General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



A,

(VASA-CF=-148213) TEF RELATIVISTIC EQUATIONS N76-27134
OF STFLIAE STRUCTURE ANLC EVOLIUTICN. STAEKS

WITH CEGENFEATE NFUTRCN CORES, 1

STFUCTUFF OF EQUILIERIUM MOTCELS (Calitfornia Unclas
Inst. of Tech,) 72 p HC $4.50 CSCL 03A G3/49 42321

; *
THE RELATIVISTIC EQUATIONS OF STELLAR STRUCTURE AND EVOLUTION !

KIP S. THORNE

W. K. Kellogg Radiation Laboratory
California Institute of Technology, Pasadena, California 91125

and

STARS WITH DEGENERATE NEUTRON CORES:
I. STRUCTURE OF EQUILIBRIUM MODELS*

KIP S. THORNE

W. K. Kellogg Radiation Laboratory
California Institute of Technology, Pasadena, California 91125

~ad

ANNA N. ZYTKOW
W. K. Kellogg Radiation Laboratory
California Institute of Technology, Pasadena, California 91125
and

Institute of Astronomy
Polish Academy of Sciences, Warsaw, Poland

+* :
Supported in part by the National Science Foundation
[AST75-01398-A01].

+Also supported in part by the National Aeronautics and
Space Administration [NGR 05-002-256].

ONE OF THE ORANGE AID PREPRINT SERIES
IN NUCLEAR, ATOMIC § RELATIVISTIC ASTROPHYSICS

May 1976

L53



*
THE RELATIVISTIC EQUATIONS OF STELLAR STRUCTURE AND EVOLUTION

KIP S. THORNE
W. K. Kellogg Radiation Laboratory

California Institute of Technology, Pasadena, California 91125

ABSTRACT
The general relativistic equations of stellar structure and
evolution are reformulated in a notation which makes easy contact
with Newtonian theory.  Also, a general relativistic version of
the mixing-length formalism for convection is presented. Finally,
it is argued that in previous work on spherical systems general
relativity theorists have identified the wrong quantity as ''total

mass-energy inside radius r."
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I. INTRODUCTION

The general relativistic equations of stellar structure for zero-
temperature stars (neutron stars) were first presented in their modern form
by Oppenheimer and Volkoff (1939). Two decades later the discovery of
discrete, galactic X-ray sources (Giacconi et al. 1962, Gursky et al. 1963)
motivated theoretical studies of hot, relativistic neutron stars by Chiu
and Salpeter (1964), Morton (1964), and Tsuruta (1964); and the huge energy
requirements of strong radio sources motivated Hoyle and Fowler (1963a,b)
to develop the theory of hot, efficiently convective supermassive stars in
which, it was soon realized, relativistic effects can be important (Feynman
1964, Chandrasekhar 196L, Fowler 1964)., In response to these developments,
and others, Bardeen (1965), Misner and Sharp (1965), and Lindquist (1966)
developed the theory of diffusive heat transfer in relativistic stars, and
Bondi (1984), Chandfasekhar (1965) and Thorne (1966a) elucidated the rela-
tivistic version of the Schwarzschild criterion for convection. All of these
pieces of relativistic stellar theory were put together and combined with
relativistic equations for nuclear energy generation by Hdmeen-Anttila and
Anttila (1966) and by Thorne (1966b, 1967) to give the currently standard
version Bf thé relativistic equations of stellar structure and evolution.

Recently Anna Zytkow and I began analyzing the structure of red super-
giant stars with degenerate neutron cores (see the following paper and
references cited therein). For this purpose the standard relativistic
stellar equations are unsatisfactory in two ways: (i) they do not make easy
contact with the standard Newtonian équations; and (ii) they do not include
a mixing-length formalism for convective energy transport. The‘purpose of

this paper is to remedy these defects by (i) tramslating the relativistic



equations into a new notation, and (ii) presenting a straightforward rela-
tivistic generalization of the standard Newtonian mixing-lengtn equations.
No detailed derivations will be given because the translation from the old
notation (Thorne 1966b, 1967) to the new is straightforward; and the deriva-
tion of the relativistic mixing~length theory is identical to the Newtonian
derivation, if dne works in the proper reference frame of a static relativistic
observer,

Throughout the paper c.g.s. units will be used; the speed of light c

and Newton's gravitation constant G will not be set equal to unity.

IT, FUNDAMENTAL VARIABLES

As our independent thermodynamic variables we choose the following —
all of which are determined by measurements using standard, physical rods
and clocks, in the mean local rest frame of the baryons. After the symbol

‘for each quantity, we indicate its units in brackets.

g _ . " "y _ mass of ore hydrogen
P [ ] = (density of "rest mass") = (atom in its ground state

number density
X ( of baryons ) ’ (1a)
T{°K] = (temperature); (1b)
% _ fractional abundance of nuclear species i, (1c)
i = \by rest mass or equivalently by baryon number/ ° '

As our independent radial and time variables we choose

Ml

"rest mass' inside mass of one hydrogen
Mr[g] = "radius r"

atom in its ground state

X

total number of baryons) |
inside radius r ?



"Schwarzschild time
t(sec] =

time coordinate such that [B/Bt]r is
coordinate" ) -

the time-translation Killing vector and .(2b)
t is proper time at radial infinity

The gravitational field is characterized by three fundamental variables

which are functions of Mr and tg

r{cm] = ("radius") = (1/2x) X (circumference around center of star); (3a)
"total mass inside radius r" — including contributions from rest
Mtr[g] = mass, nuclear bindi i d i 3 (3D)
) inding energy, internal energy, and gravity

= ("gravitational potential") = & ¢? In

CC T

r r

[<]
 Sa— |
SO P

I

Energy transport through the star is characterized by three quantities,
{
each of which is determined by measurements using standard, physical rods and

clocks in the mean local rest frame of the baryons at radius r:

Lr [erg] = ("1oca1.luminosity”) = (non-neutrlno energy being transported across) ;

sec the sphere at radius r, per unit time
(La)
" . . . same as above, but for neutrino energy
ny | erg neutrino luminosity . :
Lr sec | = | from nuclear burning"] = produced in thermonuclear reaction 3
& cycles which change the abundances Xi
(kD)
" . . . same as above, but for neutrino
ovierg| neutrino luminosity not _ ener roduced b rocesses ) (Mc)
r |sec| ™ from nuclear burning" /= Ey P y Pro '

which, in time-average, do not
change the abundances Xi

The complete stellar structure and evolution are characterized by the
functions p(Mr,t), T(Mr,t), Xi(Mr,t),’ r(Mr,t), Mtr(Mr,t), @(Mr,t), Lr(Mr,t),

ny oV
Lr , (Mr) t); and Lr (Mr’ t).



I1T, AUXILIARY VARIABLES

a) Thermodynamic, Nuclear Burning, and Opacity Variables

The following auxiliary variables are algebraic functions of the funda-
mental variables; and like the fundamental variables they are determined by
measurements using standard, physical rods and clocks in the mean local rest

frame of the baryons

P(p,T,Xi) [QZE%E] = (total pressure); (5a)
cm
B(X ) erg _ [binding energy of nuclei, per unit) _ 1-% My Xi, c2 (5b)
i g = rest mass, relative to hydrogen | = i My Ai :

where m, is the mass of atomic species i in its ground state, my is the mass
of atomic hydrogen, Ai is the number of baryons in atomic species i, and c¢ is
the speed of light;

erg

H(D,T,Xi) [-E—] = ("specific internal energy')

(total mass-energy of a sample of )
stellar material, in energy units
(total rest mass of the sample)

+ B(Xi) —rcg; (s5¢)

g _ [density of total non-gravitational] 2 2y,
pt(p’T’Xi> [cms] = ( mass-energy, in mass units = p(l-—B/c -+H/c );  (84)

il

5 (opacity) = (Rosseland mean opacity); (5e)

K (p,T,Xi) [SEEJ



erg rate, per unit rest mass, at which nuclear "
e (o,m,x;) [ ] ; . ; (58)
g sec burning creates non-neutrino energy
erg ] _ (rate, per unit rest mass, at which nuclear) | 5
env(p’T’xi) [g sec| & ( burning creates neutrino energy 4 ( g)
ere rate, per unit rest mass, at which non-nuclear-
e . (p,T,X.) [———5— = ( burning processes [processes with no change ) ;5 (5h)
ov i’ | g sec . .
. in Xi] create neutrino energy
o, (0,T,X.) sec-1 = rate at which the abundance Xi of.spec1es 1)’ (51)
1 1 changes due to nuclear burning
b) Relativistic Correction Functions
The above auxiliary variables (except B and pt) are all familiar from
the Newtonian theory of stellar interiors. In the rzlativistic theory it is
useful to introduce the following additional auxiliary variables, each of
which is dimensionless and is unity in the Newtonian limit
R = ("redshift correction factor") = exp(@/ce); (6a)
¥ = ("volume correction factor") = (1--2GM.tr/c2r)_1/2 H (6h)
‘ 3,72
g - "gravitational-acceleration) Mtr-khﬂr P/e . (6¢)
= correction factor" = Mr ?
¢ = ("energy correction factor") =1 + (]I--B)/c2 = pt/p; (6d)
=1 + (H-—B-&p/p)/ce. (Ge)

% = ("enthalpy correction factor")

In terms of these variables, the general relativistic metric for spacetime

inside and around the star is

2 2

ds? = -RPcfat® + 4Pdr® + r2(de” + sinodg’). (7)

5



c) Mixing-Length Variables

The Newtonian mixing~length theory of convective energy transport is
readily generalized to general relativity. One need only introduce the
local proper reference frame of an observer at rest at radius r, and in that
reference frame analyze, in a manner identical to Newtonian theory, the
buoyant forces on convective cells and the heat exchange between convective
cells and their surroundings, The auxiliary variables that enter into such

an analysis, patterned after Paczyﬁski's (1969) Newtonian variant, are

o [ cm ] _ (1oca1 acceleration) _ GMr&?f ]
— ) - s
sec2 of gravity r2
Hy [em] = (pressure scale height) = (P/pg)%[-l H
Ly [em] = (mixing length [normally chosen equal to HP]);

w = (optical thickness of one scale height) = p L3
e oIl P [dp
. = (specific heat at constant pressure)= (ﬁ -~5\37 5
P P,X, P,X.
i i
CP P14 w2/3

(coefficient of heat exchange) =

~2
(o]
wm
[¢]
a]g
1
i

BUT5 w

where ¢ = ac/4 is the Stephan-Boltzmann constant; and

Q = - (d{ﬂn} ol

o In T)P,Xi

In terms of these auxiliary variables, the basic algebraic equations of the

(8g)



mixing~length theory are these: (i) An equation which defines the "radiative

gradient"

-1
v . o (value that (3 inT/3M.), (dnP/M.) " =dinT/din P) ;
rad would have if the material were non-convective
the equation for V__, follows from equations (3.11-3) and (3.11-7a) of Thorne
(1966, 1967) by straightforward change of notation:
% K Lr'P

o (%)
V = + 1 - . ( 9a‘)
rad ~ Bhx GMrcTK NI Y

(ii) The usual equation for the "adiabatic gradient"

1"2—1

T

_{onT
rad = \3d InP

(9b)

)entropy,xi 2

where I', is the adiabatic index of the second kind. (iii) A set of four
coupled algebraic equations which determine the energy flux carried by con-
vection Fconv’ the mean velocity of a convective cell ("turbulent velocity")

V., the gradient associated with a convective cell V', and the actual gradient

averaged over all convective cells and over the medium through which they

move, V:
I
_ 160T
conv BkpH,, (Vrad -V, (10a)
Foony = L CPpTvt()@t/HP) (v-v"), » (10b)
v2-1 2 (2, /H)Q (V-v") . (10¢)
t T B8N ’
(v-v")/ (v 'Vad) =7V, . ' (10d) |

Equations (10b)-(10d) have identically the same form as in Newtonian theory

because their derivation in the proper reference frame of a static observer



is identical to that of Newtonian theory. Equation (10a) also has standard

Newtonian form. It follows from equation (9a) with Lr rewritten as

Mﬂrg(F -%Frad)’ and from the analogous equation for the actual gradient

conv

V in terms of the radiative flux F
rad

2
o3 k(W F )P A
= 8w oM o7 NS T Y
r

Because equations (10) all have the same form as in Newtonian theory, one
can use the standard technique [eqs. (22)-(27) of Paczynski (1969)] to solve

them for the four unknowns F V', and V.

v
conv’ t’

IV. DIFFERENTIAL EQUATIONS OF STELLAR STRUCTURE

There are 8 +N (where N is the number of nuclear species) differential
equations of stellar structure for the 8 +N fundamental variables p, T, X,
nv

» @, L, Lr

L Mtr T

, and Lgv as functions of M and t., TIn these differential
equations B/BMr acts at fixed t, and J/dt acts at fixed M_. Each equation is
a translation of the indicated combination of equations from Thorne (1966b,
1967).

The equation for Mr as a proper volume integral of p; translation of

equation (3.11-1):

Br/er = (hﬁrde)-l. (11a)

The equation for total mass-energy inside radius r; translation of

equations (3,11-2) and (3.11-1):

oM /M = efr. (11b)

- [T



The source equation for the gravitational potential ¢; translation of

equations (3.11-4) and (3.11-1):

% _ 7 2 (1Lc)
~ S, e
T nr' e

The equation of energy generation; translation of equations (5.11-5),

(3.11-6), and (3.11-1):

2
1 a(LrR ) =g € 1on +—P——1—§— (114)
R2 SMr = *nue” fov T R Ot p2 R ot °

The equation for neutrino losses due to nuclear burning; translation

of equations (3.11-6) and (3.11-1), specialized to nuclear-burning neutrinos

L L3 = € (1le)
&2 §Mr ny °

The equation for non-nuclear-burning neutrino losses; translation of

equations (3.11-6) and 3.11-1), specialized to non-nuclear-burning neutrinos

B(LOVRE)
S S (11£)
&2 éMr = Eop

The equation for changes of nuclear abundances due to nuclear burning;

translation of equation (3.8)
-1
R OX,/ot = a, . (11g)
i i
The equation of energy transport; follows directly from the definition

of V; translation of the mixing-length-generalized version of equations

(3.11-7)

il

dUnT/IM, = V__, O IR/ if V.., <9

rad
(11n)

dnT/OM =V din P/BMr if

il

vrad > vad'



The Oppenheimer-Volkoff equation of hydrostatic equilibrium; translation
of equations (3.11-3) and (3.11-1)

dP GM

r
= - INY. (114i)
aMr lmrlP

This equation must be combined with the equation of state ?(p,T,Xi) and with

equations (llg,h) for BT/BME and Bxi/aMr to yield Bp/BMr.

V. BOUNDARY CONDITIONS

Corresponding to each different derivative with respect to Mr in the
2nations of stellar structure there is a radial boundary condition., The

obvious boundary conditions at the star's center are
r=M_=L =L =L =0 at M =0 (12a)

(translation of [3.38al).
We shall denote the surface values of rest mass, total mass, radius, and

the total luminosities by

ny ny ov ov

M=M, M =M R=r, L=1L .2 L =L at surface. (13)

r’ Tt tr’

At the surface the star's spacetime geometry (7) must match onto the external

Schwarzschild geometry

2 2,.2 =1, 2 2(

ds =-(1-2GMt/c2r)c dt” + (1-2GMt/62r) dr™ + ¢ d62+sin29dcp2). (14)

Smoothness of the match ("continuity of intrinsic geometry of surface”)

requires that ¢ satisfy the surface boundary condition

o = %~c2(1_-2GMt/c2R) at M =M (surface of star). (12b)

10



Note that the luminosities as measured far from the star — which we denote

ny ov . nv

£y £ 5 and £ — are not the same as the surface luminosities L, L ~, and
0 ) .

