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Abstract. A b r i e f  c r i t i que  o f  spherical ly symmetric conventional 

modulation theory i s  supplied. Estimates are made o f  the cosmic 

ray intensf t y  a t  high solar lat i tudes. Direct evidence f o r  

s ign i f icant  o f f - ec l i p t i c  cosmic ray gradients i s  reviewed i n  

support o f  the requi reant  f o r  an o f f - ec l i p t i c  spacecraft mission. 

The possibi 1 i t y  o f  nieasrting the galact ic spectrum i s  discussed. 

1. Spherically symmetr icdr ; la t ion theory and i t s  problems. 

Cosmic ray modulation arises because motion o f  the energetic par t ic les  

along the sp i ra l  interplanetary magnetic f i e i d  l ines i s  control led by 

scattering due t o  magnetic i r regu la r i t i es  which are being convected 

outwards by the solar wind. Inward d i f fus ion  i s  balanced both by outward 

convection and energy loss o f  the par t ic les-as they suf fer  adiabatic 

deceleration i n  the expanding wind. A Fokker-Planck equation expressing 

these ef fects i n  a spherically symmetric, steady-state s i tua t ion  i s  

(Parker 1965, Gleeson and Axford 1967) 

Here U i s  the d i f f e ren t i a l  par t i c le  number density a t  pos i t ion r and 

k inet ic  energy T,a= + 2Ta wi th  To as rest  mars energy. V i s  the solar 
T + To 

wind veloci ty and Kt-, the ef fect ive radial  d i f fus ion coeff ic ient ,  i s  given 

by Kr - 1: , , cos2$ + K sin2$ for  K ,, ar.d K&respect i ve ly  the para1 l e l  and I 
perpendicular d i f fus ion coeff ic ients wi th t;, == cos-l (B.L / 1E1 ) r ]  - ) .  

Par t ic le  streaming - S i s  due to d i f fus ion i n  the wind frame plus an 

additional term involving a Lorentz transformation t o  the rest  frame v ia  

the Compton-Getting factor C such that 
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1 6  - 
with C -  1 - (~Tu)  and 1( as the tensor d i f f us ion  coeff ic ient.  

At magnetic r i g i d i t i e s  exceeding about 1 W, radia l  streaming i s  

usually negl ig ib le and alder these circumstances the Fokker-Planck 

(1) can be integrated t o  give a re la t ion  between the Galactic density 

U(rg. Tg) and the observed density U(r,T). 

f o r  spherical synnnetry wi th r determined by the e f fec t ive  outer bound 
9 

t o  the interplanetary scatter ing process. 

It i s  important f o r  Astrophysics t o  know the energy spectra o f  

various nuclear species o f  cosmic rays i n  the galaxy and a cannon method 

f o r  achieving th i s  "demodulation" i s  as f o l  lows: 

(a) Estimate the Galactic electron spectrum from radio synchrotron data. 

(b) Compare the near-earth electron spectrun w i th  the Galactic spectrum 
r 

t o  f i nd  the magnitude and r i g i d i t y  dependewe o f  Ir (w/~r).dr. 

(c) Use the results o f  (b) t o  correct the near-earth proton and heavy 

nuclei spectra for  modulation. 

Various objections can be raised t o  t h i s  scheme. F i r s t ,  the average 

Galactic electron spectrum derived from radio data may not represent the 

local spectrum and in  any case one must be sure of the model enabl ing the 

effects of local, cold, absorbing in te rs te l  l a r  clouds (Goldstein e t  a l  . 
1970a) to  be taken i n t o  account. Second, there i s  no adequate theoretical 

explanation as yet for  the magnitude, r i g i d i t y  dependence and radial  

dependence of K,, as witnessed by investigations of solar proton d i f fus ion  

!e.g. bkbb e t  al .  1973) and the measurement o f  cosmic ray radia l  gradients 

(<lO%/AU) which are much less than those expected on the basis of 

theoretical Kr values (e-g. Uebber and Lezniak, 1973). I t  i s  important t o  

knaw the r dependence o f  the integrand i n  (3) since.adiabatic deceleration 

i s  inverseiy proportional t o  r. This importance becomes apparent i n  our 

t h i r d  point, based on the work o f  Goldstein e t  a l .  (1970b) and Gleeson auld 



Urch (1971) who, fo r  certa in choices of r dependence and reasonable 

megnitudes o f  4, f ind that  adiabatic deceleration may completely 

exclude a11 2100 hVlnucleon par t ic les  from the inner solar  system. 

