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I. Introduction

This study considers the development of a digital 4D automatic control
law to capture and follow a steep glideslope (6°) under low visibility
conditions and in turbulence, using the Microwave landing System (MLS)
under development by the FAA. The study of curved 4D flight paths leading
to a steep final approach under low visibility conditions is part of the
Terminal Configured Vehicle program (TCV), sponsored jointly by NASA and
FAA. The goals of the TCV program include the reduction of aircraft noise
in airport communities, the reduction of fuel consumption, the reduction
of the effects of adverse weather conditions on aircraft operations in
air terminals, and the efficient use of airspace in congested terminal
areas through the use of the Microwave Landing System.

The major effect of the use of steep glideslopes is in the area of
noise reduction. In comparison to the currently used 2.5° to 3° ILS
glideslopes, the 6° glideslope reduces the noise perceived on the ground
due to its altitude profile and thrust level. At equal distances from
the runway, the altitude of an aircraft following a 6° glideslope is
almost twice the altitude of an aircraft following a 3° glidesloﬁe.

Thus, the noise level heard on the ground is reduced due to the difference
in altitude even when the same amount of noise is generated by both air-
craft. A further reduction in noise is due to the fact that the aircraft
flying the 6° glideslope generates less engine noise, so this steep
glideslope requirgs a lower thrust setting than would be required by the
same aircraft flying a 3° glideslope. This reduction in thrust level is

of the order of 2:1 for the RSFS aircraft of the TCV program.



The reduction in thrust level associated with steep glideslopes
also reduces the fuel consumed during the final approach. The ability
to fly varying glideslope angles may also provide a method to avoid the
vortex generated by large aircraft, by allowing smaller aircraft to fly
different glideslopes to reduce the likelihood -of such encounters;
however, further research in this area is necessary. In general, the
ability to fly steep glideslopes provides a versatility that can be
useful in efficient use of airspace in the terminal area.

The guidance information necessary to fly steep glideslopes in low
visibility instrument approaches can be obtained from the Microwave
lLanding System (MLS). The MLS is a ground-based guidance system which
provides position information to aircraft inside its volumetric coverage.
It consists of a DME providing range information, an azimuth antenna
colocated with the DME providing the aircraft's azimuth angle relative
to the runway up to #60°, and an elevation antenna located at the glide-
path intercept point but offset to the side of the runway providing the
aircraft's elevation-angle up to 20°. A second elevation antenna located
further down the runway to provide flare guidance is also under con-
sideration. The MLS thus has a volumetric coverage, and provides guidance
information that can be used for steep approaches and curved flight
paths. The major characteristics of the MLS include high accuracy of
position information, low sensitivity to adverse weather conditions and
volumetric coverage.

With the high accuracy in position information provided by the MLS,

it is of interest to investigate the use of low accuracy accelerometer



data in place of more sophisticated and costly systems such as inertial
platforms in automatic landings under turbulent weather conditions.
Thus, in this study, body-mounted accelerometers were used to provide
acceleration information. This information was mixed with MLS data
arriving at discrete instants of time and with air data in a constant
gain Kalman filter to obtain optimal estimates of the aircraft velocity
and sink rate as well as the wind velocities by filtering out the noise
associated with the various sensors. The development of this filter
for the longitudinal axis is given in Section III.B. The results
obtained from a simulation of the filter are shown in Section V.

In Section II, the aircraft's equations of motion used in the
simulation are described. A mathematical model describing the deviations
of the aircraft's longitudinal variables from their steady values on a
6° glideslope is obtained. The effect of lags in thrust build-up and
the effects of winds on the aircraft motion are included in this medel.
Using the Dryden spectrum, a dynamical model for the simulation of
wind gusts is developed, then steady winds are added to this model. The
models are expressed in state variable form which is more suitable to
the use of modern estimation and control techniques.

In Section III, a mathematical model for the noises in the various
sensors is developed. Then a non-linear pre-processor is used to
transform these measurements into a form more suitable for filtering
purposes. In Section III.B, the development of the filter is described

and some aspects of its implementation are discussed.



In Section IV, a digital automatic control law to capture and follow
a 6° glideslope is developed for the longitudinal axis. The comtrol
law uses the aircraft variables as well as the wind estimates to decrease
the aircraft's deviations from the glidepath.

Section V describes the results obtained from a simulation of the
aircraft, winds, sensor errors, the filter and the control law.

It is a pleasure to acknowledge Dr. Thomas M. Walsh for his en-

couragement of the concepts presented in this study.



II. Modelling of Aircraft Dyriamics and Winds

The general equations of motion for aircraft are complex nonlinear
differential equations and can be found in various texts on aircraft
dynamics [4], [5], [6]. As this study considers the glideslope capture
and glideslope phases of the final approach, however, several simplifying
assumptions can be made to reduce the complexity of these equations and
make them more amenable to analytic manipﬁlations without appreciable
degradation in their validity [4, p. 2301, [5, pp. 254-265]. As the
equations of motion are used extensively in the study and the computer
simulation, the specific equations used will be described here.

A. Aircraft dynamics with wind disturbances

The phase of flight considered in this study is glideslope capture
followed by a steep glideslope up to 6 degrees flown at a constant
airspeed of 120 knots except for small fluctuations. In these phases of
flight (Fig. 1) the aircraft is aligned with the runway, has a zero
or very smalllyaw angle with respect to the runway as well as a zero
bank angle except for the case of a significant cross-wind requiring a
"crab" maneuver. The control activity for the lateral motion is aimed at
keeping the aircraft aligned with the runway, with level wings. Hence,
all the lateral variables, i.e. yaw, roll, their_rates and the sideslip
angle, have very small values except for crab maneuvers. Similarly,
among the longitudinal variables, the pitch angle is small during these
phases of flight, usually within 6° to -4° for a 6° capture.

Under these conditions, the nonlinear equations of motion can be
linearized about the steady state flight condition of the glideslope

using well-known methods [4], [5]1, [6]. The deviations from the steady



flight condition can be described by linear differential equations

which are simpler to use in analytical manipulations and are more
suitable for the application of modern control theory principles. Under
the conditions stated above (these conditions will be restated more
precisely below), the equations of motion of the aircraft can be

expressed as [2, p. 2.321]:

..._ -— D

mu-Vr-Rv+Wqg+Quw mg cosd 6 + f, +fT’ (L
.+ + - - = = ] il
m(v+Ur+Ru-Wp-Puw mg siné sind 6

+ mg cosd _coso _¢ * fAy + ny, (2)

m(w - qu -Qu+Vp+ Pv) = -mg cosd sind o

- mg sm@ocoseodm + fAZ + fTZ, (3)

+

. _ . _ + _ -
IXXp IXZr IXZ(POq Qop) (IZZ Iyy) (Roq + Qor) g+ %

Iyyq + (IXX - IZZ)(POr + Rop) + ZIxz(PoP - Ror) = m, + M (5)

IZZr - IXZp + (Iyy - IXX)(POq + Qop) + IXZ(QOr + Roq) = ny + Do
(8)



where

steady state inertial speed in the x direction

U =
o
v, = steady state inertial speed in the y direction

W_ @ steady state inertial speed in the z direction

perturbation in the inertial speed in the x direction

u =
v = perturbation in the inertial speed in the y direction
w = perturbation in the inertial speed in the z direction

Po = steady state roll rate

QO # steady state pitch rate

Ro = steady state yaw rate
p = perturbation in roll rate
g = perturbation in pitch rate
r = perturbation in yaw rate

¢ = steady state roll angle
©® = steady state pitch angle

¥ = steady state yaw angle

¢ = perturbation in roll angle

8 = perturbation in pitch angle

¢ = perturbation in yaw angle
£ Ay = perturbation in net aerodynamic force along the x direction
fAy = perturbation in net aerodynamic force along the y direction
fAz = perturbation in net aerodynamic force along the z direction
fr,, = perturbation in thrust along the x direction
ny = perturbation in thrust along the y direction
fr, = perturbatidn in thrust along the x direction
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perturbation in rolling moment due to aerodynamic forces

R,A=

m, = perturbation in pitching moment due to aerodynamic forces
n, = perturbation in yawing moment due to aerodynamic forces
Ly = perturbation in rolling moment due to thrust

perturbation in pitching moment due to thrust

e

perturbation in yawing moment due to thrust

These equations are valid for any set of right-handed rectangular
body-fixed axes, i.e., right-handed reference frame, fixed to the body of
the aircraft with the origin located at the aircraft's center of mass.
Figure 2 shows the sign conventions and the vectors pictorially for the
vertical plane. The assumptions and approximations used in arriving
at equations (1) - (6) are given below.

