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ABSTRACT 

Problems in space physics are discussed whose models, in simplified form, reduce t o  a super- 
sonic flow scheme with a detached shock wave, namely: 

Problem A. Solar-wind interaction with an intrinsic planetary magnetic field. 

Problem B. Solar-wind interaction with the ionized component of the atmosphere of a 
comet. 

Problem C. Solar-wind interaction with the ionosphere of a planet which does not pos- 
sess its own magnetic field. 

The numerical study of'the above problems is performed with the use of magnetogasdynamic 
equations for an ideal single-fluid model. From the physical viewpoint, the problems are 
solved in terms of as simple phenomena as possible; the principal objective is to make re- 
cently-developed methods of numerical analysis of mixed flows applicable to space physics 
problems. 

A common feature of all the problems in question is the assumption of the presence of a 
tangential discontinuity separating the solar plasma flow (the external flow) from some re- 
gion (the magnetosphere, the ionosphere) surrounding a planet (the internal region). A de- 
tached shock wave is assumed to be present in the external flow. 

PROBLEM A: SOLAR-WIND INTERACTION WlTH AN INTRINSIC PLANETARY 
MAGNETIC FIELD 

Supersonic and super-Alfvenic stationary flows around the magnetic cavity formed by a 
dipole oriented perpendicular to the oncoming flow velocity are investigated (figure I). 
The magnetic field frozen-in to the solar plasma is assumed to be parallel to the undisturbed 
flow velocity. Magnetostatic equations are assumed to hold for the internal region. 

A three-dimensional solution (r, 8 ,  cp) is calculated. With respect to the angle, 8 ,  a trigono- 
metric approximation of functions is used to represent its values along several planes, cpi. 
Then a boundary-value problem for two independent variables is numerically solved by 
means of the method of integral relations. The tangential discontinuity shape is found by 
minimizing the residual or differences in total pressure on both sides of the discontinuity 



Figure 1. Supersonic and super-Alfve'nic stationary flows around the magnetic cavity. 

The fact that the problem involves two mutually-perpendicular planes of symmetry permits 
a solution to be obtained in only one quadrant. 

A series of calculations is carried out achieving uniform accuracy at various stages and in 
various regions of the solution of the problem. In particular, we investigate the number of 
approximation planes, strips of the integral relations method, and the number of points re- 
quired for the construction of the tangential discontinuity while attaining the necessary cal- 
culation accuracy which is required throughout the problem. As a result, it is found that for 
space objects whose shape only slightly deviates from axial symmetry, five approximation 
planes with respect to g over a quadrant yield a calculation accuracy better than 1.5 percent. 
For achieving the same accuracy, it is sufficient to use the approximation of the integral re- 
lations method N = 2 (with 0 < 60') and N = 3 (with 0 < 120') and 10 X 5 pointswith 
respect to 0 and cp for minimizing I. 



Much attention is also attached to a technique of crossing singular points situated in the 
trans-sonic region of an external flow. This enables the calculations to be extended into a 
domain of hyperbolic equations (up to 0 = 120'). Calculations aimed at establishing the 
closure conditions of a boundary value problem in the magnetosphere tail are made as well. 
It appears that the closure of an internal elliptical problem takes place (within the accuracy 
of 1.5 percent in the forward part of the magnetosphere) when substituting the real tail part 
of the magnetopause by any ellipsoid whose semi-axes ratio is greater than 3. 

Having made an analysis of the approximation errors and determined the dependence of the 
solution accuracy obtained upon the number of points in the numerical mesh chosen for the 
more complicated problem A (from the viewpoint of flow geometry), one need not be con- 
cerned for the accuracy of the results obtained in the solution of the simpler problems B and 
C. 

The numerical solution is constructed in a dimensionless way depending upon the criteria of 
problem similarity: Mach number M, Alfv6n Mach number MA ,,adiabatic index y, and the 
quantity 

(Here, a = 8.1 X G cm3, and RE is the F.arth's radius.) F characterizes the relationship 
of dipole strength to pressure in the undisturbed flow. 

The calculations are made with the following parameters: M, MA = 6, 8, 10, 12; y = 1.2, 
1.4, 1.67,2. 

Figure 2 shows the relation of E ,  at the stagnation point to the values of Mm and y. The 
quantity y is seen to strongly influence E, and, therefore, the whole flow pattern. This sug- 
gests the significance of determining some effective adiabatic index, ya, for the solar plasma 
and, conversely, the probability of deriving ya from the results of satellite experiments. A 
comparison of the solution obtained with satellite experimental data gives ydf f, 2. 

Figure 3 gives the dependence of the tangential discontinuity distance at the stagnation 
point, relative to the Earth's radius, r, /RE, upon certain parameters of the similarity prob- 
lem. The relation r,/RE to Mach number, Mm , in the upstream flow is presented for various 
values of y and K = log (0.358 F). These curves indicate how the magnetopause location is 
connected to quasistationary changes in solar-wind conditions. 