LoV, Rather, they are the surface luminosities corrected for gravitational
redshift

2/L = LY/ = %Y1 = (1- 2GMt/c2R). (15)

In addition to the boundary conditions (12a,b) one must also impose
surface boundary conditions on pressure P and temperature T. If moderate
errors near the surface are allowable, one can impose the 'zero boundary
conditions"

P=T=0 at M =M (12¢)

(translation of eqs. [3.38c,d]). If higher accuracy is desired one can
impose the boundary conditions of the relativistic version of the Eddington

approximation

L = unchT”, kP =% (GMt/Rg)‘Zr at M =M (12¢")

(translation of eqs. [3.38c',d']). For still higher accuracy one can join
onto a model stellar atmosphere., If the atmosphere is thin compared to the
stellar radius R, then it can be constructed in the standard Newtonian manner

using a surface gravity of
g = (GM /r2) ” at M_=M (18)
s t 4
a surface luminosity equal to L, and radial and time coordinates t and t
related to r and t by

1/2.

v = (x-RW, t=tR;  R=7" = (1-20M/cR) (17)

11



If the atmosphere is not thin compared to R, one can construct it using the
formalism of general relativistic radiative transfer theory, which is reviewed
in §2.6 of Novikov and Thorne (1973). 1In the case of a thin atmosphere all
spectral features as observed by a distant observer are redshifted relative

to their rest wavelengths by

ANN = (l-EGMt/czR)'%-l. (18)

VI. SOME USEFUL RELATIONS

In this section we list several useful relations among the stellar-
interior variables.
The sum of the fractional abundances Xi. must be unity at all times;

and consequently, the sum of their rates of change must vanish:
i i

L X, =1, S o, = 0. (19)
i i

The total rate of energy release by nuclear burning must equal the rate

of change of nuclear binding energy

a ; (20)

see equations (5b) and (1lg).
. The rate of change of the total mass-energy inside radius r, as measured
by an observer there, must be equal to the rate at which matter carries mass-

energy inward minus the rate at which luminosity carries it outward:

M M o
-1 tr -1 r 1 nv ;| _ov
TR (—B—t—')r = R (W)r N - ‘c—e— (Lr+ Lr + Lo )_' (21)’

12



This mass-energy conservation law requires some discussion: (i) The time
derivatives here are taken at fixed radius r, whereas all previous time
derivatives were taken at fixed rest mass M ; the two types of time deriva-

tives are related by
(3/3t) = (3/at), + (M /3t),. (d/m), . (22)

(ii) The operator &-I(B/Bt)r is derivative with respect to the proper time
of an observer who sits at rest at radius r; see equation (7). (iii)
R_l(BMr/Bt)r is the locally measured rate at which rest mass flows inward
across radius r; and gt (BM}/Bt)r&’ is the rate of inflow of rest mass
plus enthalpy in mass units. Enthalpy appears in the conservation law
rather than energy (% rather than €) for the same reason as it appears in
the Bernoulli equation: in moving matter, pressure (the difference between
oX and pg€) transports energy

(energy flux) = (pressure) X (velocity).

(iv) (1/c2)(Lr-+L:V4-L?V) is the locally measured rate at which mass-energy is
transported outward by neutrinos, photons, and diffusive heat flow. (v) Since
Mtr is the total mass-energy inside radius r, one would have expected the
left side of equation (21) to read T (BMtr/Bt)r ~— i.e., one would have

expected the % to be absent. The presence of ¥ suggests to me that

relativity theorists such as Misner, Thorne, and Wheeler (1973) should not

have given the name '"total mass-energy inside radius r'" to Mtr' Rather,

the quantity

My, = (/0)r (1-171) = (/o) [1 - (1-2thr/c2r>%]

(23)

1

1 2, 2 s . .
Mtr + 3 GMtr /c“r in Newtonian limit

13



should have been identified as total mass-energy inside radius r because

it satisfies

oM
= @,"1 (___x_-_) 2 - -lé (Lr+L:V+L§V). (21')
r (o4

R-l (asmtr _ 'Zfb'\‘,_l (aMtr)
ot r B ot g
Out of deference to established convention I suggest that people retain the

name ''total mass-energy inside radius r" for M but keep in mind that it

tr’

is a misnomer.
The equation of mass-energy conservation (21) can be derived from the

equations of stellar structure by first deriving the relation

oM oM
"a% [:'}2' (Lr+L::W+Lgv)R2 - (—6%) ¥R+ (*g%x—.) Vﬂ'] = 0, (k)
r r

c

where 3/dr acts at fixed time t, and by then invoking the boundary conditions
L =L =L =M =M _ =0 at r = 0,

A derivation of equation (24) proceeds as follows: (i) By combining equations

" (11a,d,e,f), (20), and (8d) derive the relation

2
B [% 0 nrennf] - anfove (39, - 20 (3)
r L

c

(i1) Use equations (22) to convert from time derivatives at fixed M_ to time

derivatives at fixed r; and then use equations (lla,c,i) and (6a,d,e) to obtain

2
-C , . .

(25a)

+(—B§Mt£>r 581; (WR) .

1L



(iii) Use equation (1la) to derive the relation

2 ((3) wa-(32) Zww wmtua[2] L e

‘r r
(iv) Use equations (6a,b,c,d,e) and (1lla,b,c) to derive the relation

(fdr)(rr) = lm(G/ce) o7 R

and then use equations (1lla,b) and (6b) to obtain

2 [5e) ve]-uete fon [2] v [eR] | . o

(v) Finally, combine equations (25a,b,c) and (6d,e) to obtain equation (24).
Note that the equation of mass-energy conservation (21), when evaluated far

outside the star, just says that if the rest mass of the star is held fixed

then its total mass-energy decreases at a rate given by the photon and neutrino

mass-energy losses

au far = - (1/c%) G + £ + £, (e6)

VII, SUMMARY

Coordinates M, t for the stellar interior are defined in equations (2a,b).
The star's structure is described by 8 +N (where N is the number of nuclear

nv

species) fundamental variables p, T, X, v, M, 0, L, Lo, and Liv, which

tr
are functions of M_ and t, and which are defined in equations (1), (3), and

(4). These 8+N variables satisfy the 8 +N differential equations of stellar
structure (11), subject to the radial boundary conditions (12). The differen-

tial equations (11) contain a number of auxiliary variables, which are

algebraic functions of the fundamental variables, and which are defined in

15



equations (5)-(10).“Quantities which characterize the surface of the star,
its external gravitational field, and the radiation which leaves the star
are described by equations (13)-(18). Several useful relations among the
stellar variables are given in equations (19)-(21) and (26).

This version of the equations of stellar structure and evolution reduces
to the standard Newtonian version when one sets the following relativistic
correction factors to unity: R, ¥, 4, €, ¥ in the interior; (1- 2GMt/c2R)

and (1-2GMt/c2r) at the surface and in the exterior.
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ABSTRACT

Stars with massive envelopes (Menv‘z 1 M@) and degenerate neutron
cores (Mggre ~ 1 Mo, Rogpe ~ 10 km) are analyzed theoretically: General
relativistic equations of structure are derived uader the assumptions
of hydrostatic and thermal equilibrium, spherical symmetry, no rotation,
and no magnetic field. Numerical models are constructed, and analytic
expressions are derived for the stellar structure in various interior
regions. It is argued that all nonrotating, equilibrium models prob-
ably resemble qualitatively those constructed in this paper. Brief
discussions are given of the stability and evolution of the models, and
of prospects for identifying such stars observationally.

Viewed externally, our models are extreme M supergiants (L.-~;5><1OLF
to 1.3 x10° Ly, Tohotosphere ~ 2600 to 3100 K, Rypoig phere == 1000 RD>'
The large, diffuse envelope of each model is sepgrateg 2r0m its compact
core by a thin (~ 40 meter) energy-generation layer called the "halo,"
The envelope convects from the outer edge of the halo all the way out
to the photosphere. Matter contracts from the envelope through the
halo and into the core at a rate of ~ 1x10-8 Mj/yr. The contracting
matter releases its gravitational energy and burns its hydrogen and
helium while passing through the halo. When the envelope mass exceeds
~ 10 My, the hydrogen-burning shell occurs at the halo-envelope inter-
face, and the products of hot (T =~ 1x 109 K) nonequilibrium hydrogen
burning are convected directly from the burning shell out to the photo-
sphere, where they should be observable,

* ,
Supported in part by the National Science Foundation
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I. INTRODUCTION AND OVERVIEW

a) Stars with Neutron Cores Compared with Stars with White-Dwarf Cores

This is the first of several papers devoted to the question 'What are
the possible equilibrium states for a star consisting of a massive nondegen-
erate envelope surrounding a degenerate neutron core?"

The analogous question, '"What are the equilibrium states for a star
with a massive, nondegenerate envelope surrounding a degenerate-electron
(white-dwarf) core?" has a well-known answer: Such stars are red giants
which reside near the Hayashi track of the H-R diagram. In these stars mat-
ter continually, but slowly, flows from the inner regions of the envelope
onto the outer regions of the core, passing through one or more nuclear
burning shells as it flows. The inflow releases nuclear and gravitational

energy, converting it into stellar luminosity L :

’

H (1.1a)

n
1=
(2]

L=L +L __, L =M, L
nuc grav nuc grav R c2

qQ = 0.007 , GMC/RCCZ ~ 1074 . (1.1b)

(Here ﬁ is the rate of mass flow into the core, Q is the efficiency of
nuclear burning for converting rest mass into thermal energy, and GMC/RCC2
is the analogous efficiency of gravitational contraction with MC and Rq
the core mass and radius.)

For the case of a star with neutron core, one might expect a similar
answer: Red giant star near the Hayashi track; gradual inflow of matter

from envelope to core; formula (1.la) for energy generation again valid,

but now with



Q = 0.007 , GMc/Rcc2 = 0.15 . (1.1b")

The enormous strengthening of the gravitational potential, GMc/Rc ,
when the white-dwarf core is replaced by a neutron core, has two conse-
quences: (i) The relative roles of nuclear burning and gravitation as

sources of luminosity are reversed:

12

L /L

nuc 0.99, L /L = 0.01 for white-dwarf core , (1.2a)

grav

R

L /L=0.06, L /L

0.96 for neutron core . (1.2b)
nuc grav

(ii) The timescale for marked evolution of .the star is much longer
in the neutron case than in the white-dwarf case, if one compares stars of

similar luminosities:

y 2
T M /M L /0.007 ¢ L
Tneut ~ [0} .neut ~ w.d. S - 20 Lw.d. s> 1 . (1.3)
w.d. M /M L /0.15 ¢ neut
o "w.d. neut

b) Qualitative Overview of the Internal Structure

The above discussion is corroborated by the detailed stellar models
that we shall construct in this papef——so long as the total mass of the
star is < 10 Mbl(we shall call such stars "giants"). For M 2 10 M@
("supergiants") our models have convective envelopes that extend all the
way into the hydrogen-burning shell. As a consequence, most of the burned
material is recycled back into the envelope, rather than being passed on
ingo the core; the relative importance of nuclear and gravitational energy
generation is reversed back to the white-dwarf-type situatioﬁ, Lnuc >>

grav; the evolution of the star is dominated by chemical changes in the
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envelope rather than by growth of the core; and the evolution timescale
is comparable to the white-dwarf-core case.

Except for location of the hydrogen-burning shell and its resulting
influence on the star's evolution (giant versus supergiant), our stellar
models all have similar structures. Figure 1 depicts their common struc-
ture, and defines a number of terms ("envelope", '"knee'", "halo", 'core",
++.) which we shall use throughout this paper in discussing our models.

The stellar étructure depicted in Figure 1 is very peculiarj many
of its features are unique to stars with neutron cores, and violate in-
tuition based on studies of more normal stellar models. For example:

(i) In no other type of stellar model yet constructéd does a single con-
vection zone link the photosphere té g nuclear-burning region. (ii) The
region between the core and the base of the convective envelope is nearly
isothermal and has a total thickness of only V40 meters; we call this
region the star's "halo'". (iii) All of the gravitational energy release
occurs in the upper regions (< 20 meters) of this halo. (iv) In giant
models this halo contains both the hydrogen- and helium-burning shell
sources, each with thickness < 5 meters; in supergiants the hydrogen-
burning shell overlaps the envelope, so the halo contains only the helium-
burning shell.

c) Observable Features of the Models

Unfortunately all of these extreme halo conditions are thoroughly
hidden from the prying eyes of the’astronomer by the huge, tenuous, red-
giant envelope. The envelope acts as a buffer: Consider two stellar models
with the same core mass, envelope mass, and total luminosity, but with

different cores (white—dwarf versus neutron). Imagine comparing these



models by swimming outward from the core through the envelope to the
photosphere. The differences one would see are enormous near the core;

but they would gradually die away as one moves outward through the envelope.
At the photosphere only one tiny difference would remain: the star with
neutron core would be slightly redder, by A log Tph << 0.1 .

Put differently: aside from chemical composition (see below), the
only distinguishing external feature of our models with neutron cores is
their extreme redness: because they sit precisely on the edge of the
Hayashi forbidden region, they must be the reddest stars in the universe;
but they will be redder than stars at the tip of the normal giant branch
by only a very slight amount, A log Tph < 0.1 . This difference is so
slight that it will get lost in other effects (reddening by circumstellar
material and interstellar material, differences in chemical composition

causing differences in T ,, uncertainties in values of molecular opacities

ph

and convective mixing lengths, etc.). Hence, this redness difference is not

a good '"handlée'to use in observational searches for stars with neutron cores.
Thus far our model building has yielded only one good cbservational

handle-~and we are not yet sure of its details: In our supergiant models

convection should carry the products of hydrogen burning directly from

the nuclear-burning shell to the photosphere. The hydrogen will be burned

by a hot (T = 1 X lOgK), nonequilibrium CNO-Ne reaction network, and pre-

sumably will produce very peculiar relative abundances of various catalyst

isotopes (180, 17O, 160, 15C, lEC, etc.). It may be possible to measure these

abundances in the photosphere by observational studies of molecular band

spectra--e.g., rotational bands of carbon monoxide, vanadium oxide and

titanium oxide. - In collaboration with Michael Newman we are now calg¢ulat-

ing the details of the nuclear reaction chains and the resulting abundances;
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we shall publish them in a subsequent paper in this series,

It is conceivable that our models may experience instabilities that
do not occur in white-dwarf-cored stars with massive envelopes--and that
the effects of these instabilities might be discernable observationally.
However, we have not yet undertaken detailed stability analyses of our
models.,

Our preliminary, crude studies of stability suggest that the envelopes
of our models might be unstable against complete disruption for M < 3Mb
when Mcore =1 Mo . However, it seems quite possible that our stars are
stable against disruption if M > 5 M and in this case live for JO7 to
108 years.

Although a red giant of given luminosity may live 20 times longer if it has
a neutron core than if it has a white-dwarf core, giants with neutron cores
may well be much less abundant in the universe than giants with white-dwarf
cores: When massive stars form neutron cores by gravitational collapse,
their loosely bound, tenuous envelopes probably get ejected. If so, then
the only way the neutron core can become a red giant is by acquiring a new
envelope--and the only place this is likely to happen is in a very close
binary system, by supercritical mass transfer from a companion or by a
cannibalistic sinking into the companion's center and eating of the compan~-
ion's core. Recently Ostriker and Paczynski (1975) have speculated about
such events.

d) Previous Work on Stars with Neutron Cores

We are aware of the following previous work on stars with neutron cores:
(1) In the 1930's a number of people speculated about the structures and

stellar-evolutionary roles of such stars, but no detailed analyses vere



carried out and no firm conclusions were reached; see, e.g., Gamow (1937),
Landau (1937), Oppenheimer and Volkoff (1939). TFor example, Landau (1937)
noticed the enormous efficiency, GMC/RCc2 ~ (.15, with which contraction onto
a neutron core can liberate energy; he proposed that this might be the source
of the luminosity of the sun and other stars; and he suggested that one try
to build stellar models of this type. (Presumably nobody tried because
shortly thereafter nuclear burning was recognized as the true energy source.)
(ii) Murray Gell-Mann tells us that in the early 1950's Enrico Fermi specu-
lated that stars with neutron cores would be red supergiants; however, so

far as we have been able to learn, Fermi never published anything on this
subject. (iii) Zel'dovich, Ivanova, and Nadyozhin (1972) studied the con-
traction of small—-mass envelopes (Menv < 10_5M®) onto neutron stars. They
found a neutrino luminosity far greater than the photon luminosity; and

they speculated that, by analogy, stars with neutron cores and massive en-—
velopes might be unstable against collapse of the envelope onto the core,
with the collapse energy being carried off by neutrinos. We shall argue
later (§VI below) that our models do not suffer this 'meutrino-runaway in-
stability." (iv) Stothers and Cheng (1974) speculated that the envelope of

a star with a neutron core would be rapidly ejected by a secular instability.
Our studies (8VI below) suggest that this might be correct fur low-mass en~

velopes (Men < ZMG)’ but that more massive envelopes might be stable against

v
disruption. ~{iv) Baézyﬁski (private communication, 1973) suggested that one
of us (ANZ) try to construct stellar models with neutron cores, and we de-
cided to collaborate on the project. We published a brief account of our
results as Thorne and Zytkow (1975). (v) Ostriker and Paczyﬁski (1975)

speculated on the role of such stars in the evolution of close binary systems

(see above).
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In the last section of this paper we shall list a number of further

investigations that are needed.

e) Notation Used in This Paper

We here summarize for future reference those mathematical symbols
which are used in more than one place in this paper, and we give reference
to equations which contain further details. Equation numbers beginning
with T are in the accompanying paper (Thorne 1976); those beginning with
A are in the appendix of this paper. We list first the "main symbols"

and then the "sub and superscripts'.

