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FINITE ELEMENT COMPUTER PROGRAM TO ANALYZE 
CRACKED ORTHOTROPIC SHEETS 

Chorng-Shin  Chu 
J. M. Anderson* 
W. J. Batdorf 
J. A. Aberson** 

SUMMARY 

The objective of this study was to develop  a  finite-element computer  program that 
performs a  two-dimensional  elastostatic analysis of plane  anisotropic homogeneous  sheets 
with a through-the-th.ickness crack. The program includes special  crack-tip elements that 
account for the singular stress fields associated with crack  opening  (Mode I) and sliding 
(Mode II) displacements at the crack tips. These special crack-tip elements provide  a new 
tool for computing stress-intensity factors, and  they  can be used for  predicting the crack 
prcpagation for a damaged structure. 

Two  types of crack elements have been developed.  One  element has 8 nodes  and i s  
restricted to symmetric applications; the other element has 10 nodes  and i s  capable of repre 
senting the crack-tip neighborhood when both the crack  opening and sliding modes of &for- 
mation  occur. The &node symmetric cracked  element takes ful l  advantage of the symmetry, 
so that  only  one-half  of  a  configuration  which i s  symmetric about  a line  containing the 
crack need  be modeled. However,  the  10-node  unsymmetric cracked  element has much 
wider usage in  practical fracture-mechanics  applications. 

These cracked elements can exhibit  either  anisotropic or isotropic  behavior. (Ortho- 
tropic materials are considered  a  special case of anisotropic material.) A stress function  in 
a  half-power series  form appropriate to the crack tip neighborhood i s  chosen to  formulate 
the stiffness matrix  for the anisotropic  cracked elements,  and a  Williams' series  stress func- 
tion i s  used for the isotropic  cracked elements. 

*Consultant, Associate Professor, School of Engineering  Science and Mechanics,  Georgia 
Institute  of Technology. 

**Consultant, Assistant Professor, School of Engineering  Science and Mechanics,  Georgia 
Institute  of Technology. 
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The computer  program contains an axial element,  a linear spring element, a  triangular 
element,  and isotropic and anisotropic  cracked elements. Thermal-strain analysis capability 
i s  included,  Extensive tests during the development stage have  been made in order to  vali- 
date the program against known solutions. To illustrate the capabilities  of these two types 
of cracked elements, a number of selected sample  problems are presented in  this report  for 
demonstrations. The computer  program has proved to be very efficient. 

INTRODUCTION 

The finite-element method i s  one of the most effective approaches available  for  plane 
elasticity problems having  irregular boundaries  or discontinuous boundary conditions. Early 
efforts to bring this method to bear  on crack problems  depended on the use of many conven- 
tional elements  around  the crack tip  in an  attempt to represent  the extreme stress gradients 
there. Stress-intensity factors were estimated from results obtained with such  models either 
by extrapo1atin.g crack-opening  displacement (ref. 1) or  by numerically computing the vari- 
ation  in  strain energy with crack  length  (ref. 2). Such conventional methods  have  been 
found to be limited and uneconomical. For example, Og lesby  and  Lomacky (ref . 3) have 
indicated that the  maximum permissible element size necessary to ensure acceptable  accu- 
racy (5% error or less) i s  on the  order of 1/500 of the crack half  length. 

To circumvent  this  economic problem, development and  research efforts  have turned 
toward formulating elements which  contain the crack-tip stress singularity. These special 
singularity elements, usually  referred  to as cracked finite elements, represent  a significant 
improvement in both  accuracy and  economy in  comparison with  conventional methods. Many 
cracked finite elements developed  to  date (ref. 4-8) incorporate  only the singular term in 
the  series  expansion for the crack-tip stress field. Adm'ittedly, this term  dominates a l l  
others  near  the crack  tip,  but to guarantee  that the nonsingular  contributions are comparably 
negligible, the neighborhood represented by the cracked  element must  be quite small,  and 
the  problem of economy  arises again.  Moreover, the neighboring  conventional elements in 
such  instances are drawn  very near  the crack tip again, and concern over their  capability 
to represent  the stress field adequately has led some investigators to  introduce  special 
"border  elements"  having  a  higher degree of sophistication  than  that  routinely  required  for 
plane elasticity problems. 

Wilson (ref. 9) has developed  a  cracked finite element  that makes  use of the first four 
terms in the  expansion for the crack-tip stress field. He reports accurate results when this 
element i s  used in conjunction  with  a  fairly modest  number of conventional elements. 
Wilson's  element,  however, has the disadvantage of  being  semi-circular and  hence is  some- 
what  awkward  to use with  conventional elements, which almost always  have  straight bound- 
aries. Moreover, Wi lson's element (as  we1 I as  some others previously  referenced) has fewer 
degrees of freedom than are needed for independence of the nodal displacements. This 
requires that the  stiffness matrix  of the cracked  element receive  special  attention in  form- 
ing the stiffness matrix of the assembly. 
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Early in 1973, the Lockheed-Georgia Company completed  the  development of isotropic 
versions of two high-order  cracked finite elements, i .e., elements that  incorporate many 
terms in the expansion for the crack-tip stress field. This feature permits very  accurate esti- 
mates of stress-intensity factors with  relatively coarse finite-element grids. Both high-order 
cracked elements, one for symmetric (Mode I )  applications and one for unsymmetric (Mode I 
and Mode II) applications,  have  a  perfect  balance  between  actual degrees of freedom and 
the number of nodal  displacement components. Thus, the numerical analyst adds the cracked 
element to an  assembly in  exactly the same way that he adds a  conventional element. The 
shape of each element was chosen to make it f it conveniently in models making.use of the 
most widely used  membrane  element: the constant-strain triangle. The remarkable  accuracy 
obtained  with  both elements in isotropic applications using very coarse finite-element repre- 
sentations (ref. 10) would seem to  indicate  that the periodic concern of some investigators 
over the displacement incompatibility  that exists at the interface  of the high-order  cracked 
element and a  conventional element i s  largely academic. 

The continually increasing use of  fiber-reinforced composites in aerospace applications, 
coupled with a  growing  confidence in the ability  of  linear elastic  fracture  mechcnics (LEFM) 
to predict the growth rate and stability of cracks in isotropic materials, has lately resulted in 
considerable  interest in the  prospects of successfully applying LEFM to anisotropic materials 
(ref. 1 1 ) .  This report contains the analytical background and an account  of several numeri- 
cal  modifications and additions required to effect the following  principal extensions of 
Lockheed-Georgia's  existing analysis capability  for  cracked isotropic structures: 

o Axial element 

o Anisotropic constant-strain triangle 

o Anisotropic cracked elements 

o Automatic node  sequencing to minimize  bandwidth 

o Inpgt-data  generator 

o Thermal stress analysis capability 

SYMBOLS 

1 P I  Vector of forces for uncoupled structure 

P I  Vector  of  displacements for uncoupled structure 

{ pr$ Vector of thermal forces for complete  restraint  of  uncoupled structure 

Ckl Uncoupled stiffness matrix 

b 1 Vectoi  of displacements for  coupled structure 
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ax'" ,= 
Y Z  

Vector  for forces for  coupled structure 

Compatibility  matrix  for displacements 

Coupled stiffness matrix 

Vector of  thermal forces for  complete  restraint of coupled structure 

Stress vector 

Strain vector 

Elastic matrix  for Hooke's  law in  local axis 

Elastic matrix  for Hookes law in  material axis 

Transformation matrix  for  elastic  coefficients 

Vector representing thermal  expansion coefficients 

Rectangular  coordinates 

Polar coordinates 

Normal components of stress parallel  to x-, y-' and z'-axes 

Shearing-stress  components in  rectangular coordinates 

' E  
Y Z  

Unit elongations in x-,  y-,  and z-directions 

Shearing-strain components in rectangular  coordinates 

Radial and tangential  normal stresses in polar coordinates 

Shearing stress in  polar coordinates 

Radial and tangential  unit  elongation  in  polar coordinates 

fxy ' rxzl *yz 

Y"y  lYXZ  t y r z  

"r t "e 

're 

'r 1 €8 

E Modulus of  elasticity  in tension  and  compression 

G Modulus  of  elasticity  in shear 

V Poisson's ratio 

V Strain energy 

T Temperature 
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U Stress function 

a Half crac.k length 

L Total  height of cracked tension  plate 

w Total  width of cracked tension  plate 

W = w/2 

a/w Crack length  aspeGt  ratio 
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' I  

BASIC EQUATIONS FOR FINITE ELEMENT PROGRAM 

Matrix Equations for Stiffness Method 

The finite element analysis program i s  based  on the direct stiffness  method. With this 
approach, a  complex structure i s  idealized as an assembly of simple elements; for example: 
axial elements, triangular membrane  elements (isotropic and anisotropic), and 8- and 10- 
node cracked elements.  Each of these  elements, separately, can be analyzed  without diffi- 
culty. By expressing  the various mathematical  relationships in matrix form, i t  i s  possible to 
assemble automatically  a large number of  discrete elements to  simulate almost  any complex 
structure. The basic matrix operations that are executed by the program  are i I  lustrated here. 
These equations include thermal  effects, 

In matrix form,  the uncoupled  force-displacement  equation  for  a  single  element or  the 
entire structure can be written as 

where P and p are vectors of forces and displacements, respectively, and k i s  the  uncoupled 
stiffness matrix. The term P,, i s  a  vector of thermal forces equivalent to the forces  produced 
when each  element is completely restrained. 

