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SYMBOLS

blade structure cross-section area, m?

modal integrals, equations (77)

notation for writing the kinetic energy in a concise form,
equation (11)

airfoll left curve slope, 2n/rad

number of blades

modal damping matrix, equation (76)
Theodorsen's function

cosine ( )

blade chord, m

airfoil profile drag coefficient

airfoil profile drag per unit length, equation (33), N/m .
Young's modulus, N/m?

torque offset, figure 2, m

blade root offset, figure 2, m

vector of external forces per unit length, N/m
shear modulus, N/m?

modal gyroscopic matrix, equation (84)

vertical displacement of two-dimensional airfoil sectiom,
normal to free-stream velocity component V, figure 6, m

identity matrix

blade structure cross-section area moments at inertia
about the y' and z' axes, respectively, m"
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M]
[Mg]

orthogonal unit vector systems, equations (4)

torsional stiffness constant, m"
modal stiffness matrix, equation (76)

modal stiffness matrix for free vibration about the equilib-
rium operating condition, equation (84)

blade cross-section polar radius of gyration, m
blade cross-section mass radius of gyration, m
principal mass radii of gyration, m

torsional root spring constant, N-m/rad

aerodynamic 1ift per unit length, equation (29), N/m

generalized aerodynamic forces per unit length, equa-
tions (47)-(49), N/m

blade length, R - e;, m

number of rotating coupled modes; also, aerodynamic pitching
moment per unit length, equation (29), N-m/m

vector of external moments per unit length, N-m/m

bending moments at blade root due to v and w deflections,
respectively, equation (13), N-m

generalized aerodynamic moments per unit length, equa-
tions (50) and (51), N-m/m; also twisting moments at blade
root due to ¢ and ¢ deflections, respectively, equa-
tion (13), N-m

modal mass matrix, equation (76)

symmetric part of nodal mass matrix, equation (84)

blade mass per unit length, kg/m

iv



[P], [P*]

Q
R
!

(vl

UP ’ UT

U,V,w

VyaWy

vi
{x}

Xy¥Ys2

number of nonrotating modes for each of the elastic torsion, flap
bending, and lead-lag bending deflections

matrices whose eigenvalues determine stability, equations (83)
and (88) :

dimensionless pitch-link stiffness, equation (63)
blade radius, m
flap-lag structural coupling parameter

aerodynamic force per unit length tangent to blale airfoil
chordline, figure 7, N/m

sine ( )

blade tension, equation (1f), N; also aerodynamic force per unit
length normal to blade airfoil chordline, figure 7, N/m

deformed blade coordinate transformation matrix, equation (8)
kinetic energy, equation (9), kg-m?/sec?
time, sec

blade airfoil velocity with respect to the fluid, component
normal to spanwise x' axis, equations (31), figure 6, m/sec

matrix of eigenvectors for free vibration of blade about its
equilibrium position, equation (86)

velocity components of blade airfoil section with respect to the
fluid, parallel to the z' and y' axes, respectively,
figure 6, m/sec

displacements of the blade elastic axis parallel to the I. ], f,
unit vectors, figure 5, m

free-stream velocity component of two-dimensional airfoil,
figure 6, m/sec

velocity of a point in the blade, equations (7) and (44), m/sec
lead-lag and flap bending generalized coordinates, equations (65)
induced downwash velocity, equation (52), m/sec

column vector of modal generalized coordinates, equation (74)

coordinate i’ ti- for the undeformed blade, parallel to the unit
vectors .}, s M
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coordinates of a generic point on the blade in the x,y,z system,
equation (8), m

deformed blade coordinate system along the unit vectors 1',7',k’,
m

column vector of equilibrium equations, equation (78)
modal constants, equation (66)

blade droop angle, positive down, figure 2, rad
blade precone angle, positive up, figure 2, rad

ch + Csseo - Bdceo' rad

Csszeo T Bdczeo’ rad

3pach

» Lock number for a blade with uniform mass distribution
and no blade root offset (ej=0, £=R). For e;#0 Lock

R"._e L
mber &
SR l"—,,r‘—)-
1

(1 -3)
Kronecker delta
vector of virtual displacements, m
virtual work of nonconservative forces, N-m
vector of virtual rotations, rad
small parameter of the order of bending slopes; also, airfoil

section pitch angle with respect to free-stream velocity,

figure 6, rad
blade cross section principal axes coordinates, m
blade sweep; figure 2, rad
C,Ceo + sdseo. rad
C.Czeo - Bdszeo- rad
nonrotating torsional mode shape, equations (66)
pretwist (built-in twist) angle, rad
twist parameter, ept = -Otﬁ, rad

blade pitch angle at the blade root, figure 4, rad
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dimensionless torsional rigidity, equation (63)
warp function, m?
dimensionless bending stiffnesses, equation (63)
blade structural demsity, kg/m?
air density, kg/m?

be

solidity R

dimensionless tension, equation (54)
rcot torsion angle, figure 4, rad
torsion generalized coordinate, equations (65)

elastic torsion deflection, figure 5, rad
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nonrotating flap and lead~lag bending mode shapes, equation (66)

dimensionless time, Qt

rotor blade angular velocity, rad/sec

vector rotation of blade structure at any point on the elastic

axis, equation (44), rad/sec

) )
;1 (or F in dimensionless equations)

é% (or-g% in dimensionless equations)

equilibrium and perturbation components of generalized

coordinates
circulatory aerodynamic term

noncirculatory aerodynamic term

length quantity made dimensionless by £, or velocity made

dimensionless by 0L
transpose of a square matrix

transpose of a row matrix
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NONLINEAR EQUATIONS OF MOTION FOR CANTILEVER ROTOR BIADES IN HOVER
WITH PITCH LINK FLEXIBILITY, TWIST, PRECONE, DROOP,
SWEEP, TORQUE OFFSET, AND BLADE ROOT OFFSET
Dewey H. Hodges*

Ames Research Center
and
Ames Directorate
U.S. Army Air Mobility R&D Laboratory

SUMMARY

Nonlinear equations of motion for a cantilever rotor blade are derived
for the hovering flight condition. The blade is assumed to have twist, pre-
cone, droop, sweep, torque offset and blade root offset, and the c¢lastic axis
and the axes of center of mass, tension, and aerodynamic center coincident at
the quarter chord. The blade is cantilevered in bending, but has a torsi nal °
root spring to simulate pitch-link flexibility. Aerodynamic forces acting on
the blade are derived from strip theory based on quasi-steady two-dimensional
airfoil theory. The equations are hybrid, consisting of one integro-
differential equation for root torsion and three integro-partial differential
equations for flatwise and chordwise bending and elastic torsion. The equa-
tions are specialized for a uniform blade and reduced to nonlinear ordinary
differential equations by Galerkin's method. They are linearized for small
perturbation motions about the equilibrium operating zondition. Modal analy-
ris leads to formulation of a standard eigenvalue problem where the elements
of the stability matrix depend on the solution of the equilibrium equations.
Two different forms of the root torsion equation are derived that yield vir-
tually identical results. This provides a reasonable check for the accuracy
of the equations. '

INTRODUCTION

The general problem of helicopter aercelastic stability involves coupling
between the motion of the individual blades and coupling between the rotor and
the body of the helicopter. The complexity of the general problem poses a con~
siderable challenge to the analyst, both in developing an analytical model of
the system and in understauding its physical behavior. An important part of
the general rotor-body dynamic system is the single blade rotating about an
axis fixed in space. For many protlems of practical interast, blade-to-blade
and rotor-body couplings are not significant and the analysis of a single
rotor blade constitutes an important problem by itself. Even when coupling
with other blades and the body is significant, single blade behavior usually
remains recognizable and can be helpful in understanding the behavior of the
more complete system. For this reason, the dynamics of a single blade forms
an important fundamental building block in the study of helicopter dynamics,

*Ames Directorate, U.S. Army Air Mobility R&D Laboratory
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helicopter rotors with cantilever blades are commonly termed "hingeless
rotors.” In contrast with the more conventional articulated rotor, the canti-
lever blades of the hingeless rotor are attached directly to the hub without
flap or lead-lag hinges. This configuration reduces mechanical complexity and
improves helicopter flying qualities by increasing rotor control power and
angular rate damping. The lack of hinge articulation also alters the struc-
tural characteristics of the rotor blade and can significantly influence
aeroelastic stability.

