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A ONE-EQUATION MODEL OF TURBULENCE FOR USE WITH 

THE COMPRESSIBLE NAVIER-STOKES EQUATIONS 

Morris W. Rubesin 

Ames Research Center 

SUMMARY 

The Glushko one-equation model of turbulence is extended t o  compressible 
flows without boundary-layer approximations.) 

INTRODUCTION 

Recent advances i n  both computer technology and numerical ana lys i s  p e r m i t  
t h e  evaluat ion of compressible flow f i e l d s  by numerically so lv ing  the  complete 
Navier-Stokes equat ions,  including t h e  energy equation f o r  eva lua t ing  va r i ab le  
f l u i d  p rope r t i e s  (e.g. ,  r e f .  1 ) .  Thus, flow f i e l d s  containing separated 
regions,  which h i t h e r t o  had t o  be t r e a t e d  by i t e r a t i v e  procedures t h a t  coupled 
e s s e n t i a l l y  viscous- and inviscid-flow regions,  can be t r e a t e d  as a s i n g l e  
f i e l d  and solved with reasonable computer economy ( r e f s .  2-5). A d i f f i c u l t y  
arises, however, when these  techniques are appl ied t o  turbulen t  flows through 
the  Reynolds stress formalism. For separated flows caused by adverse pressure  
grad ien ts  , t he  comparativeiy l a r g e  pressure  grad ien ts  , both along and normal 
t o  body su r faces ,  and the  presence of t he  separated-flow region i n  c lose  
proximity t o  a su r face  are f a c t o r s  ou t s ide  the  bounds of previous turbulence 
modeling experience.  Nonetheless, mixing length  models, expressed by empir ical  
formulas evaluated from experiments on a t tached  turbulen t  boundary l a y e r s  i n  
equi l ibr ium i n  the  Clauser sense ( r e f .  6 ) ,  have been t r i e d  i n  t h e  numerical 
so lu t ions  and the  r e s u l t s  have been compared with experimental  da t a  on turbu- 
l e n t  boundary l a y e r s  separa ted  by e i t h e r  inc ident  shock waves o r  de f l ec t ed  
sur faces  such as ramps ( r e f s .  3 and 4 ) .  Although these  computations y i e l d  
r e s u l t s  f o r  t he  flow-field q u a n t i t i e s  - su r face  sk in  f r i c t i o n  and hea t  t rans-  
f e r  t h a t  have the  general  charac te r  of t h e  da t a  - t h e i r  q u a n t i t a t i v e  d i f f e r -  
ences are r a t h e r  l a r g e  and i n  c e r t a i n  regions t h e r e  are s i g n i f i c a n t  q u a l i t a t i v e  
d i f f e rences  as w e l l .  To improve t h e  computations, i n t u i t i v e  r e l axa t ion  models 
w e r e  t r i e d  t h a t  use empir ica l  formulas f o r  mixing length  and/or eddy v i s c o s i t y  
modified by a rate equation based on t h e  degree of departure  from l o c a l  equi- 
l ibr ium. Although t h e  pred ic t ions  of t he  pressure  d i s t r i b u t i o n s  were improved 
f o r  some experimental  cases ,  t he  r e s u l t i n g  sk in - f r i c t ion  values  genera l ly  w e r e  
not  s i g n i f i c a n t l y  b e t t e r  than t h e  o r i g i n a l  models ( r e f .  7). An e a r l y  vers ion  
of a two-equation model of turbulence w a s  a l s o  t r i e d  ( r e f .  3) and t h e  r e s u l t s  
were not  any b e t t e r  than those r e s u l t i n g  from t h e  empir ical  models. 

The f a i l u r e  of t h e  e a r l y  two-equation turbulence model t o  improve t h e  
ca l cu la t ions  over t he  r e s u l t s  from the  empir ical  a lgeb ra i c  models i l l u s t r a t e s  
t h a t  more general'ity and complexity i n  turbulence modeling do not  necessa r i ly  



assure  g rea t e r  accuracy i n  a p a r t i c u l a r  appl ica t ion .  
t o  t r y  a one-equation model f o r  use with t h e  compressible Navier-Stokes equa- 
t i ons ,  bu t  one t h a t  contains  more of t h e  physics of turbulence than t h e  relaxa- 
t i o n  models and t h a t  is not as complex as a two-equation model. The incompres- 
s i b l e  f l u i d  model of Glushko ( r e f .  8)-was adopted f o r  t h i s  purpose because of 
i ts  r a t h e r  d i r e c t  formulation, i t s  l ack  of a r b i t r a r y  damping funct ions,  and 
its r a t h e r  good representa t ion  of f l a t - p l a t e  boundary-layer flows. Also, t h i s  
model has  been ca re fu l ly  compared with a well-documented incompressible 
boundary-layer flow i n  an adverse pressure gradient  ( r e f .  9 ) ;  modeling modifi- 
ca t ions  based on t h e  da t a  are indica ted  there .  The same authors  a l s o  show 
( r e f .  l o ) ,  t h a t  da t a  obtained using the  Glushko model agree f a i r l y  w e l l  wi th  
o the r  boundary-layer da t a  obtained under o ther  a r b i t r a r y  pressure d i s t r i b u t i o n s .  

