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NONLINEAR EQUATIONS OF MOTION FOR CANTILEVER ROTOR BJ~!S IN HOVER 

WITH PITCH LINK FLEXIBILITY, TWIST, PRECONE. DROOP, 

SWEEP, TORQUE OFFSET, AND BLADE ROOT OFFSET 

Dewey H. Hodges. 

Ames Research Center 
and 

Ames Directorate 
U.S. Army Air Mobility R&D Laboratory 

SUMMARY 

Nonlinear equations of motion for a cantilever rotor blade are derived 
for the hovering flight condition. The blade is as~umed to have twist, pre­
cone, droop, sweep. torque offset and blade root offset, and the ~lastic axis 
and the axes of center of mass. tension, and aerodynamic center coincident at 
the quarter chord. The blade is cantilevered in bending, but has a torsi nal • 
root spring to simulate pitch-link flexibility. Aerodynamic forces a~ting on 
the blade are derived from strip theory based on quasi-steady two-dimensional 
airfoil theory. The equations are hybrid, consisting of one integro­
differential equation for root torsion and three integro-partial differential 
equations for flatwise and chordwise bending and elastic torsion. The equa­
tions are specialized for a uniform blade and reduced to nonlinear ordinary 
differential equations by Galerkin's method. They are linearized for small 
perturbation motions about the equilibrium operating :ondition. Modal analy­
~is leads to formulation of a standard eigenvalue problem where the elements 
of the stability matrix depend on the solution of th-. equilibrium equations. 
Two different forms of the root torsion equation are deri~ed that yield vir­
tually identical results. This provides a reasonable check for the accuracy 
of the equations. • 

INTRODUCTION 

The general problem of helicopter aeroelastic stability involves coupling 
between the motion of the individual blades and coupling between the rotor and 
the body of the helicopter. The complexity of the general problem poses a con­
siderable challenge to the analyst, both in developing an analytical ~del of 
the system and in undersulldi g its physical behavior. An important part of 
the general rotor-body dynamic syste. is the single blade rotating about an 
axis fixed in space. For many problema of practical inter~st, blade-to-blade 
and rotor-body couplings are not significant and the analysis of a single 
rotor blade constit~tes an important problem by itself. EVen when coupling 
with other blades and the body is significant, single blade behavior usually 
remains recognizable and can be helpful in understanding the behavior of the 
core complete system. For this reason. the dynamics of a single blade forms 
an important fundamental building block in the study of helicopter dynamics. 

*Aaes Directorate, U.S. Army Air Mobility R&D Laboratory 
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hali _opter roturs with cantilevpr blades <.tre commonly te.rm d "hlngele fj 

rotl)nL II In contraRt with the murt conv ntional Articulated rot or, th' cl.mti­
lever blades of the hlngeless rotor are attached directly to the hub without 
flap or lead-log hinges. This configuration rc~duces mechan1 cal complexi ty and 
jmpro\7es iv~ licopter flying qUIll tties by increasing rotor control power clnd 
angular rate damping. The lack of hinge articulation also alters the stru -
tural characteristics of the rotor blade and can significantly influence 
aeroelastic stability. 

Aeroelllstic instability is possible because of the structural coupling 
between bending and t~rsion deflections of cantilever blades. This type of 
instability is usually characterized by coupled flap bending. lead-lag bendin ' 
and torsion deflections with a frequency near the lead-lag bending natural f re­
quency. The structural coupling of cantilever blades is significantly depend­
ent on the specific configuration parameters of the rotor blade. and the 
magnitude and variability of this coupling make the analysis of cantilever 
rotor blades an Important and c~mplex subject. 

A comprehensive study of hinge less rotor stab lity is a formidable task 
because of the many important configuration p8r~meters. The cantilever blade 
structure treated here Is shown in figure 1. The elastic blade can be rotated 
about the pitch change bearing by vertical movement of the pitch link from the 
swashplatc controls. Pitch-link flexibIlity, represented by a ~pring plem~nt, 
will perll'it rigid body pitching motion of the blade (Le., root torsion). Cer­
tain small offsets of the blade axis are often provided to reduce steady blade­
bending stresses, to improve rotorcraft flying qualities, or to ~nhance rotor 
blade aeroelastic stability. Five Jf these offsets are considered in this 
report: precone, droop, sweep, torque offset, and blade root offset. Precone 
is the inclination of the pitch change bearing with respect to the plane of 
rotation (positive upward). Droop is an inclinatIon (positive downward at 
zero pitch angle) of the blade segment outboard of the pitch change bearing. 
Sweep is a rotation of the blade in the plane of rotation (at zero pitc.h angle) 
about the blade root, positive in the direction of blade rotation. Torque 
offs~t is a lateral shift of the blade in the plane of rotation (positive in 
the direction of blade rotation). The blade root offset is the distance 
between the center of rotation and the root of the blade. These parameters 
4re i~lu8trated 1n figure 2. 

The equations of motion developed in this report are an extension of the 
previous nonlinear equations of Hodges and Dowell (ref. 1) which treated a 
g~neral nonuniform, twisted, torsionally elastic cantilever blade. The configu­
ration of reference 1 included precone as well as chordwise offsets of the 
blade section mass center, tension center and elastic axes. The present con­
figuration does not include offsets between the chordwise axes but does 
include the additional configuration parameters: droop, sweep, pretwist, 
torque offset, hub offset, and pitch-link flexibility. For additional back­
ground discussion of the aeroelastic stability of hingeless rotor blades, and 
a discussion of recent pertinent research, the reader is refelred to 
reference 2. 

The equations of motion are derived from Hamilton's principle. First, 
the structural terms are adapted from refprence 1; the inertial terms are then 
formulated from the kinetic energy. Blade aerodynamic loads are developed in 
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a way similar to that in reference 2 using strip theory and quasi-steady 
two-dimensional airfoil theory. The resulting hybrid equations are then spe-
lalizcd for a uniform blade. The three nonlinear integro-partial differential 

equations and one integro-differ.ential equation are transformed into IN + 1 
nonlinear ordinary differential equations by Galerkin's method, where N is 
th~ total number of mode shapes for each of the elastic torsion, lead-las, and 
flap deflections. Wheo these equations are linearized about the equilibrium 
operating condition, two sets of equdtions result. The equilibrium deflec tion 
is specified by 3N + 1 nonlinear algebraic equations and the stability of 
small perturbation motions about equilibrium is determined by a set of 3N + 1 
homogeneous linear ordinary differential equations with constant coefficients 
that depend on the solution of the equilibrium equations. Preliminary calcula­
tions fo·· Rtability are presented in reference 3 which treats the effects of 
twilt, ~icch-link flexibility, precone, and droop. 

Technical discussions with Dr. Rrybert A. Ormiston and checking of the 
entire derivation by Dr. Donald L. Kunz are gratefully acknowledged. 