From compatibility considerations we can define L!,I such that 

where q is  a  vector  of node point displacements for the coupled structure. In  other words 
the p vector i s  referred to the local uncoupled system and q to the coupled structure de- 
fined in some global  reference frame. The matrix $ consists of  direction cosines  and i s  
determined by the topology of the structural  model. The vector  q can then  be  expressed in  
terms of unknown displacements qa and known  displacements qb. From the principal  of 
virtual work i t  can be  shown that 

or 

Equation (4) i s  then the force-displacement  equation for  the coupled  or global system, 
where Q and q are  forces  and  displacements, respectively. The vector Qrt represents 
forces for complete  restraint for the global.system. Equation (4) can be  expanded as 

6 
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where Qa and qa are applied  forces  and  unknown d isplacements;  and Q and qb a re  
reaction  forces  and  known  displacements. To determine  the elastic displacements for a hot 
structure  it  is  then  necessary to solve the following  set of linear  equations: 

b 

{ Qa - Kab qb - Qart}= [ Kaa] {'a) 

Once the displacements  are  known,  the  loads in each discrete  element  can  then be deter- 
mined from the  following  equation 

The reaction  forces,  along  with the equilibrium check, can  be  determined from Equation (8) 

References (12) and ( 1  3) discuss t h e  various  concepts of matrix  analysis of structures. 
T h e  derivations of the  element  stiffness  matrices,  except  for the cracked  elements, are ou t -  
lined  in  the  Appendix. 

Transformation of Elastic  and  Thermal  Coefficients 

For a two-dimensional  elastic  plate  the  relationship  between  stress  and  strain  can  be 
writ ten  as 

For an  isotropic  material  and  plane-stress  conditions, 

vE . 
2- 2 l-u l-v 

In the general   case of anisotropic  materials  the  only  requirement is that  the  matrix  of co- 
efficients be symmetric,  that is 
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The six  coefficients are defined  with respect to a material  axis whose orientation 
usually does not correspond to the principal axis of the structural  element. The  transforma- 
tion  matrix used within the  program to  rotate the elastic  coefficients was  expressed in terms 
of  direction cosines. It i s  very  important  to  note  that a l l  the angles  are measured from  the 
local axis to the material axis (see figure 1). 

The transformation for the elastic  coefficients i s  then 

P e l ,  oca I = ["IT [p.-lmat'l PI 
where 

2 2 
cos a cos p 

I.]=[ C O s 2 B  cos 2 CY 

-2cosa cosp  2cosa COSB 

and for the thermal  expansion coefficient  vector 

' ' 9 1  

{ 9 2  =[u]" { 9 2  

CY 
\ 12 2 

loca I 

cosa cosp 

' C O S U  cosp  I 
cos 2 Q - cos '1 B 

In the computer  program a I I these transformations  are performed automatically  for each 
element. I t  i s  only necessary to  indicate the direction  of the material axis by specifying 
two points on the axis. Several material axes can be specified  for  a sing le structural  model. 
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TWO-DIMENSIONAL ELASTIC SOLUTIONS FOR 
CRACK-TIP STRESSES AND DISPLACEMENTS 

The field equations of elasto statics  appropriate  to isothermal deformation  under  plane- 
stress conditions (a = T = T = 0) with zero  body forces  are given  below and  represent a 

z yz zx 
basis for al l  the equations  developed in  this section. 

8 
X a12 a16 x 

X Y  a16 a26 a66 x y  

0 1' Y Y 1 = 1:: '22  j"y 
7 

and 

For plane-strain  appl  ications (8 = y = = 0), the constants a.. in (16) must be 
z yz  yzx ' I  

replaced by their  plane-strain counterparts 8.. given by 
1 1  

ai3ai3 8.. = a.. - - (i,i = 1,2,6) 
1 1  ' 1  a33 

The form of  the  equilibrium equations (17) implies the existence of a stress function 
U(x,y)  such that 

a2U 0 =- a2u 
, 0  =- a and 7 =--  

ay2 Y ax2 
xy axay 

2 

X (1 9) 
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By using (19) to  eliminate the stress components in (16) and  substituting  the  resulting  strain 
components into the compatibility  condition (15), we find  that the stress function must satisfy 

a4u a4u a4u  a4u 4 a u -0  
a22 2 - 2a26 3 ax ay +(2a12 +a66) ax 2 ay 2 axay 

- 2a16 - 3 +all 4- (2 0) 
a Y  

Equation (20) may  be written as the product of four first-order operators 

If 3,  p2, p3 and I-.I are  roots of the characteristic  polynomial, 4 

then (20) may  be written as 

The roots of (22) occur in complex-conjugate pairs and  can  be shown by  energy considerations 
always to  have  non-zero  imaginary parts. The designation ul, 3, 5 and shall henceforth 

be used for the  roots of (22), and i t  w i l l  be taken for granted  that P. - k. # 0. The general 

solution  of (23) for U(x, y) can  now be written  by repeated  integration,  but the form it takes 
depends  on whether or  not the roots of (22) are distinct. A discussion of cases follows. 

2 

I I  

Distinct Roots (V # p2) 

For distinct roots, the general  solution of (23) for real U(x,y) is  

where U and U are arbitrary functions of the complex  variables 1 2 

z1 = x  +P  y  and z = x  +p2y 1 2 

respectively. Upon substituting (24) into (19) the  following expressions are found for the 
stress  components. 

0 =2Re[Uy(zl) + U;’(z2)1 
Y 

10 



and T = -2Re[v1 U;(zl)  +p2U;'(z2)] 
XY 

in  which  prime (I) denotes differentiation  with respect to the parenthetical argument. It may 
be verified by differentiation  that  the displacement components corresponding to (26) are 
given by 

and  u = 2Re[qlU; (2,) + q2U;(z2)J 
Y 

provided 

a22 a22 
and - 

q1 - a125 +y- a26 ' '2 12 2 v2 a2 6 
= a  +-- 

The U and U components of the stress function are taken to be half-power series,  i.e., 1 2 

These wil  I now b e  shown to satisfy boundary  conditions  appropriate  to free crack faces by 
I properly  relating the complex coefficients C 

to a  typical term in (29) are 
n 

n -2 n -2 - 
2 

+ 4  Dn 3 
- 

2 
X 

n -2 

Y 

and Dn. From (26), the stresses corresponding 

Upon considering the crack-tip neighborhood and coordinate system  shown in  figure 2, 
we can write 

oY(x,O) = T ~ ~ ( X , O )  = 0 for  x <O (31) 

11 
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as the crack-face boundary conditions. From PO), these require 

Re 
Im ('n n 

Re (p C +p D ) = O  , whennis Im 1 n  2 n  odd 

+ D  ) = 0  , when n is 
even 
odd 

even 
and 

Equations (32) are satisfied if we  set 

C + D = (i) 
n+l A 

n n  n 

VICn + Y D  = (i) B 
n +1 and 

n n 

(33) 

in which i i s  the imaginary unit and An and B are arbitrary  real constants.  Using (33) to 

write Cn and On in terms of An and Bn, we obtain 
n 

n+l  YAn - Bn C = (i) 
n Y - p l  

and 

n+l Bn - D = ( i )  
n '12 - 5 

From (26), (27), (29), and (34), we are now able  to  write the crack-tip stresses and dis- 
placements corresponding to a typical term in the U and U series. 1 2 

n -2 

0 =2Re 
X 

CT =2Re 
Y 

(34) 
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Repeated  Roots (w1 = p2 = P) 

