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ABSTRACT

AN ITERATIVE PROCEDURE FOR OBTAINING MAXIMUM-LIKELIHOOD
ESTIMATES OF THE PARAMETERS FOR A MIXTURE OF NORMAL DISTRIBUTIONS

This paper addresses the problem of obtaining numerically maximum-
likelihood estimates of the parameters for a mixture of normal distributionms.
In recent literature, a certain successive-approximations procedure, based
on the likelihood equations, was shown empirically to be effective in numer-
ically approximating such maximum-likelihood estimates; however, the reliability
of this procedure was not estabiished theoretically. Here, we introduce a
general iterative prodedure, of the generalized steepest-ascent (deflected-
gradient) type, which is just the procedure known in the literature when the
step-size is taken to b~ 1. We show that, with probability 1 as the sample
size grows large, this procedure converges locally to the strongly consistent
maximum-likelihood estimate whenever the step-size lies between 0 and 2.
We also show that the step-size which yields optimal local convergence rates for
large samples is determined in a sense by the "separation" of the component nor-

mal densities and is bounded below by a number between 1 and 2.



An Tterative Procedure for Obtaining
Maximum-Likelihood Estimates of the Parameters

for a Mixture of Normal Distributions
by

B. Charles Peters, Jr.
NASA/National Research Council Research Associate

Earth Observations Division, Johnson Space Center
and
*Homer F. Walker
Department of Mathematics, University of Houston
Houston, Texas
1. Introduction.

Let x be an n-dimensional random variable whose density function p

is a convex combination of normal densities, 1i.e.,
. » n
p(x) = ;Liap,(x)  for xeR7,

where

*This author was supported in part by NASA under Contract JSC-NAS-9-12777.



and
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n
If {xk}k-l,...,N S [R 1is an independent sample of observations on x, then

0.0 .0
a maximum-likelihood estimate of the parameters {°1'“1'21}1-1,...,m
. is a choice of parameters {ai’ui’zi}isl,...,m which locally maximizes the

log-likelihood function

L= kgllos P(xk)o

0.0 0
in which p is evaluated with the true parameters {ai'pifzi}i-l,...,m

el

usually clear from the context which parameters are used in evaluating the

replaced by the estimate {a (In the following, it is
density functions Py and p. Therefore, these parameters are explicitly
pointed out only when some ambiguity exists.) We admit local maxima of L
as maximum-likelihood estimates in order to avoid difficulties presented by
the fact that L has no global maximum., It is observed below that this
creates no problems when one is concerned with consistent maximum-likelihood
estimates.

Clearly, L 1is a differentiable function of tke parameters to be estimated,
Equating to zero the partial derivatives of L with respect to these parameters,
one obtains, after a straightforward calculation, the following necessary

condition for a maximum-likelihood estimate:
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These are known as the likelihood equations. A number of authors have

investigated solutions of the likelihood equations and consistency of
ma#imum—likelihood estimates., (See, for example, Cramer [ 2 ], Huzurbazar [7],
Wald [12], Chanda [1], and the discussion iIn Zachs [14].) We observe that,
loosely speaking, there is a unique solution of the likelihood equations which
tends with probability 1 to the true parameters as the sample size N
approaches infinity, Furthermore, this solutfon is a maximum-likelihood
estimate, indeed, the unique strongly consistent maximum-likelihood estimate.
(Strictly speaking, given any sufficiently small neighborhood of the true
parameters, there is, with probability 1 as N approaches Infinity, a
unique solution of the likelihood equations in that neighborhood, and this
solution is a maximum-likelii.~nod estimate, For completeness, we present a
brief proof of this result in Appendix 1.) This note is addressed to the
problem of determining this strongly consistent maximum-likelihood estimate
by successive approximations.

The likelihood equations, as written,suggest the following iterative

procedure for oL*zining a solution: Beginning with some set of starting



values, obtain successive approximatfons to a solution by inserting the
preceding approximations in the expressions on the right-hand sides of
(1.a), (1.b), and (l.c). This scheme is attractive for its relative

ease of implementation, and we discuss below the findings of several authors
concerning its use in obtaining maximum-1likelihood estimates. For a dis-
cussion of other methods of determining maximum-likelihood estimates, see
Kale [8] and Wolfe [13] as well as the authors given below.