DERIVATION OF THE EQUATIONS OF MOTION 

In this section we consider a blade for which the structural, inertial. 
and aerodynamic properties may be treated independently. Here we assume that 
tile cross section structur "" t_ Clnd inertial properties are doubly symmetric with 
respect to the blade cross section principal axes. The blade, shown schemati-

"'" cally in figur,e 3, rotates at constant angular velocity 0 about the kr axis 
fixed in space. The derivation of the equations of motion is fundamentally the 
same regardles. of the assumption of double symmetry of the blade structural 
cross section. The aerodynamic center of the blade is ~ssumed to be at the 
quarter ehord and coincident with the blade e1a~tie axis. The deformed blade 
position may be described in terms of several coordinat& sy.tem rotations, the 
sequence of which is precone ape' pitch (9 0 prescribed and t(t) restrained 
by the pitch-link stiffness kt, as shown in fig. 4), sweep ~I' droop Bd' 
and the blade elastic deformations u, v, w, and ,. The blade bending deflec­
tion coordinates v and ware defined parallel to and fixed to t~e bla~e 
principal axes at the blade root as pictured in figure 5 (along j and k in 
fig. 3). Also shown in figure 5 are the axial deflection u and the blade 
elastic torsion deformation ,. This notation is a slight modification from 
that of reference 1 where v and w were parallel to the horizontal and verti­
cal planes, respectively- The preGent scheme il more convenient when assumed 
modes are used since the vertlcal and horizontal deflections are functions of 
precone, droop, sweep. torque offset. and the total root pitch angle (90 + t) 
ae well ae the blade elastic deflections. 

Structural Terms 

In this section the structural terms are written ior a blade with arbi­
trary radial distribution of stiffness properties. These terms are taken 
directly from the final equations of reference 1. The parameters eA' B1* • 
and Cl*, defined in reference 1. are set equal to zero because of the double 
symmetry of the cross section assumed here. These terms were derived from 

3 



int grating the variation of the At rain energy by parts an~ collecting the 
coeff cient8 of 6u. 6v, 6w. and 6~. For the ~oordinate system of this report 
we must let e 1n the equations of reference 1 represent the b :dde pretwlst 
angle Op t. defined to be zero at th blade root. We alao assume that apt is 
a small angle. 0(£), where £ 18 of the order of magnitude of the bending 
slopes. The structural terms for the present configuration, neglecting 
warping rigidity CI, are thu. 

l5u term: 

-T' 

av terms: 

-(Tv')' + {(!Iz' - (El,' -Ely,)(ept+.)_~~v"+ (Elz ' -!ly,)(8pt ++)w"}" 

6w teru: 

-(Tw')' +{(Elz ' -IUy,)(8pt ++)v"+ [Ely' + (EIz ' -!Iy ')(ePt++)2)w"}" 

6+ terms: 

-kl [T(ept+')']' - (GJ,')' + (EIz ' - Ely') [(w,,2 - vu2H8pt + 4" + v"w"] 

2 2 

(1) 

where T:: EA[u' + (v' /2) + ~w' /2)]. The underlined terms in equat:fon~ (1) 
and below are terms of 0(£) a.lociated with + and 6+. These terms are 
.ma11 and are retained only for the sake of comp1etenesa. The only structural 
term in the root torsion equation may be derived from the potential energy of 
the spring (l/2)ktt2. Thus, 

at term: 

The boundary conditions, strictly from structural considerations are 

x • 0: 

x • t: 

v • w • v' • w' • • • 0 J 
v" • wit • v'" • w'" • .' • 0 

(2) 

(3) 

I Another boundar, condition at the blade root is that of torsion moment 
, equilibrium. This requires knowledge of the various blade axes systems. The 
-rotations of axe, are described fully by the following transformations: 
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II:J· ret 0 

1 
Ceo+" 

kT Sa 0 Sa +I pc 1) 

I!Pj r~· -S1;8 0 

jp • Sr; Ct; 1 
-jo. 8 
kp 0 0 0 

{U· [T1T{H 

where C nnd 5 aTe the cosine and si~, r68p~ctivelY~ of the subs T1pt~ 
angles; [T1 1s the d~formed blade coordinate transformation uf r~ference 1 
with e· e t; and for small angle. and deflections the t vectors are 
appro~imatery along the blade. the r vactoIs a~e a~proximately horizontal, 
the k vectors are approximately vertical; { x j • I. For determining the 
boundary conditions at the blade root, we note thf,lt the pitch-beari.ng axis is 
along Ip. Thus, M - Http ' At the root of the blade, however, 
M • M~t + ~j + Mvk and this, of course, must be balanced by th spring 
moment Http ' Here M" Mw, and My are twisting and bending moments due to 
+, w, and v deflections, respectively. Thus, 

Therefore, in terma of deformation quantities 

This 1s the torsion moment equilibrium boundary condition assuming that 
6pt(O) • 0 and 6pt is a small angle. Equation (6) may be used as a replace­
ment for the root torsion equation to be developed below. Numerical results 
are virtUAlly identical regardless of which of the equations are used. All 
structural quantities in the above equations are defined the same as th?se of 
reference 1 • 
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where 

Ay .. xl (CeO+tSz;sCSd + Seo+tSSd)+ YICeO+tC,s + f.\(CSO+tSZ;sSSd - SeO+tr.sd ) 

AZ .. xl (SaO+~SZ;8 CSd - c~...,+tSSd) + Yl Seo+tCz;1J + 1.1 (Sso+tSCsSSd + Ceo+tCSd) 

Ax .. XlCr;oCSd - YlSr;s +ZlCr;sSSd 

Ay .. xl (C;'o+tSz;s CSd + SSo+tSsd) + Yl Ceo+tC'=s + z 1 (CSo+tS'=s Sad - Seo +tCsd) 

~z '" xl (Sso+tSZ;sCSd - Cso+tSSd) + Yt Seo+tC,s + i 1 (Seo+tS'sSSd + Ceo+tCsd) . . 

(1-) 

Note that with this S ~lort hand notation Ay" Ay - tAz ; I5Az .. Al5z + Ayl5t, etc. 
Thus t the variation of the velocity is simply 

I5V .. [-(n+sSpct)(Al5y-Az~t)+CSpcAox 

-SSpe (A\Sz + \,l5t + Ayl5f)] tr 

+[ nCSpeAl5x - (OSSpc + i) (Al5z + AylSt) - Az6i + AlSy - AzlSt] J r 

+ {cspc [Ayl5i + (Al5y - Az~t)i + AlSz + Ay~t] + SSpcA15x)kr (12) 

SuLstitution of equations (10) and (12) into equation (9) yields (with a 
change of sign and integration by parts to accommodate Hamilton's Principle) 

6/1' .. loR. Jh P {[02SSpc CSpcAz - 02el CSpc - 02C~pcAx - 20CSpc (Ay - iAz) + Ax]A6X 

+[-0
2 

(eo + Ay) + 20CSpcAx - 20SSpc (Ai + tAy) - (tAz + fAi + f2Ay) + Ay]AcSy 

+rn2ss Cs Ax + 02elSS - 02S! Az + 20SS (At - iAz ) ~ pc pc pc Ppc pc 

+(tAy + fAy - i
2
Az) + Ai] ~z + [02eoAz + 02SSpcCSpcAr\r + 02e} SSpcAy 

+ 02C~pcAyAz + 20SSpc (AyAy + AzAt) - 20CSpcAzAx + 2t (AyAy + AzAz) 

+AyAz-AzAy+t(Al+Az2)]6t}dTl de dx 
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Equation (13) contains an exact representation of the inertial terms. It is 
at this point that one must make some assumptions regarding an ordering scheme 
in order to have a tractable set of equations. The same ordering scheme as 
that of reference 1 is assumed here, with the addition of ad' ~s' eo/ i , el/ C, 
and ~ all being O(E). Here £ is a small parameter of the order of magni­
tude of the bending slopes. We assume that 6.~ is truncated so that terms 
0(t: 2 ) are neglected with respect to unity. This scheme is not perfect .lnd, 
hence, is not followed rigidly. It does, however, greatly simplify equa-
tlan (13) and yields a set of nonlinear equations with only the most important 
nonlinear terml included. 