Aerceluastic instability is possible because of the structural coupling
between bending and t~rsion deflections of cantilever blades. This type of
instability is usually characterized by coupled flap bending, lead-lag bending
and torsion deflections with a frequency near the lead-lag bending natural fre-
quency. The structural coupling of cantilever blades is significantly depend-
ent on the specific configuration parameters of the rotor blade, and the
magnitude and variability of this coupling make the analysis of cantilever
rotor blades an important and complex subject.

A comprehensive study of hingeless rotor stability is a formidable task
because of the many important configuracion par-meturs. The cantilever blade
structure treated here is shown in figure 1. The elastic blade can be rotated
about the pitch change bearing by vertical movement of the pitch link from the
swashplate controls. Pitch-link flexibility, represented by a spring element,
will permit rigid body pitching motion of the blade (i.e., root torsion). Cer-
tain small offsets of the blade axis are often provided to reduce steady blade-
bending stresses, to improve rotorcraft flying qualities, or to enhance rotor
blade aeroelastic stability. Five »>f these offsets are considered in this
report: precone, droop, sweep, torque offset, and blade root offset. Precone
is the inclination of the pitch change bearing with respect to the plane of
rotation (positive upward). Droop is an inclination (positive downward at
zero pitch angle) of the blade segment outboard of the pitch change bearing.
Sweep is a rotation of the blade in the plane of rotation (at zero pitch angle)
about the blade root, positive in the direction of blade rotation. Torque
offset is a lateral shift of the blade in the plane of rotation (positive in
the direction of blade rotation). The blade root offset is the distance
between the center of rotation and the root of the blade. These parameters
dre i'lustrated in figure 2.

The equations of motion developed in this report are an extension of the
previous nonlinear equations of Hodges and Dowell (ref. 1) which treated a
general nonuniform, twisted, torsionally elastic cantilever blade. The configu-
ration of reference 1 included precone as well as chordwise offsets of the
blade section mass center, tension center and elastic axes. The present con-
figuration does not include offsets between the chordwise axes but does
include the additional configuration parameters: droop, sweep, pretwist,
torque offset, hub offset, and pitch-link flexibility. For additional back-
ground discussion of the aeroelastic stability of hingeless rotor blades, and
a discussion of recent pertinent research, the reader is refeivred to
reference 2.

The equations of motion are derived from Hamilton's principle. First,
the structural terms are adapted from reference 1; the inertial terms are then
formulated from the kinetic energy. Blade aerodynamic loads are developed in
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a way similar to that in reference 2 using strip theory and quasi-steady
two-dimensional airfoil theory. The resulting hybrid equations are then spe-~
cjalized for a uniform blade. The three nonlinear integro-partial differential
equations and one integro-differential equation are transformed into 3N + 1
nonlinear ordinary differential equations by Galerkin's method, where N is
the total number of mode shapes for each of the elastic torsion, lead-lag, and
flap deflections., When these equations are linearized about the equilibrium
operating condition, two sets of equations result. The equilibrium deflection
is specified by 3N + 1 nonlinear algebraic equations and the stability of
small perturbation motions about equilibrcium is determined by a set of 3N + 1
homogeneous linear ordinary differential equations with constant coefficients
that depend on the solution of the equilibrium equations. Preliminary calcula-
tions fo stability are presented in reference 3 which treats the effects of
twist, picch~link flexibility, precone, and droop.

Technical discussions with Dr. Robert A. Ormiston and checking of the
entire derlvation by Dr. Donald L. Kunz are gratefully acknowledged.

DERIVATION OF THE EQUATIONS OF MOTION

In this section we consider a blade for which the structural, inertial,
and aerodynamic properties may be treated independently. Here we assume that
the cross section structur-! and inertial properties are doubly symmetric with
respect to the blade cross section principal axes. The bhlade, shown schemati~-
cally in figure 3, rotates at constant angular velocity Q about the f, axis
fixed in space. The derivation of the equations of motion is fundamentally the
same regardless of the assumption of double symmetry of the blade structural
cross section. The aerodynamic center of the blade is assumed to be at the
quarter chord and coincident with the blade elastic axis. The deformed blade
position may be described in terms of several coordinate system rotations, the
sequence of which is precone B8,., pitch (8, prescribed and &(t) restrained
by the pitch-link stiffness kg, as shown in fig. 4), sweep (g, droop B4,
and the blade elastic deformations u, v, w, and ¢. The blade bending deglec-
tion coordinates v and w are defined parallel to and fixed to the blade
principal axes at the blade root as pictured in figure 5 (along j and k in
fig. 3). Also shown in figure 5 are the axial deflection u and the blade
elastic torsion deformation ¢. This notation is a slight modification from
that of reference 1 where v and w were parallel to the horizontal and verti-
cal planes, respectively. The prerent scheme is more convenient when assumed
modes are used since the vertical and horizontal deflections are functions of
precone, droop, sweep, torque offset, and the total root pitch angle (6, + ¢)
as well as the blade elastic deflections.

Structural Terms

In this section the structural terms are written rfor a blade with arbi-
trary radial distribution of stiffness properties. These terms are taken
directly from the final equations of reference 1. The parameters e, B)*,
and C;*, defined in reference 1, are set equal to zero because of the double
symmetry of the cross section assumed here. These terms were derived from

3



integrating the variation of the strain energy by parts and collecting the
coefficients of &u, 8v, 8w, and 6). For the coordinate system of this report
we must let © in the equations of reference 1 represent the b. .ude pretwist
angle epc, defined to be zero at the blade root. We also assume that 6,, is
a small angle, O(e), where ¢ 18 of the order of magnitude of the bending
slopes. The structural terms for the present configuration, neglecting
warping rigidity C;, are thus

fu term:
-T!
v terms:

=(Tv')' +{[EI;" = (EIz" = EL1) (Bpe + 9) 21" + (BT, - BIyr) (85 + 9w }"

Sw terms: (1)

=(Tw')" + {(ETz0 = EIy0) (8 + 9)V" + [ELys + (EIp* = BLye) (B, + 0)% Ju}"

§¢ terms:

n2

-kAZ[T(ept+ $)']1" - (GJ¢') ' + (EI,» = Ely1) [(w"2 = V") (g + ) + 9]

where T = EA[u'-+(v'2/2)-+§w'2/2)]. The underlined terms in equations (1)
and below are terms of 0(c”®) associated with ¢ and 6%. These terms are
small and are retained only for the sake of completeness. The only structural
term in the root torsion equation may be derived from the potential energy of
the spring (1/2)kge2. Thus,

§0 term: kg? (2)
-The boundary conditions, strictly from structural considerations are
x = 0: veys=y' sy =¢=0
;
= x-z: v"-w"-v""v"'-O"'O

' Another boundary condition at the blade root is that of torsion moment
,equilibrium. This requires knowledge of the various blade axes systems. The
‘rotations of axes are described fully by the following traanornations:
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where C and § are the cosine and sine, respectively, of the subscripted
angles; [T] is the deformed blade coordinate transformation of reference 1
with 6 = 8,.; and for small angles and deflections the vectors are

appro 1mategy along the blade, the i vectoil are approximately horizontal,
the k vectors are approximately vertical; i . For determining the
boundary conditions at the blade root, we rote that the pitch-bearing axis is
along Ip. Thus, M = Myd;. At the root of the blade, however,

M= M¢I + Mw] + va and this, of course, must be balanced by the spring
moment MaIp. Here My, My, and M, are twisting and bending moments due to
¢, w, and v deflections, respectively. Thus,

M = MT-Tp + uF Tp e mic- 1,
= MyCraCag = MuStg +MuCy S8y
=My - oMy + BN (5)
Therefore, in terms of deformation quantities
kg = GI9' (0) +T(0)kp2 [0, (0) + ¢’ (0)] + LRIy 1w (0) + B4EL, 1v"(0) (6)

