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ABSTRACT

The analysis of high frequency radiation patterns of aircraft
wing mounted antennas is the object of this research. This is an
analytical study of basic antenna types using ray optical techniques.
The aircraft is modelled in its most basic form so that this study
is applicable to general-type aircraft. The fuselage is modelled as
a perfectly conducting finite elliptic cylinder. The wings and
horizontal and vertical stabilizers are modelled as perfectly con-
ducting "n" sided flat plates that can be arbitrarily attached to
the fuselage or to themselves. Presently, the antenna locations are
assumed to be on the surfaces of the wings at locations removed
from engines and stores such that these effects are negligible.
Volumetric patterns are calculated for several aircraft. The validity
of the solution is shown by comparing the results against scale model
measurements. The application of this solution to practical airborne
antenna problems has shown its versatility in designing antennas and
predicting their radiation patterns in an accurate and efficient manner.
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CHAPTER I

INTRODUCTION

In order for modern airborne antenna systems to function prop-
erly, the antenna pattern must meet certain specifications. In
fact, system performance often is very much dependent on the
pattern performance of the antenna. This requires the aircraft
antenna designer to not only concern himself with the development
of an antenna element for a particular application, but to also be
concerned with the performance of the antenna system in the presence
of the aircraft structure. The location of the antenna on the air-
craft, and even the element design, is critical if a reliable
antenna system is to be achieved. An efficient and economical
means of predicting the pattern performance of an antenna is, there-
fore, desirable.

The object of this research is to analyze radiation patterns
for wing mounted antennas at high frequency. Wing locations have
become increasingly desirable for many applications, as the avail-
able real estate for antennas becomes more difficult to find because
of the large number of antenna systems on a modern aircraft. This,
then, is an analytical study of basic antenna types for frequencies
above 100 megahertz in which the antenna is mounted on or near the
wing.

The aircraft is modelled in its most basic form so that this
study is applicable to general-type aircraft. The fuselage is
modelled as a perfectly conducting finite elliptic cylinder. The
wings and horizontal and vertical stabilizers are modelled as
perfectly conducting "n" sided flat plates that can be arbitrarily
attached to the fuselage or to themselves. Presently, the antenna
locations are assumed to be on the upper surfaces of the wings or
at locations removed from engines and stores such that these effects
are negligible. The theory, however, is applicable to the addition
of engine and store effects by modelling these structures as flat
plates or small finite elliptic cylinders.

This type of analytic solution enables antenna designers to
investigate an antenna system's performance in the presence of the
aircraft structure using a computer simulation method, in a manner
that can save a great deal of engineering time and money. This
allows airborne antennas to be located on the aircraft at the design
stage of the aircraft. This means that optimum locations and nec-
essary structural changes can be anticipated. Also, a future re-
location or addition of antennas on an aircraft within its useful
lifetime can be easily accomplished. Once an optimum region is



determined using computer simulation models of the aircraft, the
antenna can be experimentally tested to ascertain its actual per-
formance.

It is not uncommon for antennas to be allocated specific
locations which are not related to electronic system requirements.
Typically, these locations are chosen primarily for convenience
with regard to aircraft structural specifications. Scale model
measurements, then, are used to evaluate the performance of
the antenna system in terms of its desired pattern. This approach
can be very time consuming and costly.

The computer simulation method can, also, be used to determine
optimum antenna designs for a given application. Various antenna
types can be easily examined on the analytical models and the
results compared. These analyses are based on arbitrarily-
oriented electric and magnetic delta function sources which
can be used to solve for the pattern of an arbitrary antenna
simply by integrating over the equivalent aperture currents.

Three basic methods have been used to compute on«-aircraft
antenna patterns. Among the first methods used were the modal
solutions for infinitely long circular [1,2] and elliptic [3]
cylinders. These solutions modelled the fuselage by a cylinder
whose cross-section approximated the fuselage cross-section at the
antenna location. Arbitrary antennas were considered in these
studies in which the antenna was mounted either on or over the
fuselage. This method could not consider the effects of the other
scattering structures of the aircraft such as the wings and
stabilizers. The effects of these additional structures can be
quite large, in general.

The second method for analysis of aircraft radiation patterns
is primarily a low frequency technique. This approach uses a
moment method technique to solve for the unknowns to an integral
equation. The surface currents and resulting scattered fields can
be found by enforcing the boundary conditions on the aircraft struc-
tures. One of the first moment solutions applied to aircraft prob-
lems was the wire grid technique, developed by Richmond [4], which
employed a point matching technique [5]. This solution required the
determination of approximately 100 unknown currents per square wave-
length in order that the wire grid adequately model the perfectly
conducting surface. Richmond [6] has developed a more sophisticated
approach in which the reaction technique is used to solve for the
unknown currents. This solution still requires approximately 100
unknown currents per square wavelength. Another approach is to
divide the surface of the conducting body into patches each having
two orthogonal unknown complex currents [7]. This surfaces-current
approach reduces the unknown currents to about 20 per square wave-
length. This allows a larger surface to be considered. However,



all these solutions are restricted to low frequencies due to
the limitation on the size of matrices which modern computers
can solve without excessive loss of accuracy.

The approach that has been taken in this study is the
Geometrical Theory of Diffraction (GTD). This is basically
a high frequency method that is applied in terms of two character-
istic problems; these being wedge diffraction and curved surface
diffraction. The wedge diffraction solution has been applied
to determine the radiation patterns of such basic antennas as
parallel plate antennas [8,9,10], parallel plate arrays [11,12],
horn antennas [13,14], parabolic reflectors [15,16], and rectangular
waveguide antennas [17]. Both of these types of diffraction
solutions have been applied in computing the patterns of antennas
mounted on cylinders [18,19,20] and rockets [21], GTD has also
been successfully applied to a number of problems involving
antennas mounted on the fuselage of aircraft [22̂ 30]. Antennas
mounted on various isolated wing structures have been analyzed
[31,32], however, these did not include the effects of the fuselage
and other structures.

Using this approach, one applies a ray optics technique
to determine components of the field incident on various scatterers.
Components of the diffracted field are found using the GTD solutions
in terms of rays which are summed with the geometrical optics
terms in the far field. The rays from a given scatterer tend
to interact with the other structures causing various higher
order terms. In this way one can trace out the various possible
combinations of rays that interact between scatterers and determine
and include only the dominant terms. Thus, one need only be
concerned with the important scattering components and neglect
all other higher-order terms. This makes the GTD approach ideal
for a general high frequency study of aircraft antennas in that
only the most basic structural features of the aircraft need
to be modelled. -

Since GTD is essentially a high frequency solution, the
lower frequency limit of this solution is dictated by the spacings
between the various scattering centers. In practice, this means
that the scattering centers should be greater than approximately
a half-wavelength apart. In some cases even this requirement
can be relaxed. For a general type aircraft, therefore, the
low frequency limit will be around 100 MHz. The upper frequency
limit is dependent on how well the theoretical model simulates
the important details of the actual structure.

The basic approach applied in this study of antennas mounted
on the wings of aircraft is to separately analyze the basic
scattering shapes making up the computer simulated model of
an aircraft. The single structures are analyzed using the ray



optics approach such that only the dominant effects are included.
The scattered fields of the various component parts of the structure
are found using the Geometrical Theory of Diffraction. The
basic solutions needed for this study are briefly discussed
in Chapter II. This includes geometrical optics reflected fields
from curved surfaces, the diffraction by a wedge and curved
wedge, and the slope diffraction by a wedge using arbitrarily
oriented dipole moment sources. A heuristic corner diffraction
coefficient is also introduced. Curved surface diffraction
is presented along with a newly developed transition function
for the shadow boundaries of curved surfaces.

Chapter III describes the scattering from a number of finite
flat plates. They can have an arbitrary orientation in space
and can be attached to form bent plates. These plates are used
to model the wings, horizontal and vertical stabilizers.

Chapter IV describes the scattering from a finite elliptic
cylinder. This is used to model the fuselage and can be used
to model engines and stores.

The complete aircraft model is described in Chapter V.
The dominant scattering terms due to the interaction of the
plates and cylinder are discussed. The analytic results are
compared against scale model measurements to determine the validity
of the approximations made in the analysis. Finally, a summary
of the present study and a discussion of future topics are made
in Chapter VI.



CHAPTER II

THEORETICAL BACKGROUND

A. Introduction

The analytical modelling of an aircraft to predict the
radiation patterns of antennas mounted on the wings has been
accomplished by the use of the Geometrical Theory of Diffraction
(GTD). This is a high frequency technique that allows a complicated
structure to be approximated by basic shapes representing canonical
problems in the GTD. These shapes include flat and curved wedges
and convex curved surfaces. The GTD is a ray optical technique
and it therefore allows one to gain some physical insight into
the various scattering and diffraction mechanisms involved.
Consequently, one is able to quickly seek out the dominant or
significant scattering and diffraction mechanism for a given
geometrical configuration. This, in turn, leads to an accurate
engineering solution to practical antenna problems. The basic
GTD solutions needed are discussed in this chapter. These solutions
are applied to specific structural scattering problems in the
following chapters.

Two of the basic diffraction problems are illustrated in
Figures la and b. In the format of GTD, the total electric
field may be represented as

E = EV + E
rur + t* .

The field E1 is the electric field of the source in the absence
of the surfaces. The field E1"_is the electric field reflected
from the surfaces. The field E° is the diffracted field from
the discontinuities of the structure, such as edges, corners,
curved surfaces, etc. The step functions ui and ui" are shown
to emphasize the discontinuity in the incident and reflected
fields at the incident and reflection shadow boundaries. They
are one in their lit regions and zero in their shadow regions.
The extent of the regions are determined by geometrical optics.
The surfaces used in this report are perfectly conducting and
the surrounding medium is free space. An exp (juit) time dependence
is assumed throughout and suppressed.
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B. Geometrical-Optics Fields N

The incident electric field E1 can be produced by an arbitrary
electric or magnetic source causing plane, cylindrical, conical, or
spherical wave incidence on the scattering structures. In this
report the spherical wave case is treated. The far field pattern of
the source can be written as

* p
= [9F(e ,<!>)+ 4>G (9,4))] ̂ — — . , (1)

The reflected electric field from a curved surface S as shown in
Figure 2 is given in terms of geometrical optics by

(2)

where E=(QR) is the incident electric field at the point of reflection
QR and R is the dyadic reflection coefficient such that

— A A w A A

R = e,! ej, - ê ej_ . (3)

The vector ê j's thg unit vector perpendicular to the plane of in-
cidence and e,j and el are the unit vectors parallel to the plane
of incidence. The point of reflection QR is found from the laws of
reflection that state that the angle of incidence is equal to the
angle of reflection that is

A A A A .

-I • n = s • n (4a)

and that the incident, reflected, and surface normal vectors must lie
in the same plane or in other words

SI A A A

I x n = s x n. (4b)

The quantities pf and p<? are the principal radii of curvature of the
reflected wavefront at the reflection point QR. Kouyoumjian [34]
discusses how to find these values for an arbitrary wavefront by
diagonal izing the curvature matrix for the reflected wavefront
given by Deschamps [35]. Let a wavefront be incident on a curved
surface S at QR as shown in Figure 2. ei and 62 are unit vectors
in the principal directions of.S at QR with principal radii of
curvature R^ and R^. X} and XI are the principal directions of
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in which the plus sign is associated with p, and the minus sign with
•*" and where

y\ •

e-ib = X,- • e, (6a)

(6b)

The principal directions of the principal radii of curvature of the
reflected wavefront are given by

r nr ;rx1 u12 x2

Q22" "7
pl

(7a)

X2 = -s x (7b)

where

and

(8)

- 1_ . 2 cose1
" i i « i 2

r02922
Rl

111
Ro

(9a)

r _ -2 cose1
-IO T~~12 2

622912 +
 911921

'1 R, (9b)

P2

2 cose,i e:

l e i 2 L R1
(9c)



If the incident wavefront is spherical, the equations for the
principal radii of curvature of the reflected wavefront are
given by

'1,2 cose

sin 9, . 2sin 9,

1
cos e1

" . 2 .2sin e2 sin e.
Rl R2 _

0

4
R1R2

(10)

where s1 is the radius of curvature of the incident wavefront at QR,
6] is the angle between the direction of the incident ray I and unit
vector e-| and 92 is the angle between the direction of the incident
ray 1 and unit vector e^.

C. Diffraction by a Hedge

The wings, vertical and horizontal stabilizers on an aircraft can
be approximated as flat plates. The Geometrical Theory of Diffraction
provides a means of including the three-dimensional effects of the flat
plates with straight edges by the use of wedge diffraction. This
section briefly discusses this basic diffraction problem.

An asymptotic solution for the diffraction from a conducting
wedge was first solved by Sommerfeld [36]. Originally, GTD
[37] as applied to diffraction by a wedge was based on plane
wave diffraction coefficients; however, as shown in Reference [38]
the use of cylindrical wave diffraction coefficients has been found
necessary in the treatment of antennas. Consequently, different
formulations of wedge diffraction were substituted for the plane
wave diffraction coefficient which is the basis for wedge diffraction
theory. Pauli [39] introduced the VB function as a practical formu-
lation to the solution for a finite-angle conducting wedge. Hutchins
and Kouyoumjian [40,41], however, have presented a formula for
the diffracted field, which significantly improves the accuracy
over that obtained from Pauli 's form.

This improved diffraction solution [40,41] is better in the
transition regions (near the incident and reflected shadow boundaries).
It can be written in the form

VB(L,e,n) = I^ I+ir(L,0,n)

10



where

-j(kL+rr/4)
e .J n

— 2
x ejkLa I e"JT dT + [higher order terms]

and where the higher order terms are negligible for large kL and
with n defined from the wedge angle WA = (2-n)ir, also

a = a~ = 1 + cos(3-2mrN~) and

N~ is a positive or negative integer or zero, whichever most nearly
satisfies the equations

2mrN~ - 3 = - IT for I
-TT

2mrN+ - 8 = + TT for I, .
+TT

The variables L and 3 are defined below.

The three-dimensional wedge diffraction problem ispictured in
Figure 3. A source whose radiated E field is given by P(s) is
located at point s1 (p1 ,<t>' ,z'). It can be an arbitrary electric or
magnetic source causing plane, cylindrical, conical, or spherical
wave incidence on the wedge top. The diffracted vector field at
point s(p,<f>,z) can be written in terms of a dyadic diffraction coef-
ficient. Kouyoumjian and Pathak [42] have given a more rigorous
basis for the GTD formulation and have shown that the diffracted
fields may be written compactly if they are in terms of a ray-fixed
coordinate system. The ray-fixed coordinate system is centered at
the point of diffraction QE, (or points of diffraction in the case
of plane wave incidence). QE is a unique point or points for a given
source and observation point. The incident ray diffracts as a cone of
rays such that SQ = 3Q (see Figure 3).

The relationships bgtween^the orthogonal unit vectors associated
with these coordinates (s1,30><i>' ;s ,3Q,ij>) are given by

I = - s1

I = B0 x +•

s = 3Q x <j),

11
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where I is the incident direction unit vector, and s is the dif-
fraction direction unit vector. The diffracted field is now given
by

r(s) * En(QE) . DE(s,I)A(s)e
-jks

(ID

where

and

_ -e-jir/4

sn
F[kLa"V)]

F[kLa'(B')]

+<cot

and

F(X) = 2j
. 2

dx

l>fx|

(12)

(13)

is called the transition function. This can be shown to be related
to the Vn function for a straight wedge as

- [vB(L,6->

13



In matrix notation this can be written as

a. A(s)e -jks

The Ds coefficient (minus sign between VB terms) applies for the
E-field component parallel to the edge with the boundary condition
(acoustically soft)

'wedge ) = 0.

The Dh coefficient (plus sign between VB terms) applies for the E-
field vector perpendicular to the edge with the boundary conditions
(acoustically hard)

li
an"

= o.
wedge

The angular relations are expressed by

6 = B+ = <f>+ <j>' .

The <{)-<j)' terms are associated with the incident field and the $+$'
terms are associated with the reflected field. The quantity A(s)
is a ray divergent factor given in general by [34]

A(s) -j:
where for a wedge p = pe which is the radius of curvature of the
incident wavefront in the plane containing the incident ray and the
edge. For some specific problems this is given by

A(s) H

s'

plane, cylindrical (s=p), and conical
wave incidence

spherical wave incidence.
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The quantity L is a distance parameter for a straight wedge given
in general for a straight wedge by [34]

oL= - - __ - 9

where P-J , v>2 are the principal radii of curvature of the incident
wavefront. For some specific problems this is given by

2s sin 3 plane wave incidence

L =< cylindrical wave incidence

conical and spherical wave
incidence.

At grazing incidence, that is when <f>' = 0, the expression for
% and Ds must be multiplied by a factor of 1/2, this comes about
because the incident and reflected field merge together and only
one-half the total field on the surface is the incident field, the
other half is associated with the reflected field.