Even though they are very small terms it has been suggested (ref. 4) 
that higher-order terms should be included in the root torsion eq·Jation. We 
will follow that suggestion for the sake of completeness. Unlike reference 4, 
however~ corresponding terms in the other equations will also be retained to 
insure that modal mass and stiffness matrices are symmetric and that the modal 
gyroscopic matrix is antisymmetric (in vaouo). The analogous small terms 
associated with the blade elastic torsion equation, underlined in equation (1), 
are also retained on this basis - strictly for the benefit of the doubt in 
both cases. 

We first consider terma in equation (13) which multiply 6Xlt 6Y1t and 
6Z1t consecutively. Since 6xl' 6Yl ' and 6z1 contain 6u t 6v, 6w, and 6~, 
the inertial terma from these respective partial differential equations may be 
recovered. We need all terms up through 0(£) for 6Xl and up through 0(£2) 
for terma involving t. Thus, 

6Xl terma: 

(14) 

We need all terms up through 0(£2) for 6Yl and 6Z1, and up through 0(£3) 
for terma involving t. Thu8, 

6y 1 terms : 

/0" lL. pf 02r;s <Ax + e I} + 20r;s (At - tAz ) 

+[ -02 (eo + Ay) - 20Bpc (Az + tAy) + 20Ax 

(15) 
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6Z1 terms: 

fa t lL pt-02Sd (Ax + e1) - 20Sd CAy - tAz ) 

+[n2 (eo + Ay) + 2nspc (Ai + tAy) - 2flA* + tAz - AyJSe +t 
o 

(16) 

The c~ contribution as it appears in equation (13) is unchanged for this 
step in the analysis. Rate product terms such as ~2Ay or ~Az are neglected 
since they do not contribute in a linearized stability analysis. 

Secoud. we may substitute equations (11) into equations (14)-(16) and in 
the 6t part of equation (13) to produce 

6x1 terms: 

[/'JJA - p[02(x+el) +2fl(Y1Ceo+t- ZlSeo+t) 

-20t(Yl Seo + zlCeo) - 20xt(!;sSeo ~ SdCeo) ]dn dZ; dx (17) 

IS'll terms: 

l/'I£. P [02el (SpcSeo+t + Z;s) - fl2eoCeo+t + 02x (Spc + !;sSeo+t - SdCeo+t)Seo+t 

+20X1 Ceo+t - 20%1 (Spc + z;sSeo+t - BdCeo+t) - 20xZ;s Bl t 
•• 2 2 

-20SpcYl t - 20Z;s t(Yl Seo + Zl Ceo) - 0 Y 1 Ceo+t 

+02Z1Seo+tCeo+t- (zl- 8dx)i+ y1 ]dn dz; dx (18) 

9 
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ISz 1 terms: 

fa.t J~ p [02el (BpcCeo+t - ad) + 02eoS6
0
+t + 02x (Bpc + 'sSeo+t - BdCeo+t)Cso+t 

-20X1 Seo+t + 20Y1 (Bpc + 1;sSeo+t - BdCeo+t) + 20xBd B1 t 

-2nBncz 1 t + 2nadt (y 1 Seo ... z 1 Ceo) + 02y 1 Seo+tCeo+t 

(19) 

1St terms: 

10 .tIt. p (n2
xco (l;sSSo+t + adCeo+t) + 02eo (Yl Seo+t + Zl Ceo+t) 

+n2x.:! ~apc + 1; s Seo+t -BdCeo+t) (l;sCeo+t + SdSeo+t) + 02xelSpc1;1 

+02x (Rpc + 1;88e +t - BdCe +t) (YI Ce +'" - zlSe +t) + 02elSpc(YlCe - z1 Se ) o 0 0 y 0 0 0 

+02X (r.;sceo+t + SdSeo+t) (Y1 SSo+t + Z1 Ceo+t) + 02(Y12 - Z12)Seo+tCeo+t 

+o2Y1 z1 C2 (eo+t) + 20Spc (YIY1 + zl Zl) + 20xSl (1;s1 1 - SdZl) 

+20(Yl Seo +ZlCeo)(l;sY1 - adZl) + (Y1 +ts X )Zl- (Zl- SdxH'l 

+x2¥ (1;s 2 + Sd2) + 2xt(,sY 1 - SdZl) + (Y1 2 + Z1 2)i]dn dt dx (20) 

where Sl - Spc + r.;sSeo - SdCeo ; l;l -l;sCeo + BdSeo. In equations (17)-(20), the 
expressions have been truncated to the appropriate order of magnitude as pre­
scribed by the ordering scheme discussed above. Finally we must write 
explicit expressions for xl, Yl, and Zl and use these expressions to formu­
late the inertial terms explicitly in terms of u, v, w, ., and t. From 
reference 1 and equation (8) 

10 
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The 

Xl • X+U-)'(9pt+~)' -,,[V' eo.(apt +~) +w' sin(apt +.)] 

-I'; [-v' a1n(9pt +.) + w' eo.(Spt +.)] 

Yl • v+ n eos(9pt + ,) - r; dn(9pt + ,) 

zl ; w+n sin(ept + ~) + , cos(9pt +.) 

au terms may be formed directly from the oXl terms 

tSu terms: _mfj2(x+ el) + 2mf2x~(r;sSeo - BdCeo) 

-2mn(vCeo+~ - wSao+~) + 2mf2(vS eo + wCeo) ~ 

(21) 

( 22 ) 

where m = IIA p dn dr; and rIA pn dn dr; - JIA pr; dn dr; 2 0 for coincident 

6v and ow terms may arise from both oXl, 
are small, however, and are underl ined 

elastic and mass center axes. The 
oYl' and aZl' The terms f ~om oXl 
below 

OV terms: 
mfj2el (BpcSeo+t + r;s) - tnn2eoCeo+~ + rnn2x(Bpc + r;ssSo+t - BdCeo+~) SSo+t 

-mn2vc~o+t + tnn2wSSo+tCSo+t + 2tru2UCSo+t - 2tnnW(Bpe + r;sSeo+t - BdCeo+~) 

-2Jmlxts Bl t - 2tnnSpevt - 2mOl';s(vSs +wCe )i o 0 

ow terms: 

mn2el (BpeCSo+t - Bd) + mn2eosSo+t + mn2x(Spe + tsSeo+t - SdCeo+t)Cso+t 

+mn2vSe +tce +t - mn2ws~ +t - 2mnuss +'" + 2mQV(Spe + tsSe +t - BdCe +t) o 0 0 0 y 0 0 

+2mOxBdSli - 2DlSpewi+ 2mOSd(vSSo +wCso)i 

+m(v + tax). +mW+ 20Ceo (-Atilt)' + 20tCeo <u!l)' 

(23) 

(24) 

Since the av and ~w terms from OXl arise fro. integration of a6 by parts, 
there are additional terms evaluated at the boundary that do not necessarily 
aatisfyequations (3). Theae terms are 

-2aO(. + i)(~2SeOav + ~lCeoaw)l~ 

11 
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I 

These terms must be included 1n the analysis when Galerkin's method is applied 
in the solution of the equations of motion. 