It w a s  decided the re fo re  

The present  r epor t  suggests t he  modeling modifications necessary t o  
extend t h e  Glushko model t o  compressible flow wi th in  t h e  f u l l  Navier-Stokes 
equations.  Implied i n  t h i s  extension is  t h e  assumption of the  adequacy of t he  
empir ical  l ength  scale inherent  i n  t h e  model t o  represent  separated flows near  
t h e  surface.  This repor t  f i r s t  p resents  an o u t l i n e  of t he  Glushko model f o r  
incompressible boundary-layer flow. Then the  compressible analog of t he  model 
is  derived i n  the  absence of t h e  boundary-layer approximation. Compressibil i ty 
introduces new terms modeled i n  two d i f f e r e n t  ways t o  show the  a r b i t r a r i n e s s  
inherent  i n  t h e  modeling process.  The t e n t a t i v e  model, subjec t  t o  f u t u r e  test  
aga ins t  experiment, i s  then summarized. 

GLUSJXO MODEL 

The Glushko turbulence model f o r  an incompressible, tu rbulen t  boundary- 
l a y e r  flow i s  used t o  guide the  development of a one-equation model of turbu- 
lence appl icable  t o  t h e  Navier-Stokes equations f o r  compressible flows. 
Glushko derived a model f o r  t h e  Reynolds stress, u 'v ' ,  i n  t he  x-direct ion 
momentum equation f o r  an incompressible turbulen t  boundary-layer flow. The 
Reynolds stress w a s  shown t o  be express ib le  by the  product of an eddy v i s c o s i t y  
and the  s t r a i n  of t h e  mean flow, aU/ay, i n  what is  usua l ly  c a l l e d  t h e  logar i th-  
mic region of the  boundary l aye r .  This eddy v i s c o s i t y  s impl i f i ca t ion  w a s  no t  
assumed a p r i o r i ,  but  r e su l t ed  d i r e c t l y  from the  Reynolds stress equations i n  
an ana lys i s  ( r e f .  11) using the  boundary-layer assumptions and neglec t ing  t h e  
convection and d i f fus ion  of t he  Reynolds stresses. The p r inc ipa l  turbulence 
mechanisms used w e r e  t he  production, d i s s ipa t ion ,  and r e d i s t r i b u t i o n  of t h e  
ind iv idua l  components of t h e  Reynolds stresses. 
Glushko used Rot ta ' s  models ( r e f .  12) ,  namely, 

For t h e  la ter  mechanisms, 

f o r  t h e  r e d i s t r i b u t i o n  of turbulence between the  components of t h e  Reynolds 
stress and 
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f o r  t he  d iss ipa t ion .  

I n  addi t ion  t o  e s t ab l i sh ing  an  eddy v i s c o s i t y  form fo r  t h e  Reynolds shear  
stress, Glushko's ana lys i s  a l s o  demonstrated t h a t  t he  eddy v i s c o s i t y  w a s  
express ib le  i n  terms of a l o c a l  turbulence Reynolds number defined as 

Glushko i d e n t i f i e d  t h e  length scale, L, with ha l f  t he  d i s t ance ,  S ,  where 
the  co r re l a t ion  u l (x l ,  x2>u1(x1, x + S) vanishes.  Although t h i s  d e f i n i t i o n  
of L is  q u i t e  a r b i t r a r y  i n  t h e  moieling equations,  L always occurs i n  a 
product with an empir ical  constant  so  t h a t  t he re  i s  no l o s s  of genera l i ty .  
F ina l ly ,  Glushko d i d  not use the  r e l a t ionsh ip  between E and r found 
d i r e c t l y  from the  ana lys i s  of t he  Reynolds stress equations,  but  used i t ~ t o  
j u s t i f y  t h e  use of an  empir ical ly  developed r e l a t ionsh ip  between these  quanti-  
ties t h a t  presumably c o r r e c t s  fo r  t he  previous neglec t  of t he  convection and 
d i f fus ion  of t he  ind iv idua l  components of t he  Reynolds stresses. 

The Glusko model f o r  a two-dimensional incompressible, tu rbulen t  boundary 
l aye r  i s  

Continuity of m a s s :  

ac, an, 
ax, ax, 
- + - =  0 

Momentum balance i n  x1 d i rec t ion :  

L .J 

Kinet ic  energy of turbulence: 

where 

and 

M = 1 + E(r) 

D = 1 + & ( h r )  

( 4 )  
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Note t h a t  the  argument of E, t h e  r a t i o  of eddy d i f f u s i v i t y  t o  kinematic vis- 
cos i ty ,  i n  t h e  d e f i n i t i o n  of D has been a l t e r e d  by t h e  empir ical  constant  X 
t o  account f o r  d i f f e rences  i n  t h e  t r anspor t  of momentum and k i n e t i c  energy. 
This can be considered as equivalent  t o  introducing a Prandt l  number f o r  t h e  
t r anspor t  of turbulence k i n e t i c  energy. 
matic v i s c o s i t y  is expressed as 