In this case the operators in  (23) are not  distinct;  each i s  once  repeated; i .e., 

where 

Repeated integration now g ives 

u(x,y) =2ReW1(zl) +Z,u2(z1)I 

as the general. real  solution of (37). In (39), 

z1 = x +vy and z1 = x + p y  

Expressions for the stress components  corresponding to (39) are found from (19) to be: 

cr =2Re [P Uy(z,) + 2 u ~ U ~ ( z l )  + y 2 z  U"(Z  )] 
X 1 2  1 

2 

and u =2Re [qlU\(z1) + q 2 ~ 2 ( ~ 1 )  +q3;1 U'(Z 2 1 ) I  
Y 

(42 1 

can be  shown* to be consistent with the stresses (41), the  stress-strain equations (16) and the 
strain-displacement  equations (14) provided 

*In  verifying (42) subject to (14), (16), (41), and (43) certain  identities must be used  appro- 
priate  to I-L a n d i  as repeated roots of (22). These are: 

a16 - - '1 1 @+a 
2a + a  - (1.2 + 4 p z  +c2) 12 6 6 - " l l  

a26 - - *ll Gb + a  

and a22 - al 1 - 3z2 
13 



I 

- a22 
ql - q3 = a12V +-- IJ a26 

- a22 
and q2 =a12P +- (2 -;)- a26 

1-1 

Again, to develop  a  half-power series  analogous to (29), we take 

OD n -2 0 n -2 

in  which Cn and Dn are complex constants  and n i s  anticipated to be a  real  integer. 
Following the same procedure used for the distinct-root case,  we substitute (44) into (41) and 
consider  crack-face boundary conditions (31). This leads to the requirement  that C and D 
:ypically satisfy 

n n 

n + 2  .n+1 A c +- 
n 2 n  n 

= I  

and pCn +(E +:p) Dn - - in +1 B 
n 

in which A and B are real constants. The simultaneous solution of (45) for C and D 
yields 

n  n  n  n 

.n +1 

v-1-1 
I 

n -  

.n +1 
and D =- 

1-1-1-1 

I 

n -  (Bn - 1-1A 1 n 

When  these  expressions  are incorporated in (41) and (42), the following formulas for 
stresses  and displacements evolve for a  typical term of the  series: 

14 



cr = Re 
X 

n-2 
2 

Y 

T = Re 
X Y  

ond 

u =Re 
X 

u =Re 
Y 

The repeated-root case includes the stress and displacement  functions  appropriate to the 
crack-tip neighborhood in an isotropic  material. For  an isotropic  material and plane stress 
conditions, 

15 



1 
‘11 -‘22 - T  

- - 

- 
a12 - - F V 

2(1 +v)  
and - 

- 
E 

With these simplifications, the characteristic  polynomial (22) reduces to 

4 2  + 2 p  + 1 = 0  

which has  as a  solution the repeated roots 

Consequently, 

in  which 

z = x   + i y  and  ;=x - iy 

t 
Upon integrating (44) , we find 

n +2 n 
2 

- 
2 

- 
U,(Z) = c; z and U2(z) = D* z 

n 

as components of the isotropic form of U(x, y). Combin  ing (52) and (54), we find 

n +2 n +2 n  n 
T “2 

- - - 
u(x ,y )=c i  z +c*y +; D* z +Z D* 

n  n  n 

In polar form (see figure 2), 

(49) 

(5 4) 

In (54) it i s  convenient  to use C* and D* to represent 4C /n (n+2) and 2 D /n, respectively . 
n  n  n  n 

16 



I 

n  n .ne n 

n  n  .n0  n 

so that (55) becomes 

n +2 

n +2 

n +2 

n +2 

n +2 - 
= 2r 2 [Re(Ci) cos (i + 1) 0 - Im(C*) n sin (; + 1) 0 

+ Re(D*) n cos(; - 1) 8 - Im(D*) sin (; - 1) 01 
n (5 7) 

which i s  a typical term in the familiar  Williams series of stress functions appropriate to the 
crack-tip neighborhood in an isotropic  material (ref. 14, 15). Imposition of the crack-face 
boundary conditions (31) leads to 

r+l 
n 

Re(Di) = - Re (C *) z 

5 + (-l)n n 

T+l 
n 

Im(D*) = - Im (C *) n 
L ' - (-l)n n 

17 



Upon substituting (58) 
rnents in polar form: 

into (57), we find the following expressions for stresses and  displace- 

a2 U 0 ="+" 1 a u  1 "  
2 2  r a r  r ae 

n -2 
1 

- 
=- 2 Re(C*) n  r  n [- (n +2) cos (9). n + 2  (n - 6) cos (9) e] 

n +2(-1)" 
n -2 

1 + - Im(C*) r 
n + 2  

2 n  n - 2(-1)" (n - 6) sin (9) e] 

n -2 - 
1 2 =-  Re(C*) r n n + 2 cos (n ; 2) .] 
2 n n +2(-1)" 

n-2 - 

and 

18 
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n 
u =- 1 + v  (n + 2) cos (7) n + 2  8 - n + 2  
r E n +2(=1)" (6 l + v  

19 



FORMULATION OF CRACKED ELEMENT STIFFNESS MATRICES 

Two types of cracked elements, as shown in figure 3, have been developed and 
implemented,  because  many fracture mechanics  problems are symmetric about  the plane  of 
the crack.  One  formulation takes only the  symmetric  terms in the series solution and, 
hence, i s  applicable  only  to symmetric  problems (KII = 0); the  other formulation makes  use 
of both symmetric  and anti-symmetric terms  and i s  applicable  to unsymmetric  or  mixed-mode 
problems (K I and K 11). 

The coordinate system of  an 8-node  symmetric element has i t s  origin  at the  crack  tip, 
It i s  rectangular in shape with a three-to-one aspect ratio. Placement of the nodes relative 
to the rectangle i s  pre-determined with a node at each comer plus nodes at the one-third 
points of each  of the long sides.  The lower side  (nodes 6, 7, 8, and 1) i s  coincident  with 
the crack direction and  presumed axis of symmetry.  Nodes 6 and 7 are on  the free  crack 
face. Nodes 8 and 1 are on the prolongation of the crack. They  are constrained rigidly as 
to  vertical displacement and are free of shear  forces - conditions  that are consistent with 
symmetry. 

The  8-node  symmetric element has 16 displacement degrees of freedom, two per node 
corresponding to  the in-plane  displacement components.  Thus, i t  incorporates the first 13 
symmetric  terms of the  series  associated with  rigid-body  motion  in the plane. These 13 
coefficients and the three rigid-body parameters  are referred to as the 16 generalized co- 
ordinates of  the  cracked  element. The  stresses  and displacements corresponding to these 16 
generalized coordinates are  evaluated on the boundary of the element.  Products of stress 
and displacement contributing  to boundary work are performed  and integrated. The result i s  
a homogenous quadratic form in  the generalized coordinates, and the coefficient  of each 
term i s  an element of the cracked e lement  stiffness matrix  with respect to the genera Iized 
coordinates. Once the stiffness matrix  with respect to generalized  coordinates i s  deter- 
mined, the stiffness matrix  with respect to  nodal displacements i s  formed using the  series 
(with  rigid-body terms) to write nodal displacements in terms of the generalized  coordinates. 

The  10-node  unsymmetric cracked  element as shown in figure 3 i s  square with  equally 
spaced  nodes  around its boundary. Like the symmetric cracked element, the shape of the 
element and relative  location  of the  nodes  were  chosen to  provide  modeling  convenience. 
The generalized coordinates correspond to the first 9 symmetric  terms  and first 8 anti-sym- 
metric terms of  the series, plus the 3 rigid-body displacement parameters. The stiffness 
matrix was again generated by  integration around the boundary. 

To formulate the cracked-element stiffness matrix, i t  i s  convenient  to  introduce 
dimensionless variables  for  both  anisotropic and isotropic cases. 