D. Slope Diffraction by a Wedge

The diffraction coefficient discussed in Section C is only
valid for incident fields on an edge that are slowly varying in
amplitude. If this is not true, as when a dipole is aligned such
that its axis points in the direction of the edge, an additional
term is needed that relates the diffracted field to the spatial
derivative of the incident field. This term is referred to as
the slope diffracted field.

Rudduck and Wu [43] have previously obtained a slope diffracted
solution (Vs) for the two dimensional general wedge for the hard
boundary condition by differentiating the eigenfunction solution.
Karp and Keller [44] first introduced the GTD slope diffracted
field; however, this result is not valid at or near the shadow
boundary. Recently Mentzer, Peters, and Rudduck [45] obtained
a two-dimensional slope diffraction function for the special case
of the half plane by differentiating the exact solution given
by Sommerfeld. They applied this to horn antennas. Kouyoumjian
and Hwang [46,47] have extended the results of Reference [44]
such that Equation (15) is now valid even within the transition
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region adjacent to shadow boundaries. The result presented here
is for the diffraction coefficient for the straight wedge case
given in Equation (12).

This dyadic slope diffracted field for a dipole whose axis is
directed radially toward the edge, that is, such that the amplitude
of the incident field is zero at the edge but with a finite incident
slope is given by [46,47]

.
an jk 3<j>'

where

- (15)

The slope diffraction coefficient is explicitly given by

F<KL.V)>

_
where 6 and a are defined as in Section C and

F S (X ) = 2jX + 4X3/2e jX

l/xl
or

F S (X ) = 2jX[l - F (X) ]

16



with F(X) defined as in Equation (13).

The partial derivative of the incident field (3/9n) is defined as
the derivative taken in the direction normal to the edge-fixed plane
of incidence. A very important source type to be considered for
general application is the arbitrarily oriented electric and magnetic
dipole moment which can be expressed by

U'pe6(|s-S'|).

m
Any general source can be approximated by superimposing a weighted
set of these dipole moment elements to obtain a sufficiently accurate
result for engineering purposes [48].

If the dipole moment has an arbitrary orientation in space with
respect to the wedge, the ordinary diffraction effects and the slope
diffraction effects should both be considered for completeness. In
matrix notation, this may be written, assuming a spherical wavefront
incidence, as

1 3D.

jk 8<f>'

3D
h 9

jk

E;,(QE)

S'
s(s+s')

,-Jks (16)

The dipole moment producing the incident field can be decomposed
into three components in the ray-fixed coordinate system. Thus

u' Pe = Pe
ro ml

P +'

where

= I • u1 p

17



• e

The electric field of an electric dipole moment (TM case) can be
written in the far field as

"jks
p -

i e
E9p

 = ̂ k Pe Sin 9

where n is the impedance of surrounding media. The far field
electric field of a magnetic dipole moment (TE case) can be written
as

i "jks
E* = -Jk Pm sin ep

where 9n, <)>p are measured with respect to the dipole coordinate sys-
tem. The non-zero incident fields needed to compute the diffracted
field for the electric dipole moment case are

. - , p-Jks1

E;,= 6' • E1 = njk p , e

rl _ ?, Tfl _ ..... _ 611 - d> • t

4irs"

-jks'
.jL v L. MJ* Ke<fr l 4irs,

3E] 3E1
 Q- jks'

i I • • i C
— Q) —

3n 3n

The non-zero incident fields needed to compute the diffracted fields
for the magnetic dipole moment case are

18



E =
-iE1 = -jk

El = +1 • E1 = -jk Pn e-jks'

!' 4irs'

The above fields may be used in Equation (16) to give the dif-
fracted fields from the edge.

E. Diffraction by a Curved Hedge

The fuselage of a general aircraft is to be modelled in this
report as a finite elliptic cylinder. The ends of the cylinder
are formed by a flat surface and the elliptic cylinder surface
with a resulting curved edge at their junction. The diffracted
field due to this curved wedge is analyzed using the GTD techniques
developed by Kouyoumjian and Pathak [34].

The curved wedge problem is illustrated in Figure 4. The dif-
fracted field from the curved wedge may be written in the form

°E<S"''>
"Jks

<17>

The parameter p is the distance between the caustic at the edge and
the second caustic of the diffracted ray. This is given by

where pe, ne, ae are defined below. The diffraction coefficients
for the curved wedge are extended from those in Equation (12) to
allow the diffracted field to be continuous at the incident and
reflected shadow boundaries. This is accomplished by finding the
appropriate distance parameters L in each of the transition functions
that make the field continuous. The diffraction coefficient for the
curved wedge is given by
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Figure 4--Geometry for three-dimensional curved
wedge diffraction problem.
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u
s'n 2nv/27Fsing

2 sin

F[kLrnaV)]

+ co
« + N + V
—̂ )F[kLroa(e+)]f

7 J-

(19)

in which a(e) = 2 cos2 3/2 and a+(e) = 2 cos 2 H*n.--£l . The

distance parameter associated with the incident field is given by

P e ( P ]+s ) (p+s)
(20a)

The distance parameter associated with the reflected field from the
surface with superscript 0 (reflection boundary at Tr-<f>') and the re-
flected field from the surface with superscript n (reflection bound-
ary (2n-l )TT-<J>' ) is given by

sin

Pe(pl|+s)(p2+s)
(20b)

The parameters p-j and P2 are the principal radii of curvature of
the incident wavefront at the diffraction point Q£. The parameter
pe is the radius of curvature of the incident^wavefront at QE taken
in the plane containing the incident ray and e the unit vector
tangent to the edge at QE. In the case of plane, cylindrical, and
conical waves p^ is infinite and for the case of spherical waves
p^=s". The parameters pr and pj? are the principal radii of
curvature of the reflected wavefront at QE, which may be found from
Equation (10) for spherical wavefront incidence. The parameter p£
is the radius of curvature of the reflected wavefront at QE taken
in the plane containing the reflected ray and e the unit vector
tangent to the edge at QE. This can be found from the expression
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2(n-n

pe pe ae sin BQ
^ *s

where n is the unit normal to the surface at Q£, ne is the associated
unit normal to the edge directed away from the center of curvature,
and ag>0 is the radius of curvature of the edge at Qr.

A slope wave term can be found for the curved wedge problem;
however, for the geometries involved with wing mounted antennas this
term does not appear to be a significant contributor to the total
scattered field so it will not be used in this study.

F. Diffraction by a Corner

The wings of aircraft are modelled in this study as flat plates.
These plates can be thought of as being composed of a series of finite
straight edges that join together at the corners of the plate. The
diffraction of energy from these edges, as discussed in Section C,
is based on diffraction from infinite straight edges. To com-
pensate for the finiteness of the edges, a diffraction coefficient
associated with the corners of the plates is needed.

An eigenf unction solution for the scattering from the corner of
wedges has been derived by Satterwhite [49]. This solution is ex-
tremely cumbersome for numerical calculations. A GTD diffraction
coefficient is needed that is numerically efficient in order for
the corner effect to be of any practical use in complicated
modelling problems. Burnside and Pathak [50] have recently proposed
a solution based on the asymptotic evaluation of the radiation in-
tegral which employs the equivalent edge currents that would exist
in the absence of the corners. The corner diffraction term is then
found by appropriately (but presently heuristically) modifying the
asymptotic result for the radiation integral which is characterized
by a saddle point near an end point. This diffraction coefficient
is still in the beginning stages of its development. However, it
has been shown to be useful in eliminating discontinuities in the
total field associated with the corner effect. For this reason,
it is briefly discussed here and has been included in the results
as a good engineering approximation to the problem.

The corner diffraction problem is illustrated in Figure 5. The
fields associated with one edge of the corner diffraction fields in
the far field with spherical wave incidence are given by
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'MVo

-jks

where

I
M l

and
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Cs.h«E> '
F[kLa(3~)

cos

a(3")

F[kLa(e+)]
+ +

COS ^7>

F a(3+)

_ksca(60-3c)_
(22c)

as before
The function F(x) is defined in Section C by Equation (13)
fore a(3) = 2 cos2 3/2 where 3*= <f> * *', and L = s1 sin230

and
3o for

spherical wave incidence. The function Cs ̂ (QE) 1S a Codified
version of the diffraction coefficient in Equation (12) for the half-
plane case when n = 2. The modification factor,

a(3)
ksca(Vec)

F(kLa),

is a heuristic function that insures that the diffraction coefficient
will not change sign erroneously when it passes through the shadow
boundaries of the edge. The F(kLa) in the I and M terms is also
heuristic in that it is this term along with the function

"̂that gives the sign change. There is also a corner diffraction term
associated with the other edge forming the corner and is found in
a similar manner.

Even though further study is needed to improve the diffraction
mechanism, it is felt that the benefits obtained from its inclusion
warrants its use here. Experimental results in Chapter III, Section
B, confirm its utility in engineering applications.

G. Curved Surface Diffraction

The aircraft fuselage is a long cylindrical type structure with
a generally convex curved surface. The 6TD mechanism that describes
the scattering in the shadow of such objects is curved surface dif-
fraction. When an incident ray strikes a smooth curved perfectly
conducting surface at grazing incidence, i.e., at the shadow boundary,
a part of its energy is diffracted into the shadow region. To
describe this phenomenon Keller [51] introduced a class of curved
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surface diffracted rays. These ray paths include the points Qi and
Q2 which form a curve on the diffracting surface as illustrated in
Figure 6. The concept of surface rays was actually presented earlier
in the creeping waves introduced by Franz and Depperman [52,53].
The results presented in the following discussion are those given
by Kouyoumjian [54,55].

SHADOW

WAVEFRONT
TOP VIEW

SHADOW
BOUNDARY

CAUSTIC

SURFACE F

DIFFRACTING SURFACE

DIFFRACTED

SIDE VIEW

WAVEFRONT

Figure 6--Diffraction by a smooth curved surface.

The diffraction by a smooth curved surface is shown in Figure 6
in which 0 is the source point and P is the observation point.
Applying Fermat's principle, the line OQ-)Q2P is the shortest
distance between 0 and P which does not penetrate the surface. This
is a geodesic path with arclength t on the surface. As the field
propagates along the surface it sheds energy tangentially into the
shadow region. The preferred coordinate system for this diffraction
mechanism is composed of t the unit vector in the direction of in-
cidence, fi the normal to the surface S, and ID the binomial to the
surface ("6 = £ x n). The incident field may be resolved into the
normal and tangential components. It is assumed that these two
components induce surface ray fields which propagate independently
of each other. The diffracted field is given by
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rd/EV) = E1^) • [b1b2 us + n1n2uh]/iTfi?iT e-Jks (23)

where

and
^ A

nl,2 = n | ,

The subscripts (superscripts) s,h denote the acoustically soft and
hard boundary conditions, respectively. The quantity Dm(Q) is the
scalar diffraction coefficient at the point Q and am is the at-
tenuation constant which is a function of t because it depends on
the local radius of curvature and its derivatives. Voltmer [56]
has obtained diffraction coefficients and attenuation constants to
order (2/kpg)2/3 (where pg = local radius of curvature of the
surface along the ray path) which is valid for smooth convex surfaces
of non-constant curvature. These curved surface diffraction and
attenuation constants [56] were obtained from an extension of the
work of Hong [57]. The diffraction coefficients and attenuation
constants are given in Table I. Note that even though an infinite
number of modes are indicated in Equation (24), it is generally
found that sufficiently accurate results for the field in the
shadow region are obtained by summing on only the first couple of
modes, provided the field point P is far-removed from the shadow
boundary.

The parameters dnl, dn2 and p may be found from differential
geometry involving the rays and surface; this is discussed at length
by Levy and Keller [58]. For the important case of cylinders as
considered in this study, it can be shown that

(25a)

and that the caustic distance p is given by
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p = s1 + t. (25b)

where s' is the distance from the source to the point Q,.

The above discussion has been applied to open curved surface so
far. For a closed surface, each surface ray mode produced at Q-j
encircles the surface an infinite number of times. In the present
work, the surfaces are large enough, so that these multiple encircle-
ments may be neglected. An additional surface ray field must be added,
however, associated with the shadow boundary at the other end of the
closed surface to Q,.

H. Transition Field Associated with Curved Surface Diffraction

In the analysis of the scattered fields from smooth, convex
surfaces the pertinent diffraction and reflection coefficients are
readily available, but they are only valid away from the shadow
boundaries. At and near the shadow boundaries, the GtD ray method
fails. Therefore, in this transition region adjacent to the shadow
boundary a separate solution is required.

The general problem of the diffraction of waves by smooth, convex
surfaces for grazing angles is very complex, and it has been the
subject of an investigation by various authors. An extensive
bibliography on various aspects of the problem may be found in the
papers by Logan [59], and Borovikov and Kinber [60]. The work
in these references and others are based on the pioneering work of
Fock [61]. In general, due to the mathematical complexity of the
solutions, the previous solutions do not appear to be in a tractable
form for practical engineering problems.

Pathak [62,63] has modified and extended the transition solution
in a systematic fashion via ray optical considerations. His result
is in a form suitable to be used in high frequency scattering by
arbitrary two-dimensional and three-dimensional smooth convex,
conducting surfaces. This study will briefly discuss Pathak's [62,
63] results for diffraction by cylindrical structures. This uniform
result yields a finite, continuous variation for the total field
across the shadow boundaries within the transition regions. In
the lit region, exterior to the transition region the solution reduces
to the incident and reflected geometrical optics field as presented
in Section B. In the deep shadow region, exterior to the transition
region, the solution reduces to the usual GTD surface diffracted ray
field as given in Section G. The transition problem is illustrated
in Figure 7a for the lit region (also refer to Figure 2) and in
Figure 7b for the shadow region (also refer to Figure 6).
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Figure 7—Curved surface transition function geometry.
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The transition field for a cylindrical structure can be written
as

r '(Q) • (26)

where

Q =
QR for the lit region case

Q.J for the shadow region case

and 6S, Gn are curved surface transition coefficients for the soft
and hard boundary conditions, respectively. In the lit zone, the
transition coefficients are given by

's,h

r r
P1P2 ,-Jks (27)

where

and

ul = e.i ' U2 = el

vl = e.i ' V2 =

The first term in the square brackets is similar to the Kirchhoff
edge diffraction coefficient of a half-plane. The function F(X) in
this term is the transition function of the wedge in Section C
Equation (13). In contrast, the second term in the square brackets
is dependent on the electrical properties of the surface; this term
becomes dominant far from the shadow boundary. The functions p*U)
and q*(c) are universal functions and are the complex conjugates
of the p(^) and q(̂ ) functions defined by Logan [59]. The functions
e-J7r/4p*(?) and e-J

7r/4q*(s) are plotted in Figures 8a and 8b,
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-0.8

Figure 8a—Plot of e"J ̂  p*U) vs £ based on Logan's
tabulated data [59] for
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Figure 8b. Plot of e~J ""' q*(0 vs £ based on Logan's
tabulated data [59] for
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respectively. For a further discussion of the derivation of these
functions see Reference [59]. The other parameters are defined as

L = ss'
s+s'

m \ s'-p,,

m =
-kPq(QR)

1/3

p (Qh) = longitudinal radius of curvature of the surface at
9 K the point Q
V

p, 2 are defined in Section B, Equation (10) for spherical
' wave incidence.

In the shadow zone, the transition coefficients are given by

2\

s(p+s)
,-Jks (28)

where

and

The functions F(x), p*(c) and q*(c) and the parameter L are defined
as in the lit case. The other parameters are defined as
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jl/3
m1,2

df

and

p (t1) is the radius of curvature on the surface at the point
9 t1 on the geodesic path of the ray

, dno» P are defined as in Section G, Equations (25a) and
2 (25b).
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CHAPTER III

NEAR FIELD SCATTERING BY A NUMBER OF FLAT PLATES

A. Introduction

The Geometrical Theory of Diffraction as discussed in Chapter II
is applied in this chapter to the near field scattering by a number
of finite flat plates. This is basically an extension of the
scattering by a single finite flat plate considered by Burnside [23].

In this problem the antenna is in the near field of the three-
dimensional scattering bodies, and the observation point is in the
far field. However, it is assumed that any point on the scattering
body is in the far field of the source. Some assumptions have been
made about the geometry of the scattering bodies to simplify the
analysis, that is to minimize multiple scattering mechanisms.
These assumptions are based on geometries that can be used to obtain
results for wing mounted antennas.

B. Near Field Scattering by a Number of Finite Plates

The near field scattering by a number of finite flat plates
presented here is a practical application of the Geometrical Theory
of Diffraction presented earlier. The dimensions of the plates are
assumed to be large in terms of the wavelength. The geometry of the
plates is specified by the location of their corners in a general
coordinate system, as illustrated in Figure 9. The source is
defined by its location and far-field pattern. The far field
pattern is appropriate since the source is assumed to be 2D^/A
away from the edges of the plates, where D is the maximum dimension
of the source. The infinitesimal electric and magnetic dipole moments,
discussed in Section II-D, are the source types considered in this
analysis. These elements, properly weighted and summed, can be used
to approximately represent any antenna with a known source distri-
bution.