The r a t i o  of eddy d i f f u s i v i t y  t o  kine- 

E = H(r)ar (9) 

where H(r) is expressed empir ical ly  as 

The length scale is a l s o  given by an empir ical  expression based on f l a t - p l a t e ,  
boundary-layer co r re l a t ion  length da ta ,  namely, 

( x 2 / 6  9 

L / 6  = 

t (1 .48  - 
With the  empir ical  cons tan ts ,  

I 

0 5 x2/6 5 0.23 

0.23 I x2/6 s 0.57 

0.57 5 x2/6 5 1.48 

0.37)/2.61 , 

x2/6)/2.52 , 

c1 = 0.2 

ro = 110 

c = 3.93 

X = 0.4 (15) 

Equations (3 )  through (11) form a closed system t h a t  can be used t o  c a l c u l a t e  
incompressible turbulen t  boundary-layer flow. It i s  emphasized again t h a t  e ,  
t he  s p e c i f i c  turbulence k i n e t i c  energy, i s  found from a d i f f e r e n t i a l  equation 
involving the  production, d i s s ipa t ion ,  and d i f fus ion  of tu rbulen t  k i n e t i c  
energy so t h a t  the  turbulence need not be i n  equi l ibr ium with the  mead flow. 
This dynamic c h a r a c t e r i s t i c  i s  introduced back i n t o  t h e  mean-flow equations 
through t h e  Reynolds number, r. 

COMPRESSIBLE ANALOG TO GLUSHKO MODEL 

To extend the  foregoing model of turbulence t o  the  compressible Navier- 
Stokes equat ions,  t h e  use of mass-averaged dependent va r i ab le s  ( r e f .  13) is 
adopted. The mean f i e l d  equations,  w r i t t e n  i n  abbreviated d i f f e r e n t i a l  form, 
are 
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Continuity of mass: 

Conservation of momentum i n  i t h  d i rec t ion :  

( F q  't + [Fii-ii. + 6 .  .'j - (Tij - pu"u'!)],j = 0 
J 1 1J i J  (17) 

Conservation of thermal energy: 

The last  t e r m  i n  equation (18) i s  usual ly  neglected s ince  i t  is  smaller than 
the  thermal d i s s i p a t i o n  t e r m  t o  i ts  l e f t .  
then t o  c lose  these  equations are pu'.'h" and pu'.'u'.' 

The terms t h a t  must be evaluated 

J 1 3 '  

Consis tent  with t h e  Glushko model, an eddy v i s c o s i t y  concept is adopted. 
For nonboundary-layer flows, however, an add i t iona l  assumption t h a t  t h e  eddy 
v i scos i ty  i s  a scalar quant i ty  is necessary. With these  assumptions, t h e  com- 
ponents of the  Reynolds stress tensor  are wr i t ten :  

i n  the  nota t ion  of reference 13. The hea t  f l u x  vec tor  can be expressed as 

o r ,  i n  keeping with t h e  way Glushko handled t h e  t r anspor t  of turbulence 
k i n e t i c  energy, 

where l' i s  a new universa l  constant r e l a t e d  t o  t h e  turbulen t  Prandt l  number, 
P r t  and 3 is defined la te r  i n  equation (35). 

From equation (19),  t h e  e f f e c t i v e  t o t a l  shear  s t r e s s ,  laminar p lus  turbu- 
l e n t ,  can be w r i t t e n  as 

where the  mean s t r a i n  of t h e  flow i s  

." 
(23) 

2 
3 i j  k,k - + i I j , i  - -  6 u sij - G i , j  
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With equations (19) through (23) , equations (16) through (18) are closed once 
E i s  defined. 

To def ine  E ( the  r a t i o  of eddy d i f f u s i v i t y  t o  kinematic v i scos i ty )  when 
the  f l u i d  is compressible, one must do t h e  following: 

(1) Show t h a t  pas t  experience makes it reasonable t o  use equation (11) 
f o r  the  length  scale i n  compressible flow. 

(2) Show t h a t  E is a funct ion of a turbulence Reynolds number i n  com- 
p r e s s i b l e  flow and show what form t h i s  Reynolds number takes.  

(3) Model t h e  turbulence k i n e t i c  energy equat ion t o  account f o r  e f f e c t s  
of compressibi l i ty .  