Empirical studies of Day [3], Duda and Hart [4], and Hasselblad [5]
suggest that this scheme is convergent and that convergence is particularly
fast when the component normal densities in p are “widely separated" in
a certain sense. Unfortunately, the likelihood equations have many solutiors
in general, and the iterates may converge to solutions, including “singular
solutions" (see [4]), which are not the strongly consistent maximum-likelihood
estimate if care is not taken in the choice of starting values. No theoretical
evidence of convergence is given in [3], [4], or [5]. Peters and Coberly
[10] have proved that, if all of the parameters By and Zi are held
fixed, then the iterative procedure suggested by the equatfion (l1.a) alone

converges locally to a maximum-likelihood estimate of the parameters

Oy i=1,...,m. (An iterative procedure is said to converge locally to a
limit if the iterates converge to that limit whenever the starting values
are sufficiently near that limit.) They also report on numerical studies
in which the computational feasibility of this procedure is demonstrated,
In the following, we present a general iterative procedure for
determing the strongly consistent maximum-likelihood estimate, of which

the above procedure is a special case., Indeed, our procedure fs a generalized



steepest-ascent (deflected-gradient) method, and the above procedure is
obtained when the step-size is taken to be 1. We show that, with probability
1 as the sample size grows large, this procedure converges locally to the
strongly consistent maximum-likelihood estimate whenever the step-size is
between 0 and 2. Furthermore, the value of the step-size which yields
optimal local convergence rates is bounde? from below by a number which always
lies between 1 and 2. In fact, this optimal step-size lies near 1 if the
component populations are "widely separated" in a certain sense and cannot be
much smaller than 2 if two or more of the component populations have nearly
identical means and covariance matrices. We also prove that, if the covariance
matrices 21 are held fixed, then the restricted iterative procedure for the
parameters a and Hy has these local convergence properties with probability

1 whenever the sample size is at least m(nt+l). We conclude by comparing this

procedure to other numerical methods for determining maximum-likelihood estimates.



2. The general iterative procedure.

In order to minimize notational difficulties, we introduce several vector
spaces and give useful representations of their elements. For each 1,
l1<s1<m, ui,ui, and Zi are elements of the vector spaces R 1, R n.
and the set of all real, symmetric nXn matrices, respectively. We denote
by o, M, and atf the resﬁective m-fold direct sums of these spaces with

themselves, and we represent elements of a,m, and J as columns

z
al ¥y 1
C-!-- : (W, -ﬁa : em, E- : e)g.
a H z
m m m

It will be convenient to adopt the following notational equivalence for elements

of the direct sum a’OJ)"(OJ:

= !
a -
a
— = m ®
osis
z :
uﬂ
fl

1£, for {=]1....,m and O ¢ GOJDTOJ , Wwe denote
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then the likelihood equations can be written as

A(©)
(2) 0= (u(o)
s(0)
where
A, (©) ul.(e) 5,(0)
A(©) = : , M) = v s 8O = : .
A (0) M_(0) 5,(0)

One can write (2) equivalently as

A(0)
(3) = ¢ (9) (1-€)O + € (H(O)
S(0)

for any value of €. Of course, (3) becomes (2) when ¢ = 1.
The following iterative procedure is suggested by (3) for obtaining a

solution of the likelihood equations: Beginning with some starting value 0(1)



define successive iterates iductively by
(kH1) _ o (n(K)
(4) © 0‘(0 )

for k=1,2,3,... . This is the general iterative procedure with which this
note is concerned. Clearly, this procedure becomes the procedure given in the
introduction when ¢ = 1.

In the next section, we show that if 0 < € < 2, then, with probability
1 as N approaches infinity, this procedure converges locally to the strongly
consistent maximum-likelihood estimate. This is done by showing that, with
probability 1 as N approaches infinity, the operator Qc is locally con-
tractive (in a suitable vector norm) near that estimate, provided 0 < e < 2.
In saying that ¢( is locally contractive near a point 0 ¢ (X@ M e 3 y we
mean that there is a vector norm || || on (e e 4 and a number 1,

0 sA <1, such that
(s) o, - of] s |lor -l

whenever 0' 1lies sufficiently near O,

3. The local contractibility and convergence results.

We now establish the following
THEOREM., With probability 1 as N approaches infinity, 0( is a locally
contractive operator (in some norm on 0(033‘( OJ ) near the strongly consistent

maximum-likelihood estimate whenecver 0 < ¢ < 2.



Our main result, given by the following corollary, is an immedia ¢ con-

sequence of this theorem.

