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A	 ABSTRACT

AN ITERATIVE PROCEDURE FOR OBTAINING MAXIMUM-LIKELIHOOD

ESTIMATES OF THE PAI-V%IETERS FOR A MIXTURE OF NORMAL DISTRIBUTIONS

This paper addresses the problem of obtaining numerically maximum-

likelihood estimates of the parameters for a mixture of normal distributions.

In recent literature, a certain successive-approximations procedure, based

on the likelihood equations, was shown empirically to be effective in numer-

ically approximating such maximum-likelihood estimates; however, the reliability 	 i

of this procedure was not established theoretically. Here, we introduce a

oencral iterative prodedure, of the generalized steepest-ascent (deflected-

-	 =	 gradient) type, which is just the procedure known in the literature when the

step-size is taken to bi 1. We show that, with probability 1 as the sample

size.grows large, this procedure converges locally to the strongly consistent

maximum-likelihood estimate whenever the step-size lies between 0 and 2.

We also show that the step-size which yields optimal local convergence rates for

large samples is determined in a sense by the "separation" of the component nor-

'	 mal densities and is bounded below by a number between 1 and 2.



An Tter.ative Procedure for Ottaiiiinb

Maximum-Likelihood Estimates of the Parameters

for a Mixture of Normal DistribULions

by

B. Charles Peters, Jr.

NASA/National Research- Council Research.Associate

Earth OBservations Division, Johanson Space Center

and

`Homer F. 4Ialker
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1. Introkl-uction.

Let x be an n-dimensional random variable whose density function p

is a convex combination of normal densities, i.e.,

M

P x)	 illp'ipiW	 for x E 	 n,

where

m

a  ' Of J lai	 1,

*This author was supported in part by NASA under Contract JSC-NAS-9-12777.



n

2

and

-1
I	 TE0 (x-U°).

Pi (X) 
= (2Tr) n/2 I Eo 11/2 e

i

If 
{Xk

} k 
1	

N ^ R n is an independent sample of observations on x, then

a maximum-likelihood estimate of the parameters 
{ai' U i' Ei }i 1.... m

is a choice of parameters 
{ai' u i' Ei } i==1	

m which locally maximizes the

log-likelihood function

N

L Jilog p (xk) ,

in which p is evaluated with the true-parameters 
{ai' u i' EY

}
i 1	 m

replaced by thee estimate 
{ai' ui' Ei

}
i 1	

m' (In the following, it is

usually clear from the context which. parameters are used in evaluating the

density functions pi and p. Therefore, these parameters are explicitly

pointed out only when some ambiguity exists.) We admit local maxima of L

as maximum-likelihood estimates in order to avoid difficulties presented by 	 it

the fact that L has no global maximum. It is observed below that this

creates no problems when one is concerned with consistent maximum-likelihood

estimates.

Clearly, L is a differentiable function of the parameters to be estimated.

Equating to zero the partial derivatives of L with-respect to these parameters,

one obtains, after a straightforward calculation, the following necessary

condition for 1 maximtirn-likelihood estimate:
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si
 N Pi(X)

(l.a)	
ai N kil P

1 N	 P i'" k) 	1	 P i (x{c)
(1. b)	 ui {N 

J1`k p	 } { N k 1 P (^K }

1 N rY	 T P i "lc )

1
-g
1 N P i ^c)

(1. c)	 Ei {N 01 r^ p i) (xk u i) p ) 	k^l p ) }

These are known as the likelihood equations. A number of authors have

investigated solutions of the likelihood equations and consistency of

maximum-likel}hood estimates. (See, for example, Cramer [2 ], Huzurbazar [7],

Wald [12], Chanda [1], and the discussion in Zachs [141.) We observe that,

loosely speaking, there is a unique solution of the likelihood equations which

tends with probability 1 to the true parameters as the sample size N

approaches infinity. Furthermore, this solution is a maximum-likelihood

estimate, indeed, the unique strongly consistent maximum-likelihood estimate.

(Strictly speaking, given any sufficiently small neighborhood of the true

parameters, there is, with probability 1 	 as Id approaches infinity, a

unique solution of the likelihood equations in that neighborhood, and this

solution is a maximum-likelil..-od estimate. For completeness, we present a

brief proof of this result in Appendix 1.) This note is addressed to the

problem of determining this strongly consistent maximum-likelihood estimate

by successive approximations.

The likelihood equations, as written,suggest the following iterative

procedure for oi:`atning a solution: Beginning with some set of starting



values, obtain successive approximations to a solution by inserting the

preceding approximations in the expressions on the right-hand sides of

(l.a), (l.b), and (l.c). This scheme is attractive for its relative

ease of implementation, and we discuss below the findings of several authors

concerning its use in obtaining maximum-likelihood estimates. For a dis-

cussion of other methods of determining maximum-likelihood estimates, see

Kale [8) and [lolfe [13] as well as the authors given below.