Length Scales i n  Compressible Flow 

For equi l ibr ium turbulen t  boundary l a y e r s ,  i t  has  been found t h a t  com- 
p r e s s i b i l i t y  has  l i t t l e  d i r e c t  e f f e c t  on the  length  s c a l e s  of turbulence.  For 
example, t h e  e a r l y  mixing length theo r i e s  fo r  a boundary l a y e r  on a f l a t  p l a t e  
(e.g. ,  r e f s .  1 4  and 15) and t h e  more recent  computer codes f o r  ca l cu la t ing  the  
boundary-layer equations on two-dimensional bodies with mild pressure grad ien ts  
( r e f .  16) have shown good agreement with experimental da ta  up t o  Mach numbers 
of 6 while t r e a t i n g  the  mixing length as being e s s e n t i a l l y  independent of 
densi ty .  
s ide ra t ion  of t h e  turbulence model used i n  reference 16 where t h e  eddy d i f fus-  
i v i t y  i s  expressed i n  terms of an inner  and outer  p a r t  of t he  boundary l aye r .  
I n  e i t h e r  p a r t  of t he  boundary l aye r ,  reference 16 uses  

This independence can be i l l u s t r a t e d  q u i t e  c l e a r l y  through a con- 

I n  the  inner  p a r t ,  t h e  mixing length s c a l e  is  

'inner = KY[l - exp(-y/A)] , 

with 

on a f l a t  p l a t e  with zero sur face  mass t r a n s f e r  and 

K = 0.4 (27 )  

t he  usual  K&m& constant  value. In reference 16, l o c a l  proper t ies  are used 
as t h e  re ference  f l u i d  p rope r t i e s  i n  the  d e f i n i t i o n  of A i n  equation ( 2 7 ) .  
This causes t h e  value of A t o  depend somewhat on the  dens i ty  o r  compressi- 
b i l i t y  of t h e  f l u i d  wi th in  t h e  sublayer  adjacent  t o  t h e  sur face .  Outside t h e  
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sublayer ,  however, y 1 A so t h a t  t h e  exponential  t e r m  i n  equation (25) becomes 
small and e f f e c t s  of compressibi l i ty  tend t o  vanish from 
most of the  inne r  region of the  boundary l aye r ,  t he  length scale is independent 
of the  f l u i d  densi ty .  

Rinner. Thus, over 

In t h e  ou te r  p a r t  of t h e  boundary l aye r ,  re fe rence  16 uses t h e  Clauser 
form of eddy d i f f u s i v i t y :  

Note t h a t  t h e  dens i ty  does not  appear e x p l i c i t l y  i n  t h i s  expression. 
eddy d i f f u s i v i t y  i n  t h e  ou te r  p a r t  of t h e  boundary l a y e r  i s  independent of 
dens i ty ,  then, toge ther  with equation ( 2 4 ) ,  t he  suggestion is t h a t  t h e  length  
s c a l e  i n  t h e  o u t e r  p a r t  of t h e  boundary l a y e r  is a l s o  independent of t h e  den- 
s i t y  of the  f l u i d ,  o the r  than through t h e  e f f e c t  of compressibi l i ty  on t h e  
boundary-layer thickness  6 .  This is seen more d i r e c t l y  i n  the  model used i n  
reference 1 7 ,  where ou t s ide  t h e  sublayer  t h e  mixing length is expressed as 

Since the  

so  as t o  be independent of densi ty .  

From t h e  above discussion of mixing length used i n  programs t h a t  accu- 
r a t e l y  p red ic t  near-equilibrium turbulen t  boundary-layer behavior, i t  can be 
concluded t h a t  t h e  length scale L i n  equation (11) w i l l  apply t o  compressible 
flows as w e l l .  Its app l i ca t ion  t o  separated flows is less clear and modifica- 
t i ons  may be needed under those condi t ions.  

P 

Turbulence Reynolds Number i n  Compressible Flow 

I n  a compressible turbulen t  boundary l aye r ,  t h e  t o t a l  shear  stress 
expressed i n  equation (22) reduces t o  

The mixing length expression, equation ( 2 4 ) ,  can be wr i t t en  i n  terms of t h e  
r a t i o  of eddy d i f f u s i v i t y  t o  the  kinematic v i s c o s i t y  as 

Equations ( 3 0 )  and (31) combine t o  y i e l d  

7 



I n  the  f u l l y  turbulen t  por t ion  of the  boundary l a y e r ,  E >> 1 and 

so t h a t  under these  condi t ions 

4.- (pu"v"/ij) R 
E "  -. 

V 
(34) 

Thus, E i d e n t i f i e s  wi th  a turbulen t  Reynolds number based on l o c a l  f l u i d  
p rope r t i e s  and the  l o c a l  co r re l a t ion  of  t he  f luc tua t ing  v e l o c i t i e s .  
ges t s ,  by analogy, t h a t  t h e  Glushko.model can be extended t o  compressible 
flows by use of equation (9), but  with t h e  turbulence Reynolds number 
redefined as 

This sug- 

Y 

- JKL r = -  
3 (35) 

where is the  mass-averaged k i n e t i c  energy of turbulence and < is t h e  
l o c a l  kinematic v i scos i ty .  

Second-Order Modeling of Turbulence i n  Kine t ic  Energy Equation 

The l o c a l  mass-averaged s p e c i f i c  k i n e t i c  energy of turbulence i s  repre- 
sented i n  reference 1 3  by 

The f i r s t  term on t h e  r i g h t  i n  equation (36) can be r e l a t e d  through equa- 
t i o n  (19) t o  the  mean ve loc i ty  f i e l d  and the  compressible extension of equa- 
t i o n  (9), namely, E = H(3)a:. The second t e r m ,  having divergence form, repre- 
s e n t s  a d i f fus ion  of the  instantaneous turbulence k i n e t i c  energy by t h e  
turbulence i t s e l f .  The t h i r d  and four th  terms .representing pressure  and veloc- 
i t y  co r re l a t ions  and the  f i f t h  and s i x t h  terms containing molecular-shear and 
ve loc i ty  co r re l a t ions  must be  modeled t o  c lose  equation (36). 