1. The earth is assumed to be flat and fixed in an inertial reference
frame;

2. The perturbations in the angles are small, so that

|1

cos 6 = cosd = 1 (7)

sin 6 = 8, sing = ¢; (8)

3. The second order terms in the perturbations are negligible
relative to the first order terms in the perturbations;

4. The aircraft is a rigid body.

In this form, equations (1) - (6) are coupled; however, if the
steady state flight condition is taken to be the glideslope, these

8



equations can be decoupled and simplified. This steady state flight is

described by:
¢ =P =Q =R =V_ =0 (9)

Hence, for this steady flight condition, the equations of motion simplify

to:

m(u + W) @ -mg cose 6 * £, fT (10)
X X

m(w - qu) = -mg sing o + £, + o _ (11)
z z

Iyyq = mA + mT _ a2)

m(v + Uor - Wop) = mg cosd _¢ + fA + fT a3

y y
) _ . - +
I pP-I, 2t L (1w
Izzr - IXZp =n, +ng (15)

Equations (10) - (12) contain only longitudinal variables, whereas
Egns. (13) - (15) contain only lateral variables so that the equations are
now decoupled. As this study is concerned with glideslope capture and
glideslope tracking, only the longitudinal equations of motion (i.e.,

Egns. (10) - (12)) will be considered in the following.



Throughout this study, mainly three sets of coordinate axes will be
used: the earth fixed axis, the body axis and the stability axes. The
earth-fixed coordinate frame (xe, Vo ze) has its origin fixed on a
specified point on the runway at which the aircraft is going to land;
the X, axis is along the runway, the direction in which the aircraft
will land being positive; i.e., at touchdown the A/C will have a positive
veolcity along X The z, axis is vertical positive downwards; and Yo
is.perpendicular to both x_ and z, with the positive end in the direction
to make the coordinate frame right-handed. As the earth is assumed to
be stationary with respect to an inertial frame, (xe, Yo ze) is itself
an inertial frame.

Two body-fixed axes with their origin fixed at the center of mass
of the A/C are also used: the body (xb, Y2 zb) and stability (XS, Yo zS)
axes. The X axis is in the A/C's plane of symmetry and is taken
to be along the fuselage reference line of the A/C, positive towards the
nose; the Yy axis is positive towards the right wing, and zZy is positive
downwards; this reference frame will be referred to as the body axes.

The stability axes (XS, Yo ZS) can be obtained from the body axes by a
rotation of @ about the Y5 axis such that when the A/C is in its steady
state flight condition, its velocity vector is along the positive ks
axis. The equations of motion for the aircraft (10 - 12) will be written

in the stability axes.

In the above equations, the term fA represents the total algebraic
p-4

change in the value of the aerodynamic force alongtimaxs axis due to

changes in the values of the aerodynamic and control surface variables;

10



the changes in the forces and variables are referenced to the steady
state values of the corresponding forces and variables. The remaining
terms in equations (10 - 12) are defined similarly. For the longitudinal
eqns. of motion, the aerodynamic forces and moments involved are the

1ift and drag forces and the pitching moment; the effects of thrust are
described separately by the terms with subscript T. These forces and

moments can be expressed.as follows:

L=C W, a5 g g, e, §5)gS (16)
D = Cylu, o, a5 Q, de, §5)aS (17)
T = Cplu, a5 a, 9)as (18)
M = Cy(u, @, &, 9, 8e, &S, 8T)IQSC (19)
qo %pVg

where L, D, T and M represent the 1lift, drag, thrust forces and the
pitching moment respectively,'ﬁ is the dynamic pressure, V_ the airspeed,
u the perturbation of Va's component along the x axis, a the perturbation
in the angle of attack, o the time rate of change of a, g the pitch rate
of the A/C relative to the atmosphere, de the perturbation in the elevator
surface deflection, 8 the perturbation in the stabilizer surface de-

flection, 8T the perturbation in the thrust force, S the wing area and

11



¢ the mean aerodynamic chord. Note that the aerodynamic forces and
moments depend on the motion of the aircraft relative to the atmosphere
such as u, o, etc., rather than the inertial motion variables u, w, etc.
Thus the effect of winds is automatically included into the equations of
motion. If the perturbation in the angle of attack of the inertial

velocity, say a, is defined as

A -1 W ~ B
o = tan Uo T = Ub , o << Uo’ u << UO, (21)
then
u
usutu,u = —=u"+u (22)
- s Ub W
a =a+ % > (23)
é = q + &W’ (2w)
qg=qt q, (25)

where the subscript w denotes the component due to winds.

Using Figure 2, it is seen that the total aerodynamic forces

along the x and z_ axes are

FAX = Lsing - Dcoso (28)
s
EAZ = —chsg + Dsina 27

12




The forces due to thrust are

RTXS = Tcos(cxo + ¢T) (28)
FTZS = —Tsin(ao + ¢T). (29)

From these equations, we can obtain expressions for the perturbed
force and moments by using a Taylor series where second and higher

order terms are neglected, hence,

F F
U O M My O Ty
= + + + +
fax, " 73w 2T e 2T ey ¢V hg 97 mme % e O°
(30)

where the partial derivatives are evaluated at the steady state condition.
Similarly, fAzs’ foS’ szS’ my and my, can be expressed by a truncated
Taylor series of the same form. The partial derivatives in these
expressions can be expressed in terms of the partial derivatives of

the 1ift, drag, thrust and pitching moment coefficients, i.e., the

stability derivatives. The equations of motion thus obtained are given

below.

1= = +q - + + + !
mua mg COse o qOS{( CDu' ZCDO CTxg' 2CTX0)E

(31

+ (- CDE)E = Chsa’® = Cpsat® * Crypsr®T?
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m(w - qu) = -mg sinooe + qOS{—(CLE,+ ZCLO)E' - (CLa + CDO)g

| (32)
-C .0 -C qi- e - C. 85+ C 8T}

Lo~ lg= CLae Lss Tz

7 = g S& + ' + + .

Iﬁﬁ %ﬁcuqﬁl KMQE +(%h _%ﬂgg %@g
(33

+ + +
Cug? * Cused® * Cuss®® * Cusr®TY>

where WB has been taken to be zero. After some manipulation, these
equations can be expressed in state variable form. However, we shall
first derive some further equations and include those as well in the
state variable model.

First note that the flight path angle, y, shown in Figure 2 can

be expressed as

= - + = - - = + -
Y =6, *9 (ao a) (GO ao) + (0 - a) Yo (6 - o)
(3w)
Now, let (x,z) be the coordinates of the aircraft's center of mass
along the earth-fixed coordinate frame X, and Z- Then the ground speed,

%, and the sink rate, z, are given by

% = V,cosy = V.cos(y_ + 8 - a) (35)
i i o
= V. + .sinasi = + + Wsi +
VlCOSaCOS(Yo 8) + V.sinasin(y _ + 9) UCos(YO 8) W81n(x3 6)
(36)
z @ -V.siny = -Usin(y_ + 8) + Weos(y_ + ) (37)

1y



Since the stability axis is chosen to correspond to the glideslope,
the ground speed, X and the sink rate, Zs of the aircraft in the

steady state condition are given by

(38)

e
I

U_cos
o8

(39)

N e
!