Empirical studies of Day [3], Duda and Hart [4], and Hasselblad (5]

suggest that this scheme is convergent and that convergence is particularly

fast when the component normal densities in p are- "widely separated" in

. '	 a certain sense. Unfortunately, the likelihood equations have many solutions

in general, and the iterates may converge to solutions, including "singular

solutions" (see [4]), which are no-, the strongly con p iste.nt maximum-likelihood

estimate if care is not taken in the choice of starting values. No theoretical

evidence of convergence is given in (3], [4], or [5]. Peters and Coberly

(10] have proved that, if all of the parameters PI and Z  are held

fixed, then the iterative procedure suggested by the equation (l.a) alone

converges locally to a maximum-likelihood estimate of the parameters

(An iterative procedure is said to convere^e locally to a

limit if the iterates converge to that limit wherLever the startin- values

are sufficiently near that limit.) They also report on numerical studies

in which the computational .easibility of this procedure is demonstrate(l.

In the following, we present a general iterative procedure for

dcterming the strongly ccnsiF;tent maximum-likelihood estimate, of which

the above procedure is a special case. Indeed, our procedure is a generalized

-	 -
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steepest-ascent (deflected-gradient) method, and the above procedure is

obtained when the step-size is taken to be 1. We show that, with probability

1 as the sample size grows large, this procedure converges locally to the

strongly consistent maximum-likelihood estimate whenever the step-size is

between 0 and 2. Furthermore, the value of the step-size which yields

optimal local convergence rates is bounded from below by a number which always

lies between 1 and 2. In fact, this optimal step-size lies near 1 if the

component populations are "widely separated" in a certain sense and cannot be

much smaller than 2 if two or more of the component populations have nearly

identical means and covariance matrices. We also prove that, if the covariance

matrices E 	 are held fixed, then the restricted iterative procedure for the

parameters a 	 and ui has these local convergence properties with probability

1 whenever the sample size is at least m(n+l). We conclude by comparing this

procedure to other numerical methods for determining maximum-likelihood estimates.

AT6
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2. The general iterative procedure.

In order to minimize notational difficulties, we introduce sc-veral vector

spaces and give useful representations of their elements. For each i,

1 5 1 5 m, ai ,u i , and E 	 are elements of the vector spaces }^. 1
, 	n,

and the set of all real, symmetric nxn matrices, respectively. We denote

by C`(,^Y, and .p	 the respective m-fold direct sums of these spaces with

themselves, and we represen t_ elements of Cr, M, and .p as columns

al	 U 1	 E ].

a	 E ^, U =	 E, E _	 E^.

a	 u	 E
m	 m.	 m

It will be convenient to adopt the following notational equivalence for elements

of the direct sum Q'®(n7SV :

a1

a
a

mQ s —	 ^
u

ul

E
um

Am

I

Em

If , for 1 = 1,... in and 0 c aO,^T f If , wu denote



a i 	 N	 pi(xk)

A i (0) = N	 k^l - p(xk)	 •

!
Mi(0)	 -1 N

1	 N	 Pi(x) ``	 11 1
k lxk	 ) r/ 1 N

N i (X k) t
kEl 

p 
p(x

k
 )!,p(x 

k

I	 N
T	 pi(Xk) tt
	 ll1

N	 pi(xk)

Si(0) ={N -Ui)k-l (xk Ui)(xk
P(xk)f	

1N k-	 P(xk)^

then the likelihood equations can be written as

A(0)
(2) 0 =	 M(0)

S(0)

r:

•	 where

Al(0) M1 (0) Sl(0)

A(0) _ M(0) _ S(0)

Am (0) M(0) Sm(0)M

P

One can write	 (2) equivalently as

'I A(o)

(3) 0 C
E 
(0)	 _	 (1-E)0 + E M(0)

S (0)

for any value of c.	 Of course,	 (3) becomes	 (2) when	 e - 1.
r
-J

The following iterative procedure is suggested by	 (3)	 for obtaining a

solution of the likelihood equations: Beginning with some starting value	 0(1),



define successive iterates iductively by

(4)	
0(k+l) .	 (0(k))

E

for k - 1 1 2,3,... . This is the general iterative procedure with which this

note is cone=rued. Clearly, this procedure becomes the procedure given in the

introduction when E = 1.

In the next section, we show that if 0 < E < 2, then, with probability

1 as N approaches infinity, this procedure converges locally to the strongly

consistent maximum-likelihood estimate. This is done by showing that, with 	 4

probability 1 as N approaches infinity, the operator (DE is locally con-

tractive (in a suitable vector norm) near that estimate, provided 0 < E e 2.
In saying that 4^

E 
is locally contractive near a point 0 E at 07 0 J, we

mean that there is a vector norm 11 11 on Q(® V * S and a number A,

0 5 X < 1, such that

(S)	 11mE (01) - O BI	 5 a 11 0 ' - 011

whenever 0' lies sufficiently near 0.