Models of pressure and ve loc i ty  cor re la t ions . -  When t h e  pressure  i n  the  
abovementioned terms is represented as t h e  sum of a mean value p lus  a f luc-  
t ua t ing  quant i ty ,  p = 3 + p ' ,  t h e  pressure  and ve loc i ty  co r re l a t ion  terms 
become 

- 
For incompressible flow, both uy = 0 and uYyi = 0 so t h a t  only t h e  second 
term on the  r i g h t  remains. This t e r m ,  having a divergence form, is i d e n t i f i e d  
with t h e  d i f fus ion  of tu rbulen t  pressure  f luc tua t ions  by t h e  turbulence and i s  
usual ly  grouped with t h e  second t e r m  on the  r i g h t  i n  equation (36). The o the r  

8 



terms i n  equation (37) r equ i r e  models t h a t  converge t o  zero when the  flow is  
incompressible. Thus, grouping these  terms y ie lds  

- 
To eva lua te  the  quant i ty  

t i o n  ( 3 8 ) ,  i t  can be assumed f i r s t  t h a t  t he  t o t a l  tempera ture  of the  f l u i d  is  
constant  within a f i e l d  of tu rbulen t  eddies:  

u l  i n  t h e . f i r s t  term on t h e  r i g h t  i n  equa- 

ukuk 
2cP 

Tt = T + - = const (39) 

When T is  replaced by a mean and f luc tua t ing  mass-averaged quant i ty  ( r e f .  1 3 ) ,  

T = ?' + T" ( 4 0 )  

and 

u k = % + u ; :  (41-1 

Then 

On averaging, equation ( 4 2 )  becomes 

;k% irk;;:+- 
f+F+-+- - -  - T t  

P 2cP C 2cP 

Equation ( 4 3 )  subt rac ted  from ( 4 2 )  y i e l d s  

which is s a t i s f i e d  by 

T" + - 0 

( 4 3 )  

( 4 5 )  

Since t h e  mean ve loc i ty  i n  a t  least one d i r e c t i o n  w i l l  be much l a r g e r  than t h e  
f luc tua t ing  ve loc i ty  i n  t h a t  d i r ec t ion ,  t he  above equation can be .we l l  repre- 
sented by i ts  leading  terms: 

( 4 6 )  
% 

= - c u;: P 
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A t  t h i s  po in t ,  i t  is  usual  t o  argue t h a t  pressure  f luc tua t ions  are of a 
smaller order  than e i t h e r  dens i ty  o r  temperature f luc tua t ions , . and  t h i s  assump- 
t i o n ,  toge ther  with t h e  p e r f e c t  gas equation, pe rmi t s  one t o  i d e n t i f y  t h e  t e m -  
pera ture  f l u c t u a t i o n  wi th  a dens i ty  f l u c t u a t i o n  i n  equation (46), thus  r e l a t i n g  
dens i ty  and v e l o c i t y  f luc tua t ions .  
Mach numbers, an a l t e r n a t i v e  assumption w i l l  be proposed, namely, t h a t  t h e  gas 
behaves i n  a po ly t rop ic  manner. Then 

Since t h i s  assumption is suspect  a t  high 

where n i s  the  po ly t rop ic  c o e f f i c i e n t  (n = 0, i s o b a r i c ;  n = 1, isothermal;  
n = cp/cv, i s e n t r o p i c ,  e t c . ) .  

From equat ions (46) and (47), t h e  dens i ty  f l u c t u a t i o n  is r e l a t e d  t o  t h e  
ve loc i ty  f l u c t u a t i o n  as 

With equation (48), 

I f  t he  third-order  c o r r e l a t i o n s  between t h e  dens i ty  and ve loc i ty  are neglected,  

Since the  value of  n is no t  known, i t ,  i n  e f f e c t ,  becomes a modeling coef f i -  
c i e n t  and equation (50) can be used t o  def ine  t h e  f i r s t  t e r m  i n  equation (38). 
Note t h a t  n + 00 f o r  incompressible flow (see eq. ( 4 7 ) )  and uy -+ 0 as 
required.  Under boundary-layer assumptions, t h e  only appropr ia te  value f o r  
t h e  index i s  i = 1 and, consequently, equation (49) reduces t o  

- 

...- 
(y - 1 )  %E - ulup; r  ii,E - = const  = const  u" = 

1 (n - l )cpT (n - l )cpT (n - 1 )  a2 (51) 

- 
Since E/a2 is a measure of t he  square of the  turbulence Mach number, u;' is  
expected t o  be small i f  n takes  on a value of about 1 . 2  as expected i n  non- 
i s e n t r o p i c  flows. This l a t t e r  form is i d e n t i c a l  with t h e  Alber and Wilcox 
representa t ion  ( r e f .  18 ) ,  except t h a t  t h e  n must be less than un i ty  t o  have 
the  same s ign  as i n  t h e i r  work. 