COROLLARY, With probability 1 as N approaches infinity, the iterative
procedure (4) converges locally to the strongly consistent maximum-likelihood

estimate whenever 0 < ¢ < 2.
Throughout the remainder of this paper, the symbol "V" denotes the
Fréchet derivative of a vector-valued function of a vector variable. When
ambiguity exists, the specific vector variable of differentiation appears as
a subscript of this symbol. For questions concerning the definition and properties

of Fréche. derivatives, see Luenberger [10].

Proof of the thecrem: Let

)
d
— m
Q
- "1
e = H = .
1i
— n
L
z
:1/
L
m

be the strongly consistent maximum-likelihood estimate. We assume that

°1 #0, {=1,...,m. (As N tends to infinity, the probability is J that

this is the case.) It must be shown that, with probability 1 as N approaches
infinity, an inequality of the form (5) holds whenever ¢ 1s a sufficiently

smill positive number.



10
For any norm on (1@ mQJ , one can write
¢ (8') - 0 =0 (0) [0 - 0] +0(]|e* - o] D
€ €

Consequently, the theorem will be proved if it can be shown that, for 0 < « < 2,
W( (0) converges with probability 1 to an operator which has operator noru
less than 1 with respect to a suitable vector norm on e y¥e J .

One can write V¢¢ as (l-¢)I plus a matrix of Frechet derivatives:

VuA VEA VzA

Wrc = (1-¢)I + ¢ v&" vﬁu vfu
V&S VﬁS V-iS

This is consistent with our reprusentacion of elements of (X9 e J as
columns.

The entries of the above matrix can themselves be represented s matrices
of Frechet derivatives. For i = 1,...,m, we introduce inner products
<x,y>; = xT(CtiZ;l)y on ™" and <A,B>'£ = tr{A( ;—’-’ Z;I)B:rg on the space of
real, symmetric n*n matrices, and we define Bi(x) - —p—:—;)—, Yi(x) = (x-“i)'
and 8,(x) = (57" (x-b) G )T - 10

After a straightforward but extremely tedious calculation, one obtains

with the aid of equations (1) that



Bl(xk)Yl(xk)
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B\ "
; }
Bm(xk)
PR |
<Bl(xk)Y1(xk) » ">
. }
<B_(x )Y (x4 * >0
" T
<Bl(xk)61(xk) s >1
' }
<Bm(xk)5m(xk) 5 >;
T
Bl(xk)
’ }
B, (x)
<8, (x 1 (x),° 5\ T
e " B R
‘ }

<B (e )y (%), ¢ >n:

Blf.xk)
u 4
V,A@©) = 1 - (diag a ){N I
Bn(xk)
Bl(xk)
N .
VﬁA(O) = -(diag o ){,( E1 )
Bm(xk)
B, (x)
N »
VEA(O) = -(diag o ){N K1 :
By(x)
B, (xk)Y 1(xk)
1 N 3
VMO = - (§ L, ’
Bm(xk)Ym(xk)
"81 (x, )y, (x)
S 1 N :
s S - §k 5
B (xk)Y (xk
e TG e TN
VeM(@) = (dieg o, kel 1 (Y4 (5 )<0, G )02y
1 N
et

B, ()Y, (%)}

<8, (x ¥y (%) 5 * >} \T
: }

‘.

v YMa- 3 0 "
<B|.n(' kl 'm(xk) ’ >m /

u——— P
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By (g8, () /B, () >
: =
J (N
VS(0) = -(diag I ){N L1 : FRE }

TR
B ()8 (x| B (x)

; N
VﬁS.(Q) = (diag Ei a‘i—N é B (x )5 (x ) <Yi(xk)'
. T
Bl(xk)ﬁl(xk) <Bl(xk)Y1(xk)" >1
N . :
-(aiagl ){N kZ1 : = }
B (xS (x )] \<B ()Y (x), =
) y N -
VES(G) = (diag Zi a‘;ﬁ £ B (x )Gi(xk) <5i(xk): ' >i) =
By (x 8, (x )\ [<B (18,00, > |
N ' '
- (diag I, ){N K21 ' ' }

Bk )8 (k)] \ <B (x )8 (x), ¢

The inner products <','>; and <','>'£, together with scalar multiplication

on [R 1, induce an inner preduct <+,’> omn & RIE X . Setting

/81.(")
Bm'(X)
B, (x)y,(x)
oLy
V(x) = ‘ e (o Ne &

Sm(X)Ym(x,
61 (x)'\".ll:..