3. The local contractibility and convergence results.

We now establish the following

THEOREM. With probability 1 as N approaches infinity, 
f 	

is a locally

contractive operator (in some norm on Q(® 3N 0,3 ) near the strongly corn;istunt

maximum-likelihood estimate whenL'ver 0 < c < 2.

. IV
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Our main result, given by the following corollary, is an inniedia. e con-

sequence of this theorem.

COROLLARY. With probability 1 as N approaches infinity, the iterative

procedure (4) converges locally to the strongly consistent maximum-likelihood

estimate whenever 0 < c < 2.
	

0

Throughout the remainder of this paper, the symbol "V" denotes the

Frechet derivative of a vector-valued function of a vector variable. When

ambiguity exists, the specific vector variable of differentiation appears as

a subscript of this symbol. For questions concerning the definition and properties

It
	

of Freche,^ derivatives, see Luenberger (10].

Proof of the theorem: Let

be the strongly consistent maximum-likelihood estimate. We assume that

a. i 0 0, 1 - 1,...,m. 	 (As N tends to infinity, the probability is 3. that

this is the case.) It must be shown that, with probability 1 as N approaches

infinity, an inequality of the form (5) holds whenever a is a sufficiently

smil1 punitive number.	 M
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For any norm on CT  91 0 	, one can write

m E (0 , ) - 0 - v^ E (0) [0' - 0 1 + 0( 11 0 '	 Oil 
2)

Consequently, the theorem will be proved if it can be shown that, for 0 < . < 2,

W f (0) converges with probability 1 to an operator which has operator norm

less than 1 with respect to a suitable vector norm on C^ f ) -f, (+ J -

One can write 94
E 

as (1-t)1 plus a matrix of Frechet derivatives:

v^A vuA

OQ E _ (1-E)I + E	 0&,"i	 V M

vas V-S

Or-.A
L

OEM

OLS	
i

This is consistent with our reprusenr p ion of elements of (-TO , -Y S 12 a

columns.	 MPL-M

The entries of the above matrix can themselves be represented :.s matrices

of Frechet derivatives. For i 	 we introduce inner products

a

<x,y> i = x
T (a i E i l )y on ^^. n and <A,B>" = tr{ A( 21 7i l )BTT} orL the space• of

p i (x)
real, s)-mmetric n`! n matrices, and we define B,(x) - P(X), Y i W _ (x-ui),

and 61(x)	 il (x-ui)( x
-;ji) T

After a straightforward but extremely tedious calculation, one obtains 	
1

with the aid of equation:: (J) that

ftW-

I
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- -	 S1(xk)	 1(X k) T i
N

QaA(0) = I - (diag OL	 k^l	 }

Bm (xk)	 Rm(xk)

T
^ 1 (xk )	 <R1(xk)Y1(xk)' >l

N
Q-A(0) = -(diag cc	 E	 }

i N k=l

SM (xk)	 <Sm(xk)Ym(xk) . • >m

<	 >" T^1(xk)	 Yxk)S1(xk)'	 1

N	 ^	 }

QUA{3) _-(diag 
ai ){ N kEl

^m (xk)	 <am(xk) $ m ( xk) . 
' >m

BI ( xk)Y 1 (xk)	 r f^ 1 (xk)	 T

N	 }

Rm (xk)Ym ( xk)	 S.(xk)

'6 1 (x k )Y 1 (xk) 1 I< R 1 ( xk)Y 1 (xk), • >i	
T

N

B (xk)"(m(xk)	 <Sm(xk)Ym(x
m	 k) m

1	 N
Q^M(6) _ (dial; piN kE 1R i ( xk ) Y i ( xk ) <d i ( xk). ' > ) -

8 1 (x k) Y 1 ( xk)	 1(xk)Y1(xk) , • >1	
T

1
1 N	 1

-{N J1	 }	 i

Y^m (xk) m (xk )	 m k; lmkxk) ' >m

1
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S l (xk)6 1 (x,, 	1(xk)	
T

V^S(0) _ -(diag Ei){N k=l	 1,	 }

Bm (xk )sm (xk , ' ^^m(xk)

N
Vu	 (diag Ei CL N k l S 1 (xk)d i (xk) <Y i (xk ) ' 

• >+)-

	

Ri(xk)dl(xk)	
<al(xk)Yl(xk)	 >1	 T

N
-(a Lag E

i ){ N kl	 }

^^	 Bm(xk)dm(xk) < Qm (xk) Ym ( Xk) , >m

N
VISM _ (diag Ei CE 	 k 	 ^i(xk)Si(x1c) <

d i (xk) , • > ) -

S l (xk) d l ( xk)	 <R1(Xk)^1(x	 >k) . ^ 9	
T

N
(diag Ei){N kF	 }

R m (xk ) d m (xk)	 <Sm(xk) sm(xk) 	 n

The inner products <•, >i and <<,'> 	 together with scalar multiplication

on 	 induce an inner product <•,'> on	 Wf	 Setting

IB11W

(X)M

S1(x)'t1(x)