The 6~ terms arise from both 6YI and 6z 1 since contributions from 
are negligibly small. The contributing terms from oYl and 6zl are 

The ~~ terms follow immediately: 
( 

6~ terms: m02(k~2 - ~1) [SsoCSo + (apt + ~ + ~)C2eol 

+2mO(v'seoIc.!2 +w'CeoI<!l) 

+mtt!(~ + t) 

Here as above the underlined terms are 0(£3). From equation (20) the 6~ 
terms may be written 

6~ terms: 

+mn2X2 (8pc + r;sSeo+~ - 8d ''''eo+~) (r;sCeo+~ + 8dSeo+~) + mn2el 8pC r;1 

+mn2X(8pc + r;ss6o+~ - BdCeo+t) (vCeo-i-t - wSeo+t) + mn2e} 8pc (vCeo - wSeo) 

+mn2x(r;sCeo+~ + 8dSeo+t) (vSeo+t + wC6o+~) + mn2 (v2 - w2)SSo+tCeo+t 

+mn2vwC2 (6o+t) + mn2 (t<!2 - ~l) [S6oCeo + (ept + ~ + t)C2eol 

12 
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.. 

• 

The 6~ terms are under an integral because ~t is not a function of x. 
(Hamilton's principle results in a partial differential equation only when the 
6-quantity is a function of x.) 

Aerodynamic Terms 

The aerodynamic lift and pitching moment acting on the blade in hover are 
based on Greenberg's extension of Theodorsen's theory (ref. 5) for a two­
dimensional airfoil undergoing sinusoidal motion in pulsating incompressible 
flow. The rotor blade aerodynamic forces are formulated from strip theory 

I 
and only the velocity component perpendicular to the blade spanwise axis 
(the x'-axis in the deformed blade coordinate system x', y', z' in f i g. 6) 
influences the aerodynamic forces. A quasi-steady approximation of the 
unsteady theory for low reduced frequency k is employed in which the 
Theodorsen function C(k) is taken to be unity. The steady induced inflow for 
the rotor is calculated from classical blade-element momentum theory. These 
simplifying assumptions are juoged to be adequate for low frequency (mainly 
determined by the blade bending frequencies) stability analyses of a hovering 
rotor. 

In Greenberg's theory (ref. 5), a two-dimensional airfoil is assumed to 
be pivoted about an axis which may be distinct, in general. from the aerody­
namic center axis. The airfoil is pitched at an angle E(t) to the free 
stream flowing at pulsating free-stream velocity Vet). The airfoil is verti­
cally displaced with velocity h(t) positive downward as shown in figure 6. 
The relations for lift and pitching moment per unit length may be expressed in 
terms of the circulatory and noncirculatory components 

L - (29) 
M-

With the airfoil pivot axis tanalogous to the rotor blade elastic axis) at the 
airfoil quarter chord (the airfoil aerodynamic center) these components are 

Pco8C C (.. • • CE) 
LNC - -2- 4' h + Vt + Vt + T 

PCD8C (,. CE) 
LC - -2- V,h + Vt + T 

PCD8C (C)3 £ (C) 
~C - - -r '4 2' - 4' LNC 

PCD8C (C)2 . 
Me - -~ 4' Vt 

13 
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I 1 

The Theodorsen function C(k) has been set equal to unity in the circulatory 
lift. It should be noted that £ is the angular position of the airfoil with 
respect to s~ace; £ and £ are the angular velocity and angular acceleroltion 
of the airfoil. The instantaneous angle of attack of the airfoil 
a - tan-l(Up/UT) is the angle between the airfoil chord line and the resdUnt 
fluid velocity U of the airfoil. The airfoil velocity components in the y', 
z' principal axis system are UT and Up shown in figure 6. It is desirable 
to express the aerodynamic forces and moments in terms of Up and UT. 
Assuming that the angles £ and a are small yields 

Up ;; -h - V£ 

U -/UT2 + Up2 ;; V ) 
(31) 

Substitution of h and V from equationl (31) into equations (30) yields 

p.ac c (. c •• )} LNC • .,- 4' -Up + 4' £ 

P ac ( C) LC • ~ U -Up + 2 £ 
(32) 

Next we consider the total aerodynamic forces in directions parallel and 
perpendicular to the airfoil chord line. The noncirculatory lift is ~aken to 
act normal to the chord line, and the circulatory lift is taken to act normal 
to the relultant blade velocity U. An aerodynamic profile drag force per 
unit length, based on a constant profile drag coefficient cdo and acting 
parallel to the resultant blade velocity, is included. 

D • Piac c:o (UT2 + Up2) (33) 

The force components and directions are shown in figure 7. The force compo­
nents T, normal to the airfoil chord line, and S, parallel to the airfoil 
chord line, are therefore 

Prom figure S, 

T • LC cos a + ~C + D sin a ) 

S • -Lc ain a - D cos a 

UT I cos a • '"if 

Up 
sin a .­

U 

Substitution of equations (32), (33), and (35) into equations (34), with 
cdo/a neglected with respect to unity, yields 

14 
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• 
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p .. ac [ c. C· (C)2 .. ] I T - -r -UptJ.r + '2 UTE: - 4' Up + 4' t 

p.ac (2 c • cdo 2) 
S - -:r- Up - 2 UpE - -.- uT 

(36) 

The expressions for aerodynamic pitching moment components may he written from 
equations (30) and (31) as 

(31) 

where U has bee.n approximated by UT in Me. The total pitching moment is 
t 'hen given by 

POiac (C)21.. . Jc .. ) 
M - - 2 "4 ,UTE'· Up + "8 £ 

(38) 

The aerodynamic force and moment acting on the blaae at a point on the 
def~rm '~ beam elastic axis (c)incident with the blade airfoil section aero­
dynamic center) are 

+ + 
M - Mi' 

The virtual displacement and virtual rotation are given, respectively, by 

~q - ~ul + 6v! + I5wk + ~tlp )( [(x + u) 1 + v! + wk] 

6~ - 15411' + 6tlp 

Thus, the total virtual work of the aerodynamic loads is 
\ 

f1 % + + + ' 
~w - Jo (F' ~q + M • ~w)dx 

(39) 

(40) 

(41) 

(42) 

(43) 