Thus no cer ta in  knowledge o f  the lowest energy Galactic primaries i s  

possible. Fourth, the cause o f  time variat ions in the modulation i s  

unknown, w i th  not enough solar cycle var ia t ion i n  the solar  wind 

parameters being observed near earth t o  account for  the known changes i n  

the cosmic ray f l u x  (e.g. Hedgecock e t  al. 1972). For exaciple, the 

p e r  spectrum o f  magnetic i rregular i  t ies a t  10 '~  Hz should change by a 

factor >2 i n  order t o  account fo r  the observed modulation o f  1 GW par t i c les  

between and 1969 according' t o  resonant, wavdpart i c  l e  interact  ion 

theory whi l e  i n  practice the change i s  <lo% (Hedgecock 1975). O f f -  

e c l i p t i c  control o f  modulation v i a  the ef fects f a r  beyond 1 AU o f  solar  

streams emerging from the zones o f  maximum solar a c t i v i t y  may be the 

only way t o  explain the cosmic ray 11-year cycle. Hence careful study 

by o f f -ec l ip t i c  spacecraft i s  required. 

2. The o f f - ec l i p t i c  route t o  the boundary. 

I t  has been thought that a d i rect  determination o f  the Galactic cosmic 

ray charge and energy spectrum can be achieved employing e c l i p t i c  plane 

spacecraft t ra jec tor ies  t o  theouterp lanets .  I n  th isway  the problems 

of section 1 are a l l  by-passed. However, the boundary t o  modulation 

could be as fa r  as 100 AU and the low, measured cosmic ray density 

gradients seen by Pioneer 10 render th is  approach uncertain. Al ternat ively,  

we note that cosmic rays have an easier inward motion over the solar poles 

where the geometric path length dlong the interplanetary f i e l d  l ines i s  

much shorter than i n  the t i g h t l y  wound spiral  regime of  the equatorial 

plane ( L i e t t i  and Quenby 1968). An appropriate Fokker-Pl anck equat ;on 

for the steady state which relinquishes the requireincnt o f  spherical 

symnetry and takes i n to  account the spi ra l  geometry i s  then 

i f  KA - 0 for  path length s along a magnetic f lux  tube o f  area A. 

A l lw ing  K = Ker sinqe where O i s  solar lat i tudc yields I I 



U and if p o and IUp ' ' h  a t  1 N, we obtain the fol lawinp table f o r  

the percentage residual a d u l a t i o n  a t  1 N :  

e - goo e - 300 e = 00 

(it 1 bV) 612 22% 9% 

Thus on a simple model for  scattering, a spacecraft passing over the poles 

a t  1 AU may see ~ 9 0 %  of the unmodulated in tensi ty  and therefore get a bet ter  

measurement o f  galact ic conditions than i s  available a t  Jovian distances. 

3. Direct evidence fo r  o f f -ec l i p t i c  gradients 

Observations confined t o  the e c l i p t i c  plane can only reveal the existence 

of o f  f-eci  i pt i c e f fec ts  by noting modi f i cat ions to  cosmi c ray s t  r e m i  ng 

f romtheexpectat ionsof  thespher ica l ly  symmetricmodel case. Equation 

(2) i n  a more general form i s  

where v i s  energetic pa r t i c l e  veloci ty and w i s  cyclotron frequency. I t  

has been assumed that d i rec t  slippage o f  par t i c les  across f i e l d  l ines makes 
% 1 #-- 

only a small streaming contr ibut ion (K,/K %-<<I, C being time t o  - I1 o c  
t ravel one paral le l  mean free path). Furthermore, we assume the short- 

c i rcu i t i r tg  by scattering o f  that perpendicular gradient which would cancel 

out the anisotropy due t o  (Ex - - B),Ldrift i n  the non-scattering l i m i t  when 

L iouvi l le 's  theorem applies t o  the par t i c le  intensity.  A t  high r i g i d i t i e s .  

stnw few t o  a hundred GV, the radial streaming i s  negl igible over long 

periods w i th  the th i rd  term on the r ight  o f  (b) cancelling out on average. 