The high frequency scattering by a number of structures in
proximity to each other is, in general, a very complicated problem.
All the multiple interactions between the various structures must
be included to obtain an exact solution to the problem. This of
course is impractical in most instances. For low frequencies the
method of moments is used for these types of problems, however,
for electrically large sized bodies physical limitations on
computer storage and numerical accuracy make this method im-
practical. The GTD and its ray optical format is ideal for these
problems.
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SOURCE
LOCATION

Figure 9—-Geometry for the near field scattering by
a number of flat plates.

In constructing a solution using GTD, one starts by tracing the
most important rays that will contribute to the total field. It is
important that all rays be properly shadowed by the scattering
structures. This, of course, will produce discontinuous fields
at the shadow boundaries. These discontinuities, however, may be
compensated, by including the appropriate diffraction mechanisms
discussed in Chapter II. As the solution progresses, more and more
higher order terms can be added until the resulting patten is
relatively smooth. In general , it is impractical to include enough
higher order terms to produce a completely continuous field. How-
ever, the discontinuities may be kept to a few dB and in fact the
general rule is that the actual field normally passes through the
average of the discontinuity. The resulting radiation patterns are
usually a good engineering approximation to the true fields.

The geometry of the multiple flat plates discussed in this report
is assumed to be such that second order interactions only need to
be considered. This is a good approximation for the aircraft
geometries of interest in that the plates are relatively widely
spaced and do not produce strong corner reflector effects for
antennas mounted on the wings. The type of interaction terms
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that have been determined to be important for the geometries in
this study are listed in Table II. They comprise the major
contributors to the total scattered field from, a number of flat
plates.

TABLE II
SCATTERED FIELDS INCLUDED IN THE FLAT PLATES SOLUTION

Symbol Description Figure Equation

1) E1" Simply reflected field 13 41
off a plate

2) E*1 Diffracted field off 15 46
an edge

3) E0 Corner diffracted field off 16 48
a corner

4) Fr Double reflected field 21 49
off a plate after re-
flection by another plate

5) Tu Diffracted field off an 22 50
edge after reflection by
a plate

6) Fu Corner diffracted field 23 51
off a corner after re-
flection by a plate

7) T" Reflected field off a 24 52
plate after diffraction
by an edge

The incident field from the source is given by

. (29)

For a far field observation direction given by
•*N /N A /\

d = cos<)> sine x + sin <|> sin e y + cos e z,
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the phase can be referred to the reference coordinate §ystem by the
usual far field approximation so that e"jks/s £ e

jkRs<d e"jkd/d,
where d is the distance from the reference point to the far field
receiver.

It is essential, in the GTD format, that the source field be set
to zero whenever the ray from the source to the receiver passes
through any perfectly conducting obstacle. This can be accomplished
in many different ways. The scheme used here is to first decide
whether the ray direction, representing the field^ is pointed in
the same half space in which a plate with normal n is contained.
This is done by comparing the sign of

(Rs - C-j) and n • d. (30)

If they are of the same sign, the ray can not hit the plate. If they
are of the opposite sign a further test is needed.

First, the incident ray is projected onto the plane of the plate
to find its intersection point, as shown in Figure 10, that is

[n • (Rs-C1)]d
Rt " Rs " (31)

Now, using an idea based on Cauchy's formula from complex variables,
that is

f(z)dz = 1
0, no pole in f(z)

2irj, one pole in f(z)

the intersection point can be tested to see whether or not it falls
within the limits of the plate. This is illustrated in Figure 11.
It is easy to show that

em = tan
-1 (32a)

which leads to the test, if
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Figure lO—Intersection of scatter direction ray with plate.
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(b) RAY DOES NOT HIT PLATE

Figure 11—Geometry for deciding whether ray does or does
not hit plate.
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M I <TT , no hit occurs

>TT , a hit occurs ' * '

All the plates may be tested in this way to see if they shadow
the ray.

The singly reflected field from a flat plate is considered
next. The first step in this calculation is to find the location
of the image source, which is uniquely determined once the plane
of the flat plate is defined by its normal. In fact, the image
is located along a line which is orthogonal to the plate and
positioned an equal distance on the opposite side of the plate.
This location can be found analytically usijig the geometry illustrated
in Figure 12. The image position vector (Rj) can be determined using
the following expression

R . = Rs - 2[n . (Rs - C^ln. (33)

With the image position known, one needs to determine if the
reflected field contributes to the total scattered field. The
reflected field exists if the ray from the image source in the scatter
direction passes through the finite limits of the plate. The same
£rocedure outlined in Equations (30-32) is used for this except
Ri replaces Rs. In this case if a hit on the plate does occur,
reflections could exist. One must also test that the incident
ray and the scatte£ direction ray are not shadowed by another plate.
The incident ray (I) may be found by reflecting the scatter direction
ray into the plane of the plate. This is given by the expression

I = d - 2(n-d)n .

The incident angles for the source may be found from

and

*i = tan

where

i = ixx + y - izz
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Figure 12—Geometry for location of image source.
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or
A /\ /\ yv

I = cos <t>. sin 9. x + sin 4>. sin Q^ y + cos e-z.

Once it is determined that the reflections do occur, the value of
the reflected field can be found. For the jth plate the reflected
field from the image source can be written as

-jks
r( = t^ + +SGr(fl.+)] — (34)

Susing the geometry illustrated in Figure 13. The vectors Q and <f>
are related to the scatter direction d and are given by

S\ y\. /\ /%.

e = cos<f> cosQ x + sin<f> cose y - sin9 z

^s " "<(> = -sin* x + cos* y.
o o

-iks '
— (35)

The incident field is given by

i' i i i s
where

e1 = cos*. cos9.x + sin<f>.jCos9.y - sin9.z

~i
* = -sin<f>.x + cos*.y .

A tangent vector (t) can be found on the plate such that

t = " x d. . (36)
|n x d I

The reflected field can now be found from the boundary conditions
that must be satisfied on the perfectly conducting flat plate
surfaces. They are given by

^ ^ ^ •

n • F (on plate) = n • E (on plate) (37a)

\
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Figure 13--Reflected field geometry.
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r-1t • Er (on plate) = - t • E1 (on plate) (37b)

In matrix notation Equations (37a and 37b) can be written, using
Equations (34 and 35) and the fact that s=s' on the plate, as

n • e"
" " ̂  i r r
n • d>S I |Fr

t • 6s t • iSJ (_GrJ L-A*

A1

(38a)

where

n • e n • 4)

t • 9 t • L G .

A1

L A1

(38b)

Now solving the above expression for the unknown reflected field
pattern functions gives

.Fr = (t.j
S)Ar

I A ^V —. *•- —. n p* * . £.

(n.es)(t.,j,s) - (n-<|>s)(t.9s)
(39a)

-[(n s\«n-+ (t.es)AM]
(39b)

Thus, in the far field the reflected field from the jth plate can be
written using Equations (34 and 39) as

= [eV
jkR..d e-jkd

~d™ . (40)

The total reflected field from the P flat plates is, then, given
by

Er( c » c5 5
(41)
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remembering that if the incident or reflected field is shadowed
by any pi ate,,the reflected field for that plate is taken to be
zero. Also, if the source is directly mounted on the surface of a
plate, such as a slot antenna, there is assumed to be no re-
flections from that plate.

The shadowing of the incident and reflected rays by the flat
plates is compensated for in the total field by the addition of the
three-dimensional wedge diffracted field of Equation (16). It is
known that for a given scatter direction there is only one point
along an infinitely long straight edge at which the diffracted field
can emanate for a near zone source. Thus, one needs to determine
whether a diffraction point lies on the finite length of each of the
M edges on the P plates so that it can be included in the total
scattered field. Note that it is possible for two plates to have
a common edge. The common edges are treated as one edge with a wedge
angle other than n=2 and therefore it must only be included once in
the scattered field.

To determine if a given edge has a diffraction point that will
contribute to the total field in the scatter direction, bounds on
the possible diffraction cone angles go can De obtained for each
of the edges forming the P plates. Diffractions will occur if the
following inequality is met

•em<d-em<7^1f-em' <«)
lLm+l"Ks

otherwise, diffractions for that edge will not occur in the given
scatter direction. The diffraction point (Rd) for an infinite
edge and an observation point, as illustrated in Figure 14, can
be obtained in a straight-forward manner. For a given edge, a
perpendicular vector from the source to the edge can be found
from

*p = (Rs - V ' em> <43a>

R = Cm + t em. (43b)

The scatter direction is known so that
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Figure 14--Geometry for diffraction point along the mth edge,
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d . e
cot 6_ = m

o I T~T ~
7l-(d.em)

2
(43c)

The diffraction point can now be found from

Rd = Rp + sp cot

where

SP -

(43d)

(43e)

and the incident vector is given by

T = R d - R s .

As before in the discussion of the reflected field the incident
field and diffracted field must be checked to see if they are shadowed
by any other structure. This can be done in the same manner given in
Equations (30-32). If either field is shadowed the result is set
equal to zero for that edge.

Once the diffraction point is known, the diffracted field can.be
found from Equation (16). Since the source produces a spherical wave
incidence and the scatter direction is in the far field (S-**>), the
diffracted field (with its phase referred to the reference coordinate
system) is given by

a.

3D.

~Ds ' jk
3_
an 0

-v jk anj

(QE)

jk Rd-d e-jkd

(44)

where

L = s1 sin' (45a)
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n, = wedge angle number =\w
for half plane edges

for gngle between n^
and n. plate with

J

plates i and j
having a common edge

(45b)

E,1(QE) = E
1(e1 ,*j) • e; (45c)

.,. (45d)

= I (45e)

(45f)

and

= tan (45g)

The incident field is given by

E (e.,<{..) = [e1F(91 ,<(>.) +
,-Jks1

In order to define the diffraction angles it is necessary to
define a coordinate system at the diffraction point a§ illustrated
in Figure 15. The three orthogonal unit vectors are em, the^unit
vector along the edge; n, the normal to the surface; and em=nxem,
the vector perpendicular to the edge and lying in the plane of the
flat plate. The incident vector direction can now be written in
terms of this coordinate system as
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Figure 15--Edge coordinate system at point of diffraction,
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-I = e' cos<j>' sing' + n sin<j>' sing' + em

Using the above expression one finds that

+ • - tar f1 (4-^

The scatter direction unit vector can, also, be decomposed in
terms of this coordinate system as

f* S* SI. A

d = e^ cos<J> sineQ + n sincf> sin3 + em cos3

which results in

- i fd - n<J> = tan

The half-cone angle of the diffracted cone of rays is found from

60 = sin^ld xej

and the incident cone angle is found from the laws of diffraction to
be

The vector directions used to determine the diffracted field are
defined by the following expressions:

<j>' = -e^ sin<f>' + n cos<J>'
<*v s\ ^

<f> = -e^ sin<() + n cos <t>
^ /^ *N A /\ ^

&'Q = < t » ' x I and BQ = $ x d.

The total diffracted field from a general mth edge of the jth plate
can now be found to be
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The total diffracted field is the superposition of all the diffracted
fields from all the edges on the P plates that exist in that direction
and is given by

P Mj
(̂65 .+s) = I I E< (8S,*S). (46)s s j=1 m=1 J,m s s

The diffraction from an edge as discussed above is based on an
infinite edge. The plates of interest here have finite length edges.
The fact that the straight edge diffraction point is lost past the
corners of the edge produces a discontinuity that must be compensated
for in some way. In the Geometrical Theory of Diffraction this is
accomplished using a corner diffraction term. This diffraction
mechanism is very small in magnitude except when the source is close
to the corner or if the radiation pattern is taken directly across
the corner. For wing mounted antennas, this situation occurs fre-
quently enough to warrant the inclusion of this term. As discussed
in Chapter II, Section F, the corner diffraction term is available
at present as a heuristically derived function. This function has
proven to be useful as will be seen below.

The corner diffraction term is assumed to be localized to a
small region around the truncation point of the edge, that is, the
corner. For each edge on the plates, there are two terms associated
with each truncation of the edge. This is illustrated in Figure 16.
The diffraction point is found for a given scatter direction using
Equations (43a-e). This time, however, the diffraction point is
not bound by the finite limits of the edge. It may fall off the
edge on an imaginary extension of the real finite edge as shown
in Figure 16. Since this term will be small away from the edge,
the limits for including the terms associated with the two trun-
cations are given as

(Cm~V -e_ - 0.1 < d . e_ < m s
r • em+0.1

I
V- \J • I - V4 - *-.„ ^ i

T -R I m m F R"cm RsI Cm RsI

for the first (mth) corner
of the mth edge,

and
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Figure 16--Corner diffracted field geometry.
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(c
em - 0.1 <d

(Cm+1'
m

for the second (m+ist) corner of
the mth edge.

This bound has been set heuristically, but it appears to give good
results in the cases tried. Once the diffraction point is found,
tests are made on the incident direction and scatter direction
to see if they are shadowed by any obstacles as was done before.

After it is determined whether the corner terms will contribute
to the scatter direction, the terms for the first and second edge
truncations of the mth edge are computed from Equation (22a), that
is

f -V

Si

E?_L

, ^<
IZo

MY
0.

n
-J 4

sin6 e cn fo[• c F[_ks a(6 -
27r(coseo-cos6c)

- jksc jk R . - d -jkd
v n , .,

J~c
(47)

for a scatter direction in the far field. The quantities I and M
are defined in Equations (22b and c).

For the jth plate, the mth edge, and the ith truncation (i=l or 2)
the corner diffracted field can be written as

All the variables are defined as in the discussion for the edge dif-
fraction term defined previously, except for the terms that follow.
For the first truncation point (mth corner),

Rc = Rs -
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R
cos 3 = —
, C |RCI

z' = Cm ' Rd •

For the second truncation point (m+lst corner),

Rc = Rs -

sc =

R
cos 6C = —- - (-em)

|R
CI

7 ' - P" D^z ~ Vi " Kd •

The corner diffraction term is not presently applicable to corners
that are formed by the junction of two plates. The corner term is
neglected when this case arises. The total corner diffracted fields
of all the corner diffracted fields that exist in the scatter
direction is given by

P Mj 2
EX.+s) = I V I EI m1 (V*s}-s s j=lm=l i=l J)m>1 s s

The four terms discussed above comprise all the mechanisms
needed to determine the scattered fields for a single plate. The
total radiated field in the presence of a single plate is given,
using Equations (29), (41), (46), and (48), by

E"(0S.*S) =
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This solution has been compared with measured results using a short
dipole antenna mounted above a flat square plate [23]. This is il-
lustrated in Figure 17 for a dipole mounted above the center of the
square plate. To illustrate the effect of including the slope dif-
fraction term, Figure 18 compares the radiated field of a short slot
mounted on a plate with and without the slope diffraction term.
The effects of the corner diffraction term is shown by obtaining
the radiation pattern across the corners of a square plate using a
short monopole mounted at the center of the plate, as shown in the
insert of Figure 19. The radiation pattern with and without
corner diffraction is compared in Figure 19. Note that the
discontinuity is completely eliminated. The radiation pattern
with corner diffraction is compared with an experimental result in
Figure 20. The good agreement in the comparison would tend to confirm
the approximation made in the corner diffraction coefficient.

If more than one plate is desired, the interaction between
the plates must be included. These higher order terms are obtained
in a step by step manner similar to the analysis carried out for
the mechanisms discussed above. First, the double reflected fields
will be discussed. The double reflected field, as illustrated in
Figure 21, can be viewed as a field emanating from a second image
obtained by reflecting the first image of the jth plate into the
kth plate, that is

1 i*,-, = R, - 2 [n. • (R. - C.Jin.
I l l K I I S . 1 l \

where RT is obtained from Equation (33) for the jth plate and nj^
refers to the normal of the kth plate. The ray emanating from RJJ
in the scatter direction 3 must be tested to see if it hits the kth
plate. This is done using the procedure outlined in Equations
(30-32). If a hit does occur the analysis proceeds to the next
step which is to find the incident ray

Ik = d - 2(nR . d)nk.

ift,

The ray emanating from R-j in the direction 1^ must be tested to see
if it hits the jth plate as was done above. The incident field on
the jth plate is then found from

Of course, each of the rays must be tested to see that they are
not shadowed by any other plate.
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Figure 17--E0 radiation pattern for a small dipole mounted
above a square plate for es = 90° and 0<_<t>sl36°c

at freq. = 10.43 GHz.
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Figure 1 a—Comparison of the Ee radiation pattern of a strip slot
on a plate with and without slope diffraction.
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Figure 19--Comparison of the;Ee radiation pattern of a short
monopole on a square plate (A=4x) with or with-
out corner diffraction taken in the plane 'is, =45°.
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Figure 20--Comparison of the calculated and measured £9 radi-
ation pattern of a short monopole on a square
plate (A=5.5U) taken in the plane <f>=45°.
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Figure 21—Doubly reflected field geometry.
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The doubly reflected field can now be obtained, if all of the
tests determine that a field exists. First, the reflected field is
obtained from the jth plate as was done in Equations (34-̂ 40),
except with 9|<j>

<))|<1- substituted for 0_»<l> s where

I,, =k Tkxx + Ikyy +

ek. = tan lkz

«

This means that the reflected field from the jth plate, which is
the incident field on the kth plate, is given by

i » * k i > = KF
s1

The boundary conditions on the kth plate are satisfied such that the
doubly reflected field is found. In matrix notation this can be
written as

nk"9 nk '

tk.e

Frr-

-6rr .

