic transport theory.
However, in most situations the cosmic-ray angular distribution
is driven essentlally isotropic by the scattering, so that the
transport must be described by the diffusion approximation. |If
U(g,t,T) is the particle density averaged over pitch angle as a
function of position r, time t end energy T, then the diffusion

equation reads in the rest frame (Parker 1965, Gleeson and Axford 1967,
Jokipii and Parker 1970)

W
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with an associated flux of particles in the rest frame

Fom o, 4y u-v—"‘-l-‘-i’—-(uw) (3b)
i ij axj W, i 3 T '

where Kij {s the cosmic-ray diffusion tensor, \Iw is the solar wind
velocity and a(T) = (2mc? + T)/(mc2 + T). The associated anisotropy
is [8] = 3|F|/wU. In a coordinate systen with the z-direction oriented

along the average magnetic field §0, Kij may be written
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where the parallel diffusion coefficient «,, the perpendicular
diffusion coefficient k) and the antisymmetric diffusion coefficient

Ko Can be written

-1 '
M
Ky = wl du'[lﬂ e (5)
<0025 /8t
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2,
kL= g LR o (6)
0
KA = %rcw . (7)

The diffusion equation (3) embodies the macroscopic theory which is
connected to the microscopic theory by equations (5) - (7). At
present, comparison of transport theory with observation must be
done through the use of macroscopic theory and then working back to
the microscopic theory. We are unable to measure <ads/at, ete.
directly.

With regard to the problem of out-of-the-ecliptic exploration,

it s clear that the solution to equation (3) depends on a knowledge
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of Kij and \lw throughout the modulating region and on the value of
U on the boundary. There appear to be no purely locally measurable

properties of the solution which can be used in checking transport

theory.
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III. |llustrative Calculations

To illustrate the rather large uncertainties introduced by lack
of knowledge of parameters out of the ecliptic, | present in this
section a summary of some analytical calculations published elsewhere
(Owens and Jokipii, 1971). This problem has also been considered by
Sarabhal and Subramanian (1966) and Lietti and Quenby (1968). Con-
sider th< 11-year solar cycle modulation of galactic cosmic rays by
a solar wind which is not spherically symmetric. The 11-year solar
cycle variations are usuallw regarded as slow enough that the time
derivative in equation (3) can be neglected in solving for U. In
this calculation the various parameters In the transport equation
are allowed to vary with heliographic latitude and the effects of
the variation on the density U and the flux F in the solar equatorial
plane are consicered.

The following forms for the various parameters were assumed:
The various components of the diffusion tensor are independent of
erergy T and are proportional to heliocentric radius r out to some
boundary r = D where < + o, The cosmic-ray density U(r,T) is
assumed t> take on a given inters-ellar value Um(T) -~ AT"2:5 gt r = D,

Finally, we follow the usual practice of circumventing the
problem of proper boundary conditions at the Sun by requiring the
solution for U to be finite at the origin. This will be shown to
lead to negligible error in the present case. See Jokipii (1971)

for a more complete discussion of this problem.
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Equation (3a) for U(r,0,4,T) becomes, in spherical polar

coordinates

1.3 2(y 1 - 1] - a_ : 55:39.- ‘A
[} (vw “u 7 " r sind 39 |n3(r 0 r snne a¢)

1 L(K'L aU+_ﬂ_3_U_) -——-(TUo.)"o- ®

In what follows, we consider only molels which are axisymmetric
(independent of ¢). If © = 0 is the axis of solar rotation, this
corresponds to a latitude-dependent solar wind. Effects of magnetic
sectors could be represented by taking 68 = 0 along a sector. The
two terms containing k, cancel from the density equation @) if
3<A/33 = QKA/3¢ = 0, as in our axisymmetric model. Thus the terms

in <, do not contribute, and equation (8) becomes

1 3 ) U 1 au w3
—— —— r (V Y - ¢ — - — (K.L S|n:) ) - em—— ——— (TUQ) = 0.
2 3r w " 3r r25in0 ) 20 3r 9T

(9)

Since x,, and «, are taken to be independent of energy, equation (9)

separates, and one writes

U(F,O,T) = S(I’,O)Q(T), (]0)
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Upon neglecting the small energy dependence of a(T), one finds

immediately that S must satisfy -
qV S
LAl s - B -2 g simeB] -2, an
r2 or r r2sino 20
with
o(1) = 7(3a/2a)-1 (12)

The separation constant q must be chosen to agree with
u_(T) « T72.5, in which case we choose q = -1.