- 
An a l t e r n a t i v e  representa t ion  of up t h a t  does not  requi re  t h e  assump- 

t i o n  of constant  t o t a l  temperature wi th in  t h e  turbulence i s  

- P'U'iT 
(52) = - - =  - 1 I TI lu I l  

1 P (n - 1)T i 
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If density fluctuations are small compared to the mean density, then equa- 
tion (52) can be rewritten as 

or 

In the absence of an application of either equation ( 5 0 )  or ( 5 4 )  to predict 
several sets of experimental data, it is not clear at this point which is the 
better model, although equation ( 5 4 )  has the advantage of being simpler and not 
requiring the assumption of a constant total temperature within an eddy. 
latter assumption turns out to be rather significant. For example, in boundary- 
layer flow and with, say, n > 1, equation ( 5 1 )  would assign a positive value to 
u;l. On the other hand, for the same conditions, equation ( 5 4 )  can assign 
either positive or negative values, depending on whether the flow was over a 
cooled or a heated surface. This illustrates how tenuous modeling assumptions 
are until established by comparison with data. 

This 

With the assumption that state variables within an eddy behave in a poly- 
tropic fashion, the third term on the right in equation ( 3 8 )  is expressed as 

*-i--i;i. - P UiYi 
P 

p y i  = 

The instantaneous continuity equation 

(55) 

when written in terms of mean and fluctuating quantities is 

When equation (16) is subtracted from this equation, the instantaneous fluc- 
tuations of density and velocity are related by 

p;t + (Puli' + P ' G j  + P'U!') = o  
J , j  

If the mean flow varies slowly over the scale of an eddy, and only the linear 
terms in the fluctuations are retained, equation ( 5 8 )  reduces to its highest 
order terms: 

+ GjP(  , j  + iyj = o  (59) 

With equation (59) multiplied by p 1  and then time-averaged, 



I 

The time-averaged q u a n t i t i e s  now scale with t h e  dimensions of t he  mean flow 
f i e l d  and can be compared with t h e  mean cont inui ty  equation i n  similar form: 

I f  t he  rms dens i ty  f luc tua t ion  i n t e n s i t y  is  c a l l e d  6 :  

(5) = $  

' t h e n  equation (60) becomes 

It is now assumed t h a t  t he  i n t e n s i t y  of turbulence changes r e l a t i v e l y  slowly 
along t h e  s t reamlines  i n  con t r a s t  t o  across  the  s t reaml ines ,  so t h a t  t he  second 
term i n  equation (63) can be neglected.  With equation (61),  t h e  r e s u l t i n g  
equation reduces t o  

The v a r i a t i o n  i n  turbulence i n t e n s i t y  6 from s t reaml ine  t o  s t reamline,  can 
be accounted f o r  by s e t t i n g  proport ional  t o  the  l o c a l  k i n e t i c  energy of 
t h e  turbulence.  
t i o n  (48) p e r m i t s  one t o  w r i t e  

B2  
Usually, iil > ii2, even i n  separated flows, s o  t h a t  equa- 

which, toge ther  with equations (55) and (64), gives  

where 5 is a modeling c o e f f i c i e n t  t h a t  inc ludes  t h e  poly t ropic  c o e f f i c i e n t .  

Models of molecular-shear and ve loc i ty  cor re la t ions . -  The molecular-shear 
and ve loc i ty  co r re l a t ion  terms i n  equation (36) provide f o r  t h e  d i s s i p a t i o n  
and d i f fus ion ,  by molecular processes,  of the  s p e c i f i c  turbulence k i n e t i c  8 

energy. 
ments of t hese  terms, one must f i r s t  expand t h e  form of t h e  terms t o  revea l  
t h e i r  components. 

To demonstrate t he  assumptions underlying the  modeling of some ele- 
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A t  an i n s t a n t  of t i m e ,  t h e  l o c a l  molecular shear  is  expressed as 

'cij = I s i j  (67) 

where u and S i j  are t h e  instantaneous v i s c o s i t y  and s t r a i n .  S p e c i f i c a l l y ,  

When each v a r i a b l e  is expressed as t h e  sum of a mass-averaged mean quan t i ty  
p lus  a f l u c t u a t i o n ,  equation (67) becomes 

With equation (69), t h e  molecular-shear and v e l o c i t y  c o r r e l a t i o n  terms i n  
equation (36) can be w r i t t e n  as 

\ 

- - 
Msv = (U;ITyj) , - T u'! i j  i , j  

The terms containing u'' are neglected; The j u s t i f i c a t i o n  f o r  t h i s  is  t h a t  
t h e  t h i r d  t e r m  should be neg l ig ib ly  s m a l l  compared t o  t h e  f i r s t  because 
and t h e  c o r r e l a t i o n  c o e f f i c i e n t  between uy and i s  much less than . 
When t h e  remaining terms are expanded, 

I_(" < P 

unity.  By similar reasoning, t h e  fourth term is  1 compared t o  t h e  second. 