This is the torsion moment equilibrium boundary condition assuming that
ept(O)-=0 and 8pr 1s a small angle. Equation (6) may be used a8 a replace-
ment for the root torsion equation to be developed below. Numerical results
are virtually identical regardless of which of the equations are used. All
structural quantities in the above equations are defined the same as those of
reference 1.
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where x is the axial coordinate measured from the
beam to the tip; u, v, w, and ¢ are elastic
function (A = 0 at the elastic axis); an
section principal axes centered at tho el
tem kinetic energy is then

We now write the velocity in the Ir, '5:, 2,, ;

V= I‘“'o -0+ sg t)ax +.xc,‘{
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where

. A, = XICCBCBd-ylSC"Fz]CcsSBd

E]

Ay = %1(Coo+05 Ca, +So_+4564)+ ¥1Co +4C;, + 21(Co 4057584 - Sog+078,)
Az = x; (Seowsr,scsd = Ca_+05g,) + Y18,+0C;, *+ 71 (Seows:ssed +Cg +0C34)
o it W
Ag = xlccsced - yIS;s + zlc;ss,gd

A} = X1 (SQO.MS;SCBd - Ceo...@SBd) + 5'189°+QC¢8 + i1(83°+¢85885d + Ceoﬂced) }

Note that with this siort hand notation Ay = A§ - 6Az;6Az = A ¥ Ay6d, etc.
Thus, the variation of the velocity is simply

67 = [+ 50, )(hsy - A280) + Gy Mg
‘ -Sg,. (A3 +A960+Ay65)] 1
+[ac3pc.46x E (nsch +0) (ag, + Ayoo) - A,80+ A5y - Aéco] ¥
B 'cspc [Aysé +(Agy - A,80)b + Ay + As,so] + sspcAG,-‘,i{, (12)

Substitution of equations (10) and (12) into equation (9) yields (with a
change of sign and integration by parts to accommodate Hamilton's Principle)

87 = Ll ﬂ; 5 {[stspccspcAz - 92e1cspc - nzcgpch - 29Cg (A, - 0A,) +A§]A6x
+[-92 (eg+Ay) +20Cg Ay - 2085 (Ag+BAy) - (§A, + oA + $24,) + As;]AGY
+[‘7258pccﬂpc“x +0%e18g, - nzszpcA, +208g. (Ag - éA,)
+(BAg + oAy - 824) + Az] Agp + [nzeoAz + ﬂzsspccapchAy +02e;55. Ay
+ 025 Aya, + 2055, . (AyAy + AAp) - 20Cg A,Az + 28 (Ayhy + AzA;)
. +ApA; - A Ay + 8 (Ay? + A,2)] 60' dn dz dx (13)



Equation (13) contains an exact representation of the inertial terms. It is
at this point that one must make some assumptions regarding an ordering scheme
in order to have a tractable set of equations. The same ordering scheme as
that of reference 1 is assumed here, with the addition of B8,, %4, e,/%, /2,
and ¢ all being O(e). Here ¢ 1is a small parameter of the order of magni-
tude of the bending slopes. We assume that 6% 1is truncated so that trerms
0(c?) are neglected with respect to unity. This scheme is not perfect ond,
hence, 18 not followed rigidly. It does, however, greatly simplify equa-

tion (13) and yields a set of nonlinear equations with only the most important
nonlinear terms included.

Even though they are very small terms it has been suggested (ref. 4)
that higher-order terms should be included in the root torsion equation. We
will follow that suggestion for the sake of completeness. Unlike reference 4,
however, corresponding terms in the other equations will also be retained to
insure that modal mass and stiffness matrices are symmetric and that the modal
gyroscopic matrix is antisymmetric (in vacuo). The analogous small terms
associated with the blade elastic torsion equation, underlined in equation (1),
are also retained on this basis - strictly for the benefit of the doubt in
both cases.

We first consider terms in equation (13) which multiply 6&x;, S8y,, and
8zy, consecutively. Since &x;, dy,, and §z; contain 6u, 6v, déw, and 6¢,
the inertial terms from these respective partial differential equations may be
recovered. We need all terms up through O0(e) for 6x; and up through 0(e?)
for terms involving &. Thus,

8§x; terms: 7
L .
LEJL -o02(ay + e)) + 200ay - 8A,)1dn dt dx (14)

We need all terms up through 0(e?) for 8y, and §z;, and up through 0(e?)
for terms involving ¢. Thus,

8y, terms:
J;"ﬂ; {02z (A, + 1) + 205 (Ag - 8A,)
+[-02 (eq + Ay) - 208y (A + dAy) + 204 S
-8, +A5]Co 40 + [02Bpc (Ax+ 1) + 208, (Ay - $A;)

+8Ay + A3]Sg +o}dn dT dx (15)
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6z, terms:
Llﬂl 0{-0284 (Ax + e1) - 2084 (Ay - $A;)
+[02 (e, + Ay) + 208 (A + $Ay) - 204z + B4, - AS‘lsaow
+{028,c (Ax + e1) + 208, (Ag - 8A,)

+A, + A3]Co_+o}dn dz dx (16)

The 8% contribution as it appears in equation (13) is unchanged for this
step in the analysis. Rate product terms such as $2 or 6A§ are neglected
since they do not contribute in a linearized stability analysis.

Secoud, we may substitute equations (11) into equations (14)-(16) and in
the &% part of equation (13) to produce

8§x; terms:
L 2 . .
fo !fA - piR(x+ey) +29(y1Ceo+Q- 2159°+°)

-200(y,Sg_ +21Cq ) - 20x8{z Sg - B4Co ) 1dn dt dx (n

8§y, terms:
Lzﬂ; o [22e1 (BpcSo +0+ Lg) = A2eoCo 4o+ A2X(Bpe + LgSg 40 = BaCo +0)So 40
+20k)Co_+9 - 2021 (Bpc + LS8 _+0 = BaCo_+0) - 20xz 8,
~208pcy, b - 20058 (y, Sg_ +21Cq) - B2y, Ch_+0

+0%21Sg _+0Co +0 = (21 - Bgx)®+¥,1dn dg dx (18)
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6z, terms:
Lzﬂ‘: p[0%e1 (BpcCo 4 = Bg) +0%eoSo +0 + A2x(Bpc + LgSo +0 ~ B4Co +0)Co +0
~20k) S+ + 209 (B + LgSe +0 = BaCo+0) + 20848,
-208,,.219+ 20848 (y, S +21Cq ) + 02y,8 +9Co +0

~022,53 4o+ (v, + g8+ %, ]dn dg dx (19)

6 terms:

Llfj; P !_'szeo(;sseo.w + BdCeow) + Qzeo (yISeoﬂ + 21C30+0)
2% (Bpc + CgS0 +0 = ByCo +0) (35Co +0 + BaSe +0) +A%xe1Bpct,
+92K(SPC +2s86,+9 = 84Co +0) (¥, Co 44 - z1Sp+0) + Qzelﬂpc(ylceo - 2159)
+2x(2gCo 40 + B3S0 +0) (Y159 46 + 21Ce #0) +02(y, 2 - 212)8g +4Co _+o
+2y,2,C; (9 ,+0) + 208pc (¥, +212)) +20x8, (249, - Bg2)
-20x(ZgSg, - B4Cq ) %1 - 20(y,Sg +21Cq ) k1
+20(y,Sq, +21Cp,) (g¥, = BaZ1) + (y) +EgX)E) = (21 - Bgx) ¥,

+x28(gg2 +84?) + 2x8(Lgy, - B421) + (y,% +212)8]dn dg dx (20)

where B8, = ch+csseo— Bdceo; gy = csce°+8dseo. In equations (17)-(20), the
expressions have been truncated to the appropriate order of magnitude as pre-
scribed by the ordering scheme discussed above. Finally we must write
explicit expressions for =x;, y1, and z; and use these expressions to formu-
late the inertial terms explicitly in terms of u, v, w, ¢, and ¢. From
reference 1 and equation (8)

10
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X; & x+u=X(0pe+9)' ~n[v' cos(Bp, +¢) +w' sin(B,e +4)]
=g[-v' sin(8py +¢) +v' cos(8pe +¢) ]
y; = v+n cos(f,, +6) - ¢ sin(Bpe + ¢)
2] = w+n sin(Bpe +9) +% cos(Bpg +¢) (21)