MAIN SYMBOLS

1 4

a radiation constant appearing in Prad =3 aT’ .

B nuclear binding energy per unit rest mass; eqs; (T,5b) and (2.23).
c speed of light.

C abundance of carbon (120) by mass.

€ relativistic energy correction factor; eq. (T,6d).

Fconv energy flux carried convectively; eq. (T,10).

g local acceleration of gravity; eq. (T,8a).

G Newton's gravitation constant.

G(T) Sampson's Klein-Nishina correction factor for electron-scattering

opacity; eq. (2.32c).

& relativistic gravitationél—acceleration correction factor; eq.
(T,6¢c).

H scale height [H, eq. (T,8b); HPg eq. (4.5); H eq. (4.20p)].

4 relativistic enthalpy correction factor; eq. (T,6e) [ﬂé eq. (4.2)].

Boltzmann constant.
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and R

mixing length; eq. (T,8c).

total non-neutrino luminosity as measured at photosphere and by

observers far from star; eq. (4.8b) [Lgrav eq. (4.8a)].

non-neutrino luminosity as measured at radius r inside star;

egs. (T,4a) and (2.43) [LC eq. (4.16); Lirit eq. (4.4b);

rad r
Lr eq. (4.3)].

total neutrino luminosity as measured at photosphere [Lov eq.
(T,13); 1™ eq. (T,13)].

total neutrino luminosity as measured at radius T [Lgv eq.
(T, 4c); Lgv eqs. (T,4b) and (2.42a)].

mass of hydrogen atom,

total rest mass; eq. (T,13) [Mr eq. (T,2a)].

total mass—energy; eq. (T,lB)[Mtr eq. (T,3b)].

rate of inflow of rest mass from envelope to core; eqs. (2.14)
and (2.44).

pressure; eq. (T,5a).
radius; equal to (1/2m) x (circumference); eq. (T,3a) and (T,13).

relativistic redshift correction factor; eq. (T,6a) and (2.36)

[RC eq. (2.42b); &H eq. (2.42b)].
Schwarzschild coordinate time; eq. (T,2b).
= T/lOgK; T

temperature; eq. (T,1b); T = kT/1 keV.

9 k
locally measured velocity [inflow velocity Vi, 4 (2.19);

turbulent velocity v, eq. (T,10e) 1.

abundance of hydrogen (1H) by mass.

abundance of nuclear species i by mass; (T,lc).
abundance of helium (4He) by mass.
electron-positron pair parameter; eq. (A.8).

1-X-Y; abundance of "metals" by mass.



a luminosity parameter; eq. (2.10); except in Table 3 where a

is the ratio of mixing length to pressure scale height,

o = Zt/Hp.
o, nuclear reaction rate for species i ; eq. (T,51).
P /P,
Bg g/
crit
BL 1- Lr/Lr .
1- =P /P .
Yg B/ (1B) = B_/P__,
_ ccrit _
v "actual gradient", d fn T/d fn P; eq. (T,10).
vad adiabatic gradient, eq. (T,9b).
vrad radiative gradient; eq. (T,%a).
£ energy generation rate [snuc eq. (T,5f); Env eq. (T,5g);
€,y - (T,5n)].
K opacity; eq. (T,5e).
Kes opacity due to scattering of photons by electrons and positrons;
eq. (2.32).
Kdeg e opacity against heat transport by degenerate electrons; eq.
(2.31) and (2.8).
M mean molecular weight; eq. (4.9a) [ue eq. (2.30);
Wyon &4 (2.29a)]; except in Appendix where U is chemical
potential.
Il specific internal energy; eq. (T,5¢).
o) density of rest mass; eq. (T,la); p6 = p/106g cm_3;
Pun = p/lOlOg em 3.
10
o] Stefan-Boltzmann constant; o = ac/4.
T optical depth measured from the star's surface inward.
¢ gravitational potential; eqs. (T,3c) and (2.34).
SUBSCRIPTS. AND SUPERSCRIPTS ‘
c outer edge of core (point where electron degeneracy sets inj

p = 106g/cm3).



C carbon; or at the center of the carbon-burning shell (point
where C = 0.5).

CcC 12C+120 reaction network.

CNO CNO reaction network for hydrogen burning.

crit critical luminosity. S

e ionization electrons.

env envelope of star.

g gas (plasma; everything except radiation).

grav gravitational.

h halo of star.

H hydrogen; or at the center of the hydrogen burning shell (point

outside which half the nuclear energy release has occurred).

He helium; or at the center of the helium burning shell (point

where Y = 0.5).

i nuclear species i .

in mass inflow from envelope to core.

ion ions.

K knee of star.

m-i at the interface between the middle and inner regions; eq. (2.2).
nuc non-neutrino energy from nuclear burning.

nv neutrino energy from nculear burning; eq. (T,4b).

oV neutrino energy from processes other than nuclear burning net-

works; eq. (T,4c)..

o-m at the interface between the outer and middle regions; eq. (2.1).
P pressure.
pair  electron-positron pairs.
ph photosphere of star.
b measured at radius r ..
10
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rad radiation.
s sound.

t turbulence (convective motion); except in Mt and Mtr where

t means ''total".
3o 30 reaction network for helium burning.

- electrons (including ionization electrons and pair electrons).

+ positroms.

f) Outline of Paper

In 8II we lay down the physical and mathematical foundations for
the construction of models of stars with neutron cores. Section III is a
series of graphs and tables displaying the details of our numerical models.

" and in 8V

In 8IV we discuss and analyze analytically our 'giant models;'
we do the same for our "supergiants." In §8VI and VII we discuss briefly

the stability and evolution of our models. Finally, SVIII is a list of

topics which need further investigation.

II. FOUNDATIONS FOR OUR MODEL BUILDING

In this section we describe the assumptions, equations and numerical
techniques that underlie our computer—generated models and underlie our
analytic approximations to them.

We begin by demanding that our models be spherically symmetric,
nonrotating, and devoid of magnetic fields, and that they be in slowly
evolving equilibrium states (evolution timescale long compared to hydro-
dynamic and thermal timescales).

Because of the strength of gravity near the neutron core, we ask

that our models be general relativistic rather than Newtonian--except that

11



Newtonian analyses suffice in the outer region of the star and in order-

of-magnitude estimates of effects.

a) Partition of Model into Three Regions

In our computer calculations we divide each model into three regions

(see Fig. 1). The '"outer region" contains the atmosphere, the photosphere,

and the static part of the envelope--i.e., that portion of the envelope in

which mass inflow has negligible effects. The "middle region" contains the

inflowing part of the envelope, the halo, and the outermost layers of the

core where the carbon-burning shell is located. The '"inner region" is the

entire core, except its outermost layers.

The boundary between outer and middle regions, T g occurs where
the inflow first begins to influence the local luminosity Lr s this happens
when the enthalpy I + p/p and/or the gravitational potential GMtr/r becomes
larger than v0.003 of its maximum value (Vv 0.1 cz). Thus, we arbitrarily set

GM

r = | that radius at which E—>+ —E—-+ tr 3 X 10-4 . (2.1)
o-m 2 2 2
c pc c’r

(A1l symbols used h;re are explained in §I.e.)

The boundary between the middle and inner regionms, T _;» occurs where
nuclear energy generation is no longer significant. In our models more than
99 percent oé all energy generation is by gravity and by thermonuclear
‘hydrogen burhiﬁg, so it is not very necessary to include the effects of
helium, carbon, or further nuclear burning stages. 'Howéver, to see what
their effects may be, we have included helium burning and carbon burning.

It turns out that the carbon burning is complete by a density of

p=1 ><108g/cm3. Therefore, we choose

12



L (that radius at which p = 3 X 108g/cm3) . (2.2)

b) Structure of the Inner Region

In the inner region the high density enforces degeneracy and thereby
guarantees that the hydrostatic structure (p,P,l;,Mtr,Q ag functions of
Mr) is decoupled from the thermal structure (Lr and T as functions of Mr).

The massive envelope of the star can influence the hydrostatic struc-
ture of the inner region in only one way: by its weight, which squeezes the
inner region to a pressure and density, at given Mr’ that are higher than
for a bare (envelope-free) neutron star. This compressional effect can be
evaluated by integrating the equation of hydrostatic equilibrium outward
through the star (throughout this subsection we use Newtonian theory be-~

cause 50 percent accuracy is adequate):

T dp i GMr

P(M ) = J - ————er = f o M . ) (2.3)
M M
r r

The fractional contribution of the nondegenerate envelope and halo (region

with p < 106) to the inner-region pressure is

0
(Ap) GM_ dM
env 1 r r
— = = e —== dp ., (2.4)
P P f 4 dp
l06 4mr
4

The amount of envelope and halo matter below r = 2 x 10 km turns out to
be glO—loM® (see Tables 1 and 2), which is far less than the amount of core

matter between p = 1 X 108' and p = 3 X 108; hence, in evaluating expres-

gsion (2.4) we can ignore the envelope matter at r < 2 X 104km -—i.e,, we

4

can regard the envelope as a mass M < 10 M@ residing at r > 2 X 10" km:

13



(AP)env 1 G(10 MO)2 1 X 1023dynes/cm2
< = o
P P am2 x 10%Kkm)® P
23 23
< 1;10 g1><1026<<1 . (2.5)
m-i 1 X 10

This result allows us to conclude that the envelope has no significant in-
fluence on the hydrostatic structure of the inner region; the inner region
will have the same hydrostatic structure as a bare (envelope-free) neutron

star.

Turn next to the thermal structure of the inner region. At densities

above p =3 X lOll ("neutron~drip point') the heat conductivity is go high

that the star is very nearly isothermal [T = const in Newtonian theory;
TR = const in general relativity]. Almost all of the core mass is contained

in this isothermal region of the core. Between this isothermal core and the

11

halo (3 X 107" > p 2 106) is a thin "insulating layer' of degenerate-electron

matter which thermally isolates the core from the rest of the star. We have

arbitrarily placed our middle-inner region dividing line ro-i in the center

of the insulating layer, at p =3 X 108.

Let us estimate the maximum heat flow that the insulating layer can
support. For ease of computation we shall confine attention to the region

in which the electrons are fully relativistic, lO7 < p<3X 1011—- i.e.,

we shall ignore the outermost part of the insulating layer, 106 < p < 107.

Our estimate relies on the following equation, which is a combination of the

(relativistic) equation of diffusive heat transfer (eqs. [2.20h] and [T,9a])

and the relativistic-degenerate-electron equation of state P = (4.89 X lO14

dynes/cmz) (p/e cm_3)4/3:

14
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4/3
d &n p 127w GCMtr Prad cmz/g T94 L(9 c Mtc

[Here, because the insulating layer is very thin in radius and mass

(Ar/r << 1 , AMtr/Mtr << 1), the temperature redshift effect (1 - e/ term
in vrad) has been ignored, aad Mtr has been set equal to the total mass
of the core L also the approximations ¥ = 1 , & = Mtr/Mr , and

v = 5%_1 = ﬂc—l have been used.] The energy transport ig by electron con-

duction; and the dominant resistance to the conducting electrons in the

relevant temperature-density regime

107 <p<3xi0tt, 108 <71 < 10t (2.7)

is electron—electron scattering above the ion-crystal melting temperature

1/

(T 3), and electron-phonon scattering below the melting

>
9~ Tome1e™ 1+8 P10
1/3,.
temperature (T9 < Tgmelt'\'l.BplO ; see Flowers and Itoh (1975). 1In

these two regimes the computations of Flowers and Itoh give (see their

Figures 12 and 6 for electron conductivity, which is related to opacity by

- 3 .
Kopacity Kconductivity = 4ac T7/3p):
~ -6 2 4 -2 1/3
K = (3.9 X 10 "cm/g) Ty Py ~ for Tg > 1.8 pyg R (2.8a)
- -5 2 3 -5/3 1/3
< = (L.11 x 10 en"/g) Tg 0,07 for Tg < 1.8 01~ (2.8b)
When inserted into equation (2.6) these opacitieg give
- | -2/3, . 1/3
dT9/d &npgy = 0. 350 Tgoyy in molten region, T92>1.8 P19 ¢
(2.9a)
-1/3 . . 1/3
dT,/d &n p,, = 0 p in crystaline region, T, < 1.8 p 3
9 10 10 9 10 (2.9b)
L M -1
- r tc
o = (830 Le)(Me ) RC » (2'10)
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Equations (2.9) and (2.10) set the scale of allowable heat trans-

fers Lr through the insulating layer: T9 cannot change by more than

a factor 3, as one traverses the insulating layer, because of the fol-
Jowing: (i) Core neutrino losses keep the isothermal core (and thence its

outer boundary, p = 3 X 1011) at a temperature T9 < 2 . (A neutron star

cools by neutrino losses to T < 6 in 12 hours and to

<
9core T9core 2

in one year; see Tables 8, 9, and 10 of Tsuruta and Cameron [1966] and

Fig. 1 of Tsuruta et al. 1972.) (ii) The outer edge of our insulating

layer, p = 107, has T9 ~ 0,5 to 1.0; see Fig. 2, (iii) Neutrino losses,

which vary as T9n with n > 9/2 in our insulating layer (Beaudet, Petrosian,

and Salpeter 1967), will hold the temperature below T9 =~ 3 throughout the

insulating layer. These constraints on T9, together with equations (2.9),
require Iul < 1 nearly everywhere in the degenerate electron surface
layer--and, in fact, Ial < 1/8 in most places including our middle-inner
region interface, r = L and p = 3 X 108. Hence,

-1 ) 8
Ll g (oo L)@ /M) R T at p=3x10° . (2.11)

This heat transfer is negligible compared to the star's total luminosity
L~ 10°L .
[}

Nuclear burning of inflowing matter will generate heat in the insulat-
ing layer of giant models at a rate
(dE) . <total luminosity ) (GMtc>*l <efflclency, 0.0008 of . )
Pyl 4 Xt 55— X{ mass~to-energy conversion

f 5% 1
de of -atar, "ox10 Lo CZRC when oxygen burns to iron

%300 L@ . ; , ' (2.12)

Electron conductivity cannot carry away much more thanﬁquOL@ of this
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energy; the rest mugt be carried ‘'off by neutrinos.

The above estimates show that the inner region (p > 3 X 108) is
extremely well decoupled from the middle and outer regions, both hydrostat-
ically and thermally. Its structure and thermal evolution are essentially
the same as for an isolated (envelope-free) neutron star-—and, thus, they
are not of interest to us here. Henceforth we shall restrict attention to
the middle and outer regions; and in calculating their structures we shall

replace the inner region by the '"insulation boundary conditions"

_ [values for a "bare"
(Mr’Mtr’ and r) = (neutron star at p==3:x108) at r =T ., (2.13a)
L = 0 at r=71 , . (2.13b)
r m-1i

c) The Outer Region: Physics and Computational Methods

The outer region includes the atmosphere, the photosphere, and the
static envelope; see Fig. 1. Our numerical models for this region were
generated using Paczynski's (1969) computer program "GOB'", which calcu~
lates static stellar envelopes with extended atmospheres using inward
integrations that begin, in our case, at a density p = 1 x10~12g/cm3.

Each static envelope constructed by GOB can be characterized by the star's
total (non-neutrino) luminosity L and mass Mt , the photospheric temper-
ature Tph’ and the envelope's nuclear abundances——assumed equal to the
photospheric abundances Xph’ th, th .