- The f i r s t ,  four th ,  and f i f t h  terms then vanish i n  incompressible flow s i n c e  
uy = 0 and u{,k = 0. For compressible flow, t h e  following arguments can be 
used t o  j u s t i f y  neglect ing t h e  fou r th  and f i f t h  terms. 
second de r iva t ives  of f l u c t u a t i n g  q u a n t i t i e s  before  averaging, t h e  smallest 
eddies should con t r ibu te  most t o  these  q u a n t i t i e s .  The smallest eddies ,  how- 
ever, tend t o  be i s o t r o p i c  ( r e f .  1 9 ) ,  and, i f  t h e  v a r i a t i o n  of Ii over t h e  
dimensions of t hese  small eddies i s  neglected,  s l i g h t  extensions of t h e  

= uf!u'! vanish f o r  methods i n  reference 20 (ch. 3),, show t h a t  
i s o t r o p i c  turbulence i n  a compressible f l u i d .  

Since they contain the  

1 JYjYi u~u[jYiyj  

The f i n a l  expression then f o r  t he  molecular-shear and v e l o c i t y  correla-  
t i o n  t e r m  i s  

I n  keeping with t h e  Glushko model, t h e  t h i r d  t e r m  represent ing t h e  d i s s i p a t i o n  
of t h e  s p e c i f i c  k i n e t i c  energy of t h e  turbulence is  modeled as 

1 3  



The i n  t h e  f i r s t  term can be taken from equation (54). 

Model of thi rd-order  co r re l a t ion  term.- The divergence 
i n  equation ( 3 6 )  are grouped and modeled as follows: 

terms on t h e  r i g h t  

SUMMARY OF ONE-EQUATION TURBULENCE MODEL I N  COMPRESSIBLE ??LOW 

The system of equat ions t h a t  represents  a one-equation model of compres- 
s i b l e  tu rbulen t  flow is as fo3Jows: . 

Continuity of mass ' ( s ee  eq. (16)): 

Conservation of momentum i n  i t h  d i r e c t i o n  (see eqs. (171, (22) and (23)) : 

(Ffii) + [Efi ii + 6 .  .F - (Tij - pu'.'u'.')] = 0 
Y t  i j 13 1 J y j  

where 

and 

Conservation of thermal energy (see eqs. (18) and (21)) : 

where 

(76) 

d 

Speci f ic  turbulence kinetic-energy equation ( see  eqs. ( 3 6 )  (39), ( 5 4 )  ( 7 4 )  
and (77)): 

- - - - -  (SE) + (FiijE) -p~"~' . ' i i  . - (pu.k) , - ( u ~ P ' )  . + [PV+ MSV+ (u'.'P ' ) . I (81) 
9 , j  i J i 9 J  J Y J  J 9 J  
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These equations combine t o  y i e l d  

where n, 5 ,  and I' are new modeling c o e f f i c i e n t s .  Additional modeling quan- 
t i t i e s  are 

- E L  r =- 
3 

E = H(T)aP 

0 I ?/Yo < 0.75 

- (?/To - 0.75)2 , 0.75 I F/Fo < 1.25 

1 . 2 5  I ? / T i  < m 

and 

x2/6 Y 0 s x2/6 < 0.23 

(x2/6 + 0.37)/2.61 , 0.23 5 x2/6 < 0.57 

(1.48 - x 2 / 6 ) / 2 . 5 2  , 0.57 I ~ 2 / 6  < 1.48 
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where 

01 = 0.2 

ro = 110 - 
c = 3.93 

x = 0.4 

CONCLUDING REMARKS 

The set  of equations summarized i n  the  preceding sec t ion  i s  closed when 
t h e  modeling parameters n, 5 ,  and I' are establ ished.  To do t h i s ,  one must 
eventual ly  compare t h e  pred ic t ions  given by the  model'with t h e  d a t a  from a 
series of experiments t h a t  covers a s i z a b l e  range of Mach and Reynolds numbers. 
A t  t h i s  po in t ,  a l l  t h a t  can be done i s , t o  o f f e r  suggestions f o r  t he  f i r s t  set 
of t r i a l  values of t hese  parameters. 
fl,ows, values  of n = 1.2 seem t o  f i t  much of t h e  data .  Consistent - with t h i s  
value of n ,  y = 1.4 and f o r  t he  r e l a t ionsh ip  between and k t h a t  
occurs i n  an equi l ibr ium boundary l aye r ,  t h a t  i s ,  
quant i ty  l' is  i d e n t i f i e d  with t h e  turbulent  Prandt l  number, T = l / P r t ,  f o r  
which r = 1.1 is a reasonable f i r s t  t r ial  value. 

For example, i n  nonisentropic  i n v i s c i d  

2 8/9 E, 5 = 8/11. The 

16 

. .  



