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COSMOGENIC RADIONUCLIDES
IN STONE METEORITES

Philip J. Cressy, Jr.
Goddard Space Flight Center

INTRODUCTION

The purpose of this document 1s to present a compilation of the results of a decade of
measurements of cosmic-ray-induced radioactivity in stone meteorites. Part of the data has
appeared in the published literature (References 1 through 8) and is included for complete-
ness, but is not extensively discussed.* Results of incomplete projects are included here in
the hope that investigators actively engaged in meteorite research will find the information
of value.

The short- and long-lived radionuclide contents of a meteorite specimen depend on the
chemical composition of the sample, on the depth from the preatmospheric surface of the
meteorite, on the preatmospheric size of the meteorite, its terrestrial and cosmic-ray
exposure ages, and the cosmic-ray flux to which the meteorite was exposed in space. The
knowledge of nuclear production systematics in meteorites has grown in recent years in the
areas of target element production rates (References 2 and 9) and depth effects (References

6 and 8). The interpretation of radionuclide measurements is beginning to fulfill its potential
as a tool in understanding the cosmic-ray environment and the origins of meteorites.

*Cressy, P.J., “26 Al in Kenna and Other Ureilites,” Geochim. Cosmochim. Acta, 1976, in press.

Cressy, P.J. and D. D. Bogard, “On the Calculation of Cosmicray Exposure Ages of Stone Meteonites,” Geochim.
Cosmochim, Acta, 1976, 1n press.

Herzog, G. F. and P, J. Cressy, “Diogemite Exposure Ages,” Geoclim, Cosmochim, Acta, 1976, in press.
Herzog, G. F.and P. J. Cressy, “The Cosmic-ray Exposure of Aubrites,” 1976, in preparation

Fudaly, R, F. and P. J. Cressy, “Investigation of a New Stony Meteorite from Mauritama with Some Additional Data on
Its find Site: Aouelloul Crater,” Earth and Planetary Science Letters, 1976, 1n press

Herzog, G. F. and P. J. Cressy, “26Al Losses from Weathered Chondnites,” Meteoritics, 1976, in press.



MEASUREMENT SYSTEM

Whole rock and powdered meteorite specimens were measured for gamma-ray emitting
radionuclides in a nondestructive, dual parameter, gamma coincidence counting system. The
essential components of the detection system are:

® A clean steel shield, 137-m outside length, 81-cm outside width and height,
15-cm wall thickness, with a 5-cm thickness of lead bricks on top;

® A plastic scintillator anticoincidence detector, 51 cm long, 41-cm outside diameter,
and 18-cm inside diameter, with six RCA 8054 photomultiplier tubes at
60° spacings on one end;

® A S5-cm thickness of borated paraffin on top of the anticoincidence de-
tector (inside the shield); and

® Two low background 10- by 10-cm (4- by 4-in.) Nal(TI) detectors, mounted
in lucite tubes for geometric reproducibility, and each including

— 7.6-cm unactivated Nal light pipe,

— OFHC copper shell,

— RCA 4521 phototube,

— <1 ppm K contamination, and

— 8 percent resolution for 37 Cs gamma-ray (0.661 MeV).

Anticoincidence gating is achieved by’ summing outputs from opposed phototubes and routing
the resulting three signals through separate amplifiers and baseline restorers into single
channel analyzers. The analyzer windows are set so that upper level discriminator outputs
correspond to cosmicray events (E > 3 MeV, up to hundreds of MeV), while the windows
correspond primarily to natural and to Compton-scattered events (0.05 < E < 3 MeV).

These two sets of outputs are routed respectively to two coincidence modules which are

set to deliver gating outputs when any two inputs are in time coincidence (~1 us). The
outputs are applied to the anticoincidence inputs to the pulse height analyzer.

Sample pulses are amplified, passed through digital gain/zero stabilizers, and entered into a
4096-channel dual parameter pulse height analyzer. The analyzer stores pulses as coincident
or noncoincident events, with a resolving time of ~1 us. The customary counting matrix is
64 by 64 channels, encompassing 0.1 to 3 MeV from each detector. The 64-channel con-
version provides only adequate effective resolution for noncoincident events, but is excel-
lent for coincident events; the latter are of primary importance to these studies.