V(x) _	 •	 E	 0 Me

)̂IW ^..
r

	

f	 ti

Rm(x)dm(x)



N
B23 = (diag a

iN kEl Yx
k)Y i (xk) < d i (xk)  	 >i) 

N

B32 = (diag E1 aiN k=l 6 i (xk)b i (xk ) <Yi(xk),.>1)'

N
B33 = (diag 

E i ai k-N	 1 R
i (xk)b i (xk) <b i (xk). ,>i)'

one obtains

I	 0	 0

•	 V8E(0) =	
0	 I	 EB23	 -

•	 0	 EB32	 ( 1-E)I + EB33	 -

diag a i )	 0	 0

N
- E	 0	 I	 0	

{N J 1
V(xk)<V(x k) , • '}.

0	 0	 (diag Ei'/

Denoting the vector of true parameters by 0 , one verifies without

difficulty that V4 	 is of the form

N

N kEl F(xk,0)^

where the operator elx,O) not only has finite expectation (in norm) at 0

but also has a Frechet derivative with respect to 0 for which the following

holds: If	 is any operator norm on 70F, then there exists a real-

valued function f on ^. n such that
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J f(x)p(x)dx < m
^n

at 0' and such that IIVOF(x,(D)	 < f 	 for all x c G^ n and all 0 in

a sufficiently small neighborhood of 00 . Since the solution 	 0 of the

likelihood equations is strongly consistent, it follows from the Strong Lai.: of

Large Numbers (see Loe've [9]) that V^
E 
(0) converges with probability 1 to

E(V(D
E 
(00) as N approaches infinity.

To complete the proof of the theorem, it must be shown that E(WE(0°))

has operator norm less than 1 with respect to some vector norm on

0 j whenever 0 < E < 2. A straightforward calculation yields

	

I 0 0	 (diag ai) 0	 0

	 fV(x)<V(x),,>p(x)dxl,E(WE(0°)) = 0 1 0 -E	 0	 I	 0	 { 

	

0 0 1	 0	 0	 (diag Ei) Qn

where ai,V:i, and Ei, i = 1,...,m, are the components of 00. Thus

E(V4' E (00) ) is an operator on ^'IZ 0 ^ of the form I - EQR, where

	(diag ai)	 0	 0

	

Q =	 0	 I	 0

0	 0	 (diag Ei)

and

K = f V (x) <V ( % ),' > p(x)dx
n
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i

al -1- _ _

are positive-definite and symmetric with respect to the inner product <•, >.

Since QR is positive-definite and symmetric with respect to the inner product

<.,Q 1• > on p(O X37 0 j , it suffices to show that

<W,RW> = <W,Q-1[QR]W> < <W ,Q 1W>

for all W E 6Z ® M 0 4 . Indeed, it follows from this inequality that, with

respect to the inner product <-,Q- 1a >, the operator norm of QR is no greater

than 1 and, hence, the operator norm of E(0(D (Oo))
E	

is less than 1 whenever

0 < E < 2.

For

Yl

y 

vl

•W =

v
M

B1

1B m  ;'

E a*r f ' ,

one has

m	
m T o 0-1

<W , RW> = f [ z Y•^ (x) + E v (a E	 )S.(x)Y.W +
n i-1 i i

Q 0
+ iF. l tr(B i (2i Ei	 2)E i (x)6 1 W } J p(x)dx



:	 =	 i	 _^_	 i	 I	 I	 ^	 t	 G

16

[	 (a o-ly + vTL°-lY (x) + tr{B (lE°-1)d (x) T})a°^ ( x )] 2 p(x)d-c

^n
i-1 1	 i	 i i	 i	 i 2 i	 i	 i i

5 f [ L (cc o-
	 + vTL°

-l
Y (x) + tr{B.

( 1 Lo-1
)d (x)T})2a°3.('x))p(x)dx

n i=1 i	 i	 i i	 i	 i 2 1	 1	 1 i
R

The inequality is a consequence of the following corollary of Schwarz's inequality:

If n Z 0 for i = 1,...,m and if 	 L r^ = 1, then	 2 < m=1 i	 I il^in i l	iEl^ir^i for

all {^
i }
	 If the squared expressions in the last sum above are written

'

out in full, one sees that the integrals of the cross terms in these expressions

vanish. Consequently

T	 o- 2 2	 T 0-1	 2	 1 0-1	 T 2 o
<W,RW> <	 L [a	 y . + (v L	 Y (x)) + (tr{B (_L	 ) 6 (x) }) 1a i ip(x)dxn i=1 i	 i	 i i	 i	 i 2 1	 i 

Now

(6. a)	 ( ai--lyipi (x) dx = ai lyi

I. n

(6.b)	 r (vTLo-lY (x)) 2a°p. (x)dx = f vTL o-1 (x-u°) (x-u°)TL°-lv.a°p. (x)d
J	 i i	 i	 i i	 i i	 i	 i	 i	 i i i
^n	 ^n

<v ,v ii i 

(6. c)	 f (tr{Bi(?L or- 1 ) d i (x) T }) 2CA P i (x)dx = <Ei,Li I  >11 .
n

R

(A proof of (6.c) follows below.) From (6.a), (6.b), and (6.c), one

concludes that
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<W,RW> s iElai 1yi + i E l <v i ,v i>i + iE1<gi,Ei_1gi>i 	<
W 	 >.