= -Ubslnyo,

as in this steady state condition the speed along the z axis (i.e., Wb)

is zero. Hence, the perturbation in the ground speed and sink rate are

% - % = - = + i + -
X - % (% Xb) UCos(yO 8) + W31n(yo 8) UbCOSYo ¢19))
z-z 0 (z - zo) = —U51n(yo +06) + Wbos(yo‘+ 8) + UbSlnYo (41)

Substituting the equations
U=Uo+u,W=Wo+w=w, (42)

into (40) and (41),

(x = %)
o w .
= + - + 1! + + — +
T [cos(yo 6) cosYo] u cos(yo ) g Sln(Yo 0)
(43)
> - sl + ' + g1 -
z - siny 6 + cosy u siny o3 (uy)

15



- . - . _ 1o Lﬂ_
A [Sln(yo +8) 51nyo]. u 51n(yo +8) + i cos(yO + 9)
(45)

1}

-cosy 8 - sinyou' + cosy_a. (u6)

Thus the perturbations in ground speed and sink rate can be
expressed as linear functions of 8, u' and o by (44) and (46) as long as
the perturbations in the pitch angle, 6, are small. Note that the
perturbations (x(t) - xb(t)) and (z(t) - zo(t» in ground distance and
altitude correspond to the variable time, i.e.x(t) - Xo(t), is the
perturbation or error in the x position of the aircraft relative to where
it should have been at that time. Hence, if these errors are zero,
the aircraft not only keeps an average inertial speed of Ub, but also
has to be at specified positions at the appropriate time; i.e. x - X
z - z_ represent 4D (four dimensional) errors which include time as a
variable.

To include the effects of the servo responses of the actuators, we

shall also model the thrust and stabilizer motions dynamically by linear

equations. Thus,

6T = ~.56T + .2986th (u7)

§th = ug , 685 =u, (48)

where 8T, §th and 8s are perturbations of thrust, throttle and

stabilizer from their steady state value, respectively. The elevator
16



is not modeled in this fashion as its motion is relatively fast, i.e.

its timé constant is much lower than the others. Thus the thrust model

takes the "spool up" time of the engine into account, at least linearly.
Now., the equations of motion of the aircraft, the 4D perturbations in

the ground speed and sink rate and the effects of the actuator responses

can be combined into a state variable model. Let the state vector x be

defined as

8T &th 68s) 49)

x'=( u o g

Then equations (31) - (33), (44), (46) - (48) can be combined into the

vector equation
x = Ax + Bu +Dw (50)

where u' = (se 6s &th), w = (u& @ qw) and A, B and D correspond

to the appropriate coefficients in the original equations and are

given below

- —
0 0 0] 1 0 0] 0 0 0]
azy 2y a3 0 0 0 a7 0 azg
ag;  azz  asz Ay 0 0 asy 0 azg
ay] ayp  Aays any 0 0 ayy o ayg
A= —sinYo cosy siny 0 0 0 0 0 0
—COsY —sinyo cosy 0 0 0 0 0 0
0 0 0 0 0 0 a7y aryg 0
0] 0 0" 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0

17



[0 0 0] [0 0 0]
by1 0 0 42 azg 0
b3, v 0 asz ass ds3
by, 0 0 . ayy an3 dys
B = 0 0 0 , D = 0 0 0
0 0 0 0 0 0
0 0] 0 0 0 0
0 0 1 0 0 0
L0 1 0| L0 0 0 _

The expressions for the elements of the matrices A, B and D are
given in the Appendix. Hence, the aircraft equations of motion along
with 4D error equations in ground speed and sink rate have been modeled
by a linear state variable model. It sould be noted, however, that the
equations have been obtained by linearization of the nonlinear equations
about the steady flight condition of a glideslope with angle Yo and a
constant airspeed Ub; hence, these equations provide a realistic model
of the aircraft motion provided that the deviations from this steady
flight condition are small.

B. Wind Modeling

To complete the aincraft model given by (50), the wind vector w has
to be specified. The components of this vector consist of u&, the
normalized wind velocity in the X direction; o . the part of the angle
of attack due to winds, and q, the rotation of the atmosphere about the
Vg axis. The u& and o components are modeled as consisting of a gust
component with zero average value and a steady component (i.e. the

average value ué and aw). Hence,

18



u' = u' +u (u +u /v (51)
W g s g s’ Ta

Q
!
Q
+
R
I

—(wg + ws)/Va (52)

where Va is the airspeed.

The gust components can be modeled using the well-known Dryden
sbectrum.[ﬂ]. This method consists of using spectral factorization methods
to obtain a dynamical system which generates a random process ha&ing the’
specified power spectral density when driven by white noise. Let ug(t)
be the gust velocity with respect to earth at time t; then the covariance

function of the random process ug(t) is defined as

R (r) = BE(u (tdu_(t + 1)), (53)
Ug g g

where ug(t) is assumed to be a wide-sense stationary random process
with zero mean and E denotes the statistical expectation operator
[7]1, [8]. The power spectral density of this process is then defined

oo

as the Fourier transform of its covariance function Ru (r):
g

s, W = [ R, (e Wrat; § = /O, (54
g - g

then, the variance of ug(t) or the power of the random process is given

by

* Definitions of the Fourier transform differing from (54%) by the
factors 1/2w, 1/¥2w, 2/m are sometimes used in the literature, we
shall use the definition given above.

19



R (0) === [ S (u)du. (55)
u 2n u
g —00
The Dryden spectra describe the statistical behavior of the wind
gust velocities in the aircraft body coordinates by specifying their

power spectral densities in terms of the spatial frequency 9, [9].

QGiLu
Su(Q) = ifi-izaﬁjz, (56)
2
gL 1+ 3(L, )2
SU.(Q) = V2 [l+ (L Q)2]2 s (57)
a w
Q2v2
‘S (Q) = ——F—— 8 (), (58)
1 1+ (R g)2 9%

E3
where b 1s the wing span, Lu and Lw are the scales of turbulence, and @

is the spatial frequency related to the temporal frequency w by

Q= w/V (59)
a

The wind gust velocities along the aircraft's body axes will be

denoted by the subscript b. Tt is assumed that u_  is uncorrelated with

&b
both w_ and q_ 3 but w_ and gq_ are correlated, since q_ is due to
&y &y gy &y 12
the variation of w_ along the aircraft's body. Using Taylor's hypothesis

&b
of a "frozen field," [10], these spectra can be expressed in terms of the

temporal frequency w by

_ 1 w .
Si(w) = v; Si(v;), i=u, wy, g« (60)
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A mathematical model of the gusts can be obtained using spectral
factorization [11], [121, [13].

1. Model of ul,. - Using (56), (60) and (51), the spectrum of u'

b 2
can be found to be
QLuUfl 1
Su,(m) Vg Lu 32 (61)
1 + (V—) w
a
2 .
Loy 1 1. (62)
- V3 L L

a « U .
a a

This corresponds to a system with transfer function Gu(s) driven by

a white noise with power 2Luc55L / V:l (ft2/sec?)/Hz.

G (s)m (63)
u

2. Model of agy - Using (57) and (60) the spectrum of oy can be

found to be
Lw
L 1+ 3(V— w?
: - 2 W a
Sa(u)) - O'wvg- L o (6'4-)
a [l + (vu_) wﬂ
a
L L
2L 1-3V3 2w 14332
S = a (65)
- Vg L 2 L :
(l—]v—‘w) (l+jv—w)
a a
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From equation (65), it is seen that a system with transfer function
- : A 2
G,(s), given below, driven by white noise with powercLLw/V;(ftz/secz)/Hz

generates the spectrum in (64).
L
1+ /3 VQ s
G (s) = = (66)

3. Model of gy, = Using (58) and (60), the power spectral density

of g can be found to be

&b
S _(w) w? S (w) (67)
w) = .
q 1+ (ﬂ___m\?)zwz. a
a
= 138 g ey - 996 G . (68)
1 ];v;-w 1+ j;v;w

The cross-correlation of qg and o is specified by their cross-
b b
spectral density

- Jw
S = — 5 (). (69)

From (68) and (69), it can be seen that if a_ (t) is input into

&
the filter
G (8) = —F=— , (70)
R
ﬂa
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then, both the power spectral density and the cross-spectral density
requirements will be met. A block diagram for generating the wind gust
velocities is given in Figure 3. The inputs w;(t) and w,(t) are
uncorrelated gaussian white noise processes. It should be noted that to
obtain a stationary process, an initial period for the settling of the
transients due to unmatched initial conditions need be allowed or the
initial conditions so chosen as to obtain a stationary process
immediately. Otherwise, the process would be non-stationary for a time
corresponding to a few time constants.