SAMPLE AND BACKGROUND COUNTING

Whole or powdered meteorite samples were placed in lucite sample holders (selected because
of typically high radiochemical purity) for nondestructive counting. For whole samples,



lucite rings (approximately'1- or 6-mm thickness, and with 5-, 7.6, 10.2-, or 12.7-cm inside
diameter) were used with ~1-mm thick end plates. For powdered samples, lucite containers
(2.5-, 5.1+, 7.6-, or 10.2cm inside diameters and 0.6, 1.2, 1.9, or 2.5 cm deep) were used.
The assembled sample holder was bolted (stainless steel threaded rods) to the end of one of
the sodium iodide detector holders, ensuring that sample position could be duplicated with
calibration standards.

BACKGROUNDS

Background measurements were made using 150-um dunite or nickel powder (depending
on sample density). Initially the background samples were counted in the same geometries
as the meteorite specimens. For powdered specimens, a lucite container was filled with dunite
powder to the sample’s level. For whole specimens, a mock-up was made (and later used
for calibration sources). The meteorite specimen was wrapped in aluminum foil. A second
layer was carefully formed around the sample and coated with a surface-hardening epoxy
resin. A seam was left so that the shell could later be opened and the sample removed.
The empty shell was then sealed and further coated, leaving an opening at the top (in its
counting position) through which nickel powder was introduced to the desired weight.
Under these conditions the dunite and nickel powdered background samples had bulk and
electronic densities closely approximating those of powdered and whole stone meteorite
samples, respectively.

After many exact mock-up backgrounds were run, it became clear that background levels
varied systematically with the separation distance of the two sample detectors and were
apparently not influenced by sample shape or even, for the range of samples studied,
sample mass. Accumulated background counting rates (B) for the energy regions of interest
were correlated with detector spacing (S) by unweighted least squares regression analysis,
yielding equations of the form:

B=a,+a S+a,S§
In no case was there statistical justification for a third order fit; in some cases the second
order term was unjustified statistically. Standard deviations were calculated from the
differences between observed and calculated background counting rates. These calculated
uncertainties for the background equations were similar in magnitude to measured uncer-
tainties in typical 7000- to 10000-min background runs. Backgrounds calculated by this
means were considered more reliable than the measured backgrounds for any individual
sample. The procedure of measuring a background for each sample was discontinued. There-
after, dunite or nickel backgrounds were measured about once a month to cover the range
of expected detector spacings, to improve the' confidence level of the equations, and to
ensure the continued validity of the equations over time.



Table 1 lists the radioactive species of interest in this work, the appropriate gamma-ray
energies and coincidences, the calculated background equations (in counts per minute for

S in centimeters), the R? goodness of fit of the equations to the input data, and the calcu-
lated standard deviations to be used with the equations. The summation symbol (2) indicates
that data along two analyzer axes are summed; for example,

ZXO.SI Y27 ¥ X127 Yo51 mev

Energy ranges used in counting rate calculations varied from £0.05 MeV at low energies to
+0.10 MeV for higher energies. In cases where R? ~0.7, the counting rates were so low and
varied so little with S that statistical fluctuations in counting rate measurements were major
factors in the R? calculations.

Table 1
Background Equations

Radioactivity Energy, MeV Background, cpm to R?
22Na, 264l 0.51 X 0.51 0.0719 - 0.129S + 0.00101S> 0.0025 096
22Na £0.51 X 1.27 0.0489 - 0.0101S +0.00086S> | 0.0036  0.86
22Na, 26A1 Z0.51 X 1.80 0.0839 - 0.0184S +0.0016082 | 0.0050  0.91
26A1 Z0.51 X 232 0.0179 - 0.0031S +0.000258% | 0.0016  0.78

U Z 0.61 X 0.77 0.0431 - 0.0094S + 0.00087S> | 0.0031  0.85

U £0.61X 1.12t0 1.24 0.0452 - 0.0082S + 0.000588% | 0.0032  0.86

U £0.61 X 1.38 to 1.51 0.0361 ~ 0.0081S + 0.00067S> | 0.0025  0.87
Th z 0.28 X 2.61 0.0254 - 0.0021S 0.0021  0.72