20 



Anisotropic Case 

The dimensionless variables for the anisotropic case  are given as 

S =all  Q 

U =ux /A  

X X f  

X 

S =al1 u , 
Y Y 

U = u / A  
Y Y  

s =  xy a1 1 7Xy 

where A i s  a characteristic  length and i s  taken  to be the distance  between nodes  on the 
cracked  element. In terms of the  dimensionless variables in equation (61), equations (35) 
and (36) take the form be low 

n-2  n-2 - 
S = 2Re 

2 - Y2 z22 ) 
X 

n- 2 n- 2 - 
2 

Y 

n-2 - 
+Dn(Z2 - Z1 

n + l  
n-2 
2 
- 

X Y  

n-2 
2 

n - Y z1 

- 
+ D  (l.42z2 
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I 

and 

L 

L I 

Equations (62) and (63) are  the basic equations needed to form the stiffness matrix  of 
the  anisotropic  cracked  element. The strain energy V stored in the cracked  element can 
be  computed by numerically  integrating the work of the surface tractions around  the  bound- 
ary. This yields 

hA2 T 2V = - q kq 
a1 1 

in  which h = the uniform thickness of the cracked  element 

q = the column matrix of generalized coordinates 

T q = the transpose of q 

k = the stiffness matrix  with respect to  generalized coordinates 

Let D denote the column of dimensionless nodal  displacement components in  the 
elemental Cartesian coordinate system.  The matrix C in 

D = Cq (65) 

is  obtained  by  evaluating equations (63) at the nodes.  The inverse of C may  be  found 
numerically  with the result 

q = C-’D (66) 

Thus, from (64), 

2 V =  DT (C ) - -1 hA2 c-lD 

al 1 

or in terms of D*, the column of dimensional  nodal displacements 
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so 

h - 1  - 1  K = - ( C  ) k C  
1 

Once the stiffness matrix  of the cracked  element i s  formed, its  incorporation  into the 
stiffness matrix of an assembly follows  exactly the procedure used for  conventional elements. 
The  same approach was followed  for the case of repeated roots. 

Isotropic Case 

The dimensionless variables  introduced  for an isotropic case are given below: 

2 - '  n 

':= 2G n 
o 

Re (C*) 

" 1  n 
c) 

A L  n + 2  a*& - 
n 2G 

''ire 
sR8= G 

Im (C*) n 

where A i s  also a  characteristic  length as defined before. 

In terms of the dimensionless variables in equation (70), equations (59) and (60) take 
the following form: 

2 -  1 n 

SR (R, e) = 2 nR { S: [ - ( n + 2 ) c o s ( ; + l ) B + f ( n ) ( n - 6 ) ~ 0 ~ ( ; - 1 ) 0 ]  
n = l  

+ a* [g(n)(n + 2) sin (: + 1) 8 - (n - 6) sin (2 - 
n 
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= n  
Rz { s i  [- (n + 2) COS ($ + 1) 9 - f(n)(6-8 5-n) cos (; - 1) 8 1  

U&R, a! = J 

n =  1 

+ a* [ (n + 2) g(n)  sin (; + 1) 8 + (6-8 5-n) sin (5 - n 

n ( 72) 
Q) - 

U&R, 0) = xl {s: k n  + 2) sin (; + 1) 8- f(n) (6-8.$+n) sin (c 2 - 1) 8 1  
n =  

+ a * b n  + 2) g(n) cos (; + 1) 8 - (6-86+n) cos  (- - n 2 

in wh ich  n + 1  
f(n) = L 

5 + (-l)n 

1 v for  plane  strain 

n 2 - (-l)n 
g(n) = n - + 1  2 
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Equations (71) and (72) are the basic equations needed to form  the stiffness matrix of the 
isotropic  cracked  element. 

It i s  noticed  that equations (72) for the displacement components have been written so 
as to keep the parts independent of 5 and distinct from  the  parts dependent on 6. This 
distinction was  made to permit the storage of the stiffness matrix as the sum of  two matrices 
that are each internally independent of material parameters. 

By numerical  integration, the strain energy V stored in the cracked  element  can be 
written in terms of the stiffness matrices k l  and k2, i.e., 

in  which. h i s  the uniform thickness of the element. Following the same approach as for 
the anisotropic case, equation (74) can also be written  in terms of D*, the column matrix 
of dimensional  nodal displacements, 

... 

So that 
T 

K = Gh (C") (kl + ( k 2  C-' 

Each of the stiffness matrices of these isotropic  cracked elements i s  stored as the sum 
of  two  matrices  that are independent of the size and material properties of the cracked 
element. This means that the boundary integration mentioned  previously does not have to 
be repeated for each application. Consequently, the efficiency of the analysis program in 
conventional  finite-element  applications i s  not  diminished at a l l  by  the addition  of the 
cracked  element. The displacement incompatibility  that exists between nodes  where  the 
cracked  element  interfaces with a  conventional element seems inconsequential in  light of 
the exceptional  accuracy  obtained in many  and varied  applications,  including the sample 
problems . 
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STRESS-INTENSITY FACTORS AND STRAIN-ENERGY RELEASE  RATES 

Stress-  Intensity  Factors 

The leading  terms  in  equations (35) and (59) contain  the  singularity  r ; all subse- 
- 1/2 

quent terms are  non-singular. The coefficients A1 and B 1  (C1*  for  isotropic  case)  are 
related  to  the  opening  and  sliding mode stress-intensity  factors K I  and K I I  by  the  following 
formulas: 

Anisotrooic  Case: 

- l im 
K I I  x + o  

- ,/= Txy(x, 0 )  = 2- B, 

Isotropic  Case: 

K =  4% u8 ( r ,  0) = 6 @ Re (C,*) I im 
I r 3 0  

Strain-Energy  Release  Rates 

The strain-energy  release  rates  are  related  to  the  stress-intensity  factors by the  elastic 
coefficients  in  the  following  fashion: 

2 G. = cK. i = I, II 
I I 

(79) 

where "i" indicates  the mode number. The total  strain-energy  release  rate is the  summation 
of energy  rate at  each mode based  upon  linear  superposition. The elastic  coefficients c 
that  relate  energy  rates  to  stress-intensity  factors  are  listed in Table I. 
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TABLE I 

ELASTIC  COEFFICIENTS RELATING ENERGY RATES TO STRESS-INTENSITY  FACTORS 

MATERIAL 

Isotropic 

Orthotropic 

Anisotropic 

CONDITION 

Plane-Strain 

Plane-Strain 

Plane-Stress 

Plane-Strain 

Plane-Stress 

(Reference 16) 

ELASTIC COEFFICIENTS 
MODE I 

- 
E 

- l m [ - a  ] 2 22 P l P 2  
1 Pl + p2 

MODE I I  
n 

( 1 4 )  
E 

- 
E 

t a l l  J 



BRIEF DESCRIPTION OF CRACKED ELEMENT COMPUTER PROGRAM 

The  computer  program i s  an al I- FORTRAN program which uses only  conventional l/O 
(FORTRAN READ and WRITE statements)  and the standard library routines. It contains the 
following  finite elements: 

Axial element 

Linear  spring  element 

e Plane-stress/strain, isotropic and anisotropic, triangular element 

Eight-node  symmetric isotropic  cracked  element 

Eight-node  symmetric anisotropic  cracked  element 

Ten-node  unsymmetric isotropic  cracked  element 

0 Ten-node  unsymmetric anisotropic  cracked  element 

The  computer  program  consists of a main program called CRAK, which  allocates the 
core and calls  sequentially  four  main  driver subroutines (INPUT, KFORM, CHOL, 
OUTPUT), and 32 subroutines. These subroutines have been overlayed  to  reduce the core 
required  for program  code,  permanent data, cnd  program table. The  segment structure of 
the  program i s  shown in figure 4. The  name  and function  of each subroutine are given  in 
Table I I .  

The input segment of the program contains  data  generator features to  minimize the 
labor  required  to  input a model. During the input sequence, a banding algorithm i s  used 
to resequence the node  numbers to  minimize the band-width of the structural stiffness 
matrix  which i s  assembled in the KFORM segment. This banding  algorithm i s  quite  effec- 
tive and  helps to  minimize  execution times. A banded Cholesky  decomposition procedure 
(segment CHOL) i s  used to solve the system of equations. The  computer  program organiza- 
tion i s  especially  characterized by i t s  flexibility  of  application. The planned segmented 
structure of the program also makes i t  easy to insert additional  cracked and conventional 
e lements as desired. 

The  scheme of the analysis i s  basically  divided  into the following stages: 

Input of geometry, material  data and restraints 

a Input of  applied  nodal loads  and  imposed nodal displacements 

4 Calculation  of element stiffness matrices 

Assembly of element stiffness into a system stiffness 

Solution of simultaneous equations for  nodal displacements 

Output  nodal displacements 
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Calculation  and  output of forces  (or  stresses) in conventional  elements 

Calculation  and  output of stress-intensity  factors  and  strain-energy  release 
rates 

The  overall  logic  flow of the  computer  program is depicted in figure 5. 