In order to write the aerodynamic terms in each equation we MUst express equa­
tion (43) in terms of u, v, w, 41, and t. This entails writing Up, UT, and € 
in terms of u, v, w, 41, .and t. The blade airfoil velocity and rotation are 
simply 

V - -neolr + Ge1Jr + Vikr+ ill +v! +wk+ (Okr + i!p) )( [(x + u)! +v! +Wk]} 

: - o~+i!p+.!' 
(44) 

l.S 



where vi 1s the induced inflow velocity equivalent to that of reference 2 
except that root torsion is included and the pit~h angle is not necessarily a 
amall angle. From figure 6 

Up • V . k'! .. .. 
UT • V • j' 

t • : . t, 

(45) 

Without writing all the details, substitution of equations (36), (38)-(42), 
(44) and (45) into equation (43) yleld~ an expression fo~ 6W of the form 

(46) 

wh~re Lu ' Lv, and Lw are aerodynamic forces per unit length and M and M~ 
are aerodynamic moments per unit length. All these quantities appear dS 

forcing functions on the right hand side of the equations of motion. We 
assume 6pt • O(E) and 60 • O(c 1/ 2) so that the expressions are not OVErly 
complicated by small terms. 

pooac .) 2 
Lu - - -2- n"x SeoCeow' 

pooac (2 2 2 2 2 Lv • -2- 0 (x + 2elX)SSo + 0 x (ept + 41)SeoCeo 

2 2 cdo 2 2 2 
+vi Ceo - OXVi [S2eo + (ept + 41)C2eo] - --a 0 x .Ceo 

+{02x2S2So + [n2x2 (ept + 41 +~) - 20XVi]C2So}~ 

+{<Spt + 41) [Ox(SSo + ~CSo) - VICSoJ - 2 ~ OXCSo}V 

+{2"iCSo - Ox[2Sso + (2t + ept + 41)CsoJ}w > 
p ooac < 2 2 ] 2 2 2 r x Lw - -2- 0 (x + 2elX)CSo [SSo + (ept + ,)Ceo + 0 x Ceo Jo v'w" dx 

-O(x+ el)viC2So - 02eox(SpcC290 - BdCeo) + 02 ;c (13 1 +w'CSo)CSo 

-02eoxw 'Ceo - 02xvw 'C;0 - 02xB1VCeo - 02x2Spcr.;sCeo + 02(x2 + 2elx)~C2eo 

16 
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~ --i • 

(50) 

r9. 1.1 Pocae ( 1£)2 •• Jo Mt dx - 0 -y- -\4' [20xCeo(++t) +02x (B l +w'Cso )] 

+ <i)[i - (v+ r;.x)]w+r. ... (X2 + 2elX)Seo[-S90(w - SdX) + CSo(v+ I;.x)] 

+02 (x2 + 2eI X)C~o (9pt + 41)(v + taX) - n2x2 (9pt + .) Seo C90 (w - Bdx) 

-(Vi 2 - 0'x2 e:
o

) Ceo (w - SdX) + 02x2C~0 (v + r:..x) foX v'v" dx 

-O(X + el)v i C2So (v + t;sX) + OXVdS2So + (9pt + .)C290 ](W - SdX) 

-n2eox(SpcC2So - SdC90)(V + r:.SX) + 0 2 .!£ (13 1 + v' Cso)Ceo (v + l;sX) 

-20XVi]tC280 (w - SdX) + v < f 2 e:
o 

OxCSo - (Spt + ,) [Ox(SSo + ~Ceo) 

-ViCSo ]} (v - SdX) + tOX[Sso + (. + 2Spt + l+)CsoJ - ViC~o l(v + !;sY.» 

...w(tOx [2Seo + (2. + Spt + +)CeoJ .. 2vtCeoJ(v - SdX) 

) 
3e • 

-O(x + el)CSo (v + l;ax) + T Ox(v + r:..x)CSo+ 

+ [34C - (v+ l;sX)] (v+ r;SX)OXC9o.)dX 

where 

Vi • tOI w: (/1 + !! I Seo + [Spt(!) + .o(!) + t]ceo 1- 1 , 
san vi • ean{seo + [ept (!)++o (!)+t]Ceo ; 

bc a .-" . 
Equation. (1), (2), (22)-(24), (27), (28), and (47)-(51) when combined as 

• 
etructural tel'1U + inertial terM - aerodynaa1c te11lUJ - 0 

(51) 

(52) 
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yield th hybrid equation. of motion. The boundary condition. are found in 
e~uation8 (3) and (6). 

SOU'T ION or TH! EQUATIONS or )l)TION 

Simplification and Nondiman8ionelization 

The equation8 are solved by Galerkin's method using IOOde shapes of a 
nonrotating uniform cantilever beam. For ronvenience we treat only the case 
with uniform radial distributions of mass and stiffnes8 propert1~s. In gen­
eral, a flexible beam segment inboard of the pitch-bearing i. pres nt and non­
uniformities in bending stiffne8ses influence the flap-lag structur. l coupling. 
In this p~per, the inboard beam segment is eliminated entirely by placing the 
pitch change bearing in the hub itself, thus leaving only the single outboard 
blade segment. However, the effect of the inboard beam sc~,'ent on the struc­
tural coupling between flap and lead-lag bending is represE'uted in an approxi­
mate fashion. Flap-lag structural coupling ~~pends on the relative sti f fness 
of the blade segments inboard and outboard of the pitch-bearing be ause the 
principal elastic axes of the outboard blade segment rotate throu~h the angle 
So as the blade pitch angle varies, while the inboard segment principal axes 
do .. ~t . The resultant effective orientation of principal axes depends on the 
bla~! geometry and distribution of bending stiffnesses inboard and outboard of 
t~~ pitch-bearing. Although t~e variations in the structural coupling 8ignifi­
~antly influence stability, they are not present in a simple single-segment 
uniform beam treated here. They are difficult to include exactly without 
resorting to a IOOre general blade configuration and a more sophisticated anal­
ysis. However, an approximate representation of these effects may be intro­
duced with no increase in complexity. This is accomplished by arbitrarily 
assuming that the aveTPbe inclination of the principal elastic axe~ of a non­
uniform blade is e~~al to some fraction of the inclination of the principal 
axes of a uniform single-segment blade. This entails having the structural 
p~incipal axes inclined at ~90 rather than 90 while the mass and inertial 
• .rma are unchanged. The factor Ii is called the structural coupling param­
E..:er. When Ii • 1, the original equations are retained, but as ~ 1s reduced 
to zero, the flap-lag structural coupling terms dimin1f1h and eventually vanish. 
Although this is only an approximation of the true effect of flap-lag struc­
tural coupling, it greatly simplifies the numerical model and does represent 
the type of behavior that would bo exhibited by a general nonuniform blade. 
In order for the structural axe. to be inclined at Qeo to the plAne of rota­
tion, however, we must substitute apt - (1 - 1l)90 for e in the structural 
terms of reference 1 because of the chanae in the coordinate system. 