In figure 4, the families of shock waves and tangential discontinuities are given for various 
parameter values; figure 5 shows a typical calculation result with flow streamlines, constant 
density lines and sonic lines. (Figures 4 and 5 present in the upper half-plane, the flow in the 
plane cp =n/2; in the lower half-plane, the flow in the plane cp = 0.) The disagreement between 
the solution obtained and similar calculations by Spreiter et al. [ I ,  21 is less than 10 to 
15 percent. 
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Figure 2. The relation of e,, at the stagnation point to  the values of Mm and y. 

Figure 3. The dependence of the tangential discontinuity dis- 
tance at the stagnation point. 



Figure 4. Families of shock waves and tangential discontinuities for 
various parameter values. 

Figure 5. A typical calculation result. 



In addition to the numerical investigations, an exact solution of a two-dimensional problem 
concerned with a captured plasma region in the vicinity of the magnetopause neutral point 
(a so-called cusp) was obtained. The problem is reduced to finding a conformal mapping 
z(() between the upper half-plane of the complex plane ( = A + iq with a magnetic dipole at 
the point i 6 a n d  an infinitely conducting boundary on the axis and the upper part of a 
plane z = x + iy contiguous to an infinitely conducting fluid and to a dipole on the imaginary 
axis. 

The conformal mapping obtained is 

where 

Md is dipole intensity, Po is pressure in a decelerated plasma. 

The magnetosphere boundary line in the neighborhood of the neutral point is 

cos (Im W) dt 
(t2 + 3)2 

Y. =Yo + ~ ~ t i ' ~ , , 2  sin (Im W) dt 

Figures 6 and 7 represent the function Im W([) = Arg (dz/dE) and boundary lines obtained 
with various p. 

An investigation has also been carried out in the vicinity of the Sun-Earth line with arbitrary 
orientation of velocity and field vectors in the undisturbed flow. For this purpose, the func- 
tions were derived in the form of their expansions in a series with respect to a small depar- 
ture from the axis. The results indicate that the presence of a field component perpen- 
dicular to the velocity in the undisturbed flow can give rise to a sharp drop in density in the 
vicinity of the stagnation point of the magnetosphere. 



dz 
$ = Arg- t dG 

Figure 6. Representation of the function Irn W(E) = Arg (dzldg). 

Figure 7 .  Boundary lines obtained with various P. 



PROBLEM 9: SOLAR-WIND INTERACTION WITH THE IONIZED COMPONENT OF: 
THE ATMOSPHERE OF A COMET 

Biermann et al. [3]  suggested that the solar-wind interaction with the ionized component of 
a comet forms a shock wave. 

The simplest model of the solar-wind interaction with a comet is a subsonic source in a 
supersonic gas flow. The source gas and the solar plasma are separated by a tangential dis- 
continuity where the pressure balance is maintained. The discontinuity surface at infinity is 
shown to asymptotically tend to  become cylindrical. As compared to the previous problem, 
there is a substantial simplification, that is, the possibility of treating an axisymmetrical 
problem. Except for slight variations, the solution of the problem is similar to the above 
case. However, there are two modifications which arise in defining the tangential discontinui- 
ty line. The first modification (the same as in problem A) is the fitting of the external and 
the internal solutions in accordance with a minimum residual balance of total pressures. The 
second one consists in a simultaneous integration of the external and internal problems and 
in the construction of a shock wave and a tangential discontinuity during crossing from the 
stagnation point to the periphery. The accuracy of the results, in both modifications, is 
practically identical but with much less use of computer time in the second case. 

Figure 8 shows the distances of the shock wave and the tangential discontinuity at the stag- 
nation point as well as the radius of the cylindrical part of the tangential discontinuity R, 
depending upon oncoming flow parameters. Figure 9 represents a characteristic source flow 
pattern. 

PROBLEM C: SOLAR-WIND INTERACTION WITH THE IONOSPHERE OF A PLANET 
WHICH DOES NOT HAVE ITS OWN MAGNETIC FIELD 

At present, there is no universally-accepted point of view concerning the mechanism of solar- 
wind interaction with such planets although the existence of a bow shock is recognized by 
almost all investigators. The simplest model (due to Spreiter et al., 1967) is the direct 
contact of the solar plasma with the ionosphere of a planet and the maintenance of a pres- 
sure balance at a tangential discontinuity. On the other hand, there can occur a magnetic 
barrier due to currents produced either by solar-wind motions or by some dynamo in the 
planet's ionosphere. Finally, a barrier of this kind can have a substantially nonstationary 
character. 

The supersonic stationary flow has been calculated in an atmosphere bound by the gravita- 
tional force around a spherical object [4] . The technique for solving the problem is like those 
described above except for the fact that terms responsible for the gravity are added to an 
equation of motion. In this case the equation of motion, as compared to an ordinary mag- 
netohydrodynarnic equation, will have the form: 



Figure 8. The distances of the shock wave and the tangential discontinuity at the stagnation point. 
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Figure 9. A characteristic source flow pattern. 