The  computer  program is efficient in its use of computing  time  and  core  storage. Core 
use can  easily be changed  to  fit  individual  problem  sizes if desired. Full advantage  has 
been  taken of symmetry  and  the  banded  nature of the  simulfaneous  equations  to be solved, 
and  no  data  are  generated  when  not  required. 
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SUBROUTINE 
NAME 

INPUT 

CORIN 

TRlN 

SPRGIN 

4XIN 

ZRKIN8 

CRKNlO 

MATIN 

IISPIN 

LOAD IN 

ZONNEC 

3AND IT 

3AND 

K.FORM 

TR I 

5PRNG 

4x I 

ZRAK8 

30 

TABLE It 

FUNCTION OF SUBROUTINES 

FUNCTION 

Inputs model  general  specifications 

Inputs nadal coordinates and restraints 

Inputs triangular elements for  both  isotropic and anisotropic cases 

Inputs  spring  elements 

Inputs axial elements 

Inputs  8-node  symmetric cracked elements for both  isotropic and 
anisotropic cases 

Inputs  10-node  unsymrnetric cracked elements for  both isotropic and 
anisotropic cases. 

Inputs material properties 

Inputs  imposed displacements 

Inputs applied loads 

Generates data  which subroutine BANDIT requires 

Renumbers the  node points to  minimize band width 

Determines the band-width 

Forms a complete stiffness matrix 

Computes triangular element  stiffness matrix 

Computes  spring element stiffness matrix 

Computes axial element stiffness matrix 

Switches control  to  either CRAK81 or CRAK8A 



SUBROUTINE 

CRAK81 

CRAK8A 

CRAK 10 

CRKlOl 

CRK 1 OA 

INVERT 

CPLXRT 

CPWR 

THCOEF 

THD ISP 

CHOL 

OUTPUT 

DISPOT 

TRIOUT 

SPROUT 

AXIOUT 

TABLE I I (Continued) 

FUNCTION OF SUBROUTINES 
~~ ~~~ . . ." 

FUNCTION 
"" __ "" ~ - 

Computes stiffness matrix  for 8-node  symmetric isotropic  cracked 
e lement 

Computes stiffness matrix for 8-node  symmetric anisotropic  cracked 
element 

Switches control  to  either CRKlOl or CRKlOA 

Computes  stiffness matrix for 10-node  unsymmetric isotropic  cracked 
element 

Computes stiffness matrix  for 10-node  unsymmetric anisotropic  cracked 
e lemen t 

Inverts a  matrix 

Computes complex roots of  a  specified  4th  order  characteristic polynomia 

Raises complex number to  a  real power 

Transforms thermal coefficients from  one reference axis to another 

Computes thermal displacements for both symmetric  and  unsymmetric 
cracked  element 

Solves  simultaneous equations 

Controls  output  data 

Outputs  Displacements 

Calculates  triangular elements output 

Calculates spring elements output 

Calculates  axial elements output 

31 



SUBROUTINE 1 NAME 

CRK08 

CRKOlO 

TABLE I I (Continued) 

FUNCTION  OF SUBROUTINES 

FUNCTION 

Calculates K for  the  8-node  symmetric  elements 

Calculates K and K for  the  10-node unsymmetric elements 

I 

I I I  
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SAMPLE PROBLEMS 

This finite-element computer  program has been  tested extensively. Both  symmetric and 
unsymmetric cracked elements have  performed well  with respect to  accuracy and efficiency, 
as shown by  sample  problems  presented  here. These results were achieved with a relatively 
coarse finite-element  grid. With refinements in the grid,  even more accurate results would 
be obtained. The symmetric cracked  element normally gives more accurate results than the 
unsymmetric cracked element, which i s  understandable in  view  of the fact  that the unsym- 
metric cracked  element has fewer degrees of freedom that it can bring  to bear on the first 
mode.  However,  the  unsymmetric cracked  element  can be used in a much wider class of 
crack problems  and i s  more practical  for  industrial  applications. 

To illustrate the capabilities  of these two types of  crack elements  (symmetric  and  un- 
symmetric), a number of selected sample  problems  are included in this report. These  sample 
problems  were'  chosen  to  demonstrate (1) the accuracy and  economy of the  elements,  and 
(2) the versatilities of the  elements to perform  analyses for structural  configurations of p r a c  
tica I importance. 

Anisotropic Case 

Center-Cracked and Double-Edge-Cracked Orthotropic Tension  Plates - A center- 
cracked a n i o r  a d o u b l e z t e d  to uniform 
tension as solved by  Snyder  and  Cruse (ref. 17) was investigated. The plate  analyzed i s  
228.6 mm long and 76.2 mm wide. The finite-element models  used for  both the center- 
cracked plate and  the double-edge-cracked plate are shown in  figure 7. The half-crack 
lengths, a, analyzed are 15.24 rnm and 22.86 mm for the center-cracked plate and 
15.24 mm only  for the double-edge-cracked plate. 

_i- - -.  "~ 

Numerical results were obtained  for 10 representative graphite  fiber-reinforced epoxy 
laminates: (0) , c30) , e34) , e45) , e56) , e60) , (90) , (904/f45) , (902/?45)s, 
(O/f45/90)s0 Lamina properties used were: 

S S S S S S S 

E l  = 144.795 GPa , G12 = 9.653 GPa 

E22 = 1 1 .722 GPa , vl* =0.21 

Table 111 indicates the complex roots obtained from  the characteristic equation for each 
lam inate. 

Results are presented in  Tables N, V, and VI. The distribution  of  differences from 
Snyder and Cruse's results are summarized in  table VII, Notice,that the results generated 
using &node symmetric cracked  element are  closer to Snyder  and  Cruse's  results than k e  
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TABLE 1 1 1  

COMPLEX ROOTS OF CHARACTERISTIC EQUATION 

( 2  m s  

(OIs 

0.5177 -0.495 1 0.51 77 0,4951 ( 2  bo)* 

1.0090  -0.9648 1 .0090  0.9648 

0. 0.9504 0. 

0.5296 -0.571 1 0.5296 0.571 1 P 5 6 4  

0. a730 -0 941 5 0.8730 0.9415 ( 2  w s  

3.6982 

-~ ~~ 

NOTE: p. =CY. +8. i f  where i = f l  , i = 1 2 
I l l  
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TABLE IV 

.. -~ 

MATERIAL 

STRESS-INTENSITY  FACTORS OF 
CENTER-CRACKED  PLATES (a = 15.24 rnrn, a/w =0.4) 

SNYDER & CRUSE 

KI (MPa - f i )  

1.670 
_. . - 

l.679 

- -~ ~~ "~ 

1.670 
.. . . 

1.683 

1.745 
.. . . ~ 

1.712 
. .  

1.719 
~~ 

1.645 
." ~ 

8-NODE 
CRACKED ELEMENT 

% OFF 

1.675 

I ,696  +1.01 

~ 

1.702 +1 .F2 
" .. . "  ". ~ _ _  

1.669 -0.83 

1.634 -6.36 
_ _ ~  "" .." ~ . ~~ 

1.643 -4.03 
" 

1.683 -2.09 
~ - . . . . . . . - 

1.652 a .43  
~~ 

10-NODE 
CRACKED ELEMENT 

K I  % OFF 

1.622 -2.88 

1.652 -1.61 

1.671 4.06 

1.755 d .28  

1.617 -7.34 

1.574 -8.06 

1.649 -4.07 

1.578 -4.07 
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TABLE V 

STRESS-INTENSITY  FACTORS OF 
CENTER-CRACKED  PLATES (a = 22.86 mm, a/w = 0.6) 

SNYDER & CRUSE 
MATER IA L 

KI (MPa - ,/") 

(O/f 45/90) 
" I  

2.396 

2.396 

2.394 

2.599 

2.518 

2.533 

I 
2.314 

.~ 

8-NODE 
CRACKED ELEMENT 

T 
2.396 +0.01 

2.444 4 . 9 1  

2.446  +2.(>9 
" ~ ~~~ ~~ 

2.419 +1.04 

2.421 -6.85 
- . .. 

2.405 -4.49 

2.473 -2.37 

2.336 44.95 

- . . . - -. - - 

10-NODE 
CRACKED ELEMENT 

KI 
~ .~ 

2.326 

2.389 

2.413 
" 

2.574 

2.393 
.- ". ~ ~ . 