Then the f i r s t  two terms combine to give the streaming from the east or 

1800 hr Lfanisotropy. When, however, the anisotropy i s  studied i n  

practice as a function o f  sign o f  the interplanetary f i e l d  sector structure, 

two effects of the t h i r d  term become apparent. A north-south anisotropy 
6 U arises due to  ( - ) x B, or  the effect of  the radia l  gradient and an 
b r  radia l  - 

e c l i p t i c  plane anisotropy arises due to ( Iz x g, or the ef fect  o f  o f f -  



e c l i p t i c  gradient. Hashimand Bercovitch (1972) find GZE5.5  R'O-~%/N 

directed north + s w t h  i n  1967t68 f o r  tha l a t t e r  effeet, possibly 

physically resul t ing from the excess northern hemisphere solar a c t i v i t y  

suggested a t  that time by coronal green l i n e  5303A emission. 

The previous discussion refers t o  the f i r s t  derivat ive o f  density, 

but studies of the second harmonic of the cosmic ray in tensi ty  can reveal 

the presence o f  a r i s ing  o r  fa l l ing ,  s ~ t r i c ,  o f f - e c l i p t i c  gradient v i a  a 

dependence on the second derivative. L i e t t i  and Quenby (1968) essential l y  

use a version o f  (5) for the r i s ing  gradient case t o  predict a second 

harmonic wi th d i rect ion o f  maxinura perpendicular t o  and amplitude 
1 * 6 2 ~  

g -T 5 *0.005~ % a t  r i g i d i t y  P, cyclotron radius p. This 

expression i s  i n  reasonable accord wi t h  ooservat ions a: though Nagashima 

e t  al .  (1972) claim chat a cy l indr ica l  p i t ch  angle pa r t i c le  d is t r ibu t ion  

about !with a d i f ferent  physical cause bet ter  f i t s  cosmic ray anisotropy 

data. 

With f i n i t e  K the symmetrical gradient w i  11 e i ther  feed par t ic les '  
I' 

i n to  the equatorial plane or  draw them o f f  t o  higher latitudes, thus 

sett ing up radial streaming. A correction t o  the Fokker-Planck (1) i s  

empl wed by add i ng 
Kd 6U d iv  C - - ( ~ ) l t o  the r igh t  hand side. Dyer 

u Q 
e t  a l .  (1974) i n  par t icu lar  evoke thTs streaming fo r  a f a l l i n g  gradient t o  

explain a sunward f l o w  at  2 1 GV seen by a s a t e l l i t e  detector which i s  

too large t o  be explained by any energy loss effects i n  a spherically 

symmetric model. These authors require maximum modulation over the 

sunspot zones wi th mr id iana l  flaw patterns set up t o  draw part ic les down 

from 0 POO and up from 0 -- 90'. Cecchini e t  ai .  (1975) have developed 

acomputational model to  confirm the above model. Chief features are: 



c = 0.5, 1AU; V, const.; Po 100 MV; Ug a ( ~  + TO) '2-75 

Thus s/K,, -0.05 a t  1 GV. The resu l t s  o f  employing an a l te rna t ing  gradient 

technique t o  solve the corrected Fokker-Planck, w i t h  f i n i t e  K i s  to pred ic t  1' 
an inward streaming s0.3% i n  amplitude between 2 and 10'' GeV, a rad ia l  

gradient slO%/AU a t  1.1 GeV between 1 and 10 AU and a r a t i o  U ( B ) / ~ ( ~  - m i a t  1 AU varying from 2.5 a t  8 = O t o  0.7  a t  9 -- 600 f o r  1 .1  GeV protons. 

Hence i t  i s  possible t o  expla in the rad ia l  streaming w i t h  reasonable gradients 

and KA/K rat ios.  
14 

4. Conclusions. 

We have shown that  study o f  cosmic ray modulation by in tegra t ing  the transport 

equation outwards i n  the e c l i p t i c  plane, assuming spherical symmetry, 

encounters various problems. The transport processes and boundary condi t ions 

are i n s u f f i c i e n t l y  we l l  understood, modulation may be cont ro l led  by o f f -  

e c l i p t i c  gradients and assymetries can have not iceable e f f e c t s  on so lar  

equatorial  plane observations. Three-dimensional study o f  the so lar  

cav i ty  cosmic ray d i s t r i o u t i o n  i s  required to: 

(a) Measure o f f -ec l  i p t i c  gradients anC streaming. 