Th z0.58 X 2.61 0.0281 ~ 0.0049S +0.00031S%> | 0.0017  0.87
Th £ 0.86 X 2.61 0.0113 -~ 0.0021S +0.00014S% | 0.0014  0.66
60¢Co z1.17X 133 0.0111 -0.0021S + 0.0001952 0.0010  0.69
40K > 1.46 2.158 +0.0612S + 0.0136S 0.053 0.95

Figure 1 shows the data and calculated correlation lines for the 0.51- X 0.51-and 0.51- X
2.32-MeV background counting rates versus detector spacing. The trend toward decreasing
background with increasing detector spacing is common to all but one case listed in table 1.
The singular exception is the *°K background, shown 1n figure 2 for each detector and for
the sum. It is clear that the increasing total background with spacing is due primarily to the
background variation of one sample detector. The position in the shield of that detector
(Y) varies with sample thickness, while the X detector is kept in a fixed position. The Y
detector moves nearer to the end of the anticoincidence mantle as sample thickness, and
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Figure 1. Coincidence background counting rates for 0.51- X
051- (top) and 051- X 2.32-MeV (bottom) plotted against de-
tector spacing. The regression equations are given In table 1,

thus detector spacing, increases. Six conventional photomultiplier tubes, containing smalil
but measurable amounts of K, U, and Th, are affixed to that end of the anticoincidence
detector. Thus, as the Y detector is moved closer to these phototubes, the noncoincident
background due to these naturally radioactive species increases.

CALIBRATION

Standardized sources of 22 Na, 26 Al, 4°K, #¢Sc, %*Mn, %°Co, U, and Th were used, as appro-
priate, to calibrate counting yields for individual meteorite sample geometries. All sources
were obtained commercially (*°K as reagent-grade KCl) with listed calibration uncertainties
of <5 percent. All calibrations were compared with certified standards used by Battelle
Pacific Northwest Laboratories, resulting n revising the specific activities of the 26 Al, ¢ Sc,
and % Mn sources. The ?® Al source was corrected by quantitatively comparing coincident
and single counting rates with a National Bureau of Standards 22 Na source (+ 2 percent)

in the same geometry. The revised 26 Al calibration was confirmed with the Battelle

26 Al standard.
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Figure 2. Net potassium background counting rates for the indi-
vidual detectors and for their sum plotted against detector spac-
ing. The equatton for the sum of X and Y 15 given in table 1. The
X distribution remains flat because the distance from that detec-
tor to the primary K source, the anticoincidence phototubes, re-
mains constant (see text). The Y background, and thus the sum,
increases with S because that detector i1s moved nearer the photo-
tubes with increasing sample size.

Standards were mixed with 150-um dunite or iron powders in order to simulate the densities
of powdered or whole rock stone meteorite samples, respectively. The appropriate powder
mixtures were placed directly in lucite holders, or into epoxy-coated mockups (discussed
above), to duplicate sample geometries. In a few cases where samples were thin (<0.5 cm)
slices of larger specimens, epoxy shells were not made. Instead, a thick layer of aluminum
foil was shaped around the sample, filled with the proper mass of the standard of interest,
and manually smoothed flat to fit the sample’s holder.

Counting duplicate small samples demonstrated source uniformity at least down to the 10-g
level. Repeated filling, mounting, and counting mockups or shaped foils yielded agree-
ment between runs within counting statistics. All cosmogenic radionuclide measurements
were calibrated by direct comparison with standards in identical geometries. This was gen-
erally true of *°K, and less so for U and Th. In some cases in which the X, U, or Th
contents were not required to high accuracy, counting yields were estimated from other
samples of similar size/shape; uncertainties in calibration estimates were included in the
calculations of element concentration.



Table 2 lists measured counting yields for a range of representative sample geometries. The
samples are identified by mass and detector spacing. For coincident events, yields were ob-
tained from the difference between standard and background counting rates, divided by the
source specific activity (or mass in the cases of U and Th). For K, the source counting rate
for the 1.46-MeV full energy peak was first corrected for the counting rate in adjacent
nonpeak channels. A net background counting rate, obtained similarly (see table 1), was
subtracted, and the difference divided by the mass of potassium in the source. For actual
samples, this technique minimized potential interference due to scattering of higher energy
gamma rays. Thus, for the specific channels used in this work:

_R(ch3033)-R(28+29 +34 +35)

K MK

No calibrated source was available for 48V (0.98 X 1.31 MeV). When this nuclide was de-
tected in the coincidence spectrum of a recently-fallen chondrite, the counting yield was
interpolated from those of % Co (1.17 X 1.33 MeV) and *6Sc (0.89 X 1.12).