The &u terms may be formed directly from the 6x; terms
su terms: -m@?(x+ey) +2mAxd(L So - B4Cay)
-2mAU(VCo 4 = WS +¢) + 2mA(VSg, +wCg ) (22)
where m = IIA p dn d¢ and IIA pn dn dg = IIA pz dn dg = 0 for coincident
elastic and mass center axes. The 6&v and 6w terms may arise from both &x,,

8Y1» and 62;. The terms from &x; are small, however, and are underlined
below

§v terms:
mo?e) (BpcSe +0 + s) - m2Ze,Co_+o + mR2x(Bpe + 5o +6 ~ BdCo +0) So,+0

-m02vC3 2 . :
mR“vCy +¢ + MI°WSg +9Ce +0 * 2mQuCq 4o = 2mw (B, + LgSp +0 ~ BdCo +0)
~2mixz g8y b ~ 2mABpevd - 2mLg (VSp +WCq ) d

-m(w - B4x) 8 + ¥ + mseo(mkﬁzé)' +20d8g_(mkh,)' (23)

6w terms:
2 2
mi%e; (BpoCo +0 - Bg) +ml e Se +0 + w02x(Bp. + LgS0,+0 = BaCo,+0) Coo+d
2 % 2 = . .
+m2vSg_+9Co +o ~ MAWS 1o = 2mASp 1o + 2MAV(Bpe + LeS0+0 BaCo +0)
+2m0xB 48, & - 2m08  wd + 2mABy (vSg, +WCo )

$m(v +5gx) 8 +mi + 20Cq_(aky, $) ' +208Co_ (nkp,)* (24)

Since the &v and 8w terms from &x; arise from integration of &7 by parts,
there are additional terms evaluated at the boundary that do not necessarily
satisfy equations (3). These terms are

~200() + 8) (kB,Sq 8V + kn Co 8w |5 (25)

11
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These terms must be included in the analysis when Galerkin's method is applied
in the solution of the equations of motion.

The 6¢ terms arise from both &y, and 8z, since contributions from
§x; are negligibly small. The contributing terms from 8y, and 8z, are

)’xt’Sy1 + 21621 + (20).!1 - Q?'y]Ceo.‘.@ + 92213904@) (GYICQO.M - 6215904.@) + (3;1521 - 216)'1)5

(26)
The &8¢ terms follow immediately:
§¢ terms: w0 (ki - kn,) [S6,Co, + (8p + 6+ 9)Cag_]
. 2 . x
+2m9(v'89°km2 +w'C9°km1)
uk’ (§ +8) (27)

Here as above the underlined terms are 0(e3). From equation (20) the &9
terms may be written

§¢ terms:
L* {ma2xeo (2 o, o - BaCo +0) +mi%e, (vS 0+ +4Co_+4)
+m2x2 (Bp + £gS0,+0 = Ba-g +0) (CCo +0 + B4Se +0) +miZe 1B Ly -
+m2?x (B + LgSaq+d = BaCo +0) (VCo +g = WSg +0) + mﬂzelspc(\rcao - wSp,)
+m?x(2gCo,+0 + BaSp +0) (Vg 4o +Co +9) +mA? (v = w?)Sg 1aCq 4o
+mR2vwC, (0o+0) * m2 (kﬁz - kﬁl) [Se,Co, + (Bpt + ¢ +9)Cop ]
+208) (V0 + ) + 2m0x8, (Eg¥ - Bg)
-2m0x(5gSe - Bdceo)ﬁ - 2mA(vSg +wCg )t
+2m(¥"Sg ki, + ' Co kn, ) + 2uR(vSg  +WCq ) (g¥ - Bgi)
+m(v+ Lgx)W - m(w - Bgx)V + mk ($ + 8)

mz(;.2+8d2)3+2mx(;8v- Bdw)3+m(v2+wz)3'dx (28)

12
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The &% terms are under an integral because 8¢ is not a function of x.
(Hamilton's principle results in a partial differential equation only when the
§-quantity is a function of x.)

Aerodynamic Terms

The aerodynamic 1ift and pitching moment acting on the blade in hover are
based on Greenberg's extension of Theodorsen's theory (ref. 5) for a two-
dimensional airfoil undergoing sinusoidal motion in pulsating incompressible
flow. The rotor blade aerodynamic forces are formulated from strip theory
and only the velocity component perpendicular to the blade spanwise axis
(the x'-axis in the deformed blade coordinate system x', y', z' in fig. 6)
influences the aerodynamic forces. A quasi-steady approximation of the
unsteady theory for low reduced frequency k 1is employed in which the
Theodorsen function C(k) is taken to be unity. The steady induced inflow for
the rotor is calculated from classical blade-element momentum theory. These
simplifying assumptions are judged to be adequate for low frequency (mainly
determined by the blade bending frequencies) stability analyses of a hovering
rotor.

In Greenberg's theory (ref. 5), a two-dimensional airfoil is assumed to
be pivoted about an axis which may be distinct, in general, from the aerody-
namic center axis. The airfoil is pitched at an angle e(t) to the free
stream flowing at pulsating free-stream velocity V(t). The airfoil is verti-
cally displaced with vclocity h(t) positive downward as shown in figure 6.

7 The relations for 1ift and pitching moment per unit length may be expressed in
terms of the circulatory and noncirculatory components

L= Lc + Lyc ] i
4

M= Mc + Myc

With the airfoil pivot axis (analogous to the rotor blade elastic axis) at the
airfoil quarter chord (the airfoil aerodynamic center) these components are

DIC b . o e
an'%-z'(hi-\le-l-v:'k%f-

g =5 V(h + Ve °2‘
(30)
"NC"Blaﬁ ) 2 (:.)an
Mo = - 22 (&)
PAGE IS
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The Theodorsen function C(k) has been set equal to unity in the circulatory
lift. It should be noted that ¢ is the angular position of the airfoil with
respect to space; € and € are the angular velocity and angular acceleration
of the airfoil. The instantaneous angle of attack of the airfoil

@ = tan™ (Up/UT) is the angle between the airfoil chord line and the tenultant
fluid velocity U of the airfoil. The airfoil velocity components in the y’,
z' principal axis system are Ur and Up shown in figure 6. It is desirable
to express the aerodynamic forces and moments in terms of Up and Up.

Assuming that the angles ¢ and a are small yields

Up & -h - Ve
= ’ (31)
Us=/Up2 +Up2 5 ¥
Substitution of h and V from equations (31) into equations (30) yields
LN ..
(32)

Lc = 22 u(up + 5 ¢)

Next we consider the total aerodynamic forces in directions parallel and
perpendicular to the airfoil chord line. The noncirculatory 1ift is .aken to
act normal to the chord line, and the circulatory 1ift is taken to act normal
to the resultant blade velocity U. An aerodynamic profile drag force per
unit length, based on a constant profile drag coefficient cd, and acting
parallel to the resultant blade velocity, is included.

cq
D = 222 0 (12 + Up?) (33)

The force components and directions are shown in figure 7. The force compo-
nents T, normal to the airfoil chord line, and S, parallel to the airfoil
chord line, are therefore

T=Lr cos a + c*+D sin a
C Ly } s
§ = =Lgc sin a = D cos a
From figure 5,
U
cos a = 1}
(35)

sin a -'TT

Substitution of equations (32), (33), and (35) into equations (34), with
cd,/a neglected with respect to unity, yields

14



(o) 2
r-—f—[upur+-§- Upé - 4u,+(2) e]
i (36)
o ;
s---"z-—(u,,"f--Z-ul,s-——u.l.2

The expressions for aerodynamic pitching moment components may be written from
equations (30) and (31) as

Mye = - 2= ($ )(_UP+_3_9..
(37)

P L8C

Mot (") Upé

where U has been approximated by Up in Mg. The total pitching moment is
then given by

M.__n_(_) (U-r€ 2 P,,_ce) (38)

The aerodynamic force and moment acting on the blade at a point on the
deformed beam elastic axis (crincident with the blade airfoil section aero-
dynamic center) are

%= s+ Tk (39)
M= Ml : (40)
The virtual displacement and virtual rotation are given, respectively, by
§q = sul+sv]+suk+ 601, x [(x+ )T+ v] +wk] (41)
53 = sol' + o0l (42)
Thus, the total virtual work of the aerodynamic loads is
a;w - j;" (F - 63 + M - &B)dx (43)

Tn order to write the aerodynamic terms in each equation we must express equa-
tion (43) in terms of u, v, w, ¢, and ¢. This entails writing Up, U, and €
in terms of u, v, w, ¢, and &. The blade airfoil velocity and rotation are

simply
V = -Re 1, +0e ] +vikp +al+vT +ik+ (ky + 1)) x [(x+u)T+v]+w'§]}
(44)

=k + 81,4+ 61"



where v; 1is the induced inflow velocity equivalent to that of reference 2
except téat root torsion is included and the pitch angle is not necessarily a
small angle. From figure 6

[~
-]
]

(45)

'_]c
L}

Evy <t <v
e

.