Bm(x)ﬁm(x)/



L3

1 n
By - Wise gy 2y B Gy, () <6,Ge), 0 >0,
—
By, = (diag I, a;ﬁ Wy By (x )6, (x) <Y1(xk)’ >0
B, = (diag I, -k I B,(x)8,(x) <5, (x), >
33 mdle BT b kA e
one obtains
1 0 0
ve_(©) : 1 €Byg .
= 0 £B32 (1-¢)I + eB33
(diag ai) 0 0
-l o I 0 & I Ve, «>h
0 0 (diag I,

Denoting the vector of true parameters by O , one verifies without

difficulty that V¢€ is of the form

N
=
where the operator wx,0) not only has finite expectztion (in norm) at O
but also has a Fréchet derivative with respect to O for which the following

holds: 1f || || 4is any operator norm on VGF’ then there exists a real-

valued function f on ﬂltl such that



14

ff(i)p(x)dx <

R

at 0" and such that llVeF(x,O)H < f(x) for all x ¢ [Rn and all © in

a sufficiently small neighborhood of 0°. Since the solution @ of the
likelihood equations is strongly consistent, it follows from the Strong Law of
Large Numbers (see Loéve [9]) that V¢€(9) converges with probability 1 to
E(V¢€(9°) as N approaches infinity.

To complete the proof of the theorem, it must be shown that E(VQG(Oo))
has operator norm less than 1 with respect to some vector norm on

a.m«»j whenever 0 < € < 2. A straightforward calculation yields

I 0 0\ - XNdiag a;’) 0 R
E(VQQ(OO)) 2T0T O= | "0 1 0 ; {fV(x)<V(x),->p(x)dx},
(T S 0 .0 (diag z‘i’) R

where a:,u:, and Z:, i=1,...,m, are the components of 0°. Thus

E(V¢e(0°)) is an operator on Ote Mt 0/? of the form I - ¢QR, where

(diag (!.:) 0 0
Q= 0 1 0
0 0 (diag 2;’)

and

R = fV(x) <V(x),> p(x)dx
n
R
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are positive-definite and symmetric with respect to the inner product <:+,¢>,
Since QR 1is positive-definite and symmetric with respect to the inner product

<‘.Q-1'> on (X@ N7 @ J, it suffices to show that
R = <W,Q L[QRIW < <W,Q Tw>
for all We Qe N7 ® g . Indeed, it follows from this inequality that, with

respect to the inner product <',Q-1- >, the operator norm of QR 1is no greater

than 1 and, hence, the operator norm of E(V<I>€(0°)) is less than 1 whenever

o
For .
|3,
G |
W= |ec@eNed,
v
m
B1
1
one has

n -~ T g |
<W,RW> = .{[1£1y181(x) + 151"1(“121 )Bi(x)Yi(x) +

R

0
m o -
+ Bee( G078, (06, 60T p 0 dx
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- [ 05T, + vy 0 + tels, G196, 0 THad%, (0 1200
ni-liyi o8 14 i Gy 0 FAE TN

R

< { [2, Yy, + vt ly (0 + s, G137H6,00™H %8, (0 1p () dx

The inequality is a consequence of the following corollary of Schwarz's inequality:
- 2
If n1 20 for i=1,...,m and if 151"1 =1, then liglginil 1=l€ n. for

If the squared expressions in the last sum above are written

all {51}1-=1,.. .,m'

out in full, one sees that the integrals of the cross terms in these expressions

vanish. Consequently

m
wwe s [ 5 T2+ Ty ()2 + (8, GET 6,0 H 1udp, (0 dx
n
R
Now
(6.2) f af‘lyipi(x)dx = of 2
n
13
(6.b) j iz v, ) e, dx = [ vIET i) (oD T v 00, () dx
IR“
sl L\
(6.¢c) f (tr{B (’1"'20_1)5 (%) }) a (x)dx = <p ]B o
5 1271 i’“i 2

(A proof of (6.c) follows below.) From (6.a), (6.b), and (6.c), one

concludes that
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Wy m
<W,RW> s I ag lyi Ly <vyv > Z <31,Zg 131

"-
181 1>1.% 18 > = QT

This completes the proof of the theorem.