Table 2
Representative Counting Yields
Sample Mass and Detector Spacing
Energy
Nuchde MeV) 203 g 284 g 50¢g 28g
49 cm 54 cm 1.6 cm 0.9 cm
0.51 X 0.51 0.0111 0.0273
22Na (cpm/dpm) = 0.51 X 1.27 - 0.00247 0.0087
" $0.51 X 1.78 © 0.00231 0.0140
0.51 X 0.51 0.0121 0.00941 0.0267 0.0293
% A} (cpm/dpm) £0.51X 1.81 0.00228 0.00183 0.0072 0.0086
T 0.51 X 2.32 0.00201 0.00133 0.0092 0.0129
+ 60C, (cpm/dpm) Z1.17X 1.33 0.00179 0.0088
40K (cpm/gK) T 1.46 12.7 11.6 223 25.1
Z0.61 X 0.77 0.377 1.17
U (cpm/mgU) 061X 1.12to 1.24 0.781 2.77
Z0.61 X 1.38to 1.51 0.191 0.75
z0.28 X 2.61 0.133 0.283
Th (cpm/mg Th) £ 0.58 X 2.61 0.163 0.508
Z 0.86 X 2.61 0.027 0.104




COUNTING RATE AND SPECIFIC ACTIVITY CALCULATIONS

Sample counting times varied from 4000 to about 10,000 minutes, depending primarily on
mass and/or expected activity level. For coincident events where the sample counting rate
is Rg and the total counts in the selected energy region G,

G A
R =?, and og =+ (G)*/T

The net sample counting rate, Ry, is the difference between Ry and the background rate,
Ry ; 0y =% (03 +02)%. Thisnet rate can be corrected, if necessary, for contributions from
other nuclides. The corrected net counting rate is divided by the radionuclide counting yield

€y and by the sample mass in kilograms to find the specific activity in disintegrations per
minute per kilogram of sample (dpm/kg).

For 26 Al (in the absence of #2Na), U, or Th, specific activities were calculated for three
coincidence energy regions. The weighted average of the three calculated activity values
was taken as the sample specific activity. Thus:

and

The agreement in the pattern of counting rates for the three energy regions between sample
and calibration source was checked by:

2 2 2
A-A1> L (A, (A-A3
Ol 02 03

2

X3 =

A value < 1 indicates satisfactory agreement. If x; > 1, the calculated 0, is multiplied by
(xi) % to provide a more realistic estimate of the activity uncertainty.



Where 2> Na and 26 Al were both present, constituting a mutual interference, the net counting
rate data from the four coincidence energy regions (table 1) were treated as an overdetermined
set of simultaneous linear equations. The four equations, of the form Y * o, =a, x, ta, x,,
were reduced by least squares regression, weighted by (oy Y2. In this specific case, Y is

the net counting rate, a, is the counting yield for one component (e.g., 22 Na) in a given
energy region, X, 1s the concentration of that component, and a, and x, refer likewise to the
second component (e.g., 26 Al).

Potassium was determined from the net 1.46-MeV peak extending above the combined non-
coincident gamma-ray spectrum. Thus the counting rate, Ry, of the sample was obtained
from the counts, C, 1n and on either side of the full energy peak:

p C(ch3033)-C(28+29+34+35)
s~ T

and

[C (30-33) + C (28 + 29 + 34 + 35)] %
o -
S
T

The net K counting rate was found, as in the coincidence counting case, by Ry -R;.

RESULTS

Measured specific activities, in dpm/kg at time of fall, for recently fallen chondrite samples
studied in this laboratory are given in table 3. All U and Th values were calculated assuming
that measured 2°®T1 and 2! Bi were in radioactive equilibrium with their respective parents,
232Th and 2*8U. The Murchison sample was obtained from the University of Melbourne,
Australia; the Havero sample consisted of numerous small fragments obtained from the
University of Turku, Finland. Halflives of the cosmogenic radionuclides are given in each
column. Data that have already been published are so cited in the reference column.