™
]

Without writing all the details, substitution of equations (36), (38)-(42),
(44) and (45) into equation (43) yield. an expression for &W of the form

oW = L1 (LysutLydu+ Lyswtmgsnrax+so [ My dx (46

where L,, Ly, and L, are aerodynamic forces per unit length and M, and Mg
are aerodynamic moments per unit length. All these quantities appear as
forcing functions on the right hand side of the equations of motion. We
assume 0, = 0(e) and 68, = 0(51/2) so that the expressions are not overly
complicated by small terms.

PwdC

Ly = - szzseoceow' (47)

P ac 2
Ly = =% (a2 (x2 + 2e1x)8_ +02x% (85, + )8p Co,

+v42C2 - Qxvy[Sog_ + (8o +6)C ]-fi‘—‘i a2x2c?
B P g L1 pt ¥ 9)Caq, a B
+{02x2899_ + [22x%(0p¢ + 6+ 0) - 20xv4]Coq }o

cd
+{(0pt +¢) [ﬂx(Seo + OCeo) - V1C9°] -2 '—a—q QXCQO]\'I

+{2v4Cq_ - ax[28p, + (20 + 85, + $)Cp I}t ) (48)

Pt 2,.2 2.2 2 p 4 "
= {02(x2 +2e1x)Cq_[Sp_ + (8pe +$)Cq 1 +02x2Ce  [™ v'w" dx

Xc
-Q(x+ el)":lCZGo - Qzeox(chczeo = adceo) + 02 <8 (8, + w'Cgo) Co,
2
-A2eqxw'Co - A%xvw'Cy_ - 02xBvCq - 0%x?B,cLgCo  + 8% (x? + 2e1x)8C0
N . C .
+{ax([Sg + (8 + 20, +26)Cq ] - v4Cq }¥ - Ax+ e)WCo -7 ¥
3c

" nxc%& + [-37.5 -(v+ :.x)] ﬂxCe°5> (49)

16



,’).lc (c 2 . . 2 1 I
My = - 7) [20xCq (4 + &) +a?xCq (B, +w'C ) = ] (50)

[} L PeaC e\2 o
L My dx = L e (-(z) [20xCqy, (¢ + @) +n2x(e,+u'c3°)]
+ {-)[—E -(v+ z.x)]i'r-b Ge(x2 + 2e1x)Sg°[-Se°(w- Bgx) + Ceo(v+ Lgx) ]
2
+02(x2 + 2e1x)Cq_(Bp¢ + 9) (v + L gx) = 02x2 (8pe + $)Sg Co (v = B4x)
2 2.2 Cdo 2l x

-(vi - Q“x —;——) Ceo(w- B4x) +02x Ceo(v+ t;.x)L v'w" dx
=Q(x+e1)viCog (V+Lgx) + vai[szeo + (Opp + ¢)029°] (w=Byqx)
-0%eqx(BpCa0,, = B4Cq,) (v+5gx) + Q? ¥ (8 +w'Cq )Cq (v +gx)

-2%xCq (e w' +vw'Co +8 v +xB,.0g) (V+Cgx) + 29%ex0Czp (Vv + LgX)

pccs
220 [(v+ ¢ gx)Cog = (W= Byx)S29 ] = [22x%(8pe + 6 +9)

- < Cdo
-Zvailﬁngeo(w - de) +v 2 _— QxCeo - (Gpt +¢) [ﬂx(sso + @CGO)
-V1Ce°]' (w= de) "y {QX[SQO + (o + 29pt + ZQ)CQO] - V1CQ° l(V + Cs)'.))

+ifax[2s, + (20 + 6y +6)Cg ] - 2v4Cq_}(w = B4x)

-a(x+ el)Ceo(v + csx)> + -3Tc- Qx(v+ ;.x)ce(’&

+[32- e ] e+ ;,x)nxceoi)dx (51)
where
v = 2 {1422 sy [ope) @)+ eJoo, |- 1)
sgn vy = ogn'89°+ [°p: (3)+4, (3)+ ’]c%i (52)

Equations (1), (2), (22)-(24), (27), (28),and (47)-(51) wher combined as

structural terms+ 1u¢r.t111 terms - aerodynamic terms =0

17 '
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yield the hybrid equations of motion. The boundary conditions are found in
eyuations (3) and (6).

SOLUTION OF THE EQUATIONS OF MOTION

Simplification and Nondimensionalization

The equations are solved by Galerkin's method using mode shapes of a
nonrotating uniform cantilever beam. For ronvenience we treat only the case
with uniform radial distributions of mass and stiffness propertius. In gen-
eral, a flexible beam segment inboard of the pitch-bearing is present and non-
uniformities in bending stiffnesses influence the flap~lag structural coupling.
In this paper, the inboard beam segment is eliminated entirely by placing the
pitch change bearing in the hub itself, thus leaving only the single outboard
blade segment. However, the effect of the inboard beam segnment on the struc-
tural coupling between flap and lead-lag bending is represcuted in an approxi-
mate fashion., Flap-lag structural coupling copends on the relative stiffness
of the blade segments inboard and outboard of the pitch-bearing because the
principal elastic axes of the outboard blade segment rotate through the angle
3o as the blade pitch angle varies, while the inboard segment principal axes
do ..ot. The resultant effective orientation of principal axes depends on the
blac 2 geometry and distribution of bending stiffnesses inboard and outboard of
the pitch-bearing. Although the variations in the structural coupling signifi-
cantly influence stability, they are not present in a simple single-segment
uniform beam treated here. They are difficult to include exactly without
resorting to a more general blade configuration and a more sophisticated anal-
ysis. However, an approximate representation of these effects may be intro- .
duced with no increase in complexity. This is accomplished by arbitrarily
assuming that the averr_ e inclination of the principal elastic axes of a non-
uniform blade is erual to some fraction of the inclination of the principal
axes of a uniform single~-segment blade. This entails having the structural
principal axes inclined at ®6, rather than 6, while the mass and inertial
* rms are unchanged. The factor & is called the structural coupling param—
ecer. When /& = 1, the original equations are retained, but as ® 1is reduced
to zero, the flap~lag structural coupling terms diminish and eventually vanish.
Although this is only an approximation of the true effect of flap-lag struc-
tural coupling, it greatly simplifies the numerical model and does represent
the type of behavior that would bc exhibited by a general nonuniform blade.

In order for the structural axes to be inclined at ®6, to the plane of rota-
tion, however, we must substitute 6p¢ -~ (1 - R)9, for 6 in the structural
terms of reference 1 because of the change in the coordinate system.