This completes the proof of the theorem.

Proof of (6.c): Setting y = E°,-1/2(x-ui) and

C = J (tr(Bi(?ZO 
)ai(x) T }) 2 pi(x)dx,

IR n

one verifies that

C 	 C', f (tr{g i [Ei
-1/2y^yTEi-1/2

 _ E 1]T })2p°(Y)dY,
I, n

o-1/2	 o-1/2
where po	 N(O,I). Denoting E 
	

B 
i 
E i	 - D = (d jk), one then derives

0

C = 
4i f (tr{D[}"yT - I]})2p0(Y)dY

jT n

a f [(tr{DyYT})2 - 2tr{D)tr{DyyT } + (tr{D})2)Po(y)dy

ly,n

a

i

°

4 {j p k]	 djkd P4 
J ykyjygyppo(Y)dy - 2(tr(D

I ) 2 + (tr{B})2}

n

a°

Ti {k P K dkkd PP + k jfkd^kdjk + k j 
kd^kdkj + 3k dKk - (tr{D})2}

0	 0	 1/ai	 2	 a 	 o-1/2	 0-1	 0-2	 ai ro-1	 ,^-1	 11
= 2 tr{D } = --

i
.  tr{ii
	

BiEi BiE i	} = tr{Bi(2 - 1 ) (:.1 L i ) .

<Bi %Ei-1 Bi>i.

I M
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4. The optimal E.

The results just obtained state that, with probability 1 as N approacties

infinity, the iterative procedure (4) converges locally to the strongly

consistent maximum-likelihood estimate 0 whenever 0 < c < 2. In this section

we observe that there exists a particular value of E, referred to as "ttie

optimal E," which yields, with probability 1, the fastest asymptotic uniform

rate of local convergence of (4) near 0. We derive a lower bound between

1 and 2 on the optimal E and relate it to the separation of the component

populations in the mixture.

From the proof of the theorem, one sees that the optimal c is that which

minimizes the spectral radius of the operator E(W E (00 )) restricted to the

space ^7 S ?rg S J, where r, is the subspace of Q( whose components sum to

zero. Indeed, the restricted operator E(V4
E 
(00 )) = I - EQR is syuirnetric on

0 rS - with respect to the inner product 1 -,Q_l; >. Consequently, its

operator norm with respect to this inner product is equal to its spectral

radius and, hence, minimal. We observe that the restriction of QR to

is positive-definite and symmetric with respect to the inner pro-

duct <-,Q
-1
 >. Letting p and T denote, respectively, the largest and

smallest eigenvalues of this restriction of QR, one verifies that the spectral

radius of E(VOE (00 )), restricted to t 0 Y_( j , is minimized when

1 - ET = cp - 1, i.e., when E = 2
p+T.

It follows from the proof of the theorem that p is never greater than

1. Thus the optimal c is bounded below by 2/1+T, where T lies betwoon

0 and 1. In particular, this lower bound on the optimal c lies betwton

1 and 2. We have been unable to determine p more precisely in gcr..ral.
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It should be noted that, if p is strictly less than 2 , then the optimal

E is actually greater than 2, even though the theorem just proved fails to

guarantee the local convergence of (4) for such values of E.

Suppose that the component populations in the mixture are "widely separated"

0
in the sense that each pair (ui ,Ei) differs greatly from every other such

pair. Then, for i,j = 1,...,m,

	

aip i (x)	 CLjpj
(x) 	 n

^ 0 for x t^ whenever i # j.

	

p(x)	 p(x) 

One sees that QR z ; and, hence, p and T must both lie near 1.

Consequently, fastest asymptotic local convergence rates are obtained for c

near 1, and, for the optimal E, E(04)
E 
(00)) Y I - EQR :z0. Thus for

mixtures whose component populations are "widely separated," the optimal E

is only slightly greater than 1, and rapid first-order local convergence

of the iterative procedure (4) to 0 can be expected asymptotically for

this E.

Now suppose that the compone

at least two pairs (uI
i 
,E°i ) and

Then S I (x) Z a  W, Bi(x)yi(x)

and it follows that R is nearly

at populations in the mixture are such that

(po j ), i # j, are nearly identical.

B j (x)Y j (x) and B I (x) d i (x) Z Bi(x)aj(x)

singular and, hence, that T is near zero.