(b) Enhance understanding o f  the solar  contro l  o f  i n t e n s i t y  time 

var iat ions.  

(c) Gain bet te r  knowledge o f  boundary condi t ions, especial l y  the 

p o s s i b i l i t y  o f  measuring a near-Galactic energy spectrum over the 

solar  poles. 

Objectives (a) and (c) are s a t i s f i e d  by a Jovian swing-by mission 

but (LI; requires a d i rec t  i n jec t  ion a t  1 AU spacecraft for detai  led t irnc 

var ia t ion  studies on so lar  wind and solar  parameters. 
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Abstzact 

Based on a modified WKB analysis of the interplanetary irregulatity spectra, 

a discussion of the radial dependence of the radial cosmic-ray diffusion coef- 

ficient a t  polar heliographic latitudes is presented. A t  1 AU radial distance 

the parameters are taken to equal those observed in  the ecliptic. In the sense 

o* a present best'estimate it is argued that relat ivist ic  nuclei should have signi- 

ficantly easier access to 1 AU a t  the pole than in the e c ~ ~ p t i c .  The reverse 

may very well be true for the direct access of very l > w  rigidity particles. 



L 

1. Jntrduc t ion 

The access of g a l a c t i c  cosmic rays  to  the  inner  s o l a r  s y s t e e  is  regula ted  

by the cumulative a f f e c t  of t h e  i r r e g u l a r  f i e l d s  which s c a t t e r  t h e  par- 

ticles on t h e i r  way in.  % determine the  degree of t h i s  access  , , hel io-  

graphic l a t i t u d e s  t h a t  a r e  s i g n i f i c a n t l y  d i f f e r e n t  from t h e  s o l a r  equa- 

torial plane, one has t o  r e l y e o n  t h e o r e t i c e l  es t imates .  These conventional- 

l y  assume a  d i f f u s i v e  propagation scheme. Of primary importance is then 

t h e  s p a t i a l  d i f fu s ion  c o e f f i c i e n t  o r ,  more genera l ly ,  the d i f f u s i o n  ten-  

sor,and i n  p a r t i c u l a r  i ts  s p a t i a l  va r i a t i on  i n  t he  s o l a r  system. 

I n  t he  , e a r l i e r  work of  V61k e t  a l .  (1974) t he  i r r e g u l a r  f i e l d s  were assumed t o  

be Alfvbn waves of s o l a r  o r ig in ,  convected outwards by t h e  s o l a r  wind. 

In  a (on the  average; s t a t i ona ry  in t e rp l ane ta ry  medium with a x i a l  symme- 

try around the  s o l a r  r o t a t i o n  a x i s ,  t h i s  l e d  t o  a  r a d i a l  d i r e c t i o n  f o r  

almost a l l  wave normals beyond about 1 AU. Assuming t h e  e f f e c t i v e  average 

magnetic f i e l d  t o  be i n  t he  idea l  s ~ i r a l  f i e l d  d i r e c t i o n  and t h e  wave an?- 

p l i t udes  t o  vary according t o  the  (WKB) approximation of geometrical 

op t i c s ,  a r a d i a l  dependence of t h e  coef:,~:ent f o r  d i f f u s i o n  along t n e  

average f i e l d  was ca lcu la ted .  As a  s e n s i t i v e  funct ion of t he  angle be- 

tween wave normals and average f i e l d ,  the  value of t h i s  d i f fus ion  coef- 

f i c i e n t ,  or equivalently, ,of the  mean f r e e  pa th ,  va r i e s  from a  minimum 

a t  0 degrees t o  i n f i n i t y  a t  90 degrees. Since in  the  s o l a r  equator ia l  

plane the  angle between thc radral and the  s p i r a l  f i e l d  d i r e c t i c n  i s  

l a rge  already a t  1 A!', and incrcases  with radial d i s t ance ,  devia t ions  of 

t h e  wave normals from the  r a d i a l  d i r ec t ion  have been discussed by Richter -- 
(1974) i n  the context of  the so l a r  wind stream s t r u c t u r e ;  sce a l s o  Hollweg 