=

" A n ~

-A*.

where
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V9k
-Fr -

_G r .

=
_ A * .

Thus, solving the above expression for the unknown reflected field
gain functions gives

-rr
(nk.e

s)(tk.*
s) - (n

s\»n-
,rr -[(nk.e

a)AL + (tk.e
;>)A"]

(nk-e
s)(tk.*

s) - (nk.J
S)(tk-e

s)

In the far field the reflected field from the kth plate after its
original reflection from the jth plate can be written as

[esFrr(es,<(,s)
,-JW

The total double reflected field from the P plates is, then, given
by

P P
I I E^
1=1 k=l J
J I N I

(49)

py»

for all the Ejk fields that are not shadowed. Note that there is
no double reflection off of the same plate, i.e., when j=k.

63



The fact that the kth plate has finite limits is compensated
by a diffraction term off the Mk edges of the kth plate. Thus, the
reflected field from the jth plate must create diffracted fields from
the edges composing the kth plate. This reflected-diffracted term
is illustrated in Figure 22. In this case, as in the_previous case,
the reflected field from the jth plate and its image Rj may be sub-
stituted into the needed equations for the incident field and
source point, respectively. That is, bounds for the diffraction
point on the mth edge of the kth plate are obtained from

e < d • e < —m m ITT
A

. e

k,m+l " Ri
m

as in Equation_(42). The diffraction point Rd is found from Equation
(43a-e), with Ri substituted^ for Rs. The incident vector on the
edge is given by I. = Rd - R^.

SOURCE
LOCAT ION

PLATE

mt!i ED6E
DIFFRACTION
POINT

PLATE

IMAGE
LOCATION

Figure 22—Reflected-diffracted field geometry.
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Once the existence tests on the rays are performed, the re
flected-diffracted field can be found from

.*

o.

0

o

Rd -jkd

Note that the slope term has not been used here. This is due to
the fact that the slope term did not appear to be a significant
contributor to the fields for the geometries of interest. The
incident field (reflected field from the jth plate) on the edge
is given by, Equation (40),

SstJY* ^T V* ^ T V* Q *•»

in which case

s1 = I,

All the other parameters are as determined previously.
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The reflected-diffracted field from the mth edge of the kth
plate is then given as

«&..<•,-*,> • ?«\ + ̂  ;•
The total reflected-diffracted field of all the reflected-diffracted
fields that exist is given by

s,+s) - \ \ ?5 b j=l k=l m=l

The same procedure for the reflected-diffracted field is applied
to the reflected-corner diffracted field so it will not be discussed
in detail here. This field is illustrated in Figure 23. The
corner diffracted term for the mth edge on the kth plate is found
from Equation (47) with the reflected field of the jth plate given
by Equation (34) used as the incident field. The total corner dif-
fracted field in the scatter direction is given by

The diffracted field of the mth edge on the jth plate can be
reflected by another plate (call it the kth plate). This diffracted
reflected field is, in general, of the same order of magnitude as
the reflected-diffracted field discussed above. This field type
is illustrated in Figure 24.

The diffracted point for the mth edge on the jth plate, if it
exists, is foynd using Equation (43a-e), where 1^ must be sub-
stituted for d. The diffraction direction in this case is the
incident direction for reflection of the kth plate and is given
by

I\ = 8 - 2(fyd)nk.

Once the diffraction point R. is found the imaged diffraction point
is given by
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Figure 23—Reflected-corner diffracted field geometry.
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Figure 24--Diffracted-reflected field geometry.
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The imaged diffraction point is then used to see if a reflected
field exists by virtue of an incident ray hit on the plate. The
diffracted field can then be found from Equations (44 and 45a-g),
with the appropriate incident direction for the incident field and
diffraction direction for the diffracted field. In this case, the
slope term is not included. This diffracted field can now be used
in Equations (38-40) as the incident field for the reflection
mechanism. The details will not be given here.

In the far-field the reflected field of the kth plate from
the diffracted field of mth edge on the jth plate is given by

- A - A JkRj.-d -jkd/„ , \ _ r^Sr-dr/^ , \ , ,s0dr/m , \-i_ di e .

The total diffracted-reflected field of all the diffracted-reflected
fields that exist is given by

P M . P

tdr(es,*s) = 1 1 1 *fmk(es.*s) • (52)s s j=i m=l k=l
 J'm'K s s

_
where Ej ' k = 0 if the incident, diffracted, or reflected ray is
shadowea 'by any obstacle.

In certain cases, another higher order term can be significant.
This is a double diffracted term, illustrated in Figure 25. This
term is normally small unless the two edges and the source are
close together or one of the edges lies in the shadow boundary of
the other edge. In general, this is a fairly complicated ray tracing
problem without producing results that are significant to the total
field. When the two edges lie in the same plane, the problem
simplifies omewhat; however, the results are still not significant
except for small angular regions about the shadow boundary. The
problem as to when it is necessary to compute this term for a
general structure, is under investigation. The double diffracted
term has not been added at this time and there has not been sub-
stantial deterioration of the patterns.
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Figure 25--Double diffracted field geometry.

The total field for a source in the presence of a number of
plates can now be approximated by superimposing the individual
scattered fields listed in Table II, as

w r rd rc

This represents the sum of the most significant terms for a number
of plates that are fairly widely separated. In the case of plates
with common edges, the angle between the plates should be great
enough not to produce a large number of multiple reflections.
There is the possibility that other terms will be significant for
particular geometrical configurations. These are seen as dis-
continuities in the pattern. However, using the above prescription,
these rays may be identified and included in the total field. An
engineering judgment must be made as to whether the time expended
in obtaining these higher order terms will produce a corresponding
benefit in the final result.
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This solution can be used in a wide variety of ways. To il-
lustrate a simple case, this solution is compared with results
obtained using the newly developed moment method patch technique [7]
as illustrated in Figures 26a and b and 27a and b. Note that for
these comparisons the plate dimensions are quite small in terms of
the wavelength to accommodate an overlap between the low frequency
patch solution and the higher frequency GTD solution. This accounts
for the discontinuities in the patterns using the present GTD
solution.

More complicated structures can also be analyzed using this
solution. For example, the scattering from a building or a ship
can be modelled using flat plates. In this study, the plates
are used as models for the wings and horizontal and vertical
stabilizers of aircraft. They could also be used to model the
wing flap, or the stores and engines on the aircraft. Even more
complicated structures such as the fuselage of the aircraft can
be modelled in a crude way. Such a model was constructed for an
F-4 aircraft with a slot mounted on its wing before the more
advanced model using an elliptic cylinder discussed in Chapter V
was developed [22].

The fuselage of an F-4 aircraft is modelled as a lopsided flat
plate as illustrated in Figure 28. The wing is modelled as in
Figure 29, with a 17.5° bend between the two sections about the
common edges numbered IT and 13'. In order to check the validity
of the approximation made in the flat plate model of the F-4,
experimental measured patterns were taken at the Naval Weapons
Center using a scale model of an F-4 aircraft, shown in Figure 30.
Four different pattern cuts were made as illustrated in Figures
31a-d. Five different antenna locations on the wing were used
as shown in Figure 32. The antenna was a single cavity-backed
slot of length 0.748X in free space with only the first waveguide
mode excited. The comparison of experimental and calculated main
beam elevation plane pattern results (refer to Figure 31a) for
the slot placed at a 45° angle with respect to the fuselage axis
at locations #2 and #4 are shown in Figures 33a and b, respectively.
The pattern in the main beam roll plane (Figure 31c) for an antenna
at location #2 is shown in Figure 33c. The elevation plane pattern
(Figure 31b) for slot antenna location #2 is shown in Figure 33d
and its roll plane pattern (Figure 31a) is shown in Figure 33e.
At the time of the comparisons the slope diffraction, corner dif-
fraction, and double diffraction fields had not been added. The
resulting discontinuities are marked on the patterns for illustrative
purposes. The overall character of the measured and calculated
patterns appear to agree; however, the finer details of the patterns
do not compare very wel1.
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Figure 26a—Comparison of measured, reaction and 6TD calculated
H-plane pattern results for a A/2 dipole near a
corner reflector.
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Figure ,26b--Comparison of reaction and GTD E-plane pattern results
(a=90°).
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Figure 27a--Comparison of reaction and GTD H-plane pattern results
(a=270°).
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Figure 27b--Comparison of reaction and GTD E-plane pattern results
(a=270°).
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Figure 28--Fuselage geometry for best plate model
of F-4 aircraft.
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Figure 29--Wing geometry of F-4 aircraft bent plate model
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Figure 31 — Illustration -of pattern cuts and transmitted
polarization for measured results:
(a) main beam elevation plane;
(b) elevation plane;
(c) main beam roll plane;
(d) roll plane.
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Figure 32--Antenna locations.on F-4 wing used in
measured results.
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Figure 33a--Main beam elevation plane pattern of single slot
mount on F-4 model at location #2 compared
with bent plate aircraft result.
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Figure 33b--Main beam elevation plane pattern of single slot
mounted on F-4 model at location #4 compared with
bent plate aircraft result.
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Figure 33c--Main beam roll plane pattern of single slot mounted
on F-4 model at location #2 compared with bent plate
aircraft result.
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Figure 33d--Elevation plane pattern of single slot mounted on
F-4 model at location #2 compared with bent plate
aircraft result.
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Figure 33e--Roll plane pattern of single slot mounted on F-4
model at location #2 compared with bent plate
aircraft resultf
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Figure 33f—Elevation plane pattern of single slot mounted on
F-4 wing facing aft compared with bent plate
aircraft result.
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The above comparisons, especially the roll plane result in
Figure 33e in which scattering from the fuselage plays an important
part, indicate that the flat plate representation does not adequately
represent the smooth curved surface of the aircraft fuselage. This
leads to the development of a more complex fuselage representation
presented in the following Chapters. To minimize the fuselage
effects on the flat plate fuselage, a measurement was made on the
F-4 model with the antenna main beam pointed straight behind the
aircraft. This result is shown in Figure 33f. Some of the detail
compares slightly better; however, the shifting of some of the
ripple and the broadnesss of the pattern at 6 = 180° indicates a
problem with the measurements that turns up in all the comparisons.
The problem is that the measurements were taken in the near field
of the aircraft. As a result, one cannot directly compare the
measured near-field and calculated far-field patterns. Of course,
there is also the possibility of slight inaccuracies in the measured
results due to variations in placement of the antennas, ground
reflections, etc. The comparisons are good enough, however, to
show that the flat plate model is moderately successful although
it needs improvement for aircraft fuselage modelling.

The question as to whether a flat plate adequately models a
wing with finite thickness and a rounded edge with an antenna
mounted on its surface is studied [32] by comparing the results of
a two dimensional thick wing model with the knife edge used in
the flat plate model. The rounded wing tip is modelled by a
circular cylinder mounted on a thick wall as shown in the insert
of Figure 34. The radiation patterns are compared in Figure 34 for
a tip of 1/16X radius and the knife edge model. Note there is
very little difference in the two results. This implies that the
knife edge is a good approximation for a wing tip at the frequencies
of interest.
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KNIFE EDGE
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Figure 34--Comparison of the £$ radiation patterns of a slot on
a thick edge plate to that of a slot on a knife
edge plate.
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CHAPTER IV

NEAR FIELD SCATTERING BY A FINITE ELLIPTIC CYLINDER

A. Introduction

The near field scattering by a finite length, perfectly-
conducting elliptic cylinder is analyzed using the Geometrical
Theory of Diffraction as discussed in Chapter II. The near field
scattering from a finite circular cylinder was studied by Burnside
[23] using a combination of modal solutions, physical optics, and
equivalent currents. The present work is now possible due to the
curved wedge diffraction coefficients of Kouyoumjian and Pathak
[34] and the curved surface transition function solution of Pathak
[62,63].

In this study, the antenna is in the near field of the three
dimensional scattering body, but it may not be on the surface of
the cylinder. The scattering body is assumed to be in the far
field of the source. The observation point is also in the far
field.

The finite elliptic cylinder is of interest because it can be
used to simulate aircraft fuselages, engines, and stores. The
elliptic cylinder geometry allows for variations in its dimensions
such that a best fit can be obtained for a variety of actual air-
craft fuselage shapes.

B. Near Field Scattering by a Finite Elliptic Cylinder

The finite length, perfectly conducting elliptic cylinder
analyzed in this study is composed of a cylinder with elliptic
cross-section truncated by two flat end caps, whose normals lie
in the x-z plane such that they can make an arbitrary angle with
the cylinder axis. The end cap cylinder junction forms a curved
wedge. The dimensions of the structure are assumed to be large in
terms of the wavelength. The geometry is illustrated in Figure 35.
The source is defined by its location and far-field pattern. The
source is assumed to be an infinitesimal electric or magnetic dipole
moment.

The incident field is given in Equation (29), and as before the
scatter direction is given as

- .

d = cos * sin ex + sin* sin 0 y + cose z. (54)
O J O O O



SOURCE
LOCATION

Figure 35--Near field finite elliptic cylinder geometry.
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As mentioned previously, it is important that all fields be set to
zero if they are shadowed by any obstacle. In this case, the cylinder
is assumed to be the only structure present.

I
TANGENT POINT *|

SOURCE
LOCATION

TANGENT POINT *2

Figure 36--Geometry for tangent directions to elliptic cylinder.

The method used to determine if a ray is shadowed or not by the
cylinder is based on limits defined by vectors emanating from the
source such that they are tangent to the cylinder surface as shown
in Figure 36. These vectors til and t-j2'define the top and bottom
shadow boundaries of the source, respectively. The coordinates of
each tangent point associated with the source shadow boundaries can
be found by setting an incident vector from the source equal to the
general unit tangent vector to the elliptic surface. This is
written as
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Ixy = *e (55)

where the minus sign is associated with the top shadow^ boundary (tj-]),
and the plus sign is for the bottom shadow boundary (tie)- The
general unit tangent vector to the elliptic surface at the point

_ * y*. »

R = a cos vx + b s i n v y + z z
C C

on the surface is given by

3v

As a unit tangent vector this is given by

_ -a sin v x + b cos v y

J a1" sin^v + b1" cos^v
te = "^

 bin v x T D cos v y- (56a)

The tangent vector need only be defined in the x-y plane, so the
vector emanating from the source is defined only in the x-y plane
here as

(a cos v - xc)x + (b sin v - yJy
Ixv =

 S 3 (56b)xy / p 2
J(a cos v - xs) + (b sin v - yg)

where the source point is given by
^̂  ^ /\ s\

RS = x$x + ysy + z$z.

With the substitutions

xt ytcos v = —- and sin v = -r-a b
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in Equations (56a) and (56b) to simply the notation,,Equation (55)
can be used to solve for the tangent points (x., y., zj when it
can then be used to solve for the tangent points (x., y., z.) when
it is written as t t t

(x.-x ) +a2y,
t (57a)

and

(y+-yc)t
- (57b)

7(xt-xs)
2
+(yt-ys)

This is accomplished in the following manner. First, dividing
Equations (57a) by (57b) and rearranging the result gives

Vs .
a2 b2 " a2 b2

Then, noting that

x2 y2t yt
-\ + -\ = 1 (58a)

is the equation of an ellipse, this leads to the fact that

-^ + -V- = 1 . (58b)

The y-coordinate of the tangent point can be written in terms of
the x-coordinate from Equation (58b) as
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Then, substituting Equation (58c) into Equation (58a) yields the
quadratic equation on the x-coordinate

, / .2 x2 \ o2 x /. 2 N

Hence, this can be solved for the x-coordinate of the tangent points
so that

The y-coordinate of the tangent points are found by substituting
this into Equation (58c) which gives

22 +2 / 2 2 2 2 2 2
, 2 aVy t b\JaV+bV-aV

v'»^ =
 s _ S S S _

yt ,22 2 2ir (â r + b^x^)

The top tangent point (#1) is defined with the minus sign in
Equation (59a) and the plus sign in Equation (59b). The bottom
tangent point (#2) is defined with the plus sign in Equation
(59a) and the negative sign in Equation (59b). Then

v = tan"1 "^ (60)

so that the tangent vectors are

"te = v 1 1

ti2 ' ̂ 'v = v12

where t is defined in Equation (56a)
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The shadowing algorithm follows such that if

or

where d = cos<j> x + sin <j> y
Xjf 5 5

A

the ray in the dxy direction does not hit the cylinder, that is
shadowing does not occur. This is illustrated in Figure 37.
If Equation (61) is not satisfied a further test must be made due
to the finite length of the cylinder. The ingident vector ixy,
Equation (56b), is assumed to be between the t-ji and i-\2 directions.
The parameter v at which the incident vector would hit the cylinder
in two dimensions is found from

Txy x axy = °-

This leads to the equation

-a sin<j>p cos v + (x,. sin * - yp cos<|»_)s s s

2
Squaring both sides of this equation, and substituting in sin v =
1 - cos^v and rearranging gives the quadratic equation

? ? ? ? ?(a sin <(> + b cos <{)_)cos v - 2a sin^ (x sin -y <j> ) cos v
O ' O O O O O O * ' ' . '

-b cos <j>s + (xssin<i>s-ys cos*s) = 0 .