One concludes that the optimal E cannot be much smaller than 2. In fact,

If p is near 1, as is the case when all pairs ('^I,EI) are nearly identical,

then the optimal E must lie near 2. Furthermore, the spectral radius of

E(V41
E 
(00 )) is near 1, even for the optimal E; therefore, slow first-ordor

convergence can be expected asymptotically in this case.
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S. Maximum-likelihood estimates of the a priori probabilities and the means.

It happens that, if the covariance matrices E i , i = 1,...,m, are held

fixed, then, under certain conditions, an appropriately restricted version of

the iterative procedure (4) converges locally with probability 1 to a maxi-

mum-likelihood estimate of the parameters ai and pi  1 = 1,...,m, whenever

the number of observations in the sample reaches a certain finite size. To be

more specific, we introduce the following notation: For 0 	 (u) E 0(®P7 and

_	 a
E CA I denote 0	 ' E of® ^(®^ by (0j). Then, for given E, the

E

likelihood equations for the parameters a 	 and p i , i = 1,...,m can be written

,.	 as

(

A(0,1)

M(O,1)

or, equivalently, as

(7) (5j) = ( 1-CO + E

M(O,E)

for any E. The appropriate iterative procedure to consider is the following:

Beginning with some starting value 0 (1) , define successive iterates inductively

by

(8)
6(k+l) _ @E (&(k) j)
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^vj

for k - 1,2,3,... . Our result concerning this procedure is given by the

theorem and its corollary below.

THEOREM: If N t m(n+l) and if (O,E) is a solution of (7) which lies

sufficiently near a solution of (3), then, with probability 1, (^ E is a

	

locally contractive operator (in some norm on Q(®	 near 0 whenever

0 < E < 2.

COROLLARY: If N ' m(n+l) and if (O,E) is a solution of (7) which lies

sufficiently near a solution of (3), then, with probability 1, the iterative

procedure (8) converges locally to 0 whenever 0 < E < 2.

,Proof of the Theorem: Suppose that N 2!m(n+l) and 0 < E <2. As in the

proof of the preceding theorem, it suffices to show that, with probability 1,

G^O E (O,E) has operator norm less than 1 with respect to some vector norm

on Ck10 V . Since Ob -̂E depends continuously on 0 and E, this need only

be shown when (O,E) is a solution of (3).

From the proof of the preceding theorem, one sees that is (O,E) is a

solution of (3), then

I 0	 (d iag a i ) 0	 N

pO'E(0.E) a	 {N kE V(Xk)<V(Xk),•>},

0 I	 0	 I

where



(diag ai)

Q `

0

0

I
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YX)

sID(x)

0'(x) -

ol(x)Yl(x)

Bm(X)Ym(X)

and the inner product <*,.> is now the inner product induced on C' S ^ 11 by

scalar multiplication on 1P,' and the inner products <-,->i on LR °. As

befor e 0 6 (^ E) is of the form I - e QR where

4W

,	
0 E	

1	 r	 -

and

R
 {N

N
kil V(xk)<V(xk)">)'

We observe that Q R is symmetric and positive semi-definite with respect to

the inner product <,,Q 1, >. In fact, it is shown in Appendix 2 that, with

probability 1, QR is positive-definite with respect to this inner product.

Consequently, the theorem will be proved if it can be shown that

'	 ^,Q 1 (cllt^bJ> - <W,Rk'> ^ <W,Q ^1>



yl

YM 
E Cl # V

vl

vm

one has

^ f	 I

	

'	 f

for all W E CT07'7.

For
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<W,RW> _ Jv k=l [ i-IY iB i (xk ) + Jlvi (ai'i l 	2)Si(xk)yi(xk)J

= N k
T 1 [

J1 (ailyi + viEilYi(xk))aiai(xk)J2

N m _

5 
N J1 iEl[ailyi + viEilYi(xk)J2aiBi(xk)

by Schwarz's Inequality. Since (O,E) is a solution of (3), this easily

yields

 _ m 
<W,RW> < iE l ai lyi + iEl vi(a iE i )vi = <W.Q -W>,

and the prop- is complete.

If the conclusion of the theorem holds for some solution (O,E) of (1),

then, as in the preceding section, a particular value of E can be determined

which y1,Ads tlit• fa-,test uniform rate of local convergence of (R) nuar n.

Witl, rvr%po • t to flit• inner product <-,y l; >, iTR Is Nosh lvv-definite and

syviviet ric on	 Denoting the 1:+rgest and smallest eiEenvalues of the
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s

restriction of ?rF. to F 4 W by p and T, respectively, one sees that the

optimal E is again given by E _ 2 . Since the restriction of (R has

operator norv. no greater than 1 with respect to the inner product <•,^-1 >,

p must be no greater than 1. Hence, f z 
1
—I-, where T lies between 0

and 1. Reasoning as before, one sees that the optimal a lies near 1. if

the component populations are "widely separated," and cannot be much less thii,

2 if two or more of the populations have nearly identical means and covarir-.nce

matrices. In the former case, rapid first-order local convergence of (8) can

be expected for the optimal E. In the latter case, if p is near 1, teen

the optimal a jnust be near 2, and slow first-order convergence of (8)

can be expected, even for the optimal E.