(1975) . 
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We do not  intend t o  evaluate here the  e f f e c t s  of devLationr from t h e  

simple picture of V6lk e t  a l .  (1974) a t  low l a t i t u d e s  and r e f e r  to a 

fu tu re  publicat ion (Morf ill e t  al., i n  preparation) . A's s h a l l  r a the r  

concentrate on the s i t u a t i o n  a t  polar  heliographic l a t i tudes .  There the  

assumption of a l l  wave vectors  & being r a d i a l  and p a r a l l e l  to the  average 

f i e l d  leads to the minimum value of the  r a d i a l  d i f fus ion coeff i -  

c i e n t  )C as f a r  a s  its dependence on the  angle between &and  is 

concerned. Thus, within the  WKB approximation f o r  the  r a d i a l  development 

of the  sca t ter ing  centers ,  t h i s  provides a lower l i m i t  f a r  k . Such a 

lower l i m i t  is of i n t e r e s t ,  i f . i t  can be argued, o r  a t  l e a s t  be specu- 

I - ! : -d  i n  a reasonable way t h a t  even i n  t h i s  case there is e s s e n t i a l l y  un- 

impeded access t o  about 1 AU f o r  a s ign i f i can t ly  l a rge r  p a r t  of the  galac- 

t ic energy spectrum than i n  the  solar  equator ia l  plane. 

We s h a l l  give a shor t  discussion here, motivated by three  considerations. 

The f i r s t  one is t h a t  i n  two e a r l i e r  publicat ions t h i s  author was associated 

with (Vblk e t  a l . ,  1974; Vblk, 1975): a ra the r  d i f f e r e n t  r e s u l t  was be- - 
l ieved to hold true.  Another reason is given by the present discussion of 

an ex-ec l ip t ica l  probe t o  explore the sun and the  interplanetary medium. 

The f i n a l  reason is  t h a t  v ia  easy access a t  the  poles much l a rge r  regions 

of interplanetary space might possibly be populated by p a r t i c l e s  of galac- 

t ic  or ig in .  

In the next section we s h a l l  present  che general behavior of # i n  a modified 

WKB analys is ,  using simple approximations t o  two ra the r  different .  measured 

interplanetary power spectra. In the l a s t  sect ion the r e l a t ion  t o  t h e  expected 

ac tual  s i tua t ion  a t  the heliographic pole is discussed. 



2. 001(B Analysis 

Consider the simgleet, axisyulmetric, Sntetplanetary medium,  whete a l l  quanti- 

t ies depend on heliocentric distance r and whete only the ideal sp i r a l  f ield 

B w i t h  components - 

an8 the power spectrum P (f ,r, 9 ) may i n  addition depend on heliographic 19- 

U t e  . r e  ro is a radial  reference level ,  Bzo i o  independent of 8 ; 

# denotes heliographic longitude,Qs# 1.65 x ld6 cps f s the angular fre-  

quency of th@ sari's rotation,  V is the solar  wind speed (assumed t o  be radial  

and constant), and f i s  the wave frequency seen by an observer a t  t e s t  re- 

l a t i ve  to the sun's center. Then it is simple to  show (Vblk e t  al . ,  1974) 

t ha t  for  @ -4 f the radial diffusion coef f ic ienr  is given by 

In equation (2) we have /Q = , the r a t i o  of par t i c le  velucity w to  the 

velocity of l igh t  c ;  R denotes par t i c le  r ig id i ty ;  & = ( 4 T P  ) - I  i s  

tho (vectorial) Alfvbn - speed, where? i s  the average solar wind mass den- 

W ~ i t y r r  - a /, is the cosine of the par t i c le ' s  pitch angle, where u is 
I 

the velocity component paral le l  t o  g; rl = 1 AU. The am l i f i c a  
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for the AlfvOn wave amplitudes % 

is independent of wavevector k and @ . If both r,, and r a r e  la rge  compared 

to the Alfvenic c r i t i c a l  radius (f? 20 R e  i n  the  equatorial  plane) , +hen 

the  approximation on the f a r  r.h.s. of equation (3; holds i n  t h i s  lowest 

order WKB approximation . However, f o l l c ~ i n g  equations (1) and (3 )  we have 