0-1/2

Proof of (6.c): Setting y = Z (x—ui) and

c=[ (e, G 7Hs, 0 hEp, ax,
Rn

one verifies that

¢ =t f (ers, (297 2y 02 - 157N H 2 ey,
‘po

o- IIZB zo -1/2

where Py~ N(0,I). Denoting Z =D = (d,,), one then derives

jk

ao
¢ =7t [ cxloly’ - 1h % ey

[Rn
= ;1 f [(tr{Dny})z - 2tr{D}tr{Dny} + (tr[D})zlpo(y)dV
mn
- f_i’_ { d,.d f Y577 pPo (y)dy - 2(tr{D1) 4 (:r{s})z}
4 “3,k,p,q Jk pq X k’j’q
°: g 2 2
- (z pik dgedop + I j)f:kdjkdjk + lli jﬁkdjkdkj + 3£ dige = (er{p}h) “}
o TP A O Y s s ¥ | 1 o=1_ T
= 5 tr{D} = 5= er(2y B, I B IY T} = exBy (—— I g 8y )
= <,z 1 >

- B B 08 O
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4. The optimal €.

The results just obtained state that, with probability 1 as N approaches
infinity, the iterative procedure (4) converges locally to the strongly
consistent maximum-likelihood estimate © whenever 0 < ¢ < 2. In this section
we observe that there exists a particular value of ¢, referred to as "the
optimal ¢," which yields, with probability 1, the fastest asymptotic uniform
rate of local convergence of (4) near O. We derive a lower bound between
1 and 2 on the optimal € and relate it to the separation of the component
populations in the mixture.

From the proof of the theorem, one sees that the optimal ¢ 1is that which
minimizes the spectral radius of the operator E(V¢€(O°)) restricted to the
space E & Z‘T(Gj, where & is the subspace of K whose components sum to
zero. Indeed, the restricted operator E(V¢€(0°)) = 1 - eQR is symmetric on
E OMGJ with respect t-o the inner product <-,Q-]2 >, Comnsequently, its
operator norm with respect to this inner product is equal to its spectral
radius and, hence, minimal. We observe that the restriction of QR to
E OWO,Z is positive-definite and symmetric with respect to the inner pro-
duct <°,Q—} >, Letting p and T denote, respectively, the largest and
smallest eigenvalues of this restriction of QR, one verifies that the spectral
radius of E(Vﬂbe(@o)), restricted to E omej , is minimized when
l-€et=¢€ep~-1, i.e., when ¢ = B%?.

It follows from the proof of the theorem that p 1is never greater than
1. Thus the optimal ¢ 1is bounded below by 2/1+41, where T 1lies between

0 and 1. In particular, this lower bound on the optimal ¢ 1lies betweon

1 and 2. We have been unable to determine p more precisely in gencral.
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It should be noted that, if p 1is strictly less than -% , then the optimal
€ 1s actually greater than 2, even though the theorem just proved fails to
guarantee the local convergence of (4) for such values of «.

Suppose that the component populatious in the mixture are "widely separated"

in the sense that each pair (u:,Z:) differs greatly from every other such

pair. Then, for 1,j =1,...,m,

afp, () alp, (x)
p(x) p(x)

~0 for x en{n whenever 1 # j.

One sees that QR ~ I and, hence, p and T must both lie near 1.
Consequently, fastest asymptotic local convergence rates are obtained for ¢
near 1, and, for the optimal e, E(VQG(Go)) =T - eQR ~ 0. Thus for
mixtures whose component populations are "widely separated," the optimal ¢
is only slightly greater than 1, and rapid first-order local convergence
of the iterative procedure (4) to O can be expected asymptotically for
this e.

Now suppose that the component populations in the mixture are such that
at least two pairs (ug,Zi) and (u?,ﬂ?), i #j, are nearly identical.
Then B, (x) x Bj(x). By (Y, (x) = Bj(x)YJ(x) and B,(x)8;(x) = Bi(x)Gj(x).
and it follows that R 1is nearly singular and, hence, that T 1is near zero.
One concludes that the optimal € cannot be much smaller than 2. In fact,
if p 1is near 1, as is the case when all pairs (u:,Z?) are nearly identical,
then the optimal € must lie near 2. Furthermore, the spectral radius of
E(V@S(Oo)) is near 1, even for the optimal ¢; therefore, slow first-order

convergence can be expected asymptotically in this case.
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5. Maximum-likelihood estimates of the a priori probabilities and the means.