2.302 

2.430 
P 

2.229 

% OFF 
~~ ~~ ~ 

-2.92 
. ."~ ~ 

-1.36 

"0.71 

+7.52 

-7.93 
~~~ ~ 

-8.58 

-4.07 
~ 

-3.67 
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TABLE VI 

STRESS- INTENSITY FACTORS OF 
DOUBLE-EDGE-CRACKED PLATES (a = 15.24 mm, a/w = 0.4) 

I MATER  IA L 

I 
~~ 

SNYDER & CRUSE 

K ,  (MPa - f i )  

1.722 

1.722 

1 . X 6  

1.709 

1.700 

1 .783. 

1.717 

1.670 

1.750 
~- 

1.745 

T 
I 

8-NODE 
CRACKED ELEMENT 
-. - 

K I  

1.701 

1.729 

1.725 

1.689 

1.757 

1.722 

1.767 

1.660 

1.737 

1.765 

% OFF 
n 

-1.22 

M.41 

+ l . l l  

-1.17 

+3.35 

-3.42 

+2.91 

-0.60 

-0.74 
- . 

+l .15 

I 
10-NODE 

CRACKED ELEMENT 

K I  % OFF 

1.649 -4.24 

1.685  -2.15 

1.688 -1.06 

1.752 +2.52 

1.766  +3.88 

1.697  -4.82 

1.736 +1.11 

1.598  -4.31 

1.724 -1.49 

1.746 N.06 
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TYPE OF PLATE 

CENTER-CRACKED 

(a = 15.24mm, a/w = 0.4) 

CENTER-CRACKED 

(a = 22.86 mm, a/w 0.6) 

DOUBLE-EDGE-CRACKED 

(a = 15.24 mm, a/w = 0.4) 

TABLE V I  I 
DIFFERENCES FROM SNYDER AND CRUSE'S  RESULTS 

TOTAL NUMBER 
OF PROBLEMS 

8 

8 

10 

DIFFERENCE 
("/. ) 

0-&3 

* 3  - A 5  
*5 - k 7  

& 7 - & 9  

0 - k 3  

k3 - k 5  

*5 - -17 

k7 - k9 

O-rt3  

* 3 - & 5  

&5 - 5 7  

k 7  - % 9  

DISTRIBUTION OF DISCREPANCY 

NO. OF PROBLEMS 

8-NODE CRACKED  EL, 

6 

1 

1 

0 

6 

1 

1 

0 

8 

2 

0 

0 

IO-NODE CRACKED  EL. 



obtained from  the  10-node  unsymmetric cracked  element. Since  Snyder  and  Cruse  used the 
boundary-integral approach, no  definite conclusion  can be drawn with regard  to the abso- 
lute  accuracy  of  their results. Besides,  these finite-element solutions used a large integrcr 
tion step size (10 steps between nodes) along the boundaries for the numerical  integration in 
forming  the stiffness matrix  of the cracked  element.  Accuracy  would be improved by re- 
ducing the integration step size (increasing the  number of steps between nodes). 

Longitudina I ly Cracked  Orthotropic sfrip- The longitudinally  cracked  orthotropic strip 
problem as  shown in figure 8 was solved under  plane-stress  and  imposed displacement  condi- 
tions. An analytical  solution was developed based upon the energy equivalence and Sih’s 
results of ref. 18. The solution i s  given below as 

K,2 = 

where a.. = Elements of the material compliance  matrix 
‘ I  

6 = Imposed displacement 

h = Height  of the plate 

Numerical results  were obtained for the two different laminates shown in table VIII. 
In one  case, the laminate i s  stiffer  in the direction normal  to the crack. In the other case, 
the laminate is-stiffer  in the direction  of the crack. Both laminate cases were solved using 
a single cracked  element and  the two different model representations shown in  figure 9 .  
The results  are  summarized in table IX. 

45-Degree ~~~~ Cracked ~~~~ Finite  Orthotropic Plate - This problem i s  shown in figure 10. The 
finite-element model (figure 11) representing this  plate consists of 130 nodes, 210 aniso- 
tropic  triangular elements,  and two 10-node anisotropic  cracked elements. The problem 
was solved under uniform remote stress  and  plane-stress conditions. The stress-intensity 
factors obtained are given below: 

KI  = 1.1376 x MPa -6 and KI1 = 1.1784 x MPa -F 

Both K I  and KII are within f2 percent (-1.77% and +1.75%, respectively)  of Sih’s solution, 
ref. 18, ( K ,  and KI I  = 1.1581 x MPa -JT;;) for an infinite sheet,  and they satisfy 
NASA’s requirement  for the accuracy  of the  program. 
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TABLE V l l l  

LAMINATE STIFFNESS  MATRICES (Scotchply 1002) 

I LAM I NATE I I LAMINATE I I I 
11 300 0.572 0 34.503 0.572 0 
0.572 34.503 0 ] 

(GPa) 0 0 4.854 1 0 4.854 
[A] = [ 0.572 11 3 0 0  0 

NOTE: 10)  = [A] { C I ~ - ~ ,  where x-y refers to the reference coordinates 
X'Y 



! 

TABLE IX 

" 

SUMMARY OF RESULTS FOR A  LONGITUDINALLY 
CRACKED  ORTHOTROPIC STRIP 

METHOD 

Analytical Solution 
Ref. (18) 

1 Cracked E lement 

1 Cracked Element & 
8 Triangular Elements 

1 Cracked Element 8. 
117 Triangular Elements 

LAM NATE I 

K I  
[ MPa- A) 

12.477 

13.845 

1 3.527 

12.474 

ERROR 
% 

10.96 

8.42 

-0.02 

LAMINATE II 

K I  
(MPa- 

5.474 

5.515 

5.527 

5.326 

ERR OR 
YO 

0.75 

0.97 

-2.70 
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Cracked Tension  Plates - 
Isotropic Case 

The  sample  problem,  shown in figure 12, was the first 
problem  analyzed  with the symmetric cracked  element. I t  exhibits the  degree of accuracy 
which has been consistently achieved in  numerous  subsequent  problems.  The finite-element 
model has 30 nodes, 35 triangular elements,  and  one  8-node  symmetric cracked  element, 
The three configurations  (the  single-edge  crack, the double-edge  crack, and the center- 
crack) were all  individually analyzed  with this one model for an a/w ratio  of 1/3. The 
model  grid, which i s  quite coarse, results in  the single- edge-crack  model  having 57 dis- 
placement degrees-of-freedom (DOF), while the double-edge-crack and center-crack 
models  have 51 DOF. The stress-intensity factors computed  using these configurations are 
compared with ASTM (American  Society  for Testing  and Materials) values. The accuracy 
of the finite-element  predictions are  impressive (4 .5% error) for a l l  three cases. Refine- 
ments in the model would  produce steady convergence toward ASTM values. 

The same cracked problems  were solved using  an  unsymmetric cracked  element. The 
finite-element model as shown in figure 13 consists of 54 nodes, 69 triangular elements, 
and  one  10-node  unsymmetric cracked  element. The results  are not as good as those  ob- 
tained using  the  8-node  symmetric cracked  element, because  the  8-node element has  more 
degrees of freedom to  bear on  the first node. 

An eccentric crack problem as shown in figure 14 was also solved, and the results 
compared with Isida's solution. 

AI I these results  are  summarized in table X for reference. 

Bi-Material Cracked Plate - This problem, as shown in  figure 15, was solved in  
response to the NASA's Request for Proposal (RFP 1-31-4957), dated 28 May 1974. I t  was 
required  that the stress-intensity factors of this isotropic,  generalized  plane-strain problem 
must  be within 9% of Erdogan's  results for an infinite  plate  (ref. 19). A l l  dimensions  and 
material properties are given  in  figure 15. 

In  the finite-element model shown in figure 16, only the  upper half  of the plate has 
been  modeled  due to  its symmetry with respect to the x-axis. It contains 100 nodes, 148 
plane-strain triangles, and 2 eight-node symmetric cracked elements. 

A uniform  displacement of 46.228 x 10 mm was  imposed on the top boundary nodes. 
-6 

This was arrived  at as follows. For plane strain, 
2 2 

H(1 - u1 ) S1 H( l  - u2 ) S2 
6 =  - - 

El E2 

where H i s  the half-height  of the finite sheet. S 1  was taken as unity. 
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TABLE X 

SUMMARY OF TYPICAL RESULTS FOR ISOTROPIC TENSION PANELS 

C RAC K 
DESCRIPTION 

SINGLE EDGE  CRACK (a/W = 1/3) 

DOUBLE  EDGE  CRACK (am = 1/3) 

CENTER  CRACK (a/W = 1/3) 

ECCENTRIC  CRACK 
(IS IDA'S PROBLEM) 

EIGHT-NODE TEN-NODE 
SYMMETRIC ELEMENT (ES E) UNSYMMETR IC ELEMENT  flUE) 

I 

F. E. MODEL 

68 TRIANGULAR -1.2 35 TRIANGULAR 

F. E. MODEL K I % ERROR 

ELEMENTS PLUS  ELEMENTS  PLUS 

1 ESE, -1.5 

DOF = 105 -HI. 15 DOF =57 

1 TUE, 

116 TRIANGULAR 
ELEME.NTS  PLUS  (SIDE A) i - l o l  

NONE 

2 ESE, 

(SIDE B) DOF = 152 