This may be solved for cos v, then cos v may be substituted into
Equation (62) to find sin v. The sign of the quadratic solution
is picked such that the |IXy| is a minimum. The z-component of the
three dimensional incident vector

I = (a cos v - xs)x + (b sin v - yg)y +

can be found from
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A A
cos" (t1rdxy)

SOURCE LOCATION
A A

COS"' ( tj, »t,2 )

A A

cos-' (t ,2 'dxy)

(a) RAY COULD HIT CYLINDER

SOURCE LOCATION
. A A

(b) RAY CAN NOT HIT CYLINDER

Figure 37—Geometry for deciding whether ray does or does not hit
elliptic cylinder in the x-y plane.

95



z_ = z
cos9s

s T cos<(> sine V'

where xe = a cos v. The incident ray hit the cylinder and is
shadowed, as in Figure 38, if

zc + xe cotec < ze < zc + xe cot 9c'

where

zc =

~ = angle of * h end cap with z-axis

INTERSECTION
POINT

SOURCE
LOCATION

Figure 38--Geometry of intersection point of ray
in three dimensions.
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Once it is determined the incident field is not shadowed, the far
field incident field is given by Equation (29). This shadowing
algorithm can be used for any point of origin and type of
interaction ray that follows in Chapter V.

SOURCE
LOCATION

Figure 39 — Geometry for determination of reflection point on
elliptic cylinder.

In order to find the reflected field of f^ the curved surface
of the cylinder in a given scatter direction d, as shown in Figure
39, the reflection point must first be found. n This is assuming
that 3 is not in the shadow^region, that is, d does satisfy the
test in Equation (61). If d is in the shadow region the reflected
field does not exist. To find the reflection point in the lit
zone, the laws of reflection as given by Equations (4a and b) are
the starting point. These equations are now written such that

I _ |d~L _ rT x I
|T| • n" x d"
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or

(n x I)(n.d) + (n-D(nxd) = 0. (64)

Note that the normalization factors may be removed. This will
simplify the solutions to follow. The scatter direction given
in Equation (54), and the incident vector given in Equation (63)
may be written as

and

,z) = Ix(v)x + Iy(v)y + Iz(z)z.

The normal to the curved surface is given in general by

n = t x z = b cos v x + a sin v y (65a)

or

n(v) = nx(v)x + ny(v)y. (65b)

Performing the necessary dot and cross products, Equation (64)
reduces to two equations,

L-nyIx) = 0 (66a)

and

(nx rx + nyVdz + ("xdx + nyV!z = °' ^66b^

For a given scatter direction, the location of n" is usually not
known a priori. It has to be solved for using the above two equa-
tions. Actually, Equation (66a) contains only one unknown, that is
the parameter v. Once this is found the appropriate v may be
substituted into Equation (66b) to find the unknown z .

98



Let Equation (66a) be written as

+ S334 = 0

with

xs = PQ cos

ys = PO sin

= a b - PQ (b cos<|> cos v + a sin <f> sin v)

= b sin<j>s cos v - a cos<j> sin v

= b cos<j> cos v + a sin<t> sin v
S S

2 2
= (b -a )cos v sin v + p (a cos<f> sin v - b sin<|> cos v)

Now using the substitution

or in other words

cos v =
c,2*!

and

sin v =zik!dl
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then

1
= {2abct ~ P t ( b ^^ a

1 o
o = 2^ t(b sin* +ja cos$ )a +(b sin<)) - ja cos<j)

-ja sin4) )a +(b cos<j> +j

[j(a2-b2)a4-2P (b sin* +ja cos<j>0)a3

4a

- 2pQ(b sin<j)0-ja cos<j>0)a - j(a -b )

Multiplying the equations together, collecting terms and setting
the equation to zero results in a sixth order polynomial in a
given by

C/-a +Cj-a +C^,a +Co« +C«a +C-,a +C - 0

where

C6 = (a2-b2)(a sin<j>s+j b cos<|>s)

C5 = -2 P0[(a2+b2)sin(<f>o+<i,s)+j ab

2 2 2 2
a(5b -a )sin<fis + j b(5a -b )cos<(>s

4P(a2-b2)sin(<(,0+<j,s)
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= CJ (complex conjugate of CJ

c,-cg

Co •

This can be solved using any standard numerical method for the
solution of polynomials with complex coefficients. Of course,
there will be six roots to this equation, but only one will be
physically realizable. This one is found by plugging the v's
from

) '

into the equation jfor I and finding the one which gives the
minimum distance |I|. The parameter ze can now be found from
Equation (66b), that is

(n I + n I )d_
_x_x y_JL̂ L. . (67)

The method for finding the reflection point discussed above can
be considered an exact solution. There will be some errors involved
in practice due to the numerical solution of the polynomial, but these
will not be accumulative since the polynomial must be resolved for
every scatter direction. This method is time consuming, however,
because it must be resolved every time a new pattern direction is
considered. Also, more complicated interaction problems involving
reflections, as discussed in the next chapter, will not have such
a simple solution. It is for these reasons that an approximate
method for solving for the reflected field is desirable.
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In most radiation pattern calculations, the scatter direction
is normally incremented by only a small amount before another
field point is desired. This suggests the possibility of using an
incremental scheme to find the reflection point on a curved surface.
This method is developed based on the first term in a Taylor expansion
of the reflection equation

f(v.*s) = (nxynyly)(nxdy-nydx) + (nxdx+nydy)(nxly-nylx)
 =

that is

f,

where
3f, 3f

(68)

Since

f..j+1 v.+Sv = 0

this implies that

fJ J Vj
= 0

or

9f, af.
T-7-L 6V + -J- 6* = 0

so that
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6v =
" j

54,
9

3V

This says that if the reflection point for an observation angle of
<}>s is at the elliptic angle Vj on the cylinder surface, then the
reflection point for an angle of <t>+($<)> is given by

- Vj + 6v.

From Equation (68), it is seen that

3f. / 3d

a* = (nxIx+nyIy) ( nx

3d

- "

3dv 3d
A .

and

3f.

3v

8n 3n

3V 3v *y • "y -y>
\ ^Iy_ 3"y_ 3IX

•x*vyy' V 3v~ TV + "x 3v Iv Jx " ny W~+ (nd +n d )

3n/3nY
+ (n I +n I ) — x d - —v x x y y\3v y 3v

— d + —- d (n I -n I )3v x 3v yy x y y x'

and from Equations (54, 63) and (65a)

103



9n
- =-b sin v

= a cos v

5
8V

= -a sin v

91y
— = b COS V

3d

3*

= COSV

Now v-+-| may be solved for, and an error computed from

e = n
j+l

+ n • d
VJ+1

If the error is not within a given bound, the number of interval
steps <5<|>s may be halved and the total number of steps doubled so
that the new scatter direction is the same but the increments have
doubled. This process may be continued until the error bound is
reached or the roundoff error in the computer has been reached.
The z component of the field may be found from Equation (67)
as before.
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The assumption in the above method is that the previous
reflection point is known accurately. Of course this is not true
in general, since the previous reflection point is computed
using the same method from its previous point. This means that
the process can accumulate error, but this is compensated for
by allowing the step size to vary and the fact that the error
is computed against the laws of reflection that must be obeyed.
In other words, the errors accumulated in calculating the previous
point (fj) are included in the calculation of the next point (fj+i).
Thus, as errors grow the interval decreases and tends to correct
the total result at (f .+1).

A starting location for the first computation needs to be
provided for the incremental method. This is most easily ob-
tained from the fact that the reflection point is known at the
shadow boundary, since this is simply the point of tangency from
the source to the cylinder. The two points of tangency v-n and
vi2 were previously found in Equation (60). The scatter direction
at the start will be the tangent vectors^t-n and ti2, respectively.
The one closer to the desired direction d can be chosen to start the
incremental method.

The reflected field from the elliptic cylinder is found using
Equation (2). The geometry is illustrated in Figure 40. In this
case the observation point is in the far field, S*>°. Using the
usual far-field approximation and referring the phase to the origin

(69)

where Rr is the reflection point and R is the reflection coefficient
given by Equation (3). The principal radii of the reflected fields
for spherical wave incidence are given in Equation (10), where for
an elliptic cylinder R2̂ °. This gives

P = s1 (70a)

and

s' R, cose1

h o— • (70b)
R-|Cos0 +2s'sin e2
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where

s' = I (71a)

Rl =
(b2cos2vr+a

2sin2vr)
3/2

Tb (71b)

and

cos9 = n • d

2 2 2 2 isin 0£ = sin w + cos co cos 9

(71c)

(71d)

coso) = -I • e~ (71e)

and

si no) = -I • e.

x n =

= z

(71f)

(71g)

(71h)

" SOURCE
LOCATION

Figure 40--Reflected field geometry for elliptic cylinder.
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The vectors that are used in the reflection coefficient are given
by

ej. = sin(cor-90°)elxx + sin(air-90°)e1 v + cos(u>r-90°)z,

ej = I x e^, (71 j)

and

ej = d x e± . (71k)

The incident field ̂ (Qo) is given as in Equation (1), with the in-
cident vector I defining the incident angles.

Reflections can also occur off the flat surface of the end caps,
The normals to the end caps are defined as

and

n. = -cose x + sine z (72a)

n~c = cose'x - sine'z, (72b)

where the positive sign refers to the most positive end cap with its
origin at z = zj and the negative sign refers to the most negative
end cap with its origin at z=z~. It is possible for reflections to
occur if

lc ' nec

where

Tc • V - *s •

If the above inequality_is true, then an image can be found and
an intersection point (R̂ ) on the plane of the end cap can be
found from Equations (31 and 33) that were used for the flat
plates in Chapter III. The test to see if the point of inter-
section lies in the confines of the end cap, however, is slightly
different. First, the distance from the origin of the end cap to
the intersection point of the end cap in the plane of the end cap
is defined, that is
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tc
If

min(a > b)

then a reflection will occur, or if

p. > max(a csc9 , b)uc c
then a reflection will not occur. If

min(a csce ,b) < p. < max(a csce , b)c t*c c
then another test is constructed as follows. Let

Rt = Rtxx + V + Rtzz

then

csce
vc = tan

b R

where

xc =
y x nec

nec X*

The radius of the end cap at the angle v is then given by
C

1 2 2 2 2 2p = /a esc e cos v + b sin v .
\* »̂ %̂  \rf \̂

Thus if

ptc < pc

reflections occur.
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The reflected field for both end caps, if they exist, may be
found by the same procedure used for the flat plates in Chapter
III, Equations (35-39). The total reflected field from the
end caps can be written as

cap(es'({>s)

where the plus sign refers to the most positive end cap and the
negative sign to the most negative end cap. Usually both end caps
will not contribute to the field at the same time.

Curved surface diffraction is used for aspect angles in the deep
shadow region. The geometry is illustrated in Figure 41. This
diffraction coefficient is discussed in Section G of Chapter II.

SOURCE
LOCATION

Figure 41--Curved surface diffracted field geometry.
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When the scatter direction is in the far-field, Equation (23) is
given by

_

jk R H-d -jkd
(74)

where R<j is the point at which the ray detaches from the surface
(Q2) and sheds in the scatter direction. The functions u$ and
un are defined in Equation (24) and p is given in Equation (25b)
for a cylindrical surface.

The point Q-| is the incident point and it is found from
Equation (60). There are two incident points for a closed convex
surface such that energy propagates in a clockwise (cw) and
counterclockwise (ccw) sense around the surface so

ccw

cw

The surface ray follows a geodesic path along the surface, which
is a helical path for a cylinder. The point at which the energy
sheds off the cylinder is given by

vf =<

tan"

tan

ccw

'b cos<j)s \

-a s i n < f > ) ' cw

If one defines the geodesic starting direction by the angle a
180°-es, then

 s

-COSa
z =

sina

f f I 2 2 2 2via sin v + b cos v dv (geodesic equation)
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This equation can be quickly evaluated using numerical techniques,
The important parameters of this problem are listed below:

t = f /2 2 2 2>/a sin v+b cos v dv (arc length)
J \t

_ -a sin v x + b cos v y
~

2 2 2 2
a sin v + b cos v

= z

(curvalinear coordinates)

- cosase2 (unit tangent vector)
v=vi
v=v,-

'1,2
_ b cos vx + a sin vy

2 2 2 2~a sin v + b cos v
v=vi
v=v.

(unit normal vector)

l,2 X n l,2 (unit binomial
v=v. vector)

v=v.
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9 9
P = (a sin

9 9
b cos v)

a b sin a
(longitudinal radius of curvature)

2 2 2 2 3 / 2
P. = (a sin v + b cos v) (transverse radius of curvature)
1 ab|sirT(as - 90°)| - -. -

R . =. = a cos vfx+ b sin vfy + (zQ T T
Icote + t cose )z .

X jr S S

Using the above relations, Equations (74) can b>e employed to find the
surface diffracted fields from the clockwise (E£JW) and counter-
clockwise (Eccw) propagating rays. The total surface diffracted
field from the cylinder, away from the shadow boundaries, is
given by

<75>

As stated previously, both the reflected field and the surface
diffracted fields for the elliptic cylinder are inaccurate close to
the shadow boundaries. The transition field solution of Section H
in Chapter II for a curved surface is needed in this region. The
transition field for a cylindrical structure with the scatter
direction in the far field is given in Equation (26) as

E* * E (76)

where

Q = 1
QR, for the lit region

Q-,, for the shadow region.

In the lit region, the functions (G and G.) are given by
Equation (27), as
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3s,h
-m e

• JLJ 4

J%A \2m

*l
(77a)

and for the shadow region Equation (28) gives

Js,h

. IT

/7k

-1

[F**
rf^'V2mlm2/

/ ^
P*(5S)

,-Jkd

(77b)

The necessary equations to define these functions have been given in
Chapter II, Section H and this chapter, where the parameters in the
reflected field section are used for the lit region and the param-
eters in the surface diffracted field section, are used in the
shadow region.

The transition field solution is accurate at and around the
shadow boundaries. As the observation point moves away from the
shadow boundary either into the lit region or deep shadow region,
the geometrical optics fields and surface diffracted fields,
respectively, present a more accurate solution. At some point
the solutions are very close together and either solution is valid.
This is illustrated in Figure 42 for an elliptically capped thick
wall (a=1.59A). The dipole is on the x-axis, 4.76 from the
origin, and parallel to the z-axis. This indicates that the
transition region is rather arbitrarily defined in terms of the
accuracy of the solutions. A progressive blending function can
be constructed, so that the total solution smoothly goes from
one type of solution to the next over a small region in the
area of common validity.
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Figure 42a--Cylindrically capped wall configuration excited by
a dipole source parallel to z-axis.

For a closed convex surface, there are two shadow boundaries
as discussed before so there will be a transition field associated
with the top or counterclockwise term (ECCw) and the bottom or
clockwise term (E). The total transition field, where it exists,
is then given by

(78)

For an infinitely long cylinder, where the end caps need not
be considered, the total field is given by
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TRANSITION

G.O.

30 -20 -10 0
RELATIVE POWER ( (IB)

figure 42b. Eg radiation pattern of electric dipole source
surrounding cylindrically capped wall showing
the effects of the three different solutions
in their respective regions.
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TRANSITION

30 -20 -10 0

RELATIVE POWER (dB)

Figure 42c--E<j, radiation pattern of magnetic dipole source
surrounding cylindrically capped wall showing
the effects of the three different solutions
in their respective regions.
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using Equations (29,69,75,78). The accuracy of this result is
confirmed by numerical comparison with the results obtained via
an exact eigenfunction solution for a circular cylinder [64] in
Figures 43 for the acoustic soft and hard boundary conditions,
respectively. The results for the GTD solution are also com-
pared against a moment method (MM) solution for the elliptic
cylinder case in Figure 44 for the hard boundary condition and
two different source positions. The result in Figure 45 compares
the GTD solution with the MM solution for a conical scan angle of
6 = 45°. In all the above comparisons the results show excellent
agreement.

Figure 43a—Circular cylinder configuration excited by a
dipole source parallel to z-axis.
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EIGENFUNCTION
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180°

270'

Figure 43b--E0 radiation pattern of electric dipole surrounding
circular cylinder. Here, GTD implies the GTD +
transmitter solution.
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• EIGENFUNCTION
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270°

<£'•=(>

0 - I.59X

/>'«4.76\

HARD b.C.