The equations are further simplified by eliminating the 6u equation and
all terms containing u. This is accomplished by solving the d&u equation
(consisting of equations (1), (22), and (47) combined as discussed above) ior
T. The resulting expression for T may then be substituted into the other
equations. An expression for G may be easily obtained using the definition
of T. Proceeding in this manner we first write the d&u equation v
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~T' - m? (x + e)) + 2m2xd(2gSg - B4Cq )
~200(7Ca 40 - ¥Sp. so) + 2mA0(v8s +wCp ) +22=  02x254 Co W' = 0  (53)
Coo+0 = YSo,+0 8o ¥ ¥Co, 3 8,0,
For a uniform blade we may nondimensionalize as follows

~t' = (R+8)) +2R(Lg8g - B4Cy )@ +2(V8q_ +WCy )¢

~2(VCo 40 = 95 _49) + & 8o Co X°0' = 0 (54)

where
T
. T-mQZQ'Z
'*-—x-- ﬁ-.\.’.. ‘.’.!o a-!
1 2’ L’ '3
et g » 3p,ack _ rock number
SEea B (Rt e, ) /A"
Now, integration yields
r = 15804 (1. 0)%; - (1 ~82)(2, 8 - B4Cs )b
3 1 858, = B4Co,

. g s Fask
-2 j:.‘ (VSp,, +WCp ) dX + 2 J; (VCo 40 - 59604-0)‘3

ix 1
X 59 Co, J5' %26 a% (55)

Equation (55) ior T may now be substituted into the bending and torsion equa-
tions retaining terms to the appropriate order of magnitude. In the bending
equations the contribution of the last term, an aerodynamic term proportional
to Yy, is negligibly small. In the torsion equation only the first term is
retained.

In order to eliminate G from thy equations, we now consider the defini-
tion of T, equation (1f), nondimensionalized with respect to mi?2?

BT
1-;%-,(5-+'—2-+!;—) (56)

Nifferentiating equation (56) with respect to ¥ yields

2 . SEEE TR
oy e 6B i

EA
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Typical hingeless rotor eon!mu tm m sufficiently L
ness EA so that mA?22/BA = 0(e?). Thus the first erm of
quite small when substituted into the bending an
taining 2mRi and for our purposes it is negl
obtained by integrating equation (57)

Equation (58) may now be substituted M#
equations. The nondimensional ﬂuum m
written for a uniform bou

8% equation:



8w equation:

828
(A2 - A;){-i'r‘"' 3 S+ C25,[(Bpe + 9)V"]" + 8,5 [(Ope + $) 25" l

-

A"+ (Mg = MFSE_ - 825 [(Ope + 9)F"1" + Cap [(Ope + 9)70"1" |

- L - . -
=(10') +8,(BpcCo#o = By) +X(Bpc + LS +0 = 84Ce+0) Co 40 * EoSe +0
#950 +4Cs +0- S5 1o +250 +0 [.* (F'9' +'E)d% + 29(Bpe + LgBo_+0 - B4Co+0)
0,+0C0+0 = WSg 10 + 250 40 J, pe + 8sBe,+0 = PeCe 4o
#2388, 6 - 28,0 + 284 (38 +WCo )b+ (V45 %) + 8+ 2k} Co ¢
l el - - 2 _-22 R i -__i_é-z — -——— 2
+ (- +28,X)Cq ¢ - X°Cq j; AL Sh wcoo+3°xw'ce°+xw'ceo
2\
- -2 - - c R - . 5 <
+it81vceo - (x + 2913)0(:260 - (4) (¢+ ¢) + ‘ViCeo - x[Sa°+ (O + Zept + 2¢)C9°]}v

B 55,0 [2£- Gvrg]5ce 8

+(%+8)Cq W4y W~
= 1 [32+28,3)cq (g, + 05 Co,)
~(%+81)94Cop_ - 8% (BpcC2p,, = BaCo,) +!'is' B1Cg, - :';ZBPCCQCBOJ (60)
8¢ equation:

~kp? [(1 '2’-‘2) (6p¢ *+9) '] & k" + (A2 - Aﬂ{(ﬁ:z—r'-"—z-) ['82.90 + (8 + ¢)Czao]

" [0260 +(Ope + ¢)SZEQ]‘ + (kny - kny) [S9 Co,, + (8pe + 4+ )Caq)

- - - . -2 - . . e =
+2(i5,50 ' +KA Co §') + a2+ 55~ [25Cq (¢ +§) +%Cp 3" - ¥)

g
sl
T 0
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§¢ equation:
Qo+-‘§9 (%aSo,40 = BaCogre) +3, [’ (vseoﬂ+aceo+,)d;+% 21858, -
+ -} (Bpe + CaSo +0 = B4Co o,.)(c.ce°+.+adseo,.) +&8,, L‘ ('\;ceo -\"Seo)di
+(Bpc + teSog+e = BaCoyee) L' R(3Co 49 - 8y 4q)d
+(2aCogee + BgSe +0) [ R(U8g,49 +0Cq_40)d% + 52 (p “)f ("2 "'2) dx
*oor0) f! 90 am+ (KR, - k) [Sa,Ce, + #C20 o*C20, f! (0pe + 03]
v28pc [! @eodrane2s, L1 wee b- 0,000
+2(248g - ‘dcﬂo’f;l (hzf-) (' +8'6")dx + ziizs%#m + ziﬁ,ceo\‘cu)
w2 [! (g, +5ce ) L* 38" +5'8" a3, a2 f! (W8g, +WCo ) (24¥ - By dR
+ [' @eegmb a- L1 @-840F af+ K2 f' ¢ an(-"?—;&’f)a

o
+28 [ %020 - 840)an+$ L' @ +i)am 4%
- gl% [co 4 +2co, L' 5 ax+cy f1w ax- L1 8 il L1 5408 ax
-8, fol (R 4 28,%) (9o, - W0, 4% - 2,59, (F+551) 45500, [} @e00% a
-c§ L’ (iz+231§)(e,,t+o)(hz,i)dhso Co,, L‘ iz(eptu)(a - BgX)d%
+Co,, f (Vi - 52 to )(v BgX)dX - ce fl %2 (T+¢ x)[ " dx; dx
+1Cagots (3 3 )'stze (f X d!-—)-viczeo L R(Opg +¢) (- B4%) %
+80(BpcCuo, - B4Co,) (-3-+j;’ % da‘:)-—z- 8o, (-—;q:‘ X0 dx)
WA %' (V4 tgR)ax+co [ X(BoH' +TW'Co +8)7) (V+ ¢ K)di
+CooBpcts (—"‘fl b d!) of! i’(\‘rczeo-iszeo)di-i::

b ad i =85 -
-2§,¢ (T+j; XU dx)+ ¥Ca9,, f "z(ept"”(“'Bdi)di*.zczeo(fo %% dx-T)

P RGN v Cdy 1 adie -
'z""c“o(fo xw dx-T)- 2 = Ceo fo Xv(w ~ Byx)dx
e == - e . 1 - - =\ a=
+(S,+00,) L' %(0p, + 0)5(a - BaR) % - 4Co. J1 (05, + 0)9(h - 8 %) d%
10, L1 (41000 ax- (Sp,40Ce,) S! R(F+10)6 ax
% 1= S = ; 1 o2 .
-2cg, [ %(0p + )55+ EeR)dk - 2089 +0Cg ) ' T(w- g %)ax
HEE & & 1 & o -
“Coo S| %(8pe + )6 (8- 8yx)d% + 293¢, [ 4G - gyxrax

ao fl (x+31)(i7+:lx)w dx-— ce fl x(V+C.x)0 dx-— Ce (fl xv dx+i;-)
62
+Co b (f’ V2 4%+ 2¢ f dx+-——)' 1 ceosl o
(+]
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where

A = EIz' . A = EI ! . = GJ B = —-kL— . v -xi
3 mﬂzﬂ." L l m l“ ’ " mZz‘# ' Q mz,} ’ Vi QL
O =42 O = SRE T t, = CeC20, +BaS20, 3 8o = t1-R)o
(63)

Terms not satisfying equation (3) are
~2(¢ +8) (k2 8o 6% + k&, Co 6@) |1 (64)
m,%0g m~0g 0
The terms of equation (64) must be included in the analysis as discussed above
in order to obtain the correct results. Equations (59)-(62) are the hybrid
nonlinear equations of motion that will be solved by Galerkin's method.
Application of Galerkin's Method
In transforming equations (59)-(62) into modal equations we use the mode
shapes for a nonrotating cantilever beam. We also assume that the motion is

characterized by small perturbation motions about a steady equilibrium opera-
ting condition that depend on dimensionless time yY(=Qt). Thus,