4. Models of ué and a - The steady winds can also be modeled by

differential equations, i.e., by setting the derivative of the variable
equal to zero, and the initial condition equal to the value of the steady
wind. To allow for slow variations a forcing function with a small
magnitude can be added. Thus, the steady components with respect to

the earth-fixed axes are modeled as

u_(0) wO(O)

s
— , o _(0) =
UO S UO

(71)

W 8wy, a = w o u =
S 35 OLS L3 US(O)

where uS(O) and wS(O) are the steady wind values, and wy, W, are in-
dependent white noise processes with very small power. To obtain the
total winds u& and a » the gust and steady components are First
transformed into the stability axes and then added as shown in (51), (52).
Thus the wind vector w in (50) can be expressed as the output of a
linear system. The transfer functions Gu(s), Ga(s) and Gq(s) can be
expressed in differential equation form, and then these equations can
be put into state variable form.
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W = A +BE, w=CHW, (72)

where Aw, Bw and CW are given by

0 1 0 0 0 0 )
v,
_iﬁ. - 15 0 0 0 0
vV 7V
a
A= | T 0 ~Tp 3 0 0
W a
0 0 0 - 0 0
u
0 0 0 0 0 . 0
_ O 0 0 0 0 0 ]
V3 - 0 0 0
[ V )
a- /17)(L—"“—) 0 0 0
w
0 0] 0 0
B'w Va
0] i 0 0
w
0 0 1 0
L 0 0 0] 1 =
~ - - . -
~sina 0 0 ~coso cos(oO + 9) 81n(co + 8)
, = — 3 - - +
CW = cosa 0 0 sina 81n(oo + 6) cos(co 8)
nVa ﬂVa
L~ T® 0 b 0 0 ° .J
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Thus, equation (50) describes the aircraft's motion due to changes
in the control variables and wind conditions, while (72) describes the
statistical properties of wind gust velocities and steady winds. Hence, -
the aircraft's equations of motion have been expressed by a linea:c'* dynamical

system of equations in state variable form.

C. Discretization of the Equations of Motion

In this section, the equation of motion given in (50) and the wind
equations given in (72) are discretized; i.e., the differential equations
(50), (72) are replaced by difference equations which update the state
variables from one sampling instant to the next. There are two major
reasons that lead to the discretization of the equations of motion.

The first is due to the simulation of the aircraft's motion on a digital
computer. Due to the nature of digital computers, the integration of the.
equations of motion has to be perfofméd in a discrete manner. The

second, and more important, reason is inherent in the operation of

some of the components of the system. The aircraft's position is obtained
from the Microwave Landing System (MLS) which provides this data at discrete
intervals of time, rather than continuously. Furthermore, the aircraft's
control system includes a digital computer to perform the operations
required for the implementation of the control law. Thus, the control
commands at the computer output are, of necessity, discrete. These
considerations lead to the discretization of the equations of motion.

Let tk = KT be the times at which the aircraft's state has to

be known; then it is required that the state be updated from t,_to t |

k k+1°
This can be done by integrating equation (50). The result is given by
[1u]:
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Yer1

x(t 1) = 60t - =) + [ ¢t = s)Bu(s)ds

x
Yer1

k
+ [ e( - s)Duls)ds,
%

(73)

where ¢(t) is the transition matrix of A; i.e. ¢ (t) is the matrix
exponential eAI. Now, since the control law is digital, we shall assume

that the control command does not vary over one sampling period, i.e.,

u(t) = s tk St< tk+l' (74)

Using (74) and the change of variable
S=tk+'r
(73) can be expressed as

T T
x(tk+l) = ¢(T)x(tk) + [:é ¢(T - T)dB fu + i (T - T)DW(tk + 7)dr.
(75)

Now, the wind equations (72) can be integrated in a similar manner

to obtain:
W W +&5 ,w =CW, (76)

ol - %k TS e T Sk
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where w,_ and Wk represent w(tk) and W(tk), respectively, and®

AT T
o, = e > E = (f) ¢, (T - T)BWE('tk + t)dr. (77)

Tt can be shown that {gk} is a white noise sequence [15], with covariance

T

Rg = E(g, £)) = (J; $,,(T = ©)B FB'¢!(T - t)dr, (78)

where F§(t - s8) is the covariance of the continuous white noise process

g(t). Now, note that
T
w(t, + 1) 8 C ¢ ()W + £ ¢t = 8)B E(t, + s)ds. (79)
After substituting (79) into (75) and some manipulation

Xk"'l = ¢}ﬁ< + ]_"uk + rwwk + ™o (80)

where %, represents x(tk), and

AT T T
¢ =€, T =0 ¢(T - s)asIBr_=[ ¢(T - s)DC ¢ (s)ds, (81)
o o]
T|{ T
n = (J; i (T - ©DC ¢ (t - s)dr | £(f_+ s)ds. (82)

* The matrices A , Bw and Cw have been evaluated at the steady flight
condition for thes® derivdtions.
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Tt should be noted that {nk} is also a white noise sequence, and
which includes those effects of the winds which are not correlated to
Wk. Thus, equations (80) and (76) are the discrete versions of the
aircraft equations of motion (50) and wind equations (72), respectively.
These equations can be programmed on a digital computer to simulate the

motion of the aircraft under various wind conditions, and in the develop-

ment of a digital control law for glideslope capture.
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ITI. Development of the Filter Equations

The aircraft position is obtained from the Microwave Landing
System (MLS). This data is obtained at discrete intervals of time and
with high accuracy. The discrete character of the data makes it
suitable for digital processing. Since the data has a high accuracy,
it is of interest to investigate the possibiiity of deriving the
sigﬁal parameters used by the guidance and control system without the
use of costly inertial navigation systems. This can be done by
processing MLS data and other sensor outputs through a filter which
estimates the desired parameters. Hence, in this section, the equations
defining the filter processing will be developed using MLS data, air
data and body mounted accelerometers without using inertial platform
data. A discrete-time Kalman filter with constant coefficients to reduce
the amount of on-board computation will be used for filtering purposes.

A. Development of Measurement Models

To describe the characteristics of the data obtained from various
sensors, simple models which describe sensor errors statistically will
be developed. Models for these measurements including the associated
errors are required both for simulation and filtering developments. As
a Kalman filter will be used for processing, the errors in the measurements
will be described as additive for filter design purposes; however, when
this is unrealistic a different model will be used for the simulation
of the errors which are actually input to the filter. It will be
assumed that the bias error in the measurements is either negligible or
has been subtracted from the data; otherwise, a pre-filter should be

included for that purpose. As this study considers the longitudinal
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equations of motion, the measurements considered here are those which

affect the longitudinal variables.

associated source of the measurements are listed below.

pitch angle (gyro)
pitch rate (gyro)
slant range (MLS)
elevation angle (MLS)
altitude (barcmetric)
sink rate (barometric)

acceleration along z. (body-mounted accelerometer)

S

true airspeed (air data computer)

acceleration along xg (body-mounted accelerometer)

The measurements considered and the

The sensor models used for the simulation of the measurements are

given below.

p4}

Yo =

=0 _+08 t+t v

+x; +V
% 1 1

é—\)z—XL}'l'VZ
) 1/2
= [(ons tx o-x) * Uz tz - z,) ] + V,
. bes + z -z,
- . +
tan UX5+X ) V’+
o o
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Y5 = -(Uxe + z + Vs) : (83e)

Yg = —(on6.+ ZO)V6 (83f)
. 1+x,

Y7 = UO[XZtaIIX3 + -5-0—52;3— X3 - X,_I_(l + X9 + COSXI -~ COSX3)] + V7

(83g)

1+u" '

Y8=U(—-—=—)V8 (83h)

o\ coso _
Yq = Uo[éz + (1 + x,)x,tanxy + Xysinxg - x,sinx; ] + Vg (831)

where X and z_ are the 4D coordinates of the desired glideslope at a

given time, x. for i > 1 is the ith

component of the state vector x
given in (50), Zg is the vertical coordinate of the elevation antenna,
X, 2 are the coordinates of the azimuth antenna and Vi is the noise
introduced by the sensor. The expressions for the accelerations in

Y, and Yq are obtained by writing the inertial velocities along the

%, and z, axes in terms of the state variables, differentiating with
respect to time and then transforming these accelerations to the stability
axes, Xg, Z_- The earth-fixed coordinate system is referenced with
respect to a point on runway centerline corresponding to the position of
the elevation 1 antenna. The values for the standard deviations of the
sensor noises were chosen to reflect current instrumentation standards
[16], [17]; these are shown in Table 1.