e ,) / B~ (r, B 1 n~ r ,  where <rB2 ) is the ro ta1  ( a t e  = go0): (Cg (r , -- 
2 power in  the  f luctuat ions.  Thus, the  possibi . l i ty a r i s e s  t h a t  (68 ) / 2) I 

beyond some rad ia l  distance i n  which case we expect wave propagation t o  be 

ra ther  d ras t i ca l ly  a l t e red  by non l inea~  e f i e c t s  t h a t  ul t imately should lead 

t o  d iss ipa t ion  or' wave energy. To take t h . i s  possible e f f e c t  in to  account, we 

modify equation (3) so t h a t  fo r  a l l  r 

A s b i l a r  device has been uscd by Hollwez (1973) an3 appears as a s i n p l t  i f  

crude way t o  take the inadequacy of t h e  l inear iscd  WKB epproxb~at ion  1r;to 

account. 

I t  is clear  physically tha t  equations ( 1 ) .  ( 2 1 ,  ( 3 )  and (3'1) also hc) id  i f ,  

a t  given ro,Rro , V and 3 a re  d l f  frrenL froin t h r l r  vdlucs a~ OM C .  dc. ; U I A C J  ur. 

1 d ' f  t he i r  dcpendcnce on 0 is  wcak. enouvh, such that for cxample - -- k t '  1 . 
V de 

For the r e s t  of t h i s  sect ion,  h ~ w e v c r ,  wc w i l l  conzldcr D ( r l ) .  V ,  ? ( r l )  r 

and P ( f ,  0 , r l )  as given by t h e i r  values in tho  ~Waltur l .11 



Observed paer spectra a t  ~ E O  and r s r l  ( e ~ .  J o k i p i i  and Colersn. 1968; 

Betcovitch, 1971) , gene ra l l y  approximate rather well a power law for P(f  , r l )  

at high frequencies,  while f l a t t e n i n g  at l o w  frequencies.  Quel i ta t iwely,  an 

w i t h  parameters C f r  fo,and q <(),is no t  an unreasonable represen ta t ion .  With 

equation ( 4 )  t h e  general  charac te r  of IC ( Y )  can be  in fe r red .  For small  enough 

3+ 2q 
r i g i d i t y  R. so that (a( V/R> 2 k f 0  w e  have fe w r whereas K N  r3 f o r  

v/R & 2 ~ f o .  The exponent of r is additivel.y increased by u n i t y  when- 

ever t h e  s9pplementary r e s t r i c t i o n  (3a) comes i n t o  force.  For our presen t  

2 discussion w e  choose q = -3/2. Thus, K G co.1.t (or u r) f o r  small  R . r . 
3 4 whereas K nr (or ur ) f o r  l a rge  R - r2. A t  zcffi-5-.,tl.y l a rge  r, IL w i l l  

4 be wr' (or ~r ) f o r  any R. A t  f i xed  values  of  p and R, t he  t r a n s i t i o n  of  

4 h to the  r' {or r ) dependence increases  with decreasing f,c£. equat ion (2 ) .  

As  an as ide  w e  should mention t h a t  f o r  t h i s  value o f  q and f o r  the p re sen t  

case of  5 fi = t h e  quas i l i nea r  expression f o r  K used i n  wr i t i ng  i n  equat ion 

(2) is numerically q a i t e  s a t i s f a c t o r y  and the modi f ica t ions  i n  the  region 

around = 0 (e.g. Jones e t  al., 1973) therefore  not  e s s e n t i a l .  

Numerical r e s u l t s  a r e  shown i n  Figures  1 and 2. Figure 1 i s  ca l cu l a t ed  usinq 

t h e  spectrum of J o k i p i i  and Coleman (1960) where, i n  re fe rence  t o  equation 

- 5 
(4 ) .  Ct L 16 x i d 3  . $'2(~r)-1-q; ~7 x 10 .Hz) qs - ) / 2 ,  and n l fven  wave fo- 

propasation was s t a r t e d  at ro = 20 R O  ( so la r  r a d i i ) .  Figure 2 u se s  t h e  spec- 

trum published by Bercovitch (1871) which w e  roughly approximate by C @ 6  x lo-! 
2 4- 
H Z ;  fo 7 x 10 -~ -Hz ;  qs -3/2. Although the  r e s u l t s  a r e  not  very much 