Measured specific activities of finds and old observed falls, the former identified by year
only, are given 1n table 4. The Keyes samples are portions of cores obtained from D. Bogard
of Johnson Space Center. The Pribram samples were obtained from Z. Ceplecha of the
Ondrejov Observatory, Czechoslovakia, through R. McCrosky of the Smithsonian Astrophys-
ical Observatory. The Wellington samples were provided by E. King, University of Houston.
The Zerga amphoterite sample was provided by R. Fudali, Smithsonian Institute.

Table 5 contains radioactivities in achondrites measured in this laboratory. The Moama
sample was provided by J. Lovering, University of Melbourne. The Norton County samples
were obtained from K. Keil, University of New Mexico.
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ORDINARY CHONDRITES

Chondrite chemical analyses typically show K = 700 to 900 ppm and U on the order of 20 ppb.
A number of the weathered meteorite finds in table 4 have significantly lower K content

(see figure 3) and/or higher U (or its daughters). These alterations can be attributed to the
weathering process itself, sometimes leaching K from the meteorite and sometimes introducing
U (and Th) or their decay products into the sample. Although these weathering effects do

not always correspond to diminished 26 Al activities in table 4, the converse is true; significant-
ly reduced 26 Al levels (not attributable to cosmic-ray shielding or short exposure age) are
invariably associated with low K and/or high U contents. Specifically:

Etter 2641 = 42.2 dpm/kg K =538 ppm, but U= 24 ppb

Dalgety Downs 2%Al=40.3t049.9 dpm/kg U= 207 to 630 ppm, but K = 869 to 1066 ppb
Bledsoe 26 A1 = 44.8 dpm/kg K = 386 ppm, but U = 32 ppb

Semmole #2  2%Al = 48.9 dpm/kg K =589 ppm, but U= 217 ppb

Expected 2¢ Al activities under average cosmic-ray shielding conditions can be calculated from
chemical compositions using target element production rates (Reference 2). This average
production rate does not take into account the effects of sample depth and meteorit¢ pre-
atmospheric size (References 6 and 8). The spallation 22 Ne/?! Ne ratio has been shown to be
an indicator of irradiation hardness (Reference 10), and thus (References 6, 8, 11, and 12)
related to shielding (size and depth).* In figure 4, the ratio of measured 2° Al to that calcu-
lated from chemical composition (*¢ A1)/(** Al ) is plotted against 22 Ne/?! Ne for meteorites
in which both measurements were made on the same sample. The upper line represents

the trend reported by Herzog and Cressy (Reference 6) for data obtained from a number of
chondrites. The lower line was calculated from the data (¢) obtained on core samples of the
Keyes chondrite (References 8 and 11). The first relationship reflects a variety of unknown
sizes and depths, while the latter is due only to depth variations in a single fairly large stone
meteorite.

The difference in slope between the two lines, and the tendency of the data to scatter around
them, suggests that the 22 Ne/?! Ne ratio is not entirely adequate as an indicator of both size
and depth effects on 26 Al production.(Reference 6). The Herzog-Cressy line is most likely
an approximation to a family of curves, similar to the Keyes line (although not necessarily
linear) but with slopes dependent on meteorite preatmospheric size.

The Dalgety Downs data (©) fall conspicuously below the trend of the other data in the
diagram, probably because of terrestrial weathering.t The St. Séverin (SS) data point

*Cressy, P.J. and D.D. Bogard, “On the Calculation of Cosmic-Ray Exposure Ages of Stone'Meteorites,” Geochim,
Cosmochim. Acta, 1976, in press.

{Herzog, G.F. and P.J. Cressy, 26 4] Losses from Weathered Chondrites,” Meteoritics, 1976, in press.
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Figure 3. The distribution of measured potassium
contents (tables 3 and 4) for H, L, and LL chondrite
finds and observed falls.

(Reference 13) was obtained from a very near surface sample; other data from this meteorite
fall much nearer the Herzog-Cressy line. Ucera (U) appears to have experienced a two-stage
irradiation (Reference 14). The ?2 Ne/?! Ne ratio primarily reflects shielding conditions during
the first, relatively long irradiation, while the *® Al activity was produced during the last

few million years, after Ucera had been reduced to a smaller body by an intervening collision.