6. Concluding remarks.

A number of numerical techniques for obtaining maximum-likelihoo ,' estimates

of the parameters for a , mixture of normal distributions have been discussed in

the literature. In addition to the usual steepest-ascent method for obtaining a

local maximum of the log-likelihood function, we mention in particular liewton's

method, the method of scoring, and the modifications of these procedures in-

vestigated by Kale (8j for obtaining solutions of the likelihood equations.

It is our feeling that the iterative procedure (4) offers considerable com-

putational advantages over these procedures in many cases of practical Interest

Even though the partial derivatives of the log-likelihood function are not

3ppreciably more difficult to evaluate than the expressions used iu duriiiing th•.

function y ES the procedur. (4), which is a generalized steepest-ascent
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(deflected gradient) method appears to have two particular advantages over the

usual steepest-ascent method. First, the major practical implication of this

note is that the iterative procedure (4) converges whenever the step-size E

lies in an interval which is completely independent of the particular mixture

problem at hand. It is readily ascertained that this cannot be said for the

regular steepest-ascent procedure

a(q+1) = a (q) + E 11 E 
Pi(xk) 

_ 1 E E p-^---k ]
i	 i	 N k=1 p(xk)	 mN j =1 k=1 p(xk)

u (q+l) = 
p (q) + E ^1	 aiq)pi(xk) E(q)-1(x -P

ii	 i	 N k=1	 p (xk)	 i	 k i

.	 (q+l) _ (q)	 1	 E aiq)pi(xk) -t(q)-1+ 
E (q)-1	 _ (q)'	 _,( q) TE(q)-1

E i	 Ei	 E ^2N k= 1	 p(xk) 	 (	 ^ i ) i	 ]

Second, if E is no greater than 1 the success ive iterates defined by (4) 	 q+

automatically satisfy the requisite constraints on the parameters, i.e., the

successive E i 's are, with probability 1 for large N, po.--cive-definite and

the successive a i 's are positive and sum to 1.

Although Newton's method and the method of scoring offer quadratic and nsar-

quadratic convergence, respectively, for large sample sizes, they require at each

iteration the inversion of a square matrix whose dimension is equal to the number

of independent variables among the parameters, namely m(n+l)(n+2) - 1. Thus

these methods may be less efficient compu'ationally than the iterative_ procedure

(4) if m and n are large, even though they may yield a satisfactory approximate

solution after fewer iterations. The modified versions of Newton's method and

the method of scoring do not require the re--calculation of the inverse of a
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large matrix at each step. However, quadratic convergence is not achieved with

these modified methods, and multiplication by a large matrix must still be

carried out at each iteration.

i

I
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Appendix 1.

We now give a brief proof of the existence and uniqueness of the strongly

consistent maximum-likelihood estimate. For the sake of generality, this is

done in a somewhat broader context than is necessary for this paper.

Let p(x,0) be a probability density function of a vector variable x ELrn

and a vector parameter 0 ELR . If {
xk 

}k=1,...,N is an independent sample of

observations on a random variable x EQ' n whose probability density function is

p(x,00) for some 0° E P,V, then a maximum-likelihood estimate of 0° is a

choice of 0 which locally maximizes the log-likelihood function

N
L = J1 log p(xk,0).

If p is a differentiable function of 0, then a necessary condition for a

maximum-likelihood estimate is that the likelihood equations

aL
26i = 0

1 i = 1, ... IV,

be satisfied, where e  is the ith component of 0. In the following, our

objective is to show that if p satisfies certain conditions, then, given any

sufficiently small neighborhood of 0°, there is, with probability 1 as N

approaches infinity, a unique solution of the likelihood equations in that

neighborhood, and this solution is a maximum-likelihood estimate of 0
0

.

A

We assume that p(x,0) satisfies the following conditions of Chanda [1]:

(a) There is a neighborhood Q of 0° such that for all 0 E 2, for almost
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2	 3
all x Er n , and for i, j ,k=1, ... ,v,	 , o-^-a^ , and a-Ty- au	 exist

j	 i j k
and satisfy

^39 < f i (x), la^
i
a^l s fij(x), ^a 1D o a dk <_ fijk(X),

i	 j	 i j k

where f  and fij are integrable and fijk satisfies

J f ijk(x)p(x,0°)dx < ^.
n

(b) The matrix . J(0) _ ( f a log a a— ail p dx) is positive-definite at 00 .