N
T = X [Voi + AV (V) ]¥4(R)
i=]

N
W= 3 [Woy + AW(¥)]¥4(®) (65)
i=1

N
¢ = z [¢01 + 404 (V)] 91(1-()
i=1

where

¥i(®) = cosh(Bii)-cos(Bii)d-ai[sinh(Bii)-sin(Bii)]’
(66)

01 (%) = V2 sin(y,%)

The constants o4 and By are defined in reference 6 and vy = w[i-(1/2)].
We also assume that

o = 0, + A (67)

and that
Bpt = —6,% (68)
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Nonlinear algebraic equations for Voju Wojs Ooj, and ¢, determine the

equilibrium deflections. The perturbation deflections are governed by a set
of homogeneous ordinary differential equatious for AVy, AW&, AOJ. and A0,

with constant coefficients depending on Vyj, Wy, 954, and ¢5. The modal
equilibrium equations are as follows:

8Vo4 equation:

i& 4 2 o o

P2 QA2B4*814Voy = (A2 = A1)| S By 644 - S25, El OokVic g - O¢Pij
N

| . 528
+C,5, kz-:x ok (El op¥icgq - 2°:Vkij)]"oj +(Ay - Al)[- —52 B5%8y,

N N
- 1
+C,5, ( 331 okVicig - 9:"13) +5,3, kil ok ( EZ.: o0Vkeig - 29:"1;13)]“03

2
+(My3+E1L14)V05 - Voy81;(Co - 05826 = 9o°C2p,) *+Wo3d15(Se Co,+ 8oC20, = %07526,)

°oCe°

+ % { (ViczgoQij - SQOCQORij)OOj - 00[523001 + Czeo(QOCj - etDj - 2\7131 )]61j~00R11001}>
% et o 2
= [eoceo -€1 (chseo +3g) 1Ag - 8156031 +% [(Ci + 2e131)89° - etciseo(:eo

s ot - Cdo 2
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8Woq4 equation:

828
ig Con - “1’[' 7 B8y 4o, (ktx YokViig - 9:1’13)

N 2
828, 2 ok ( g:l oty - “:Viu)]voj +M1By"814Woq+ (A2 = A1) [35053"513

k=
N N
=828, ( 2 OouViig - 9:1’1,1)‘0‘23,, El Pok ( é LA 2°tvk1)]"oj

k=1 ' k=

+(My3 + 811505 +Vo5615(Se Co, +9Cap, = %, 2526,) = Woyb1y (S5, + 20526,+%2Cap,)
+A3[=8185,00,86, + o9 (Ca = 9,50,) 1813 + B9 (%, = 0B, 844
+ -}'- (Ryy +28,Q44)Ch 8oq + ﬁ Us 11V 1¥okCo, + (%0 - 5 Co,)Co,013oy
k=1
+81Co, 11404 = 9C20, (Cy + 23131)615) >
= =[81(BpcCo, - Ba) +8550,1A1 - B1Cg By +T [(ci +28B4)3g Co, - 0,Cp, (Dy + 281Cy)

¢
-ViCZQO (By +8,A4) - ao(ch(heo - BdCQO)Bi +8, 2 09031 - BPCCSCQOC‘] (70)

6001 equation:
= 828
j£1 <‘h‘“u +x7,2849)004 + (A2 - “l’Lﬁ Vuk[' 5= (og¥oi = Yo3Vok)
= =1

+025°vojwok] +0, é Vijkfczﬁo (Wo3¥ok = Vo3Vok) + 525, Yo3Wok ]

N

? E ki Y:I.jkl'oj [c25° (WorWog =~ VokVos) + szﬁovok"o!.] '
2 _=2 y82 2 )

+(km, = k) (904 +E495)814C20, +96~ C8613%0y

%2
c =2 -2 -
= X Co BiF1- (km, - ¥m,) (8o Co Eq = 0¢F1Coq ) +Ky20,Fy  (71)
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equation:

N4
Qe +——J-2 0, +8, t;tn Af[Vo1Sp, +Wog Co,* 04 (Vo1Co, = WoiSs,) ]

% i
+[C12 - B (C.Seo - BdCeo)] "'3-4' (314‘(100)‘-‘ By [Voicoo - woiseo - .o(Voiseo + U01Ce°)]
+:1§Pc i;tl At(v‘uCQo - Uoiseo) +{cy - (C.Seo - BdCQO)QO]é By [Voiseoi'"o‘ceo
Voi W3y
+00(Vo1Co - Wo1Se,)] "ﬁ [ 7 (829, +20,C20 ) +VoiWo1(Cog - 2'oszeo)]
=1

2 p2 g 2 ﬁ

+(im2 = km,) (.o*ti !1°01)c20°""z'<ﬁ Co, L Wog [2(-1)1%1 - a4]
=] =]
2 i
t (Cy +28;By) (VoiCe - Woi8p,) + Co,0t é (Dy +281C4) Vo
'Ceo ﬁ i Qg3+ 28 1Ry §IVo4054 - CS Zs i (Hy +28,G1)8,4 - 848¢ Cp, ﬁ, DiWoq
-

i=] §=)

~8456,Ce, i Hidoq +5¢ Co 1£ £ Rij"oi’oj*‘ce V2 ﬁ AqW,
-1 =]

~Coo T 2 Ci"’oi*ce E > ﬁ Uijkvoivojwok+cﬁ ts f i Z13Vo1V%o4

i=1 =1 k=1
+94Cz0, iﬁl (By +8141) Vo4 = F480, 121 BWoq +¥40¢Cop, 121 CiWoq
N N N N
+V184C29,, i}: F1004 - v4C20, 12‘ _1):1 Q13%o1%y + &5 (BpcC2s, - B4Co,) 121 BiVo1
=] - - . =

N
Co,, iﬁl BiVo1 *+Cq B, ) > (jil Iijvoivoj+cacivoi)

iw=]

1
ot

= N [ N N
g i+
+(e°--5 ceo)ceo E 32-1 013V01W0_1+2C5[(-1) 1'Bi]“'oi. *COOch;s 1;1 €1Vo4
80 B ﬁ 8¢84%C20,
-4, é Ci(Voiczeo'woiszeo)" % =-2€1¢, (T+1_1 BiVog +-——-————s
N v N Bq
+05C20, 121 = R1Wo1%01 = 8:CiWog = B4F1 % | + 8,%Cop 121 Cat™ T
N 8
d
-2940,C,5, ( 121 ByWo, - 3—)>
1o P a5 (ZgSg 'BdCe )'“'3——
TR c
SRR T e 2 g 1 1,28\ g2
2 “‘mz'km)(seoceo 2 )*% [‘1590 (Z 5793 Yt
% Cdo
> (1 5) 380C6°9t8d+ceovized Co, = B4 ;
8,%t5s\5+ 7 5 ; et 4 "1‘029(37)
= ‘-’13d5260+‘719t340290 Ls Eﬂlcsceo ch’;s Co,,
3 % ~R5llpcCre, = 840, ) T —g— - (72)
26
OFORMAL PAGE I8



The linearized perturbation equations are easily expressed in matrix form as
[M]{a%} + [C]{aX} + [K]{&X)} = O (73)

where [M], [C], and [K] are, respectivaly, the mass, gyroscopic and damping,
and stiffness matrices given below and

AV4
- {4V
{ax} A% (74)
A0
B | | i i
—————— l-—.—.—_._-—-—_l__——---l——-——-_-.—
| gl "
9 I 61.1(1+26) I 19? 81{_1' VoitteBy =95 A1
_____ e AT SR S R S O P e B
0 T JXE g R K2
[M] = E L T, B i (75)
- ap wn ame mn —— - . —— —— — — —— w— '.— -~ ows -* ———————
I s 3 = Bg2+z g2
=(Wo1-B4By) | (Voi+CgBy) (1 +'§7c; : kp?Ey : Sa—ey 5
! =2
- Xy [ b4+ v2, +w?
: 96 M : e oi™ Yoi
: : ; +2B4(LgVo1~BaWoi)]
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where the mode shape integrals are