The equation. are further .implified by eliminating the ~u equation and 
all terms containing u. This i8 accomplished by solving the 6u equation 
(consisting of equations (1), (22), and (47) combined as discussed above) for 
T. The resu1tin¥ expres.ion for T may then be substituted into the other 
equations. An expression for u may be ea.ily obtained using the definition 
of T. Proceeding in this manner we first write the 6u equation 
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For a uniform blade we may raondlmenlional1ze as follows 

where 

e1 el - _. 
1 • 

_ u 
u • _. 

~ , 

3PooacR. y. -
m 

Now, integration yields 

T • 

- ~ Sa Ca f1 i 2i' dl 6 0 0 til 

_ w 
w-I 

tock number 
- (R'+ - e1'+) /14 

(55) 

Equation (55) ior T may now be substituted into the bending and torsion equa­
tions retaining terms to the appropriate order of magnitude. In the bendinl 
equations the contribution of the last term, an aerodynamic ter. proportional 
to y. is negligibly small. In the torsion equation only the first term is 
retained. 

In order to eliminate u from th~ equationa, we nov conaider the defini­
tion of T, equation (If), nondimenaionalized with reapect to .o2 t 2 

(56) 

Oifferentiating equation (56) with respect to • yields 

(57) 
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equat1cnu 

-VC~o+t + WsSO+tC80+t - 2C80+t J;, 
-2i~.Sl. - 2SpC'. - 2t.(YS,o +iCeo). - ( - Sdx)' i+ 2-2 '0.' 

LC~ J~ :+ r a iC, - (8,t :+ .) [i(8eo + tee ) - '1C,o) 

[2580 + (2. + 8,t + .)C801 - 2fiC,o}~ 



4w equation: 

+ 1. < (-2 + 2- -)C2 ... -2C2 LX -'-It d- xc :-.... 2 + 2 - 'C + ---,c2 
- x e 1 x e 'I' - X e v W x - - "'"'0 ,., xw e XVW e 6 0 00 20 (l 0 0 

64> equation: 

-kl[(l-; x2) (ept + t) ']' - te4>" + (A2 - Al){(w,,2; vlt2) [-S29
0 

+ (ept + t)C20o] 

+V"W"[C26
0 

+ (Opt + 4»S29
0
],+ (k~2 - ~l) [SaoCoo + (ept + t+ .)C200 ] 

+2(k2 Sa ~, + 1;~ Co i') + 1;_2+ + lC
2 

[2iCe (~+.) + XC0
2 

i' -;] 
m2 0 "'Ill 1 0 "'Ill 96 0 0 
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L _._ .. _ I .. ~.~ 

at equation: 

Qt+ ~o ~C'SSo+t- 8dCSo+t) +10 10 1 
(vSSo+t+WCSo+t)dx+1 el8

pe
l.

I 

+ 1 (8pe + C'SSo" - 8dCeo+t) (c.Ceo+t + 8dSeo+t) + i l 8pe [, I (vCeo - wSeo)di 

+(8pe + C.S60 " - 8dC60 +t) 101 
l(vCeo .. - WSeo+t)di 

+(c.Ceo+. + 8dSeo+t) [, I i(vSeo .. + WCso+.)di + 52 (e
o
+.) 11 (v2 ; ;2) dl 

o 

+C2(eo+t)10
1 

\10 dl+(~~2-k~I)[SeoC60+.C2so+C2eo 10 1 (8pt+~)diJ 
+28pe 1/ (vt+wC;)di+28 1 101 1(c.O-Sd6)d! 

+2 (C.S60 - SdC60) 10 1 
( 1 -2 i

2
) (0'0' + 1i'0' )di + :lk~2Seo ¢(l) + 2k!1 Ceo~(l) 

+2 II (vSe +WC6 ) II (v'~'+;'6')dil di+2 II (vSe +WCe )(C.~-8d6)di .0\, 0 0 10 10 0 0 

+ 1,1 (v+C.i)&) dl-10
1 (W-8di)~ dl+k.2 l l

• di+e.~;8d2). 

+2. l,1 i(c.'-8dW)di+¥ 101 (02+ w2)di+k.2t 

+ x. fc2 
rc t+2C II i.' di+c2 I! iV' di- II t di'·i II (v+ .. ·.i)O di 6 16 ~ 60 eo 10 eo 10 10 ~4 10 

S 11 1-2 2- -)(:"J' ~ )d- (1 211) _ ,I ( __ ) __ 
-eo 0 .x+_Ix v"eo -""'60 x-CISeo i;+T+VtC2601o x+_Ivdx 

-C~o L 1 (i
2 

+ 2i1i) (ept +.) (v + C.X)di + SsoCe
o 

l, I i 2 (Spt +.) (v - 8di )dx 

+Ceo £1 (Vt
2

_ i2 e!o) (V-BdX)dx-C~o [,1 i2(v+C'X)l~ V'w" dXI dx 

- (1 !J.) - (1 1 
-- d- Bd) - , I -(6 ) (- 8 -)di +VtC~60C8 3+ 3 -VtS260 0 leW "-] -VtC2eo 10 x Pt+. w- dX 

+10 (SpeC:.: eo - BdCSo) (~. + 10 1 xv di) -f BICeo e31 + l/ xv di) 

- f C~o 10 1 
'iG'(v+ t • x)di+C60 10 1 

i(eow' +vw'Ce
o 

+Blv)(v+Csx)di 

( r, . II -2- d-) &1 1 -2(- -S )d- C2 t 
+CSoBpeC• T+lo xv x -"0 x VC2eo-W2eo x--

4
-

- 2il t (~. + 10 I xv di) + 4>C2eo 10 I i 2 (ept + +)(V - Sdi)dx + t2c2elL I i2; di _ S4d) 

2- "I -- - Bd) 2 edo C II -~(- 8 )d-- Vt.C2eoVo leW dx-] - a eo 10 xv w- dX x 

+(Sso .. Ceo) 10 1 i(Spt + .)i(; - Sdi)di - VtCeo 10 1 (Spt + +)i(w - Sdx)di 

+Vt Cso 10 1 (v + l;8i)~ di - (SSo+tCSo) J;, 1 x(v + C.iC)V di 

-2Cso 10 1 i(Spt+')~(V+C.i)di-2(Sso+tCeo) 1/ xG(w-Bdi)dx 

-CSo 1/ i(ept + .)G(w - Sdx)di + 2VtC60 J;, 1 ;(; - Sdx)di 

+C 1.1(-+1)(- -).td- 3~c /,,1_(- -)':'d- le
c 

~(Il So 0 x 1 v+Clx W X- 4 eo 0 x v+tsx 'I' x-T So"',l
o 

+Cso• (10 1 
xv2 

di+2r;s £ 1 i2v di+ C:
2
)). - . ~;: CeoBI 

o 

22 

XV di+ c.) 
3 

1 

(62) 



__ .J 

where 

Elz' EI , GJ A2 . Al - mS·lt4 ; -mn214 ' Ie - mn2t 4 ; 

( - ) _D. ( )' a () a --' --' 2. ' ax • aljl , 

_ Vi ) vi-or 

60 - \1 -6l)90 

(63) 

Terms not satisfying equation (3) are 

(64) 

The terms of equation (64) must be included in the analysis as discussed above 
in order to obtain the correct results. Equations (59)-(62) are the hybrtd 
nonlinear equations of motion that will b~ solved b) Galerkin'a method. 