F n a t1

1 aL
N 27

Let
1 aL
N ae

It is immediately seen that of (0) = 0 if and only if 'the likelihood equations

are satisfied, and that, by the Law of Large Numbers, /(0°) converges with

probability 1 to zero. Furthermore, it follows from assumptions (a) and (b)

above that there exists a neighborhood S2° of 00 (contained in 0 and, for

convenience, convex) and a positive E such that, with probability 1 as N

approaches infinity, a^(C) < - E I for all 0 E 00 . (The inequality is with

respect to the usual ordering on symmetric matrices.) Denoting the spherical

neighhorhoo.l of radius d ab uut 0° by 066 we e^:tahlisli the fol lowinL

Lemma: With probability 1 as N approaches infinity,

(1)  °is one-to-one on S2,



i
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(ii)	 (S`d ) contains the ball of radius Ed about	 (0°) whenever

SZa c SZ°.

Proof: We may assume that 0,x'(0) <_ - E I for all 0 E 0 0 , since the prob-

ability that this is the case is 1 as N approaches infinity. To prove (i),

suppose that y(O l) = 
_;^(0

2) for O1 and 02 in Q0 , Then

0 = (C) - 02 ) T [ Z(01 ) - x(02)]

(Ol
 - 02)T UlV /(02 + t[O l - 0 2 ])dt} ( (D1 - 02)•

The negative-definiteness of 0:e implies that O1 = 02 , and (i) is proved.

To prove (ii), suppose that Q6 c P , and let Ol be a boundary point

t SZd . Then

(O1) —,Z(0°) = {I'V Z(0° + t[O l - 00 ])dt}(01 - 00)•

After left-multiplying this equation by (01 - 0°) T , one verifies using Schwarz's

inequality and the negative-definiteness of 0,;f that

II r  ( 01 ) - X(o°) II > E II of - C
)°11 = E 6,

where	 11 denotes the usual Euclidean norm on r; 'J . Since all boundary points

of	 (sZ^) are images under u-'-o of boundary points of SZ b , the proof of (ii)

is complete.

The desired result of this appendix follows immediately from this lemma and

iL
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the remarks preceding it. Indeed, if S21 is any neighborhood of 0° which is

contained in S2°, then one can find a d for which Std c 2 c 0 . By the lemma,

the probability is 1 as N tends to infinity that /_ is one-to-one on S21

and that `(S2d) and, hence, ,^(S2 1) contain the ball of radius Ed about

,j(0°). Since ._L(0°) converges with probability _1 to zero, one concludes

that, with probability 1 as. N approaches infinity, there exists a unique

0 E S21 for which ,7e((D) = 0. Since the probability also is 1 as N approaches

infinity that V f is negative-definite on 52 1 , this 0 is, with probability

1, a maximum-likelihood estimate.

I
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Appendix 2.

We now prove that the operator QR is positive-definite on OC ID M with

probability 1 whenever N ? m(n+l). Since

(d iag ai)	 0	 N

QR	 (N kEl V(xk)<V(Xk) ">},

0

	

(I)

^J

it suffices to show that the vectors

P1(xk)

P (x 
k

)

pm (xk)

P (xk)

v(xk) = , It = 1,...,N,

Pl (xk)
(xk-ul)

P(xk) 

PM(xk)

P (xk) (xk um)

span	 with probability 1 whenever N ? m(n+l). This follows from the

more general result below.

Lemma. Let (xk}k=l,...,N be an independent sample of observations on a random

variable x in ' s which is distributed with a probability density function

p. If V is a real-analytic function from 1R s to UZ t whose component funetionn

are linearly independent, then the vectors V(xk), k=],...,N, span 
m't 

wicf,
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probability 1 whenever N z t.

Proof: Denoting the j th component function of V by V j , we define a real-

analytic function V  from R s to P j by

V1(x)

V (x)j

V
j 

(x)

for j - 1,...,t. Our proof of the lemma consists of showing inductively that,

for j = 1,...,t, the set {Vj (xk) } k=1	 j spans R j with probability 1.

We make the preliminary observation that, since the real-analytic functions

V  are assumed to be linearly independent, any non-zero linear combination

of them vanishes only on a set of Lebesque measure zero in Q', s.

From the observation above, V 1 (x1) is non-zero with probability 1;

hence V 1 (x1) spans 1' 1 with probability 1. Suppose now that, for some j,

1 s j < t, the set {Vj (xk)} k=1	 j spans M j with probability 1. Then,

with probability 1, the set {Vj+l(xk)}k=1
	

j+l fails to span M j+l if

and only if

j
(9)	 Vj+l(xj+1)	 k; l c  

Vj +l(xk)

for some set of constants {ck}k=1If (9) holds, the constants c
,•• +J^	 k

are determined by

C1 =

i (xj +1)
C,
J
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vj+1(x)

J

1W =.

33

with probability 1, where V j is the j xj matrix whose kth column is

Vj (xk). Thus, with probability 1, (9) holds if and only if

vj+1(x1)

[7/j
-1Vj 

(x
j+1

)1T	
- vj+l("j+1)	

0.

vj+1(Xj)

Now

v j+1(x1)

I /j 1ViWIT
vj+1(xj)

is a non-zero linear combination of the

vanishes only a set of Lebesque measure

{Vj+l (xk)} k=1	 j
+l fails to span OR

completes the induction, and the lemma
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