Five meteorites lie considerably above the field of data. Malakal experienced a uniquely

high cosmic-ray exposure (Reference 7). The same explanation may apply to Shelburne (S),
Clovis #2 (C), Kabo (K), and Tieschitz (T) as well (Reference 6). Appley Bridge, Cavour, and
Morland were not plotted because noble gas data indicate short cosmic-ray exposure ages

and thus 26 Al undersaturation.* However, their 26 Al activities are inconsistently large for the
estimated ages and may be best explained by an increased cosmic-ray flux also.

FRESHLY-FALLEN METEQORITES

Although the relationship of 26 Al production to the neon isotope ratio is not as tight as one
would like, the empirical relationship calculated by Herzog and Cressy (Reference 6) does
provide an improved basis for estimating 2! Al production rates in individual meteorite samples.

*Cressy, P.J. and D.D. Bogard, “On the Calculation of Cosmic-Ray Exposure Ages of Stone Meteorites,” Geochim,
Cosmochim, Acta, 1976, in press.
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Figure 4. The ratio of observed to calculated 26 activity plotted
against spallation 22Ne/21 Ne ratio in H, L, and LL chondrites.
Diamonds (#) are core data from the Keyes chondrite (References
8 and 11). Open circles (O) are data for Dalgety Downs.* Sym-
bols are identified in the text. The equation for the upper line
(Reference 6) is: 26AI/ZGAIO‘= 3.2 - 2.0 (?2Ne/?'Ne). The lower
line is taken from the Keyes data: 26AI/ZGAI0 = 5,65 - 4,24
(22Ne/21 Ne). The data are taken from tables 3 and 4 and from
the literature (References 6, 9 through 18, and others).}

Unfortunately, not nearly as much data exist on short-lived radionuclides as on long-lived

26 Al, due to the rarity of meteorite falls. The data in table 3 probably represent more

than one-fourth of all such data measured to date in meteorites shortly after their fall. With
such a paucity of data, it is difficult to search for trends. Data for meteorites in which
22Na, %6 Sc, 5*Mn, and noble gases were measured in the same sample are plotted in figure 5.

No clear correlations are apparent. Larger specific activities of these nuclides have been
reported in some meteorites, but are not plotted because no corresponding neon isotope
data exist. An additional complicating factor exists because of the relatively short half-
lives of these nuclides. Their time-of-fall specific activities are potentially sensitive to
spatial variations in cosmic-ray flux density and may be significantly affected by exposure
to solar flare activity.

*Herzog, G.F. and P.J, Cressy, «26} 1 osses from Weathered Chondrites,” Meteoritics, 1976, 1n press.

+Cressy, P.J. and D.D. Bogard, “On the Calculation of Cosmic-ray Exposure Ages of Stone Meteorites,” Geochim.
Cosmochim. Acta, 1976, in press.
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Figure b. 465¢ and 54Mn, normalized to target element composi-
tion, and 2""Na, plotted against 22Ne/21 Ne ratio. The open circle
(0) represents the Haverd ureilite; its 22p\e/21Ne ratio has been
normalized to chondrite chemistry using the Mg/Si weight ratio.”

Figure 6 is a plot of 2 Na against 26 Al. A general positive correlation is apparent; note the
Malakal point with its conspicuously high 24 Al activity. In figure 7, 46 Sc is also positively
correlated with 54 Mn, although standard deviations of *6 Sc activities are typically about
20 percent. The correlation is somewhat surprising in this case, because 6 Sc is a relatively
high-energy product of cosmic-ray interactions with iron, while 5¥Mn is definitely a low-
energy product.