"0.5 

c 

" 

" 

i 

K ,  % ERROR 

-2.6 

-2.6 

-1.2 

NONE 

P w 



I 

The  computed stress-intensity factors for the two crack tips are 

K 1  =2,67496 x MPa -F K,2 = 0.25067 x MPa -,/%- 

These values include in their  definition a factor of K. To compare with the  values in 
the Request for Proposal, i t i s  necessary to  divide by ,fii; hence, 

K1 = 1.50918 x low3 MPa -fi K2 = 0.14143 x MPa -6 
These values are quite close to those  computed by Erdogan  and Biricikoglu in ref. 19, The 
percentage of error i s  -0.12% and +O. 75%, respectively. The axia I stresses and displace- 
ments along the crack line are plotted in figures 17 and 18. 

Stiffened  Plate - The rate  of  growth  of a crack in a stiffened  plate w i l l  be influenced 
by  the  presence of the  risers. The simple stiffened  plate  configuration shown in figure 19 
has been analyzed  to  determine this effect. The plate i s  loaded by a stress along  its edge 
normal to the  crack. Two cracks are assumed to propagate  from  the center of the two edges 
of the plate toward the risers. When the cracks have passed underneath the risers, they are 
assumed to  extend up the riser and into the plate  at an  equal rate  until the  riser i s  com- 
pletely  fciled. The crack is then assumed to  continue t:, propasate into the plate. 

Only one quarter of the configuration shown in figure 19 i s  idealized, the remainder 
being represented by symmetric  boundary restraints. Both the plate and the riser are 
idealized using triangular membrane  elements. The 8-node crack element i s  used to repre- 
sent the crack tip. 

The results of the analysis i s  shown in figure 20 in the form of the  crack tip symmetric 
stress-intensity factor  plotted against the  crack  length. It i s  evident that the riser w i l l  
have a considerable effect on  the rate of crack  growth. 

Thermal  Stress-Intensity  Problem - Sih (ref. 21) has given the following plane-stress 
formulae for the stress-intensity factors  appropriate to a crack with constant-temperature 
faces (see figure 21) acting as sinks for the steady, radially  inward  flow  of heat Q at 
infinity. 

In (82), a i s  the coefficient  of thermal expansion,  and k i s  the thermal conductivity. 
We now solve the associated temperature-distribution problem to  obtain thermal input  in a 
form acceptable  to the  computer  program. 

The general real  solution  for the  temperature, T, in a steady heat-conduction  problem 
in two dimensions i s  
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T(x,  y) = f(z) + r(z) 
where f is  an analytic  function  of z = x + iy. The  symmetry of the problem indicated in 
figure 21 permits us to  write 

which leads at once to 

permitting (83) to be written as 

T(x, y) = f(z) + f(T) 

The constant-temperature condition for the crack faces requires that 

" a T  - f'(z) + fa'(;) ax 

vanish on t he  crack faces; i .e. 

+ - 2 2  
f '  (x) + f '  (x) = 0 , x < a 

In (87) and (88), prime (I) denotes differentiation  with respect to the parenthetical variable, 
while the  superscript (+) or (-) indicates  a  value  taken in the  upper  and lower half planes, 
respectively . 

The boundary condition  at  infinity i s  

in which r and 8 (shown in figure 21) are defined by 

ie 
z = re 

In view  of (89), f'(z) i s  expected to vary at  infinity  like z . - 1  

We  now  make the usual substitution  for  a  cut-condition like (88); i.e., 

g ( 4  =dz* - a 2 fl(z) , (91) 
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2 2  
i n   w h i c h i z  - a i s  that branch of ( z  - a ) varying  like  z  at  infinity. Because of 
the anticipated remote behavior of f'(z), we expect g(z) to tend to  a constant value  at 
infinity. 

2  2 1/2 

The problem case in  terms of g(z) i s  then 

+ - 2 2  
g (x) - g (x) = O , x < a  ; 

The obvious solution  being 

which leads to 

(94) 

(95) 

when (91) i s  integrated. 

The constant c2 in (95) only sets the temperature reference, which i s  thus far unspec- 
ified. Taking  c = 0 with no loss in general  applicability, we find 2 

for large z. Upon  imposing (89), we find 

- Q 
- 4kR 

Thus, from (86) , (95) , and (97) , 

and the constant  crack-face temperature is given by 

- Q h  a 
T c -  2k77 

(97) 

Referring to  figure 22, i t  i s  convenient  to  let 



'1 =4- 
r -  -dm 
'2 =4- 

e, = tan-' 
x + a  

8 = tan - 1  
X 

e 2 =  tan - 
x - a  

- 1  Y 

then  the temperature distribution can be written as 

Figure 23 shows a finite-element representation of the first quadrant of the  problem i.n 
figure 21. The eight-node symmetric cracked  element ABCD represents the crack-tip 
neighborhood in  the finite-element model. Input particulars are taken  to be 

" * - 255.928OK and a = 114.3 mrn 
k (101) 

leading to a crack-face temperature from (99) of 

T = 255.505OK 
C 

and triangular-element temperatures (centroidal) from (98). 

The computer  program was executed  twice  with  additional materra1 properties: 

E = 68.95 GPa , u =0.3 and a =  1.8 x 10 m.m .K 
-6 - 1  -1 

(1  03) 

In the first execution,  the temperature of the cracked  element was taken  to correspond 
uniformly  to  that  of the  crack faces (102). The  computed stress-intensity factor 

K I  = 4.9137 x MPa -fi ( 1 04) 

i s  14.95% higher  than  the  analytical  value of 4.2747 x MPa -6. This i s  not 
unexpected in view  of the fact  that the entire  cracked  element i s  taking the crack-face 
temperature, a condition  thermally more  severe than the analytical temperature distribu- 
tion (98). This i s  reflected in  the results of the second execution, in which the tempera- 
ture of the cracked  element was taken  to be 255.5670Kf which corresponds to the average 
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of six superimposed triangles (shown  dashed in figure 23). The stress-intensity factor 
computed for the second execution was 

K I  = 3.6325 x MPa -p ( 105) 

which is  15% lower  than the analytical  value. It i s  clear  that more refinement in the 
crack-tip neighborhood  would lead to  a more tolerable discrepancy. It i s  important  to 
point out that such refinement w i l l  not be  necessary in more routine  applications where  the 
temperature gradients near the crack tip are less severe. 
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APPENDIX - ELEMENT STIFFNESS.MATRICES 

Axial  Element 

The positive  sign  convention for the axial element  is illustrated in figure A-1 . For 
this  convention k and P,, are as  follows: 

l r  

k]= [: :] , {Prt} = - A E a T  

Trianau  lar  Membrane E lement 

The sign  convention  for  the  triangular  membrane  element i s  illustrated in figure A-2. 
Note  that  six  displacements or degrees of freedom are  present. It  is then  reasonable  to 
assume the  following  displacement  field. 

u = a ,  + a   x + a  y 2 3 v = a 4  + a  x + a6y 5 

The  displacements of the  element  can  then  be  expressed in terms of the a. coefficients as 
follows: 

I 

1 

x2 

x3 

o r  in  matrix  notation 

y 3  

1 

x2 

1 x  3 

a 1 

a2 

a3 

a4 

a5 

a6 

then 
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where 

y3 

-x3 x2 

x2y3 

-y3 

x 32 

y3 

-x3 x2 : 
where x - 32 - '3 - x2' 

The strains  can also be  expressed in terms of the displacement coefficients: 

ou 5, - 
+ r -  ;J - - 

xy 6 y  c x  
- 

Then 

If the strains  and stresses are constant within the membrane element, the strain energy can 
be  expressed as 

s = Aot {u}T { F }  

where A is  the area of  triangular element. Let the stress-strain relations  for the anisotropic 