Figure 43c—EA radiation pattern of magnetic dipole surrounding
circular cylinder. Here GTD implies the GTD +
transition solution.
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ELLIPTICAL
CYLINDER

o - 2X ,• b> IX, o'= 4X

Figure 44a--Elliptic cylinder configuration excited by a
magnetic source parallel to the z-axis.
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GTD

270°

Figure 44b—E,j> radiation pattern surrounding the elliptic
cylinder. Here GTD implies GTD + transition
solution.
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180°

Figure 44c—£4, radiation pattern surrounding the elliptic
cylinder. Here GTD implies 6TD + transition
solution.
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Z DIRECTED
MAGNETIC CURRENT
MOMENT

SOURCE
LOCATION

ELLIPTIC
CROSS-SECTION

INFINITELY LONG
ELLIPTIC CYLINDER

Figure 45a—3-D scattering configuration involving an infinitely
long elliptic cylinder.
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OUR SOLUTION

160°

90 X X MOMENT METHOD

-3O -20 -10
RELATIVE POWER (dB)

270

Figure 45b--Conical scan radiation pattern for the 3-D
scattering configuration. The pattern of the
0 component of the electric field is shown.
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The flat end cap and elliptic cylinder junction can be
represented by a curved wedge such that one can apply the
Geometrical Theory of Diffraction as discussed in Chapter II,
Section E. The end caps are defined by their normals as given
in Equations (72a and b) , and their origin position on the z-
axis. The edge of the wedges are given by

_«-> I A /^ I A

e = - a s i n v x + b cos v y - a sin v cot e z

for the most positive end cap and

e = a sin v x - b cos v y + a sin v cot e~ z

for the most negative end cap. The diffraction by a curved edge
obeys the same laws of diffraction as the straight edge in that
the half-angle for a cone of diffracted rays is equal to the
angle of incidence. This can be expressed as

e(v) - I(v) = e(v) • d .

The location of the diffraction points is more complicated, how-
ever, since the edge vector is a function of the parameter v. It
can be shown that for a circular or elliptic edge outside the
caustic regions there are in general four points of diffraction on
the edge of a near field source and a given scatter direction.

The diffraction points can be found in many ways. An exact
solution similar to that obtained for the reflection off an
elliptic cylinder can be found which in this case is an eighth
order polynomial. An incremental solution could also be found
for this problem, but this is complicated by the fact that three
of the diffraction points can merge into one in certain scatter
directions. A search method is another possibility and is used
here. The geometry is illustrated in Figure 46.

The search method is based on minimizing the error given by

e(v) = e(v) • I(v) - e(v) . d

where

T(v) = (a cos v - x )x + (b sin v - y )y + (a cos v cot e

zc -
as v is incremented from 0° to 360°. A minimum is found using
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Figure 46--Curved wedge diffraction points on rim of end cap
of finite elliptic cylinder.
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to 361

If
and

then Vj is the closest point to a minimum. An interpolation
scheme is used to find the actual minimum based on

Vd = V. + AV

where

AV = s'(e • d) - e • I
e.Al+Ae.I-(I.Al)(e-dVs'(Ae-2)

and

s- = |T|

A! = -a sin v x + b cos v y - a cos v cote z

Ae~ = ±(-a cos v x - b sin v y - a cos v cote z).

This process is continued until four points are found or the whole
edge has been searched.

Now that the points of diffraction are known the diffracted
field can be determined. In the far field, the diffracted field
from one of the diffraction points (v.) is given by, Equation (17).

jk Rd-d e-jkdA
FU

tfl

E!

^

™

-Ds 0

L° -V

' .
Ei. (Q^)

.EJ(QE)

The diffraction coefficient for the curved wedge are given in
Equation (19). The distance parameter associated with the in
cident field with s-*» is given by, Equation (20a),

Li =
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For spherical wave incidence

- ,-•= P2 - pe = s

so that L' is given by

L1 = s1 sin2eQ.

The distance parameter associated with the reflected field with s-*»
is given by, Equation (20b),

=

r r . 2
pl P2 S1n

r
pe

where p£ is given in Equation (21). For the 0 surface, which is the
flat ena cap, the parameters are simply given by

ro _ nro _ _ro

so
l = P2 = pe = s

Lro = s' sin230 .

For the n surface, which is the curved surface, the parameters
prn and pF>n are defined in Equations (70a) an.d (70b), respectively.
The parameter p™ is given by

2(n-ne)(n-)

where n is the unit normal to the cylinder at the diffraction
point, the normal to the edge is
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ne = b cos vds1nec x
a sin v

y + b cos vd cos e z,

= (a
2sin2v+b2sin2ec cos

2v)3/2
e ab sin e.

I = Rd - Rs,

R . = a cos VH x + b sin v. y + (a cos v. cot e + z )zc c'

The caustic distance p is given by, Equation (18),
A A A

[I - d)_
P " s1 ae sin (

As for the straight edge a ray fixed coordinate system is used
centered about the diffraction point as shown in Figure 47. The
necessary equations^are given in Chapter III, where here e cor-
responds to em and nec to n|p-|ate. The wedge angle number for
the curved edge is given by

cos" (n v'
v=v

If 4>' > ity (180°) or cf> > nw (180°), then the incident or dif-
fracted field, respectively, is shadowed and does not need to be
found. In other words, it is assumed that only diffraction
points that have an incident field direct from the source is to
be found. It is possible to have a diffraction from the curved
edge that results from a field that is incident on the edge after
it has propagated along the cylinder as a surface diffracted field.
This type of field is neglected in this study. The diffracted field
from the jth diffraction point on the ith end cap is then given by
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As is mentioned above, it is possible for three of the dif-
fraction points to merge into one for certain aspect angles. This
represents a pseudo-caustic effect resulting from the disappearance
of isolated ray contributions. The GTD fails to describe the
transition from the four isolated diffracted ray result to the
pseudo-caustic result and hence needs modification. This is
presently being studied [65] through the use of equivalent rim
currents which indirectly employ the GTD edge diffraction coeffi-
cients. The equivalent edge currents are then incorporated in the
radiation integrals which yield a smooth behavior for the field
across these pseudo-caustic regions. At the present time, this
has not been included here.

SOURCE
LOCATION

Figure 47--Edge coordinate system at curved wedge diffraction
point.
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The total diffracted field from the end cap rims, if they
exist, can be written as

cap<V*s> ' *1J •

The total scattered field from a finite elliptic cylinder is
now given by the sum of all of its individual contributors in
their appropriated regions as

r + r cap *f + f + ̂ end cap. (so,

The description of the individual scattering contributors from
the cylinder are summarized in Table III.

TABLE III
SCATTERED FIELDS INCLUDED" IN THE'FINITE CYLINDER SOLUTION

1)

2)

3)

4)

5)

Symbol Description

F Reflected field off the
cylinder

^ Diffracted field off the
cyl i nder

E Transition field off the
cylinder

"fend Reflected field off the

E" nrt an Diffracted field off the

Figures

40

41

40 & 41

'

47

Equation

69

75

78

73

79
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To illustrate the validity of this near field solution, it is
compared with measured results for a finite circular cylinder given
in Reference [23]. The geometry is illustrated in Figure 48. For
a horizontal dipole parallel to the cylinder axis, the present
result is compared with a measured result as shown in Figure 49.
Note that the two results are almost identical except about the
caustic region where the analytic solution does not accurately
describe the field. The same is true for a vertical dipole
(parallel to the y-axis) result shown in Figure 50. The caustic
region is not extensive for most cases. Leaving this caustic in
the solution, does not strongly effect the results in practice
as will be seen in the next chapter in which the aircraft problem
is studied.

SHORT
DIPOLE
LOCATION

Figure 48—Short dipole illuminating a finite cylinder.
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Figure 49—Radiation pattern (Eg) of a horizontal dipole (parallel
to z-axis) in the x-z plane.
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Figure 50--Radiation pattern (E^) of a vertical dipole (parallel
to y-axis) in the x-z plane.
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CHAPTER V

ANALYSIS OF WING MOUNTED ANTENNA RADIATION PATTERNS

A. Introduction

The previous chapters have illustrated how the Geometrical
Theory of Diffraction is used to study the scattering by basic
structures (flat plates and finite cylinders). In this chapter
these solutions are extended to determine the radiation patterns
of antennas mounted on the wings of aircraft. The analytic
aircraft model consists of a finite elliptic cylinder representing
the fuselage with flat or bent plate wings and horizontal and
vertical stabilizers. Small plates and elliptic cylinders can be
used to represent engines and or external stores if necessary.

The basic aircraft shape to be modelled is illustrated in Figure
51. This model is versatile enough to simulate the major scattering
contributors of a wide variety of aircraft. The solution is also
formulated in such a way that an arbitrary antenna can be considered
simply by integrating the equivalent aperture .currents. The lower
frequency limit of the solution is dictated by the ray optics format
which requires that the various scattering centers be no closer than
approximately a half wavelength with the overall aircraft being large
in terms of the wavelength. The upper frequency limit is dictated
by the model representation of the actual aircraft considered.

B. Wing Mounted Antenna Analysis

In general, an antenna mounted near a number of flat plates and
an elliptic cylinder is even a more complicated scattering problem
than that of a number of flat plates alone as discussed in Chapter
III. Again, it is necessary to make a few good engineering assump-
tions about the problem in order to make it tractable. First it is
assumed, at present, that the antenna is mounted on or close to the
wing structure, and it is at least a small distance (greater than a
quarter wavelength) from the fuselage. This is done merely to reduce
the number of scattering mechanisms to be considered. An antenna
mounted on the fuselage needs a different treatment as was originally
shown in Reference [23]. When the antenna is mounted very close to
the fuselage neither solution is applicable in its present form.
The antenna is also assumed, at present, to be mounted away from
engines and external stores. If the antenna is mounted sufficiently
far from these objects, (i.e., the antenna is mounted on the top
portion of the wings) their effects will be negligible. If, however,
the antenna is mounted on the lower portion of the wing and is close to
an obstacle, the scattering effects of that object can be approximated
by using small flat plates or elliptic cylinders. This is not done in
the present analysis. It should also be possible to easily extend
the present solution to antennas mounted on the vertical or horizontal
stabilizers.
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(a) FRONT VIEW

(b) TOP VIEW

lc) SIDE VIEW

Figure 51--inustration of general aircraft model for wing
mounted antennas.
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The scattering mechanisms considered for this model include only
first and second order interaction terms with second order being mecha-
nisms like reflected-diffracted or diffracted-reflected fields. All
the scattering terms considered for the scattering from a number of
plates in Chapter III, Table II, and for the finite elliptic cylinder
in Chapter IV, Table III, have been included in this aircraft model.
They will not be repeated again. The additional interaction terms
that have been found to be important for the aircraft model are shown
in Table IV. Subscripts have been added in the notation of the field
to distinguish between interactions between the plate (pi.) and the
cylinder (cyl.). Note it is assumed that the wing on the opposite
side of the structure from the antenna does not contribute to the
scattered field. This is a valid assumption in that the surface ray
must propagate sufficiently far around the fuselage in order to
illuminate the other wing which implies the surface ray attenuates
a great deal. Thus, the field illuminating the opposite wing is
very weak as well as its scattered field. Also, the wing is as-
sumed to be mounted in the y-z plane, as illustrated in Figure 51,
that is at the symmetry point of the cylinder so that image theory
can be used to model the wing-cylinder junction. This can be modi"
fied by the use of curved wedge diffraction, if the wing must be
mounted at an angle. However, this does not appear to be necessary
for a practical representation of real aircraft configurations.

As mentioned before, it is important to shadow the fields properly.
This can be done by checking the incident ray paths and scattered
ray paths for all the interaction mechanisms using both the plate
and cylinder shadowing procedures outlined previously. Only those
fields that exist should be included in the total field, the shadowed
fields must be set to zero. This will help insure that significant
terms that are large enough to produce visible discontinuities in the
radiation pattern when neglected will be detectable. These higher
order terms can then be added to the pattern if they are practical
to obtain and are of engineering value in the final result.

Each of the scattered field terms that are to be included for
the aircraft model, as listed above, involve a scattering mechanism
in which one part of the structure acts as the source of the incident
field that illuminates a different part of the structure. The first
three scattering mechanisms listed above are simple to determine
because they involve reflections off the flat plates such that
image theory can be used. As a consequence, the various mechanisms
can be viewed as point sources radiating spherical waves originating
from their images. This means that the analyses carried out in the
previous chapters for the individual scattering terms are applicable
here. The procedure for obtaining these fields need not be re-
peated here. The last two scattered field terms in the list,
however, are-complicated by the fact that after the first interaction
with the structure, the incident field for the second interaction
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can not be viewed as a point source with a spherical wavefront.
These terms must be treated as a source that radiates a wave with two
radii of curvature. Consequently the new problems associated with
these two scattering mechanisms are considered in great detail.

SOURCE
LOCATION

(R j )

IMAGE
LOCATION

-jtll PLATE

Figure 52--Illustration of reflected field off the cylinder after
reflection by a plate.

The first scattering mechanism to be considered is the reflected
field of the cylinder after reflection from the jth plate. This
is illustrated in Figure 52. The reflected field of the cylinder
is given by Equation (69), where the origin of the incident field
is the image of the source (R-j) in the jth plate. The incident
field then is the reflected field of the jth plate in the direction
from the image to the reflection point of the cylinder and is
given by Equation (34), with FMQE) = K(0i ,q>^). The application
of Equations (37-39) to find the reflected fields of the jth plate
and the applications of Equations (70) and (71) to find the^
reflected fields off the cylinder in the scatter direction cl is a
straightforward extension of the above equations and need not be
discussed further here. The total field associated with this
scattering term is given by

rr

"Ft*

p

•J, (81)

where E. , (e.,<|>c) = 0 if it is shadowed in any way.
J 9 ̂ *Jr ' S S
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Figure 53--Illustration of transition field off the cylinder after
reflection by a plate.

The scattering mechanism to be considered next is the transition
field scattered by the cylinder after a reflection by the jth plate.
This is illustrated in Figure 53. The transition field of the
cylinder is given by Equation (76), and again the image of the
source in the jth plate can be viewed at the origin of the incident
field. The incident field for this term is then given by Equation
(34) which is the reflected field from the jth plate in the direction
from the image in the plate to the cylinder scatter point. The
cylinder scatter point in the lit region is the point of reflection,
and in the shadow region it is the tangent point. The necessary
equations for the reflected field from the jth plate are given in
Equations (37-39) and the necessary equations for the transition
field given in Equations (77a and b). Note that the shadowing
procedures determine if the transition field due to both the top
part of the cylinder and the bottom part of the cylinder need to
be included. The total field associated with this scattering
term is given by

,cw .
J.CCW

(82)
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The scatter terms associated with a reflection off the jth
plate after being reflected by the cylinder are illustrated in
Figure 54. The reflected field of the cylinder is found in the
direction obtained by imaging the scatter direction into the plate
using,

d = d - 2(n-d)n .

IMAGED
SCATTER \
DIRECTION \

IMAGE
REFLECTION

POINT

C

A
d

SCATTER
MRECTION

jl!l PLATE

SOURCE
LOCATION

Figure 54--I1lustration of reflected field off a plate after re-
flection by the cylinder.

This reflected field, given by Equations (69), is the incident
field on the plate such that
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The reflected field off the plate is then computed using Equations
(37-39) in the scatter direction. The field appears to be coming
from the images in the plate of the two caustics associated with
the reflected field off the cylinder. The total field for this
scattering term is given by

(83)
J~ I

The scattering mechanism that corresponds to a diffracted field
from an edge after a reflection off the cylinder is illustrated in
Figure 55. In order to find this field in a given scatter direction
d, the ray path that the field travels must be determined. This
path is governed by the laws of reflection off the cylinder surface
and the laws of diffraction along the edge.

The law of reflection on the cylinder can be written as given
in Equation (64) such that

(nxT) (iv ~r) + (rf-T)(nxr) =0. (84)

In this case the ray designated r is not known a priori. It is de-
pendent on the diffraction point on the edge. The diffraction
point, in turn, is also dependent on the reflection point. This
means that the above equation is non-linear. At present, there
does not appear to be a way to solve this problem in an exact
manner. The incremental method, based on a first order Taylor
series approximation, as developed for the reflection point off
an elliptic cylinder in Chapter IV may be employed here.

For a cylinder the laws of reflection as governed by Equation
(84), reduce to the two equations

f(v,z.6s,*s) = (nxIx
+nyIy)(nxVVx

)+(nxrx+nyry)(nxVnyIx)=

(85a)
and

g(v,z,9s,<j»s) Mnxlx+nyly)rz+(nxrx+nyry)lz=0. (85b)
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Figure 55--I1lustration of diffracted field off an edge after re-
flection by the cylinder. ,
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The normal to the cylinder is given by

"n(v) = nx(v)x + ny(v)y

or

n(v) = b cos v x + a sin v y .