The physics and equations which go into the outer region integrations
are spelled out by Paczynski (1969). In brief, the physics is this:

(i) Newtonian equations of stellar structure with luminosity constant

throughout and with the standard mixing~length formalism for convection;

17



(ii) a simple gray atmosphere model based on the Eddington approximation
with corrections to account for the "l/rz" dilution of the outgoing radia-
tion, which can be important in extended atmospheres; (iii) an opacity
table for composition X = 0.7, Z = 0.03 (Paczynski 1970a),
which is interpolated from the Cox-Stewart (1968) opacities and augmented
by an approximation to Auman's (1967) HZO opacity; (iv) an analytic equa-

tion of state including contributions from H,, H, He, H+, He+, He++, free

2’

electrons, and radiation.

d) The Middle Region: Physgics and Computational Methods

In the middle region, which we analyze with care, general rela-
tivistic effects can be important. Therefore, our numerical computations
utilized the general relativistic equations of stellar structure--which are
presented in the preceding paper (Thorne 1976; equations in this paper
are denoted by a T ; e.g., eq.[T,11al).

The middle region acts as a conduit through which mags flows from
the outer region to the inner region. At any given time the total mass
in this conduit is %10—8M® (cf. Tables 1 and 2), which is v10% times less
than the magg in the reservoirs (outer and inner regions) at its two ends.
Assuming that‘the star is stable, this huge mass contrast guarantees that
the rate (per unit Killing-vector-defined coordinate time t), at which
rest mass flows inward across a surface of radius r , is independent of

r 3

M= (BMr/at)r = constant, independent of r or Mr . (2.14)

(See preceding paper--Thorne 1976 and 8II.e of this paper--for notation used

here and below.) Also assuming the star is stable, the stellar structure is
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, . 7
stationary on timescales << 10 years:

0
- rf v dm ] + = 2
[at (any stellar~-interior varlable) ]f. 1 0. (_.15)

This stationarity, together with the identity

Sy =&y o+ s N I (2.16)
ser - Gew G, ), :

and equation (2.14), implies a simple relationship between the time deriv-
atives and the radial derivatives which appear in the stellar-structure

equations (T,11):

"0
= - Mmoo (2.17)
at'M_ oM ¢

For example, if we let both sides of equation (2.17) act on the radius

function r , and if we combine with equation (T,lla), we obtain the rela-

tion
. 2
M o= 4mrTev, R ) (2.18)
: in
where Vin 2 the locally measured velocity of inflow of rest mass, is
defined by
Vi = -(?f/ﬁ)(ar/at)Mr (2.19)

(cf. eq.[T,7)).

The above considerations are patterned after Paczyﬁski's (1970b)
analysis of Newtonian stars with mass inflow through stationary sheli
sources. When equation (2.17) is inserted into the relativistic equations
of stellar structure (T,11), it produces the relativistic analogue of

Paczynski's stationary-shell-source equations:
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dr/er = (4ﬂr2pw-)_l

’ (2.?03)
thr/er = g/v (2.20b)
do/dn_ = [oM_/(4mr'p)] &7 (2.200)
2 2 : 20
d(LrR )/dMr =R (Enuc“ eo\)) + RM[dH/er - (P/p )dp/er] , (2.20d)
nv,2 a2
aaT R /=R, (2.20e)
ov_2 2
AL R/ = R, (2.20F)
-Roci/M if V¥ 43 7 4
dx, /dm_ = ra a (2.20g)
0 if ¥ .> 9
rad ad
V_ .d9nP/dM_ if V<V
d gn T/di_ = rad r rad = “ad (2.20h)
VdnP/aM_ if V_ >V .,
ap/aM_ = -[GMr/<4nr“)ww ) (2.201)

Here we have replaced all partial derivatives (B/BMr)t by ordinary deriva-
tives d/er because all time derivatives have disappeared from our equations.
In equation (2.20g) we have imposed the physical conmstraint that the abund-
ances not change radially in the convective region.

At the outer edge of the middle region the relativistic correction fac-
tors €, &, ¥, R, ¥ all differ from unity by < 10"3 (cf. eq.[2.11);
temperatures are so low that no nuclear burning has occurred; and consequently
the above equations of structure for the middle region reduce to the stand-
ard Newtonian equations of structure with constant luminosity, which we use
in our outer-region analysis., This fact guarantees that we obtain a reason-
able match between middle region and outer region by simply enforcing con-

nv oy

tinuity of the fundamental variables r, Mr’ Mtr’ P, Lr’ Lr , L s X,

T , and g at radius N But in doing so we must be careful with Mr
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and Mtr: In Newtonian theory Mr is both rest-mags and active
gravitational mass. In general relativity Mr is rest mass,

while Mtr is active gravitational mass; and the additive normalization

of Mtr is crucial, while that of Mr is unimportant (all details of the
model except Mr are unchanged by the renormalization Mr > Mf+ constant).
These facts dictate that

( M_ of outer, ) ( M of middle,
r _ tr ,

) at join point r 3(2.218)

Newtonian region Relativistic region

one need not enforce any matching condition on the middle-region Mr .

(2.21b)
In our analysis of the middle region we use specific analytic expres-
sions for all the auxiliary variables (pressure P, opacity K, relativistié
correction factors €, &, ¥, R, ¥, etc.) as functions of our fundamental
variables:
The nuclear species which we consider are lH (hydrogen) with abundance

XH’ 4He (helium with abundance Y = XHe’ 12C (carbon) with abundance

o]
m

®]
tl

= XC , and "metals" with abundance Z = 1 - X - Y .. The binding energies

per baryon rélative to hydrogen are

0.007118 ¢ (2.22a)

H

helium: (1 - mHe/4mH)C2

0.007118 (1L+1/11.0)c> (2.22b)

2
carbon: (1 - mC/lZmH)c
products of carbon burning: 0.007118 (l-!-l/ll.O-i-l/lB)c2 : (2.22¢)

and, consequently, the mean binding energy per baryon is

/ =X ~X=Y- 2
B = 0.007118[1 - X + 1ot 4 1HE0y .2 (2.23)

11.0 - 13

In our numerical calculations we have assumed that hydrogen burns by the normal
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CNO cycle; this is a serious source of error, as will be discussed in

§V. For the normal CNO cycle 93.6 percent of the energy goes into heat

CNO

and 6.4 percent into neutrinos; hence, the energy generation rates enuc

and eggo are related to the rates of change of hydrogen and helium abund-

ance GSNO and ngo by
CNO _ 2, ,CNO cNO 2, - CNO
Enuc = (-0.006662c )aH s env = (-0.000456¢c )aH s
(2.24)
CNO _ CNO
%e T 7% :
CNO

The CNO energy generation rate € uc is expressed as a function of X, Z,
p, and T by equations (17.280), (17.282), and (17.283) of Cox and Giuli

(1968) with X_.. = Z/2 . When helium burns by the 3a process to form car-

CN

bon, neutrino losses are negligible; hence

300 _ 2, 3a 30 30 _ __30 :
We use equations (17.341) and (17.342) of Cox and Giuli (1968) for the 3o

¢ 12 12
energy generation rate Eiﬁc . We assume that carbon is burned by C+C

reactions, and in doing so we ignore neutrino energy generation:

GC
£
nuc

2 CC CC
= - = - 2-26
(-0.00055c™) 0o > €, 0 ( )

We use the Arnett-Truran (1969) analytic expression for the CC burning rate

together with the Salpeter-Van Horn (1969) analytic expressions for the
screening factors. The non-nuclear-burning neutrino energy generation rate
'Eov(X,Y,p,T) (including pair, photo, bremsstrahlung, and plasma neutrinos

but excluding URCA) we take from Beaudet, Petrosian and Salpeter (1967).
The pressure P and specific internal energy Il are split up into

four contributions: radiation, ions, ionization electrons, and pairs:

P=P +P, +P +P =1 + I, +1I +0 _. . (2.27)
rad ion e pair’ rad ion e pair ,
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The radiation contribution has the usual form

4 -
aT R Hrad = 3(P

15erg cm-BK—a.

=
]
Wi

/o) , a = 7.5647 X 10~

rad rad

(2.28)
Crystalization of the ions is ignored in P and Il ; they are assumed to

form a perfect gas with mean molecular weight

- -1
Mion = X+ Y/4 + Z/16) s (2.29a)

for which

Peoon = (k/m)(P/u, OT » T = %{Pion/p) . (2.29b)

In the middle region temperatures are so high (T 2 106K) that the plasma is

fully ionized, and the mean molecular weight per ionization electron is

W= 2/+0 . (2.30)

Our middle region covers a temperature-density regime in which the ioniza-
tion electrons range from extreme nondegeneracy to extreme degeneracy (see
Fig. 2). Over the entire range we describe Pe(T,p,ue) and He(T,p,ue) by
the Eggleton-Faulkner-Flannery (1973) analytic fit to the relevant Fermi-
Dirac integrals; in that fit we use their ''thermodynamically consistent
coefficients' (their Table 5). Near the knees of our supergiant models
electron-positron pairs play a crucial role (see Fig. 2 and the discussion

in §V). Fortunately, the pairs occur only in a regime [(p/41<106g cm_3 2/3

)
<< kT/mec2 << 1] where their contribution to P and T can be expressed
in fairly simple analytic form and can be added linearly onto the contribu=-
tions from other sources. The relevant expressions for p |, and I  are

pair pair
given in the Appendix [eqs.(A.8) and (A.11)].
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In the middle region all sources of opacity are negligible except
electron and positron gcattering of pHotons, and opacity to heat conduc-

tion by degenerate electrons:

= -1
K. = (l/KeS + 1/k ) . (2.31)

deg.e

We use the following analytic formula for the scattering opacity

Keg = (0.4 cm2/g)u;1(l + 2n+/ne) G(T) , (2.32a)

G(T) = 0.4+ 0.6 exp(-0.04328 T,), if 0 <T_< 20  (2.32b)

G(T) = -0.13887+ 4.9871 T;1/2- 5.9479 T-1 - 2.362 T;3/2 , (2.32¢)
if 20 < T, < 125.

Here T, = kT/(1 keV) = T/(1.160 X 107K); G(T) is the special relativistic
correction to the electron-scattering opacity; formula (2.32c) for G(T)

is taken from Sampson (1959); formula (2.32b) is our analytic fit to
Sampson's computations; and n+/ne is the number density of positrons
divided by the number density of ionization electrons as given by equations
(A.10) and (A.8) of the appendix. At the time of our numerical work the
Flowers-Itoh (1975) degenerate-electron heat conductivities were not avail-
able, so we used Paczynski's (private communication) analytic fit to the

tables of Canuto (1970) for carbon:

/2

_ -1
loglOKdeg.e = ~-0.05 + 0.533 Pg - 1.057 1oglop + 2.17 loglOT9 .

6

(2.33)

(This formula gives a good fit for 1.05 + 3 loglOT9 < loglop6 < 6.15 +

3 loglOTg.) Here pg 1is density in units of lO6g/cm3, and T9 is
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temperature in unitsg of lOgK.

Because the total amount of mass in the middle region (Vv 10—8M0) is
negligible compared to that in the core, the gravitational field in the
middle region is (very nearly) the Schwarzschild gravitational field of
the core:

2

1 - 2
¢ = 7 C n(l - 2 GMtc/c T) . (2.34)

Here Mtc is the total mass ("active gravitational mass'") of the core

Mtc = Mtr at outer edge of core. (2.35)

In our middle-region computations we used expression (2.34) for ¢ ; we
used the corresponding Schwarzschild-metric expresgions for the redshift

and volume correction factors

- 1/2
p=91 = @- ZGMtc/czr) ; (2.36)

and we used expressions (T,6c,d,e) for the relativistic correction factors
EEEE'E
Our computation of the radiative, adiabatic, and convective gradients

vrad’ vad’ and V followed the prescription of equations (T,9) and (T,10)

with mixing length equal to pressure scale height Qt = Hp . However, in

our solution of the mixing equations (T,10) we stupidly used Newtonian

rather than relativistic expressions for g -and Hp

o
i

GMtr/r2 =g fr = (0.84 to 1.0) X g

correct correct

(2.37)
H

P/pg = (H ) x = (1.00 to 1.43) XH

P p correct p correct .

These errors have the same effect on the star's structure as using the cor-

rect g and Hp’ but making the ratio Q,t/HP increase from its chosen value up
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to 1.25 its chosen value as one moves inward toward the knee of the star--
i.e., they cause the convection to be a little more efficient than it should
have been near the knee. Because the mixing-length theory is so unreliable,
and because the convection is fairly efficient near the knee, we have not

recomputed our models with these errors corrected.

e) Global Structure of the Computation

To construct a stellar model one can proceed as follows: (i) Specify

the following parameters:

(Xph’th’Cph) = (photospheric abundances of hydrogen, helium, and carbon),
Mt = (total mass of star) = ("active gravitational mass'),
_ . L -8
tom-i - (total mass of inner region) = Mtc[l+-an error of 0(10 )].
R.m_l = (radius of inner region) = Rc[l+-an error of 0(10_2)].

(2.38)

For given M , the value of R_, is taken from the theory of bare
t,m-1i m—i
(envelope-free) neutron stars. (ii) Pick trial values of the quantities

required for starting inward integrations:

I, = (total photon luminosity of star) , (2.392)
Tph = (photospheric temperature); (2.39b)

and also pick a trial value of
M = (rate of inflow of rest mass), (2.39¢)

which plays an important role in the middle region but not the outer region.
(iii) Integrate the equations of stellar structure inward from the photo-

sphere to the middle-inner match point To_i} and iterate the three trial
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parameters L, T and M until the three matching conditions

ph’
M =M . *x=R ., L =0 at p =3X lOSg/cm3 (2.40)
tr t,m-i m-i*> “r
(eqs.2.13) are satisfied.
In practice the L'-Tph'-ﬁ parameter search is not difficult:
L and T can be determined with rather good accuracy by Newtonian,

ph

outer-region integrations only (see §IV.d)--and these can be performed

once and for all, with ease, to give a family of outer-region models for
subsequent join onto middle-region models. Moreover, in the case of giant
stars, where negligible nuclear burning occurs in the convective region,
and where~—-it turns out--non-nucléar-burning neutrino losses are negligible,

one can express M as an analytic function of M Rc’ and L . But in

te’
supergiants hydrogen burning in the convective envelope prevents one from
finding an analytic expression for M.

The principal key to the giant-star expression for M is the follow-

ing equation of energy congervation, which is valid everywhere in our

stellar models except in convective nuclear burning regions:

=
+
-
+
=
i

R_Z[I:Icz ¥ ® + constant]

M(II + P/p -~ B + &) + constant in Newtonian limit.

(2.41)

[This equation can be derived as follows: (i) add egs. (2.20d,e,f);

(ii) use eqs. (T,20) and (2.17) to eliminate ¢ + ¢ (this step re-
nuc nv

quires that the nuclear-burning region be non-convective); (iii) write

—(P/pz)ap/aMr as S(P/D)/BMr - p_lBP/aMr, and use eqs. (2.20i,c) and

(T,6a) to express BP/BMr in termgs of 3R /aMr; (iv) use definirtion (T,6e)

of ¥ to bring the equation into perfeét differential form; (v) integrate

27



it.] Another key to the expression for M is a conservation law for
the nuclear-burning~-induced neutrino losses L:v , again valid everywhere

except in convective nuclear burning regions:

sz =6%_2‘L0.000456 ﬁcz XBEH + constant] . (2.42a)

Here SEH is the value of R at the center of the hydrogen burning

shell, which is so near the core that

/2

o = (1o , 2. \1
;&H =R, = (1-2 GM__/cR) (2.42b)

is a good approximation. [This equation can be derived as follows:

(i) in equation (2.20e) replace Env by expressions (2.24), (2.25),

and (2.26), and then replace ugNO by expression (2.20g); (dii) invoke
the fact that X changes only in the hydrogen-burning shell, which is so
thin that it has R essentially constant throughout; using this fact
write the equation in perfect differential form; (iii) integrate it.] In
giant stars it turns out that the non-nuclear-burning neutrino losses are
totally negligible throughout the outer and middle regions

(Lov - &?sz << Lo)’ and no significant nuclear burning occurs in convec—

tive regions. Thus, equations (2.41) and 2.42) can be combined to obtain

the following relation, valid throughout the outer and middle regions:

_ o2 -2 2 _ 2 _
Ly =R7°L 4 R7MeT (R - 148 /c” + 0.000456 Ry (X -X)] . (2.43)

Here the constant has been evaluated at the photosphere, where Lr =1L

f can be approximated as unity, ¥ =1 - Bph/c2 with B the photo-

ph

spheric value of the nuclear binding energy, and X

oh is the photospheric

value of the hydrogen abundance. To obtain the desired expression for M,
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we need only evaluate expression (2.43) at the inner edge of the carbon-burning
shell, where Lr =0 ,X=Y=C=0, R = (1-2 GMtC/cch)l/z, and ¥

can be approximated as 1 - B/c2 with B taken from equation (2.23):

. 9 2GMtc 1/2
Mc< = L —(l - (0.991687 + 0.000456 Xph)4-1 -

c2R
c

1-X .-Y 1-X ,-Y . -C.\|1
- - ph___ph ph__"ph ph)
0.007118 (1 Xt s + 73

(2.44)

III. NUMERICAL MODELS
Some details of our numerical models for stars with neutron cores are

shown in Figure 2 and Tables 1-4. The physical features of these models

will be discussed in §§IV and V.