material In the elemental  reference system be written as 

0. 

50 



Then the  strain  energy  can be expressed in terms of the  node point displacements as follows: 

S =  2 A 0 tk}T[8]T [A] [B] (.} 

S = f Aot (d)’ k-’] [BIT [.][B]k”] (6) 
And the k matrix  for the triangular membrane element is, therefore, 11 

[k]= Aot k-’]’[B]T [A] [B] [C-’] 

If the multiplication i s  carried  out and i f  the  elements of the matrix are  arranged so that the 
convention in  figure A-3 applies then the k.. elements of the  stiffness matrix are 

‘I 

( . )  k12 = y3 A13 - ’3 x32 (A12 + A33) + x322 A23 
2 

(>) k14=-Y3 A 1 3 + X 3 Y 3 A 1 2 f Y 3 X 3 2 A 3 3 - X 3 X 3 2 A 2 3  
2 

(7) k23 = - y3 A1  3 + x3 y3 A33 + y3 x32 *12 - x3 x32 A23 
2 
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(>) k24 - - -Y: ~ 3 3  + Y3 (x3 + x321 ~ 2 3  - x3 x32 ~ 2 2  

(:) k25 = x2 '32 A23 - x2 '3 A33 

('a\ k26 = x2  x32 A22 - x2 '3 A23 

(:) k33 - y3 Al 1 - 2x3 y3 A13 + x 3  A33 

(:) k 3 4 - Y 3  A13 

(>) k35 =x2  y3  A13 - X  2 X 3 A 33 

- 2  2 

2  2 - - x3  y3  (A12 + A33) + x3  A23 

k36=X2  y3 A12  2  3  23 - X  X A 

(>) k44-Y3 33 
- 2 A   - 2 x  y A + x 2 A  

3  3  23  3  22 

(>) k45 = -x 2 x 3 A 23 + x 2  y3  A33 

(?) k46  2  3 22 2  3  23 = - X  X A + X  y A 

(T) 4Ao k55 - - x2  2  A33 

2 (>) k56 - x2  A23 

(>) k66 - '2 A22 

- 

- 2 
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1 
0 -  TX2'3 where A - 

x32 - '3 - '2 
- 

The values of Prt for the triangular  plate element  can be  computed in terms  of the 
element stiffness matrix.  Note  that 

If { PI = 0 and { p 1 i s  selected as the thermal  displacemen  t for free expansion,  then  the  forces 
for complete  restraint are 

For the triangular  plate element, the  components of 

u, = o  

v, = o  

v2 = o  

The symbol * implies  that the thermal expansion coefficients have  been rotated into the 
local reference axis for the element. 

Spring  or  Fastener  Element 

Figure A-4 illustrates  two  plates connected  by  a shear pin, and  the direction vectors 
for the system of forces that are assumed to  act on the pin are i Ilustrated in figure A-5. For 
the spring element, i t  i s  necessary to  define  four node points. Node  points ('I) and (2) define 
the element itself. In most structural models  these  node points may  be coincident before any 
strains occur,  that is, (Z, - Z2) = 0. Node points (3) and (4) are used in  conjunction  with 
node point (1) to  define  direction vectors for spring elements K1 and K2, respectively. Kg 
i s  assumed to be a spring element  perpendicular to the plane  containing K1 and K2. In 
other words, the system of spring elements i s  that  illustrated in figure A-6. If we let u, v, 
w, be displacements,  the element forces for the spring system are 
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P = K1 (ul - u2) 
P = K2 (vl - v2) 

x1 

Y l  

Pzl = K3 (wl - w2) 

x1 
Px2 = -P 

P = -P 

= -p 
Y2 Yl 

pz2 zl 

Hence, the stiffness matrix i s  

LkI = 

K 1  0 

0 K2 

0 0 

-K1  0 

0 - K2 

0 0 

0 

0 

0 

0 

-K3 

-K 0 1 

0 -K2 

0 0 

K 1  0 

0 K2 

0 0 

- 
0 

0 

-K3 

0 

0 

- 
where K1, K , and K are linear spring stiffnesses for the fastener element. 

10-Node  Cracked Element  Thermal Effects 

2 3 

Let  the coordinate system for the ten node cracked  element be  the  one illustrated  in 
figure A-7. The stress-strain law  can be written as 
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Assume a  constant  temperature distribution over the  element;  then, for free expansion 

and 

The displacement function i s  then of the  form 

u = a  Tx + C2 a12 Ty + C1 1 1  

v = a22Ty + C4 a12 Tx + C 3 

If u, = v,  - v 6  - = 0, the displacement functions become 

u =a1 lTx + a12Ty 

As in the case of the triangular  plate element 

where  the element of p are 
0 

u1 = 0 v3 = - c Y ~ ~ T  A 

v1 = 0 u 4 = - a  T A  12 

22 u2 = -a1 l T A  v 4 = - a  T A  

v2 = 0 u5 =  CY^ T A - c Y , ~ T  A 

u3 =-a T A - C Y   T A  11 12 v5 - -?*T A - 
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u6 =a1 l T A  

V6 = 0 

u7 1 1  = a  T A  + o ! , ~ T A  

v7 = ' Y ~ ~ T  A 

u 8 = a  T A  12 

v8 = a22T A 

~9 =-dl  I T A  +O!I2TA 

v 9 = a  T A  

u , ~ =  -al T A 

22 

y o =  0 
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FIGURE 1 .  TR1ANGULA.R  ELEMENT  MATERIAL AXIS 

~- 

FIGURE 2. CRACK-TIP NEIGHBORHOOD 
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(a) 8-node  Symmetric Cracked Element 

(b) 10-node  Unsymmetric Cracked Element 

FIGURE 3. CRACKED FINITE ELEMENTS 
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FIGURE 4. SEGMENT STRUCTURE FOR COMPUTER  PROGRAM 
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FIGURE 5 .  OVERALL LOGIC FLOW OF COMPUTER PROGRAM 
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CENTER  CRACK 

-f 30.48 
(or 45.72 mm) 

t- 76.2 rnm- 

228.6 m m  
”. 

t’ 

DOUBLE-EDGE CRACK 

15.24-mm 15.24 mm 

FIGURE 6. CENTER-CRACKED AND DOUBLE-EDGE-CRACKED 
ORTHOTROPIC TENSION PLATE 
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8-NODE SYMMETRIC 
CRACKED  ELEMENT 

\ 
\ 
/ 
\\ 

10-NODE UNSYMMETRIC 
CRACKED ELEMENT 

CRACKED 
E i Z , f A E N T ~  

FIGURE 7. CRACKED  ORTHOTROPIC TENSION PLATE 
FINITE-ELEMENT MODELS 
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1 ""."A """""" - I 

FIGURE 8. A LONGITUDINALLY CRACKED  ORTHOTROPIC STRIP 
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CRUDE MODEL 

FIGURE 9 .  FINITE-ELEMENT  MODELS FOR A LONGITUDINALLY CRACKED  ORTHOTROPIC STRIP 
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G12 = 20,685 GPa 
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-X 

FIGURE 10. 45" CRACKED FINITE ORTHOTROPIC PLATE 
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FIGURE 11. 45' CRACKED  ORTHOTROPIC PLATE 
FINITE-ELEMENT MODEL 
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FINITE ELEMENT 
MODEL 

KI % ERROR = -1.5 
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FINITE ELEMENT MODEL = 57 OOF, 35 CONSTANT-STRAIN  TRIANGLE 

FIGURE  12.  SYMMETRIC  CRACKED  ELEMENT MODEL FOR 
SINGLE-EDGE,  DOUBLE-EDGE, AND CENTER 
CRACKED TENSION PANELS (a/w = 1/3) 



KI  % ERROR = -2.6% 

10-NODE - UN SYMMETR IC 
E L E M E N T  El KI % ERROR = -2.6% 

K, % ERROR = - 1 . 2 %  

DOF = 105 

E L E M E N T S  = 69 

FIGURE 13. UNSYMMETRIC  CRACKED ELEMENT MODEL FOR 
SINGLE-EDGE, DOUBLE-EDGE, AND CENTER 
CRACKED TENSION PANELS ( d w  = 1/3) 
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MODEL WITH TWO 8-NODE CRACKED 
ELEMENTS 
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UNIFORM DISPLACEMENT, E Q .  (81) 
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(REFERENCE 19) 
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FIGURE  15.  BI-MATERIAL  CRACKED  PLATE 
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FIGURE 17. STRESS IN BI-MPTERIAL CRACKED PLATE 
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FIGURE 20. EFFECT OF RISER ON STRESS INTENSITY IN PLATE 
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FIGURE A-1. AXIAL ELEMENT 
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FIGURE A-2. TRIANGULAR ELEMENT  MEMBRANE 
DISPLACEMENTS 
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FIGURE  A-3. CONVENTION FOR DEGREES OF 
FREEDOM 
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FIGURE A-4. SHEAR PIN 

FIGURE A-5. DIRECTION VECTORS 
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FOR  FASTENER ELEMENT 
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FIGURE A-7. LOCAL  COORDINATE SYSTEM  FOR 
TEN-NODE CRACKED  ELEMENT 
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