It happens that, if the covariance matrices 21, i=1,...,m, are held
fixed, then, under certain conditions, an appropriately restricted version of

the iterative procedure (4) converges locally with probability 1 to a maxi-

mum-1ikelihood estimate of the parameters “; and u:. i=1,...,m, whenever

the number of observations in the sample reaches a certain finite size. To be

more specific, we introduce the following notation: For 0= (g) e @Y and

~ [+] ~ -
f'elg, denote 0O = (g) € O(Om 0,5 by (0,5). Then, for given I, the

likelihood equations for the parameters o, and ui, i=1,...,m can be written

i

or, equivalently, as

el

. . A@B,I)
(7) 0=29% (0, )

) = (1-€)0 + ¢ =
M(0,Z)

for any €. The appropriate iterative procedure to consider is the following:

Beginning with some starting value 6(1), define successive iterates inductively

by

® U JCCR
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for k=1,2,3,... . Our result concerning this procedure is given by the

theorem and its corollary below.

THEOREM: If N 2 m(n+l) and if (8,f) 4is a solution of (7) which lies
sufficiently near a solution of (3), then, with probability 1, 3( is a
locally contractive operator (in some norm on (X@®Y,) near ® whenever

0<e < 2.

COROLLARY: If N 2 m(n+l) and if (§,f) is a solution of (7) which lies
sufficiently near a solution of (3), then, with probability 1, the iterative

procedure (8) converges locally to ® whenever 0 < e < 2.

Proof of the Theorem: Suppose that N 2 m(n+l) and 0 < € < 2. As in the

proof of the preceding theorem, it suffices to show that, with probability 1,
Véae(g,f) has operator norm less than 1 with respect to some vector norm
on (e . Since Vé’se -depends continuously on ® and E, this need only
be shown when (5,2) is a solution of (3).

From the proof of the preceding theorem, one sees that is (0,I) 1is a

solution of (3), then

I 0 (diag ai) 0

N
~ - i =L l ~ -~ 5
vz, (0,I) & W21V (< (%), 1,

where
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(sl(x)

B-(x)
Ix) =
Bl(x‘)‘rl(x)

\B-(x)v-(x)

and the inner product <°*,+> is now the inner product induced on ( @ Nl by
scalar multiplication on ﬂ11 and the inner products <-.->i on R 2, s

before, Uz 0¢(9,§) is of the form I - ¢ QR, where

(diag o) 0

Q-

and

~ 1 N ~ ~ 2
R = {i Ky Vx<V(x), >}.

We observe that ai is symmetric and positive semi-definite with respect to
the inner product <'.a~1- >, In fact, it is shown in Appendix 2 that, with
probability 1, a‘i is positive-definite with respect to this inner product.

Consequently, the theorem will be proved if it can be shown that

<, QRN = <R < <i,Q W
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for all We Clo)Y.

For
7
& y
W= v‘ e (e,
V1
v‘l
one has
W, = L '{[;‘;‘ B (x) + ,Iv (@ E- B, (x)y, (x)12
’ [ R b el s P A A o SR R A PR
13 8 T.-1 2
=¥k lad gy + vl Ty ())aB, (x)]
slgg[a'1+'r£-1 )1%,8, (x,)
N kE1 18100 vyt vely Y () 1B, O

by Schwarz's Inequality. Since (5.2) is a solution of (3), this easily

yields
s 8 12, ) T = 3 avls
<W,RW> < 1§1 a, Yy + 121 vi(aiti)vi = <Y, >,

and the proo  is complete.

If the conclusion of the theorem holds for some solution (S,T) of (7),
then, as in the preceding section, a particular value of ¢ can be determined
which yfelds the fastest uniform rate of local convergence of (8) near 0.

~=1

With respect to the inner product <+,Q >, QR is positive-definite and

symmetric on P’ 0)77. Denoting the largest and smallest eigenvalues of the
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restriction of 5’!‘ to F 0m by p and T, respectively, one sees that the

optimal e 1is again given by ¢ = 3%?. Since the restriction of QR has
cperator noru no greater than 1 with respect to the inner product <',Q-l >,

p must be no greater than 1. Hence, ¢ 2 where T lies between 0

L
1+¢°
and 1. Reasoning as before, one seses that the optimal ¢ lies ncar 1 {f
the component populations are "widely separated," and cannot be muct less than
2 1if two or more of the populations have nearly identical means and covariance
matrices. In the former case, rapid first-order local convergence of (8) can
be expected for the optimal €. In the latter case, if p 1is near 1, then

the optimal € pust be near 2, and slow first-order convergence of (8)

can be expected, even for the optimal €.

6. Concluding remarks.

A number of numericzl techniques for obtaining maximum-likelihood estimates
of the parameters for a'mixture of normal distributions have been discussed in
the literature. In addition to the usual steepest-ascent method for obtaining a
local maximum of the log-likelihond function, we mention in particular Newton's
method, the method of scoring, and the modifications of these procedures in-
vestigated by Kale [8] for obtaining solutions of the likelihood equations.