.

IV. DETAILS OF THE STELLAR STRUCTURE: GIANT MODELS

Table 1 and Figure 2 display the internal structure of a typical
giant model--one with a total mass of 5 M@ and core mass and radius of 1 M@
and 10 km. Tables 3 and 4 show some details of other giant models., In
this section we shall point out and analyze analytically some important fea-

tures of these models.

a) Overall Structure

In 8IIb we explained, analytiéally, the hydrostatic and thermal de-
coupling of the core (inner region) from the rest of the star. We shall
now elucidate the reasons for the gross features of the rest of thé star
(extremely thin halo surrounded by very deeply convective envelope).

Congider the forces which act on the plasma (gas) in the nondegenerate
region r > RC . The puil of gravity is counteracted by the plasma's own
pressure~buoyancy force and by the force of outflowing~radiatibn:
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N rad
(gravitational force) = _ GMrp INY = dPg _ Ker (4.1)
per unit volume - g ) )

1
r2 v dr 4ﬂr2c

Here ?(g is the relativistic enthalpy correction factor for the gas

only
2
= n - P .2
Ng l'*'(8 B + g/p)/c (4.2)

(cf. eq.[T,6e]), Lzad igs the locally measured luminosity carried by dif-

fusing radiation

pfad = umel E , (4.3)
T r conv

and all other quantities have been defined earlier (cf. §1.e). This force-
balance equation can be derived either from first principles, or from the
relativistic equations of stellar structure(2.20a,h,i),(2.28),(4.2),(4.3),
(T,6d,e),(T,8a,b),(T,9a), and (T,10a). By analogy with Newtonian theory, it

is convenient to rearrange the force-balance equation (4.1) as follows:

rad

1 dpP GMrp Lr
?7__&dr = - 5 &2[87/ (l— crit’) s (4.42)
r L
r
where
crit  _ -1
Lr = ZchMrK &%g?f (4.4b)

is the "critical luminosity" above which the force of outflowing radiation
on the plasma exceeds the force of gravity. Equation (4.4a) shows that

the scale height for the gas pressure is
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-1 rad

) P\ ,GM L L -1
H, = Ydr _ _ r("%)(“{{) &-IN 1 o l(l . )
g

crit
g dn Pg pc™/ Ve x Lr
rad
: M \-1 L -1
-4 T 1 r r -1,,-1,-1 r
= (6X10 r)( )(—)( )(-—) g N U (1— : ) (4.5)
l09K H /A0 km M® g Lirlt

(Here use is made of the plasma equation of state Pg = (p/UmH)kT.)

As one moves outward through the star, this equation for HP first

g
becomes valid where electron degeneracy turns off (at p " lO6g/cm3,

r= Rc) . At that point all quantities on tche right-hand side of the

P /r v 6X 10-4 . Thus, the plasma just

g
above the core's edge has the extremely small scale height of a hot

equation are of order unity, so H

(T = 109K) neutron-star atmospherei HP Vv 1 meter. Physically this scale

g
height is governed by the inability of the mean particle kinetic energies,

kT v 10_4ch2, to compete with the extremely strong pull of gravity,
GMc/czr 0.1,
The '"halo" of our models is the region just above the core where
HP " 1 meter. As one moves outward through the halo a distance N 15 meters,

g -
the density drops to " 106><e 15

3 . . :
nv 1 g/em™.  This rapid density drop cannot
continue for many more meters if the star is to support a massive envelope

around itself. Something must happen soon to increase HP /r from

- g
o6 X 10 4 to v 1 . Equation (4.5) shows two ways to increase HP /r
_ g
(1) by a decrease of the mean molecular weight to nv 10 3 due to a profuse
turn-on of electron-positron pairsg; (ii) by an increase of Liad/Lirlt to

near unity so that the force of outflowing radiation on the plasma strongly
counteracts the inward force of gravity. 1In all of our models the radiation
force (case ii) is responsible for the increase in HP /r . It is con~-

, g
ceivable--but seems unlikely to us--that one could build models of type (i),
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where HP /r increases due to profuse pairs.
g

In our giant models, as one moves outward through the halo (where

energy transport is all radiative), gravitational energy release drives
L. = Liad up higher and higher. Ultimately, at p v 1 g/cm3, the lumin-

osity Lr goes supercritical and HP /t becomes v 1 . Very shortly

g
before this point the force of outflowing radiation on the plasma becomes

8o great that it begins to drive convection.l The omnset of convection

lThe Newtonian proof (Joss, Salpeter, and Ostriker 1973), that convection
sets in before Lr becomes supercritical, is easily generalized to rela-

tivity theory.

marks the end of the halo and the beginning of the convective envelope.
Throughout the strong-gravity region of the convective envelope, the
plasma is protected against the pull of gravity by the force of outflow-

rad

. . it -
ing radiation (1 - L. CELt o 3

/Lr 10"°). Because the radiative luminosity
is so extremely close to critical, the star is forced to remain conveétive
throughout this region. Ultimately, with increasing radius, gravity
weakens enough that there might be some hope of the plasma supporting
itgelf without the help of radiation forces. However, the outflowing
luminosity cannot now be shut off. It is pouring outward with a rate L
designed to counterbalance gravity at small radii, Lr = L;rit(strong—
gravity region); and with ever-increasing r and ever—decreasing T the

it

opacity is rising higher and higher, driving L;r lower and lower. Thus,

the star remaing supercritical (and therefore convective) all the way from

its knee out to the photosphere.
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One knows from the theory of stellar envelopes that because our
stars have very deep convection they must be near the Hayashi track of

the H-R diagram where photospheric temperatures are low

Tph < 3000K . (4.6a)

The above argument shows, moreover, that the luminosities of our stars

must be

L n L;rlt(strong—gravity region) " 47TGcM®/KeS b X104L® . (4%.6b)

These numbers agree with the detailed models of Tables 1-4.

We suspect, but are not certain, that it is impossible to construct
equilibrium models of stars with neutron cores and massive envelopes
that lie elsewhere in the H-R diagram. The extreme force of:gravity near
the core probably always enforces deep conwection and very high L --and
thereby red-supergiant surface features.

Using the above information about the stellar structure, we can un-—
derstand semiquantitatively the flow of energy inside the star: Mass
flows from the static envelope, through the inflowing envelope, into the
halo, and thence into the core. In the inflowing envelope, because of
inefficiency of convection, the temperature gradient is glightly super-
adiabatic, so the inflowing matter gets heated not only by adiabatic com-
pression due to gravity, but also by the absorption of some of the up-
flowing luminosity Lr . Mathematically, in the equation of energy
generation (2.20d) dﬂ/er - (P/pz)(dp/er) is negative due td super-

adiabaticity, so LrR? (the redshifted luminosity) increases inward.
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Equivalently, in the equation of energy conservation (2.43) superadiab-
. . . 2 .
aticity means that ¥R increases inward, so Lrﬂ also increases inward.
By the time it reaches the knee, the inflowing matter contains an

enormous amount of internal energy, almost all of it tied up in radiation:
>
(MR > (R, ==

4 Hrad I+P/p

4 ~ 2 - 2
3 > >(1_Bph/c )I(1- 264 _/cR)

-1/2

-11 ~v 0.2 . (4.7)

[Here we have used expressions (T,6e) and (2.36) for ¥ and R , together
with the fact that because the knee is so close to the core boundary, the
redshift factor R is very nearly the same at the knee as at the core
boundary.] At the knee the temperature gradient goes very subadiabatic
(in fact, nearly isothermal), so the contracting matter begins to release
its huge store of thermal energy, converting it into outflowing radiatioen.
Because its temperature is now remaining constant, its specific internal
energy Il = aT4/p falls off as 1/p . After the density has increased

by only a factor 10 above p s 90 percent of the stored energy has been

knee
converted into luminosity Lr . After several more decades of density
increase nuclear burning begins to occur, producing further luminosity
(but much less than was produced by gravity and released just below the
knee). By the time the flowing matter gets inside the core, essentially
all the star's luminééity has been acéounted for; Lr has dropped nearly

to zero. Overall, the contribution of gravitational contraction to the

total luminosity of the star is
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2)1/2

L = Mc2(L - Bph/cz)[l— (1- 26, /R c 1 (4.8a)

grav

(cf. eq.{2.43] and associated discussion); and the contribution of nuclear

burning is

) 2.1/2
L e = MeTQ 2GMtC/RCc ) 0.007118[0.936Xph+(xph+ th)/ 11.0
-+ (Xph+ th+ Cph)/13] . (4.8b)
The ratio L /L =L /(L + L ) is shown for various models in
nuc nuc’ ‘Tnuc grav

Tables 3 and 4.
For a detailed example of these features of energy flow, see the
columns labeled I=res P s and l-—RZLr/L in Table 1.
Non-nuclear-burning neutrino losses are totally negligible (<< 1 L@)
in the outer and middle regions (p < 3 XlOSg/cmS) of all our models; cf.
Tables 1 and 2. We have not made a thorough search for models with high

neutrino losses; but we suspect that high losses are incompatible with

stellar equilibrium as well ag stability.

b) Structure of the Halo and Sharpness of the Knee

The halos of our giant models are remarkably isothermal, and the
transition through the knee into a superadiabatic temperature gradient
is remarkably sharp (see Fig. 2). These features can be understood as
follows:

To avoid issues of radially changing chemical composition, considecx
that region of the halo which lies outside the hydrogen-burning shell

3

(p < 3x10 g/’cm3 for the 5 Mo model of Fig. 2). Here the pressure and
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internal energy due to gas and radiation are

o O 37z L L _b oo Frad
g umH > g 2p rad 3 > “rad p

-1 3% Y Z . \-1
]J=<—]-"——+—l-—' > = -]—'+———Pi1~+—ﬂl-+—-P—t-l—) = const. (4.9a)
My o Myl 2 2 4 16

Because the halo is so thin in radius and contains so little mass, through-

out it we can set T

"
o
1

M »
c Mtr o and thence

l”--l =R = K

(1 - zcmtc/czac)l/z (4.9b)

(cf. eq.[2.36]). Also, because P/c2 < p <L Mtc/éﬂRc3 throughout the
halo, and because nuclear binding energies and particle kinetic energies

2 .
are small compared to e, we can approximate

g = Mtc/Mr , Ng =1 (4.9¢)
(cf. egs.[T,6c] and [4.2]). Finally, because all luminosity is carried

s . T
radiatively in the halo, we can set Lrad = Lr .

By using the above relations we can rewrite the force-balance egqua-

tion (4.4a) for the plasma in the halo as

dp ; 8. Lr ‘
dar -_§~'p(l - crit) ? (4.10a)
c Lr

where 8. .i8 the acceleration of gravity at the edge of the core

= ' 2 -1 |
g, = (@M /R DR - (4.100)

The analogous equation of force balance for the radiation is obtained by
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setting Prad = P - Pg, by taking the difference of equations (Q.EOi,a) and
(4.10a), and by invoking the relations (4.9b,c), (4.10b), and ¥ - 1 =

L Prad/pc2 [cf. eqs. (T,6e) and (4.9a,c)]:

dp 4g P g L

rad ¢ rad c r
= - - =0 - (4.11)
dr R o c2 Rc L;rlt

The first term on the right-hand side is a gravitational redshift term;

it can be neglected because of the thinness of the halo (rK— RC << RC):

crit '
dPrad/dr = —(gC/RC) p(Lr/Lr ) . (4.11")

By taking the ratio of the force-balance equations (4.10a) and (4.11') and

combining with the equation of state (4.9a), we obtain

d0nT/d 0 p = (4 /Y, nt (4.12a)
where
- . Ccrit -~ - _ _
Y, ELET LS 1 = BB L Y, F R/R = B/ (1-B).

(4.12b)
We shall see below that YL >> Yg throughout the halo, except very near
the knee and near the nuclear burning shells; -thus, the halo must be nearly
isothermal (d &n T/d &n p << 1) ,
The opacity in the halo is due, almost entirely, to electron scatter-

ing and thus depends on temperature but not density (eq. 2.32)--and is

essentially constant throughout the halo. Thus, Lirlt (eq. 4.4b) is also

essentially constant with value

4
crit 41Ge Mtc 3.2x 10 L(3 MtC 9

L = = 3 (4.13)
r RcKes RCG(TK) M@ l'FXph
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where G(TK) is the Klein-Nishina correction function for the electron

scattering opacity, evaluated at the temperature of the knee Ty - The

knee occurs where the temperature gradient becomes adiabatic}; thus
dnT/d&np=1(4T/3 &n p)S = 1/3 at knee . (4.14a)

(Here we have used the fact that Prad >> Pg near the knee, so ghat the

adiabats are T3/p = const.) Equations (4.14a) and (4.12a) show that
= . > i .
Y, Yg at knee ; Y1 Yg in halo. (4.14b)

The value of YL in the halo is governed by Lr s, which is determined by

the equation of energy conservation:

_ .nuc -1 » _ .nuc .
Lr = Lr + Rc M(Hrad+ Prad/p) = Lr + const/p . (4.15)

[See eqs.(2.43), (4.8b), and (T,6e) specialized to the case r = RC << RC;

B = Bph’ X = Xph’ and Hga + Pgas/p radially constant because of isotherm-

=]

ality. Here Lzuc is the total contribution of nuclear burning to Lr in

the halo

nuc _ -2 L R
L =R "L = ﬂc Mc™ +» 0.007188[0.936 Xph4-(Xph+ th)/ll.O

'+<(xph+ th+ Cph)/13] : (4.16)

cf. eq.(4.8b).] By combining equations (4.15) and (4.12b), using (4.14b) to

crit

evaluate the constant in (4.15), using theconstancy of Lr , and ignoring a fac-

tor Y _» where it is unimportant, we obtain

(p/p) (Y o+ 1) L
Y, = K__gK -1, B = zrit N 0.03 . (4.17)
L+ Bnuc(p/pK_ D Lr

Here Pg and YgK are the values of p and Yg at the knee, and
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Bouc S 0.03 because
- =2 .
LR o @72 4, 0,030 R L " 0.030 L_(knee) = 0.030 LT,
T ¢ “nuc c T r

Because Yg = YgK(p/pK) in the isothermal region, we have

Y (p/p,- 1)L =B =B Y .. p/ey)

‘§L -1+ K nuc nuc gk K . (4.18)

g [1+Bnuc(p/pK—l)](YgK p/oy)

The isothermal region is that region in which YL/Yg >> 1 (cf. eq.[4.12a])-

Equation (4.18) shows that it extends over the range

4

4 /o - x 1074 .
e << (p/pK 1) << l/(BnuCYgK) o7 (4.19)

5% 10"

The p-T curve for the 5 Mo star in Figure 2 demonstrates this: At the
left end of the halo the termination of isothermality is so sharp
(Ap/p YgK v 5><10_4) that the slope of the p-T curve looks discontinu-

ous. Toward the right isothermality ends at p"~2 ><104

pK’VlOBg/cm3. The
above analysis diagnoses correctly small departures from isothermality; but
as the departures become significant (d 2n T/3 n p v 0.1), the analysis
produces serious errors.

The density-radius relation in the isothermal region can be derived

by combining the plasma equation of state (4.9a) and expressions (4.12b),

crit

r with the plasma force-balance equation (4.10a), and

(4.17) for L /L

then integrating. The result is

reor\
p - py = constant X exp( ; (4.20a)

®e By

where Hh is the value of the gas-pressure scale height (4.5) a few meters

below the knee where Li =L
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=R kTK GMtc -1 S%c = (6.22m) TK , Rc 2
=R N2 -8 ‘ 5. )\ T0km
Hm c RC' nuc 107K

MtC -1 6'\"C
(M ) . (4.20b)
o (-8 )

For the 5 M0 star of Table 1 and Figure 1 this formula gives RCHh =1,30
meters. The density profile (4.20a) agrees rather well with the numerical
model of Table 1 inside its realm of validity (eq. [4.19]). For example, it
describes within a few percent accuracy the increase in density scale height
from Hp==Hh = 1.55 meters deep in the halo to Hp =Hh(l--pK/p)—1 =50 meters
at l-pK/p =3 XlO_z. However, very near the knee (at 1 - pK/p 4y YgK =
5><10—4), it breaks down because of the breakdown in isothermality

(d &n T/d%n p no longer << 1).