To use these measurements as input to the Kalman filter it is

necessary to express them as linear combinations of the aircraft state

31



variables x and wind variables W with additive noise. To achieve

this a pre-filter processor is used. This processor is nonlinear and
consists of a general coordinate transformation to obtain the variables
suitable for filtering. The equations describing the processing performed

are given below.

r, = [Y§ - Lé 2LeY3cos(Yu + n)1/2 4 = tan? ——Sj (84)
Y1 = Y1 -6, =% +v (85a)
V2 = Y2 = %y + vy | (85b)
V3 = ;—i’ [r_cosy, + XO] = Xg + vg (85¢c)
Vi, = 6% [I’esinYL, -z, tz]=x%x + vy (85d)
ys = % [z - 751 =% * vs (85e)
Ye = % [SinYo - Yl = egAX + vg. (85f)
y7 = ¥U§ - e;Bu = el(Ax + DCWW) + vy (85g)
Vg = 3-% =1 =% - e]CH + vg (86h)
yq = % = eJ(Ax + DO + v (851)
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where hea is the height of the elevation antenna above the azimuth antenna,
X is the distance of the Az. antenna from the origin, Le is given by

(xa/ cosn) , r, is the range from the elevation antenna, €5 is a colum
vector equal to the jth colum of the identity matrix and 'Vj is a pseudo
noise representing the additive noise in the processed measurement vector
y. The first equality in (85) gives the processing done to obtain y

from the total measurements Y, while the second equality (i.e. the

right hand side of (85)) provides the measurement model which is used

in the development of the filter. This model can be written in matrix

form as
y(t) = 3 = Cx + C W + v, (86)

where C; and C, correspond to the appropriate coefficients given in

the second equality of (85). Thus, a mathematical model to simulate
the noisy measurements Y, a nonlinear processor and a linear measurement
model with additive noise for the development of a Kalman filter are
obtained.

B. Development of Filter Equations

The output of the pre-filter processor, Yo given in (86) can be
used as the input to the filter. In turn, the filter reduces the noise
introduced by the sensors by optimally weighing new data versus previous
estimates and also generates estimates of variables which are not
directly measured using the equations by which the dynamical system is

governed. The variables which are not directly measured include the
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angle of attack and the wind velocities; thus the filter output provides
optimal estimates of all the state variables and the wind velocities.
The control system uses these estimates to calculate the control surface
settings thus closing the loop around the aircraft viewed as a dynamical
system.

Since estimates of the wind velocities as well as the aircraft state
variables are to be obtained, it is desirable to combine the aircraft
equations of motion (80), and the wind model (76) into a single system

of equations. Thus, let

Xi = (Xi Wi) , ci = (ni Ei) s ' (87a)
¢ T T

o = W ) s B~ s C = (C]_ Csy) (87b)
0 ¢W 0 )

In this notation (80), (76) and (86) can be written as

Xeyp “oX ¥ By * g,y =08+ . (88)

Now, it is desired to obtain estimates, ik’ of Xk using the
available measurements Yy A Kalman filter for the system given in (88)
would provide optimal estimates of Xk' Note that, whatever processing
is done by the filter, it will require a certain amount of time on a
digital computer; thus the estimates will be available for use by the
control system only after the filtering computations have been

performed. It is known that such delays in the control loop can lead
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to instability [18] in digital control systems if they are not compensated.
Thus it is desirable to obtain estimates with minimum delay. This can
be accomplished by predicting Xk from the past measurements

Vie1? Yieeg> *7°3 i.e. without using the present measurement Yy In this

way, at time tk—l

necessary to obtain Xk are initiated. If these computations can be

the measurements Vi1 3Fe obtained and the computations

performed in less than one sampling period, T, then Xk is avéila.ble at
time tk. Hence, a one-step predictor algorithm is best suited for this
application. The optimal prediction algorithms for the system given

by (88) are the well-known Kalman equations [19], [201, [21].

X4 = 0%t Byt G (y - CX), (89a)
-1
Prsp = 0B’ = aP C'[CRC' + R] CPa' +Q , (89b)

-1 (89c)
1
G @ OLPkC'[CPkC + Rk]

where Pk is the covariance of the error, Xk - Xk’ and the measurement

and state noise covariances are given by

E(ck Cj) E(vk vj) = Rk6kj' (30)

= ka]q' b
Note that (8%9a) is a predictor algorithm since it uses w which is
available at time tk to compute Xk+l which 1s not used until tk+l; (89b)

propagates the error covariance and (89c) gives the filter gain matrix.
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It is important to note that to update the estimates recursively as
shown in (89a) only the gain matrix Gk'is needed.
It is well-known that if the noise covariances Qk and Rk do not

depend on time, i.e.,
Qk a Q, Rk o R, for all k (1)

then the solution Pk of the matrix equation of Riccati type given by
(89b) converges to a steady state error covariance, say P, for a broad
class of dynamical systems (a,R,C). The observability of (a,C) is a
sufficient but not necessary condition for the convergence of Pk; a
necessary and sufficient condition is given in [21]. Thus, in the steady
state situation, the gain Gk also converges to a corresponding value,
say G, given by (89c). Hence, the filter (8%a) becomes a time-invariant
system. The implications of this convergence to the implementation of
the filter are that the error covariance equation (89b) can be solved
off-line and the steady state gain G can be computed prior to flight;

so that the only computations which need to be performed in real time,
i.e. during flight, are the operations described by (89a). As the
propagation of the error covariance generally requires a very large
number of computations compared to the update of the estimates, the

use of the steady state gain reduces the number of operations that need
to be performed on-line considerably. The reduction in computation time

thus gained may allow the use of a sophisticated model for the aircraft

dynamics, thus increasing the accuracy of the estimates. The number
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of computations required can further be decreased by taking advantage
of the special properties of the matrices involved. However, for the’
most general case where no special properties are present, the
number of multiply-add operations required to update the estimates from
one sample to the next is roughly given by n(n + p + 2m), where n is
the number of variables which are estimated (i.e. the dimension of )S(),
p is the number of control variables (i.e. the dimension of uk) and m
is the number of measurements.

In this study, the steady state gains were used to take advantage
of the reduction in the number of on-line computations required. If
no advantage of the special form of a and B is taken, the number of
multiply-add operations required is 646 per update. Taking advantage of
the form of o and B as given in (87b) this number can be reduced to 468.
Further substantial reductions are possible using the properties of ¢,
¢.,° C; and C,; however these were not investigated in this study. If
new estimates are required at a rate of ten per second, the above
computations would require that one multiply-add operation be performed
in a maximun period of 200 usec, including memory access time. Sim-
ulations of the filter under various conditions were done. Plots of
these runs are shown in Figures 6 - 12; these are discussed in Section V.