Application of Ga1erkin's Method 

In transforming equations (59)-(62) into modal equations we use the mode 
shapes for a nonrotating cantilever beam. We also assume that the motion is 
characterized by small perturbation motions about a steady equilibrium opera­
ting condition that depend on dimensionless time ljI(-Ot). Thus, 

where 

N 

v - 1: [Voi + ~Vi(ljI)J'i(X) 
i-I 

N 

w - 1: [Woi + ~Wi(ljI)J'i(x) 
i-I 

N 

~ - 1: [toi + ~ti (ljI) ] a i (x) 
i-I 

'i (x) - cosh(8ix) - cos(8ix) + ai[sinh(8ix) - Sin(8i X)]} 

ai(x) - 1:2 sin(Yix) 

(65) 

(66) 

The constants ai and 8i are defined in reference 6 and Yi - 1f[i - (l/2)]. 
We also assume that 

(67) 

and that 
(68) 
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Nonlinear algebraic equations for Voj' Woj. toj. and to determine the 
equilibrium deflections. The perturbation deflections are governed by a set 
of homogeneous ordinary differential equatiO!18 for AVj, AWj. Atj. and At. 
with constant coefficients depending on Voj' Woj' toj. and to' The modal 
equilibrium equations are a. follows: 

~Voi equation: 

+(Mij + elLij)Voj - Voj6ij (C~o - toS260 - t02C260) +Woj 6ij (S80C60 + t oC280 - t02S260) 

+Aj[elBpctoC6o +eoto(seo + tO~6o)] 6ij +Bjto(S2 +tot2)~ij 

+ f t (ViC26oQij - S6oC60Rij)toj - to [S260Cj +C260 (toCj - 6t Dj - 2ViBj)]6ij-toRijtOjJ) 

i-l.2 •••• ,N (69) 
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aWOi equatiolu 

• t «A. - AI) C ~ 8t'1j + C". ( .olt Vlt1j - 8t P 1j) 
j-l [ It-I 

+S21 i; .olt t .otYltl1j - 28t Vkij\lVOj + AISj 4&ijWOj+ (A2 - AI)rsjoSj46ij 
o It-I t-1 I/J [ 

+ * {- (R1j + 2iIQij)C~0.Oj + ~ UijkVOjWOkC~o +(10 -f Ceo)Ce.OijWOj 

• +81CeolijVoj - loC2oo (Cj +2i IBj)61jJ > 
.- -[11 (BpcCoo - Bd) +ioSeo]Ai- BICOoBi +i [(Ci +2-lBi)300Coo - 0tC:o(Di + 2e lCi) 

610i equation: 

t «kA2Nij +ICYj 26ij)loj + (A2- AI){f vijltL 82

2
80 

(WOjWolt-VojVolt) 
j-1 It-I [ 

+C28 VOjWolt] + 0t t V1jlt[C28 (WojWolt - VojVolt) + 828 VojWolt] 
o It-I 0 0 

• 

• 
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equation: 

ORIGINAL PAGE IS 
01' POOa QUALITY 

(72) 
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The linearized perturbation equations are ea.ily expre •• ed in matrix form as 

[M]{6i} + [e]{AX} + (~]{6X} • 0 (73) 

where (M], [e], and [K] are, re.pectivaly, the .... , gyro.copic and damping, 
and stiffnes8 matrices given below and 

(74) 

[M] • (75) 
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where the mode .ha~ integral. are 

~ ' . /;,1 'i dl 

Jij · II 0 i 2'i'j di 

}(ij • /;,1 ieiej di 

1 
Lij • ~ (1 - x)' 1 " j t di 

"tj · il (1- i
2

) 1f' '1f' ' di 2 i j 
0 

Nij · i 1 (1- x2) , , 
2 e1ej di 

0 

Pij • Ic,t X'1"'j" dl 

Q1j • II 0 
i'i'1ej di 

Q~j • 1;,1 iei , j' di 

Rij • J;/ i 2'Pie j dx 

Sij • fa 1 'i0 j di 
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Many of theae integrals have been evaluated in c10aed fl)m by uae of 
reference. 7 and 8. Additionally, theae and all the reD~ining integrals were 
evaluated nu •• rica11y. The matrix [K] ia simply the Jacobian of equa-
tions (69)-(72) and will not be written out in detail. Representing 
equation. (69)-(72) aa 

Yi - 0 i - 1, 2 , ••• , 3N + 1 

Then 

[ aYi] [K] - -aXoj 

where 

{Xc,j} - LVoj,Woj'·oj'·oJ 
T 

We note that [M] and [K] are symmetric and [C] is antisymmetric for 

(78) 

(79) 

y - 0 (in vacuo). Thus, equation (73), a standard eigenvalue problem, governs 
the stability of small motions about the equilibrium operating condition. 

As described above, it is possible to use the torsion moment boundary 
condition, equation (6), instead of the root torsion equation (62). If this 
is done, the dimensionless form of equation (6) becomes 

- 2 
Q. - Ie.' (0) + k~ [.' (0) + e~t (0) ] 

+ts{AIW" (0) - (A2 - A1) S§o [v" (O)Ceo - Oil (O)S§o]) 

+Sd{A2V"(0) - (A2 - A1)Sa [V"(O)S~ +w"(O)Ce ]) 
000 

The modal equilibrium equation ia 

N 

(80) 

+2Sd 1: Bi2[A2VOi - (A2 - A1)Seo(VoiStJo +WoiCtJo)] (81) 
i-1 

The perturbation equations may be easily solved for 6. and substituted into 
the other equations since there are no time derivations. Thus, 
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.. 2Sd(A2 - Al)SSO t Si2(6ViSSo +6Wi~0)] 
i-I 

82) 

Numerical results obtained with equations (81) and (82) are virtually identi­
cal with those using th~ 5 ~o and OAt equations derived above based on inte­
grated torsion moments. The use of equations (81) and (82) is considerably 
simpler and provides a reasonable check for numerical results. 

Modal Analysis 

We now describe a modal analysis that greatly simplifies numerical 
computation. From equation (73) the stability of small motions about the 
equilibrium operating condition is determined by the eigenvalues of the 
6N + 2 x 6N + 2 matrix [P] where 

(83) 

Since we are primarily concerned with lower frequency instabilities 
(first lead-lag, first flap, and first torsion frequencies), there is a value 
of N for which any increase in N will not appreciably change the eigen­
values associated with these lower frequencies. It is at this value of N 
that the eigenvalues are considered to be converged. For practical hingeless 
rotor configurations, N - 5 gives suitably converged eigenvalues; the matrix 
[P] is thus 32 x 32. By a change of modal coordinates, the size of the matrix 
[P] may be greatly reduced without significantly changing the eigenvalues of 
interest. Such a transformation may be found by first considering free vibra­
tions in vacuo of the blade about the equilibrium deflected state. The equa­
tion of motion, analogous to equation (73), i. 