Unfortunately, in the neighborhood of the knee there is a serious
omission in the physics which we have put into our analysis: We have ig-
nored the possibility of '"convective overshoot' in which turbulent cells
plow through the knee and into the upper layers of the halo before being
stopped by pressure buoyancy forces.

We can estimate the effects of convective overshoot in our 5 Me model
(Table 1) as follows: Just above the knee the mixing length (assumed equal
to pressure scale height) is %t = Rc/4 = 2.5 km (cf. eq.[4.26] below and
recall that P « T4). Table 1 shows that convective cells within‘this
~ distance of the knee have typical velocities of v, = 107'8cm/sec. Suppose
that a small cell moving downward with this speed hits the knee, and that

when it hits it has the same density and temperature Px and TK.’ as its

surroundings. Because the cell's velocit v is far less than its sound
g y £
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speed (vS = 109'85cm/sec), it maintains pressure equilibrium with its

surroundings as it penetrates the halo. Pressure equilibrium means tem-

perature equilibrium since Prad >> Pgas’ which means constancy of tem-

perature gsince the halo is isothermal. Assuming negligible heat exchange
between the cell and its surroundings (T3/p constant in cell), we con-

clude that the cell maintains constant density, p , as it pene-

cell = QK

trates the halo. Consequently, its deceleration rate as it moves

through the halo is given by

-1 )
PR, dv/dt = - gc(p- pe)
where g, is the (constant) acceleration of gravity throughout the halo

2

(eq. [4.10b]). Since v = -R; dr/dt , and since the density profile has

the form (4.20a), we can rewrite this deceleration equation in the form

2 .
Integrating.this equation and imposing the boundary condition v = v, at
p = pK , we obtain for the density P overshoot at which the cell halts

its plunge and begins to rise

: 2 2 2
Povershoot Ve _ 1 Ve uch
. Lo=3 =20 - B 7T ’ (4.22)
K gty c K
For our 5 M model, with B = 0.028, v, = 107'8cm/sec u = 0.62, and
® ? "nuc ' * Tt > T
_ 8.25 . . . . .
TK = 10 K this gives povershoot/pK =~ 1.08 . Cells moving three times
as fast will penetrate 10 times farther, i.e., to povershoot/pK = 2.,

The above estimates suggest that convective overshoot is of some,
but not great importance. However, the following factors make this con-

clusion somewhat uncertain: (i) We evaluated the convective overshoot
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agssuming a small convective cell, but the size of a typical cell just above
the knee is probably NRc/lO "1 km, which is far greater than the scale
height (a few tens of meters) of the region into which the cell pemnetrates.

(ii) The region of overshoot is the region of greatest gravitational energy

release: the energy release between pK and p 1is
_ erit _ _nuc - .
AL = @=L A - /) (4.23)

cf. eq.(4.13). A serious modification of the temperature distribution in

this region due to overshoot will seriously affect the details of gravita-
release, ;

tional energy/ and will thereby affect the average density profile and the

pressure-~buoyancy force on the convective cell, and might thug seriously

affect our above egtimates.

Obviously, a detailed study of overshoot is needed.

In this discugsion of the halo, turn attention now to the nuclear
burning shells. Because of the extremely small gscale height in the halo and
in the outer layers of the core, the nuclear burning shells are very thin:
typically (physical thickness) = 5321 Ar v 2 meters for hydrogeﬁ ghell,

4 meters for helium shell, and 20 meters for carbon shell (see Table 1).

The time required for matter to contract through these shells is

&;lAr/vidw 10 sec for the hydrogen shell, v 30 minutes for the helium shell,
and ~ 10 days for the carbon shell. Note that the electrohs are nondegener-
ate in the hydrogen shell, slightly degenerate in the heliuﬁ shell, and
fully dégenerate in the carbon shell. However, these conclusions, particu~
larly concerning the hydrogen shell, are somewhat uqcertain becauge of
inadequacy of our nuclear burning rates (cf. §V). On the other hand,

L /L = 0.030 is so small that errors in our treatment of nuclear burning

nuc

are probably unimportant for the overall structure of the star.
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¢) Structure of the Inflowing Envelope

In the inner regions of the inflowing envelopes of our giant stars

(10’

K<TXZ TK) convection is fairly efficient, so the temperature gradient
is not far from adiabatic; cf. Table 1, where adiabaticity would mean con-
stancy of Bg , and Figure 2 where adiabaticity would mean a T-p curve
parallel to the Bg = constant lines. (One must not diagnose adiabaticity
from V-—Vad in regions where Bg << 1 )

By approximating the temperature gradient as adiabatic, we can derive
simple expressions for the structure of the inflowing envelope. Adiabaticity
of the flow implies (by virtué of the relativistic Bernoulli equation, or
by eq.[2.43] with R?Lr constant) that &R is independent of radius.
Because Bg << 1 and because nuclear binding energies can be ignored, equa-
tion (T,6e) for % reduces to 1 + (4aT4)/3pc2.. By combining this expres-

sion for % with the relation
= _ 3
Bg = Pg/Prad;— (3k/umHa)(p/T )

and with expression (2.36) for # , and by setting MR = (NR)K) we

obtain

22 \1/2
4 kT _ 4 kTK L 2GMtc/C Rc
— = |1l + — ‘ -1 . (4.24)
B8 2 R 2 2
g Hm.c g Hmyc 1 - 2GMtc/c r

In order that the temperature T not go negative and not go isothermal at

r >> L the knee temperature must satisfy
kT ,
84 5 = - 77 L (4. 25)
gk umy, ¢ (1- 2GMtC/c Rc)

Deviations from this relation are a measure of the deviation from

adiabaticity. For the 5 M0 model of Table 1 this relation predicts
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log TK = 8,217 compared to an actual value of 1log TK = 8.249. Using

relation (4.25) we can rewrite equation (4.24) for the temperature profile

&

as
GM
4 kT _ 1 . te
5 7 = 51z -t Y T3 g (4.26)
g umc (1-2GMtc/c r) cr
where "=" is the Newtonian limit.

Note that T < 1/r implies p « 1/r3 » which means that M and

Mtr increase only logarithmically with radius

- 3
Mtr - MtK = 47 pKRC Qn(r/ﬁK) . (4.27)

This accounts for the very small amount of mass contained in the inflowing

envelope (third column of Table 1).

d) Structure of the Outer Region

The outer regions of our models (r > T m’ static envelope, photo-
sphere, atmosphere) are very similar to the outer regions of red supergiants
with white-dwarf cores or nondegenerate cores. Therefore, we shall not

comment on their detailed structures or on their sensitivity to the choice

of mixing length (Table 3).
However, it is very important to notice that the luminosities and
photospheric temperatures, L and Tph’ are exceedingly insensitive to the

details of the core, halo, and inflowing envelope. L and T are

ph

the core mass M , and

fixed almost completely by the total mass Mt , te

the envelope ¢omposition Xph’ th, Cph . Compare, for example, the fol-

lowing three models with the same Mt , M Xph’ th, Cph’ and ratio of

te?
mixing length to pressure scale height: the third model in Table 3
and the third model in Table 4 (relativistic models with different core

radii), and the eleventh model in Table 3 (which is Newtonian). Despite
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the difference in their inflowing envelopes, halos, and cores, their
luminosities and photospheric temperatures agree almost exactly.

Figure 3 explains this remarkable fact. Figure 3 is an H-R
diagram for static stellar envelopes near the Hayashi
track of a 5 Me star. All the curves in Figure 3 were constructed using
Paczyﬂéki's computer program GOB for static stellar envelopes (8§IL.c), with
no attempt to join the envelopes onto any kind of ‘core. Notice the ex-
tremely narrow range of photospheric temperatures on the horizontal axis.

The envelopes of Figure 3 can be joined onto a variety of types of
cores. ‘In the case of a white-dwarf core with hydrogen-burning shell
source, the base of the static envelope, Tom of eq.(2.1), is near or in-
side the shell source; thus log To—m N 7 to 8 and stars with white-dwarf
cores typically lie between the solid curves 8 and 7 of Figure 3.

In the case of a neutron core, the temperature falls off roughly as
3 9

1/r between ¥, and r " 107r, 3 and because T, < 10°K, we must have
K o-m K K
To-m < 106K. In fact, all of our detailed giant models (Tables 3 and 4)

have 5.9 < log To—m < 6.4 . In the envelope H-R diagram (Fig. 3) such

models lie along an extremely narrow strip, A log T . = 0.001 ; and for

ph
given core mass Mtc’ the luminogity within this strip varies by only

A log L v 0.02.  Thus, to within A log Tph = 0.001 and A log L v 0.02,
the envelope is oblivious of the details of the core and halo.

This behavior is due to the well-known fact that as one moves fight~
ward in the H-R diagram, approaching the Hayashi forbidden region, the
characteristics of the base of the envelope change extremely rapidly.k

The above discussion shows that, for given L , the photospheric tem-
perature is not even sensitive to the difference between é white-dwarf core
and a neutron core. Thé star with neutron core will be redder by only
A log TPh " 0.01.
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V. DETAILS OF THE STELLAR STRUCTURE: SUPERGIANTS AND MASS GAP

Consider a sequence of models with fixed core properties (Mtc’Rc) and
successively higher total mass Mt --e,g., the sequence in Table 3. The
low-mass models have ''giant" structures of the type discussed in 8IV. The
high-mass models have '"supergiant' structures (convective envelope dips
into hydrogen-burning shell, and most of energy generation is by hydrogen
burning rather than gravitational contraction). Between the giant and
supergiant models there is a "mass gap'" in which our computations have
failed to produce any equilibrium configurations.

This peculiar situation can be understood as follows (see Fig. 4).

The critical luminosity Lirlt in the inflowing envelope has the form

crit
&Lr

=/ N
ATGe Mtc/Ke (5.1)

s

(eqs.[4.4b], [4.9b,c]), where K og is the electron-scattering opacity

<, = (0.4 sz/g)[(l’*')%g/z](l +2n,/n) G(T) (5.2)

t

(eq. 2.32). The product RLirl is plotted, as a function of temperature

3 9,3 . ,
T for %ﬁ1= 0.70, M = 1 Mo ,and p v (10 g/em™)(T/10”K)~, in Figure
4. (The dependence on p , which is exceedingly weak and can be ignored,

enters through the ratio n,+/ne of pairs to ionization electrons; see the

Appendix.) At low temperatures (T < 107K), RLirit

T > 1O7K the Klein-Nishina corrections G(T) begin to reduce the electron-

is constant; but at
. . . crit
scattering opacity, and thereby increase RL.,. . At log T = 8.70 , when
ri . . .
27 L§ it has increased by a factor 2.0, electron-positron pairs turn on, in-
creasing the number of photon scatterers, thereby increasing Kag? and

\ crit . . \ . .
thence decreasing RLr . The turn-on of pairs with increasing T is
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crit

so sharp above log T = 8.70 that RLr

plummets dramatically (see Fig.
4).

In the envelopes of our models the local luminosity Lr is everywhere
supercritical (see §IVa). Moving inward through the envelope, one reaches the
knee (termination of convection) immediately after Lr goes subcritical. Figure 4
shows two Lr(T) curves, one for the interior of a giant model; the other
for the interior of a supergiant. The difference between the two is ob-
vious: The giant goes subcritical, with increasing T , before the peak
of ﬁLirit is reached. The supergiant has such a high luminosity that it
passes over the peak; but shortly thereafter hydrogen burning turns on,
driving Lr down through the now plummeting Lsrit curve. The hydrogen

burning has to generate a very large luminosity (Ln =~ L) in order for L.

uc

to catch up with the rapid plummet of Lirlt.

The sharpness of the pair turn-on at log T = 8.70 (the sharpness of
the peak in Lirit) is responsible for the mass gap between our giant and
supergiant models. For a model in the mass gap omne can choose a total lumin—
osity L such that Lr goes subcritical very slightly before the Lgrit
peak (giant-~type structure); but such a choice always leads to a knee radius
Tx larger than the desired core radius RC——and thus to no viable model.

If one chooses ' L. slightly larger, so that Lr skims over the Lirit peak
and somewhat later plummets due to hydrogen burning (supergiant-type struc-—
ture), one obtains a knee radius Iy smaller than RC——and again no viable

model. No choice of L can produce the desired knee radius.
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Unfortunately, the above discussion is based on an inadequate
treatment of hydrogen burning: Our detailed models utilized a CNO-cycle
burning rate appropriate to the temperatures of normal stars
(T~ [2 to lO]><lO7K), whereas in our supergiants the hydrogen-burning

8'9K. The "hot CNO-Ne cycle'" burning rates of Audouze,

shell has T = 10
Truran, and Zimmerman (1973) would be more appropriate. However, even
they would be extremely inadequate: Some of the crucial 8 decays involved
in the hot CNO—Ne cycle have lifetimes of V1 to 100 seconds, whereas con-
vection circulates matter into and back out of our hydrogen-burning shell
in a time At "N 0.01 second (cf. Table 2). For this reason we expect
hydrogen burning to proceed in the following very unconventional manner:
Convection circulates unburned matter into the hydrogen-burning shell,
where all strong interactions go to completion almost instantaneously

(At << 0.01 second). The reaction chains then get hung up waiting for

B decays to proceed. After V0.0l seconds the B-hung-up matter gets swept
back up to larger radii (lower temperatures), where it convectively random-
walks from place to place, while undergoing B decay. Sometime later, after
the B decay is partially or fully complete, the matter random-walks its
way back into‘the hydrogen-burning shell, where its strong interactions
proceed once again.

In a subsequent paper we hope to analyze supergiant hydrogen burning
from this point of view. We presume that the reaction products will in-
clude very peculiar relative abundances of various catalyst isotopes, and.
that these may provide an observational handle for stars with neutron
cores (see §I.c).

It is quite possible that an improved treatment of hydrogen burning

will change the hydrogen-shell structure of our supergiants substantially,

48



and will destroy the mass gap between giants and supergiants.

Vi. STABILITY OF OUR MODELS

We have worried about five possible instabilities in our stellar models:

Dynamical instability of the envelope, caused by the low adiabatic index

(Fl < 4/3) in the regions of hydrogen and helium ionization, where much of
the envelope mass resides. The situation here is similar to that in red
supergiants with degenerate white-dwarf cores (cf. Paczynski and Zidlkowski
1968), since the envelopes there and here are nearly identical. In such
envelopes the thermal and hydrodynamical time scales are comparable, so
energy transport has a strong influence on the time development of any in-
stability. We have analyzed the stability of our envelopes ignoring energy
transport (stability against linearized adiabatic, radial perturbations);
see last column of Tables 3 and 4. For envelope masses Menv <2 M0 our
envelopes are adiabatically unstable; for Menv > 2 M@ , they are adiabat-
ically stable. This result suggests (see, e.g., Keeley 1970a,b; 1975) that
a more correct, nonadiabatic analysis may reveal either pulsational or dis-
ruptive instabilities for our least massive envelopes; but that our most
massive envelopes might bé stable against all perturbations, except convec-

tive ones.

Thermal instability of the shell sources. Consider a nonconvective

shell source with averagé luminosity and temperature .Er and 5‘, and with
luminosity and temperature drop across itself of ALr and AT . A crude
analysis (simple generalization of page 857 of Schwarzschild and Harm 1965)
shows that an average temperature rise of &T inside the shell produces the

following rate of increase of the shell's internal energy:
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dEinternal = (L) |v-s Lr E;_.QE
dt r ALr AT T

(6.1)

Here Vv 1is the temperature exponent of the nuclear burning rate, g=T’.
The nonconvective halos of our models are extremely isothermal--so iso-
thermal that SCEr/ALr)(T7AT) has values of V30 to 40 for the giant model
of Table 1, and > 1000 for the supergiant of Table 2. This‘is sufficiently
large compared to Vv that our nonconvective haloes are probably stable
against thermal runaway (poéitive 8T sets up a heat flow out of the
shell which exceeds the increased nuclear burning). Even if the nonconvec-
tive shell sources turn out to be unstable, their very small contribution
to the star's total luminosity, and their location deep below the envelope,
and the very short timescale of the instability will probably prevent the
instability from producing observable effects at the photosphere.