A block diagram of the filter is given in Figure Uu.
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Iv. Development of Digital Automatic Control Law

During the final approach phase, the aircraft aligns itself
with the runway during localizer capture and stabilizes on a'straight
and level course, it remains on this course until the glideslope
capture maneuver starts, then follows the glideslope until the flare
maneuwver brings it to touchdown. Thus, as the aircraft starts to capture
the glideslope its control surfaces are set so as to follow a constant
altitude straight line flight path. Hence, the function of the control
law to be developed is to take the aircraft from this condition to
another steady condition with a constant sink raté and follow the
flight path defined by the glideslope in an automatic mode using a
digital computer for the control law computations. In terms of the
aircraft equations of motion given by (50), this corresponds to starting
from an initial state that describes a constant speed level flight
condition and bringing the state variables x to a value as close to zero
as allowed by the wind conditions. As the state vector x represents
the deviation of the aircraft longitudinal variables from their value
on the glideslope, a value of zero for x means no deviation from the
desired flight path. As the winds, however, will cause deviations from
this flight path, it is necessary for the control law to take action
against deviations caused by random wind gusts. These objectives can
be mathematically described by a quadratic cost function that penalizes
more for large values of x (i.e. large deviations from the glideslope)

than values close to zero:
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t

f .

J) = 3 E [ [x'()&) + u'(t)Rult)Idt, (92)
t
o

N

where Q and R are non-negative definite matrices chosen so as to reflect
the relative importance of deviations in the state variables and controls
from their desired values and E denotes the statistical expectation
operator. Thus, a control law is judged depending on the value of the
cost function J(u); a small value for J(u) corresponds to small deviations
from the glideslope, hence to a "good" control law. Thus, it is desirable
to find a control law for which the cost function is minimum or at

least small.

A. Discretization of the Cost Function

The aircraft equations of motion (50) and the wind model (72) were
discretized in Section IIC. The cost function (92) can also be
discretized [15] under the assumptions that the measurement noise {vk}
and the wind generation nolse {gk} have zero mean and are gaussian, and
that the control u(t) remains constant over each sampling period, i.e.,
equation (74) holds. If the cost function is discretized then the
optimal control problem.of minimizing J(u) under the constraints of (80)
and (76) can be solved using dynamic programming.

First note that (92) can be broken down to a sum of terms by in-

tegrating over each sampling period.

tk+l

f [x'€)Qx(t) + u'(t)Rult)lat. (93)
t
k

J) =

1
E—E

ne~S=

k=0

Now, using (50) and (72), and x(t) and W(t) can be expressed as
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x(tk + 8) ¢(S)x(tk) + I'W(S)W(tk) + I‘(s)uk + nk(s') (9ua)

W(tk + g) ¢W(s)W(tk) + ak(s), 0<s <T, (9ub)

A s
where ¢(s) and ¢w(s) are the matrix exponentials M and e ¥ R

respectively, and

S

r(s) = [fos¢(s - ©)dilB, T_(s) = CJ; ¢(s - 1)DC ¢ (v)dr, (95a)
S S

nk(S) = i 1_:]' (s - T')DCW¢W(T' - r)dr! F,'(‘tk + t)drt, (95b)
S

£ () = (f) ¢ (s - DEM + 1)dr. (95¢c)

Note -that x(tk), W(tk), (T), PW(T), 6 (T), ¢W(T) (T) and Ek(T)

s My
correspond to X5 Wk, Ty T s ¢ s N and gk, respectively, in

previous notation. The above expressions for x(‘ck + s) and W(t + s)

can be substituted into a general term of the summation in (93), after
some manipulation we obtain
tk+l T

Ef [x"(DQx(t) + u'(DRuwIat=Ef [x'(f_ + s)Qx(t, + s)
O

t
K (96a)

+ u'(’ck + S)ﬁu(tk + g)1ds
- E[x}'ﬁxk + !N+ 2xiMu + ZISu + uf(f{uk] +e?, (96b)
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where

. T _
Q=] ¢"(0)Q(r)dr, (97a)
(o]
T -
M= ¢'(0)qr(t)dr, (97b)
(@]
T —
N = [ ¢"(0)Qr (t)dr, (97¢)
o W
T -
S ={ r'(t)qr(t)dr, (974)
o W
R T _ -
R=[ r1'(0)Qr(c)dr + TR, (97e)
o .

and cﬁ is a constant depending only on the covariance of the white noise
process £(t). It should be noted that nk(s) and gk(s) depend only on

the values of £(t) which occur after t, ; this can be seen from (95b) and

k;
(95c). On the other hand X and Wk depend on the values of g(t) before
tk' Since £(t) is a zero mean gaussian white noise process, its

values before tk and those after tk are independent; thus,

: ' = ' = ' = ' =
E(ank(S)) E(xkgk(s)) E(Wknk(s)) E(Wkgk(s)) 0 (98)
Hence, the terms in (96a) which involve the cross-correlations in (98)
do not influence the discrete cost function (96b). On the other hand,
note that cﬁ does not depend on the values of the - Thus, it does not

affect the minimization of the discrete cost function with respect to W
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and can be ignored. The above result is summarized in the following

lemma.

Lemma 1 The cost function J given by (93) and the discrete costs
function J; given below differ by a constant independent of W.» hence,
J and J; are equivalent as far as minimization with respect to Uy is

concerned.

Jl(u) = -]z;E
k

1He~-11=2

(x'0x. + 2%'NW, + 2%'Mu_ + 2W'Su + u'Ru ) (39)
| Gyl ¢ 2+ 2ty 2By + Ry

Thus, the continuous cost function can be expressed in terms of the
samples of the variables at the sampling instants, tk' Note that (99)
contains cross product terms between the aircraft variables % and the
wind velocities Wk and the controls U whereas the continuous cost
function contains no cross product terms. It can be seen from (97) that
the cross terms as well as the quadratic terms represent the effect of
the dynamics in between sampling instants. As the system response
between the sampling instants is included in the discrete cost function,
it becomes possible to use sampling periods larger than generally used,
thus allowing more time for computation during updates of the estimates

and the control.

B. Solution of the Optimal Control Problem

The optimal control problem of minimizing a quadratic cost function
with the constraint of a linear dynamical system with gaussian statistics
has been extensively treated in the literature [22 and the references

thereinl. The problem considered here differs from the usual one in two
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ways; the cost function contains cross products terms as mentiocned in
the previous section and the state of the system is affected by a
random disturbance which can be described by linear dynamics; i.e. the
disturbance is not white noise. The case of non-random disturbances
was treated in [23]1, [24], [25]. The problem considered here is also
treated in [26].

Consider the optimal sampled-data control problem posed by the
aircraft dynamics (50), the wind model (72), the control constraint (74),
the discrete measurement equations (85) and the costs function (93). In
earlier sections this sampled-data problem has been reduced to a
discrete form with the discrete aircraft equations described by (80),
the wind model by (76), the measurements by (85) and the cost function
by (99). Thus, the optimal control problem is reduced to minimizing
the cost function (99) with respect to the control sequence {u }, where
w is restricted to depend only on the past measurements {yi, 0<is<k-1}
as these measurements only are available for controlling the aircraft.®

To derive the control u which minimizes the cost function (99) the
dynamic programming method [27] will be used. Thus, consider a general

term in (99).

1 1 5
L(w) = 5 Elg g Py gy + 220 0P W g + 2x0M0y + 20 Sy + iRy

(100>

* This restriction is mathematically interpreted as: is measurable
“with respect to the o-algebra generated by the random variables
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Note that as E(xgéxo) and E(XéNWb) are constants they can be excluded
from the minimization, so that the general term in (99) can be written

as shown in (100). Now, substituting (80) and (76) into (100) and

regrouping terms

1 \] 1 l
Ly) = 5 EDgePyyex, + 2 ¢ ‘DI + 2uiGx + 206Gy Wy

(101)
L
where
D= Pl I+ Py, R SR+ TP T, (102a)
G, =T'P,¢ +M, G, aT'D +5, ! (102b)
Wi 1 lknk oy 'P Ek). (102c)

dk E(W I'DW +n

i _ . .
irst note that the cross-correlations of Xk’ Wk uk with e or

gk are zero as shown in (98), and
ECwn’) = EECy ]y, ) = EQEMy,)) = 0%, (103)

and similarly for E(uk ££); so that these terms have been dropped from

(101). Also note that dk depends only on the statistics of the

is the ¢ -algebra generated by the past measurements {y » 021sgk-1},

' []§]
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disturbances (i.e. winds), but does not vary with the control sequence.
Now, note that since uk depends only on past measurements, using a

well-known lemma on conditional expectations [8],

EQe,x) = EEW@E % |%)) = B, x ) (104a)