It is our feeling that the iterative procedure (4) offers considerable com-
putational advantages over these procedures in many cases of practical interest

Even though the partial derivatives of the log-likelihood function are not
appreciably more difficult to evaluate than the expressions used in defining th.

function Q(, the procedure (4), which is a generalized steepest-ascent
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(deflected gradient) method appears to have two particular advantages over the
usual steepest-ascent method. First, the major practical implication of this
note is that the iterative procedure (4) converges whenever the step-size e
lies in an interval which is completely independent of the particular mixture
problem at hand. It is readily ascertained that this cannot be said for the

regular steepest-ascent procedure

(qt1) _ (@) et k=1—p_('x':)’ _m:.‘_j

oy i

(q@)

N a (x,)

(qt1) _ (@) 1 i P (9)-1, _ (@)
Hy WU byl p(x) Ve )

(q)
N a *p.(x)

(qtl) _ (@) , _ (1 % PV (@)-1, o (g)-1

Iy Ly ¢ 5§ &1 p(x) [-Z,% "+ Iy

(q)5 (9),T:(q)-1
(Mg )(xk-u1 )Ly

Second, if € is no greater than 1 the success've iterates defined by (4)
automatically satisfy the requisite constraints on the parameters, i.e., the
successive Zi's are, with probability 1 for large N, poc:cive-definite and

the successive ai's are positive and sum to 1.

Although Newton's method and the method of scoring offer quadratic and nsar-
quadratic convergence, respectively, for large sample sizes, they require at each
iteration the inversion of a square matrix whose dimension is equal to the number
of independent variables among the parameters, namely ‘ESEtl%SEigl ~ 1. Thus
these methods may be less efficient computationally than the iterative procedure
(4) if w and n are large, even though they may yield a satisfactory approximate

solution after fewer iterations. The modified versions of Newton's method and

the method of scoring do not require the re-—calculation of the inverse of a
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large matrix at each step. However, quadratic convergence is not achieved with
these modified methods, and multiplication by a large matrix must still be

carried out at each iteration.
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Appendix 1.

We now give a brief proof of the existence and uniqueness of the strongly
consistent maximum-likelihood estimate. For the sake of generality, this is
done in a somewhat broader context than is necessary for this paper.

Let p(x,0) be a probability density function of a vector variable x ean

and a vector parameter O ele. If {xk} is an independent sample of

kgl’....N
observations on a random variable x eR™ whose probability density function is
p(x,@o) for some 0° eﬂlv, then a maximum-likelihood e-timate of 0° 1is a

choice of O which locally maximizes the log-likelihood function
N
L= k§1 log p(xk,e).

If p is a differentiable function of ©, then a necessary condition for a

maximum-likelihood estimate is that the likelihood equations

oL

= 0’ i‘ 1,-..,\),
361

be satisfied, where ei is the ish component of ©O. In the following, our
objective is to show that if p satisfies certain conditions, then, given any
sufficiently small neighborhood of 00, there is, with probability 1 as N
approaches infinity, a unique solution of the likelihood equations in that
neighborhood, and this solution is a maximum-likelihood estimate of e°.

We assume that p(x,0) satisfies the following conditions of Chanda [1]:

(a) There is a neighborhood Q of 0% such that for all O ¢ N, for almost
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2 .
all x eu‘,n, and for 1i,j,k=1,...,V, %B_’ aa 30 and 3 3 exist
i i3]

97
13 i k
and satisfy

2 3
3p ) 3°lo
|aei| s £, |‘a'6_13%j| S £45s |aTi'a'FjaGk| S faau®)»

where £, and fi

1 i are integrable and fijk satisfies

ffijk(x)p(x,eo)dx <,
R n
(b) The matrix J(O) = (fa_g%g_ga_%%g_g p dx) is positive-definite at e°.

)

e

1
N

4

Let L(©) =

A
vlg - ae
Cm

It is immediately seen that‘gf(e) = 0 if and only if the likelihood equations
are satisfied, and that, by the Law of Large Numbers,‘;f(eo) converges with
probability 1 to zero. Furthermore, it follows from assumptions (a) and (b)
above that there exists a neighborhood ° of 0° (contained in Q and, for
convenience, convex) and a positive € such that, with probability 1 as N
approaches infinity, V;((O) <-¢1 for all 0 e Q° (The inequality is with
respect to the usual ordering on symmetric matrices.) Denoting the spherical
ne [ghborhood of radius 6 about O° by €

§r  we establish the following

Lemma: With probability 1 as N approaches inflinity,

(1) is one-to-one on Qo,
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(ii) (96) contains the ball of radius e§ about (Go) whenever
c °.