In our supergiant models the convective hydrogen shell source should
be protected from thermal runaway by the B-decay hangup discussed in §V .
On the other hand, the convective hydrogen burning described in &V might
proceed in a series of local flashes. rather than as a smooth energy flow.
Even if this is the case, the timescale of the flashes will be so short
(At << 1 second) that their effects presumably will be smoothed out in the

overlying envelope.

Instability of the region of gravitational energy release (pK <p<
lOpK). We do not now have any insight into the stability of this region.
Any adequate analysis would have to take account of convective overshoot.

Runaway neutrino losses, accompanied by an ever-increasing rate of

envelope contraction. The computations of Zel'dovich, Ivanova, and

Nadyozhin (1972) sﬁggest that such an instability may occur in models with
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halo temperatures much higher than ours--if such models can exist. However,
our low halo temperatures (T < 1 X109K) keep the middle~region neutrino losses
small (<< 1 Lo) and presumably will prevent them from running away. Because

of thermal decoupling (8II.b), neutrino losses in the core cannot produce

an instability in the overlying halo and envelope.

Instability of the mass inflow pattern. Bisnovatyi-Kogan (private

communication) has argued that the inflowing envelope, halo, and outer core
may be unstable against perturbations which break the radial constancy of

M. A specific example of such an instability is the possibility (Cameron,

private communication) that at densities N3><108 to N10148/0m3 rapid pycno-

nuclear reactions and electron capture, followed by intensive neutrino-
antineutrino emission,might produce a rapid shrinkage of the outer core. We
doubt that such instabilities exist, but we have no proof.

A Henyey-type evolutionary calculation would be a powerful tool to

use in testing for the above instabilities and others.

VII.. EVOLUTION OF OUR MODELS

We saw in §IV.d that stars with neutron cores can occupy only an ex-
tremely narrow strip in the H-R diagram, sitting precisely on the edge of
the Hayashi forbidden region. The boundaries of this strip can be found
with good agcuracy by static-envelope integrations; see §IV.d and Figure 3.

Take a star with a neutron core and a given total mass Mt , and as-
sume that it does not undergo any violent instabilities during the time
required for its core mass Mtc to{grow significantly. Such a star should
evolve through a sequence of quasi-equilibrium states of the type discussed
in this paper. Restrict attention to giant-type stars, for which the
envelope does not evolve chemically. Then the evolution of the surface

features, L and T can be read off a static-envelope H-R diagram such as

ph

Figure 3, without any reference to the structure of the inflowing envelope
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or halo. As Mtc increases, L and T_, must move up the narrow allowed

ph
strip (strip with To«m N 106). The evolution will terminate by collapse
of the core to form a black hole when Mtc reaches the Oppenheimer-
Volkoff limit (maximum mass of neutron star) Mbv v 1.5 or 2 Me .

To verify for a given star that giant-type evolution (unchanging
envelope abundancés) really is reasonable, and to learn the details of
evolution of the star's deep interior, one must construct a sequence of
evolutionary models for the entire stellar envelope and halo. One could
do so using a Henyey-type code. However, we think this is not necessary.
Assuming that our models are stable, Henyey evolution would have to re-
produce the unique sequence of models which we obtain by our methods holding
the star's total rest mass M fixed and increasing its core mass MC from
model to model. Such a sequence would be nearly the same as the one shown
in Table 4 with fixed total mass Mt and increasing Mtc'

The evolutionary sequence in Table 4 is for a star with total mass
oh = 0.27, Cph = 0, and

with core mass increasing from 0.40 MO initially to a final, Oppenheimer-

Mt =35 M@, with envelope abundances Xph = 0,70, Y
Volkoff limit of 1.625 M@ . The core radius-mass relation Rc(Mtc) is that
of Malone, Johnson, and Bethe (1975, their model V-H). In our models we
were satisfied with reproducing the desired Rc(Mtc) to within about one
percent; All models in our evolutionary sequence (Table 4) have giant-type
étructures. As one might expect, as the core mass grows and the accelera-
tion of gravity at the core edge increases, the thickness of the halo de-
creases (cf. §IV.b). The total time required for evolution from M, =

tc
0.4 M@ to the point of core collapse, Mtc = 1,625 Mb s 1s
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A = f ﬁ—ldM = j ﬁ—l R-l dM = 7.4><1O7 years . (7.1)
c c tc

The evolution of a supergiant is more complex than that of a giant;
it is driven not only by core growth, but also by chemical evolution of
the envelope. The rate at which envelope hydrogen is burned by the shell
sources of our models to form envelope helium is typically 500 times
greater than the rate at which envelope matter fiows into the core; see
Table 3. To burn all of its envelope hydrogen a supergiant of 12 MG re-
quires ’\zl.l><107 years, and a supergiant of 25 M@ requires V1.4 X lO7 years.
For comparison, the time required for the core rest mass to increase
1M is N6 x 108 years in the first case and "V 7x10° years in
the second. These estimates may be in serious error because they are based
on our inadequate treatment of the hydrogen burning (§V) and on models
(Table 3) of one chemical composition only. We have not yet attempted to

construct supergiant models with hydrogen-deficient envelopes.

VIII. CONCLUSION

We regard this paper as merely a first rough overview of stellar models
with neutron cores. This ove -w has uncovered a large number of problems
which must be resolved before the theory will be in satisfactory shape. At
present we are pursuing only three of these problems vigorously: the details
of nuclear burning and nucleosynthesis in supergiant models (§V), the re-
sulting chemical évolution (§VIL), and the possibility of discovering such
stars by observation of peculiar photospheric abundances (8I.c).

Other problems that require study are these: (1) The stability of our

models, with emphasis on the five possible instabilities described in §VI.
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(ii) A search for models with very different structures from those ex-
hibited in this paper--e.g., models with large neutrino losses supplied
by large mass inflow rates (cf.§IV.a and §VI) and models in which pro-
fuse electron-positron pairs replace large Lr as the source of reason-
able scale heights above the halo (§IV.a). (iii) The effect of convec-
tive overshoot on the structures of our giant models (8IV.b). (iv) The
effect of magnetic fields in reducing the opacity at densities
106 <p £ 3><lOll and thereby permitting significant heat transfer between
core and halo (§II.b).

All of the above problems seem somewhat tractable. Less tractable,

but obviously very importamt, is the issue of how such stars might form

in Nature (Ostriker and Paczynski 1975).
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APPENDIX

ELECTRON-POSITRON PAIRS IN THE NONRELATIVISTIC, NONDEGENERATE APPROXIMATION

In thermodynamic equilibrium at temperature T , the number density of

electrons "-" and positrons "+'" in phase space is
n_ = M 2 1 , (A.1)
T 3.3

+ d7xd7p hd 1+ exp[(p, + 1) /kT]

1/2

-, 2, 2 ; -
where W 1is the chemical potential, po = (m™+ p7) ig the total mass

energy of a particle, p dis the magnitude of the spatigl part of its
4-momentum, m is the electron rest mass, k is Boltzmann's constant,
and we set the speed of light equal to unity. Here and below equations con-
taining double signs (+ or 1) are valid for electrons (including ionization
electrons and pair electrons) with the upper sign and for positrons with the

lower sign. The number densities in physical space n;, the pressures P;, and

the energy densities including rest mass are

3 _ 1 2 3 _ 3
no J%;dp, P;—3j(p/po)7?;dp, €_~fpo’)24:dp,(A.2)

+

where d3p 4ﬂp2dp .

We assume that the number of electrons exceeds the number of positrons,

so U > 0 ; and we specialize to the nonrelativistic, nondegenerate regime:
p>0 , m/kT> 1 , (m=-p) /KT >> 1 . (A.3)

In this regime relativistic particles make negligible contributions to

n., P_, and H¥ 5 consequently, we can set p2/2m << m , and use
+

p, = m+ p2/2m . (A.4)

Asgumptions (A.3) then allow us to write
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N = 2 exp(c By exp@lsm) (A.5)
F0 .3 TPV 2mer’ SRV : y

By inserting expressions (A.4) and (A.5) into (A.2) and integrating
we obtain the following results: (i) The electron and positron pressures

and energy densities are given by the usual nonrelativistic expressions

P_=n_ kT , €. =n.(m+>KT) . (A.6a)
FOOF o 2

(ii) The number densities of electrons and positrons are

n_ = (2/h3)(2nka)3/2 exp[ (¥4 - m) /kT] . (A.6b)
+

The number density of ionization electrons n, ig the difference

between n_ and n, --and is also equal to p/mHue where ue is the mean

molecular weight per electron:
- T T - T
plmgp = =n_-n, = (2/t%) @mkn)¥/? TR WD () g

Let us introduce the parameter

3
h™n p./u 3/2
.. e m/kT _ (76" "e}{5.93 5.93/T
___..._.___..7_2_ e = (...___._.7 - 37) (———-—) e 9 (A.8)

4(2mmkT) > g

<
1]

where P is density in units of 106g/cm3 and T9 ig temperature in units
of 109K. Then by solving equation (A.7) for eu/kT we obtain

H/KT 1/2

y + (y2+ 1) ; (A.9)

and by combining with (A.6b) we obtain for the ratio of number of electron-
positron pairs to number of ionization electrons
- e l .

"y
£ & . (A.10)
e e 2y(y + (1+y2)l/2]
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Equation (A.6a) then shows that the ionization electrons make the usual

contribution to the pressure and energy density, while the pairs make the

contribution (in cgs units)

(P/H m )KT
P iy = 2mKT = et 5173 (A.11a)
P yly + (1+y") 7]
2 3
o ) 3 (p/u my) (me+ 7 kT) , )
= 2n, (me” + = kT) = A.11b
pair + 2 iy + (1+y2)1/2]

The temperature-density regime in which the above expressions are

valid can be deduced by combining equations (A.8), (A.9), and (A.3):

Pg ( T9 )3/2
T9 << 5,93 , —3—-—6—9_—11—;<< 5793 . (A.12)

The T-p curve along which the number of pairs equals the number of ioni-
zation electrons is given by vy = 0.354 and is shown graphically in Figure
2. Note that when our stellar interiors cross over this curve so pairs
become important, they remain well within the realm of validity of our

approximations, equations (A.12).
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INTERNAL STRUCTURE OF A STAR WLITH Mt

: (Note:

'

= 10.05 lam, M

= 5.0 M, M= 1.0 M, R, = 10,00 km, X = 0.70, ¥

TABLE: 1

n = 0:27, €y = 0.0

= 1,000 M, r . =9.95 km. For details of notation see §I.e.)

K
2GM .
Region r-ry Itt"MtK ceir log p log T 6g T Lr ch—RaL:v L:tlt Yad vrad v log Ve log A log Vin
(m) (at,) : (g/em”) (%K) (1) (Ly) (5,) (em/sec) (cm/sec) (em/sec)
PHOTOSPHERE 6.69E11  3.9% 2.18E-8 -8.739 . 3.h23 0.667 0.0834% 0.108 0.106 2,84 5.63
8.45E11L - 3.69 2.15E-8  -8.290 3.719 17.9 .386° 1.63 1.63 L.43 5.87
6.34ELL  3.57 2.13E-8. -8.413 3.9k2 8970. .0869 168. 0.519 S.k2 5.92
L,72E11  1.86 1.79E-8 -B.1h6 k.27 .210 298, .53 5.54 6.25
TSTATIC | 1.20E11 4.67E-2 2.58E-8 -7.913 L.777 .283  6.57 kg 5.89 6.80
¢ ENVELOPE 3.62E9  2.32E-6 8.16E-7 -7.677 5.343 .2502 0.3k0 .26k 6.60 7.51
’ 1.72E8 9.59E-10 1.72E-5 -7.132 5,794 L2500 L2775 .2516 7.18 7.92
1-6°L /L
t 1.67E7 4.12E-12 1.77E-F -6.515 6.190 L4.32E-3 0 h175. << E-20  38160. .2500 .275 .250h 7.6% 8.40 5.00
oam 7.65E5 9.60E-15 3.81E-3 -5.303 6.802 1.03E-3 -0.010  L42306. << E-20 38640. .2500 .27 .2500  8.12 9.02 6.46
{ 1.23E5 1.20E-15 0.0221 =4,163 7.25% 6.27E-% - .03k kh127., << E-20 LooO8. .2500 .275 .2500  8.27 9.35 6.85
INFLOWING 3.38Ek 4.97E-16 .0674 -3.145 7.616 5.39E-h - .058 47348, 2.1E-20 . L3061. .2500 .27 .2500 8.25 9.56 6.81
ENVELOPE 9.61E3 = 2.26E-16 .150 -2.219 7.930 5.18E-h - .073 50695. 3.5E-18 49306, .2500 .266 .2500  8.12 9.71 6.60
789. 2.93E-17 .273 -1.385 8.209 G5.1hE-L - ,078 61858. L4.0E-16 61246. .2500 .2522 .2500 7.75 9.8k 6.32
91.7 5.62E-18  .291 -1.282 B8.244 S5.13E-4 - 078 63501. 7.4E-16 63449. .2500 .2503 .2500 .44 9.85 6.28
29.8 1.18E-18  .293 -1.271 8.247 5.13E-k - 078 63662. 7.8E-16 63666. .2500 .2501 0.2500 7.28 9.85 6.28
X Y C
KNEE 0 0 . .29 -1,267 8.2k9 5.14E-L - 078 65741. 8.0E-16 ~ 83772. .2500 .2500 0.700 0.270 0 6.27
-16.2 -6.45E-19  .2g4 21,248 8.250 5.3ME-k - 039 61440, 8.2E-16 63829. .2500 2423 .700 .270 0 6.26
Gravitational }-20.5 -8.62E-19 .295  -0.95% 8.250 1.05E-3 + 156 32001. B8.2E-16 63845, .250 .138 . 700 .270 0 5.96
energy release|-21.9 - -1.0lE-18 .295  -0.657 8.250 2.07E-3 .709 17201. 8.2E-16 63850. .250 .076%  .700 .270 [¢] 5.67
- -] -1.78E-18 .295  +0.017 8.250 9.69E-3 .913 5126. 8.4E-16 63860. .250 L0227  .700 .270 0 4,99
-28.1 ~1.72E-17 .295 1.288 8.251 0,15k .966 2025. 1.2E-15 63897. .251 .0095 .700 .270 0 5.72
THALO -32.0 -3.08E-16 .295 2.556 8.261 .786 . 969 1836,  1.1E-14  693ks5. .28k .0296 .700 .270 0 2.45
I -35.6 -3.75E-15  .295 3.576  B8.336 .95l .970 1748. 2.9E-13 69090 .348 .129 669 .301 0 1.43
H Shell 2-37.0 -9.65E-15 = .295 L.070 8.387 .969 .982 10%9. © 1,5E-12 90198, .358 .09k .328 .Bh2 0 0.9%
-37.5 -1.50E-1% .295 ¥ k16 8.399 .978 .9927 434, 3.0E-12  1,1885 ,362 .01 0.026 Lok 0 0.59
-38.4 -4,06E-14  .295 .2k 8.2 990 .9936 377. 1l.BE-11 1.23E5 371 .075 0 .970 0 0.19
-39.8 -1.53E-13  .295 5.297 8.k85 .995 .9938 365. 9.1E-11 1.33E5 .372 b1 0 .930 0.040 -0.29
He Shell -h1.0 ~3.76E-15  .295 5.629 8.542  .997 . 9955 265. 4.9E-10 1.48E5  .363 .135 0 RS .529 -0.62
* -43.8 ~-1.68E-12  ,295 6.124  8.627 .999 .9969 181. 8.3E-9  2.01E5 343 .139 o} 0.030 .90 -l.11
“CORE | ~50.1 -1.E1E-11  .296 6.806 8,776 0,999 .9971 172. B8.6E-7  L4.07ES .322  .158 0 0 970  -1.79
] -61.7 -1.31E-10  .296 7.k52 8,917 1.000 9974 156, 8.5E-5  9.17E5 .312 .11 0 0 .89 2.k
C Shell -65.7 +2.18E-10 .296 7.615 8.94k2 1.000 .9938 h.  2.5E-h 1.19E6 .313 069 o] 0 o7 -2.60
~73.8 -5.07E-10 .296 7.883 8.953 1.000 0.9998 9. 1.2E-3  2.07E6 .318 .011 o} 0 .035 -2.87
] ~83.0 -1.11E-9 .297 8.136 8.855 1.000 1.0000 3. L4.6E-3  3.73E6 .325 .00k 0 o] 0.005 -3.12
Ty -96.1 -2.71E-8  0.297 8.hok 8,956 1.000 1.0000 0. 1.9E-2 7.49E6 0.336 0.000 [¢) 0 0 341
{