TR

By = [} ®¥y dx
Cy = [ X%y 4%
Dy = S %y ax
By = £' oy dx

Fy = [! %oy d%
61 = [} %%04 d%
Hy = J;l §361 dx
I35 = [} ®ygyy ax
Jgg = [! %2vq¥y ax
Kyy = f! %0404 dX
Lyg=J, -B)y,'v, o=

i J:,l () ey &

ny = [0 (55) eioj as

035 = J 1 ®Yg¥y' a%

Pyy = ! ®vy"vy ax
Qqq = L' %40, d%
Qg = J! Rogv,' d%
Ryy = j"’l izviej ax
Sgq = L' ¥404 ax

] e 1 -
84 J; 0¥, dX

1 .
S b R W R

Bk“

= el X L LU RE
L1 72wy L7 vy'n" 4%, d%

vijk - Jol Gi'l’j"'fk" dx
Vigk = L} %04¥,"y " d%
Xyje =L %¥1Y40, a%
Yigra= L' 0405%"y," %

211 » fol ;2?1’.1' dx

_13i ty ¥ = -
g o o ¥'Y" d%) dR
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Many of these integrals have been evaluated in closed form by use of
references 7 and 8., Additionally, these and all the remaining integrals were
evaluated numerically. The matrix [K] is simply the Jacobian of equa-

tions (69)-(72) and will not be written out in detail. Representing
equations (69)-(72) as

Yy =0 1=1,2,...,3N+1 (78)

Then
[] [”*] (79
3Xo4 )

where

{x°j} - lvoJ' oj.ooj’ooj'r

We note that [M] and [K] are symmetric and [C] is antisymmetric for
y = 0 (Zn vacuo). Thus, equation (73), a standard eigenvalue problem, governs
the stability of small motions about the equilibrium operating condition.

As described above, it is possible to use the torsion moment boundary

condition, equation (6), instead of the root torsion equation (62). If this
is done, the dimensionless form of equation (6) becomes

®- 2
' kA [ '
Q0 = k' (0) +—5~ [4'(0) +6,,(0)]

+2g(A1#(0) = (A = A1) S5, ["(0)CF, - #'(0)s5, ]}
+B4{A2v"(0) - (Az - A1)35° [¢"(0) 55, + w" (O)CEO]} (80)

The modal equilibrium equation is

ka2 k.2
YL TR
i=1

+20g ﬁ By2[MWoq = (A2 = M1)SF_ (Vo1C, ~ Wo155,,)]
=1

N
+284 12 B42[A2Vyy - (A2 - 8185, (Vo158 +Wo1C5) ] (81)
=]

The perturbation equations may be easily solved for A¢ and substituted into
the other equations since there are no time derivations. Thus,

30



1 kp?) & f:
20 = 7 2 (k+-3- 1-21 Y4804 + 22 A P> 8428wy

N
+2B,4A2 121 B42AVy = 254(Ag - A1)SG, ;tl 842 (AV4Cq, - AWySF )

N
vZBd(AZ—Al)Sao E Biz(AV18§°+AWiC§°)] (82)
i=1

Numerical results obtained with equations (81) and (82) are virtually identi-
cal with those using the ${¢, and A% equations derived above based on inte-
grated torsion moments. The use of equations (81) and (82) is considerably
esimpler and provides a reasonable check for numerical results.

Modal Analysis

We now describe a modal analysis rhat greatly simplifies numerical
computaticn. From equation (73) the stability of small motions about the
equilibrium operating condition is determined by the eigenvalues of the
6N+ 2 x 6N+ 2 matrix [P] where

{Ai{l [ 0 I ]{Ax’ Ax]
g O - 213 (83)
aX -k -Mlc ] ak ‘Ax

Since we are primarily concerned with lower frequency instabilities
(first lead-lag, first flap, and first torsion frequencies), there is a value
of N for which any increase in N will not appreciably change the eigen-
values associated with these lower frequencies. It is at this value of N
that the eigenvalues are considered to be converged. For practical hingeless
rotor configurations, N = 5 gives suitably converged eigenvalues; the matrix
[P] is thus 32 x 32, By a change of modal coordinates, the size of the matrix
[P] may be greatly reduced without significantly changing the eigenvalues of
interest. Such a transformation may be found by first considering free vibra-
tions in vacuo of the blade about the equilibrium deflected state. The equa-
tion of motion, analogous to equation (73), is

[Mg]{aX} + [G]{AX} + [K,]{AX = O (84)

where the subscripts s and v imply the symmetric part and the vacuum case,
respectively. Both [Mg] and [K,] are thus symmetric; [K,] is equal to [K]
with all the aerodynamic terms set equal to zero. The matrix [G] i{s anti-
symmetric and equal to [C] with all aerodynamic terms set equal to zero. The
presence of [G] causes the eigenvectors of free vibration to be complex. This
may be avoided for computational efficiency by approximating equation (84) as

[Mg1{aX} + [K,]{AX} = 0 (85)
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The matrix of the eigenvectors [U] is orthogonal with respect to [Mg]. It is,
therefore, approximately orthogonal with respect to [M] as well since the
elements of the antisymmetric part of [M] are very small. Thus,

(UTMgu) = (1] & [uTMU) (86)

According to Meirovitch (ref. 9) a so-called principal coordinate transforma-
tion for equation (73) may be determined by replacing {AX! by [U]{AX}. We may
then premultiply equation (72) by [U)T to take advantage of the form of
equation (86) yielding

r11{ak} + [uTcu){ax} + [UTkU}{aX} = 0O (87)

{Ai’ [ 0 I ]‘Ax} ‘Ax}
. . 4= [P#] (88)
aX -uTkv  -vTcu | {ax AX

The matrices [P] and [P*] have virtually the same eigenvalues. However,
because of the nature of this modal cocrdinate transformation from [P] to [P*],
the zows and columns corresponding to nigh frequency modes of both [U'KU] and
[uTcU] may be removed without affecting the eigenvalues of the low frequency
modes of interest. These IN+2 x 3N+ 2 matrices are thus reduced to M *x M
matrices whose rows and columns correspond to the M low frequency modes that
are retained. The rows and columns that are retained in [UTKU] and [UTCU] may
be chosen in two ways: (1) the M rows and columns that correspond to the M
lowest frequency modes of the blade may be retained, or (2) the M rows and
columns that correspond to M modes selected arbitrarily from the lowest
lead~lag, the.lowest flap, and the lowest torsion frequency modes are retained.
For the second case, under certain conditions, M = 4 or 5 will result in con~-
verged eigenvalues. In either case, suitably converged results do not require
M> 8,

Hence,

The reduced matrices are analogous to stiffness and damping matrices
generated from M coupled, rotating modes. Since the analys’s is formulated
in terms of standard cantilever mode shapes, however, repeated numerical inte-
gration of modal integrals is not necessary for different values of blade
stiffnesses. Instead, the matrix operations described atove lead to a net
savings in CPU time.

CONCLUDING REMARKS

Hybrid equations of motion are developed for an elastic blade canti-
levered in bending and having a torsional root spring to simulate pitch link
flexibility. The blade is assumed to have coincident mass center, tension
center, aerodynamic center, and elastic axes. Droop, precone, twist, sweep,
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torque offset, and blade root offset are included in the model. Quasi-steady
aerndynamic loading is assumed to be adequate to investigate the low frequency
type of unstable motion common in hingeless rotor systems. The solution is
obtained by Galerkin's method and a modal analysis. The stability of small
motiors about the equilibrium operating condition is governed by a standacrd
eigenvalue problem where the elements of the stability matrix depend cn the
solution of the equilibrium equations. In the analysis, two different forms
of the root torsion equation are developed. One is based on the torsion
moment boundary condition at the root of the blade and the other is based on
integrated torsion moments derived from the kinetic energv. Numerical results
for the two cases are virtually identical providing a reasonable check of the
equations.
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Figure 4.- Blade r
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Figure 5.~ Deformed blade showing orieutation of elastic deformations u, v, w, and ¢.



-UP

Figure 6.- Rotor blade airfoil section in general unsteady motion.



Figure 7.- Orientation of components of aerodynamic loading.
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