(84) 

where the subscripts s and v imply the symmetric part and the vacuum case, 
respectively. Both [Ms] and [Ky] are thus symmetric; [Ky] is equal to [K] 
with all the aerodynamic terms set equal to zero. The matrix [G] i. anti­
symmetric and equal to [C] with all aerodynamic terms set equal to zero. The 
presence of [G] causes the eigenvectors of free vibration to be complex. This 
may be avoided for computational efficiency by approximating equation (84) as 

(85) 
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The matrix of the eigenvector. [U) i~ orthosonal with re.pect to [H.]. It i., 
therefore, approximately ortholonal with respect to (H) a. well aince the 
alements ~f tha antisymmetric part ot [H) are very .mall. Thus, 

(86) 

Accordins to Meirovitch (ref. 9) a ao-called principal coordinate tran.forma­
tion for equation (73) may be datermined by raplacinl {AX} by [U]{AX}. We may 
than premulttply equaUon (73) by [UJT to taka advantase of the form of 
~quation (86) yield1na 

(87) 

Hence, 

(88) 

The ~atrice8 [P] and (P*] have virtually the .... eiaenv.lue.. However, 
beL~u8e of the n.ture of thi. modal coordinate transformation from [P1 to [P*l. 
the ~OW8 lnd ~olumns correspondinl to nilh frequency mode. of both (utKUl and 
rUICC] may be removed without affecting the eilenvalues of the low frequency 
:nodes of interest. These ~N + 2 )( 3M + 2 .trice. sre thus reduced to H)( M 
matrices who". rows and columns correspond to the ' H low fr.quency IIOde. that 
are retained. The rows and columns that are ret,ined in [UTKU] and [UTCU] may 
be chosen 1n two ways: (1) the K row. and column. that correspond to the M 
lowest frequency modea of the bl.de may be ret.in.d, or (2) the M rows and 
columns that corre.pond to M mode. ..l.cted arbitrarily frca the lowe.t 
lead-lal, th • . lowe.t flap, and the lowe.t tor.ion frequency mode. are ret.ined. 
For the .econd c.se, under cert.in conditiona, M • 4 or 5 will re.ult in con­
v.rled eigenvalue.. In either c.... .uitably conv.raed re.ult. do not require 
H > 8. 

The r.duc.d matric ••• r •• naloaous to .tiffne •• and d.apinl matrices 
s.nerated frail K coupled. rotatinl mode.. Since the .naly.ls ia fonulated 
in terma of standard cantilever .od •• hape •• howev.r, repe.ted numerical inte­
ar.tion of mod.l intearal. i. not n.c •••• ry for different v.lue. of bl.de 
.tilfne..... Inetead, the .. trix oper.tion. d •• crib.d .above lead to • net 
•• vings in CPU tiae. 

COtICL1JDING IIMABS 

Hybrid equation. of motion are developed for an el •• tic blade c.nti­
levered in bendinl and havinl a torsional root .prina to .t.ulat. pitch link 
flexibility. The blade is a •• u.ed to have coincident .... center, ten.ion 
center, aerodynamic center, and elastic axe.. Droop, precoDe, twist, sweep. 
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torque nHsd. and blade root nffset ar" included in the model. Quas l-~t dy 
aer"dyndl!lic loading i8 aaaumed to be ad quate to investig<lte the low frequency 
type of unstnble lIlotion coftlftOn in hingelesa rotor systems. 'nl solution is 
obtai"ed by Galerkin' method and a modal analyds. Th stability of mall 
motiOf4S about the ~qull1brlum operatini condition is gov rned hy a fitand;n:'d 
eigenvalue prnblem where the elements of the stability matrix depend on the 
solut i on of the equilibrium equations. In the analysis. two different iorma 
of the r~ot torsion equation are developed. One is baled on the torsion 
moment boundary condition at the Toot of the blade and the othe,' 1& based on 
Integrated torsion moments derived from the kinetic energv. Numerical results 
for the two cases are virtually identic.l providlna a reasonable check of the 
equation •• 
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Figure 4.- Blade root pitch angle with and without pitch-link (spring) defor.ation. 



. • 1 

·l 
.. :. .. ~
 .. :s 

j .., ! 0 

"" tI ."
 

U
 

'P4 
.., • ~ tI 

"" 0 g 
'P4 
.., co 
.., i 'P4 
... 0 00 
s:I 

j • tI 

-= .-4 
A

 

1 0 
.... &

 I . In
 

tI 

i =
 



z' 
/"y' 

1 

v 

u 
ti 

~ 
-------~ 

-Up 
Figure 6.- Rotor blade airfoil section in general unsteady motion. 



• 

z 
Z 

I 

\ Lw 

y 

u 
Figure 7.- Orientation of components of aerodynamic loading. 


	0060A02.jpg
	0060A02.tif
	0060A03.jpg
	0060A03.tif
	0060A04.jpg
	0060A04.tif
	0060A05.jpg
	0060A05.tif
	0060A06.jpg
	0060A06.tif
	0060A07.tif
	0060A08.tif
	0060A09.tif
	0060A10.tif
	0060A11.tif
	0060A12.tif
	0060A13.tif
	0060A14.tif
	0060B01.jpg
	0060B02.jpg
	0060B03.jpg
	0060B04.jpg
	0060B05.jpg
	0060B06.jpg
	0060B07.jpg
	0060B08.jpg
	0060B09.jpg
	0060B10.jpg
	0060B11.jpg
	0060B12.jpg
	0060B13.jpg
	0060B14.jpg
	0060C01.jpg
	0060C02.jpg
	0060C03.jpg
	0060C04.jpg
	0060C05.jpg
	0060C06.jpg
	0060C07.jpg
	0060C08.jpg
	0060C09.jpg
	0060C10.jpg
	0060C11.jpg
	0060C12.jpg
	0060C13.jpg
	0060C14.jpg
	0060D01.jpg
	0060D02.jpg
	0060D03.jpg
	0060D04.jpg
	0060D05.jpg
	0060D06.jpg
	0061A02.jpg
	0061A03.jpg
	0061A04.jpg
	0061A05.jpg
	0061A06.jpg
	0061A07.jpg
	0061A08.jpg
	0061A09.jpg
	0061A10.jpg
	0061A11.jpg
	0061A12.jpg
	0061A13.jpg
	0061A14.jpg
	0061B01.jpg
	0061B02.jpg
	0061B03.jpg
	0061B04.jpg
	0061B05.jpg
	0061B06.jpg
	0061B07.jpg
	0061B08.jpg
	0061B09.jpg
	0061B10.jpg
	0061B11.jpg
	0061B12.jpg
	0061B13.jpg
	0061B14.jpg
	0061C01.jpg
	0061C02.jpg
	0061C03.jpg
	0061C04.jpg
	0061C05.jpg
	0061C06.jpg
	0061C07.jpg
	0061C08.jpg
	0061C09.jpg
	0061C10.jpg
	0061C11.jpg
	0061C12.jpg
	0061C13.jpg
	0061C14.jpg
	0061D01.jpg
	0061D02.jpg
	0061D03.jpg
	0061D04.jpg
	0061D05.jpg
	0061D06.jpg