TABLE 2

INTERNAL STRUCTURE OF A STAR WITH M, = 12.0 M_, M__ = 1.0 M, R_ = 9.98 km, xph = 0.70, th = 0.27, cph = 0.0
(Note: rK = 10.00 km, MtK = 1.000 }}3, L= 9.92 km; for details of notation see §I.e.)
. 2GM .
M t. ov ov crit
Region T-Ty Mtr_MtK c‘?r log p log T t3g T Lr L -&aLr Lr Yad Yyad g log v, log vy log Vin
3
(m) (m.) (g/en”) (%K) (1) ) (1) (em/sec) (cm/sec) (cm/sec)

PHOTOSPHERE 7.50E11 . 10.90 %.69E-8 -8.397 3.462 0.667 0.118 0.148 0.148 2.69 5.66

7.43E11  10.80 4 .69E-8 -8.191 3.598 3,92 .387  1.01 1.01 3.66 5.81

7.38ELL  10.68 % .58E-8 -8.330 3.916 1590. .10%  76.5  0.836 5,45 5.90

6.71E11 9.44 k.50E-8 -8.127 L.200 .232 470, .629 5.53 6.21

L4 _03ELL 5.58 3.36E-8 -7.709  L.671 254 23,9 .352 5.55 6.49

STATIC 3.28ELO S5.45E-3 . 9.06E-8 -7.194% 5.148 .263 2.55 .352 6.09 6.85

i ENVELOPE 2.15E9 S.06E-8 - 1.37E-6 -6.699 5.617 .250  0.59% .265 6.6k 7.38

1.35E8 §.84E-9  2,19E-5 -5.999 6.092 .250 .501 .252 7.19 7.95

1%L /1L

o 1.53E7 §.90E-11 1.93E-k -5.243 6.50%  9.21E-3 o} 73347, << E-20 38301. .250 gk .251 7.57 8.0 2.79
1.48E6 2.33E-12 1.98E-3 -3.996 7.040 L.OhE-3 0 73691. 6.1E-21 - 39000. .250 Ry .250 7.82 8.84 3.57
4 .OhES 9.70E-13 7.12E-3 -2.963 7.417 3.23E-3 Q 74086. 9.1E-1¢ kOkll. .250 459 .250 7.85 9.08 3.65
. 1.45E5 6.22E~-13 - 00191 - -1.958 7.762 3.01E-3 -0.001  75003. 2,0E-16 h34hg., .250 431 .250 7.78 9.26 3.50
TINFLOWING ! 5.64EL 4,32E-13  .0Lk5 -0.969 8.095 2.95E-3 -0.001  77003. h.8E-1% 50043, .250 .382 .250 7.67 9.43 3.25
ENVELOPE 2,42k 3.0l1E-13 .086% «0.119 8.379 2.93E-3 -0.001  80S45. S5.8E-12 61612. .250 .32k .250 7.53 9.57 2.99
:ZS 1.03Ek 1.93E-13  .146 +0.596 8.617 _ 2.93E-3 [¢] 8s0k2. 4.,0E-10 79400. .250 .270 .250 7.28 9.68 2.7
H Shell begins L4.LSE3 1.12E-13 .20k 1.097 8.78% 3.98E-3 40.02%  90228. 6.4E~7 59575, .249 .366 = %: 7.452 9.76 2.55
2.51E5 7.29E-14  ,236 1.324 B8.858  8.8LE-3 .100 86617, 1.5E-5 23150, .47  0.857 2247 7.48 9.78 2.46
883. 2.97E-14  .271 1.559 B.932 0.0217 kot soko7. 2.0E-k 97k0.  .2k3  1.396 243 7.40 9.81 2.36
126. 4.61E-15 .292 1.688 8.972 .033k .831 17518, 6.7E-l 6719. .24l - 0.612 241 7.16 9.82 2.30
kb 5.34E-16 .295 1.708  B8.9782 .0356 .931 7222, 8.0E-} 6377. .24 .288 240 6.85 9.82 2,29
- 5.56 2.07E-16  .295 1.710 B8.9787  .0357 .939 6347, 8.1E-k 6351.  .240 .259  0.2h0 6.71 9.82 2.29

X Y c
NEE 0 o .295 1.711  8.9790 .0359 .os 5788. 8.2E-4 6336.  .240 240  0.700 - 0.270 0 2.28
) -0.57 -2,84E-17 & .295 1.905 8.979L  .0360 .96k 3705. 8.2E-4 9817. .240 .14 0.367  0.603 0 2.09
H Shell ends -1.13 -7.38E-17 = .295 2.302 8.9791  .0365 .986 1k85. 8.2E-4 oo, .20 L0267 0.021  0.349 0 1.69
' ~5.82 -1.06E-13 .298 3.045 8.9791 .0h91 .9971  301. 8.3E-h 1.16E5 .24l .0023 o} 0.970 0 0.95
A He Shell -8.59 -1.07E<1k  .296 3.819  8.9792 .159 .9992 85.¢ 8.3E-L  2.19E5 .247 L0005 0O 0.949 0.021  0.18
B, } -12.5 -4 ,B2E-14  .296 h.hs3  g8.9792 k11 .9995 ko5 8.ME-b 2.28E5 .253 .0002 0 0.480 o.kso -0.k6
Ca THALO * -17.6 -3.70E=13 .296 5.385 8.9793  .843 .9998 22.1 8.5E-4  2.2985 .283 0002 O 0.022 0.9%8 -1.39
* -19.7 -8.8BE-13 .96 5.732 8.979%  .926 .9998 20.1 8.5E-k 2.30E5  .299 000k 0 0.006 0.959 ~1.73
. ¢ Sheil -22.1 -2.08BE-12. .296 £.068 8.979% .968 .9998 18.4  8.6E-b 2.36E5  .309 .0007 o 0.002 0.940 -2.07
-27.8 -1.18E-11  .296 6.667 - B.980% .99k .9993 9.5 8.8E-4 2.83E5 .310 .0015 o] 0 0.hb91  -2.87
i ~25.0 -6.33E-11.  .296 7.220 8.9812 0.999 1.0000 1.2 9.78-4  S5.,0lE5 .306 .0007 0 o] 0.032 -3.22
"CORE -ko,7 -3,80E-10 0.297 7.776  8.9816 - 1.000 1.0000 0.1 1.9E-3 1.44E6 0.312 0.0003 o] 0 o] -3.78
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TABLE 3

MODELS WITH M_ = 1M, R_ = 10.00 km, xph=o.7o, ¥ p =027, G =0.0
;2321% £ L Ton Ron 108 T, M Lnuc/L T log p, log Ty rp-r, logp, log Ty ry-r, legpy  log T, re-ry log p, Envelope

M) ) O ®) (R (107 /) () (g/cr) (O @) (fen) (K @) (gfen’) (®) (m) (gfen’) stabier”
G,R,a=1 2.0 38220 2621 917 6.923 1.575 0.030 10.039 -1.871  8.098 -37 b2  8.389 -1 5.61 8.529 -66 7.62 N
G,R,0=1 3.0 38430 2sk9  esk 5,977 1.58% 0.030 10.0k5 -1.817  8.111 -36 L2 8.389 -4o 5.61 8.530 -65 7.62 NO
G,R,a=1 5.0 41740 2ek9 - 961 . 6.190 1.720 0.030 10.047 -1.267  8.249 -37 4,05 8,386 -41 5.60 8.537 -65 7.59 YES
G,R,a=1 8.0 55680 2776 1016 6.374 2.266 0.030 10.024 - -0.00%  8.561 k7 5.35  8.569 -53 5.41 8.610 -75 7.48 YES
G,R,cx=1 9.0 < 50380 2809 103h  §.406 2.k77 0.030 10.028 0.309  8.633 -58 3.10  8.843 -85 5.29 8.663 -87 7.41 YES

MASS

GAP
S,R,¢=1  11.5 71360 2882 1070 6.498 0.167 0.945 10.000 1.706  8.978 711 1.58 8,950 -12 L Ly 8.978 -28 6.67 YES
S,R,@=1 ' 12,0 - 73530 289%% 1977  6.504 0.165 0.947 10.000 1.711  8.979 725 1.58  8.%%0 -12 b L 8.979 -28 6466 YES
S,R,o=1  15.0 90490 2978 1130 6.539 0.156 0.959 10.000 1.73  8.987 712 1.62  B8.949 12 L ko 8.987 -27 6.57 YES
5,R,0=1 ~ 20.0 105600 3047 1168 6.563 0.150 0.966 10.000 1.766  8.992 731 1.64 - 8.955 -12 L.y 8.992 -25 6.5L YES
S,R,;=1  25.0 123260 311k 1209  6.585 0.1kl 0.972 10.000 1.789 8,998 718 1.66 8.960 -11 4.bo 8.998 25 6.45 YES
G,N,a=1 5.0 41770 2842 951 6.179 1.852 0.038 10.0k0 -2.071  B8.026 -32 4,07 8.369 -38.  5.80 8.532 -72 7.59 YES
G,R,a=0.5 - 5.0 38180 2209 132k  6.029 1.573 0.030 10.068 -1.695  8.145 -B2 .11 8.310 -66. 5.83 8.526 -93 7.69 YES
R,&=1.5 5.0 "IN MASS GAP; NO MODEL EXISTS

*®
In the first column, G means giant, S means supergiant, R means relativistic model, N means Newtonian mode, and & is the ratio of mixing length to pressure scale height.

In the last column “ENVELOPE STABLE?" means "Is the static envelope stable against small, adiabatic, radjal perturbations?"

For other details of notation see §I.e.

TABLE 4
EVOLUTIONARY SEQUENCE FOR A STAR OF M_ = 5 M, xph = 0.70, th =0.27, €,y = 0.0

Ntc R,c L Tph Rph log To-m M Lnuc/L Iy log Py log TK :H-rK log Py log TH The~TK log Pe log IHe rC-rK log Pc Envelope
o) e (G (R ®) () (107 /) (m) (g/en’) (k) (@) (gfen’) (®) (@) (g/ex®) (°)) (m) (gfen”) stable?”
ok 12.172 - 24580 2734 . 696  6.569 3.028 0.100 12.398 0.%21  8.524 -181 3.07 B.5% -209 5.16 8.62 273 6.94 YES
0.8 11.255 36210 2659 889  6.298 2,121 0.0%5 11.323 -0.975  8.275 -57 3.87 8.40 -8k 5.48 8.55 .98 1.36 YES
1.0 11.075 %1730 2549 98l 6.193 1.913 0.034% 11.12% -1.329 8.219 -41 h.o1 8.38  -ks 5.56 8.5 -75 7.52 YES
1.k 10.680 shko0 26sh 1091 5.999 1.673 0.021 10.710 -1.505 8.229 -26 k.16 8.37 -29 5.68 8.52 .50 7.82 YES
1.6 10.850 51880 2670 11k 5.956 1.561 0.016 10.277 -1.329  8.300 -24 4,16 8.38 -26 5.73 8.52 -k3 7.92 YES
1.625 9.289 €£810 2672 11 5,950 1.388 0.013 9.336 -1.153  8.364 -35 L.10  8.k1 - -37 5.75 8.55 -Lg 7.93 YES

*
See footnote to Table 3.
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FIGURE CAPTIONS

Figure 1. The structure of stars with degenerate neutron cores. The
interior of the box lists a number of features of the stellar interior.
The locations of those features are indicated on the left of the box
in terms of density p , and on the right of the box in terms'of radius
minus the vadius of the star's "knee", r-ry . Numbers not in parenthe-
sis are exact and apply to all of our models. Numbers in parenthesis are
taken from a general relativistic "giant" model (Table 1) with total mass

M_=35 Mo’ total core mass M

= 1M , and core radius R _ = 10 km—-but
t 0] c

tc
these parenthesized numbers are qualitatively correct for ail models.

In the left column of the box are listed the major regions of
the stellar interior: the photosphere, which is the point with optical
depth T = 2/3; the envelope, which extends downward from the photosphere
to the knee; the knee, which is the point where envelope convection
stops; the halo, which extends inward from the knee to the point of
onset of electron degeneracy; and the éggg, which extends from the onset
of electron degeneracy in to the center of the star.

In the middle column of the box are listed a number of subregions

of the stellar interior including: the atmosphere, which lies above

the photosphere; the static envelope, which is a convective region ex-

tending from the photosphere down to a (arbitrarily chosen) radius

roﬁnwhereinflcw of matter from envelope to core becemes important;

the infiowiqgjenvelope, which is also convective and extends downward

from Ton to the star's knee where convection ceases; the region of

gravitational-energy release, which extends inward from the knee to
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a density p v 10pknee; the hydrogen-burning shell, helium-burning

shell, and carbon-burning shell; an insulating layer which extends

from the onset of electron degeneracy down to the point 0 =
3><1011g/cm3 where neutrons drip off the atomic nuclei to form a

superconducting, superfluid medium; and the isothermal core in which

800|1/2 = TR is nearly constant, and which extends from

p = 3><lOll in to the center of the star.

T|

In the right column are listed three regions into which we sub-

divide the model for computational purposes: The outer region, which

includes atmosphere, photosphere, and static envelope; the middle region,

which includes contracting envelope, halo, and the outermost part of
the core (down to radius L where p = 3><108g/cm3); and the inner
region, which includes the remainder of the core.

Supergiant models (M > 10 M@) differ from giant models (M < 10M@;de—
picted in this figure)in only one qualitative way; the hydrogen-burning
shell overlaps the knee and ~nvelope instead of being confined to the

halo.

Figure 2. The internal distributions of density and temperature for a

giant model with total mass Mt =5 Mb, and a supergiant with Mt =

12 Mo . Both models have envelope abundances (= photospheric abund-

ances) Xph = 0.70, th oh

MtC =1 M@, RC =10 km. Further details of the internal structures of

= (0,27, C = 0, and core mass and radius

these stars are given in Tables 1 and 2. The solid curves are the runs
of density and temperature in the two models. Along these curves are
marked several regions of the model which were described qualitatively
in Figure 1 (photosphere, static envelope, junction point Yo between

outer and middle regions, inflowing envelope, knee, halo, junction
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point RC between halo and core, core, and junction point r o
between middle and inner regions. Also shown along each curve are
the locations of the hydrogen-~, helium-, and carbon-burning shells.
The dotted lines are several regions of interest in the density-
temperature plane: Above the "PAIRS--NO PAIRS" line the density of
electron-positron pairs exceeds that of ionization electrons; below,
ionization electrons dominate. (This curve is given analytically by
y = 0.354 where y 1is defined by eq.(A.8) of the Appendix). The
"RADIATION DOMINANCE--GAS DOMINANCE" line is the line where Bg =

(gas pressure)/(radiation pressure plus gas pressure) is 0.5. For

further details on notation see §I.e.

Figure 3. H-R diagram (luminosity versus photospheric temperature) for

stars of total mass M = 5 M , envelope abundances X
t ° ph ph

ratio of mixing length to pressure scale height lt/HP= 1. Each point in the

= 0.70, Y .= 0,27, and
L—Tph diagram corresponds to a unique static envelope constructed by the pre-

scription of §II.c. Each dotted curve is a region of constant core mass, M_ =

te
Mt— MEnv' The curve Mtc= 0 was calculated by extrapolation from Mtc> 0. Each

thick solid curve is a region of constant temperature To—m at the
base of the envelope (radius rom defined by eq. [2.1]). To the

left of the thin solid curve the turbulent velocity of convection is
less than half the adiabatic sound velocity throughout the static
envelope. To the right, v, > vs/2 near the base of the envelope--
and therefore we are not justified in our use of subsonic mixing-length
theory. The large dots are the surface properties of the six stellar

models of Table 4.

The absolute temperatures and luminosities along the various
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curves are unreliable because of uncertainties in opacities and
mixing length (which is here assumed equal to pressure scale
height). However, the temperature and luminosity differences be-
tween various curves should be somewhat reliable.
Figure 4. Local luminosity Lr and critical luminosity Lirit as func-
tions of temperature T in the inflowing envelopes of the 5 M0
giant model of Table 1, and the 12 MG supergiant model of Table 2.

We actually plot vertically Lr and Lirlt multiplied by the red-

shift factor ® because the product RLirlt is very nearly a
function of temperature only and is therefore the same for all
models with the same core masses (cf. eqs.[5.1],[5.2]). The Lr

curves are parametrized by radius r in kilometers. The knee

(r = 10.0 km) occurs where Lr goes subcritical.
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