A

E(uﬁszWk) = E(U£G2ka)’ (10u4b)

where ;k and &k are the conditional expectations E(xk|Vk), E(Wklxk)

k
that ;k and @k are obtained from the filter output. Substituting (104)

respectively. Note that %k and W, are the components of ik in (89) so

into (101),

" - l \ 1 4 T ° ‘”
L (u) = 5 EDggePraex + 2200 'DW + 2up (G + Gy W)

(105)
R
Minimization of T with respect to u results in
= —A -1 . W - .
U Rk [lexk + szwkj, a.e (1086)

Note that since X and Wk depend only on the past measurement, SO
does Yo and the restriction on e is thus satisfied by (106). Now,
substituting (106) into.(105) and adding the next general term in (99),

we obtain
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- L 1 '
L1y ) = E[XkP %t 2XkP2k W T 2% Mg Y WS

(107)
tu Ry alte s
where
- 1 A—1 A = 0
Plk—l o ¢'Plk¢ leRk le + Q, PlM Q (108a)
= - A"l l:
Pyeq = [ = TRFIG, I'D_+ N, Py = N (108b)

I I 7 BLiGyR16, 0 + ey K6 % + 2qe) R, ]

(109a)

N R (109b)
Since, W and % are gaussian random variables, it is known that

[21] E(kak) E(ka') and E(W W') do not depend on the value of W hence,

&1 is constant as far as minimization with respect to u; . Since,

(107) is of the same form as (100) except for a constant, the above

steps can be applied to I 1’ and continue the iteration until IO is

k-
obtained. Hence, the following theorem summarized the result obtained.

Theorem 1 The optimal control problem posed by (50), (72), (74), (85)

and (93) has a unique solution (a.e.) which is given by (106), (108) and

(102),
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u = —(R16 )%~ (REIG, W = —Hyx - Hy W . .. (110)

The control is seen to consist of two parts. One uses the aircraft
state estimates for feedback; note that the gain associated with this term
is the same gain as the case when no disturbance is present. Thus this
term accomplishes the stability about the glideslope to be followed;
i.e., if the aircraft is not on the glideslope, its effect will be to
bring the aircraft back on the glideslope. The second term uses the
disturbance estimates; it acts as a preventive measure so that if a
disturbance that will throw the aircraft off the glideslope is estimated
by Wk, corrective control action will be taken before the aircraft is off
the glideslope, and thus prevent flight path effors as much as possible
before they occur.

C. Constant Feedback Gains

From the expression (11) for the control, it is seen that the feedback

gains H ., and sz vary with time, i.e. with k. Implementation of this

1k
control law would require solving the equations (108), (102) backwards,
starting at K @ M, to determine the gains at each sampling instant, then
storing these gains on an on-board computer to use them in the computation
of the control. This would place a great burden on the computer's

memory capacity and speed. The use of these time varying gains, however,
is not necessary to obtain a good performance and stability. It is

possible to use constant values for the feedback gains Hik and H 1 thus

2
avoiding implementation complexity. In fact, with the use of constant

gains to determine the control in (11), the comtrol computations require
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very little complexity in the on board computer. In this case, it is
necessary to store the elements of H1 and H2 and compute (11) within
a time period T, i.e. the sampling period. For the system considered

here, the number of elements in Hi and H, is 45, and the number of

2
multiply-add operations required for each update of the control is U5.
Thus, the control computations can be easily implemented on an on board
computer.

To compute the constant gains to be used, it is necessary to solve
equations (108) and (102) backward. It is known that Plk converges to
a steady value under very loose conditions [21], which are satisfied by
the aircraft equations (50). The convergence of sz when ¢W has unstable
poles is not always guaranteed. The following theorem given here without
proof specifies necessary and sufficient conditions for the convergence

of sz. Let p(¢) denote the largest of the absolute values of the

eigenvalues of ¢.

Theorem 2 Let Plk converge. Then sz given by (108) converges if,

and only if,
olp = THl)p(¢w) <1

Thus, the convergence of P, and sz depends on the degree of

2k
instability in the disturbance model. For the wind model considered here

p(¢w) has a value of 1, while p(¢ - FHl) is less than 1. Hence, the

above condition is satisfied, and P sz both converge. The steady

2k’
value of P2]< and the gain Hy can be computed from (108) and (102).
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The steady state value of P.. was computed using a non-iterative

1k
approach [28]; i.e., the steady state value, say Pl, was computed without
using (108a) which requires a large number of iterations to converge.

In any case, this computation would be done off-line and place no real-

time requirements. The steady state value of P2 was also computed using

k
a non-iterative method, developed by the author, which will not be given
here. This method also reduced off-line computation time. Then, the
gains H1 and H2 were determined using (11) and (102b). These gains were
stored and used in the simulation of the control system. To avoid
extremely high control commands which might be caused by component or
sensor failures and would place high stress on the control surfaces
limiters were placed as shown in Figure 5. Note that the stabilizer and

throttle commands (u 3k) are rate commands. If the stabilizer and

x> U
throttle positions are needed, a hold circuit followed by an integrator

can be used.

49.



V. Results

Using the models developed in the earlier sections a versatile
digital computer simulation was developed. The filter and the control
law developed for the capture of a steep 63 glideslope were simulated on a
digital computer. The aircraft equations of motion, linearized about a
6° glideslope developed in Section II.A and discretized for simulation
in Section IT.C,were coded on a digital computer to simulate the motion
of the aircraft. The wind model developed in Section II.B was used to
generate random gusts as well as steady winds to simulate the wind
conditions for the simulation of a given flight. The MLS receiver outputs
and on board sensor outputs were simulated by corrupting the position,
velocity and attitude of the aircraft by noises characteristic of present
day sensor errors, the models for these sensor errors are given in
Section III.A. Thus, the simulation developed included the following:

1. aircraft motion in the longitudinal axis

2. wind conditions (gusts and steady winds)

3. sensor errors

4, filter

5. control law

Major parameters such as turbulence levels, steady winds were left
as input variables in the simulation developed to allow for versatility
of use. Thus, to simulate the aircraft motion under different wind
conditions it is only necessary to specifyv the values of the wind gust
and steady wind velocity parameters. The major parameters that can

be specified include:
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1. the standard deviations of wind gusts

2. scale of turbulence

3. steady wind velocities

4. standard deviations of the noises of each sensor and MLS

5. initial conditions at the start of glideslope capture

6. sampling rate, T

Note that by varying the sampling rate, T, it is possible to simulate
varying rates for the reception of MLS data; by varying the noises on the
various sensors, it is possible to degrade the quality of the MLS signal
by adding noise to it and similarly for the other sensors.

A constant gain Kalman filter was developed to filter out the noise
present in the various sensor outputs and to obtain estimates of various
unmeasured parameters, such as wind velocities, and angle of attack.

The filter combines position data from the MLS with air data from
on-board sensors, body-mounted accelerometer data and aircraft attitude
for this purpose. The estimates output by the filter are used to compute
the control commands. The simulation runs made under varying wind
conditions indicate that the estimates supplied by this filter follow
the actual aircraft parameters with little error.

A digital automatic control law for the longitudinal axis to
capture and follow a 6° glideslope was developed. The design procedure
used was the general quadratic reguiator theory with the modifications
described in Chapter IV. The control law uses constant gains in the
feedback loop, and also uses wind velocity estimates provided by the

filter to retrim the aircraft and reduce the deviations caused by the
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wind gusts. The UD aspect of the control law is due to the fact that
the position error fed back is the difference between the actual aircraft
position and its desired position at each instant of time. Thus, the
-aircraft control law tries to bring the aircraft to a specified position
at a specified time. The control law was simulated under various wind
conditions and from different initial conditions as shown in Figures 6 - 12.
The 4D errors in position, errors in sink rate and inertial speed are
shown in the various plots. The performance of the aircraft in capturing
a steep 6° glideslope from level flight at 120 knots appears to be
acceptable.