%iZPerent for both cases near r = 1 AO, the very different go-walues lead to 

3 4 stmng differences in the oaset distance of the r (or rather r ) law. We 

~1~ mention here that we used here the component of the magnetic spec t ra l  

tensor m r d l i c u l a r  to the e c l i p t i c  to represent the total power per fre- 

quency interval, For true axiqnmetry of the spectrum all  1 vdues i n  Figures 

1 and2 should be multiplied by a fac tor  112. This is an unavoidable uncertain- 

tp 

The interest ing aspect of these results is that they imply l i t t l e  modulation fo r  

r e l a t L w i s t i c  nuclei, where adiabatic deceleration is small~considering the 

value of fo i n  Figure 2 as a rather  extreme lwer l imi t  to the actual s i tua t ion .  

For 1 GeV protons, for example, a 10-20 percent modulation is estimated i n  

the diffusion convection approximation. 

3. Discussion 

The above r e su l t s  were obtained by f i t t i n g , a t  l.AU,the average so l a r  wind 

pararr~eters a s  w e l l  a s  power spectra by the corresponding quan t i t i e s  observed 

at 1 AU i n  t!%e ec l ip t i c ;  the spa t i a l  dependence of t!!e spectra assumed a modi- 

f i ed  WKB approximation for  the i r regular i t i es .  In r e a l i t y ,  the polar region of 

the  corona may well be a large,  s ta t ionary coronal hole, resul t ing i n  a some- 

what (perhaps f i f t y  percent) larger  flow speed and, possibly, somevhat more 

power in the frequency region f )c,f . A l l  t h i s  would lead t o  a moderdtely in- 
0 

creased modulation. 

On the other hand, it may very well be tha t  the power 

i n  frequencies 6 f o  is much smaller a t  0 = x/2 than near 9 = 0 .  He have taken 

these fluctuations a l so  t o  be AlfvSnic which leads t o  the amplitude variation 

given i n  equation (3) .In r ea l i t y ,  the par t  in the spectrum with f$  f may well 
0 

be due to the so la r  wind stream structure  (Goldstein and Siscoe, 1972). I f  

the l a t t e r  is assumed t o  be absent a t  6 = gop, a l so  the powor a t  f,( fo  would 

be absent w i t h  a corresponding decrease i n  modulation. In t h i s  l i gh t ,  a l so  



tlm possibil ity of Lacreased scatterfng at larger di9tmces due to lecal pro- 

&action of waves - a situation that is quite likely at ear0 - appears 

rather weak. Irregularities produced by eokmced (campwed to the ecliptic) 

tmrbulence due to radially increasing departures frola thermal equilibrium at 

tbe poles should be assumed to have small scales, irrelwant for cosmic rays 

tiwen in the case of the Firehese instability. I t  should be added that in con- 

trast to a popular feeling this result for K and the coosequent argument for 

modulation has little to do with the shorter geometrical path along g o f  a 

galactic particle to, say, 1 AU, but rather to  the strong decrease w i t h  r of the 

magnetic field a t  the poles, 

Thus, barring unknown new effects, the present best estimate is that cosmic 

ray access at the poles should be significantly better than a t  for rela- 

t ivist ic niiclei. For very low-rigidity particles on the other hand, the sharp 

increase o f& w i t h  r occurs only a t  such a large radial distance that their 

direct access may be a t  least as strongly prohibited as in the equatorial plane. 

Bowever, for this last  kind of statementr, the present estimate is not well 

suited. 
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Figure Captions 

Figure 1: The radial diffusion coefficient  & at heliographic la t i tude  

0 = go0 as a function of rad ia l  distance r i n  solar r a d i i  RE) 

for  various proton energies. The power spectrum P(P)=Cf fq 

-3 2 - -5 
with the vakues Cf = 16 x 10 r (Hz) , fo= 7 x 10 BI 

(Jokipii and Coleman, 1968). Wave normals are  assumed t o  be 

radial .  The calculation was s tar ted a t  r = 20 R O  . 
0 

Figure 2: The same as Figure 1 with values of Cf and f adapted t o  the spec- 
0 

t r a  of Bercovitch (1971) . 