A number of different forms for the variation of the parameters
Vw, k, and K, were chosen. Define

v, (e,r) = v [1+5(0)], «yle,r) = k [1+e(0) ]r

and «, =uk, . (13)

The problem may be solved in terms of a series of Legendre
polynomials and the general solution is given by Nwens and Jokipii
(1971). An illustrative velocity variation is given by
V= Vo[l + .30P2(cose)] where V_ is the average velocity and P, is
the Legendre polynomial of order 2. This velocity variation is

illustrated in figure 3. Some typical results of the calculations
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are illustrated in figuras 4, 5, and 6. - It is clear that many of
the parameters observed in the solar equatorial plane can be sub~
stantially changed by varying the solar-viind parameters out of the
solar ecliptic plane. Of particular note is the fact that the radial
anisotropy observed in the equatorial plane is extremely sensitive
to parameters outside the equatorial plane. As shown in figure 6,
even the sign of the anisotropy can be changed by relatively small

velocity variations.
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IV. Conclusions

gge may conclude from the above discussion that fundamental
ambiguities in testing cosmic-ray transport can be removed by
carrying out measurements out of the ecliptic. The out-of-the-ecliptic

measurements most necessary to study cosmic-ray propagation are:

a) Measurements of the flux of cosmic rays as_a function
of solid angle and energy with as much resolution as
possible. The anisotropy measurements are easier to
carry out on a spinning spacecraft.

b) Simultaneous measurements on board the same spacecraft
of the plasma and magnetic field. These measurements
should be spaced in time so that good time-series
analyses (power spectra, etc.) can be obtained.

c) The spacecraft should go as far out of the ecliptic
as possible to insure that any variations with helio-
graphic latitude will be seen.

d) Good base-line measurements at Earth or in the eclip-
tic plane should be obtained simultaneously.

{t is not crucial that these measurements be carried out at
constant heiiocentric radius, although this might aid interpretation.
It appears that measuring protons and possibly electrons will be
adequate and it is better to optimize measurements for one species

rather than compromise these in order to study composition.
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Figure Caetions

Fig. 1. Schematic illustration in a meridian plane of typical
trajectories of solar cosmic-rays (dashed line) and
galactic cosmic rays (solid line) which reach a detector
at 1 a.u. The fundamentally 3-dimensional character of
the motion is apparent.

Fig. 2. [Illustration of the 'scattering' of a cosmic-ray particle
by a magnetic irregularity. If the region over which A0
is correlated is small, a Fokker-Planck equation results.

Fig. 3. [1llustration of the velocity profile used in some of the
calculations. & is the angle relative to the z-axis.

Fig. 4. Comparison of linearized and exact solutions for the case
V= vo[1 + 0.30 Pz(cos 0], x, = kof» W =4%. The density
u(r,2) is given for both solutions as a function of angle @
r=0.20in terms of U_ = U(r = D,0). Straight line shows
the corresponding result for an isotropic wind V = Vo
The linearized calculation keeps terms only to first order
in § as defined in equation (4). From Owens and Jokipii (1971).

Fig. 5. Total cosmic-ray flux as a function of r,0, and with F¢
suppressed. The pattern is azimuthally symmetric and even
about the equator. (a) The parameters V(0) = Vo[l +0.30 P, (cos 0)],
K“(F,Q) =¢ rand u = ¥ were used. The position of Earth

0

for D = 5 a.u. is indicated. Of particulsr interest is the
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virtual source of particles in the equatorial plane at
r=0.5D. (b) Same as (a) except that V(0) =kvo[l + 0.46 Pz(cos e)].
Note that the flux is much larger and virtual source has
moved out to r ~ 0.9 D. From Owens and Jokipii (1971).
Fig. 6. Anisotropy in the equatorial plane at r = 0.2 D for
v(e) = v, *+ Vsz(cos 0) , as a function of Vz/vo'
Note that in our model the anisotropy is radial. From

Owens and Jokipii (1971).
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