The incident vector on the cylinder is given by

f(v,z) = Ix(v,z)x + I (v,z)y + Iz(v,z)z ,

Kv,z) = Rr(v,z) - Rs,

or

I(v,z) = (a cos v - xs)x + (b sin v-ys)y + (z<-z$)z

where Rr is the reflection point and Rs is the source location.
The reflected ray is given by the vector

F(v,z,es,<frs) = rxx +

or

F(v,z,9s,<t>s) = Rd - R

where R<j is the diffraction point on the mth edge and is given by

*d = ̂ "m + tptv.zje,,, + sp(v,z)

and

em

sp = lRr - S em

143



coteo = "m

Since r is dependent on v and z, Equations (85a and b) are not
separable and must be solved together. Expanding these two
equations in terms of a first order Taylor series gives

3f, 3f . 3f . 3f,
+ 3lT

3g
= g 6v

3g
6z

3g
6V

9g
0(6

Since from the laws of reflection

= 0

and since ses, 6<))S, Vj, z,-, fj and gj are assumed to be known
the above equations can be written in matrix form such that

~3f. 3f."
— 1 - — J.
3V 3Z

3g • 3g-_!1 _LL
_3V 3Z _

6V

6Z

3f. 3f.

-fi ̂  S9S - i?J 6*S

3g • 3g-
39 S ~ 3(() s

s s

This two by two matrix is easily solved to give

« v - l
9f

az -fj
9g

3Z 3(|)

'3f,-

3Z

, 3f/

3Z
(86a)
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52 -
s 9g. 3f.\ / a g . 9f. 9f. 8g.\
f. —J- - q . —J- +( —^ —^ d *L 6 0
J 9V y j 9V I \ 8V 89 8V 397 S

^ -/ V S S/

8g, 8f. 8f.

8V 8<t> 3v
>• S

(86b)

where

A =
8f. 8g. 8f, 3g
—J— J _ —JL —
8v 8z 8Z 8V

The partial derivatives are given by

8f. 81 8n 81n

8r an
r + n ' ^T rx - ny

8r
9 y x

9nx
9V rx + "x

9n
ry + ny

an 81 9n
+ (nD +nJ).,) { -^ I.+ n

8l
I. . - n.xx y y' \ 8v y x 8v 9v x y 9v

8f, ( 31.. 91
+ n
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9r. 9r

91 91

3fi
36

f ""v
Vy> nx 36

\ly ~ Vx>

with e =

9I 9n ^I

9r

97

!!!>
9V

9n 9r

(nxrx + n

ar.

99, / 91

9z . = n. rz + ("x'x + "v1^ air

9r

< Vx + n
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with 3 = e , <(» where

9n

= a cos v

91
T-̂ - = -a sin v

9Iv-r-*- = b cos v
ov

alz

9ct

with a = v, z

9R"
-̂ r-- -a sin v x + b cos v y
dv
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"3z

o - n
= _ B. p + —2- cot 6 ee COT; P_ .

3a 3a m 3a o m

3a 3a m

33 sp 33 em

with 3 = 9_»<t> s and

If
38

These equations can then be used to find 6y and 6z changes
associated with the reflection point on the cylinder surface due to
60S and 6<j>s changes in the scatter direction. The new reflection
point is found from the previous reflection point using

and
Vi = vj + 6V

Zj+1 = 2. + 6Z
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Once the reflection point on the cylinder is known the diffraction
point on the edge can, also, be determined.

Errors can be computed to see how accurately the values are de-
termined using

+ n
V1

V5es'*s'l"6*s

and

ed = em v- -•*•*

9
s
+6e

s»*s
+6*s

9s+6es

If the errors are not within a predetermined bound the interval
steps 6es and 6<(>s can be halved and the procedure repeated until
the desired scatter direction is obtained and the desired error
bounds are achieved.

A known starting location needs to be obtained for the first
computation of the incremental method. This can be found in this
instance by noting that the corner points of the edges are known
and in fact they provide definite bounds on the permissible range
for the reflection-diffraction path. With the corner points known,
as shown in Figure 56, Equations (85a and b) can be solved by means
of the polynomial solution technique derived in Chapter IV.

If the mth corner is given by
cm = v zcz

then

r = (xc-a cos v)x + (yc-b sin v)y + (z -z)z

with n and I defined above. These values are substituted into
Equation (85a) along with the fact that

a = ejv.
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Figure 56—Illustration of starting point for finding diffraction
point on an edge and the reflection point on the
cylinder for the reflection-diffraction problem.
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The equation is multiplied thru and like terms in a are collected so
that a sixth order polynomial is obtained given by

s* _ i _ P _ i _ P _i_ P * ^ _ i _ f * J_P • _L P AC6a L5a L4a L3a 4a Lla Lo T °

where

C6 = (a
2-b2)[a(yc+ys)+jb(xc+xs)]

= -2(a2+b2)(xsyc+ysxc)-j

C4 = a(5b
2-a2)(yc+ys) + jb(5a

2-b2)(X(,+xs)

= 4(a2-b2)(xsyc+ysxc)

= C| (complex conjugate of

= r*L5

The six roots of the polynomial correspond to v in that

Imv = tan Re44)(a)y .

The physically realizable value which is the true reflection point
is found by finding the v that minimizes the distance given by
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which is necessary to satisfy Fermat's principle. Using this
parameter (vr) representing the reflection point in the x-y plane,
the z-coordinate can be found from Equation (85b) to be

With the reflection point on the surface of the cylinder known
for a given corner on the mth edge, the vector f represents a bound
on the possible incident rays on the edge. The angle of the dif-
fracted cone of rays from the mth edge at the corner is given by

cos BQ = r - em .

One of the rays defined by this cone angle can be used as the
starting scatter direction for the incremental method. It is
defined by

r\ JN y\ /s

do ' era ' r ' em . <87>

and the fact that the closest ray on the cone to the initial
desired scatter direction d should^be chosen. In other words,
30 should be chosen to maximize d-d0 with the constraint that
30 • em = cos 30- This implies that the following equations need
to be solved

Q
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where

d = dxx + d v + dzz

dQ = cos<()0 sineQx + sin* sine y + cose z

e = ex + V + 'm x

This can be solved to give

dx + xex
cos*o = ~

±|(dx+Aex)
2+(dy+Aey)

2

sin*0 =

±jdx+xex)
2

+(dy+xey)
2

dz + xez

and

±s/(dx+Xex)2+(dy+Aey)2+(dz+xez):

o o)2 + (d — ^2
sineQ = •—-— X-

J(dxnex)
2

+(dyney)
2

+(dznez)
2

The parameter \ is found by substituting these equations into
Equation (87), which gives
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= -(d-ej ± (r-ej
m

M d - e 2

The signs are chosen such that d-d0 is maximized. This d0 and its
corresponding reflection point and diffraction point (corner point)
are used as the starting parameters in the incremental method.

Now that the reflection point and diffraction point are known
the field can be found. The reflected field off the elliptic
cylinder is in the form of Equation (2), where the distance from
the cylinder to the edge is finite. The diffracted field from the
edge is given by Equation (11), where the incident field on the
edge is the reflected field off the cylinder, and therefore, the
wavefront incident on the edge has two radii of curvature. This
field is given by

'1

where s is in the far-field and therefore

,-Jkd
e"jks g, e

j'k

The parameters needed to find the reflected field off the elliptic
cylinder are given in Equations (70a,b) and (71a-k) and the parameters
for the diffracted field associated with the edge are given by
Equations (45a-g) except for the distance parameter L and the
caustic distances. The incident field on the edge has two radii
of curvature as stated earlier such that the distance parameter
given in Equation (14) must be used where s-*°° or in other words

L =
P2

 S1"n £
i

pe

The incident radii of curvature at the edge are due to the radii
of curvature at the surface of the cylinder plus the distance
from the point of reflection to the diffraction point or
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S1

The caustic pi is the radius of curvature of the incident wave at
the edge in the plane of the edge and incident ray and is given
by Eulers Theorem [66], as

1 1 2 1 2
-^P = -^ cos a + -W- cos B .
Pe P] P2

The angles are defined by the edge and the principal directions of
the reflected wavefront such that

cos a = x![ - em

cos 3 = X~ • e .

The principal directions of the reflected wavefront are found from
Equations (7-9) given in Chapter II.

The total field for this scattering mechanism is the sum of all
the contributions from the edges, if they exist, and is given by

The scattering mechanism that corresponds to the reflected
field off the cylinder after being diffracted by an edge is il-
lustrated in Figure 57. The first step in finding the f^eld is
to determine its ray path for a given scatter direction d. In
this case the incident vector is dependent on the edge diffraction
point which in turn is dependent on the reflection point on the
cylinder. Again, the incremental method must be employed to
solve this non-linear problem.
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Figure 57--Illustration of reflected field off the cylinder after
diffraction by an edge.
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The laws of reflection for the reflection off the cylinder
require that the following equations be satisfied:

f(v,z,os,+s) = (nxlx+nyly)(nxdy-nydx)

and

+(nxdx+nydy)(nxly-nylx) = 0

g(v,z,9s,4>s) = (nxlx+nyly)dz+(nxdx+nydy)lz=0.

The functions f and g can be expanded in a first order Taylor
series and solved for 6v and 6z as was done previously in Equations
(86a and b). The answer is the same and does not need to be
repeated here. The partial derivatives in this case are given by

__i =[ —x i +n —x + _y_ j + _y_
av I av x x av av y y av

an
d

31 3n 31
nx 3 - -a Tx ' ny

an
dx + a/ dy

= (nvd -n d )f naz v"x y "y xM "x az "y az / v"x"x "y y'lx az "y az

af.- f ad.. ad\ ^ adx ad
" nw ̂ T~ )+ ("v̂ ""̂ )! "Y "a7~ + nv aA /

•/ "T 7 y */ V '•'TC •/ T̂ /S -^ \ S $y
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3f,
-r-̂ - = 0 (since sine dependence can be removed from this

s equation)

and

i = —* T +n —•*- + —•£• I + n —X- dz
3 V \3V XX 9V 3V V ny 8V J Z

/an 3n \ 31
+UT dx+ 3v* dyK + (nxdx+nydy

= nw -=* + n,, 3=*- dz + (n d+n d )3z I "x 3z "y 3z v x x y y' 3z

3d.. 3d.
Lz

3g. 3d / 3d 3d

Vx^y 3e~+nx^7 + ny 3 •
S b \ b S J

The definitions of n and d and their derivatives have_been given
before, however, the determination of I, 3l/3v, and 3I/3z need to
be derived.

The incident vector (for the ray incident on the cylinder) is
given by

T(v,z) = Rr(v,z) -Rd(v,z) (89)

where Rr is the reflection point and the edge diffraction point is
given by
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e
Rd(v,z) = Rp + sp 2 V (90)

7l-[I(v,z)-e]

This leads to the equation

|T| I = (Ir-R ) - P ̂ m em (91a)

and

ITI2=T.T = IR -R |2

r P1 / v 2 P i-(i.e)2 "

(91b)

Taking the dot product of Equation (91a) and em and then squaring
the equation gives

|T|2

m

m' ^* r p' mj p1-' r p' n

.
- 2 ' (92)
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Now, substituting Equation (91b) into Equation (92) then squaring
the equation again to remove the square root term, the equation
can be regrouped in the form

C2a + CQ = 0

where

em)

ci • -

co •

This can be solved using the quadratic formula solution and is
given by

(I = +
- d r r4 LQL2

2 C (93)

This can be used in Equations (90) to find the diffraction point
and hence in Equation (89) to find the incident vector. The signs
are chosen in Equation (93) to minimize the distance from the source
to the edge to the reflection point.

The derivatives of the incident vector are found next. The
normalized incident vector is given by

I =
I

M

so
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II
where B = v or z.

Now, from Equation (89) the partial derivative is given by

/3i 6 \SpJ9B ' 6mj

(94)

m
96 96

(95)

Substituting Equation (95) into Equation (94), gives

U-e,91 1 m'
1-(I .2 CKl-eJ-eJmj

(96)

Taking the dot product with respect to the edge vector em of
Equation (96) and then rearranging gives

II I
96 ' m

9R. 9R

w . I ,)
(97)

I +

Substituting Equation (97) into Equation (95) gives the solution
for the partial derivatives of the incident vector. These can be
used to find 6v and 6z and hence the reflection point and diffraction
point using the same prodecure discussed for the previous scattering
mechanism.

A known starting location for the first computation is found
next. This can be found by defining a fixed point on the cylinder
and from this define the diffraction point and scatter direction
d0 for this point. The best location to define a known point RQ
on the cylinder for this problem is a point on the end cap rim.
The diffraction point is given by
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R = R

where

ss+so

{Ro - m

ss =

so = |Ro • Rpo'

po em] em

This is illustrated in Figure 58. When the diffraction point is
found then the scatter direction can be found from the following
equations:

I =
Ro -

= tan
-1
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d0 = cos(|>sg sin esox + sin^soSinespy+cosOsoZ- This d0 and its
corresponding reflection point (R0) and diffraction point are used
as the starting parameters in the incremental method.

I

po
SOURCE

-T LOCATION

Figure SB—Illustration of starting point for finding diffraction
point on an edge and the reflection point on the
cylinder for the diffraction-reflection problem.

Once the reflection point and diffraction points are determined
the field can be found. The diffracted field of the edge is in the
form of Equation (11), where the distance from the edge to the
cylinder is finite. The reflected field of the cylinder is given
by Equation (2), where the incident field on the cylinder is the
diffracted field from the edge. This incident field has two
principal radii of curvature. The diffracted-reflected field is
given by
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fdr
Ej,m,cyl

where s is in the far field and therefore

e-jks ^ jk R r -d e-jkd
___= e —j— _

The parameters needed to find the diffracted field from an edge
are given in Equations (45a-g), except the distance parameter needed
here is in the near field and is given by

c'c"
L = nr

where s1 is the distance from the source to the diffraction point
and s" is the distance from the diffraction point to the reflection
point. The parameters for the reflected field are given in
Equations (71a-k) except the incident field has two radii of curvature
so the reflection caustic distances need to be found from Equation
(5) with R-*0 which is given by

21 i ' i J ' - a,2 I R,
2 ^ p l P 2 ^ " I ^

4 cose1 /922-612V 4 cosV~ ~

where
i *p, = s", in the principal direction <j>

PP = s"+s', in the principal direction e .

The parameter cose1 is found in Equation (71c), R, in Equation
(71 b), and e.., |e|in Equations (6a and b).
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The total field for this scattering mechanism is the sum of
all the contributions from the edges if they exist and is given by

P M.

''- <98>

The total field for the aircraft model is the sum of all the
scattered fields^ from the finite plates, listed in Table II,
represented by Ep-j; from the finite elliptic cylinder, listed in
Table III, represented by Eryl > anc' ̂ rom the plate-cylinder inter-
action terms, listed in Table IV. This total field can therefore
be written as

Epl + Ecyl

+ r + r
cyl-pl bcyl-pl hpl-cyl

TABLE IV

SCATTERED FIELDS INCLUDED INVOLVING PLATE-CYLINDER INTERACTIONS

Symbol Description Figure Equation

1) EjT , Reflected field off the 52 81
p ~ y cylinder after reflection

by a plate

2) Ej)i_cvl Transition field off the 53 82
p ~ y cylinder after reflection

by a plate

3) ^i ni Reflected field off a 54 83
cyi~pl plate after reflection

by the cylinder

4) ELyi.jji Diffracted field off an 55 88
y ~p edge after reflection

by the cylinder
(iy,

5) ETi_cvl Reflected field off the 57 98
p ~ y cylinder after diffraction

by an edge
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This result, then, includes the principal contributors to the
scattered fields from the finite plates, finite elliptic cylinder,
and plate-cylinder interaction terms. They have been found by
first tracing the ray paths for a given scatter direction, then
testing these ray paths to see whether or not the fields are
shadowed by any obstacle along the ray path. The non-shadowed
fields are then computed using geometrical optics and/or the
geometrical theory of diffraction and superimposed to give the
total field.

To illustrate the effects that some of these scattering mech-
anisms have on the radiation pattern of an antenna mounted near a
plate-cylinder structure, a simple model consisting of a flat
plate attached to a finite elliptic cylinder in the y-z plane,
as shown in Figure 59, is studied. The elevation plane (x-z
plane) radiation pattern for an infinitesimal slot mounted parallel
to the y-axis is shown in Figure 60a. The cylinder has little
effect on the radiation pattern in this plane. The roll plane
(x-y plane) radiation pattern for the same source is shown in
Figure 60b. The need for a corner diffraction term is shown by
the discontinuity in the right side of the backlobe of the pattern.
The result using the recently developed corner diffraction term is
shown as the dotted line in the same figure. The discontinuity in
the left side of the backlobe is due to shadowing by the cylinder.
The mechanism to compensate for this discontinuity has not been
studied at this time, but it will have only a small effect other
than the discontinuity. The roll plane radiation pattern for an
infinitesimal slot located parallel to the z-axis is shown in
Figure 60c. The lack of a reflected-diffracted term is apparent
by the large discontinuity in the solid line at <}> = 90°. The
smoothing out of the discontinuity by including the reflected-
diffracted term is shown by the dotted line. Even for this
simple structure the interactions between the different parts are
apparent in their area of greatest influence. The way that the
6TD compensates for these discontinuities, however, is also quite
apparent. This is useful to keep in mind as the structures become
more complicated, and consequently, the interaction terms become
more involved and less practical to include in the solution.