Al IN ACHONDRITES

Achondrite isotope data can not be compared directly with chondrite data because of the
considerable differences in chemical composition. The ratio of 2¢ Al against 26 Al , the
production rate calculated from target element chemistry (Reference 2), will in principle

*Cressy, P.J. and D.D. Bogard, “On the Calculation of Cosmic-ray Exposure Ages of Stone Meteorites,” Geochim,
Cosmochim. Acta, 1976, in press.
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Figure 7. Variation of 465 with 54Mn, in dpm per kilo-
gram of the principal target element for nuclear production.

account for this effect; however, for extremely different chemistries, as in eucrites and
howardites, the corrections are less certain. Cressy and Bogard* empirically determined an
equation to adjust 22 Ne/?! Ne ratios for chemistry differences:

[Mg] [Mg]
F =1.122-0.224 —— +0.09 ——
( 22/21 )chem [Sl] [Si] 2

*Cressy, P.J. and D.D. Bogard, “‘On the Calculation of Cosmuc-ray Exposure Ages of Stone Meteorites,” Geochim,
Cosmochim. Acta, 1976, 1n press.
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Dividing measured neon isotope ratios by (F /21 )aem Yi€lds the chondrite chemistry equi-
valent of the observed ratios. Thus, plots of * Al/2® Al against the adjusted ?* Ne/' Ne ratio
can be compared with the corresponding plot for ordinary chondrites (figure 4).

Figure 8 is such a plot for howardites, eucrites, and the Nakhla achondrite (included here be-
cause it is a single-meteorite class whose chemical composition most closely resembles the
calcium-rich achondrites). Several features are apparent from this plot.

®  Eucrite and howardite data seem to be randomly intermingled, although
their Mg, Ca, and Al contents are significantly different. The 26 Al production
rates (*% Al,)) calculated (Reference 2) from average eucrite and howardite
chemical compositions are 136 and 112 dpm/kg, respectively. The differ-
ence is due primarily to the production rate from Al (P26 Al). An error in this
rate would produce distinctly different values of 26 Al/ 2“Alo for the two classes;
the pattern of eucrite and howardite data in figure 8 supports P, Al=113 dpm/kg
Al (Reference 2).

®  Yet, for the most part, the Eu and Ho 26 Al data fall appreciably beneath not
only the Herzog-Cressy chondrite trend, but the Keyes depth correlation as
well. On the other hand, Nakhla, with a lower, almost chondritic, Al content,
lies much nearer the chondrite data. An overestimated P, Al could yield the
kind of discrepancy observed between Nakhla and the aluminum-rich
achondrites. As noted above however, this would also have resulted in the
segregation of eucrites and howardites from each other.

Another possible explanation was suggested several years ago (Reference 2)

on the basis of less information. It is conceivable that eucrites and howardites
as a group may have been exposed to a lower cosmicray flux than that ex-
perienced by most chondrites. This would require an unknown but exotic orbit
for essentially two entire classes (perhaps related) of meteorites, despite what-
ever collisions they may have undergone in their individual histories.

®  None of the samples in figure 8 have adjusted 22 Ne/?! Ne ratios greater
than 1.14; some are as low as 1.03. The raw data for these samples lie be-
tween 1.10 and 1.22, slightly above a typical chondrite range. This pat-
tern could be due at least in part to the Mg/Si normalization. The Bruder-
heim data used for the normalizing equation* did not include samples having
such low Mg/Si ratios. Data from Elenovka olivine:(Reference 19), Mg/Si <0.2,
was used to fix the curve at the low-Mg end. It is possible the equations could
have “overadjusted” the 22 Ne/?! Ne ratios for these meteorites (Mg/Si = 0.2
to 0.4), but not by more than about 0.02 units.

*(ressy, P.J. and D.D. Bogard, “On the Calculation of Cosmicray Exposure Ages of StoneMeteorites,” Geochim,
Cosmochim. Acta, 1976, in press.
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Figure 8. Ratio of observed to calculated 26 Al activities in eu-
crites (O}, howardites (@), and Nakhla (0), plotted against 22Ne/
21 Ne ratios adjusted to chondrite-chemistry equivalents (see text).
Solid points represent 26 A1 and neon data obtained on the same
sample. The trend lines are those described in figure 4. The
chemistry adjustments to 22N\g/21Ne lowered this ratio about
0.07 eucrites and 0.05 for howardites.

Another possibility is that eucrites and howardites are typically much larger than most
chondrites. It has been shown by a number of investigators that 22 Ne/?! Ne ratios decrease
with increasing size and/or depth, due to the increasing proportion of low-energy secondary
cosmic rays produced within the meteorite. In principle, sufficiently large size/depth should
result in decreased ?° Al production also. This has not been unambiguously observed experi-
mentally, due presumably to the rarity of such large chondrites. All in all, this possibility
does not seem too likely.