Various simulation runs for capture and glideslope following are
shown in Figures 6 - 12. The initial conditions corresponding to time
zero, 30,000 ft. from the runway and an altitude of about 3,153 ft. have
been specified as the beginning of the capture mode; i.e. at time zero
the aircraft is trimmed for level flight at 120 knots (202.536 ft/sec);
the capture mode is switched on when the aircraft's estimated altitude
below the glideslope is 45 ft. Thus, the initial 4D vertical error
shown in the simulation plots is not interpreted as an error but as a
starting point from which the glideslope is to be acquired. Similarly,
the initial conditions for pitch, sink rate, thrust, stabilizer, etc. are
at the values required for level flight. The units used in the plots
are ft. for distances, ft/sec. for velocities, degrees for angles,
degrees per second for angular rates and seconds for time. Thrust is
expressed in pounds, throttle in degrees (on the stick), elevator, and

stabilizer in degrees. During the initial capture period, the
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aircraft acquires the 6° glideslope by retrmmng the stabilizer position,
while the thrust is reduced. The elevator initiates the pitch-down
motion, necessary to acquire a sink rate (h) of about 21 ft/sec. The
settling time for pitch, pitch rate, sink rate is about 10 seconds,

while the position errors and speed take longer to reach their steady
values. No extreme values are required for the controls during capture,
and overshoots are not excessive although, in comparison to the usual

3° cap*lcure, the 6° capture is a relatively large change in flight
condition.

To compare the effects of various levels of wind gusts, steady winds
and sensor errors, the hypothetical case of no sensor noise and no wind
was simulated (Figure 6). The aircraft motion for this case is smooth,
and after capture the deviations from the glideslope settle to zero. The
introduction of sensor noise on the measurements (Fig. 7) causes slight
but noticeable deviations from the glideslope in all the variables;
this is caused through the errors in the estimates of the aircraft
variables due to imperfect measurments. The effects of wind gusts on the
aircraft response can be seen in Figures 8 - 10. The turbulence levels
are specified through the standard deviation of longitudinal gust
velocities, gy, and the vertical gust velocities, o As can be seen
from the plots, the wind gusts affect the aircraft motion considerably.
The control action increases in order to reduce the flight path deviations
frem the glideslope by using the proper feedback. The maximum deviations
while following the glideslope are within acceptable limits in the
various wind conditions. It should be noted that these deviations could

be further reduced by allowing a higher level of control activity.
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This can bg achieved simply by reducing the value of the elements of R
in the cost function (92). To see the effect of a higher sampling rate
on the performance of the éircraft motion, a rate of 10 per second
instead of 5 per second was used for incoming data and control commands.
This case is shown in Fig. 123 a slightly tighter performance in the
aircraft deviations can be seen; however, the basic response character-
istics are the same. It should be noted, however, that even though ‘
rates of 5 per second appear to be satisfactory for glideslope capture,
the flare maneuver may require a higher rate. In general, the control
law appears to be performing satisfactorily during the glideslope
capture and glideslope following phases of final approach.

The various plots with sensor noise and wind gusts show that the
constant gain filter tracks the various parameters with considerable
accuracy. The case for no wind and no measurement error (Fig. 6) is
given as a reference for comparison of the effects of inducing sensor
noise and winds of various magnitudes. The case of no measurement noise
(Fig. 6) shows no noticeable error in the estimates, as would be
expected. When measurement noise is introduced (Fig. 7) errors in the
estimates become noticeable. When wind gusts are introduced (Fig. 8),
the errors in the estimates increase slightly; however, this increase in
the errors is small in comparison to the errors due to sensor noise
(Fig. 7). Also note that the wind velocities are estimated with
accuracy, the measurements containing information about wind velocities -
are airspeed and the accelerations; these appear to be sufficient to

track the wind velocities. Steady winds are also estimated with accuracy

5l



as can be seen in Fig. 9. Figure 11 shows a case where the initial
values of the estimates are different than the actual values. In
general, it can be said that the constant gain Kalman filter has a
satisfactory performance in filtering sensor noises out and providing

estimates of unmeasured variables.
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VI. Conclusions

In the previous sections a digital automatic control law for steep
glideslope capture and glideslope tracking was developed. The control
law consists of a filter and a controller. The filter accepts MLS data,
air data, attitude data and body-mounted accelercmeter data, filters
out the sensor noise in the measurements and outputs estimates of the
measured variables, aircraft velocities and wind velocities. The
controller uses these estimates to compute surface setting commands.

A digital computer simulation of the aircraft motion, sensor noises,
wind conditions, the filter and the controller has been developed to
test the concepts used in the development of the overall control law
for automatic steep glideslope capture and tracking. On the basis

of the simulation results, the use of steep glideslopes during the
glideslope capture and glideslope tracking phases of the final approach
appearslto be feasible.

For the filter concept used in this study, the use of costly
inertial platform data can be replaced by less costly body-mounted
accelerometer data (which have less accuracy) to obtain sufficiently .
accurate estimates of the variables needed for control purposes. It may
be possible to eliminate the use of accelerometer data using this type
filter as long as accurate MLS data is available; however, as inexpensive
accelerometers are available, this case was not considered here.

Further research is required to determire if the accuracy of velocity
and acceleration estimates obtained using only MLS data would be

sufficient for successful automatic landing under turbulence. The
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simulation results also indicate that the concepts used in the develop-
ment of the control law can provide successful control action for steep
glideslope capture and tracking under various levels of turbulence.
Another critical phase of the final approach to landing is the
flare maneuver. During a steep approach, due to larger changes in pitch
and sink rate required, the flare maneuver is more critical than for
shallower approaches. Thus, further research to investigate the problems
which may be encountered in flare during a steep approach would be

required for a complete evaluation of steep approaches to landing.
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Table 1 Standard Deviation Values for the
Simulation of Sensor Noises

Variable Standard Deviation Type

Y, .15° | ;ddit;ve A
7, .10°/sec additive 7
Yq 1 ft. additive

Yy, .031° additive

Ys 25 ft. additive *
Ye 5% multiplicative
Y5 .005 g additive

Yg 2 % multiplicative
Ygq .005 g additive
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Appendix A
The aircraft equations of motion which are used in the simulation
and for the development of the filter and control law were developed in
Section IT.A. The final form of the continuous equations as given in

equation (50) is repeated here for convenience
x = Ax + Bu + Dw

The form of the matrices A, B and D are also given in Section II.A.
In this appendix, we shall give the expressions for the non-zero elements
of these matrices in terms of the aircraft stability derivatives; the

stability derivatives are assumed to be in the stability axis.

_ mg cos@o _ mg Sano
e - T ———— > G = T —(—————— >
9,5 95
mJ -1
a3 = ——_9 s aq’ = ((13 + CI_,(;) Py
qOS
_ = o5 = _1 2
(15 - Iyy/qOSC Iy qO = 7 pUO Py

where S is the wing area, ¢ the mean aerodynamic chord and p is the air

density. Using these variables, the matrix elements are given below:
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a1 1 ' :
G21 %5y 0 @2 = o (S0 = Wy ¥ COpyy * o)

- + C C
_ CDa 1o CTx D&
dgg = ——— , dp7 = » A28 = - =

a3 a3 o3

a31 = Ooly s a32 = —GH(CLU + ZCLO)’ a33 = —du(CLa + CDO) Py

agy = aylag - CLq) > a7 = aylp, » azg T ol

OoQy

- -1
aql = as Cma s auz = as (Cmu + 2Cm0 + a32Cm&),
1 1
= — + + . = — -
ay 3 s (Cma Cmra a33Qma s  dyy as (Cmq + aquma) s
. + .
G ? 2378 _ Cmss ¥ @90y
ayy = as > dug = as
ayy = -.5 , azg = .298 3
C +b .
boq = CDc’Se bay = b, . = _mée 31Cma
21 = = 5= > ba ® —0uCl s 0 Pu1 T 5

Cmq + (d33 - l)Cm&

as

Thus, given the stability derivatives of  the aircraft, the A, B and

D matrices can be computed.
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