To test the validity of the approximations involved in the finite
elliptic cylinder aircraft model, an experimental model that
resembles the computer model was built and tested. The model
consisted of a finite cylinder with two flat plates resembling
wings as shown in the insert of Figure 61. The comparison of
calculated and measured results for the roll plane radiation
pattern is shown in Figure 61. The overall agreement between the
two results is very good, even down to some of the small back-
lobes. The disagreement at <p -90° is due to the lack of a
diffracted-reflected-diffracted term. This third-order term
is hard to calculate and seems to be important only in this
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Figure 59--Geometry of a preliminary model
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RELATIVE POWER (dB)

Figure 60a--Elevation plane radiation pattern (£9) of small slot
mounted parallel to y-axis on plate.

168



— 30— -20 —10
RELATIVE POWER dB

CORNER
PROBLEM

SHADOWING
BY FUSELAGE

WITHOUT CORNER TERM
WITH CORNER TERM

Figure 60b--Ro11 plane radiation pattern (Ee) of small slot
mounted parallel to y-axis on plate, showing
effect of corner diffraction term.
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Figure 60c—Roll plane radiation pattern (E^) of small slot
mounted parallel to z-axis on plate, showing
effect of reflected-diffracted term.
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particular pattern cut. Therefore, it does not seem necessary to
include this term at this time. The discontinuity at <j> = 120° is
due to some higher order terms involving the second wing which
is not included. Again, these do not appear to be of engineering
significance so they have been left out of the solution. This
comparison indicates that the theory can predict patterns for
simple structures resembling the analytic model.

It is interesting, at this point, to compare the results in
Figure 61 with the flat plate computer representation of the
simple aircraft model as shown in the insert to Figure 62. This
emphasizes the difficulties involved in representing a smooth
convex surface by a flat plate as was previously used for the F-4
aircraft in Figures 33a-f. The radiation pattern for the flat
plate version of the simple aircraft model is shown in Figure 62.
The major features of the patterns are quite different. This is
simply due to the fact that the specular reflection off the flat
plate does not adequately approximate the specular reflection off
of the cylinder as might be expected. This flat plate model can
then be expected only to give a crude approximation to an aircraft
only if the curved surfaces are not strongly illuminated.

The next question that needs to be resolved is how well does the
finite elliptic cylinder model predict the radiation patterns of
antennas mounted on real aircraft shapes. The finite elliptic
cylinder aircraft model has been used to compute some of the
patterns that were measured at NWC using a single slot on the wing
of the F-4 scale model as discussed in Chapter III. The geometry
of this theoretical model is shown in Figure 63. The dimensions
for the model are listed in Table V. The antenna locations are
shown in Figure 32. A comparison of the measured and calculated
radiation patterns for the main beam elevation plane for the slot
at location #2 (refer to Figure 31 a) is shown in Figure 64a. This
result can be compared with the flat plate result that was used to
crudely model the aircraft in Figure 33a. Note that the ripple
level, in the region $ = 60° to 150° , due to the reflections off
the fuselage has been improved as expected. The same problem
of comparing near field measured results and far field computed
results still exists in all these patterns. However, a few of the
results for the various cases will be shown here for illustrative
purposes. In each case, Figures 31a-d show the aircraft pattern
orientation. The polarization of the received signal is computed
in the same way the measurements were taken, that is, with the
probe aligned with the antenna to give the dominant polarization.
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ANTENNA

Figure 61—Comparison of measured and calculated results for
the roll plane radiation pattern (E<j,) of a simple
aircraft model with a short monopole mounted on
its wing, (freq = 10.87 GHz).
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Figure 62--Roll plane radiation pattern (E<j,) of a flat plate
representation of the simple aircraft model with
a short monopole mounted on its wing.
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(a) FRONT VIEW

3 2

(b) TOP VIEW !Y

(C) SIDE VIEW

Figure 63--Illustration of geometry of F-4 aircraft model used
in finite elliptic cylinder model.
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TABLE V

DIMENSIONS FOR FINITE ELLIPTIC CYLINDER MODEL OF F-4

All Dimensions in Inches for Full Scale Model

ATop ' 87'
A = 1QMBottom iy>

B = 54.

End Cap Nose

ZEnd Cap Tail = 26.6,

Fuselage

= 20

Corner

1
2
3
4

Corner

1
2
3
4
5

Mings

Plate 1

X

0.
0.
0.
0.

Plate 2

X

0.
0.

19.7
19.7
0.

Y

54.
166.2
166.2
54.

Y

166.2
166.2
228.7
228.7
166.2

Z

-228.
- 86.2
32.8
0.

Z

- 86.2
- 96.2

0.
53.4
32.8
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Corner

1
2
3
4

Corner

1
2
3
4
5

Corner

1
2
3
4

Source

X

0.
0.
0.
0.

0.
19.
19.
0.
0.

87.
149.9
154.3
87.

TABLE V cont.

Plate 3

Plate 4

Plate 5

-54.
-166.2
-166.2
-54.

-166.2
.7
,7

-228.
-228.
-166.2
-166.2

0.
0.
0.
0.

Source Coordinates

0.
32.8

-86.2
-228.

32.8
53.4
0.

-96.2
-86.2

205.1
197.3
153.1

11.4

1
2
3
4
5

5.14
0.00001
0.00001
0.00001
0.00001

182.5
149.1
126.3
150.3
111.

-36.91
-73.6

-102.5
-4.6

-74.1
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The comparison of the main beam elevation plane pattern with
a slot antenna at location #4 is shown in Figure 64b. This result
can be compared with Figure 33b. The pattern in the main beam roll
plane (Figure 31c) for a slot antenna at location #2 is shown in
Figure 64c and compares with Figure 33c. The elevation plane
pattern (Figure 31b) for a slot antenna at location #2 is shown in
Figure 64d and compares with Figure 33d. Its roll plane pattern
(Figure 31 a) is shown in Figure 64e and compares with Figure 33e.
The roll plane result especially emphasizes the specular reflection
off the fuselages curved surface. The elevation plane result for
a slot antenna oriented such that its maximum radiation points
aft of. the aircraft at location #5 is shown in Figure 64f and
compares with Figure 33f.

In all of the above results, the major characteristics of the
patterns do show some agreement. In this model the horizontal
stabilizers have little effect so they are neglected for this problem.
Some higher interaction terms that were not included are significant
in small angular regions in some of the various pattern cuts; how-
ever, it is not deemed feasible to include them at this time.

In order to further test the finite elliptic cylinder model's
ability to predict radiation patterns of antennas mounted on the
wings of real aircraft, pattern measurements of a slot antenna
mounted on the wing of a 1/20 scale model of a Boeing 737 were taken
at NASA (Hampton, Va.). The geometry of the finite elliptic
cylinder model of the Boeing 737 is shown in Figure 65. The
dimensions used for this model are given in Table VI with a fre-
quency of 1.75 GHz, which corresponds to 35 GHz for the scale model.
The source is a Ka band waveguide mounted parallel to the y-axis
in Figure 65 with the location given in Table VI. The patterns
are presented with respect to the coordinate system in Figure 66.
The EQ' radiation patterns are shown in Figures 67a-e for patterns
cut at angles $' = 0° to $' = 150° in steps of 30°, respectively.
The patterns have been normalized to the maximum of the pattern
in the <f>' = 0° cut. The pattern at <j>' = 90° has not been shown
since for this pattern cut the amplitude of the Ee' polarized
field is below -30 dB which is in the noise region for the meas-
ured pattern. In all of the patterns shown, the finite elliptic
cylinder model tends to predict very well the frequency and level
of the ripple in the patterns in most regions. Some of the dis-
crepancies can be attributed to the following reasons. The high
frequency of the ripple in the patterns means that any misalignment
in the experimental measurements could cause shifts in the actual
placement of the peaks and nulls. Also, the support structure
appears to cause some scattering in the e' = 150° to 210° region
in all the patterns. The measurements in the $' = 30° and <j»' = 150°
pattern cuts in the e1 = -90° and e' = 90° regions have pointed
out that the nose and tail configurations of the finite elliptic
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cylinder model are not completely adequate to predict all the
detail accurately. However, the discrepencies do not appear to be
severe.

Overall, the agreement between the calculated and (NWC and
NASA) measured results appears to be good for engineering appli-
cations. They both point out that the fuselage can strongly
effect the patterns of antennas mounted on the wings of aircraft.
In particular the reflections off the fuselage and other higher
order interactions tend to cause a lot of ripple in the patterns.
This can be detrimental to system performance in many instances.
However, if the antennas are made directive such that they do not
illuminate the fuselage strongly and the antenna locations are chosen
judiciously the ill effects of the fuselage and other scatters can
be minimized. Thus using this numerical solution, the antenna
designer can begin to consider antenna locations on the aircraft
wing without having to make numerous scale model measurements.

As a practical example of how the finite elliptic cylinder
model can be used to solve an aircraft antenna design problem, the
design of an antenna system to give coverage in the aft reqion of
an F-4 aircraft for quadrant detection at UHF, as undertaken in
Reference [33],is briefly discussed. Classical array analysis was
used to find the element spacing, scan angle, and distribution of
a two-element array to obtain a desired pattern shape above the
wing. The array was then located on the wing using the finite
elliptic cylinder model to optimize the antenna pattern. The optimum
location was found to be at location #2 of Figure 32 with the array
being mounted at 45° with respect to the fuselage. The volumetric
pattern predicted for this antenna system on the F-4 is plotted in
Figure 68 in terms of its directive gain with respect to the co-
ordinate system in Figure 66. The desired region of coverage is shown
as the rectangular box in the figure. The directivity, which is the
maximum directive gain, for the antenna system in place on the
aircraft was determined to be 12.3 dB. The directive gain is
plotted in Figure 68 using different colors to represent the
different gain levels. Each change in color represents a 5 dB window
showing regions of farther reduction in the gain. The volumetric
pattern shows that the two-element array design does a realistic
job of approximating the desired objectives. Other optimum
antenna designs can be accomplished in a similar efficient
manner on a digital computer using the finite elliptic cylinder
model and then tested experimentally to verify the findings.
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Figure 64a--Comparison of NWC measured results on an F-4 model
with the finite elliptic cylinder model results of
main beam elevation plane radiation pattern for
antenna location'#2.
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Figure 64b--Comparison of measured and calculated results of
main beam elevation plane pattern for antenna
location #4.
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Figure 64c--Comparison of measured and calculated results of
main roll plane pattern for antenna location #2.
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Figure 64d—Comparison of measured and calculated results of
elevation plane pattern for antenna location #2.

182



2O —10
POWER (<JB)

——— MEASURED

Figure 64e—Comparison of measured and calculated results of
roll plane pattern for antenna location #2.
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Figure 64f—Comparison of measured and calculated results of
of elevation plane pattern for antenna location
#5 with the slot pointed straight aft of aircraft.
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(a) FRONT VIEW

74.7 "J

(b) TOP VIEW

104. r-i

(c) SIDE VIEW

Figure 65—Illustration of geometry of Beoing 737 aircraft model
used in finite elliptic cylinder model.
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TABLE VI

DIMENSIONS FOR FINITE ELLIPTIC CYLINDER MODEL OF BOEING 737

All Dimensions in Inches for Full Scale Model

ABottom = 54-3

B = 74.7

7
end cap nose

end cap total

Corner

1
2
3
4
5

Corner

1
2
3
4
5

Corner

1
2
3
4

Source
1

Fuselage

570.5, enose = 90°

260.4, etail = 20°

Wings

Plate 1

X

0.
0.
0.
0.
0.

Plate 2

X

0.
0.
0.
0.
0.

Plate 3

X

104.1
344.1
344.1
104.1

Source Coordinates

X

0.000001

Y

74.7
547.9
547.9
203.8

74.7

Y

-74.7
-203.8
-547.9
-547.9
-74.7

Y

0.
0.
0.
0.

Y

312.4

Z

-212.8
40.8
95.1
0.
0.

Z

0.
0.

95.1
40.8

-212.8

Z

448.3
516.2
443.7
235.5

Z

-45.3
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Figure 66—Coordinate system used for volumetric patterns,
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MEASURED

Figure 67a--Comparison of NASA's measured Eei results on a
Boeing 737 model with the finite elliptic cylinder
model results at <j>' = 0.
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MEASURED

Figure 67b--Comparison of measured and calculated E f l ' results
for <!>'= 30°.
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MEASURED

Figure 67c--Comparison of measured and calculated E0' results
.for (J)1 = 60°.
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MEASURED

Figure 67d--Companson of measured and calculated E0> results
for <J>' = 120°.
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MEASURED

Figure 67e--Comparison of measured and calculated £Q> results
for <f>' = 150°.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

The object of this research has been to analyze radiation
patterns for aircraft wing mounted antennas. This is an
analytical study of basic antenna types for frequencies above about
100 megahertz in which the antenna is mounted on or near a wing.
The aircraft is modelled in its most basic form so that the study
is applicable to general-type aircraft. The fuselage is modelled as
a perfectly conducting finite elliptic cylinder. The wings and
horizontal and vertical stabilizers are modelled as perfectly con-
ducting "n" sided flat plates that can be arbitrarily attached to the
fuselage or to themselves. Presently, the antenna locations are
assumed to be on the upper surfaces of the wings or at locations
removed from engines and stores such that these effects are negligible.
The theory, however, is applicable to the addition of engine and
store effects by modelling these structures as flat plates or small
finite elliptic cylinders.

The basic approach applied in this study has been to separately
analyze the basic scattering shapes making up the computer simu-
lation model of an aircraft. The single structures are analyzed
using the ray optics approach such that only the dominant effects
are included. The scattered fields of the various component parts
of the structure are found using the Geometrical Theory of Diffraction.
The basic solutions needed for this study were briefly discussed in
Chapter II. This includes the geometrical optics reflected fields
from curved surfaces, the diffraction by a wedge and curved wedge,
and the slope diffraction by a wedge using arbitrarily oriented
dipole moment sources. A heuristic corner diffraction coefficient
was, also, introduced. Curved surface diffraction was presented
along with a newly developed transition function which describe
the scattered field behavior around the shadow boundaries of
curved surfaces.

The scattering from a number of finite flat was discussed
in Chapter III. The plates can have an arbitrary orientation
in space and can be attached to form bent plates. The present
solution is restricted in that only first and second order terms
are included except for double diffraction which is normally neg~
ligible. This solution is useful for antennas mounted near a flat
plate, corner reflectors, and even a crude flat plate aircraft.
These plates are used to model wings and horizontal and vertical
stabilizers on the finite elliptic cylinder model of an aircraft.
They can, also, be used to model other scattering objects such
as buildings or ships with some modification.
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The scattering from a finite elliptic cylinder was discussed
in Chapter IV. The end caps of the cylinder can form an angle with
the cylinder axis. The scattered fields are found using geomerical
optics, the Geometrical Theory of Diffraction and a curved surface
transition function. The validity of the solution was shown by
comparing the results against exact and moment method solutions
and experimental results. The finite elliptic cylinder is used to
model the fuselage of an aircraft and can be used to model engines
and stores. The solution can also be used to model other objects
such as ship masts or hulls.

The combination of the above scattering objects to form a
general-type aircraft model is discussed in Chapter V. Measured
results for a simple aircraft-like model that resembles the finite
elliptic cylinder model verified the approximations in the
theoretical solutions. Measurements taken at NWC and NASA on
actual aircraft models verified the usefulness of the finite
elliptic cylinder model in predicting the radiation patterns for
wing-mounted antennas.

In general, the results show that an antenna mounted on a
wing can interact strongly with the fuselage and wings causing
large amounts of ripple in the pattern. This suggests that proper
element design especially directive antennas that do not illuminate
the fuselage strongly, and proper placement of the antenna on the
wings.to minimize the interference problems are important con-
siderations that must be taken into account when designing wing
mounted antenna systems. The finite elliptic cylinder model
should prove to be a very useful tool to an antenna designer in
anticipating these problems in a very economical and efficient
manner. The computer code used to generate a pattern for one
antenna element typically takes only 30 seconds or less on
an IBM 370 digital computer.

A brief discussion of a practical antenna design problem is
presented to show the usefulness of the finite elliptic cylinder
model. The model was used to optimize the design of a quadrant
detection antenna mounted on the wing of an F-4 aircraft. A
volumetric pattern of the predicted antenna systems performances
illustrated how closely the antenna design can come to the ideal
characteristics of a quadrant detection antenna.

The versatility of the present solution can be increased
in many ways. The engine and store effects can be added to the
aircraft model by using small finite elliptic cylinders or plates
to represent these objects. The comparisons of model measurements
with the finite elliptic cylinder have indicated that the nose
and tail representation are not always adequate in some small
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angular regions. This could be improved by including equivalent
currents to remove caustic effects and perhaps by alternative
representations of the nose and tail. The solution can also be
extended to allow the analysis of tail mounted antennas.
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