A third possibility is exposure to an unusually soft cosmic-ray spectrum; that is, a high pro-
portion of low-energy radiation. This alternative would again require unique orbits for
these meteorites. The most likely region would be relatively near the sun, where the large
flux of low-energy solar protons and enhanced solar modulation of galactic cosmic rays
could yield the observed low values of 22Ne/?! Ne and 26 A1/?6Al,,. The frequently-
observed 3 He loss for these meteorites could then be explained by solar heating. It must
be noted that this speculation benefits from our poor knowledge of other regions of the
solar system.
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The aubrite data in figure 9 roughly parallel the chondrite trend, but with higher 26 Al ratios.*
Although the discrepancies are not great, they form a consistent trend. If real, this trend
suggests an intriguing possibility. The Malakal chondrite was shown to have experienced

an uniquely high cosmic-ray flux (Reference 7). If aubrites were exposed to a similar but

less extreme flux, their 26 Al activities would be consistent with the data in figure 9. There

is some circumstantial evidence for this “unique orbit’’ alternative.

14 T T T T

1.2 -

10

%y /264,

06 —

04 -

0 ! 1 ! I
100 105 110 115 120 125

(22ne /2e),

Figure 9. Variation of 26A1/26A] in aubrites with the 22Ne/2'Ne
ratio. The diamonds (®) are Norton County data {(Reference 20).*
As before, solid points represent same sample measurements. No
chemistry adjustment to 2Ne/2 Ne was required.

Aubrite cosmic-ray exposure ages are typically greater than 30 X 10° years; the mean for 9
aubrites is 36 with a range of 8 (Aubres) to 76 (Norton County). Bishopville, Bustee, Cum-
berland Falls, and Khor Temiki have apparent ages between 36 and 40 million years, and
may represent products of a single collision. The mean collisional lifetime for aubrites is
appreciably longer than that of any other stone meteorite class. Either aubrites are much

*Herzog, G.F. and P.J. Cressy, “The Cosmicray Exposure of Aubrites,” 1976, in preparation.
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“tougher” than other stones (demonstrably not the case), or they traverse orbits in which
the probability of encountering other objects is much less than for chondrites. This hypothe-
sis is worthy of further study.

The existing diogemite data are shown in figure 10 and have been discussed in some detail
by Herzog and Cressy.* The data generally lie near the chondrite trend, although Garland
may have an anomalously high 26 Al activity. The noble gas data clearly imply* that eight
of the nine known diogenites are products of just two collisions that occurred 14 and 23
million years ago, respectively.

The ureilite data (figure 11) are discussed in more detail elsewhere.f Recovered masses are
typically small, and 2 Ne/?! Ne ratios rather high, suggesting that the preatmospheric masses
of ureilites are also generally small. With the exception of Dyalpur, the data cluster very
well along the chondrite trend. The pattern is convincing. The earlier suggestion of a unique
orbit and a low cosmic-ray flux to explain low ureilite 26 Al activities (References 5 and 21)
is clearly unnecessary.t
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264/26p,

04— —

02— -

0 ! I ] I
100 105 110 115 120 125

(22Ne/21Ne)

Fugure 10. 26AI/26AI in diogenites against adjusted 22Ng/2 Ne.
Solid points are same sample measurements. The 22Ne/21 Ne ad-
justment lowered measured values about 0.02 units.

*Herzog, G.F. and P.J. Cressy, “Diogenite Exposure Ages,” Geochim. Cosmochim. Acta, 1976, in press.
{Cressy, P.J., “264 1 in Kenna and Other Uretlites,” Geochim. Cosmochim, Acta, 1976, 1n press.
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Figure 11. 2".‘AI/ZGAIO in ureilites and Chassigny (c) against ad-
justed 2)g/21 e, Chassigny is a single meteorite class whose
chemical composition most closely resembles those of ureilites.
Kenna (0) is the only ureilite for which the same sample criterion
is not known to apply. Chemistry normalization raised 22Ne/
21 Ne about 0.02 units.

National Aeronautics and Space Administration

Greenbelt, Maryland

April 6, 1976
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