Here G is the universal gravitational constant, Mp is the planet mass. Neglecting electromag- 
netic phenomena, the internal problem solution is given by a barometric height formula: 

where 

P, = the pressure at some altitude r, , 

p = the molecular weight of atmospheric gas, 

T = its temperature. 

In figure 1 0 is given the dependence of the dimensionless distance from the coordinate origin 
to the stagnation point of the tangential discontinuity, r, / re ,  upon M, in the oncoming 
flow for three values of K/r, and two values of Bn(P, /PI ). PI is the pressure immediately 
after the gas passes through the shock wave. The families of shock waves and tangential dis- 
continuities in figure 1 1 are presented as dependent upon the parameter K/r, , whose change 
has a more pronounced effect on the discontinuity line. 

An attempt is also made to estimate the influence on the interaction of magnetic fields 
generated by the solar wind itself (for a stationary case). For this purpose the following 
model has been considered. A spherical layer of finite conductivity, whose external radius is 
approximately equal to the distance from the planet center to the stagnation point of the 
tangential discontinuity, obtained from the previous solution, is placed in the flow of an 
infinitely-conducting plasma whose frozen-in magnetic field in the undisturbed flow is per- 
pendicular to the velocity at infinity. As the solution to the external problem, an electric 
field distribution is obtained 

along the spherical layer surface. Then the .internal problem is solved, that is, currents are 
found flowing in the spherical layer driven by this electric field and the magnetic field that 
results from them. The solution results in the analysis of the induced magnetic field contri- 
bution AK at the external boundary of the spherical layer, to the total pressure balance at 
this boundary. The calculations are done under the assumption that the spherical layer has a 
scalar conductivity. 

As a result, it is found that in a plane intersecting the planetary center and perpendicular to 
the magnetic field in the undisturbed flow, the induced magnetic field contribution is insig- 
nificant, that is, the ionopause shape in this plane does not vary in taking account of an elec- 
tromagnetic interaction. 



Figure 10. The dependence of the dimensionless distance from the coordinate 
origin to the stagnation point of the tangential discontinuity. 

Figure 11. Families of shock waves and tangential discontinuities 
dependent upon the parameter K/ro. 



In the plane containing the center of the planet and parallel to the magnetic field vector in 
the undisturbed flow, there is obtained a distribution AH2 /8n depending upon the parameter 
Hm V- u/c2 ro , where o is the spherical layer conductivity and ro is its thickness. The maxi- 
mum addition to the pressure balance at the boundary due to induction is at the stagnation 
point. The estimates show that for a substantial change in the ionopause shape, by means of 
the mechanism involved, rather large intensities of the magnetic field frozen-in to the solar 
plasma (Hm IV 100 y) and large values of ionospheric conductivities - 10-I mhoslm) 
are required. 

BRIEF CONCLUSIONS 

1. The complete three-dimensional solution of a stationary, self-consistent problem 
is obtained in the forward part of the interaction region for an infinitely-conduct- 
ing plasma flow around a magnetic dipole. 

2 .  It is shown that with a gasdynamic approach to an interaction of this kind, the 
choice of an effective index for the plasma adiabatic index is of crucial impor- 
tance for the flow pattern. 

3. The closure condition is obtained for an internal elliptic problem (in the search 
for a solution concerned with the forward region). 

4. An accurate solution is obtained for a two-dimensional problem at a neutral 
point. 

5 .  The flow in the vicinity of the Sun-Earth line is examined for the case of the field 
and the velocity being nonaligned in the undisturbed flow; it is found that the 
presence of a perpendicular field component causes a drop in the density at the 
magnetopause stagnation point. 

6.  The solution of a self-consistent problem is obtained for supersonic source flow, 
the simplest model of flow around a comet. 

7. The solution to the problem of a gasdynamic flow around a nonmagnetic planet, 
but possessing a gravitationally-bound atmosphere, is obtained; the induction ef- 
fect of the secondary field, produced by the solar wind for a stationary case, is 
evaluated and turns out to be insignificant with characteristic values of space 
plasma parameters. 
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QUESTIONS 

Belotserkovskii/Spreiter : I want to make a comment and not a question. First, I congratulate 
you and your young colleagues on the progress in these difficult problems. I believe we are 
now in a new era in which the magnetohydrodynamic model has a firmly established posi- 
tion in solar-wind planetary interactions and that further consequences of the theory should 
be explored more completely and in greater detail as part of the continuing investigations. 
Secondly, I wish to inject a note of caution regarding your statements on the extensions to 
include viscosity effects in the tail. Viscosity cannot be considered as a scalar quantity; it is 
a tensor quantity and extremely anisotropic as shown, for example, by the work of Bragin- 
skii. Proper attention must be given to this property if a realistic representation is to be 
obtained. 