REFERENCES 

le. MacCormack, R. W.: Numerical Solut ion of t h e  I n t e r a c t i o n  of a Shock Wave 
With a Laminar Boundary Layer. - Lecture Notes i n  Physics,  vol.  8, 1971, 
p. 151. 

2. Hung, M.; and MacCormack, R. W.: Supersonic and Hypersonic Laminar Flows 
Over a Two-Dimensional Compression Corner. AIAA Paper 75-2, Jan. 1975. 

3; Baldwin, B. S.; and MacCormack, R. W.: Numerical Solut ion of I n t e r a c t i o n  
of a Strong Shock Wave with a Hypersonic Turbulent Boundary Layer. 
A I M  Paper 74-558, June 1974. 

4. Marvin, J. G.; Horstman, C. C.; Rubesin, M. W.; Coakley, T. C.; and 
KUSSOY, M. I.: An Experimental and Numerical Inves t iga t ion  of Shock- 
Wave-Induced Turbulent Boundary-Layer Separation a t  Hypersonic Speeds. 
AGARD Conference on Flow Separation, G t t i n g e n ,  27-30 May 1975, 
AGARD CP-168. 

5. Mateer, G. G.; Brosh, A.; and Viegas, J. R.: A Normal Shock-Wave Turbu- 
l e n t  Boundary-Layer I n t e r a c t i o n  a t  Transonic Speeds. 
Jan. 1976. 

AIAA Paper 76-161, 

6.' Clauser, F. H.:  The Turbulent Boundary Layer, i n  Advances i n  Applied 
Mechanics, vol.  4, Academic P res s ,  Inc . ,  New York, 1956. 

7. Baldwin, B. S.; and Rose, W. C.: Calculat ion of  Shock-Separated Turbulent 
Boundary Layers. NASA SP-347, 1975. 

8. Glushko, G. S.: Turbulent Boundary Layer on a F l a t  P l a t e  i n  an Incom- 
p r e s s i b l e  Fluid. B u l l .  Acad. Sc i .  USSR, Mech. S e r .  4,  1965, pp. 13-23. 

9. Beckwith, I. E.; and Bushnell, D. M.: Detai led Description and Resul ts  
of a Method f o r  Computing Mean and Fluctuat ing Quant i t ies  i n  Turbulent 
Boundary Layers. NASA TN D-4815, 1968. 

10. Beckwith, I. W.; and Bushnell, D. M.: Calculat ion of Mean and Fluctuat ing 
Proceedings P rope r t i e s  of t h e  Incompressible Turbulent Boundary Layer. 

Computation of Turbulent Boundary Layers - 1968, AFOSR-IFP-Stanford 
Conference, vol.  1, Kline e t  a l . ,  Ed., p. 275. 

11. Townsend, A. A,: The S t ruc tu re  of Turbulent Shear Flow, Cambridge Univ. 
Press ,  1956. 

12. Rotta, J.: S t a t i s t i c a l  Theory of Inhomogeneous Turbulence, P a r t  1, 
Z. Phys., vol.  129, 1951, pp. 547-572 (NASA TT F-14560). P a r t  2 ,  
Z. Phys., V O ~ .  131, 1951, pp. 51-57 (NASA TT TT-11696). 

13. Rubesin, M. W.; and Rose, W. C.: The Turbulent Mean-Flow, Reynolds S t r e s s ,  
and Heat Flux Equations i n  Mass-Averaged Dependent Variables. NASA 
TM X-62,248, 1973. 

17 



14. van Driest, E. R. : Turbulent Boundary Layer ,,I Compressible Fluids.  J. 
Aero. Sci . ,  vol. 18, no. 3, March 1951, pp. 145-160. 

15. Rubesin, M. W.: A Modified Reynolds Analogy& f o r  t h e  Compressible Turbu- 
l e n t  Boundary Layer on a F l a t  P l a t e .  NACA TN-2917, 1953. 

16. Cebeci, T.: Calculat ion of Compressible Turbulent Boundary Layers with 
Heat and Mass Transfer ,  AIAA J., vol.  9,  no. 6, June 1971, 
pp. 1091-1097. 

17. Price, J. M.; and Harris, J. E.: Computer Program f o r  Solving Compres- 
s i b l e  Nonsimilar-Boundary-Layer Equations f o r  Laminar, T r a n s i t i o n a l ,  
o r  Turbulent Flows of a Per fec t  G a s .  NASA TM X-2458, 1972. 

18. Wilcox, D. C.; and Alber, I. E.: A Turbulence Model f o r  High-speed 
Flows, Proceedings of the  1972 H e a t  Transfer and Fluid Mechanics 
I n s t i t u t e ,  Stanford University P res s ,  1972, pp. 231-252. 

19. Bradshaw, P.; and Fe r r i s s ,  D. H.: Calculation of Boundary-Layer Develop- 
ment Using t h e  Turbulent Energy Equation: 
Adiabatic Flows. J. Fluid Mech., Vol. 46, P t .  1, 1971, pp. 83-110. 

Compressible Flow on 

20. Hinze, J. 0.: Turbulence, McGraw-Hi l l  Book Co., Inc . ,  1959. 

18 