Proof: We may assume that ng(@) <-¢1 forall O ¢ Qo, since the prob-

ability that this is the case is 1 as N approaches infinity. To prove (i),

suppose that ;f(@l) = 5(?02) for 01 and 02

in 9°. Then
0= (o' - )T LY - £©H)]

2

- (o - ez)T{f},vf,(oz + et - e2])de} et - o%).

The negative-definiteness of VX implies that Gl = 62, and (i) is proved.
To prove (ii), suppose that 96 E_Qo, and let 01 be a boundary point

or 96. Then
Z @Y -Z@) = UNLE° + e[e! - o°nate! - 6.

After left-multiplying this equation by (G)1 - OO)T, one verifies using Schwarz's

inequality and the negative-definiteness of V}f that
|Z@©Y - L@ 2¢ o' -e =5,

where II || denotes the usual Euclidean norm on ﬁzv. Since all boundary points
of 3{(96) are images under ¢ of boundary peints of 96’ the proof of (ii)
is cowmplete.

The desired result of this appendix follows immediately from this lemma and
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the remarks preceding it. Indeed, if ﬂl is any neighborhood of 0° which is
contained in R°, then one can find a § for which Qs < ol < Q°. By the lemma,
the probability is 1 as N tends to infinity that Z is one-to-one on Ql

and that I (%) and, hence, ;i(Ql) contain the ball of radius €8 about
,,((00). Since JL_’(GO) converges with probability .1 to zero, ome concludes
that, with probability 1 as. N approaches infinity, there exists a unique

0 e 91 for which ;f(@) = 0. Since the probability also is 1 as N approaches
infinity that V,f is negative-definite on Ql, this © 1is, with probability

1, a maximum-likelihood estimate.
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Appendix 2.
We now prove that the operator QR is positive-definite on (X ® JJT with

probability 1 whenever N 2 m(n+l). Since

(diag ui) 0 . N
@ = {5 & To<Vxp, >},
0 I

it suffices to show that the vectors

Py (xk)
% p(x)

Py (%)

. p(:ﬁ‘)

Vix) = » k=1,...,N,
P, (x))

p(,‘k) (x,~H,)

Py (%)

span (( ® )Y with probability 1 whenever N 2 m(n+l). This follows from the

more general result below.

Lemma. Let {xk} be an independent sample of observations on a random
k‘l’.! .’N

variable x in [R S which is distributed with a probability density function

p. If V 1is a real-analytic function from R % to [Rt whose component functions

are linearly independent, then the vectors V(xk), k=1,...,N, span [P.t with
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probability 1 whenever N 2 t.

Proof: Denoting the jth component function of V by vj, we define a real-

analytic function V‘1 from R to U.J by

"1(")
Vj (x) = :
vy (x)

for j = 1,...,t. Our proof of the lemma consists of showing inductively that,

for j =1,...,t, the set {Vj(xk)} spans RI witn probability 1.

k-l’ L ’j
We make the preliminary observation that, since the real-ahalytic functions

v, are assumed to be linearly independent, any non-zero linear combination

3

of them vanishes only on a set of Lebesque measure zero in m‘.
From the observation above, Vl(xl) is non-zero with probability 1;
hence vl(xl) spans R ’ with probability 1. Suppose now that, for some j,

l1s3j<t, the set {V k)} spans le with probability 1. Then,

k 1’...’j
j+1
with probability 1, the set {vj+1(xk)}k=1,...,j+1 fails to span [R if

and only if
V |
& 15540 =iy o Vg ()
for some set of constants {c,} . If (9) holds, the constants c

K'k=1,.0.,] k

are determined by

lev (%541
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with probability 1, where ~\/j is the j%Xj matrix whose kth column is

Vj(xk). Thus, with probability 1, (9) holds if and only if

vi41 =)

< T g
Vi (%)

Now

Vi1 (%)

- T | !

(Vv et - V34 OO

Vi1 %y

is a non-zero linear combination of the functions vl,...,vJ+l and, hence,

vanishes only a set of Lebesque measure zero in [R®. oOne concludes that
+1

{vj+1(xk)}k=l,...,j+1 fails to span [R i with probability zero. This

completes the induction, and the lemma is proved.
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